Minor reformatting.
[official-gcc.git] / gcc / ada / sem_res.adb
blobba28eda23d7ce2958d5069ab200302efb5b2d5e5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elim; use Sem_Elim;
67 with Sem_Elab; use Sem_Elab;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
150 -- predicate.
152 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
158 (N : Node_Id;
159 Arg : Node_Id;
160 Typ : Entity_Id;
161 Is_Comp : Boolean);
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
211 function Operator_Kind
212 (Op_Name : Name_Id;
213 Is_Binary : Boolean) return Node_Kind;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use (N : Node_Id) is
405 PN : constant Node_Id := Parent (N);
406 Disc : constant Entity_Id := Entity (N);
407 P : Node_Id;
408 D : Node_Id;
410 begin
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression then
414 null;
416 elsif Nkind (PN) = N_Range then
418 -- Discriminant cannot be used to constrain a scalar type
420 P := Parent (PN);
422 if Nkind (P) = N_Range_Constraint
423 and then Nkind (Parent (P)) = N_Subtype_Indication
424 and then Nkind (Parent (Parent (P))) = N_Component_Definition
425 then
426 Error_Msg_N ("discriminant cannot constrain scalar type", N);
428 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
436 -- below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
499 -- Start of processing for Check_Large
501 begin
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
516 -- Check that it is the high bound
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
524 -- Check the array allows a large range at this bound. First
525 -- find the array
527 SI := Parent (P);
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
533 T := Entity (Subtype_Mark (SI));
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
539 -- Next, find the dimension
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
552 if CB /= PN then
553 goto No_Danger;
554 end if;
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
562 -- Warn about the danger
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
568 <<No_Danger>>
569 null;
571 end Check_Large;
572 end if;
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
590 return;
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700 P : Node_Id;
701 C : Node_Id;
703 function Same_Argument_List return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List return Boolean is
712 A : Node_Id;
713 F : Entity_Id;
714 Subp : Entity_Id;
716 begin
717 if not Is_Entity_Name (Name (N)) then
718 return False;
719 else
720 Subp := Entity (Name (N));
721 end if;
723 F := First_Formal (Subp);
724 A := First_Actual (N);
725 while Present (F) and then Present (A) loop
726 if not Is_Entity_Name (A) or else Entity (A) /= F then
727 return False;
728 end if;
730 Next_Actual (A);
731 Next_Formal (F);
732 end loop;
734 return True;
735 end Same_Argument_List;
737 -- Start of processing for Check_Infinite_Recursion
739 begin
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member (N)
745 and then List_Length (List_Containing (N)) = 1
746 and then Same_Argument_List
747 then
748 declare
749 P : constant Node_Id := Parent (N);
750 begin
751 if Nkind (P) = N_Handled_Sequence_Of_Statements
752 and then Nkind (Parent (P)) = N_Subprogram_Body
753 and then Is_Empty_List (Declarations (Parent (P)))
754 then
755 Error_Msg_Warn := SPARK_Mode /= On;
756 Error_Msg_N ("!infinite recursion<<", N);
757 Error_Msg_N ("\!Storage_Error [<<", N);
758 Insert_Action (N,
759 Make_Raise_Storage_Error (Sloc (N),
760 Reason => SE_Infinite_Recursion));
761 return True;
762 end if;
763 end;
764 end if;
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
770 C := N;
771 loop
772 P := Parent (C);
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
778 if No (P) then
779 return False;
780 end if;
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind (P) = N_Subprogram_Body;
787 -- If appearing in conditional, result is false
789 if Nkind_In (P, N_Or_Else,
790 N_And_Then,
791 N_Case_Expression,
792 N_Case_Statement,
793 N_If_Expression,
794 N_If_Statement)
795 then
796 return False;
798 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799 and then C /= First (Statements (P))
800 then
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
809 -- begin
810 -- raise Program_Error;
811 -- return F (L);
812 -- end F;
814 -- for generating a stub function
816 if Nkind (Parent (N)) = N_Simple_Return_Statement
817 and then Same_Argument_List
818 then
819 exit when not Is_List_Member (Parent (N));
821 -- OK, return statement is in a statement list, look for raise
823 declare
824 Nod : Node_Id;
826 begin
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod := Prev (Parent (N));
830 while Present (Nod)
831 and then Nkind (Nod) = N_Freeze_Entity
832 loop
833 Prev (Nod);
834 end loop;
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841 and then
842 (Nkind (Nod) not in N_Raise_xxx_Error
843 or else Present (Condition (Nod)));
844 end;
845 end if;
847 return False;
849 else
850 C := P;
851 end if;
852 end loop;
854 Error_Msg_Warn := SPARK_Mode /= On;
855 Error_Msg_N ("!possible infinite recursion<<", N);
856 Error_Msg_N ("\!??Storage_Error ]<<", N);
858 return True;
859 end Check_Infinite_Recursion;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866 Typ : constant Entity_Id := Etype (First_Formal (Nam));
868 function Uses_SS (T : Entity_Id) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
875 -------------
876 -- Uses_SS --
877 -------------
879 function Uses_SS (T : Entity_Id) return Boolean is
880 Comp : Entity_Id;
881 Expr : Node_Id;
882 Full_Type : Entity_Id := Underlying_Type (T);
884 begin
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present (Full_Type) then
889 Full_Type := T;
890 end if;
892 if Is_Controlled (Full_Type) then
893 return False;
895 elsif Is_Array_Type (Full_Type) then
896 return Uses_SS (Component_Type (Full_Type));
898 elsif Is_Record_Type (Full_Type) then
899 Comp := First_Component (Full_Type);
900 while Present (Comp) loop
901 if Ekind (Comp) = E_Component
902 and then Nkind (Parent (Comp)) = N_Component_Declaration
903 then
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr := Original_Node (Expression (Parent (Comp)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
912 -- transient scope.
914 if (Nkind (Expr) = N_Function_Call
915 or else Nkind (Expr) in N_Op
916 or else (Nkind (Expr) = N_Attribute_Reference
917 and then Present (Expressions (Expr))))
918 and then Requires_Transient_Scope (Etype (Expr))
919 then
920 return True;
922 elsif Uses_SS (Etype (Comp)) then
923 return True;
924 end if;
925 end if;
927 Next_Component (Comp);
928 end loop;
930 return False;
932 else
933 return False;
934 end if;
935 end Uses_SS;
937 -- Start of processing for Check_Initialization_Call
939 begin
940 -- Establish a transient scope if the type needs it
942 if Uses_SS (Typ) then
943 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944 end if;
945 end Check_Initialization_Call;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952 begin
953 if Scope (Entity (N)) = Standard_Standard
954 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955 then
956 -- Restriction only applies to original source code
958 if Comes_From_Source (N) then
959 Check_Restriction (No_Direct_Boolean_Operators, N);
960 end if;
961 end if;
963 -- Do style check (but skip if in instance, error is on template)
965 if Style_Check then
966 if not In_Instance then
967 Check_Boolean_Operator (N);
968 end if;
969 end if;
970 end Check_No_Direct_Boolean_Operators;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call (N : Node_Id) is
977 Nam : Node_Id;
979 function Prefix_Is_Access_Subp return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp return Boolean is
989 I : Interp_Index;
990 It : Interp;
992 begin
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind (Parent (N)) = N_Attribute_Reference
997 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998 Name_Code_Address,
999 Name_Access)
1000 then
1001 return False;
1002 end if;
1004 if not Is_Overloaded (N) then
1005 return
1006 Ekind (Etype (N)) = E_Subprogram_Type
1007 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008 else
1009 Get_First_Interp (N, I, It);
1010 while Present (It.Typ) loop
1011 if Ekind (It.Typ) /= E_Subprogram_Type
1012 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013 then
1014 return False;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1020 return True;
1021 end if;
1022 end Prefix_Is_Access_Subp;
1024 -- Start of processing for Check_Parameterless_Call
1026 begin
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected /= 0 then
1030 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031 return;
1032 elsif Nkind (N) in N_Has_Chars
1033 and then Chars (N) in Error_Name_Or_No_Name
1034 then
1035 return;
1036 end if;
1038 Require_Entity (N);
1039 end if;
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name (N)
1046 and then Ekind (Entity (N)) = E_Procedure
1047 and then not Is_Overloaded (N)
1048 and then
1049 Nkind_In (Parent (N), N_Parameter_Association,
1050 N_Function_Call,
1051 N_Procedure_Call_Statement)
1052 then
1053 return;
1054 end if;
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name (N)
1066 and then Nkind (N) /= N_Operator_Symbol
1067 and then Is_Overloadable (Entity (N))
1068 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069 or else Is_Overloaded (N)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1075 or else
1076 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1082 or else
1083 (Nkind (N) = N_Selected_Component
1084 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085 or else
1086 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087 E_Procedure)
1088 and then Is_Overloaded (Selector_Name (N)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1093 then
1094 if Nkind (Parent (N)) /= N_Function_Call
1095 or else N /= Name (Parent (N))
1096 then
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version >= Ada_2005
1102 and then Nkind (N) = N_Selected_Component
1103 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104 then
1105 Analyze_Selected_Component (N);
1107 if Nkind (N) /= N_Selected_Component then
1108 return;
1109 end if;
1110 end if;
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam := Relocate_Node (N);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps (N, Nam);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node (N, N_Function_Call);
1126 Set_Name (N, Nam);
1127 Set_Sloc (N, Sloc (Nam));
1128 Analyze_Call (N);
1129 end if;
1131 elsif Nkind (N) = N_Parameter_Association then
1132 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1134 elsif Nkind (N) = N_Operator_Symbol then
1135 Change_Operator_Symbol_To_String_Literal (N);
1136 Set_Is_Overloaded (N, False);
1137 Set_Etype (N, Any_String);
1138 end if;
1139 end Check_Parameterless_Call;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146 Pref : constant Node_Id := Prefix (N);
1148 begin
1149 if not Is_Entity_Name (Pref) then
1150 return False;
1152 else
1153 declare
1154 Pent : constant Entity_Id := Entity (Pref);
1155 Ptyp : constant Entity_Id := Etype (Pent);
1156 begin
1157 return not Is_Access_Type (Ptyp)
1158 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159 and then Present (Address_Clause (Pent));
1160 end;
1161 end if;
1162 end Is_Atomic_Ref_With_Address;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169 Btyp : constant Entity_Id := Base_Type (E);
1170 begin
1171 return Ekind (Btyp) = E_Access_Type
1172 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173 and then Comes_From_Source (Btyp));
1174 end Is_Definite_Access_Type;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181 begin
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram (Nam) then
1185 return False;
1186 end if;
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191 return False;
1192 end if;
1194 return not Is_Generic_Instance (Nam)
1195 and then Chars (Nam) in Any_Operator_Name
1196 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197 end Is_Predefined_Op;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1204 (N : Node_Id;
1205 Typ : Entity_Id;
1206 Op_Id : Entity_Id)
1208 Op_Name : constant Name_Id := Chars (Op_Id);
1209 Act1 : Node_Id := First_Actual (N);
1210 Act2 : Node_Id := Next_Actual (Act1);
1211 Error : Boolean := False;
1212 Func : constant Entity_Id := Entity (Name (N));
1213 Is_Binary : constant Boolean := Present (Act2);
1214 Op_Node : Node_Id;
1215 Opnd_Type : Entity_Id;
1216 Orig_Type : Entity_Id := Empty;
1217 Pack : Entity_Id;
1219 type Kind_Test is access function (E : Entity_Id) return Boolean;
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P (Test : Kind_Test) return Entity_Id;
1227 -- Find a type of the given class in package Pack that contains the
1228 -- operator.
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235 Nod : constant Node_Id := Right_Opnd (Op_Node);
1236 I : Interp_Index;
1237 It : Interp;
1239 begin
1240 if not Is_Overloaded (Nod) then
1241 return Scope (Base_Type (Etype (Nod))) = S;
1243 else
1244 Get_First_Interp (Nod, I, It);
1245 while Present (It.Typ) loop
1246 if Scope (Base_Type (It.Typ)) = S then
1247 return True;
1248 end if;
1250 Get_Next_Interp (I, It);
1251 end loop;
1253 return False;
1254 end if;
1255 end Operand_Type_In_Scope;
1257 ---------------
1258 -- Type_In_P --
1259 ---------------
1261 function Type_In_P (Test : Kind_Test) return Entity_Id is
1262 E : Entity_Id;
1264 function In_Decl return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1268 -------------
1269 -- In_Decl --
1270 -------------
1272 function In_Decl return Boolean is
1273 Decl_Node : constant Node_Id := Parent (E);
1274 N2 : Node_Id;
1276 begin
1277 N2 := N;
1279 if Etype (E) = Any_Type then
1280 return True;
1282 elsif No (Decl_Node) then
1283 return False;
1285 else
1286 while Present (N2)
1287 and then Nkind (N2) /= N_Compilation_Unit
1288 loop
1289 if N2 = Decl_Node then
1290 return True;
1291 else
1292 N2 := Parent (N2);
1293 end if;
1294 end loop;
1296 return False;
1297 end if;
1298 end In_Decl;
1300 -- Start of processing for Type_In_P
1302 begin
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307 return Base_Type (Typ);
1309 else
1310 E := First_Entity (Pack);
1311 while Present (E) loop
1312 if Test (E) and then not In_Decl then
1313 return E;
1314 end if;
1316 Next_Entity (E);
1317 end loop;
1319 return Empty;
1320 end if;
1321 end Type_In_P;
1323 -- Start of processing for Make_Call_Into_Operator
1325 begin
1326 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1328 -- Binary operator
1330 if Is_Binary then
1331 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1332 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1333 Save_Interps (Act1, Left_Opnd (Op_Node));
1334 Save_Interps (Act2, Right_Opnd (Op_Node));
1335 Act1 := Left_Opnd (Op_Node);
1336 Act2 := Right_Opnd (Op_Node);
1338 -- Unary operator
1340 else
1341 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1342 Save_Interps (Act1, Right_Opnd (Op_Node));
1343 Act1 := Right_Opnd (Op_Node);
1344 end if;
1346 -- If the operator is denoted by an expanded name, and the prefix is
1347 -- not Standard, but the operator is a predefined one whose scope is
1348 -- Standard, then this is an implicit_operator, inserted as an
1349 -- interpretation by the procedure of the same name. This procedure
1350 -- overestimates the presence of implicit operators, because it does
1351 -- not examine the type of the operands. Verify now that the operand
1352 -- type appears in the given scope. If right operand is universal,
1353 -- check the other operand. In the case of concatenation, either
1354 -- argument can be the component type, so check the type of the result.
1355 -- If both arguments are literals, look for a type of the right kind
1356 -- defined in the given scope. This elaborate nonsense is brought to
1357 -- you courtesy of b33302a. The type itself must be frozen, so we must
1358 -- find the type of the proper class in the given scope.
1360 -- A final wrinkle is the multiplication operator for fixed point types,
1361 -- which is defined in Standard only, and not in the scope of the
1362 -- fixed point type itself.
1364 if Nkind (Name (N)) = N_Expanded_Name then
1365 Pack := Entity (Prefix (Name (N)));
1367 -- If this is a package renaming, get renamed entity, which will be
1368 -- the scope of the operands if operaton is type-correct.
1370 if Present (Renamed_Entity (Pack)) then
1371 Pack := Renamed_Entity (Pack);
1372 end if;
1374 -- If the entity being called is defined in the given package, it is
1375 -- a renaming of a predefined operator, and known to be legal.
1377 if Scope (Entity (Name (N))) = Pack
1378 and then Pack /= Standard_Standard
1379 then
1380 null;
1382 -- Visibility does not need to be checked in an instance: if the
1383 -- operator was not visible in the generic it has been diagnosed
1384 -- already, else there is an implicit copy of it in the instance.
1386 elsif In_Instance then
1387 null;
1389 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1390 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1391 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1392 then
1393 if Pack /= Standard_Standard then
1394 Error := True;
1395 end if;
1397 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1398 -- available.
1400 elsif Ada_Version >= Ada_2005
1401 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1402 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1403 then
1404 null;
1406 else
1407 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1409 if Op_Name = Name_Op_Concat then
1410 Opnd_Type := Base_Type (Typ);
1412 elsif (Scope (Opnd_Type) = Standard_Standard
1413 and then Is_Binary)
1414 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1415 and then Is_Binary
1416 and then not Comes_From_Source (Opnd_Type))
1417 then
1418 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1419 end if;
1421 if Scope (Opnd_Type) = Standard_Standard then
1423 -- Verify that the scope contains a type that corresponds to
1424 -- the given literal. Optimize the case where Pack is Standard.
1426 if Pack /= Standard_Standard then
1427 if Opnd_Type = Universal_Integer then
1428 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1430 elsif Opnd_Type = Universal_Real then
1431 Orig_Type := Type_In_P (Is_Real_Type'Access);
1433 elsif Opnd_Type = Any_String then
1434 Orig_Type := Type_In_P (Is_String_Type'Access);
1436 elsif Opnd_Type = Any_Access then
1437 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1439 elsif Opnd_Type = Any_Composite then
1440 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1442 if Present (Orig_Type) then
1443 if Has_Private_Component (Orig_Type) then
1444 Orig_Type := Empty;
1445 else
1446 Set_Etype (Act1, Orig_Type);
1448 if Is_Binary then
1449 Set_Etype (Act2, Orig_Type);
1450 end if;
1451 end if;
1452 end if;
1454 else
1455 Orig_Type := Empty;
1456 end if;
1458 Error := No (Orig_Type);
1459 end if;
1461 elsif Ekind (Opnd_Type) = E_Allocator_Type
1462 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1463 then
1464 Error := True;
1466 -- If the type is defined elsewhere, and the operator is not
1467 -- defined in the given scope (by a renaming declaration, e.g.)
1468 -- then this is an error as well. If an extension of System is
1469 -- present, and the type may be defined there, Pack must be
1470 -- System itself.
1472 elsif Scope (Opnd_Type) /= Pack
1473 and then Scope (Op_Id) /= Pack
1474 and then (No (System_Aux_Id)
1475 or else Scope (Opnd_Type) /= System_Aux_Id
1476 or else Pack /= Scope (System_Aux_Id))
1477 then
1478 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1479 Error := True;
1480 else
1481 Error := not Operand_Type_In_Scope (Pack);
1482 end if;
1484 elsif Pack = Standard_Standard
1485 and then not Operand_Type_In_Scope (Standard_Standard)
1486 then
1487 Error := True;
1488 end if;
1489 end if;
1491 if Error then
1492 Error_Msg_Node_2 := Pack;
1493 Error_Msg_NE
1494 ("& not declared in&", N, Selector_Name (Name (N)));
1495 Set_Etype (N, Any_Type);
1496 return;
1498 -- Detect a mismatch between the context type and the result type
1499 -- in the named package, which is otherwise not detected if the
1500 -- operands are universal. Check is only needed if source entity is
1501 -- an operator, not a function that renames an operator.
1503 elsif Nkind (Parent (N)) /= N_Type_Conversion
1504 and then Ekind (Entity (Name (N))) = E_Operator
1505 and then Is_Numeric_Type (Typ)
1506 and then not Is_Universal_Numeric_Type (Typ)
1507 and then Scope (Base_Type (Typ)) /= Pack
1508 and then not In_Instance
1509 then
1510 if Is_Fixed_Point_Type (Typ)
1511 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1512 then
1513 -- Already checked above
1515 null;
1517 -- Operator may be defined in an extension of System
1519 elsif Present (System_Aux_Id)
1520 and then Scope (Opnd_Type) = System_Aux_Id
1521 then
1522 null;
1524 else
1525 -- Could we use Wrong_Type here??? (this would require setting
1526 -- Etype (N) to the actual type found where Typ was expected).
1528 Error_Msg_NE ("expect }", N, Typ);
1529 end if;
1530 end if;
1531 end if;
1533 Set_Chars (Op_Node, Op_Name);
1535 if not Is_Private_Type (Etype (N)) then
1536 Set_Etype (Op_Node, Base_Type (Etype (N)));
1537 else
1538 Set_Etype (Op_Node, Etype (N));
1539 end if;
1541 -- If this is a call to a function that renames a predefined equality,
1542 -- the renaming declaration provides a type that must be used to
1543 -- resolve the operands. This must be done now because resolution of
1544 -- the equality node will not resolve any remaining ambiguity, and it
1545 -- assumes that the first operand is not overloaded.
1547 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1548 and then Ekind (Func) = E_Function
1549 and then Is_Overloaded (Act1)
1550 then
1551 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1552 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1553 end if;
1555 Set_Entity (Op_Node, Op_Id);
1556 Generate_Reference (Op_Id, N, ' ');
1558 -- Do rewrite setting Comes_From_Source on the result if the original
1559 -- call came from source. Although it is not strictly the case that the
1560 -- operator as such comes from the source, logically it corresponds
1561 -- exactly to the function call in the source, so it should be marked
1562 -- this way (e.g. to make sure that validity checks work fine).
1564 declare
1565 CS : constant Boolean := Comes_From_Source (N);
1566 begin
1567 Rewrite (N, Op_Node);
1568 Set_Comes_From_Source (N, CS);
1569 end;
1571 -- If this is an arithmetic operator and the result type is private,
1572 -- the operands and the result must be wrapped in conversion to
1573 -- expose the underlying numeric type and expand the proper checks,
1574 -- e.g. on division.
1576 if Is_Private_Type (Typ) then
1577 case Nkind (N) is
1578 when N_Op_Add
1579 | N_Op_Divide
1580 | N_Op_Expon
1581 | N_Op_Mod
1582 | N_Op_Multiply
1583 | N_Op_Rem
1584 | N_Op_Subtract
1586 Resolve_Intrinsic_Operator (N, Typ);
1588 when N_Op_Abs
1589 | N_Op_Minus
1590 | N_Op_Plus
1592 Resolve_Intrinsic_Unary_Operator (N, Typ);
1594 when others =>
1595 Resolve (N, Typ);
1596 end case;
1597 else
1598 Resolve (N, Typ);
1599 end if;
1601 -- If in ASIS_Mode, propagate operand types to original actuals of
1602 -- function call, which would otherwise not be fully resolved. If
1603 -- the call has already been constant-folded, nothing to do. We
1604 -- relocate the operand nodes rather than copy them, to preserve
1605 -- original_node pointers, given that the operands themselves may
1606 -- have been rewritten. If the call was itself a rewriting of an
1607 -- operator node, nothing to do.
1609 if ASIS_Mode
1610 and then Nkind (N) in N_Op
1611 and then Nkind (Original_Node (N)) = N_Function_Call
1612 then
1613 declare
1614 L : Node_Id;
1615 R : constant Node_Id := Right_Opnd (N);
1617 Old_First : constant Node_Id :=
1618 First (Parameter_Associations (Original_Node (N)));
1619 Old_Sec : Node_Id;
1621 begin
1622 if Is_Binary then
1623 L := Left_Opnd (N);
1624 Old_Sec := Next (Old_First);
1626 -- If the original call has named associations, replace the
1627 -- explicit actual parameter in the association with the proper
1628 -- resolved operand.
1630 if Nkind (Old_First) = N_Parameter_Association then
1631 if Chars (Selector_Name (Old_First)) =
1632 Chars (First_Entity (Op_Id))
1633 then
1634 Rewrite (Explicit_Actual_Parameter (Old_First),
1635 Relocate_Node (L));
1636 else
1637 Rewrite (Explicit_Actual_Parameter (Old_First),
1638 Relocate_Node (R));
1639 end if;
1641 else
1642 Rewrite (Old_First, Relocate_Node (L));
1643 end if;
1645 if Nkind (Old_Sec) = N_Parameter_Association then
1646 if Chars (Selector_Name (Old_Sec)) =
1647 Chars (First_Entity (Op_Id))
1648 then
1649 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1650 Relocate_Node (L));
1651 else
1652 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1653 Relocate_Node (R));
1654 end if;
1656 else
1657 Rewrite (Old_Sec, Relocate_Node (R));
1658 end if;
1660 else
1661 if Nkind (Old_First) = N_Parameter_Association then
1662 Rewrite (Explicit_Actual_Parameter (Old_First),
1663 Relocate_Node (R));
1664 else
1665 Rewrite (Old_First, Relocate_Node (R));
1666 end if;
1667 end if;
1668 end;
1670 Set_Parent (Original_Node (N), Parent (N));
1671 end if;
1672 end Make_Call_Into_Operator;
1674 -------------------
1675 -- Operator_Kind --
1676 -------------------
1678 function Operator_Kind
1679 (Op_Name : Name_Id;
1680 Is_Binary : Boolean) return Node_Kind
1682 Kind : Node_Kind;
1684 begin
1685 -- Use CASE statement or array???
1687 if Is_Binary then
1688 if Op_Name = Name_Op_And then
1689 Kind := N_Op_And;
1690 elsif Op_Name = Name_Op_Or then
1691 Kind := N_Op_Or;
1692 elsif Op_Name = Name_Op_Xor then
1693 Kind := N_Op_Xor;
1694 elsif Op_Name = Name_Op_Eq then
1695 Kind := N_Op_Eq;
1696 elsif Op_Name = Name_Op_Ne then
1697 Kind := N_Op_Ne;
1698 elsif Op_Name = Name_Op_Lt then
1699 Kind := N_Op_Lt;
1700 elsif Op_Name = Name_Op_Le then
1701 Kind := N_Op_Le;
1702 elsif Op_Name = Name_Op_Gt then
1703 Kind := N_Op_Gt;
1704 elsif Op_Name = Name_Op_Ge then
1705 Kind := N_Op_Ge;
1706 elsif Op_Name = Name_Op_Add then
1707 Kind := N_Op_Add;
1708 elsif Op_Name = Name_Op_Subtract then
1709 Kind := N_Op_Subtract;
1710 elsif Op_Name = Name_Op_Concat then
1711 Kind := N_Op_Concat;
1712 elsif Op_Name = Name_Op_Multiply then
1713 Kind := N_Op_Multiply;
1714 elsif Op_Name = Name_Op_Divide then
1715 Kind := N_Op_Divide;
1716 elsif Op_Name = Name_Op_Mod then
1717 Kind := N_Op_Mod;
1718 elsif Op_Name = Name_Op_Rem then
1719 Kind := N_Op_Rem;
1720 elsif Op_Name = Name_Op_Expon then
1721 Kind := N_Op_Expon;
1722 else
1723 raise Program_Error;
1724 end if;
1726 -- Unary operators
1728 else
1729 if Op_Name = Name_Op_Add then
1730 Kind := N_Op_Plus;
1731 elsif Op_Name = Name_Op_Subtract then
1732 Kind := N_Op_Minus;
1733 elsif Op_Name = Name_Op_Abs then
1734 Kind := N_Op_Abs;
1735 elsif Op_Name = Name_Op_Not then
1736 Kind := N_Op_Not;
1737 else
1738 raise Program_Error;
1739 end if;
1740 end if;
1742 return Kind;
1743 end Operator_Kind;
1745 ----------------------------
1746 -- Preanalyze_And_Resolve --
1747 ----------------------------
1749 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1750 Save_Full_Analysis : constant Boolean := Full_Analysis;
1752 begin
1753 Full_Analysis := False;
1754 Expander_Mode_Save_And_Set (False);
1756 -- Normally, we suppress all checks for this preanalysis. There is no
1757 -- point in processing them now, since they will be applied properly
1758 -- and in the proper location when the default expressions reanalyzed
1759 -- and reexpanded later on. We will also have more information at that
1760 -- point for possible suppression of individual checks.
1762 -- However, in SPARK mode, most expansion is suppressed, and this
1763 -- later reanalysis and reexpansion may not occur. SPARK mode does
1764 -- require the setting of checking flags for proof purposes, so we
1765 -- do the SPARK preanalysis without suppressing checks.
1767 -- This special handling for SPARK mode is required for example in the
1768 -- case of Ada 2012 constructs such as quantified expressions, which are
1769 -- expanded in two separate steps.
1771 if GNATprove_Mode then
1772 Analyze_And_Resolve (N, T);
1773 else
1774 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1775 end if;
1777 Expander_Mode_Restore;
1778 Full_Analysis := Save_Full_Analysis;
1779 end Preanalyze_And_Resolve;
1781 -- Version without context type
1783 procedure Preanalyze_And_Resolve (N : Node_Id) is
1784 Save_Full_Analysis : constant Boolean := Full_Analysis;
1786 begin
1787 Full_Analysis := False;
1788 Expander_Mode_Save_And_Set (False);
1790 Analyze (N);
1791 Resolve (N, Etype (N), Suppress => All_Checks);
1793 Expander_Mode_Restore;
1794 Full_Analysis := Save_Full_Analysis;
1795 end Preanalyze_And_Resolve;
1797 ----------------------------------
1798 -- Replace_Actual_Discriminants --
1799 ----------------------------------
1801 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1802 Loc : constant Source_Ptr := Sloc (N);
1803 Tsk : Node_Id := Empty;
1805 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1806 -- Comment needed???
1808 -------------------
1809 -- Process_Discr --
1810 -------------------
1812 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1813 Ent : Entity_Id;
1815 begin
1816 if Nkind (Nod) = N_Identifier then
1817 Ent := Entity (Nod);
1819 if Present (Ent)
1820 and then Ekind (Ent) = E_Discriminant
1821 then
1822 Rewrite (Nod,
1823 Make_Selected_Component (Loc,
1824 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1825 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1827 Set_Etype (Nod, Etype (Ent));
1828 end if;
1830 end if;
1832 return OK;
1833 end Process_Discr;
1835 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1837 -- Start of processing for Replace_Actual_Discriminants
1839 begin
1840 if not Expander_Active then
1841 return;
1842 end if;
1844 if Nkind (Name (N)) = N_Selected_Component then
1845 Tsk := Prefix (Name (N));
1847 elsif Nkind (Name (N)) = N_Indexed_Component then
1848 Tsk := Prefix (Prefix (Name (N)));
1849 end if;
1851 if No (Tsk) then
1852 return;
1853 else
1854 Replace_Discrs (Default);
1855 end if;
1856 end Replace_Actual_Discriminants;
1858 -------------
1859 -- Resolve --
1860 -------------
1862 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1863 Ambiguous : Boolean := False;
1864 Ctx_Type : Entity_Id := Typ;
1865 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1866 Err_Type : Entity_Id := Empty;
1867 Found : Boolean := False;
1868 From_Lib : Boolean;
1869 I : Interp_Index;
1870 I1 : Interp_Index := 0; -- prevent junk warning
1871 It : Interp;
1872 It1 : Interp;
1873 Seen : Entity_Id := Empty; -- prevent junk warning
1875 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1876 -- Determine whether a node comes from a predefined library unit or
1877 -- Standard.
1879 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1880 -- Try and fix up a literal so that it matches its expected type. New
1881 -- literals are manufactured if necessary to avoid cascaded errors.
1883 procedure Report_Ambiguous_Argument;
1884 -- Additional diagnostics when an ambiguous call has an ambiguous
1885 -- argument (typically a controlling actual).
1887 procedure Resolution_Failed;
1888 -- Called when attempt at resolving current expression fails
1890 ------------------------------------
1891 -- Comes_From_Predefined_Lib_Unit --
1892 -------------------------------------
1894 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1895 begin
1896 return
1897 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1898 end Comes_From_Predefined_Lib_Unit;
1900 --------------------
1901 -- Patch_Up_Value --
1902 --------------------
1904 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1905 begin
1906 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1907 Rewrite (N,
1908 Make_Real_Literal (Sloc (N),
1909 Realval => UR_From_Uint (Intval (N))));
1910 Set_Etype (N, Universal_Real);
1911 Set_Is_Static_Expression (N);
1913 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1914 Rewrite (N,
1915 Make_Integer_Literal (Sloc (N),
1916 Intval => UR_To_Uint (Realval (N))));
1917 Set_Etype (N, Universal_Integer);
1918 Set_Is_Static_Expression (N);
1920 elsif Nkind (N) = N_String_Literal
1921 and then Is_Character_Type (Typ)
1922 then
1923 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1924 Rewrite (N,
1925 Make_Character_Literal (Sloc (N),
1926 Chars => Name_Find,
1927 Char_Literal_Value =>
1928 UI_From_Int (Character'Pos ('A'))));
1929 Set_Etype (N, Any_Character);
1930 Set_Is_Static_Expression (N);
1932 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1933 Rewrite (N,
1934 Make_String_Literal (Sloc (N),
1935 Strval => End_String));
1937 elsif Nkind (N) = N_Range then
1938 Patch_Up_Value (Low_Bound (N), Typ);
1939 Patch_Up_Value (High_Bound (N), Typ);
1940 end if;
1941 end Patch_Up_Value;
1943 -------------------------------
1944 -- Report_Ambiguous_Argument --
1945 -------------------------------
1947 procedure Report_Ambiguous_Argument is
1948 Arg : constant Node_Id := First (Parameter_Associations (N));
1949 I : Interp_Index;
1950 It : Interp;
1952 begin
1953 if Nkind (Arg) = N_Function_Call
1954 and then Is_Entity_Name (Name (Arg))
1955 and then Is_Overloaded (Name (Arg))
1956 then
1957 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1959 -- Could use comments on what is going on here???
1961 Get_First_Interp (Name (Arg), I, It);
1962 while Present (It.Nam) loop
1963 Error_Msg_Sloc := Sloc (It.Nam);
1965 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1966 Error_Msg_N ("interpretation (inherited) #!", Arg);
1967 else
1968 Error_Msg_N ("interpretation #!", Arg);
1969 end if;
1971 Get_Next_Interp (I, It);
1972 end loop;
1973 end if;
1974 end Report_Ambiguous_Argument;
1976 -----------------------
1977 -- Resolution_Failed --
1978 -----------------------
1980 procedure Resolution_Failed is
1981 begin
1982 Patch_Up_Value (N, Typ);
1984 -- Set the type to the desired one to minimize cascaded errors. Note
1985 -- that this is an approximation and does not work in all cases.
1987 Set_Etype (N, Typ);
1989 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1990 Set_Is_Overloaded (N, False);
1992 -- The caller will return without calling the expander, so we need
1993 -- to set the analyzed flag. Note that it is fine to set Analyzed
1994 -- to True even if we are in the middle of a shallow analysis,
1995 -- (see the spec of sem for more details) since this is an error
1996 -- situation anyway, and there is no point in repeating the
1997 -- analysis later (indeed it won't work to repeat it later, since
1998 -- we haven't got a clear resolution of which entity is being
1999 -- referenced.)
2001 Set_Analyzed (N, True);
2002 return;
2003 end Resolution_Failed;
2005 -- Start of processing for Resolve
2007 begin
2008 if N = Error then
2009 return;
2010 end if;
2012 -- Access attribute on remote subprogram cannot be used for a non-remote
2013 -- access-to-subprogram type.
2015 if Nkind (N) = N_Attribute_Reference
2016 and then Nam_In (Attribute_Name (N), Name_Access,
2017 Name_Unrestricted_Access,
2018 Name_Unchecked_Access)
2019 and then Comes_From_Source (N)
2020 and then Is_Entity_Name (Prefix (N))
2021 and then Is_Subprogram (Entity (Prefix (N)))
2022 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2023 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2024 then
2025 Error_Msg_N
2026 ("prefix must statically denote a non-remote subprogram", N);
2027 end if;
2029 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2031 -- If the context is a Remote_Access_To_Subprogram, access attributes
2032 -- must be resolved with the corresponding fat pointer. There is no need
2033 -- to check for the attribute name since the return type of an
2034 -- attribute is never a remote type.
2036 if Nkind (N) = N_Attribute_Reference
2037 and then Comes_From_Source (N)
2038 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2039 then
2040 declare
2041 Attr : constant Attribute_Id :=
2042 Get_Attribute_Id (Attribute_Name (N));
2043 Pref : constant Node_Id := Prefix (N);
2044 Decl : Node_Id;
2045 Spec : Node_Id;
2046 Is_Remote : Boolean := True;
2048 begin
2049 -- Check that Typ is a remote access-to-subprogram type
2051 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2053 -- Prefix (N) must statically denote a remote subprogram
2054 -- declared in a package specification.
2056 if Attr = Attribute_Access or else
2057 Attr = Attribute_Unchecked_Access or else
2058 Attr = Attribute_Unrestricted_Access
2059 then
2060 Decl := Unit_Declaration_Node (Entity (Pref));
2062 if Nkind (Decl) = N_Subprogram_Body then
2063 Spec := Corresponding_Spec (Decl);
2065 if Present (Spec) then
2066 Decl := Unit_Declaration_Node (Spec);
2067 end if;
2068 end if;
2070 Spec := Parent (Decl);
2072 if not Is_Entity_Name (Prefix (N))
2073 or else Nkind (Spec) /= N_Package_Specification
2074 or else
2075 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2076 then
2077 Is_Remote := False;
2078 Error_Msg_N
2079 ("prefix must statically denote a remote subprogram ",
2081 end if;
2083 -- If we are generating code in distributed mode, perform
2084 -- semantic checks against corresponding remote entities.
2086 if Expander_Active
2087 and then Get_PCS_Name /= Name_No_DSA
2088 then
2089 Check_Subtype_Conformant
2090 (New_Id => Entity (Prefix (N)),
2091 Old_Id => Designated_Type
2092 (Corresponding_Remote_Type (Typ)),
2093 Err_Loc => N);
2095 if Is_Remote then
2096 Process_Remote_AST_Attribute (N, Typ);
2097 end if;
2098 end if;
2099 end if;
2100 end if;
2101 end;
2102 end if;
2104 Debug_A_Entry ("resolving ", N);
2106 if Debug_Flag_V then
2107 Write_Overloads (N);
2108 end if;
2110 if Comes_From_Source (N) then
2111 if Is_Fixed_Point_Type (Typ) then
2112 Check_Restriction (No_Fixed_Point, N);
2114 elsif Is_Floating_Point_Type (Typ)
2115 and then Typ /= Universal_Real
2116 and then Typ /= Any_Real
2117 then
2118 Check_Restriction (No_Floating_Point, N);
2119 end if;
2120 end if;
2122 -- Return if already analyzed
2124 if Analyzed (N) then
2125 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2126 Analyze_Dimension (N);
2127 return;
2129 -- Any case of Any_Type as the Etype value means that we had a
2130 -- previous error.
2132 elsif Etype (N) = Any_Type then
2133 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2134 return;
2135 end if;
2137 Check_Parameterless_Call (N);
2139 -- The resolution of an Expression_With_Actions is determined by
2140 -- its Expression.
2142 if Nkind (N) = N_Expression_With_Actions then
2143 Resolve (Expression (N), Typ);
2145 Found := True;
2146 Expr_Type := Etype (Expression (N));
2148 -- If not overloaded, then we know the type, and all that needs doing
2149 -- is to check that this type is compatible with the context.
2151 elsif not Is_Overloaded (N) then
2152 Found := Covers (Typ, Etype (N));
2153 Expr_Type := Etype (N);
2155 -- In the overloaded case, we must select the interpretation that
2156 -- is compatible with the context (i.e. the type passed to Resolve)
2158 else
2159 -- Loop through possible interpretations
2161 Get_First_Interp (N, I, It);
2162 Interp_Loop : while Present (It.Typ) loop
2163 if Debug_Flag_V then
2164 Write_Str ("Interp: ");
2165 Write_Interp (It);
2166 end if;
2168 -- We are only interested in interpretations that are compatible
2169 -- with the expected type, any other interpretations are ignored.
2171 if not Covers (Typ, It.Typ) then
2172 if Debug_Flag_V then
2173 Write_Str (" interpretation incompatible with context");
2174 Write_Eol;
2175 end if;
2177 else
2178 -- Skip the current interpretation if it is disabled by an
2179 -- abstract operator. This action is performed only when the
2180 -- type against which we are resolving is the same as the
2181 -- type of the interpretation.
2183 if Ada_Version >= Ada_2005
2184 and then It.Typ = Typ
2185 and then Typ /= Universal_Integer
2186 and then Typ /= Universal_Real
2187 and then Present (It.Abstract_Op)
2188 then
2189 if Debug_Flag_V then
2190 Write_Line ("Skip.");
2191 end if;
2193 goto Continue;
2194 end if;
2196 -- First matching interpretation
2198 if not Found then
2199 Found := True;
2200 I1 := I;
2201 Seen := It.Nam;
2202 Expr_Type := It.Typ;
2204 -- Matching interpretation that is not the first, maybe an
2205 -- error, but there are some cases where preference rules are
2206 -- used to choose between the two possibilities. These and
2207 -- some more obscure cases are handled in Disambiguate.
2209 else
2210 -- If the current statement is part of a predefined library
2211 -- unit, then all interpretations which come from user level
2212 -- packages should not be considered. Check previous and
2213 -- current one.
2215 if From_Lib then
2216 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2217 goto Continue;
2219 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2221 -- Previous interpretation must be discarded
2223 I1 := I;
2224 Seen := It.Nam;
2225 Expr_Type := It.Typ;
2226 Set_Entity (N, Seen);
2227 goto Continue;
2228 end if;
2229 end if;
2231 -- Otherwise apply further disambiguation steps
2233 Error_Msg_Sloc := Sloc (Seen);
2234 It1 := Disambiguate (N, I1, I, Typ);
2236 -- Disambiguation has succeeded. Skip the remaining
2237 -- interpretations.
2239 if It1 /= No_Interp then
2240 Seen := It1.Nam;
2241 Expr_Type := It1.Typ;
2243 while Present (It.Typ) loop
2244 Get_Next_Interp (I, It);
2245 end loop;
2247 else
2248 -- Before we issue an ambiguity complaint, check for the
2249 -- case of a subprogram call where at least one of the
2250 -- arguments is Any_Type, and if so suppress the message,
2251 -- since it is a cascaded error. This can also happen for
2252 -- a generalized indexing operation.
2254 if Nkind (N) in N_Subprogram_Call
2255 or else (Nkind (N) = N_Indexed_Component
2256 and then Present (Generalized_Indexing (N)))
2257 then
2258 declare
2259 A : Node_Id;
2260 E : Node_Id;
2262 begin
2263 if Nkind (N) = N_Indexed_Component then
2264 Rewrite (N, Generalized_Indexing (N));
2265 end if;
2267 A := First_Actual (N);
2268 while Present (A) loop
2269 E := A;
2271 if Nkind (E) = N_Parameter_Association then
2272 E := Explicit_Actual_Parameter (E);
2273 end if;
2275 if Etype (E) = Any_Type then
2276 if Debug_Flag_V then
2277 Write_Str ("Any_Type in call");
2278 Write_Eol;
2279 end if;
2281 exit Interp_Loop;
2282 end if;
2284 Next_Actual (A);
2285 end loop;
2286 end;
2288 elsif Nkind (N) in N_Binary_Op
2289 and then (Etype (Left_Opnd (N)) = Any_Type
2290 or else Etype (Right_Opnd (N)) = Any_Type)
2291 then
2292 exit Interp_Loop;
2294 elsif Nkind (N) in N_Unary_Op
2295 and then Etype (Right_Opnd (N)) = Any_Type
2296 then
2297 exit Interp_Loop;
2298 end if;
2300 -- Not that special case, so issue message using the flag
2301 -- Ambiguous to control printing of the header message
2302 -- only at the start of an ambiguous set.
2304 if not Ambiguous then
2305 if Nkind (N) = N_Function_Call
2306 and then Nkind (Name (N)) = N_Explicit_Dereference
2307 then
2308 Error_Msg_N
2309 ("ambiguous expression (cannot resolve indirect "
2310 & "call)!", N);
2311 else
2312 Error_Msg_NE -- CODEFIX
2313 ("ambiguous expression (cannot resolve&)!",
2314 N, It.Nam);
2315 end if;
2317 Ambiguous := True;
2319 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2320 Error_Msg_N
2321 ("\\possible interpretation (inherited)#!", N);
2322 else
2323 Error_Msg_N -- CODEFIX
2324 ("\\possible interpretation#!", N);
2325 end if;
2327 if Nkind (N) in N_Subprogram_Call
2328 and then Present (Parameter_Associations (N))
2329 then
2330 Report_Ambiguous_Argument;
2331 end if;
2332 end if;
2334 Error_Msg_Sloc := Sloc (It.Nam);
2336 -- By default, the error message refers to the candidate
2337 -- interpretation. But if it is a predefined operator, it
2338 -- is implicitly declared at the declaration of the type
2339 -- of the operand. Recover the sloc of that declaration
2340 -- for the error message.
2342 if Nkind (N) in N_Op
2343 and then Scope (It.Nam) = Standard_Standard
2344 and then not Is_Overloaded (Right_Opnd (N))
2345 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2346 Standard_Standard
2347 then
2348 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2350 if Comes_From_Source (Err_Type)
2351 and then Present (Parent (Err_Type))
2352 then
2353 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2354 end if;
2356 elsif Nkind (N) in N_Binary_Op
2357 and then Scope (It.Nam) = Standard_Standard
2358 and then not Is_Overloaded (Left_Opnd (N))
2359 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2360 Standard_Standard
2361 then
2362 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2364 if Comes_From_Source (Err_Type)
2365 and then Present (Parent (Err_Type))
2366 then
2367 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2368 end if;
2370 -- If this is an indirect call, use the subprogram_type
2371 -- in the message, to have a meaningful location. Also
2372 -- indicate if this is an inherited operation, created
2373 -- by a type declaration.
2375 elsif Nkind (N) = N_Function_Call
2376 and then Nkind (Name (N)) = N_Explicit_Dereference
2377 and then Is_Type (It.Nam)
2378 then
2379 Err_Type := It.Nam;
2380 Error_Msg_Sloc :=
2381 Sloc (Associated_Node_For_Itype (Err_Type));
2382 else
2383 Err_Type := Empty;
2384 end if;
2386 if Nkind (N) in N_Op
2387 and then Scope (It.Nam) = Standard_Standard
2388 and then Present (Err_Type)
2389 then
2390 -- Special-case the message for universal_fixed
2391 -- operators, which are not declared with the type
2392 -- of the operand, but appear forever in Standard.
2394 if It.Typ = Universal_Fixed
2395 and then Scope (It.Nam) = Standard_Standard
2396 then
2397 Error_Msg_N
2398 ("\\possible interpretation as universal_fixed "
2399 & "operation (RM 4.5.5 (19))", N);
2400 else
2401 Error_Msg_N
2402 ("\\possible interpretation (predefined)#!", N);
2403 end if;
2405 elsif
2406 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2407 then
2408 Error_Msg_N
2409 ("\\possible interpretation (inherited)#!", N);
2410 else
2411 Error_Msg_N -- CODEFIX
2412 ("\\possible interpretation#!", N);
2413 end if;
2415 end if;
2416 end if;
2418 -- We have a matching interpretation, Expr_Type is the type
2419 -- from this interpretation, and Seen is the entity.
2421 -- For an operator, just set the entity name. The type will be
2422 -- set by the specific operator resolution routine.
2424 if Nkind (N) in N_Op then
2425 Set_Entity (N, Seen);
2426 Generate_Reference (Seen, N);
2428 elsif Nkind (N) = N_Case_Expression then
2429 Set_Etype (N, Expr_Type);
2431 elsif Nkind (N) = N_Character_Literal then
2432 Set_Etype (N, Expr_Type);
2434 elsif Nkind (N) = N_If_Expression then
2435 Set_Etype (N, Expr_Type);
2437 -- AI05-0139-2: Expression is overloaded because type has
2438 -- implicit dereference. If type matches context, no implicit
2439 -- dereference is involved.
2441 elsif Has_Implicit_Dereference (Expr_Type) then
2442 Set_Etype (N, Expr_Type);
2443 Set_Is_Overloaded (N, False);
2444 exit Interp_Loop;
2446 elsif Is_Overloaded (N)
2447 and then Present (It.Nam)
2448 and then Ekind (It.Nam) = E_Discriminant
2449 and then Has_Implicit_Dereference (It.Nam)
2450 then
2451 -- If the node is a general indexing, the dereference is
2452 -- is inserted when resolving the rewritten form, else
2453 -- insert it now.
2455 if Nkind (N) /= N_Indexed_Component
2456 or else No (Generalized_Indexing (N))
2457 then
2458 Build_Explicit_Dereference (N, It.Nam);
2459 end if;
2461 -- For an explicit dereference, attribute reference, range,
2462 -- short-circuit form (which is not an operator node), or call
2463 -- with a name that is an explicit dereference, there is
2464 -- nothing to be done at this point.
2466 elsif Nkind_In (N, N_Attribute_Reference,
2467 N_And_Then,
2468 N_Explicit_Dereference,
2469 N_Identifier,
2470 N_Indexed_Component,
2471 N_Or_Else,
2472 N_Range,
2473 N_Selected_Component,
2474 N_Slice)
2475 or else Nkind (Name (N)) = N_Explicit_Dereference
2476 then
2477 null;
2479 -- For procedure or function calls, set the type of the name,
2480 -- and also the entity pointer for the prefix.
2482 elsif Nkind (N) in N_Subprogram_Call
2483 and then Is_Entity_Name (Name (N))
2484 then
2485 Set_Etype (Name (N), Expr_Type);
2486 Set_Entity (Name (N), Seen);
2487 Generate_Reference (Seen, Name (N));
2489 elsif Nkind (N) = N_Function_Call
2490 and then Nkind (Name (N)) = N_Selected_Component
2491 then
2492 Set_Etype (Name (N), Expr_Type);
2493 Set_Entity (Selector_Name (Name (N)), Seen);
2494 Generate_Reference (Seen, Selector_Name (Name (N)));
2496 -- For all other cases, just set the type of the Name
2498 else
2499 Set_Etype (Name (N), Expr_Type);
2500 end if;
2502 end if;
2504 <<Continue>>
2506 -- Move to next interpretation
2508 exit Interp_Loop when No (It.Typ);
2510 Get_Next_Interp (I, It);
2511 end loop Interp_Loop;
2512 end if;
2514 -- At this stage Found indicates whether or not an acceptable
2515 -- interpretation exists. If not, then we have an error, except that if
2516 -- the context is Any_Type as a result of some other error, then we
2517 -- suppress the error report.
2519 if not Found then
2520 if Typ /= Any_Type then
2522 -- If type we are looking for is Void, then this is the procedure
2523 -- call case, and the error is simply that what we gave is not a
2524 -- procedure name (we think of procedure calls as expressions with
2525 -- types internally, but the user doesn't think of them this way).
2527 if Typ = Standard_Void_Type then
2529 -- Special case message if function used as a procedure
2531 if Nkind (N) = N_Procedure_Call_Statement
2532 and then Is_Entity_Name (Name (N))
2533 and then Ekind (Entity (Name (N))) = E_Function
2534 then
2535 Error_Msg_NE
2536 ("cannot use function & in a procedure call",
2537 Name (N), Entity (Name (N)));
2539 -- Otherwise give general message (not clear what cases this
2540 -- covers, but no harm in providing for them).
2542 else
2543 Error_Msg_N ("expect procedure name in procedure call", N);
2544 end if;
2546 Found := True;
2548 -- Otherwise we do have a subexpression with the wrong type
2550 -- Check for the case of an allocator which uses an access type
2551 -- instead of the designated type. This is a common error and we
2552 -- specialize the message, posting an error on the operand of the
2553 -- allocator, complaining that we expected the designated type of
2554 -- the allocator.
2556 elsif Nkind (N) = N_Allocator
2557 and then Is_Access_Type (Typ)
2558 and then Is_Access_Type (Etype (N))
2559 and then Designated_Type (Etype (N)) = Typ
2560 then
2561 Wrong_Type (Expression (N), Designated_Type (Typ));
2562 Found := True;
2564 -- Check for view mismatch on Null in instances, for which the
2565 -- view-swapping mechanism has no identifier.
2567 elsif (In_Instance or else In_Inlined_Body)
2568 and then (Nkind (N) = N_Null)
2569 and then Is_Private_Type (Typ)
2570 and then Is_Access_Type (Full_View (Typ))
2571 then
2572 Resolve (N, Full_View (Typ));
2573 Set_Etype (N, Typ);
2574 return;
2576 -- Check for an aggregate. Sometimes we can get bogus aggregates
2577 -- from misuse of parentheses, and we are about to complain about
2578 -- the aggregate without even looking inside it.
2580 -- Instead, if we have an aggregate of type Any_Composite, then
2581 -- analyze and resolve the component fields, and then only issue
2582 -- another message if we get no errors doing this (otherwise
2583 -- assume that the errors in the aggregate caused the problem).
2585 elsif Nkind (N) = N_Aggregate
2586 and then Etype (N) = Any_Composite
2587 then
2588 -- Disable expansion in any case. If there is a type mismatch
2589 -- it may be fatal to try to expand the aggregate. The flag
2590 -- would otherwise be set to false when the error is posted.
2592 Expander_Active := False;
2594 declare
2595 procedure Check_Aggr (Aggr : Node_Id);
2596 -- Check one aggregate, and set Found to True if we have a
2597 -- definite error in any of its elements
2599 procedure Check_Elmt (Aelmt : Node_Id);
2600 -- Check one element of aggregate and set Found to True if
2601 -- we definitely have an error in the element.
2603 ----------------
2604 -- Check_Aggr --
2605 ----------------
2607 procedure Check_Aggr (Aggr : Node_Id) is
2608 Elmt : Node_Id;
2610 begin
2611 if Present (Expressions (Aggr)) then
2612 Elmt := First (Expressions (Aggr));
2613 while Present (Elmt) loop
2614 Check_Elmt (Elmt);
2615 Next (Elmt);
2616 end loop;
2617 end if;
2619 if Present (Component_Associations (Aggr)) then
2620 Elmt := First (Component_Associations (Aggr));
2621 while Present (Elmt) loop
2623 -- If this is a default-initialized component, then
2624 -- there is nothing to check. The box will be
2625 -- replaced by the appropriate call during late
2626 -- expansion.
2628 if Nkind (Elmt) /= N_Iterated_Component_Association
2629 and then not Box_Present (Elmt)
2630 then
2631 Check_Elmt (Expression (Elmt));
2632 end if;
2634 Next (Elmt);
2635 end loop;
2636 end if;
2637 end Check_Aggr;
2639 ----------------
2640 -- Check_Elmt --
2641 ----------------
2643 procedure Check_Elmt (Aelmt : Node_Id) is
2644 begin
2645 -- If we have a nested aggregate, go inside it (to
2646 -- attempt a naked analyze-resolve of the aggregate can
2647 -- cause undesirable cascaded errors). Do not resolve
2648 -- expression if it needs a type from context, as for
2649 -- integer * fixed expression.
2651 if Nkind (Aelmt) = N_Aggregate then
2652 Check_Aggr (Aelmt);
2654 else
2655 Analyze (Aelmt);
2657 if not Is_Overloaded (Aelmt)
2658 and then Etype (Aelmt) /= Any_Fixed
2659 then
2660 Resolve (Aelmt);
2661 end if;
2663 if Etype (Aelmt) = Any_Type then
2664 Found := True;
2665 end if;
2666 end if;
2667 end Check_Elmt;
2669 begin
2670 Check_Aggr (N);
2671 end;
2672 end if;
2674 -- Looks like we have a type error, but check for special case
2675 -- of Address wanted, integer found, with the configuration pragma
2676 -- Allow_Integer_Address active. If we have this case, introduce
2677 -- an unchecked conversion to allow the integer expression to be
2678 -- treated as an Address. The reverse case of integer wanted,
2679 -- Address found, is treated in an analogous manner.
2681 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2682 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2683 Analyze_And_Resolve (N, Typ);
2684 return;
2686 -- Under relaxed RM semantics silently replace occurrences of null
2687 -- by System.Address_Null.
2689 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2690 Replace_Null_By_Null_Address (N);
2691 Analyze_And_Resolve (N, Typ);
2692 return;
2693 end if;
2695 -- That special Allow_Integer_Address check did not apply, so we
2696 -- have a real type error. If an error message was issued already,
2697 -- Found got reset to True, so if it's still False, issue standard
2698 -- Wrong_Type message.
2700 if not Found then
2701 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2702 declare
2703 Subp_Name : Node_Id;
2705 begin
2706 if Is_Entity_Name (Name (N)) then
2707 Subp_Name := Name (N);
2709 elsif Nkind (Name (N)) = N_Selected_Component then
2711 -- Protected operation: retrieve operation name
2713 Subp_Name := Selector_Name (Name (N));
2715 else
2716 raise Program_Error;
2717 end if;
2719 Error_Msg_Node_2 := Typ;
2720 Error_Msg_NE
2721 ("no visible interpretation of& matches expected type&",
2722 N, Subp_Name);
2723 end;
2725 if All_Errors_Mode then
2726 declare
2727 Index : Interp_Index;
2728 It : Interp;
2730 begin
2731 Error_Msg_N ("\\possible interpretations:", N);
2733 Get_First_Interp (Name (N), Index, It);
2734 while Present (It.Nam) loop
2735 Error_Msg_Sloc := Sloc (It.Nam);
2736 Error_Msg_Node_2 := It.Nam;
2737 Error_Msg_NE
2738 ("\\ type& for & declared#", N, It.Typ);
2739 Get_Next_Interp (Index, It);
2740 end loop;
2741 end;
2743 else
2744 Error_Msg_N ("\use -gnatf for details", N);
2745 end if;
2747 else
2748 Wrong_Type (N, Typ);
2749 end if;
2750 end if;
2751 end if;
2753 Resolution_Failed;
2754 return;
2756 -- Test if we have more than one interpretation for the context
2758 elsif Ambiguous then
2759 Resolution_Failed;
2760 return;
2762 -- Only one intepretation
2764 else
2765 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2766 -- the "+" on T is abstract, and the operands are of universal type,
2767 -- the above code will have (incorrectly) resolved the "+" to the
2768 -- universal one in Standard. Therefore check for this case and give
2769 -- an error. We can't do this earlier, because it would cause legal
2770 -- cases to get errors (when some other type has an abstract "+").
2772 if Ada_Version >= Ada_2005
2773 and then Nkind (N) in N_Op
2774 and then Is_Overloaded (N)
2775 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2776 then
2777 Get_First_Interp (N, I, It);
2778 while Present (It.Typ) loop
2779 if Present (It.Abstract_Op) and then
2780 Etype (It.Abstract_Op) = Typ
2781 then
2782 Error_Msg_NE
2783 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2784 return;
2785 end if;
2787 Get_Next_Interp (I, It);
2788 end loop;
2789 end if;
2791 -- Here we have an acceptable interpretation for the context
2793 -- Propagate type information and normalize tree for various
2794 -- predefined operations. If the context only imposes a class of
2795 -- types, rather than a specific type, propagate the actual type
2796 -- downward.
2798 if Typ = Any_Integer or else
2799 Typ = Any_Boolean or else
2800 Typ = Any_Modular or else
2801 Typ = Any_Real or else
2802 Typ = Any_Discrete
2803 then
2804 Ctx_Type := Expr_Type;
2806 -- Any_Fixed is legal in a real context only if a specific fixed-
2807 -- point type is imposed. If Norman Cohen can be confused by this,
2808 -- it deserves a separate message.
2810 if Typ = Any_Real
2811 and then Expr_Type = Any_Fixed
2812 then
2813 Error_Msg_N ("illegal context for mixed mode operation", N);
2814 Set_Etype (N, Universal_Real);
2815 Ctx_Type := Universal_Real;
2816 end if;
2817 end if;
2819 -- A user-defined operator is transformed into a function call at
2820 -- this point, so that further processing knows that operators are
2821 -- really operators (i.e. are predefined operators). User-defined
2822 -- operators that are intrinsic are just renamings of the predefined
2823 -- ones, and need not be turned into calls either, but if they rename
2824 -- a different operator, we must transform the node accordingly.
2825 -- Instantiations of Unchecked_Conversion are intrinsic but are
2826 -- treated as functions, even if given an operator designator.
2828 if Nkind (N) in N_Op
2829 and then Present (Entity (N))
2830 and then Ekind (Entity (N)) /= E_Operator
2831 then
2832 if not Is_Predefined_Op (Entity (N)) then
2833 Rewrite_Operator_As_Call (N, Entity (N));
2835 elsif Present (Alias (Entity (N)))
2836 and then
2837 Nkind (Parent (Parent (Entity (N)))) =
2838 N_Subprogram_Renaming_Declaration
2839 then
2840 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2842 -- If the node is rewritten, it will be fully resolved in
2843 -- Rewrite_Renamed_Operator.
2845 if Analyzed (N) then
2846 return;
2847 end if;
2848 end if;
2849 end if;
2851 case N_Subexpr'(Nkind (N)) is
2852 when N_Aggregate =>
2853 Resolve_Aggregate (N, Ctx_Type);
2855 when N_Allocator =>
2856 Resolve_Allocator (N, Ctx_Type);
2858 when N_Short_Circuit =>
2859 Resolve_Short_Circuit (N, Ctx_Type);
2861 when N_Attribute_Reference =>
2862 Resolve_Attribute (N, Ctx_Type);
2864 when N_Case_Expression =>
2865 Resolve_Case_Expression (N, Ctx_Type);
2867 when N_Character_Literal =>
2868 Resolve_Character_Literal (N, Ctx_Type);
2870 when N_Delta_Aggregate =>
2871 Resolve_Delta_Aggregate (N, Ctx_Type);
2873 when N_Expanded_Name =>
2874 Resolve_Entity_Name (N, Ctx_Type);
2876 when N_Explicit_Dereference =>
2877 Resolve_Explicit_Dereference (N, Ctx_Type);
2879 when N_Expression_With_Actions =>
2880 Resolve_Expression_With_Actions (N, Ctx_Type);
2882 when N_Extension_Aggregate =>
2883 Resolve_Extension_Aggregate (N, Ctx_Type);
2885 when N_Function_Call =>
2886 Resolve_Call (N, Ctx_Type);
2888 when N_Identifier =>
2889 Resolve_Entity_Name (N, Ctx_Type);
2891 when N_If_Expression =>
2892 Resolve_If_Expression (N, Ctx_Type);
2894 when N_Indexed_Component =>
2895 Resolve_Indexed_Component (N, Ctx_Type);
2897 when N_Integer_Literal =>
2898 Resolve_Integer_Literal (N, Ctx_Type);
2900 when N_Membership_Test =>
2901 Resolve_Membership_Op (N, Ctx_Type);
2903 when N_Null =>
2904 Resolve_Null (N, Ctx_Type);
2906 when N_Op_And
2907 | N_Op_Or
2908 | N_Op_Xor
2910 Resolve_Logical_Op (N, Ctx_Type);
2912 when N_Op_Eq
2913 | N_Op_Ne
2915 Resolve_Equality_Op (N, Ctx_Type);
2917 when N_Op_Ge
2918 | N_Op_Gt
2919 | N_Op_Le
2920 | N_Op_Lt
2922 Resolve_Comparison_Op (N, Ctx_Type);
2924 when N_Op_Not =>
2925 Resolve_Op_Not (N, Ctx_Type);
2927 when N_Op_Add
2928 | N_Op_Divide
2929 | N_Op_Mod
2930 | N_Op_Multiply
2931 | N_Op_Rem
2932 | N_Op_Subtract
2934 Resolve_Arithmetic_Op (N, Ctx_Type);
2936 when N_Op_Concat =>
2937 Resolve_Op_Concat (N, Ctx_Type);
2939 when N_Op_Expon =>
2940 Resolve_Op_Expon (N, Ctx_Type);
2942 when N_Op_Abs
2943 | N_Op_Minus
2944 | N_Op_Plus
2946 Resolve_Unary_Op (N, Ctx_Type);
2948 when N_Op_Shift =>
2949 Resolve_Shift (N, Ctx_Type);
2951 when N_Procedure_Call_Statement =>
2952 Resolve_Call (N, Ctx_Type);
2954 when N_Operator_Symbol =>
2955 Resolve_Operator_Symbol (N, Ctx_Type);
2957 when N_Qualified_Expression =>
2958 Resolve_Qualified_Expression (N, Ctx_Type);
2960 -- Why is the following null, needs a comment ???
2962 when N_Quantified_Expression =>
2963 null;
2965 when N_Raise_Expression =>
2966 Resolve_Raise_Expression (N, Ctx_Type);
2968 when N_Raise_xxx_Error =>
2969 Set_Etype (N, Ctx_Type);
2971 when N_Range =>
2972 Resolve_Range (N, Ctx_Type);
2974 when N_Real_Literal =>
2975 Resolve_Real_Literal (N, Ctx_Type);
2977 when N_Reference =>
2978 Resolve_Reference (N, Ctx_Type);
2980 when N_Selected_Component =>
2981 Resolve_Selected_Component (N, Ctx_Type);
2983 when N_Slice =>
2984 Resolve_Slice (N, Ctx_Type);
2986 when N_String_Literal =>
2987 Resolve_String_Literal (N, Ctx_Type);
2989 when N_Target_Name =>
2990 Resolve_Target_Name (N, Ctx_Type);
2992 when N_Type_Conversion =>
2993 Resolve_Type_Conversion (N, Ctx_Type);
2995 when N_Unchecked_Expression =>
2996 Resolve_Unchecked_Expression (N, Ctx_Type);
2998 when N_Unchecked_Type_Conversion =>
2999 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3000 end case;
3002 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3003 -- expression of an anonymous access type that occurs in the context
3004 -- of a named general access type, except when the expression is that
3005 -- of a membership test. This ensures proper legality checking in
3006 -- terms of allowed conversions (expressions that would be illegal to
3007 -- convert implicitly are allowed in membership tests).
3009 if Ada_Version >= Ada_2012
3010 and then Ekind (Ctx_Type) = E_General_Access_Type
3011 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3012 and then Nkind (Parent (N)) not in N_Membership_Test
3013 then
3014 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3015 Analyze_And_Resolve (N, Ctx_Type);
3016 end if;
3018 -- If the subexpression was replaced by a non-subexpression, then
3019 -- all we do is to expand it. The only legitimate case we know of
3020 -- is converting procedure call statement to entry call statements,
3021 -- but there may be others, so we are making this test general.
3023 if Nkind (N) not in N_Subexpr then
3024 Debug_A_Exit ("resolving ", N, " (done)");
3025 Expand (N);
3026 return;
3027 end if;
3029 -- The expression is definitely NOT overloaded at this point, so
3030 -- we reset the Is_Overloaded flag to avoid any confusion when
3031 -- reanalyzing the node.
3033 Set_Is_Overloaded (N, False);
3035 -- Freeze expression type, entity if it is a name, and designated
3036 -- type if it is an allocator (RM 13.14(10,11,13)).
3038 -- Now that the resolution of the type of the node is complete, and
3039 -- we did not detect an error, we can expand this node. We skip the
3040 -- expand call if we are in a default expression, see section
3041 -- "Handling of Default Expressions" in Sem spec.
3043 Debug_A_Exit ("resolving ", N, " (done)");
3045 -- We unconditionally freeze the expression, even if we are in
3046 -- default expression mode (the Freeze_Expression routine tests this
3047 -- flag and only freezes static types if it is set).
3049 -- Ada 2012 (AI05-177): The declaration of an expression function
3050 -- does not cause freezing, but we never reach here in that case.
3051 -- Here we are resolving the corresponding expanded body, so we do
3052 -- need to perform normal freezing.
3054 Freeze_Expression (N);
3056 -- Now we can do the expansion
3058 Expand (N);
3059 end if;
3060 end Resolve;
3062 -------------
3063 -- Resolve --
3064 -------------
3066 -- Version with check(s) suppressed
3068 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3069 begin
3070 if Suppress = All_Checks then
3071 declare
3072 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3073 begin
3074 Scope_Suppress.Suppress := (others => True);
3075 Resolve (N, Typ);
3076 Scope_Suppress.Suppress := Sva;
3077 end;
3079 else
3080 declare
3081 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3082 begin
3083 Scope_Suppress.Suppress (Suppress) := True;
3084 Resolve (N, Typ);
3085 Scope_Suppress.Suppress (Suppress) := Svg;
3086 end;
3087 end if;
3088 end Resolve;
3090 -------------
3091 -- Resolve --
3092 -------------
3094 -- Version with implicit type
3096 procedure Resolve (N : Node_Id) is
3097 begin
3098 Resolve (N, Etype (N));
3099 end Resolve;
3101 ---------------------
3102 -- Resolve_Actuals --
3103 ---------------------
3105 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3106 Loc : constant Source_Ptr := Sloc (N);
3107 A : Node_Id;
3108 A_Id : Entity_Id;
3109 A_Typ : Entity_Id;
3110 F : Entity_Id;
3111 F_Typ : Entity_Id;
3112 Prev : Node_Id := Empty;
3113 Orig_A : Node_Id;
3114 Real_F : Entity_Id;
3116 Real_Subp : Entity_Id;
3117 -- If the subprogram being called is an inherited operation for
3118 -- a formal derived type in an instance, Real_Subp is the subprogram
3119 -- that will be called. It may have different formal names than the
3120 -- operation of the formal in the generic, so after actual is resolved
3121 -- the name of the actual in a named association must carry the name
3122 -- of the actual of the subprogram being called.
3124 procedure Check_Aliased_Parameter;
3125 -- Check rules on aliased parameters and related accessibility rules
3126 -- in (RM 3.10.2 (10.2-10.4)).
3128 procedure Check_Argument_Order;
3129 -- Performs a check for the case where the actuals are all simple
3130 -- identifiers that correspond to the formal names, but in the wrong
3131 -- order, which is considered suspicious and cause for a warning.
3133 procedure Check_Prefixed_Call;
3134 -- If the original node is an overloaded call in prefix notation,
3135 -- insert an 'Access or a dereference as needed over the first actual.
3136 -- Try_Object_Operation has already verified that there is a valid
3137 -- interpretation, but the form of the actual can only be determined
3138 -- once the primitive operation is identified.
3140 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3141 -- Emit an error concerning the illegal usage of an effectively volatile
3142 -- object in interfering context (SPARK RM 7.13(12)).
3144 procedure Insert_Default;
3145 -- If the actual is missing in a call, insert in the actuals list
3146 -- an instance of the default expression. The insertion is always
3147 -- a named association.
3149 procedure Property_Error
3150 (Var : Node_Id;
3151 Var_Id : Entity_Id;
3152 Prop_Nam : Name_Id);
3153 -- Emit an error concerning variable Var with entity Var_Id that has
3154 -- enabled property Prop_Nam when it acts as an actual parameter in a
3155 -- call and the corresponding formal parameter is of mode IN.
3157 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3158 -- Check whether T1 and T2, or their full views, are derived from a
3159 -- common type. Used to enforce the restrictions on array conversions
3160 -- of AI95-00246.
3162 function Static_Concatenation (N : Node_Id) return Boolean;
3163 -- Predicate to determine whether an actual that is a concatenation
3164 -- will be evaluated statically and does not need a transient scope.
3165 -- This must be determined before the actual is resolved and expanded
3166 -- because if needed the transient scope must be introduced earlier.
3168 -----------------------------
3169 -- Check_Aliased_Parameter --
3170 -----------------------------
3172 procedure Check_Aliased_Parameter is
3173 Nominal_Subt : Entity_Id;
3175 begin
3176 if Is_Aliased (F) then
3177 if Is_Tagged_Type (A_Typ) then
3178 null;
3180 elsif Is_Aliased_View (A) then
3181 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3182 Nominal_Subt := Base_Type (A_Typ);
3183 else
3184 Nominal_Subt := A_Typ;
3185 end if;
3187 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3188 null;
3190 -- In a generic body assume the worst for generic formals:
3191 -- they can have a constrained partial view (AI05-041).
3193 elsif Has_Discriminants (F_Typ)
3194 and then not Is_Constrained (F_Typ)
3195 and then not Has_Constrained_Partial_View (F_Typ)
3196 and then not Is_Generic_Type (F_Typ)
3197 then
3198 null;
3200 else
3201 Error_Msg_NE ("untagged actual does not match "
3202 & "aliased formal&", A, F);
3203 end if;
3205 else
3206 Error_Msg_NE ("actual for aliased formal& must be "
3207 & "aliased object", A, F);
3208 end if;
3210 if Ekind (Nam) = E_Procedure then
3211 null;
3213 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3214 if Nkind (Parent (N)) = N_Type_Conversion
3215 and then Type_Access_Level (Etype (Parent (N))) <
3216 Object_Access_Level (A)
3217 then
3218 Error_Msg_N ("aliased actual has wrong accessibility", A);
3219 end if;
3221 elsif Nkind (Parent (N)) = N_Qualified_Expression
3222 and then Nkind (Parent (Parent (N))) = N_Allocator
3223 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3224 Object_Access_Level (A)
3225 then
3226 Error_Msg_N
3227 ("aliased actual in allocator has wrong accessibility", A);
3228 end if;
3229 end if;
3230 end Check_Aliased_Parameter;
3232 --------------------------
3233 -- Check_Argument_Order --
3234 --------------------------
3236 procedure Check_Argument_Order is
3237 begin
3238 -- Nothing to do if no parameters, or original node is neither a
3239 -- function call nor a procedure call statement (happens in the
3240 -- operator-transformed-to-function call case), or the call does
3241 -- not come from source, or this warning is off.
3243 if not Warn_On_Parameter_Order
3244 or else No (Parameter_Associations (N))
3245 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3246 or else not Comes_From_Source (N)
3247 then
3248 return;
3249 end if;
3251 declare
3252 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3254 begin
3255 -- Nothing to do if only one parameter
3257 if Nargs < 2 then
3258 return;
3259 end if;
3261 -- Here if at least two arguments
3263 declare
3264 Actuals : array (1 .. Nargs) of Node_Id;
3265 Actual : Node_Id;
3266 Formal : Node_Id;
3268 Wrong_Order : Boolean := False;
3269 -- Set True if an out of order case is found
3271 begin
3272 -- Collect identifier names of actuals, fail if any actual is
3273 -- not a simple identifier, and record max length of name.
3275 Actual := First (Parameter_Associations (N));
3276 for J in Actuals'Range loop
3277 if Nkind (Actual) /= N_Identifier then
3278 return;
3279 else
3280 Actuals (J) := Actual;
3281 Next (Actual);
3282 end if;
3283 end loop;
3285 -- If we got this far, all actuals are identifiers and the list
3286 -- of their names is stored in the Actuals array.
3288 Formal := First_Formal (Nam);
3289 for J in Actuals'Range loop
3291 -- If we ran out of formals, that's odd, probably an error
3292 -- which will be detected elsewhere, but abandon the search.
3294 if No (Formal) then
3295 return;
3296 end if;
3298 -- If name matches and is in order OK
3300 if Chars (Formal) = Chars (Actuals (J)) then
3301 null;
3303 else
3304 -- If no match, see if it is elsewhere in list and if so
3305 -- flag potential wrong order if type is compatible.
3307 for K in Actuals'Range loop
3308 if Chars (Formal) = Chars (Actuals (K))
3309 and then
3310 Has_Compatible_Type (Actuals (K), Etype (Formal))
3311 then
3312 Wrong_Order := True;
3313 goto Continue;
3314 end if;
3315 end loop;
3317 -- No match
3319 return;
3320 end if;
3322 <<Continue>> Next_Formal (Formal);
3323 end loop;
3325 -- If Formals left over, also probably an error, skip warning
3327 if Present (Formal) then
3328 return;
3329 end if;
3331 -- Here we give the warning if something was out of order
3333 if Wrong_Order then
3334 Error_Msg_N
3335 ("?P?actuals for this call may be in wrong order", N);
3336 end if;
3337 end;
3338 end;
3339 end Check_Argument_Order;
3341 -------------------------
3342 -- Check_Prefixed_Call --
3343 -------------------------
3345 procedure Check_Prefixed_Call is
3346 Act : constant Node_Id := First_Actual (N);
3347 A_Type : constant Entity_Id := Etype (Act);
3348 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3349 Orig : constant Node_Id := Original_Node (N);
3350 New_A : Node_Id;
3352 begin
3353 -- Check whether the call is a prefixed call, with or without
3354 -- additional actuals.
3356 if Nkind (Orig) = N_Selected_Component
3357 or else
3358 (Nkind (Orig) = N_Indexed_Component
3359 and then Nkind (Prefix (Orig)) = N_Selected_Component
3360 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3361 and then Is_Entity_Name (Act)
3362 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3363 then
3364 if Is_Access_Type (A_Type)
3365 and then not Is_Access_Type (F_Type)
3366 then
3367 -- Introduce dereference on object in prefix
3369 New_A :=
3370 Make_Explicit_Dereference (Sloc (Act),
3371 Prefix => Relocate_Node (Act));
3372 Rewrite (Act, New_A);
3373 Analyze (Act);
3375 elsif Is_Access_Type (F_Type)
3376 and then not Is_Access_Type (A_Type)
3377 then
3378 -- Introduce an implicit 'Access in prefix
3380 if not Is_Aliased_View (Act) then
3381 Error_Msg_NE
3382 ("object in prefixed call to& must be aliased "
3383 & "(RM 4.1.3 (13 1/2))",
3384 Prefix (Act), Nam);
3385 end if;
3387 Rewrite (Act,
3388 Make_Attribute_Reference (Loc,
3389 Attribute_Name => Name_Access,
3390 Prefix => Relocate_Node (Act)));
3391 end if;
3393 Analyze (Act);
3394 end if;
3395 end Check_Prefixed_Call;
3397 ---------------------------------------
3398 -- Flag_Effectively_Volatile_Objects --
3399 ---------------------------------------
3401 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3402 function Flag_Object (N : Node_Id) return Traverse_Result;
3403 -- Determine whether arbitrary node N denotes an effectively volatile
3404 -- object and if it does, emit an error.
3406 -----------------
3407 -- Flag_Object --
3408 -----------------
3410 function Flag_Object (N : Node_Id) return Traverse_Result is
3411 Id : Entity_Id;
3413 begin
3414 -- Do not consider nested function calls because they have already
3415 -- been processed during their own resolution.
3417 if Nkind (N) = N_Function_Call then
3418 return Skip;
3420 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3421 Id := Entity (N);
3423 if Is_Object (Id)
3424 and then Is_Effectively_Volatile (Id)
3425 and then (Async_Writers_Enabled (Id)
3426 or else Effective_Reads_Enabled (Id))
3427 then
3428 Error_Msg_N
3429 ("volatile object cannot appear in this context (SPARK "
3430 & "RM 7.1.3(11))", N);
3431 return Skip;
3432 end if;
3433 end if;
3435 return OK;
3436 end Flag_Object;
3438 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3440 -- Start of processing for Flag_Effectively_Volatile_Objects
3442 begin
3443 Flag_Objects (Expr);
3444 end Flag_Effectively_Volatile_Objects;
3446 --------------------
3447 -- Insert_Default --
3448 --------------------
3450 procedure Insert_Default is
3451 Actval : Node_Id;
3452 Assoc : Node_Id;
3454 begin
3455 -- Missing argument in call, nothing to insert
3457 if No (Default_Value (F)) then
3458 return;
3460 else
3461 -- Note that we do a full New_Copy_Tree, so that any associated
3462 -- Itypes are properly copied. This may not be needed any more,
3463 -- but it does no harm as a safety measure. Defaults of a generic
3464 -- formal may be out of bounds of the corresponding actual (see
3465 -- cc1311b) and an additional check may be required.
3467 Actval :=
3468 New_Copy_Tree
3469 (Default_Value (F),
3470 New_Scope => Current_Scope,
3471 New_Sloc => Loc);
3473 -- Propagate dimension information, if any.
3475 Copy_Dimensions (Default_Value (F), Actval);
3477 if Is_Concurrent_Type (Scope (Nam))
3478 and then Has_Discriminants (Scope (Nam))
3479 then
3480 Replace_Actual_Discriminants (N, Actval);
3481 end if;
3483 if Is_Overloadable (Nam)
3484 and then Present (Alias (Nam))
3485 then
3486 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3487 and then not Is_Tagged_Type (Etype (F))
3488 then
3489 -- If default is a real literal, do not introduce a
3490 -- conversion whose effect may depend on the run-time
3491 -- size of universal real.
3493 if Nkind (Actval) = N_Real_Literal then
3494 Set_Etype (Actval, Base_Type (Etype (F)));
3495 else
3496 Actval := Unchecked_Convert_To (Etype (F), Actval);
3497 end if;
3498 end if;
3500 if Is_Scalar_Type (Etype (F)) then
3501 Enable_Range_Check (Actval);
3502 end if;
3504 Set_Parent (Actval, N);
3506 -- Resolve aggregates with their base type, to avoid scope
3507 -- anomalies: the subtype was first built in the subprogram
3508 -- declaration, and the current call may be nested.
3510 if Nkind (Actval) = N_Aggregate then
3511 Analyze_And_Resolve (Actval, Etype (F));
3512 else
3513 Analyze_And_Resolve (Actval, Etype (Actval));
3514 end if;
3516 else
3517 Set_Parent (Actval, N);
3519 -- See note above concerning aggregates
3521 if Nkind (Actval) = N_Aggregate
3522 and then Has_Discriminants (Etype (Actval))
3523 then
3524 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3526 -- Resolve entities with their own type, which may differ from
3527 -- the type of a reference in a generic context (the view
3528 -- swapping mechanism did not anticipate the re-analysis of
3529 -- default values in calls).
3531 elsif Is_Entity_Name (Actval) then
3532 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3534 else
3535 Analyze_And_Resolve (Actval, Etype (Actval));
3536 end if;
3537 end if;
3539 -- If default is a tag indeterminate function call, propagate tag
3540 -- to obtain proper dispatching.
3542 if Is_Controlling_Formal (F)
3543 and then Nkind (Default_Value (F)) = N_Function_Call
3544 then
3545 Set_Is_Controlling_Actual (Actval);
3546 end if;
3547 end if;
3549 -- If the default expression raises constraint error, then just
3550 -- silently replace it with an N_Raise_Constraint_Error node, since
3551 -- we already gave the warning on the subprogram spec. If node is
3552 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3553 -- the warnings removal machinery.
3555 if Raises_Constraint_Error (Actval)
3556 and then Nkind (Actval) /= N_Raise_Constraint_Error
3557 then
3558 Rewrite (Actval,
3559 Make_Raise_Constraint_Error (Loc,
3560 Reason => CE_Range_Check_Failed));
3561 Set_Raises_Constraint_Error (Actval);
3562 Set_Etype (Actval, Etype (F));
3563 end if;
3565 Assoc :=
3566 Make_Parameter_Association (Loc,
3567 Explicit_Actual_Parameter => Actval,
3568 Selector_Name => Make_Identifier (Loc, Chars (F)));
3570 -- Case of insertion is first named actual
3572 if No (Prev) or else
3573 Nkind (Parent (Prev)) /= N_Parameter_Association
3574 then
3575 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3576 Set_First_Named_Actual (N, Actval);
3578 if No (Prev) then
3579 if No (Parameter_Associations (N)) then
3580 Set_Parameter_Associations (N, New_List (Assoc));
3581 else
3582 Append (Assoc, Parameter_Associations (N));
3583 end if;
3585 else
3586 Insert_After (Prev, Assoc);
3587 end if;
3589 -- Case of insertion is not first named actual
3591 else
3592 Set_Next_Named_Actual
3593 (Assoc, Next_Named_Actual (Parent (Prev)));
3594 Set_Next_Named_Actual (Parent (Prev), Actval);
3595 Append (Assoc, Parameter_Associations (N));
3596 end if;
3598 Mark_Rewrite_Insertion (Assoc);
3599 Mark_Rewrite_Insertion (Actval);
3601 Prev := Actval;
3602 end Insert_Default;
3604 --------------------
3605 -- Property_Error --
3606 --------------------
3608 procedure Property_Error
3609 (Var : Node_Id;
3610 Var_Id : Entity_Id;
3611 Prop_Nam : Name_Id)
3613 begin
3614 Error_Msg_Name_1 := Prop_Nam;
3615 Error_Msg_NE
3616 ("external variable & with enabled property % cannot appear as "
3617 & "actual in procedure call (SPARK RM 7.1.3(10))", Var, Var_Id);
3618 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3619 end Property_Error;
3621 -------------------
3622 -- Same_Ancestor --
3623 -------------------
3625 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3626 FT1 : Entity_Id := T1;
3627 FT2 : Entity_Id := T2;
3629 begin
3630 if Is_Private_Type (T1)
3631 and then Present (Full_View (T1))
3632 then
3633 FT1 := Full_View (T1);
3634 end if;
3636 if Is_Private_Type (T2)
3637 and then Present (Full_View (T2))
3638 then
3639 FT2 := Full_View (T2);
3640 end if;
3642 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3643 end Same_Ancestor;
3645 --------------------------
3646 -- Static_Concatenation --
3647 --------------------------
3649 function Static_Concatenation (N : Node_Id) return Boolean is
3650 begin
3651 case Nkind (N) is
3652 when N_String_Literal =>
3653 return True;
3655 when N_Op_Concat =>
3657 -- Concatenation is static when both operands are static and
3658 -- the concatenation operator is a predefined one.
3660 return Scope (Entity (N)) = Standard_Standard
3661 and then
3662 Static_Concatenation (Left_Opnd (N))
3663 and then
3664 Static_Concatenation (Right_Opnd (N));
3666 when others =>
3667 if Is_Entity_Name (N) then
3668 declare
3669 Ent : constant Entity_Id := Entity (N);
3670 begin
3671 return Ekind (Ent) = E_Constant
3672 and then Present (Constant_Value (Ent))
3673 and then
3674 Is_OK_Static_Expression (Constant_Value (Ent));
3675 end;
3677 else
3678 return False;
3679 end if;
3680 end case;
3681 end Static_Concatenation;
3683 -- Start of processing for Resolve_Actuals
3685 begin
3686 Check_Argument_Order;
3688 if Is_Overloadable (Nam)
3689 and then Is_Inherited_Operation (Nam)
3690 and then In_Instance
3691 and then Present (Alias (Nam))
3692 and then Present (Overridden_Operation (Alias (Nam)))
3693 then
3694 Real_Subp := Alias (Nam);
3695 else
3696 Real_Subp := Empty;
3697 end if;
3699 if Present (First_Actual (N)) then
3700 Check_Prefixed_Call;
3701 end if;
3703 A := First_Actual (N);
3704 F := First_Formal (Nam);
3706 if Present (Real_Subp) then
3707 Real_F := First_Formal (Real_Subp);
3708 end if;
3710 while Present (F) loop
3711 if No (A) and then Needs_No_Actuals (Nam) then
3712 null;
3714 -- If we have an error in any actual or formal, indicated by a type
3715 -- of Any_Type, then abandon resolution attempt, and set result type
3716 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3717 -- type is imposed from context.
3719 elsif (Present (A) and then Etype (A) = Any_Type)
3720 or else Etype (F) = Any_Type
3721 then
3722 if Nkind (A) /= N_Raise_Expression then
3723 Set_Etype (N, Any_Type);
3724 return;
3725 end if;
3726 end if;
3728 -- Case where actual is present
3730 -- If the actual is an entity, generate a reference to it now. We
3731 -- do this before the actual is resolved, because a formal of some
3732 -- protected subprogram, or a task discriminant, will be rewritten
3733 -- during expansion, and the source entity reference may be lost.
3735 if Present (A)
3736 and then Is_Entity_Name (A)
3737 and then Comes_From_Source (A)
3738 then
3739 Orig_A := Entity (A);
3741 if Present (Orig_A) then
3742 if Is_Formal (Orig_A)
3743 and then Ekind (F) /= E_In_Parameter
3744 then
3745 Generate_Reference (Orig_A, A, 'm');
3747 elsif not Is_Overloaded (A) then
3748 if Ekind (F) /= E_Out_Parameter then
3749 Generate_Reference (Orig_A, A);
3751 -- RM 6.4.1(12): For an out parameter that is passed by
3752 -- copy, the formal parameter object is created, and:
3754 -- * For an access type, the formal parameter is initialized
3755 -- from the value of the actual, without checking that the
3756 -- value satisfies any constraint, any predicate, or any
3757 -- exclusion of the null value.
3759 -- * For a scalar type that has the Default_Value aspect
3760 -- specified, the formal parameter is initialized from the
3761 -- value of the actual, without checking that the value
3762 -- satisfies any constraint or any predicate.
3763 -- I do not understand why this case is included??? this is
3764 -- not a case where an OUT parameter is treated as IN OUT.
3766 -- * For a composite type with discriminants or that has
3767 -- implicit initial values for any subcomponents, the
3768 -- behavior is as for an in out parameter passed by copy.
3770 -- Hence for these cases we generate the read reference now
3771 -- (the write reference will be generated later by
3772 -- Note_Possible_Modification).
3774 elsif Is_By_Copy_Type (Etype (F))
3775 and then
3776 (Is_Access_Type (Etype (F))
3777 or else
3778 (Is_Scalar_Type (Etype (F))
3779 and then
3780 Present (Default_Aspect_Value (Etype (F))))
3781 or else
3782 (Is_Composite_Type (Etype (F))
3783 and then (Has_Discriminants (Etype (F))
3784 or else Is_Partially_Initialized_Type
3785 (Etype (F)))))
3786 then
3787 Generate_Reference (Orig_A, A);
3788 end if;
3789 end if;
3790 end if;
3791 end if;
3793 if Present (A)
3794 and then (Nkind (Parent (A)) /= N_Parameter_Association
3795 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3796 then
3797 -- If style checking mode on, check match of formal name
3799 if Style_Check then
3800 if Nkind (Parent (A)) = N_Parameter_Association then
3801 Check_Identifier (Selector_Name (Parent (A)), F);
3802 end if;
3803 end if;
3805 -- If the formal is Out or In_Out, do not resolve and expand the
3806 -- conversion, because it is subsequently expanded into explicit
3807 -- temporaries and assignments. However, the object of the
3808 -- conversion can be resolved. An exception is the case of tagged
3809 -- type conversion with a class-wide actual. In that case we want
3810 -- the tag check to occur and no temporary will be needed (no
3811 -- representation change can occur) and the parameter is passed by
3812 -- reference, so we go ahead and resolve the type conversion.
3813 -- Another exception is the case of reference to component or
3814 -- subcomponent of a bit-packed array, in which case we want to
3815 -- defer expansion to the point the in and out assignments are
3816 -- performed.
3818 if Ekind (F) /= E_In_Parameter
3819 and then Nkind (A) = N_Type_Conversion
3820 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3821 then
3822 if Ekind (F) = E_In_Out_Parameter
3823 and then Is_Array_Type (Etype (F))
3824 then
3825 -- In a view conversion, the conversion must be legal in
3826 -- both directions, and thus both component types must be
3827 -- aliased, or neither (4.6 (8)).
3829 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3830 -- the privacy requirement should not apply to generic
3831 -- types, and should be checked in an instance. ARG query
3832 -- is in order ???
3834 if Has_Aliased_Components (Etype (Expression (A))) /=
3835 Has_Aliased_Components (Etype (F))
3836 then
3837 Error_Msg_N
3838 ("both component types in a view conversion must be"
3839 & " aliased, or neither", A);
3841 -- Comment here??? what set of cases???
3843 elsif
3844 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3845 then
3846 -- Check view conv between unrelated by ref array types
3848 if Is_By_Reference_Type (Etype (F))
3849 or else Is_By_Reference_Type (Etype (Expression (A)))
3850 then
3851 Error_Msg_N
3852 ("view conversion between unrelated by reference "
3853 & "array types not allowed (\'A'I-00246)", A);
3855 -- In Ada 2005 mode, check view conversion component
3856 -- type cannot be private, tagged, or volatile. Note
3857 -- that we only apply this to source conversions. The
3858 -- generated code can contain conversions which are
3859 -- not subject to this test, and we cannot extract the
3860 -- component type in such cases since it is not present.
3862 elsif Comes_From_Source (A)
3863 and then Ada_Version >= Ada_2005
3864 then
3865 declare
3866 Comp_Type : constant Entity_Id :=
3867 Component_Type
3868 (Etype (Expression (A)));
3869 begin
3870 if (Is_Private_Type (Comp_Type)
3871 and then not Is_Generic_Type (Comp_Type))
3872 or else Is_Tagged_Type (Comp_Type)
3873 or else Is_Volatile (Comp_Type)
3874 then
3875 Error_Msg_N
3876 ("component type of a view conversion cannot"
3877 & " be private, tagged, or volatile"
3878 & " (RM 4.6 (24))",
3879 Expression (A));
3880 end if;
3881 end;
3882 end if;
3883 end if;
3884 end if;
3886 -- Resolve expression if conversion is all OK
3888 if (Conversion_OK (A)
3889 or else Valid_Conversion (A, Etype (A), Expression (A)))
3890 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3891 then
3892 Resolve (Expression (A));
3893 end if;
3895 -- If the actual is a function call that returns a limited
3896 -- unconstrained object that needs finalization, create a
3897 -- transient scope for it, so that it can receive the proper
3898 -- finalization list.
3900 elsif Nkind (A) = N_Function_Call
3901 and then Is_Limited_Record (Etype (F))
3902 and then not Is_Constrained (Etype (F))
3903 and then Expander_Active
3904 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3905 then
3906 Establish_Transient_Scope (A, Sec_Stack => False);
3907 Resolve (A, Etype (F));
3909 -- A small optimization: if one of the actuals is a concatenation
3910 -- create a block around a procedure call to recover stack space.
3911 -- This alleviates stack usage when several procedure calls in
3912 -- the same statement list use concatenation. We do not perform
3913 -- this wrapping for code statements, where the argument is a
3914 -- static string, and we want to preserve warnings involving
3915 -- sequences of such statements.
3917 elsif Nkind (A) = N_Op_Concat
3918 and then Nkind (N) = N_Procedure_Call_Statement
3919 and then Expander_Active
3920 and then
3921 not (Is_Intrinsic_Subprogram (Nam)
3922 and then Chars (Nam) = Name_Asm)
3923 and then not Static_Concatenation (A)
3924 then
3925 Establish_Transient_Scope (A, Sec_Stack => False);
3926 Resolve (A, Etype (F));
3928 else
3929 if Nkind (A) = N_Type_Conversion
3930 and then Is_Array_Type (Etype (F))
3931 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3932 and then
3933 (Is_Limited_Type (Etype (F))
3934 or else Is_Limited_Type (Etype (Expression (A))))
3935 then
3936 Error_Msg_N
3937 ("conversion between unrelated limited array types "
3938 & "not allowed ('A'I-00246)", A);
3940 if Is_Limited_Type (Etype (F)) then
3941 Explain_Limited_Type (Etype (F), A);
3942 end if;
3944 if Is_Limited_Type (Etype (Expression (A))) then
3945 Explain_Limited_Type (Etype (Expression (A)), A);
3946 end if;
3947 end if;
3949 -- (Ada 2005: AI-251): If the actual is an allocator whose
3950 -- directly designated type is a class-wide interface, we build
3951 -- an anonymous access type to use it as the type of the
3952 -- allocator. Later, when the subprogram call is expanded, if
3953 -- the interface has a secondary dispatch table the expander
3954 -- will add a type conversion to force the correct displacement
3955 -- of the pointer.
3957 if Nkind (A) = N_Allocator then
3958 declare
3959 DDT : constant Entity_Id :=
3960 Directly_Designated_Type (Base_Type (Etype (F)));
3962 New_Itype : Entity_Id;
3964 begin
3965 if Is_Class_Wide_Type (DDT)
3966 and then Is_Interface (DDT)
3967 then
3968 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3969 Set_Etype (New_Itype, Etype (A));
3970 Set_Directly_Designated_Type
3971 (New_Itype, Directly_Designated_Type (Etype (A)));
3972 Set_Etype (A, New_Itype);
3973 end if;
3975 -- Ada 2005, AI-162:If the actual is an allocator, the
3976 -- innermost enclosing statement is the master of the
3977 -- created object. This needs to be done with expansion
3978 -- enabled only, otherwise the transient scope will not
3979 -- be removed in the expansion of the wrapped construct.
3981 if (Is_Controlled (DDT) or else Has_Task (DDT))
3982 and then Expander_Active
3983 then
3984 Establish_Transient_Scope (A, Sec_Stack => False);
3985 end if;
3986 end;
3988 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3989 Check_Restriction (No_Access_Parameter_Allocators, A);
3990 end if;
3991 end if;
3993 -- (Ada 2005): The call may be to a primitive operation of a
3994 -- tagged synchronized type, declared outside of the type. In
3995 -- this case the controlling actual must be converted to its
3996 -- corresponding record type, which is the formal type. The
3997 -- actual may be a subtype, either because of a constraint or
3998 -- because it is a generic actual, so use base type to locate
3999 -- concurrent type.
4001 F_Typ := Base_Type (Etype (F));
4003 if Is_Tagged_Type (F_Typ)
4004 and then (Is_Concurrent_Type (F_Typ)
4005 or else Is_Concurrent_Record_Type (F_Typ))
4006 then
4007 -- If the actual is overloaded, look for an interpretation
4008 -- that has a synchronized type.
4010 if not Is_Overloaded (A) then
4011 A_Typ := Base_Type (Etype (A));
4013 else
4014 declare
4015 Index : Interp_Index;
4016 It : Interp;
4018 begin
4019 Get_First_Interp (A, Index, It);
4020 while Present (It.Typ) loop
4021 if Is_Concurrent_Type (It.Typ)
4022 or else Is_Concurrent_Record_Type (It.Typ)
4023 then
4024 A_Typ := Base_Type (It.Typ);
4025 exit;
4026 end if;
4028 Get_Next_Interp (Index, It);
4029 end loop;
4030 end;
4031 end if;
4033 declare
4034 Full_A_Typ : Entity_Id;
4036 begin
4037 if Present (Full_View (A_Typ)) then
4038 Full_A_Typ := Base_Type (Full_View (A_Typ));
4039 else
4040 Full_A_Typ := A_Typ;
4041 end if;
4043 -- Tagged synchronized type (case 1): the actual is a
4044 -- concurrent type.
4046 if Is_Concurrent_Type (A_Typ)
4047 and then Corresponding_Record_Type (A_Typ) = F_Typ
4048 then
4049 Rewrite (A,
4050 Unchecked_Convert_To
4051 (Corresponding_Record_Type (A_Typ), A));
4052 Resolve (A, Etype (F));
4054 -- Tagged synchronized type (case 2): the formal is a
4055 -- concurrent type.
4057 elsif Ekind (Full_A_Typ) = E_Record_Type
4058 and then Present
4059 (Corresponding_Concurrent_Type (Full_A_Typ))
4060 and then Is_Concurrent_Type (F_Typ)
4061 and then Present (Corresponding_Record_Type (F_Typ))
4062 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4063 then
4064 Resolve (A, Corresponding_Record_Type (F_Typ));
4066 -- Common case
4068 else
4069 Resolve (A, Etype (F));
4070 end if;
4071 end;
4073 -- Not a synchronized operation
4075 else
4076 Resolve (A, Etype (F));
4077 end if;
4078 end if;
4080 A_Typ := Etype (A);
4081 F_Typ := Etype (F);
4083 -- An actual cannot be an untagged formal incomplete type
4085 if Ekind (A_Typ) = E_Incomplete_Type
4086 and then not Is_Tagged_Type (A_Typ)
4087 and then Is_Generic_Type (A_Typ)
4088 then
4089 Error_Msg_N
4090 ("invalid use of untagged formal incomplete type", A);
4091 end if;
4093 if Comes_From_Source (Original_Node (N))
4094 and then Nkind_In (Original_Node (N), N_Function_Call,
4095 N_Procedure_Call_Statement)
4096 then
4097 -- In formal mode, check that actual parameters matching
4098 -- formals of tagged types are objects (or ancestor type
4099 -- conversions of objects), not general expressions.
4101 if Is_Actual_Tagged_Parameter (A) then
4102 if Is_SPARK_05_Object_Reference (A) then
4103 null;
4105 elsif Nkind (A) = N_Type_Conversion then
4106 declare
4107 Operand : constant Node_Id := Expression (A);
4108 Operand_Typ : constant Entity_Id := Etype (Operand);
4109 Target_Typ : constant Entity_Id := A_Typ;
4111 begin
4112 if not Is_SPARK_05_Object_Reference (Operand) then
4113 Check_SPARK_05_Restriction
4114 ("object required", Operand);
4116 -- In formal mode, the only view conversions are those
4117 -- involving ancestor conversion of an extended type.
4119 elsif not
4120 (Is_Tagged_Type (Target_Typ)
4121 and then not Is_Class_Wide_Type (Target_Typ)
4122 and then Is_Tagged_Type (Operand_Typ)
4123 and then not Is_Class_Wide_Type (Operand_Typ)
4124 and then Is_Ancestor (Target_Typ, Operand_Typ))
4125 then
4126 if Ekind_In
4127 (F, E_Out_Parameter, E_In_Out_Parameter)
4128 then
4129 Check_SPARK_05_Restriction
4130 ("ancestor conversion is the only permitted "
4131 & "view conversion", A);
4132 else
4133 Check_SPARK_05_Restriction
4134 ("ancestor conversion required", A);
4135 end if;
4137 else
4138 null;
4139 end if;
4140 end;
4142 else
4143 Check_SPARK_05_Restriction ("object required", A);
4144 end if;
4146 -- In formal mode, the only view conversions are those
4147 -- involving ancestor conversion of an extended type.
4149 elsif Nkind (A) = N_Type_Conversion
4150 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4151 then
4152 Check_SPARK_05_Restriction
4153 ("ancestor conversion is the only permitted view "
4154 & "conversion", A);
4155 end if;
4156 end if;
4158 -- has warnings suppressed, then we reset Never_Set_In_Source for
4159 -- the calling entity. The reason for this is to catch cases like
4160 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4161 -- uses trickery to modify an IN parameter.
4163 if Ekind (F) = E_In_Parameter
4164 and then Is_Entity_Name (A)
4165 and then Present (Entity (A))
4166 and then Ekind (Entity (A)) = E_Variable
4167 and then Has_Warnings_Off (F_Typ)
4168 then
4169 Set_Never_Set_In_Source (Entity (A), False);
4170 end if;
4172 -- Perform error checks for IN and IN OUT parameters
4174 if Ekind (F) /= E_Out_Parameter then
4176 -- Check unset reference. For scalar parameters, it is clearly
4177 -- wrong to pass an uninitialized value as either an IN or
4178 -- IN-OUT parameter. For composites, it is also clearly an
4179 -- error to pass a completely uninitialized value as an IN
4180 -- parameter, but the case of IN OUT is trickier. We prefer
4181 -- not to give a warning here. For example, suppose there is
4182 -- a routine that sets some component of a record to False.
4183 -- It is perfectly reasonable to make this IN-OUT and allow
4184 -- either initialized or uninitialized records to be passed
4185 -- in this case.
4187 -- For partially initialized composite values, we also avoid
4188 -- warnings, since it is quite likely that we are passing a
4189 -- partially initialized value and only the initialized fields
4190 -- will in fact be read in the subprogram.
4192 if Is_Scalar_Type (A_Typ)
4193 or else (Ekind (F) = E_In_Parameter
4194 and then not Is_Partially_Initialized_Type (A_Typ))
4195 then
4196 Check_Unset_Reference (A);
4197 end if;
4199 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4200 -- actual to a nested call, since this constitutes a reading of
4201 -- the parameter, which is not allowed.
4203 if Ada_Version = Ada_83
4204 and then Is_Entity_Name (A)
4205 and then Ekind (Entity (A)) = E_Out_Parameter
4206 then
4207 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4208 end if;
4209 end if;
4211 -- In -gnatd.q mode, forget that a given array is constant when
4212 -- it is passed as an IN parameter to a foreign-convention
4213 -- subprogram. This is in case the subprogram evilly modifies the
4214 -- object. Of course, correct code would use IN OUT.
4216 if Debug_Flag_Dot_Q
4217 and then Ekind (F) = E_In_Parameter
4218 and then Has_Foreign_Convention (Nam)
4219 and then Is_Array_Type (F_Typ)
4220 and then Nkind (A) in N_Has_Entity
4221 and then Present (Entity (A))
4222 then
4223 Set_Is_True_Constant (Entity (A), False);
4224 end if;
4226 -- Case of OUT or IN OUT parameter
4228 if Ekind (F) /= E_In_Parameter then
4230 -- For an Out parameter, check for useless assignment. Note
4231 -- that we can't set Last_Assignment this early, because we may
4232 -- kill current values in Resolve_Call, and that call would
4233 -- clobber the Last_Assignment field.
4235 -- Note: call Warn_On_Useless_Assignment before doing the check
4236 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4237 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4238 -- reflects the last assignment, not this one.
4240 if Ekind (F) = E_Out_Parameter then
4241 if Warn_On_Modified_As_Out_Parameter (F)
4242 and then Is_Entity_Name (A)
4243 and then Present (Entity (A))
4244 and then Comes_From_Source (N)
4245 then
4246 Warn_On_Useless_Assignment (Entity (A), A);
4247 end if;
4248 end if;
4250 -- Validate the form of the actual. Note that the call to
4251 -- Is_OK_Variable_For_Out_Formal generates the required
4252 -- reference in this case.
4254 -- A call to an initialization procedure for an aggregate
4255 -- component may initialize a nested component of a constant
4256 -- designated object. In this context the object is variable.
4258 if not Is_OK_Variable_For_Out_Formal (A)
4259 and then not Is_Init_Proc (Nam)
4260 then
4261 Error_Msg_NE ("actual for& must be a variable", A, F);
4263 if Is_Subprogram (Current_Scope) then
4264 if Is_Invariant_Procedure (Current_Scope)
4265 or else Is_Partial_Invariant_Procedure (Current_Scope)
4266 then
4267 Error_Msg_N
4268 ("function used in invariant cannot modify its "
4269 & "argument", F);
4271 elsif Is_Predicate_Function (Current_Scope) then
4272 Error_Msg_N
4273 ("function used in predicate cannot modify its "
4274 & "argument", F);
4275 end if;
4276 end if;
4277 end if;
4279 -- What's the following about???
4281 if Is_Entity_Name (A) then
4282 Kill_Checks (Entity (A));
4283 else
4284 Kill_All_Checks;
4285 end if;
4286 end if;
4288 if Etype (A) = Any_Type then
4289 Set_Etype (N, Any_Type);
4290 return;
4291 end if;
4293 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4295 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4297 -- Apply predicate tests except in certain special cases. Note
4298 -- that it might be more consistent to apply these only when
4299 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4300 -- for the outbound predicate tests ??? In any case indicate
4301 -- the function being called, for better warnings if the call
4302 -- leads to an infinite recursion.
4304 if Predicate_Tests_On_Arguments (Nam) then
4305 Apply_Predicate_Check (A, F_Typ, Nam);
4306 end if;
4308 -- Apply required constraint checks
4310 -- Gigi looks at the check flag and uses the appropriate types.
4311 -- For now since one flag is used there is an optimization
4312 -- which might not be done in the IN OUT case since Gigi does
4313 -- not do any analysis. More thought required about this ???
4315 -- In fact is this comment obsolete??? doesn't the expander now
4316 -- generate all these tests anyway???
4318 if Is_Scalar_Type (Etype (A)) then
4319 Apply_Scalar_Range_Check (A, F_Typ);
4321 elsif Is_Array_Type (Etype (A)) then
4322 Apply_Length_Check (A, F_Typ);
4324 elsif Is_Record_Type (F_Typ)
4325 and then Has_Discriminants (F_Typ)
4326 and then Is_Constrained (F_Typ)
4327 and then (not Is_Derived_Type (F_Typ)
4328 or else Comes_From_Source (Nam))
4329 then
4330 Apply_Discriminant_Check (A, F_Typ);
4332 -- For view conversions of a discriminated object, apply
4333 -- check to object itself, the conversion alreay has the
4334 -- proper type.
4336 if Nkind (A) = N_Type_Conversion
4337 and then Is_Constrained (Etype (Expression (A)))
4338 then
4339 Apply_Discriminant_Check (Expression (A), F_Typ);
4340 end if;
4342 elsif Is_Access_Type (F_Typ)
4343 and then Is_Array_Type (Designated_Type (F_Typ))
4344 and then Is_Constrained (Designated_Type (F_Typ))
4345 then
4346 Apply_Length_Check (A, F_Typ);
4348 elsif Is_Access_Type (F_Typ)
4349 and then Has_Discriminants (Designated_Type (F_Typ))
4350 and then Is_Constrained (Designated_Type (F_Typ))
4351 then
4352 Apply_Discriminant_Check (A, F_Typ);
4354 else
4355 Apply_Range_Check (A, F_Typ);
4356 end if;
4358 -- Ada 2005 (AI-231): Note that the controlling parameter case
4359 -- already existed in Ada 95, which is partially checked
4360 -- elsewhere (see Checks), and we don't want the warning
4361 -- message to differ.
4363 if Is_Access_Type (F_Typ)
4364 and then Can_Never_Be_Null (F_Typ)
4365 and then Known_Null (A)
4366 then
4367 if Is_Controlling_Formal (F) then
4368 Apply_Compile_Time_Constraint_Error
4369 (N => A,
4370 Msg => "null value not allowed here??",
4371 Reason => CE_Access_Check_Failed);
4373 elsif Ada_Version >= Ada_2005 then
4374 Apply_Compile_Time_Constraint_Error
4375 (N => A,
4376 Msg => "(Ada 2005) null not allowed in "
4377 & "null-excluding formal??",
4378 Reason => CE_Null_Not_Allowed);
4379 end if;
4380 end if;
4381 end if;
4383 -- Checks for OUT parameters and IN OUT parameters
4385 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4387 -- If there is a type conversion, make sure the return value
4388 -- meets the constraints of the variable before the conversion.
4390 if Nkind (A) = N_Type_Conversion then
4391 if Is_Scalar_Type (A_Typ) then
4392 Apply_Scalar_Range_Check
4393 (Expression (A), Etype (Expression (A)), A_Typ);
4395 -- In addition, the returned value of the parameter must
4396 -- satisfy the bounds of the object type (see comment
4397 -- below).
4399 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4401 else
4402 Apply_Range_Check
4403 (Expression (A), Etype (Expression (A)), A_Typ);
4404 end if;
4406 -- If no conversion, apply scalar range checks and length check
4407 -- based on the subtype of the actual (NOT that of the formal).
4408 -- This indicates that the check takes place on return from the
4409 -- call. During expansion the required constraint checks are
4410 -- inserted. In GNATprove mode, in the absence of expansion,
4411 -- the flag indicates that the returned value is valid.
4413 else
4414 if Is_Scalar_Type (F_Typ) then
4415 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4417 elsif Is_Array_Type (F_Typ)
4418 and then Ekind (F) = E_Out_Parameter
4419 then
4420 Apply_Length_Check (A, F_Typ);
4421 else
4422 Apply_Range_Check (A, A_Typ, F_Typ);
4423 end if;
4424 end if;
4426 -- Note: we do not apply the predicate checks for the case of
4427 -- OUT and IN OUT parameters. They are instead applied in the
4428 -- Expand_Actuals routine in Exp_Ch6.
4429 end if;
4431 -- An actual associated with an access parameter is implicitly
4432 -- converted to the anonymous access type of the formal and must
4433 -- satisfy the legality checks for access conversions.
4435 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4436 if not Valid_Conversion (A, F_Typ, A) then
4437 Error_Msg_N
4438 ("invalid implicit conversion for access parameter", A);
4439 end if;
4441 -- If the actual is an access selected component of a variable,
4442 -- the call may modify its designated object. It is reasonable
4443 -- to treat this as a potential modification of the enclosing
4444 -- record, to prevent spurious warnings that it should be
4445 -- declared as a constant, because intuitively programmers
4446 -- regard the designated subcomponent as part of the record.
4448 if Nkind (A) = N_Selected_Component
4449 and then Is_Entity_Name (Prefix (A))
4450 and then not Is_Constant_Object (Entity (Prefix (A)))
4451 then
4452 Note_Possible_Modification (A, Sure => False);
4453 end if;
4454 end if;
4456 -- Check bad case of atomic/volatile argument (RM C.6(12))
4458 if Is_By_Reference_Type (Etype (F))
4459 and then Comes_From_Source (N)
4460 then
4461 if Is_Atomic_Object (A)
4462 and then not Is_Atomic (Etype (F))
4463 then
4464 Error_Msg_NE
4465 ("cannot pass atomic argument to non-atomic formal&",
4466 A, F);
4468 elsif Is_Volatile_Object (A)
4469 and then not Is_Volatile (Etype (F))
4470 then
4471 Error_Msg_NE
4472 ("cannot pass volatile argument to non-volatile formal&",
4473 A, F);
4474 end if;
4475 end if;
4477 -- Check that subprograms don't have improper controlling
4478 -- arguments (RM 3.9.2 (9)).
4480 -- A primitive operation may have an access parameter of an
4481 -- incomplete tagged type, but a dispatching call is illegal
4482 -- if the type is still incomplete.
4484 if Is_Controlling_Formal (F) then
4485 Set_Is_Controlling_Actual (A);
4487 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4488 declare
4489 Desig : constant Entity_Id := Designated_Type (Etype (F));
4490 begin
4491 if Ekind (Desig) = E_Incomplete_Type
4492 and then No (Full_View (Desig))
4493 and then No (Non_Limited_View (Desig))
4494 then
4495 Error_Msg_NE
4496 ("premature use of incomplete type& "
4497 & "in dispatching call", A, Desig);
4498 end if;
4499 end;
4500 end if;
4502 elsif Nkind (A) = N_Explicit_Dereference then
4503 Validate_Remote_Access_To_Class_Wide_Type (A);
4504 end if;
4506 -- Apply legality rule 3.9.2 (9/1)
4508 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4509 and then not Is_Class_Wide_Type (F_Typ)
4510 and then not Is_Controlling_Formal (F)
4511 and then not In_Instance
4512 then
4513 Error_Msg_N ("class-wide argument not allowed here!", A);
4515 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4516 Error_Msg_Node_2 := F_Typ;
4517 Error_Msg_NE
4518 ("& is not a dispatching operation of &!", A, Nam);
4519 end if;
4521 -- Apply the checks described in 3.10.2(27): if the context is a
4522 -- specific access-to-object, the actual cannot be class-wide.
4523 -- Use base type to exclude access_to_subprogram cases.
4525 elsif Is_Access_Type (A_Typ)
4526 and then Is_Access_Type (F_Typ)
4527 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4528 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4529 or else (Nkind (A) = N_Attribute_Reference
4530 and then
4531 Is_Class_Wide_Type (Etype (Prefix (A)))))
4532 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4533 and then not Is_Controlling_Formal (F)
4535 -- Disable these checks for call to imported C++ subprograms
4537 and then not
4538 (Is_Entity_Name (Name (N))
4539 and then Is_Imported (Entity (Name (N)))
4540 and then Convention (Entity (Name (N))) = Convention_CPP)
4541 then
4542 Error_Msg_N
4543 ("access to class-wide argument not allowed here!", A);
4545 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4546 Error_Msg_Node_2 := Designated_Type (F_Typ);
4547 Error_Msg_NE
4548 ("& is not a dispatching operation of &!", A, Nam);
4549 end if;
4550 end if;
4552 Check_Aliased_Parameter;
4554 Eval_Actual (A);
4556 -- If it is a named association, treat the selector_name as a
4557 -- proper identifier, and mark the corresponding entity.
4559 if Nkind (Parent (A)) = N_Parameter_Association
4561 -- Ignore reference in SPARK mode, as it refers to an entity not
4562 -- in scope at the point of reference, so the reference should
4563 -- be ignored for computing effects of subprograms.
4565 and then not GNATprove_Mode
4566 then
4567 -- If subprogram is overridden, use name of formal that
4568 -- is being called.
4570 if Present (Real_Subp) then
4571 Set_Entity (Selector_Name (Parent (A)), Real_F);
4572 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4574 else
4575 Set_Entity (Selector_Name (Parent (A)), F);
4576 Generate_Reference (F, Selector_Name (Parent (A)));
4577 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4578 Generate_Reference (F_Typ, N, ' ');
4579 end if;
4580 end if;
4582 Prev := A;
4584 if Ekind (F) /= E_Out_Parameter then
4585 Check_Unset_Reference (A);
4586 end if;
4588 -- The following checks are only relevant when SPARK_Mode is on as
4589 -- they are not standard Ada legality rule. Internally generated
4590 -- temporaries are ignored.
4592 if SPARK_Mode = On and then Comes_From_Source (A) then
4594 -- An effectively volatile object may act as an actual when the
4595 -- corresponding formal is of a non-scalar effectively volatile
4596 -- type (SPARK RM 7.1.3(11)).
4598 if not Is_Scalar_Type (Etype (F))
4599 and then Is_Effectively_Volatile (Etype (F))
4600 then
4601 null;
4603 -- An effectively volatile object may act as an actual in a
4604 -- call to an instance of Unchecked_Conversion.
4605 -- (SPARK RM 7.1.3(11)).
4607 elsif Is_Unchecked_Conversion_Instance (Nam) then
4608 null;
4610 -- The actual denotes an object
4612 elsif Is_Effectively_Volatile_Object (A) then
4613 Error_Msg_N
4614 ("volatile object cannot act as actual in a call (SPARK "
4615 & "RM 7.1.3(11))", A);
4617 -- Otherwise the actual denotes an expression. Inspect the
4618 -- expression and flag each effectively volatile object with
4619 -- enabled property Async_Writers or Effective_Reads as illegal
4620 -- because it apprears within an interfering context. Note that
4621 -- this is usually done in Resolve_Entity_Name, but when the
4622 -- effectively volatile object appears as an actual in a call,
4623 -- the call must be resolved first.
4625 else
4626 Flag_Effectively_Volatile_Objects (A);
4627 end if;
4629 -- Detect an external variable with an enabled property that
4630 -- does not match the mode of the corresponding formal in a
4631 -- procedure call. Functions are not considered because they
4632 -- cannot have effectively volatile formal parameters in the
4633 -- first place.
4635 if Ekind (Nam) = E_Procedure
4636 and then Ekind (F) = E_In_Parameter
4637 and then Is_Entity_Name (A)
4638 and then Present (Entity (A))
4639 and then Ekind (Entity (A)) = E_Variable
4640 then
4641 A_Id := Entity (A);
4643 if Async_Readers_Enabled (A_Id) then
4644 Property_Error (A, A_Id, Name_Async_Readers);
4645 elsif Effective_Reads_Enabled (A_Id) then
4646 Property_Error (A, A_Id, Name_Effective_Reads);
4647 elsif Effective_Writes_Enabled (A_Id) then
4648 Property_Error (A, A_Id, Name_Effective_Writes);
4649 end if;
4650 end if;
4651 end if;
4653 -- A formal parameter of a specific tagged type whose related
4654 -- subprogram is subject to pragma Extensions_Visible with value
4655 -- "False" cannot act as an actual in a subprogram with value
4656 -- "True" (SPARK RM 6.1.7(3)).
4658 if Is_EVF_Expression (A)
4659 and then Extensions_Visible_Status (Nam) =
4660 Extensions_Visible_True
4661 then
4662 Error_Msg_N
4663 ("formal parameter cannot act as actual parameter when "
4664 & "Extensions_Visible is False", A);
4665 Error_Msg_NE
4666 ("\subprogram & has Extensions_Visible True", A, Nam);
4667 end if;
4669 -- The actual parameter of a Ghost subprogram whose formal is of
4670 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4672 if Comes_From_Source (Nam)
4673 and then Is_Ghost_Entity (Nam)
4674 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4675 and then Is_Entity_Name (A)
4676 and then Present (Entity (A))
4677 and then not Is_Ghost_Entity (Entity (A))
4678 then
4679 Error_Msg_NE
4680 ("non-ghost variable & cannot appear as actual in call to "
4681 & "ghost procedure", A, Entity (A));
4683 if Ekind (F) = E_In_Out_Parameter then
4684 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4685 else
4686 Error_Msg_N ("\corresponding formal has mode OUT", A);
4687 end if;
4688 end if;
4690 Next_Actual (A);
4692 -- Case where actual is not present
4694 else
4695 Insert_Default;
4696 end if;
4698 Next_Formal (F);
4700 if Present (Real_Subp) then
4701 Next_Formal (Real_F);
4702 end if;
4703 end loop;
4704 end Resolve_Actuals;
4706 -----------------------
4707 -- Resolve_Allocator --
4708 -----------------------
4710 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4711 Desig_T : constant Entity_Id := Designated_Type (Typ);
4712 E : constant Node_Id := Expression (N);
4713 Subtyp : Entity_Id;
4714 Discrim : Entity_Id;
4715 Constr : Node_Id;
4716 Aggr : Node_Id;
4717 Assoc : Node_Id := Empty;
4718 Disc_Exp : Node_Id;
4720 procedure Check_Allocator_Discrim_Accessibility
4721 (Disc_Exp : Node_Id;
4722 Alloc_Typ : Entity_Id);
4723 -- Check that accessibility level associated with an access discriminant
4724 -- initialized in an allocator by the expression Disc_Exp is not deeper
4725 -- than the level of the allocator type Alloc_Typ. An error message is
4726 -- issued if this condition is violated. Specialized checks are done for
4727 -- the cases of a constraint expression which is an access attribute or
4728 -- an access discriminant.
4730 function In_Dispatching_Context return Boolean;
4731 -- If the allocator is an actual in a call, it is allowed to be class-
4732 -- wide when the context is not because it is a controlling actual.
4734 -------------------------------------------
4735 -- Check_Allocator_Discrim_Accessibility --
4736 -------------------------------------------
4738 procedure Check_Allocator_Discrim_Accessibility
4739 (Disc_Exp : Node_Id;
4740 Alloc_Typ : Entity_Id)
4742 begin
4743 if Type_Access_Level (Etype (Disc_Exp)) >
4744 Deepest_Type_Access_Level (Alloc_Typ)
4745 then
4746 Error_Msg_N
4747 ("operand type has deeper level than allocator type", Disc_Exp);
4749 -- When the expression is an Access attribute the level of the prefix
4750 -- object must not be deeper than that of the allocator's type.
4752 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4753 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4754 Attribute_Access
4755 and then Object_Access_Level (Prefix (Disc_Exp)) >
4756 Deepest_Type_Access_Level (Alloc_Typ)
4757 then
4758 Error_Msg_N
4759 ("prefix of attribute has deeper level than allocator type",
4760 Disc_Exp);
4762 -- When the expression is an access discriminant the check is against
4763 -- the level of the prefix object.
4765 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4766 and then Nkind (Disc_Exp) = N_Selected_Component
4767 and then Object_Access_Level (Prefix (Disc_Exp)) >
4768 Deepest_Type_Access_Level (Alloc_Typ)
4769 then
4770 Error_Msg_N
4771 ("access discriminant has deeper level than allocator type",
4772 Disc_Exp);
4774 -- All other cases are legal
4776 else
4777 null;
4778 end if;
4779 end Check_Allocator_Discrim_Accessibility;
4781 ----------------------------
4782 -- In_Dispatching_Context --
4783 ----------------------------
4785 function In_Dispatching_Context return Boolean is
4786 Par : constant Node_Id := Parent (N);
4788 begin
4789 return Nkind (Par) in N_Subprogram_Call
4790 and then Is_Entity_Name (Name (Par))
4791 and then Is_Dispatching_Operation (Entity (Name (Par)));
4792 end In_Dispatching_Context;
4794 -- Start of processing for Resolve_Allocator
4796 begin
4797 -- Replace general access with specific type
4799 if Ekind (Etype (N)) = E_Allocator_Type then
4800 Set_Etype (N, Base_Type (Typ));
4801 end if;
4803 if Is_Abstract_Type (Typ) then
4804 Error_Msg_N ("type of allocator cannot be abstract", N);
4805 end if;
4807 -- For qualified expression, resolve the expression using the given
4808 -- subtype (nothing to do for type mark, subtype indication)
4810 if Nkind (E) = N_Qualified_Expression then
4811 if Is_Class_Wide_Type (Etype (E))
4812 and then not Is_Class_Wide_Type (Desig_T)
4813 and then not In_Dispatching_Context
4814 then
4815 Error_Msg_N
4816 ("class-wide allocator not allowed for this access type", N);
4817 end if;
4819 Resolve (Expression (E), Etype (E));
4820 Check_Non_Static_Context (Expression (E));
4821 Check_Unset_Reference (Expression (E));
4823 -- Allocators generated by the build-in-place expansion mechanism
4824 -- are explicitly marked as coming from source but do not need to be
4825 -- checked for limited initialization. To exclude this case, ensure
4826 -- that the parent of the allocator is a source node.
4828 if Is_Limited_Type (Etype (E))
4829 and then Comes_From_Source (N)
4830 and then Comes_From_Source (Parent (N))
4831 and then not In_Instance_Body
4832 then
4833 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4834 if Nkind (Parent (N)) = N_Assignment_Statement then
4835 Error_Msg_N
4836 ("illegal expression for initialized allocator of a "
4837 & "limited type (RM 7.5 (2.7/2))", N);
4838 else
4839 Error_Msg_N
4840 ("initialization not allowed for limited types", N);
4841 end if;
4843 Explain_Limited_Type (Etype (E), N);
4844 end if;
4845 end if;
4847 -- A qualified expression requires an exact match of the type. Class-
4848 -- wide matching is not allowed.
4850 if (Is_Class_Wide_Type (Etype (Expression (E)))
4851 or else Is_Class_Wide_Type (Etype (E)))
4852 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4853 then
4854 Wrong_Type (Expression (E), Etype (E));
4855 end if;
4857 -- Calls to build-in-place functions are not currently supported in
4858 -- allocators for access types associated with a simple storage pool.
4859 -- Supporting such allocators may require passing additional implicit
4860 -- parameters to build-in-place functions (or a significant revision
4861 -- of the current b-i-p implementation to unify the handling for
4862 -- multiple kinds of storage pools). ???
4864 if Is_Limited_View (Desig_T)
4865 and then Nkind (Expression (E)) = N_Function_Call
4866 then
4867 declare
4868 Pool : constant Entity_Id :=
4869 Associated_Storage_Pool (Root_Type (Typ));
4870 begin
4871 if Present (Pool)
4872 and then
4873 Present (Get_Rep_Pragma
4874 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4875 then
4876 Error_Msg_N
4877 ("limited function calls not yet supported in simple "
4878 & "storage pool allocators", Expression (E));
4879 end if;
4880 end;
4881 end if;
4883 -- A special accessibility check is needed for allocators that
4884 -- constrain access discriminants. The level of the type of the
4885 -- expression used to constrain an access discriminant cannot be
4886 -- deeper than the type of the allocator (in contrast to access
4887 -- parameters, where the level of the actual can be arbitrary).
4889 -- We can't use Valid_Conversion to perform this check because in
4890 -- general the type of the allocator is unrelated to the type of
4891 -- the access discriminant.
4893 if Ekind (Typ) /= E_Anonymous_Access_Type
4894 or else Is_Local_Anonymous_Access (Typ)
4895 then
4896 Subtyp := Entity (Subtype_Mark (E));
4898 Aggr := Original_Node (Expression (E));
4900 if Has_Discriminants (Subtyp)
4901 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4902 then
4903 Discrim := First_Discriminant (Base_Type (Subtyp));
4905 -- Get the first component expression of the aggregate
4907 if Present (Expressions (Aggr)) then
4908 Disc_Exp := First (Expressions (Aggr));
4910 elsif Present (Component_Associations (Aggr)) then
4911 Assoc := First (Component_Associations (Aggr));
4913 if Present (Assoc) then
4914 Disc_Exp := Expression (Assoc);
4915 else
4916 Disc_Exp := Empty;
4917 end if;
4919 else
4920 Disc_Exp := Empty;
4921 end if;
4923 while Present (Discrim) and then Present (Disc_Exp) loop
4924 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4925 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4926 end if;
4928 Next_Discriminant (Discrim);
4930 if Present (Discrim) then
4931 if Present (Assoc) then
4932 Next (Assoc);
4933 Disc_Exp := Expression (Assoc);
4935 elsif Present (Next (Disc_Exp)) then
4936 Next (Disc_Exp);
4938 else
4939 Assoc := First (Component_Associations (Aggr));
4941 if Present (Assoc) then
4942 Disc_Exp := Expression (Assoc);
4943 else
4944 Disc_Exp := Empty;
4945 end if;
4946 end if;
4947 end if;
4948 end loop;
4949 end if;
4950 end if;
4952 -- For a subtype mark or subtype indication, freeze the subtype
4954 else
4955 Freeze_Expression (E);
4957 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4958 Error_Msg_N
4959 ("initialization required for access-to-constant allocator", N);
4960 end if;
4962 -- A special accessibility check is needed for allocators that
4963 -- constrain access discriminants. The level of the type of the
4964 -- expression used to constrain an access discriminant cannot be
4965 -- deeper than the type of the allocator (in contrast to access
4966 -- parameters, where the level of the actual can be arbitrary).
4967 -- We can't use Valid_Conversion to perform this check because
4968 -- in general the type of the allocator is unrelated to the type
4969 -- of the access discriminant.
4971 if Nkind (Original_Node (E)) = N_Subtype_Indication
4972 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4973 or else Is_Local_Anonymous_Access (Typ))
4974 then
4975 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4977 if Has_Discriminants (Subtyp) then
4978 Discrim := First_Discriminant (Base_Type (Subtyp));
4979 Constr := First (Constraints (Constraint (Original_Node (E))));
4980 while Present (Discrim) and then Present (Constr) loop
4981 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4982 if Nkind (Constr) = N_Discriminant_Association then
4983 Disc_Exp := Original_Node (Expression (Constr));
4984 else
4985 Disc_Exp := Original_Node (Constr);
4986 end if;
4988 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4989 end if;
4991 Next_Discriminant (Discrim);
4992 Next (Constr);
4993 end loop;
4994 end if;
4995 end if;
4996 end if;
4998 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4999 -- check that the level of the type of the created object is not deeper
5000 -- than the level of the allocator's access type, since extensions can
5001 -- now occur at deeper levels than their ancestor types. This is a
5002 -- static accessibility level check; a run-time check is also needed in
5003 -- the case of an initialized allocator with a class-wide argument (see
5004 -- Expand_Allocator_Expression).
5006 if Ada_Version >= Ada_2005
5007 and then Is_Class_Wide_Type (Desig_T)
5008 then
5009 declare
5010 Exp_Typ : Entity_Id;
5012 begin
5013 if Nkind (E) = N_Qualified_Expression then
5014 Exp_Typ := Etype (E);
5015 elsif Nkind (E) = N_Subtype_Indication then
5016 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5017 else
5018 Exp_Typ := Entity (E);
5019 end if;
5021 if Type_Access_Level (Exp_Typ) >
5022 Deepest_Type_Access_Level (Typ)
5023 then
5024 if In_Instance_Body then
5025 Error_Msg_Warn := SPARK_Mode /= On;
5026 Error_Msg_N
5027 ("type in allocator has deeper level than "
5028 & "designated class-wide type<<", E);
5029 Error_Msg_N ("\Program_Error [<<", E);
5030 Rewrite (N,
5031 Make_Raise_Program_Error (Sloc (N),
5032 Reason => PE_Accessibility_Check_Failed));
5033 Set_Etype (N, Typ);
5035 -- Do not apply Ada 2005 accessibility checks on a class-wide
5036 -- allocator if the type given in the allocator is a formal
5037 -- type. A run-time check will be performed in the instance.
5039 elsif not Is_Generic_Type (Exp_Typ) then
5040 Error_Msg_N ("type in allocator has deeper level than "
5041 & "designated class-wide type", E);
5042 end if;
5043 end if;
5044 end;
5045 end if;
5047 -- Check for allocation from an empty storage pool
5049 if No_Pool_Assigned (Typ) then
5050 Error_Msg_N ("allocation from empty storage pool!", N);
5052 -- If the context is an unchecked conversion, as may happen within an
5053 -- inlined subprogram, the allocator is being resolved with its own
5054 -- anonymous type. In that case, if the target type has a specific
5055 -- storage pool, it must be inherited explicitly by the allocator type.
5057 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5058 and then No (Associated_Storage_Pool (Typ))
5059 then
5060 Set_Associated_Storage_Pool
5061 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5062 end if;
5064 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5065 Check_Restriction (No_Anonymous_Allocators, N);
5066 end if;
5068 -- Check that an allocator with task parts isn't for a nested access
5069 -- type when restriction No_Task_Hierarchy applies.
5071 if not Is_Library_Level_Entity (Base_Type (Typ))
5072 and then Has_Task (Base_Type (Desig_T))
5073 then
5074 Check_Restriction (No_Task_Hierarchy, N);
5075 end if;
5077 -- An illegal allocator may be rewritten as a raise Program_Error
5078 -- statement.
5080 if Nkind (N) = N_Allocator then
5082 -- An anonymous access discriminant is the definition of a
5083 -- coextension.
5085 if Ekind (Typ) = E_Anonymous_Access_Type
5086 and then Nkind (Associated_Node_For_Itype (Typ)) =
5087 N_Discriminant_Specification
5088 then
5089 declare
5090 Discr : constant Entity_Id :=
5091 Defining_Identifier (Associated_Node_For_Itype (Typ));
5093 begin
5094 Check_Restriction (No_Coextensions, N);
5096 -- Ada 2012 AI05-0052: If the designated type of the allocator
5097 -- is limited, then the allocator shall not be used to define
5098 -- the value of an access discriminant unless the discriminated
5099 -- type is immutably limited.
5101 if Ada_Version >= Ada_2012
5102 and then Is_Limited_Type (Desig_T)
5103 and then not Is_Limited_View (Scope (Discr))
5104 then
5105 Error_Msg_N
5106 ("only immutably limited types can have anonymous "
5107 & "access discriminants designating a limited type", N);
5108 end if;
5109 end;
5111 -- Avoid marking an allocator as a dynamic coextension if it is
5112 -- within a static construct.
5114 if not Is_Static_Coextension (N) then
5115 Set_Is_Dynamic_Coextension (N);
5116 end if;
5118 -- Cleanup for potential static coextensions
5120 else
5121 Set_Is_Dynamic_Coextension (N, False);
5122 Set_Is_Static_Coextension (N, False);
5123 end if;
5124 end if;
5126 -- Report a simple error: if the designated object is a local task,
5127 -- its body has not been seen yet, and its activation will fail an
5128 -- elaboration check.
5130 if Is_Task_Type (Desig_T)
5131 and then Scope (Base_Type (Desig_T)) = Current_Scope
5132 and then Is_Compilation_Unit (Current_Scope)
5133 and then Ekind (Current_Scope) = E_Package
5134 and then not In_Package_Body (Current_Scope)
5135 then
5136 Error_Msg_Warn := SPARK_Mode /= On;
5137 Error_Msg_N ("cannot activate task before body seen<<", N);
5138 Error_Msg_N ("\Program_Error [<<", N);
5139 end if;
5141 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5142 -- type with a task component on a subpool. This action must raise
5143 -- Program_Error at runtime.
5145 if Ada_Version >= Ada_2012
5146 and then Nkind (N) = N_Allocator
5147 and then Present (Subpool_Handle_Name (N))
5148 and then Has_Task (Desig_T)
5149 then
5150 Error_Msg_Warn := SPARK_Mode /= On;
5151 Error_Msg_N ("cannot allocate task on subpool<<", N);
5152 Error_Msg_N ("\Program_Error [<<", N);
5154 Rewrite (N,
5155 Make_Raise_Program_Error (Sloc (N),
5156 Reason => PE_Explicit_Raise));
5157 Set_Etype (N, Typ);
5158 end if;
5159 end Resolve_Allocator;
5161 ---------------------------
5162 -- Resolve_Arithmetic_Op --
5163 ---------------------------
5165 -- Used for resolving all arithmetic operators except exponentiation
5167 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5168 L : constant Node_Id := Left_Opnd (N);
5169 R : constant Node_Id := Right_Opnd (N);
5170 TL : constant Entity_Id := Base_Type (Etype (L));
5171 TR : constant Entity_Id := Base_Type (Etype (R));
5172 T : Entity_Id;
5173 Rop : Node_Id;
5175 B_Typ : constant Entity_Id := Base_Type (Typ);
5176 -- We do the resolution using the base type, because intermediate values
5177 -- in expressions always are of the base type, not a subtype of it.
5179 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5180 -- Returns True if N is in a context that expects "any real type"
5182 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5183 -- Return True iff given type is Integer or universal real/integer
5185 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5186 -- Choose type of integer literal in fixed-point operation to conform
5187 -- to available fixed-point type. T is the type of the other operand,
5188 -- which is needed to determine the expected type of N.
5190 procedure Set_Operand_Type (N : Node_Id);
5191 -- Set operand type to T if universal
5193 -------------------------------
5194 -- Expected_Type_Is_Any_Real --
5195 -------------------------------
5197 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5198 begin
5199 -- N is the expression after "delta" in a fixed_point_definition;
5200 -- see RM-3.5.9(6):
5202 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5203 N_Decimal_Fixed_Point_Definition,
5205 -- N is one of the bounds in a real_range_specification;
5206 -- see RM-3.5.7(5):
5208 N_Real_Range_Specification,
5210 -- N is the expression of a delta_constraint;
5211 -- see RM-J.3(3):
5213 N_Delta_Constraint);
5214 end Expected_Type_Is_Any_Real;
5216 -----------------------------
5217 -- Is_Integer_Or_Universal --
5218 -----------------------------
5220 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5221 T : Entity_Id;
5222 Index : Interp_Index;
5223 It : Interp;
5225 begin
5226 if not Is_Overloaded (N) then
5227 T := Etype (N);
5228 return Base_Type (T) = Base_Type (Standard_Integer)
5229 or else T = Universal_Integer
5230 or else T = Universal_Real;
5231 else
5232 Get_First_Interp (N, Index, It);
5233 while Present (It.Typ) loop
5234 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5235 or else It.Typ = Universal_Integer
5236 or else It.Typ = Universal_Real
5237 then
5238 return True;
5239 end if;
5241 Get_Next_Interp (Index, It);
5242 end loop;
5243 end if;
5245 return False;
5246 end Is_Integer_Or_Universal;
5248 ----------------------------
5249 -- Set_Mixed_Mode_Operand --
5250 ----------------------------
5252 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5253 Index : Interp_Index;
5254 It : Interp;
5256 begin
5257 if Universal_Interpretation (N) = Universal_Integer then
5259 -- A universal integer literal is resolved as standard integer
5260 -- except in the case of a fixed-point result, where we leave it
5261 -- as universal (to be handled by Exp_Fixd later on)
5263 if Is_Fixed_Point_Type (T) then
5264 Resolve (N, Universal_Integer);
5265 else
5266 Resolve (N, Standard_Integer);
5267 end if;
5269 elsif Universal_Interpretation (N) = Universal_Real
5270 and then (T = Base_Type (Standard_Integer)
5271 or else T = Universal_Integer
5272 or else T = Universal_Real)
5273 then
5274 -- A universal real can appear in a fixed-type context. We resolve
5275 -- the literal with that context, even though this might raise an
5276 -- exception prematurely (the other operand may be zero).
5278 Resolve (N, B_Typ);
5280 elsif Etype (N) = Base_Type (Standard_Integer)
5281 and then T = Universal_Real
5282 and then Is_Overloaded (N)
5283 then
5284 -- Integer arg in mixed-mode operation. Resolve with universal
5285 -- type, in case preference rule must be applied.
5287 Resolve (N, Universal_Integer);
5289 elsif Etype (N) = T
5290 and then B_Typ /= Universal_Fixed
5291 then
5292 -- Not a mixed-mode operation, resolve with context
5294 Resolve (N, B_Typ);
5296 elsif Etype (N) = Any_Fixed then
5298 -- N may itself be a mixed-mode operation, so use context type
5300 Resolve (N, B_Typ);
5302 elsif Is_Fixed_Point_Type (T)
5303 and then B_Typ = Universal_Fixed
5304 and then Is_Overloaded (N)
5305 then
5306 -- Must be (fixed * fixed) operation, operand must have one
5307 -- compatible interpretation.
5309 Resolve (N, Any_Fixed);
5311 elsif Is_Fixed_Point_Type (B_Typ)
5312 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5313 and then Is_Overloaded (N)
5314 then
5315 -- C * F(X) in a fixed context, where C is a real literal or a
5316 -- fixed-point expression. F must have either a fixed type
5317 -- interpretation or an integer interpretation, but not both.
5319 Get_First_Interp (N, Index, It);
5320 while Present (It.Typ) loop
5321 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5322 if Analyzed (N) then
5323 Error_Msg_N ("ambiguous operand in fixed operation", N);
5324 else
5325 Resolve (N, Standard_Integer);
5326 end if;
5328 elsif Is_Fixed_Point_Type (It.Typ) then
5329 if Analyzed (N) then
5330 Error_Msg_N ("ambiguous operand in fixed operation", N);
5331 else
5332 Resolve (N, It.Typ);
5333 end if;
5334 end if;
5336 Get_Next_Interp (Index, It);
5337 end loop;
5339 -- Reanalyze the literal with the fixed type of the context. If
5340 -- context is Universal_Fixed, we are within a conversion, leave
5341 -- the literal as a universal real because there is no usable
5342 -- fixed type, and the target of the conversion plays no role in
5343 -- the resolution.
5345 declare
5346 Op2 : Node_Id;
5347 T2 : Entity_Id;
5349 begin
5350 if N = L then
5351 Op2 := R;
5352 else
5353 Op2 := L;
5354 end if;
5356 if B_Typ = Universal_Fixed
5357 and then Nkind (Op2) = N_Real_Literal
5358 then
5359 T2 := Universal_Real;
5360 else
5361 T2 := B_Typ;
5362 end if;
5364 Set_Analyzed (Op2, False);
5365 Resolve (Op2, T2);
5366 end;
5368 -- A universal real conditional expression can appear in a fixed-type
5369 -- context and must be resolved with that context to facilitate the
5370 -- code generation to the backend.
5372 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5373 and then Etype (N) = Universal_Real
5374 and then Is_Fixed_Point_Type (B_Typ)
5375 then
5376 Resolve (N, B_Typ);
5378 else
5379 Resolve (N);
5380 end if;
5381 end Set_Mixed_Mode_Operand;
5383 ----------------------
5384 -- Set_Operand_Type --
5385 ----------------------
5387 procedure Set_Operand_Type (N : Node_Id) is
5388 begin
5389 if Etype (N) = Universal_Integer
5390 or else Etype (N) = Universal_Real
5391 then
5392 Set_Etype (N, T);
5393 end if;
5394 end Set_Operand_Type;
5396 -- Start of processing for Resolve_Arithmetic_Op
5398 begin
5399 if Comes_From_Source (N)
5400 and then Ekind (Entity (N)) = E_Function
5401 and then Is_Imported (Entity (N))
5402 and then Is_Intrinsic_Subprogram (Entity (N))
5403 then
5404 Resolve_Intrinsic_Operator (N, Typ);
5405 return;
5407 -- Special-case for mixed-mode universal expressions or fixed point type
5408 -- operation: each argument is resolved separately. The same treatment
5409 -- is required if one of the operands of a fixed point operation is
5410 -- universal real, since in this case we don't do a conversion to a
5411 -- specific fixed-point type (instead the expander handles the case).
5413 -- Set the type of the node to its universal interpretation because
5414 -- legality checks on an exponentiation operand need the context.
5416 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5417 and then Present (Universal_Interpretation (L))
5418 and then Present (Universal_Interpretation (R))
5419 then
5420 Set_Etype (N, B_Typ);
5421 Resolve (L, Universal_Interpretation (L));
5422 Resolve (R, Universal_Interpretation (R));
5424 elsif (B_Typ = Universal_Real
5425 or else Etype (N) = Universal_Fixed
5426 or else (Etype (N) = Any_Fixed
5427 and then Is_Fixed_Point_Type (B_Typ))
5428 or else (Is_Fixed_Point_Type (B_Typ)
5429 and then (Is_Integer_Or_Universal (L)
5430 or else
5431 Is_Integer_Or_Universal (R))))
5432 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5433 then
5434 if TL = Universal_Integer or else TR = Universal_Integer then
5435 Check_For_Visible_Operator (N, B_Typ);
5436 end if;
5438 -- If context is a fixed type and one operand is integer, the other
5439 -- is resolved with the type of the context.
5441 if Is_Fixed_Point_Type (B_Typ)
5442 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5443 or else TL = Universal_Integer)
5444 then
5445 Resolve (R, B_Typ);
5446 Resolve (L, TL);
5448 elsif Is_Fixed_Point_Type (B_Typ)
5449 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5450 or else TR = Universal_Integer)
5451 then
5452 Resolve (L, B_Typ);
5453 Resolve (R, TR);
5455 else
5456 Set_Mixed_Mode_Operand (L, TR);
5457 Set_Mixed_Mode_Operand (R, TL);
5458 end if;
5460 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5461 -- multiplying operators from being used when the expected type is
5462 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5463 -- some cases where the expected type is actually Any_Real;
5464 -- Expected_Type_Is_Any_Real takes care of that case.
5466 if Etype (N) = Universal_Fixed
5467 or else Etype (N) = Any_Fixed
5468 then
5469 if B_Typ = Universal_Fixed
5470 and then not Expected_Type_Is_Any_Real (N)
5471 and then not Nkind_In (Parent (N), N_Type_Conversion,
5472 N_Unchecked_Type_Conversion)
5473 then
5474 Error_Msg_N ("type cannot be determined from context!", N);
5475 Error_Msg_N ("\explicit conversion to result type required", N);
5477 Set_Etype (L, Any_Type);
5478 Set_Etype (R, Any_Type);
5480 else
5481 if Ada_Version = Ada_83
5482 and then Etype (N) = Universal_Fixed
5483 and then not
5484 Nkind_In (Parent (N), N_Type_Conversion,
5485 N_Unchecked_Type_Conversion)
5486 then
5487 Error_Msg_N
5488 ("(Ada 83) fixed-point operation needs explicit "
5489 & "conversion", N);
5490 end if;
5492 -- The expected type is "any real type" in contexts like
5494 -- type T is delta <universal_fixed-expression> ...
5496 -- in which case we need to set the type to Universal_Real
5497 -- so that static expression evaluation will work properly.
5499 if Expected_Type_Is_Any_Real (N) then
5500 Set_Etype (N, Universal_Real);
5501 else
5502 Set_Etype (N, B_Typ);
5503 end if;
5504 end if;
5506 elsif Is_Fixed_Point_Type (B_Typ)
5507 and then (Is_Integer_Or_Universal (L)
5508 or else Nkind (L) = N_Real_Literal
5509 or else Nkind (R) = N_Real_Literal
5510 or else Is_Integer_Or_Universal (R))
5511 then
5512 Set_Etype (N, B_Typ);
5514 elsif Etype (N) = Any_Fixed then
5516 -- If no previous errors, this is only possible if one operand is
5517 -- overloaded and the context is universal. Resolve as such.
5519 Set_Etype (N, B_Typ);
5520 end if;
5522 else
5523 if (TL = Universal_Integer or else TL = Universal_Real)
5524 and then
5525 (TR = Universal_Integer or else TR = Universal_Real)
5526 then
5527 Check_For_Visible_Operator (N, B_Typ);
5528 end if;
5530 -- If the context is Universal_Fixed and the operands are also
5531 -- universal fixed, this is an error, unless there is only one
5532 -- applicable fixed_point type (usually Duration).
5534 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5535 T := Unique_Fixed_Point_Type (N);
5537 if T = Any_Type then
5538 Set_Etype (N, T);
5539 return;
5540 else
5541 Resolve (L, T);
5542 Resolve (R, T);
5543 end if;
5545 else
5546 Resolve (L, B_Typ);
5547 Resolve (R, B_Typ);
5548 end if;
5550 -- If one of the arguments was resolved to a non-universal type.
5551 -- label the result of the operation itself with the same type.
5552 -- Do the same for the universal argument, if any.
5554 T := Intersect_Types (L, R);
5555 Set_Etype (N, Base_Type (T));
5556 Set_Operand_Type (L);
5557 Set_Operand_Type (R);
5558 end if;
5560 Generate_Operator_Reference (N, Typ);
5561 Analyze_Dimension (N);
5562 Eval_Arithmetic_Op (N);
5564 -- In SPARK, a multiplication or division with operands of fixed point
5565 -- types must be qualified or explicitly converted to identify the
5566 -- result type.
5568 if (Is_Fixed_Point_Type (Etype (L))
5569 or else Is_Fixed_Point_Type (Etype (R)))
5570 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5571 and then
5572 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5573 then
5574 Check_SPARK_05_Restriction
5575 ("operation should be qualified or explicitly converted", N);
5576 end if;
5578 -- Set overflow and division checking bit
5580 if Nkind (N) in N_Op then
5581 if not Overflow_Checks_Suppressed (Etype (N)) then
5582 Enable_Overflow_Check (N);
5583 end if;
5585 -- Give warning if explicit division by zero
5587 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5588 and then not Division_Checks_Suppressed (Etype (N))
5589 then
5590 Rop := Right_Opnd (N);
5592 if Compile_Time_Known_Value (Rop)
5593 and then ((Is_Integer_Type (Etype (Rop))
5594 and then Expr_Value (Rop) = Uint_0)
5595 or else
5596 (Is_Real_Type (Etype (Rop))
5597 and then Expr_Value_R (Rop) = Ureal_0))
5598 then
5599 -- Specialize the warning message according to the operation.
5600 -- When SPARK_Mode is On, force a warning instead of an error
5601 -- in that case, as this likely corresponds to deactivated
5602 -- code. The following warnings are for the case
5604 case Nkind (N) is
5605 when N_Op_Divide =>
5607 -- For division, we have two cases, for float division
5608 -- of an unconstrained float type, on a machine where
5609 -- Machine_Overflows is false, we don't get an exception
5610 -- at run-time, but rather an infinity or Nan. The Nan
5611 -- case is pretty obscure, so just warn about infinities.
5613 if Is_Floating_Point_Type (Typ)
5614 and then not Is_Constrained (Typ)
5615 and then not Machine_Overflows_On_Target
5616 then
5617 Error_Msg_N
5618 ("float division by zero, may generate "
5619 & "'+'/'- infinity??", Right_Opnd (N));
5621 -- For all other cases, we get a Constraint_Error
5623 else
5624 Apply_Compile_Time_Constraint_Error
5625 (N, "division by zero??", CE_Divide_By_Zero,
5626 Loc => Sloc (Right_Opnd (N)),
5627 Warn => SPARK_Mode = On);
5628 end if;
5630 when N_Op_Rem =>
5631 Apply_Compile_Time_Constraint_Error
5632 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5633 Loc => Sloc (Right_Opnd (N)),
5634 Warn => SPARK_Mode = On);
5636 when N_Op_Mod =>
5637 Apply_Compile_Time_Constraint_Error
5638 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5639 Loc => Sloc (Right_Opnd (N)),
5640 Warn => SPARK_Mode = On);
5642 -- Division by zero can only happen with division, rem,
5643 -- and mod operations.
5645 when others =>
5646 raise Program_Error;
5647 end case;
5649 -- In GNATprove mode, we enable the division check so that
5650 -- GNATprove will issue a message if it cannot be proved.
5652 if GNATprove_Mode then
5653 Activate_Division_Check (N);
5654 end if;
5656 -- Otherwise just set the flag to check at run time
5658 else
5659 Activate_Division_Check (N);
5660 end if;
5661 end if;
5663 -- If Restriction No_Implicit_Conditionals is active, then it is
5664 -- violated if either operand can be negative for mod, or for rem
5665 -- if both operands can be negative.
5667 if Restriction_Check_Required (No_Implicit_Conditionals)
5668 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5669 then
5670 declare
5671 Lo : Uint;
5672 Hi : Uint;
5673 OK : Boolean;
5675 LNeg : Boolean;
5676 RNeg : Boolean;
5677 -- Set if corresponding operand might be negative
5679 begin
5680 Determine_Range
5681 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5682 LNeg := (not OK) or else Lo < 0;
5684 Determine_Range
5685 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5686 RNeg := (not OK) or else Lo < 0;
5688 -- Check if we will be generating conditionals. There are two
5689 -- cases where that can happen, first for REM, the only case
5690 -- is largest negative integer mod -1, where the division can
5691 -- overflow, but we still have to give the right result. The
5692 -- front end generates a test for this annoying case. Here we
5693 -- just test if both operands can be negative (that's what the
5694 -- expander does, so we match its logic here).
5696 -- The second case is mod where either operand can be negative.
5697 -- In this case, the back end has to generate additional tests.
5699 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5700 or else
5701 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5702 then
5703 Check_Restriction (No_Implicit_Conditionals, N);
5704 end if;
5705 end;
5706 end if;
5707 end if;
5709 Check_Unset_Reference (L);
5710 Check_Unset_Reference (R);
5711 end Resolve_Arithmetic_Op;
5713 ------------------
5714 -- Resolve_Call --
5715 ------------------
5717 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5718 function Same_Or_Aliased_Subprograms
5719 (S : Entity_Id;
5720 E : Entity_Id) return Boolean;
5721 -- Returns True if the subprogram entity S is the same as E or else
5722 -- S is an alias of E.
5724 ---------------------------------
5725 -- Same_Or_Aliased_Subprograms --
5726 ---------------------------------
5728 function Same_Or_Aliased_Subprograms
5729 (S : Entity_Id;
5730 E : Entity_Id) return Boolean
5732 Subp_Alias : constant Entity_Id := Alias (S);
5733 begin
5734 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5735 end Same_Or_Aliased_Subprograms;
5737 -- Local variables
5739 Loc : constant Source_Ptr := Sloc (N);
5740 Subp : constant Node_Id := Name (N);
5741 Body_Id : Entity_Id;
5742 I : Interp_Index;
5743 It : Interp;
5744 Nam : Entity_Id;
5745 Nam_Decl : Node_Id;
5746 Nam_UA : Entity_Id;
5747 Norm_OK : Boolean;
5748 Rtype : Entity_Id;
5749 Scop : Entity_Id;
5751 -- Start of processing for Resolve_Call
5753 begin
5754 -- The context imposes a unique interpretation with type Typ on a
5755 -- procedure or function call. Find the entity of the subprogram that
5756 -- yields the expected type, and propagate the corresponding formal
5757 -- constraints on the actuals. The caller has established that an
5758 -- interpretation exists, and emitted an error if not unique.
5760 -- First deal with the case of a call to an access-to-subprogram,
5761 -- dereference made explicit in Analyze_Call.
5763 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5764 if not Is_Overloaded (Subp) then
5765 Nam := Etype (Subp);
5767 else
5768 -- Find the interpretation whose type (a subprogram type) has a
5769 -- return type that is compatible with the context. Analysis of
5770 -- the node has established that one exists.
5772 Nam := Empty;
5774 Get_First_Interp (Subp, I, It);
5775 while Present (It.Typ) loop
5776 if Covers (Typ, Etype (It.Typ)) then
5777 Nam := It.Typ;
5778 exit;
5779 end if;
5781 Get_Next_Interp (I, It);
5782 end loop;
5784 if No (Nam) then
5785 raise Program_Error;
5786 end if;
5787 end if;
5789 -- If the prefix is not an entity, then resolve it
5791 if not Is_Entity_Name (Subp) then
5792 Resolve (Subp, Nam);
5793 end if;
5795 -- For an indirect call, we always invalidate checks, since we do not
5796 -- know whether the subprogram is local or global. Yes we could do
5797 -- better here, e.g. by knowing that there are no local subprograms,
5798 -- but it does not seem worth the effort. Similarly, we kill all
5799 -- knowledge of current constant values.
5801 Kill_Current_Values;
5803 -- If this is a procedure call which is really an entry call, do
5804 -- the conversion of the procedure call to an entry call. Protected
5805 -- operations use the same circuitry because the name in the call
5806 -- can be an arbitrary expression with special resolution rules.
5808 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5809 or else (Is_Entity_Name (Subp)
5810 and then Ekind (Entity (Subp)) = E_Entry)
5811 then
5812 Resolve_Entry_Call (N, Typ);
5813 Check_Elab_Call (N);
5815 -- Kill checks and constant values, as above for indirect case
5816 -- Who knows what happens when another task is activated?
5818 Kill_Current_Values;
5819 return;
5821 -- Normal subprogram call with name established in Resolve
5823 elsif not (Is_Type (Entity (Subp))) then
5824 Nam := Entity (Subp);
5825 Set_Entity_With_Checks (Subp, Nam);
5827 -- Otherwise we must have the case of an overloaded call
5829 else
5830 pragma Assert (Is_Overloaded (Subp));
5832 -- Initialize Nam to prevent warning (we know it will be assigned
5833 -- in the loop below, but the compiler does not know that).
5835 Nam := Empty;
5837 Get_First_Interp (Subp, I, It);
5838 while Present (It.Typ) loop
5839 if Covers (Typ, It.Typ) then
5840 Nam := It.Nam;
5841 Set_Entity_With_Checks (Subp, Nam);
5842 exit;
5843 end if;
5845 Get_Next_Interp (I, It);
5846 end loop;
5847 end if;
5849 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5850 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5851 and then Nkind (Subp) /= N_Explicit_Dereference
5852 and then Present (Parameter_Associations (N))
5853 then
5854 -- The prefix is a parameterless function call that returns an access
5855 -- to subprogram. If parameters are present in the current call, add
5856 -- add an explicit dereference. We use the base type here because
5857 -- within an instance these may be subtypes.
5859 -- The dereference is added either in Analyze_Call or here. Should
5860 -- be consolidated ???
5862 Set_Is_Overloaded (Subp, False);
5863 Set_Etype (Subp, Etype (Nam));
5864 Insert_Explicit_Dereference (Subp);
5865 Nam := Designated_Type (Etype (Nam));
5866 Resolve (Subp, Nam);
5867 end if;
5869 -- Check that a call to Current_Task does not occur in an entry body
5871 if Is_RTE (Nam, RE_Current_Task) then
5872 declare
5873 P : Node_Id;
5875 begin
5876 P := N;
5877 loop
5878 P := Parent (P);
5880 -- Exclude calls that occur within the default of a formal
5881 -- parameter of the entry, since those are evaluated outside
5882 -- of the body.
5884 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5886 if Nkind (P) = N_Entry_Body
5887 or else (Nkind (P) = N_Subprogram_Body
5888 and then Is_Entry_Barrier_Function (P))
5889 then
5890 Rtype := Etype (N);
5891 Error_Msg_Warn := SPARK_Mode /= On;
5892 Error_Msg_NE
5893 ("& should not be used in entry body (RM C.7(17))<<",
5894 N, Nam);
5895 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5896 Rewrite (N,
5897 Make_Raise_Program_Error (Loc,
5898 Reason => PE_Current_Task_In_Entry_Body));
5899 Set_Etype (N, Rtype);
5900 return;
5901 end if;
5902 end loop;
5903 end;
5904 end if;
5906 -- Check that a procedure call does not occur in the context of the
5907 -- entry call statement of a conditional or timed entry call. Note that
5908 -- the case of a call to a subprogram renaming of an entry will also be
5909 -- rejected. The test for N not being an N_Entry_Call_Statement is
5910 -- defensive, covering the possibility that the processing of entry
5911 -- calls might reach this point due to later modifications of the code
5912 -- above.
5914 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5915 and then Nkind (N) /= N_Entry_Call_Statement
5916 and then Entry_Call_Statement (Parent (N)) = N
5917 then
5918 if Ada_Version < Ada_2005 then
5919 Error_Msg_N ("entry call required in select statement", N);
5921 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5922 -- for a procedure_or_entry_call, the procedure_name or
5923 -- procedure_prefix of the procedure_call_statement shall denote
5924 -- an entry renamed by a procedure, or (a view of) a primitive
5925 -- subprogram of a limited interface whose first parameter is
5926 -- a controlling parameter.
5928 elsif Nkind (N) = N_Procedure_Call_Statement
5929 and then not Is_Renamed_Entry (Nam)
5930 and then not Is_Controlling_Limited_Procedure (Nam)
5931 then
5932 Error_Msg_N
5933 ("entry call or dispatching primitive of interface required", N);
5934 end if;
5935 end if;
5937 -- If the SPARK_05 restriction is active, we are not allowed
5938 -- to have a call to a subprogram before we see its completion.
5940 if not Has_Completion (Nam)
5941 and then Restriction_Check_Required (SPARK_05)
5943 -- Don't flag strange internal calls
5945 and then Comes_From_Source (N)
5946 and then Comes_From_Source (Nam)
5948 -- Only flag calls in extended main source
5950 and then In_Extended_Main_Source_Unit (Nam)
5951 and then In_Extended_Main_Source_Unit (N)
5953 -- Exclude enumeration literals from this processing
5955 and then Ekind (Nam) /= E_Enumeration_Literal
5956 then
5957 Check_SPARK_05_Restriction
5958 ("call to subprogram cannot appear before its body", N);
5959 end if;
5961 -- Check that this is not a call to a protected procedure or entry from
5962 -- within a protected function.
5964 Check_Internal_Protected_Use (N, Nam);
5966 -- Freeze the subprogram name if not in a spec-expression. Note that
5967 -- we freeze procedure calls as well as function calls. Procedure calls
5968 -- are not frozen according to the rules (RM 13.14(14)) because it is
5969 -- impossible to have a procedure call to a non-frozen procedure in
5970 -- pure Ada, but in the code that we generate in the expander, this
5971 -- rule needs extending because we can generate procedure calls that
5972 -- need freezing.
5974 -- In Ada 2012, expression functions may be called within pre/post
5975 -- conditions of subsequent functions or expression functions. Such
5976 -- calls do not freeze when they appear within generated bodies,
5977 -- (including the body of another expression function) which would
5978 -- place the freeze node in the wrong scope. An expression function
5979 -- is frozen in the usual fashion, by the appearance of a real body,
5980 -- or at the end of a declarative part.
5982 if Is_Entity_Name (Subp)
5983 and then not In_Spec_Expression
5984 and then not Is_Expression_Function_Or_Completion (Current_Scope)
5985 and then
5986 (not Is_Expression_Function_Or_Completion (Entity (Subp))
5987 or else Scope (Entity (Subp)) = Current_Scope)
5988 then
5989 Freeze_Expression (Subp);
5990 end if;
5992 -- For a predefined operator, the type of the result is the type imposed
5993 -- by context, except for a predefined operation on universal fixed.
5994 -- Otherwise The type of the call is the type returned by the subprogram
5995 -- being called.
5997 if Is_Predefined_Op (Nam) then
5998 if Etype (N) /= Universal_Fixed then
5999 Set_Etype (N, Typ);
6000 end if;
6002 -- If the subprogram returns an array type, and the context requires the
6003 -- component type of that array type, the node is really an indexing of
6004 -- the parameterless call. Resolve as such. A pathological case occurs
6005 -- when the type of the component is an access to the array type. In
6006 -- this case the call is truly ambiguous. If the call is to an intrinsic
6007 -- subprogram, it can't be an indexed component. This check is necessary
6008 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6009 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6010 -- pointers to the same array), the compiler gets confused and does an
6011 -- infinite recursion.
6013 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6014 and then
6015 ((Is_Array_Type (Etype (Nam))
6016 and then Covers (Typ, Component_Type (Etype (Nam))))
6017 or else
6018 (Is_Access_Type (Etype (Nam))
6019 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6020 and then
6021 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6022 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6023 then
6024 declare
6025 Index_Node : Node_Id;
6026 New_Subp : Node_Id;
6027 Ret_Type : constant Entity_Id := Etype (Nam);
6029 begin
6030 if Is_Access_Type (Ret_Type)
6031 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6032 then
6033 Error_Msg_N
6034 ("cannot disambiguate function call and indexing", N);
6035 else
6036 New_Subp := Relocate_Node (Subp);
6038 -- The called entity may be an explicit dereference, in which
6039 -- case there is no entity to set.
6041 if Nkind (New_Subp) /= N_Explicit_Dereference then
6042 Set_Entity (Subp, Nam);
6043 end if;
6045 if (Is_Array_Type (Ret_Type)
6046 and then Component_Type (Ret_Type) /= Any_Type)
6047 or else
6048 (Is_Access_Type (Ret_Type)
6049 and then
6050 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6051 then
6052 if Needs_No_Actuals (Nam) then
6054 -- Indexed call to a parameterless function
6056 Index_Node :=
6057 Make_Indexed_Component (Loc,
6058 Prefix =>
6059 Make_Function_Call (Loc, Name => New_Subp),
6060 Expressions => Parameter_Associations (N));
6061 else
6062 -- An Ada 2005 prefixed call to a primitive operation
6063 -- whose first parameter is the prefix. This prefix was
6064 -- prepended to the parameter list, which is actually a
6065 -- list of indexes. Remove the prefix in order to build
6066 -- the proper indexed component.
6068 Index_Node :=
6069 Make_Indexed_Component (Loc,
6070 Prefix =>
6071 Make_Function_Call (Loc,
6072 Name => New_Subp,
6073 Parameter_Associations =>
6074 New_List
6075 (Remove_Head (Parameter_Associations (N)))),
6076 Expressions => Parameter_Associations (N));
6077 end if;
6079 -- Preserve the parenthesis count of the node
6081 Set_Paren_Count (Index_Node, Paren_Count (N));
6083 -- Since we are correcting a node classification error made
6084 -- by the parser, we call Replace rather than Rewrite.
6086 Replace (N, Index_Node);
6088 Set_Etype (Prefix (N), Ret_Type);
6089 Set_Etype (N, Typ);
6090 Resolve_Indexed_Component (N, Typ);
6091 Check_Elab_Call (Prefix (N));
6092 end if;
6093 end if;
6095 return;
6096 end;
6098 else
6099 -- If the called function is not declared in the main unit and it
6100 -- returns the limited view of type then use the available view (as
6101 -- is done in Try_Object_Operation) to prevent back-end confusion;
6102 -- for the function entity itself. The call must appear in a context
6103 -- where the nonlimited view is available. If the function entity is
6104 -- in the extended main unit then no action is needed, because the
6105 -- back end handles this case. In either case the type of the call
6106 -- is the nonlimited view.
6108 if From_Limited_With (Etype (Nam))
6109 and then Present (Available_View (Etype (Nam)))
6110 then
6111 Set_Etype (N, Available_View (Etype (Nam)));
6113 if not In_Extended_Main_Code_Unit (Nam) then
6114 Set_Etype (Nam, Available_View (Etype (Nam)));
6115 end if;
6117 else
6118 Set_Etype (N, Etype (Nam));
6119 end if;
6120 end if;
6122 -- In the case where the call is to an overloaded subprogram, Analyze
6123 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6124 -- such a case Normalize_Actuals needs to be called once more to order
6125 -- the actuals correctly. Otherwise the call will have the ordering
6126 -- given by the last overloaded subprogram whether this is the correct
6127 -- one being called or not.
6129 if Is_Overloaded (Subp) then
6130 Normalize_Actuals (N, Nam, False, Norm_OK);
6131 pragma Assert (Norm_OK);
6132 end if;
6134 -- In any case, call is fully resolved now. Reset Overload flag, to
6135 -- prevent subsequent overload resolution if node is analyzed again
6137 Set_Is_Overloaded (Subp, False);
6138 Set_Is_Overloaded (N, False);
6140 -- A Ghost entity must appear in a specific context
6142 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6143 Check_Ghost_Context (Nam, N);
6144 end if;
6146 -- If we are calling the current subprogram from immediately within its
6147 -- body, then that is the case where we can sometimes detect cases of
6148 -- infinite recursion statically. Do not try this in case restriction
6149 -- No_Recursion is in effect anyway, and do it only for source calls.
6151 if Comes_From_Source (N) then
6152 Scop := Current_Scope;
6154 -- Check violation of SPARK_05 restriction which does not permit
6155 -- a subprogram body to contain a call to the subprogram directly.
6157 if Restriction_Check_Required (SPARK_05)
6158 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6159 then
6160 Check_SPARK_05_Restriction
6161 ("subprogram may not contain direct call to itself", N);
6162 end if;
6164 -- Issue warning for possible infinite recursion in the absence
6165 -- of the No_Recursion restriction.
6167 if Same_Or_Aliased_Subprograms (Nam, Scop)
6168 and then not Restriction_Active (No_Recursion)
6169 and then Check_Infinite_Recursion (N)
6170 then
6171 -- Here we detected and flagged an infinite recursion, so we do
6172 -- not need to test the case below for further warnings. Also we
6173 -- are all done if we now have a raise SE node.
6175 if Nkind (N) = N_Raise_Storage_Error then
6176 return;
6177 end if;
6179 -- If call is to immediately containing subprogram, then check for
6180 -- the case of a possible run-time detectable infinite recursion.
6182 else
6183 Scope_Loop : while Scop /= Standard_Standard loop
6184 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6186 -- Although in general case, recursion is not statically
6187 -- checkable, the case of calling an immediately containing
6188 -- subprogram is easy to catch.
6190 Check_Restriction (No_Recursion, N);
6192 -- If the recursive call is to a parameterless subprogram,
6193 -- then even if we can't statically detect infinite
6194 -- recursion, this is pretty suspicious, and we output a
6195 -- warning. Furthermore, we will try later to detect some
6196 -- cases here at run time by expanding checking code (see
6197 -- Detect_Infinite_Recursion in package Exp_Ch6).
6199 -- If the recursive call is within a handler, do not emit a
6200 -- warning, because this is a common idiom: loop until input
6201 -- is correct, catch illegal input in handler and restart.
6203 if No (First_Formal (Nam))
6204 and then Etype (Nam) = Standard_Void_Type
6205 and then not Error_Posted (N)
6206 and then Nkind (Parent (N)) /= N_Exception_Handler
6207 then
6208 -- For the case of a procedure call. We give the message
6209 -- only if the call is the first statement in a sequence
6210 -- of statements, or if all previous statements are
6211 -- simple assignments. This is simply a heuristic to
6212 -- decrease false positives, without losing too many good
6213 -- warnings. The idea is that these previous statements
6214 -- may affect global variables the procedure depends on.
6215 -- We also exclude raise statements, that may arise from
6216 -- constraint checks and are probably unrelated to the
6217 -- intended control flow.
6219 if Nkind (N) = N_Procedure_Call_Statement
6220 and then Is_List_Member (N)
6221 then
6222 declare
6223 P : Node_Id;
6224 begin
6225 P := Prev (N);
6226 while Present (P) loop
6227 if not Nkind_In (P, N_Assignment_Statement,
6228 N_Raise_Constraint_Error)
6229 then
6230 exit Scope_Loop;
6231 end if;
6233 Prev (P);
6234 end loop;
6235 end;
6236 end if;
6238 -- Do not give warning if we are in a conditional context
6240 declare
6241 K : constant Node_Kind := Nkind (Parent (N));
6242 begin
6243 if (K = N_Loop_Statement
6244 and then Present (Iteration_Scheme (Parent (N))))
6245 or else K = N_If_Statement
6246 or else K = N_Elsif_Part
6247 or else K = N_Case_Statement_Alternative
6248 then
6249 exit Scope_Loop;
6250 end if;
6251 end;
6253 -- Here warning is to be issued
6255 Set_Has_Recursive_Call (Nam);
6256 Error_Msg_Warn := SPARK_Mode /= On;
6257 Error_Msg_N ("possible infinite recursion<<!", N);
6258 Error_Msg_N ("\Storage_Error ]<<!", N);
6259 end if;
6261 exit Scope_Loop;
6262 end if;
6264 Scop := Scope (Scop);
6265 end loop Scope_Loop;
6266 end if;
6267 end if;
6269 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6271 Check_Obsolescent_2005_Entity (Nam, Subp);
6273 -- If subprogram name is a predefined operator, it was given in
6274 -- functional notation. Replace call node with operator node, so
6275 -- that actuals can be resolved appropriately.
6277 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6278 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6279 return;
6281 elsif Present (Alias (Nam))
6282 and then Is_Predefined_Op (Alias (Nam))
6283 then
6284 Resolve_Actuals (N, Nam);
6285 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6286 return;
6287 end if;
6289 -- Create a transient scope if the resulting type requires it
6291 -- There are several notable exceptions:
6293 -- a) In init procs, the transient scope overhead is not needed, and is
6294 -- even incorrect when the call is a nested initialization call for a
6295 -- component whose expansion may generate adjust calls. However, if the
6296 -- call is some other procedure call within an initialization procedure
6297 -- (for example a call to Create_Task in the init_proc of the task
6298 -- run-time record) a transient scope must be created around this call.
6300 -- b) Enumeration literal pseudo-calls need no transient scope
6302 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6303 -- functions) do not use the secondary stack even though the return
6304 -- type may be unconstrained.
6306 -- d) Calls to a build-in-place function, since such functions may
6307 -- allocate their result directly in a target object, and cases where
6308 -- the result does get allocated in the secondary stack are checked for
6309 -- within the specialized Exp_Ch6 procedures for expanding those
6310 -- build-in-place calls.
6312 -- e) Calls to inlinable expression functions do not use the secondary
6313 -- stack (since the call will be replaced by its returned object).
6315 -- f) If the subprogram is marked Inline_Always, then even if it returns
6316 -- an unconstrained type the call does not require use of the secondary
6317 -- stack. However, inlining will only take place if the body to inline
6318 -- is already present. It may not be available if e.g. the subprogram is
6319 -- declared in a child instance.
6321 -- If this is an initialization call for a type whose construction
6322 -- uses the secondary stack, and it is not a nested call to initialize
6323 -- a component, we do need to create a transient scope for it. We
6324 -- check for this by traversing the type in Check_Initialization_Call.
6326 if Is_Inlined (Nam)
6327 and then Has_Pragma_Inline (Nam)
6328 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6329 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6330 then
6331 null;
6333 elsif Ekind (Nam) = E_Enumeration_Literal
6334 or else Is_Build_In_Place_Function (Nam)
6335 or else Is_Intrinsic_Subprogram (Nam)
6336 or else Is_Inlinable_Expression_Function (Nam)
6337 then
6338 null;
6340 elsif Expander_Active
6341 and then Is_Type (Etype (Nam))
6342 and then Requires_Transient_Scope (Etype (Nam))
6343 and then
6344 (not Within_Init_Proc
6345 or else
6346 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6347 then
6348 Establish_Transient_Scope (N, Sec_Stack => True);
6350 -- If the call appears within the bounds of a loop, it will
6351 -- be rewritten and reanalyzed, nothing left to do here.
6353 if Nkind (N) /= N_Function_Call then
6354 return;
6355 end if;
6357 elsif Is_Init_Proc (Nam)
6358 and then not Within_Init_Proc
6359 then
6360 Check_Initialization_Call (N, Nam);
6361 end if;
6363 -- A protected function cannot be called within the definition of the
6364 -- enclosing protected type, unless it is part of a pre/postcondition
6365 -- on another protected operation. This may appear in the entry wrapper
6366 -- created for an entry with preconditions.
6368 if Is_Protected_Type (Scope (Nam))
6369 and then In_Open_Scopes (Scope (Nam))
6370 and then not Has_Completion (Scope (Nam))
6371 and then not In_Spec_Expression
6372 and then not Is_Entry_Wrapper (Current_Scope)
6373 then
6374 Error_Msg_NE
6375 ("& cannot be called before end of protected definition", N, Nam);
6376 end if;
6378 -- Propagate interpretation to actuals, and add default expressions
6379 -- where needed.
6381 if Present (First_Formal (Nam)) then
6382 Resolve_Actuals (N, Nam);
6384 -- Overloaded literals are rewritten as function calls, for purpose of
6385 -- resolution. After resolution, we can replace the call with the
6386 -- literal itself.
6388 elsif Ekind (Nam) = E_Enumeration_Literal then
6389 Copy_Node (Subp, N);
6390 Resolve_Entity_Name (N, Typ);
6392 -- Avoid validation, since it is a static function call
6394 Generate_Reference (Nam, Subp);
6395 return;
6396 end if;
6398 -- If the subprogram is not global, then kill all saved values and
6399 -- checks. This is a bit conservative, since in many cases we could do
6400 -- better, but it is not worth the effort. Similarly, we kill constant
6401 -- values. However we do not need to do this for internal entities
6402 -- (unless they are inherited user-defined subprograms), since they
6403 -- are not in the business of molesting local values.
6405 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6406 -- kill all checks and values for calls to global subprograms. This
6407 -- takes care of the case where an access to a local subprogram is
6408 -- taken, and could be passed directly or indirectly and then called
6409 -- from almost any context.
6411 -- Note: we do not do this step till after resolving the actuals. That
6412 -- way we still take advantage of the current value information while
6413 -- scanning the actuals.
6415 -- We suppress killing values if we are processing the nodes associated
6416 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6417 -- type kills all the values as part of analyzing the code that
6418 -- initializes the dispatch tables.
6420 if Inside_Freezing_Actions = 0
6421 and then (not Is_Library_Level_Entity (Nam)
6422 or else Suppress_Value_Tracking_On_Call
6423 (Nearest_Dynamic_Scope (Current_Scope)))
6424 and then (Comes_From_Source (Nam)
6425 or else (Present (Alias (Nam))
6426 and then Comes_From_Source (Alias (Nam))))
6427 then
6428 Kill_Current_Values;
6429 end if;
6431 -- If we are warning about unread OUT parameters, this is the place to
6432 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6433 -- after the above call to Kill_Current_Values (since that call clears
6434 -- the Last_Assignment field of all local variables).
6436 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6437 and then Comes_From_Source (N)
6438 and then In_Extended_Main_Source_Unit (N)
6439 then
6440 declare
6441 F : Entity_Id;
6442 A : Node_Id;
6444 begin
6445 F := First_Formal (Nam);
6446 A := First_Actual (N);
6447 while Present (F) and then Present (A) loop
6448 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6449 and then Warn_On_Modified_As_Out_Parameter (F)
6450 and then Is_Entity_Name (A)
6451 and then Present (Entity (A))
6452 and then Comes_From_Source (N)
6453 and then Safe_To_Capture_Value (N, Entity (A))
6454 then
6455 Set_Last_Assignment (Entity (A), A);
6456 end if;
6458 Next_Formal (F);
6459 Next_Actual (A);
6460 end loop;
6461 end;
6462 end if;
6464 -- If the subprogram is a primitive operation, check whether or not
6465 -- it is a correct dispatching call.
6467 if Is_Overloadable (Nam)
6468 and then Is_Dispatching_Operation (Nam)
6469 then
6470 Check_Dispatching_Call (N);
6472 elsif Ekind (Nam) /= E_Subprogram_Type
6473 and then Is_Abstract_Subprogram (Nam)
6474 and then not In_Instance
6475 then
6476 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6477 end if;
6479 -- If this is a dispatching call, generate the appropriate reference,
6480 -- for better source navigation in GPS.
6482 if Is_Overloadable (Nam)
6483 and then Present (Controlling_Argument (N))
6484 then
6485 Generate_Reference (Nam, Subp, 'R');
6487 -- Normal case, not a dispatching call: generate a call reference
6489 else
6490 Generate_Reference (Nam, Subp, 's');
6491 end if;
6493 if Is_Intrinsic_Subprogram (Nam) then
6494 Check_Intrinsic_Call (N);
6495 end if;
6497 -- Check for violation of restriction No_Specific_Termination_Handlers
6498 -- and warn on a potentially blocking call to Abort_Task.
6500 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6501 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6502 or else
6503 Is_RTE (Nam, RE_Specific_Handler))
6504 then
6505 Check_Restriction (No_Specific_Termination_Handlers, N);
6507 elsif Is_RTE (Nam, RE_Abort_Task) then
6508 Check_Potentially_Blocking_Operation (N);
6509 end if;
6511 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6512 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6513 -- need to check the second argument to determine whether it is an
6514 -- absolute or relative timing event.
6516 if Restriction_Check_Required (No_Relative_Delay)
6517 and then Is_RTE (Nam, RE_Set_Handler)
6518 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6519 then
6520 Check_Restriction (No_Relative_Delay, N);
6521 end if;
6523 -- Issue an error for a call to an eliminated subprogram. This routine
6524 -- will not perform the check if the call appears within a default
6525 -- expression.
6527 Check_For_Eliminated_Subprogram (Subp, Nam);
6529 -- In formal mode, the primitive operations of a tagged type or type
6530 -- extension do not include functions that return the tagged type.
6532 if Nkind (N) = N_Function_Call
6533 and then Is_Tagged_Type (Etype (N))
6534 and then Is_Entity_Name (Name (N))
6535 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6536 then
6537 Check_SPARK_05_Restriction ("function not inherited", N);
6538 end if;
6540 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6541 -- class-wide and the call dispatches on result in a context that does
6542 -- not provide a tag, the call raises Program_Error.
6544 if Nkind (N) = N_Function_Call
6545 and then In_Instance
6546 and then Is_Generic_Actual_Type (Typ)
6547 and then Is_Class_Wide_Type (Typ)
6548 and then Has_Controlling_Result (Nam)
6549 and then Nkind (Parent (N)) = N_Object_Declaration
6550 then
6551 -- Verify that none of the formals are controlling
6553 declare
6554 Call_OK : Boolean := False;
6555 F : Entity_Id;
6557 begin
6558 F := First_Formal (Nam);
6559 while Present (F) loop
6560 if Is_Controlling_Formal (F) then
6561 Call_OK := True;
6562 exit;
6563 end if;
6565 Next_Formal (F);
6566 end loop;
6568 if not Call_OK then
6569 Error_Msg_Warn := SPARK_Mode /= On;
6570 Error_Msg_N ("!cannot determine tag of result<<", N);
6571 Error_Msg_N ("\Program_Error [<<!", N);
6572 Insert_Action (N,
6573 Make_Raise_Program_Error (Sloc (N),
6574 Reason => PE_Explicit_Raise));
6575 end if;
6576 end;
6577 end if;
6579 -- Check for calling a function with OUT or IN OUT parameter when the
6580 -- calling context (us right now) is not Ada 2012, so does not allow
6581 -- OUT or IN OUT parameters in function calls. Functions declared in
6582 -- a predefined unit are OK, as they may be called indirectly from a
6583 -- user-declared instantiation.
6585 if Ada_Version < Ada_2012
6586 and then Ekind (Nam) = E_Function
6587 and then Has_Out_Or_In_Out_Parameter (Nam)
6588 and then not In_Predefined_Unit (Nam)
6589 then
6590 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6591 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6592 end if;
6594 -- Check the dimensions of the actuals in the call. For function calls,
6595 -- propagate the dimensions from the returned type to N.
6597 Analyze_Dimension_Call (N, Nam);
6599 -- All done, evaluate call and deal with elaboration issues
6601 Eval_Call (N);
6602 Check_Elab_Call (N);
6604 -- In GNATprove mode, expansion is disabled, but we want to inline some
6605 -- subprograms to facilitate formal verification. Indirect calls through
6606 -- a subprogram type or within a generic cannot be inlined. Inlining is
6607 -- performed only for calls subject to SPARK_Mode on.
6609 if GNATprove_Mode
6610 and then SPARK_Mode = On
6611 and then Is_Overloadable (Nam)
6612 and then not Inside_A_Generic
6613 then
6614 Nam_UA := Ultimate_Alias (Nam);
6615 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6617 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6618 Body_Id := Corresponding_Body (Nam_Decl);
6620 -- Nothing to do if the subprogram is not eligible for inlining in
6621 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6623 if not Is_Inlined_Always (Nam_UA)
6624 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6625 or else Debug_Flag_M
6626 then
6627 null;
6629 -- Calls cannot be inlined inside assertions, as GNATprove treats
6630 -- assertions as logic expressions.
6632 elsif In_Assertion_Expr /= 0 then
6633 Cannot_Inline
6634 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6636 -- Calls cannot be inlined inside default expressions
6638 elsif In_Default_Expr then
6639 Cannot_Inline
6640 ("cannot inline & (in default expression)?", N, Nam_UA);
6642 -- Inlining should not be performed during pre-analysis
6644 elsif Full_Analysis then
6646 -- With the one-pass inlining technique, a call cannot be
6647 -- inlined if the corresponding body has not been seen yet.
6649 if No (Body_Id) then
6650 Cannot_Inline
6651 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6653 -- Nothing to do if there is no body to inline, indicating that
6654 -- the subprogram is not suitable for inlining in GNATprove
6655 -- mode.
6657 elsif No (Body_To_Inline (Nam_Decl)) then
6658 null;
6660 -- Do not inline calls inside expression functions, as this
6661 -- would prevent interpreting them as logical formulas in
6662 -- GNATprove.
6664 elsif Present (Current_Subprogram)
6665 and then
6666 Is_Expression_Function_Or_Completion (Current_Subprogram)
6667 then
6668 Cannot_Inline
6669 ("cannot inline & (inside expression function)?",
6670 N, Nam_UA);
6672 -- Calls cannot be inlined inside potentially unevaluated
6673 -- expressions, as this would create complex actions inside
6674 -- expressions, that are not handled by GNATprove.
6676 elsif Is_Potentially_Unevaluated (N) then
6677 Cannot_Inline
6678 ("cannot inline & (in potentially unevaluated context)?",
6679 N, Nam_UA);
6681 -- Do not inline calls which would possibly lead to missing a
6682 -- type conversion check on an input parameter.
6684 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6685 Cannot_Inline
6686 ("cannot inline & (possible check on input parameters)?",
6687 N, Nam_UA);
6689 -- Otherwise, inline the call
6691 else
6692 Expand_Inlined_Call (N, Nam_UA, Nam);
6693 end if;
6694 end if;
6695 end if;
6696 end if;
6698 Warn_On_Overlapping_Actuals (Nam, N);
6699 end Resolve_Call;
6701 -----------------------------
6702 -- Resolve_Case_Expression --
6703 -----------------------------
6705 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6706 Alt : Node_Id;
6707 Alt_Expr : Node_Id;
6708 Alt_Typ : Entity_Id;
6709 Is_Dyn : Boolean;
6711 begin
6712 Alt := First (Alternatives (N));
6713 while Present (Alt) loop
6714 Alt_Expr := Expression (Alt);
6715 Resolve (Alt_Expr, Typ);
6716 Alt_Typ := Etype (Alt_Expr);
6718 -- When the expression is of a scalar subtype different from the
6719 -- result subtype, then insert a conversion to ensure the generation
6720 -- of a constraint check.
6722 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6723 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6724 Analyze_And_Resolve (Alt_Expr, Typ);
6725 end if;
6727 Next (Alt);
6728 end loop;
6730 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6731 -- dynamically tagged must be known statically.
6733 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6734 Alt := First (Alternatives (N));
6735 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6737 while Present (Alt) loop
6738 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6739 Error_Msg_N
6740 ("all or none of the dependent expressions can be "
6741 & "dynamically tagged", N);
6742 end if;
6744 Next (Alt);
6745 end loop;
6746 end if;
6748 Set_Etype (N, Typ);
6749 Eval_Case_Expression (N);
6750 end Resolve_Case_Expression;
6752 -------------------------------
6753 -- Resolve_Character_Literal --
6754 -------------------------------
6756 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6757 B_Typ : constant Entity_Id := Base_Type (Typ);
6758 C : Entity_Id;
6760 begin
6761 -- Verify that the character does belong to the type of the context
6763 Set_Etype (N, B_Typ);
6764 Eval_Character_Literal (N);
6766 -- Wide_Wide_Character literals must always be defined, since the set
6767 -- of wide wide character literals is complete, i.e. if a character
6768 -- literal is accepted by the parser, then it is OK for wide wide
6769 -- character (out of range character literals are rejected).
6771 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6772 return;
6774 -- Always accept character literal for type Any_Character, which
6775 -- occurs in error situations and in comparisons of literals, both
6776 -- of which should accept all literals.
6778 elsif B_Typ = Any_Character then
6779 return;
6781 -- For Standard.Character or a type derived from it, check that the
6782 -- literal is in range.
6784 elsif Root_Type (B_Typ) = Standard_Character then
6785 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6786 return;
6787 end if;
6789 -- For Standard.Wide_Character or a type derived from it, check that the
6790 -- literal is in range.
6792 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6793 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6794 return;
6795 end if;
6797 -- If the entity is already set, this has already been resolved in a
6798 -- generic context, or comes from expansion. Nothing else to do.
6800 elsif Present (Entity (N)) then
6801 return;
6803 -- Otherwise we have a user defined character type, and we can use the
6804 -- standard visibility mechanisms to locate the referenced entity.
6806 else
6807 C := Current_Entity (N);
6808 while Present (C) loop
6809 if Etype (C) = B_Typ then
6810 Set_Entity_With_Checks (N, C);
6811 Generate_Reference (C, N);
6812 return;
6813 end if;
6815 C := Homonym (C);
6816 end loop;
6817 end if;
6819 -- If we fall through, then the literal does not match any of the
6820 -- entries of the enumeration type. This isn't just a constraint error
6821 -- situation, it is an illegality (see RM 4.2).
6823 Error_Msg_NE
6824 ("character not defined for }", N, First_Subtype (B_Typ));
6825 end Resolve_Character_Literal;
6827 ---------------------------
6828 -- Resolve_Comparison_Op --
6829 ---------------------------
6831 -- Context requires a boolean type, and plays no role in resolution.
6832 -- Processing identical to that for equality operators. The result type is
6833 -- the base type, which matters when pathological subtypes of booleans with
6834 -- limited ranges are used.
6836 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6837 L : constant Node_Id := Left_Opnd (N);
6838 R : constant Node_Id := Right_Opnd (N);
6839 T : Entity_Id;
6841 begin
6842 -- If this is an intrinsic operation which is not predefined, use the
6843 -- types of its declared arguments to resolve the possibly overloaded
6844 -- operands. Otherwise the operands are unambiguous and specify the
6845 -- expected type.
6847 if Scope (Entity (N)) /= Standard_Standard then
6848 T := Etype (First_Entity (Entity (N)));
6850 else
6851 T := Find_Unique_Type (L, R);
6853 if T = Any_Fixed then
6854 T := Unique_Fixed_Point_Type (L);
6855 end if;
6856 end if;
6858 Set_Etype (N, Base_Type (Typ));
6859 Generate_Reference (T, N, ' ');
6861 -- Skip remaining processing if already set to Any_Type
6863 if T = Any_Type then
6864 return;
6865 end if;
6867 -- Deal with other error cases
6869 if T = Any_String or else
6870 T = Any_Composite or else
6871 T = Any_Character
6872 then
6873 if T = Any_Character then
6874 Ambiguous_Character (L);
6875 else
6876 Error_Msg_N ("ambiguous operands for comparison", N);
6877 end if;
6879 Set_Etype (N, Any_Type);
6880 return;
6881 end if;
6883 -- Resolve the operands if types OK
6885 Resolve (L, T);
6886 Resolve (R, T);
6887 Check_Unset_Reference (L);
6888 Check_Unset_Reference (R);
6889 Generate_Operator_Reference (N, T);
6890 Check_Low_Bound_Tested (N);
6892 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6893 -- types or array types except String.
6895 if Is_Boolean_Type (T) then
6896 Check_SPARK_05_Restriction
6897 ("comparison is not defined on Boolean type", N);
6899 elsif Is_Array_Type (T)
6900 and then Base_Type (T) /= Standard_String
6901 then
6902 Check_SPARK_05_Restriction
6903 ("comparison is not defined on array types other than String", N);
6904 end if;
6906 -- Check comparison on unordered enumeration
6908 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6909 Error_Msg_Sloc := Sloc (Etype (L));
6910 Error_Msg_NE
6911 ("comparison on unordered enumeration type& declared#?U?",
6912 N, Etype (L));
6913 end if;
6915 Analyze_Dimension (N);
6917 -- Evaluate the relation (note we do this after the above check since
6918 -- this Eval call may change N to True/False. Skip this evaluation
6919 -- inside assertions, in order to keep assertions as written by users
6920 -- for tools that rely on these, e.g. GNATprove for loop invariants.
6921 -- Except evaluation is still performed even inside assertions for
6922 -- comparisons between values of universal type, which are useless
6923 -- for static analysis tools, and not supported even by GNATprove.
6925 if In_Assertion_Expr = 0
6926 or else (Is_Universal_Numeric_Type (Etype (L))
6927 and then
6928 Is_Universal_Numeric_Type (Etype (R)))
6929 then
6930 Eval_Relational_Op (N);
6931 end if;
6932 end Resolve_Comparison_Op;
6934 -----------------------------------------
6935 -- Resolve_Discrete_Subtype_Indication --
6936 -----------------------------------------
6938 procedure Resolve_Discrete_Subtype_Indication
6939 (N : Node_Id;
6940 Typ : Entity_Id)
6942 R : Node_Id;
6943 S : Entity_Id;
6945 begin
6946 Analyze (Subtype_Mark (N));
6947 S := Entity (Subtype_Mark (N));
6949 if Nkind (Constraint (N)) /= N_Range_Constraint then
6950 Error_Msg_N ("expect range constraint for discrete type", N);
6951 Set_Etype (N, Any_Type);
6953 else
6954 R := Range_Expression (Constraint (N));
6956 if R = Error then
6957 return;
6958 end if;
6960 Analyze (R);
6962 if Base_Type (S) /= Base_Type (Typ) then
6963 Error_Msg_NE
6964 ("expect subtype of }", N, First_Subtype (Typ));
6966 -- Rewrite the constraint as a range of Typ
6967 -- to allow compilation to proceed further.
6969 Set_Etype (N, Typ);
6970 Rewrite (Low_Bound (R),
6971 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6972 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6973 Attribute_Name => Name_First));
6974 Rewrite (High_Bound (R),
6975 Make_Attribute_Reference (Sloc (High_Bound (R)),
6976 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6977 Attribute_Name => Name_First));
6979 else
6980 Resolve (R, Typ);
6981 Set_Etype (N, Etype (R));
6983 -- Additionally, we must check that the bounds are compatible
6984 -- with the given subtype, which might be different from the
6985 -- type of the context.
6987 Apply_Range_Check (R, S);
6989 -- ??? If the above check statically detects a Constraint_Error
6990 -- it replaces the offending bound(s) of the range R with a
6991 -- Constraint_Error node. When the itype which uses these bounds
6992 -- is frozen the resulting call to Duplicate_Subexpr generates
6993 -- a new temporary for the bounds.
6995 -- Unfortunately there are other itypes that are also made depend
6996 -- on these bounds, so when Duplicate_Subexpr is called they get
6997 -- a forward reference to the newly created temporaries and Gigi
6998 -- aborts on such forward references. This is probably sign of a
6999 -- more fundamental problem somewhere else in either the order of
7000 -- itype freezing or the way certain itypes are constructed.
7002 -- To get around this problem we call Remove_Side_Effects right
7003 -- away if either bounds of R are a Constraint_Error.
7005 declare
7006 L : constant Node_Id := Low_Bound (R);
7007 H : constant Node_Id := High_Bound (R);
7009 begin
7010 if Nkind (L) = N_Raise_Constraint_Error then
7011 Remove_Side_Effects (L);
7012 end if;
7014 if Nkind (H) = N_Raise_Constraint_Error then
7015 Remove_Side_Effects (H);
7016 end if;
7017 end;
7019 Check_Unset_Reference (Low_Bound (R));
7020 Check_Unset_Reference (High_Bound (R));
7021 end if;
7022 end if;
7023 end Resolve_Discrete_Subtype_Indication;
7025 -------------------------
7026 -- Resolve_Entity_Name --
7027 -------------------------
7029 -- Used to resolve identifiers and expanded names
7031 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7032 function Is_Assignment_Or_Object_Expression
7033 (Context : Node_Id;
7034 Expr : Node_Id) return Boolean;
7035 -- Determine whether node Context denotes an assignment statement or an
7036 -- object declaration whose expression is node Expr.
7038 ----------------------------------------
7039 -- Is_Assignment_Or_Object_Expression --
7040 ----------------------------------------
7042 function Is_Assignment_Or_Object_Expression
7043 (Context : Node_Id;
7044 Expr : Node_Id) return Boolean
7046 begin
7047 if Nkind_In (Context, N_Assignment_Statement,
7048 N_Object_Declaration)
7049 and then Expression (Context) = Expr
7050 then
7051 return True;
7053 -- Check whether a construct that yields a name is the expression of
7054 -- an assignment statement or an object declaration.
7056 elsif (Nkind_In (Context, N_Attribute_Reference,
7057 N_Explicit_Dereference,
7058 N_Indexed_Component,
7059 N_Selected_Component,
7060 N_Slice)
7061 and then Prefix (Context) = Expr)
7062 or else
7063 (Nkind_In (Context, N_Type_Conversion,
7064 N_Unchecked_Type_Conversion)
7065 and then Expression (Context) = Expr)
7066 then
7067 return
7068 Is_Assignment_Or_Object_Expression
7069 (Context => Parent (Context),
7070 Expr => Context);
7072 -- Otherwise the context is not an assignment statement or an object
7073 -- declaration.
7075 else
7076 return False;
7077 end if;
7078 end Is_Assignment_Or_Object_Expression;
7080 -- Local variables
7082 E : constant Entity_Id := Entity (N);
7083 Par : Node_Id;
7085 -- Start of processing for Resolve_Entity_Name
7087 begin
7088 -- If garbage from errors, set to Any_Type and return
7090 if No (E) and then Total_Errors_Detected /= 0 then
7091 Set_Etype (N, Any_Type);
7092 return;
7093 end if;
7095 -- Replace named numbers by corresponding literals. Note that this is
7096 -- the one case where Resolve_Entity_Name must reset the Etype, since
7097 -- it is currently marked as universal.
7099 if Ekind (E) = E_Named_Integer then
7100 Set_Etype (N, Typ);
7101 Eval_Named_Integer (N);
7103 elsif Ekind (E) = E_Named_Real then
7104 Set_Etype (N, Typ);
7105 Eval_Named_Real (N);
7107 -- For enumeration literals, we need to make sure that a proper style
7108 -- check is done, since such literals are overloaded, and thus we did
7109 -- not do a style check during the first phase of analysis.
7111 elsif Ekind (E) = E_Enumeration_Literal then
7112 Set_Entity_With_Checks (N, E);
7113 Eval_Entity_Name (N);
7115 -- Case of (sub)type name appearing in a context where an expression
7116 -- is expected. This is legal if occurrence is a current instance.
7117 -- See RM 8.6 (17/3).
7119 elsif Is_Type (E) then
7120 if Is_Current_Instance (N) then
7121 null;
7123 -- Any other use is an error
7125 else
7126 Error_Msg_N
7127 ("invalid use of subtype mark in expression or call", N);
7128 end if;
7130 -- Check discriminant use if entity is discriminant in current scope,
7131 -- i.e. discriminant of record or concurrent type currently being
7132 -- analyzed. Uses in corresponding body are unrestricted.
7134 elsif Ekind (E) = E_Discriminant
7135 and then Scope (E) = Current_Scope
7136 and then not Has_Completion (Current_Scope)
7137 then
7138 Check_Discriminant_Use (N);
7140 -- A parameterless generic function cannot appear in a context that
7141 -- requires resolution.
7143 elsif Ekind (E) = E_Generic_Function then
7144 Error_Msg_N ("illegal use of generic function", N);
7146 -- In Ada 83 an OUT parameter cannot be read
7148 elsif Ekind (E) = E_Out_Parameter
7149 and then (Nkind (Parent (N)) in N_Op
7150 or else Nkind (Parent (N)) = N_Explicit_Dereference
7151 or else Is_Assignment_Or_Object_Expression
7152 (Context => Parent (N),
7153 Expr => N))
7154 then
7155 if Ada_Version = Ada_83 then
7156 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7157 end if;
7159 -- In all other cases, just do the possible static evaluation
7161 else
7162 -- A deferred constant that appears in an expression must have a
7163 -- completion, unless it has been removed by in-place expansion of
7164 -- an aggregate. A constant that is a renaming does not need
7165 -- initialization.
7167 if Ekind (E) = E_Constant
7168 and then Comes_From_Source (E)
7169 and then No (Constant_Value (E))
7170 and then Is_Frozen (Etype (E))
7171 and then not In_Spec_Expression
7172 and then not Is_Imported (E)
7173 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7174 then
7175 if No_Initialization (Parent (E))
7176 or else (Present (Full_View (E))
7177 and then No_Initialization (Parent (Full_View (E))))
7178 then
7179 null;
7180 else
7181 Error_Msg_N
7182 ("deferred constant is frozen before completion", N);
7183 end if;
7184 end if;
7186 Eval_Entity_Name (N);
7187 end if;
7189 Par := Parent (N);
7191 -- When the entity appears in a parameter association, retrieve the
7192 -- related subprogram call.
7194 if Nkind (Par) = N_Parameter_Association then
7195 Par := Parent (Par);
7196 end if;
7198 if Comes_From_Source (N) then
7200 -- The following checks are only relevant when SPARK_Mode is on as
7201 -- they are not standard Ada legality rules.
7203 if SPARK_Mode = On then
7205 -- An effectively volatile object subject to enabled properties
7206 -- Async_Writers or Effective_Reads must appear in non-interfering
7207 -- context (SPARK RM 7.1.3(12)).
7209 if Is_Object (E)
7210 and then Is_Effectively_Volatile (E)
7211 and then (Async_Writers_Enabled (E)
7212 or else Effective_Reads_Enabled (E))
7213 and then not Is_OK_Volatile_Context (Par, N)
7214 then
7215 SPARK_Msg_N
7216 ("volatile object cannot appear in this context "
7217 & "(SPARK RM 7.1.3(12))", N);
7218 end if;
7220 -- Check for possible elaboration issues with respect to reads of
7221 -- variables. The act of renaming the variable is not considered a
7222 -- read as it simply establishes an alias.
7224 if Ekind (E) = E_Variable
7225 and then Dynamic_Elaboration_Checks
7226 and then Nkind (Par) /= N_Object_Renaming_Declaration
7227 then
7228 Check_Elab_Call (N);
7229 end if;
7231 -- The variable may eventually become a constituent of a single
7232 -- protected/task type. Record the reference now and verify its
7233 -- legality when analyzing the contract of the variable
7234 -- (SPARK RM 9.3).
7236 if Ekind (E) = E_Variable then
7237 Record_Possible_Part_Of_Reference (E, N);
7238 end if;
7239 end if;
7241 -- A Ghost entity must appear in a specific context
7243 if Is_Ghost_Entity (E) then
7244 Check_Ghost_Context (E, N);
7245 end if;
7246 end if;
7247 end Resolve_Entity_Name;
7249 -------------------
7250 -- Resolve_Entry --
7251 -------------------
7253 procedure Resolve_Entry (Entry_Name : Node_Id) is
7254 Loc : constant Source_Ptr := Sloc (Entry_Name);
7255 Nam : Entity_Id;
7256 New_N : Node_Id;
7257 S : Entity_Id;
7258 Tsk : Entity_Id;
7259 E_Name : Node_Id;
7260 Index : Node_Id;
7262 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7263 -- If the bounds of the entry family being called depend on task
7264 -- discriminants, build a new index subtype where a discriminant is
7265 -- replaced with the value of the discriminant of the target task.
7266 -- The target task is the prefix of the entry name in the call.
7268 -----------------------
7269 -- Actual_Index_Type --
7270 -----------------------
7272 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7273 Typ : constant Entity_Id := Entry_Index_Type (E);
7274 Tsk : constant Entity_Id := Scope (E);
7275 Lo : constant Node_Id := Type_Low_Bound (Typ);
7276 Hi : constant Node_Id := Type_High_Bound (Typ);
7277 New_T : Entity_Id;
7279 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7280 -- If the bound is given by a discriminant, replace with a reference
7281 -- to the discriminant of the same name in the target task. If the
7282 -- entry name is the target of a requeue statement and the entry is
7283 -- in the current protected object, the bound to be used is the
7284 -- discriminal of the object (see Apply_Range_Checks for details of
7285 -- the transformation).
7287 -----------------------------
7288 -- Actual_Discriminant_Ref --
7289 -----------------------------
7291 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7292 Typ : constant Entity_Id := Etype (Bound);
7293 Ref : Node_Id;
7295 begin
7296 Remove_Side_Effects (Bound);
7298 if not Is_Entity_Name (Bound)
7299 or else Ekind (Entity (Bound)) /= E_Discriminant
7300 then
7301 return Bound;
7303 elsif Is_Protected_Type (Tsk)
7304 and then In_Open_Scopes (Tsk)
7305 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7306 then
7307 -- Note: here Bound denotes a discriminant of the corresponding
7308 -- record type tskV, whose discriminal is a formal of the
7309 -- init-proc tskVIP. What we want is the body discriminal,
7310 -- which is associated to the discriminant of the original
7311 -- concurrent type tsk.
7313 return New_Occurrence_Of
7314 (Find_Body_Discriminal (Entity (Bound)), Loc);
7316 else
7317 Ref :=
7318 Make_Selected_Component (Loc,
7319 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7320 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7321 Analyze (Ref);
7322 Resolve (Ref, Typ);
7323 return Ref;
7324 end if;
7325 end Actual_Discriminant_Ref;
7327 -- Start of processing for Actual_Index_Type
7329 begin
7330 if not Has_Discriminants (Tsk)
7331 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7332 then
7333 return Entry_Index_Type (E);
7335 else
7336 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7337 Set_Etype (New_T, Base_Type (Typ));
7338 Set_Size_Info (New_T, Typ);
7339 Set_RM_Size (New_T, RM_Size (Typ));
7340 Set_Scalar_Range (New_T,
7341 Make_Range (Sloc (Entry_Name),
7342 Low_Bound => Actual_Discriminant_Ref (Lo),
7343 High_Bound => Actual_Discriminant_Ref (Hi)));
7345 return New_T;
7346 end if;
7347 end Actual_Index_Type;
7349 -- Start of processing for Resolve_Entry
7351 begin
7352 -- Find name of entry being called, and resolve prefix of name with its
7353 -- own type. The prefix can be overloaded, and the name and signature of
7354 -- the entry must be taken into account.
7356 if Nkind (Entry_Name) = N_Indexed_Component then
7358 -- Case of dealing with entry family within the current tasks
7360 E_Name := Prefix (Entry_Name);
7362 else
7363 E_Name := Entry_Name;
7364 end if;
7366 if Is_Entity_Name (E_Name) then
7368 -- Entry call to an entry (or entry family) in the current task. This
7369 -- is legal even though the task will deadlock. Rewrite as call to
7370 -- current task.
7372 -- This can also be a call to an entry in an enclosing task. If this
7373 -- is a single task, we have to retrieve its name, because the scope
7374 -- of the entry is the task type, not the object. If the enclosing
7375 -- task is a task type, the identity of the task is given by its own
7376 -- self variable.
7378 -- Finally this can be a requeue on an entry of the same task or
7379 -- protected object.
7381 S := Scope (Entity (E_Name));
7383 for J in reverse 0 .. Scope_Stack.Last loop
7384 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7385 and then not Comes_From_Source (S)
7386 then
7387 -- S is an enclosing task or protected object. The concurrent
7388 -- declaration has been converted into a type declaration, and
7389 -- the object itself has an object declaration that follows
7390 -- the type in the same declarative part.
7392 Tsk := Next_Entity (S);
7393 while Etype (Tsk) /= S loop
7394 Next_Entity (Tsk);
7395 end loop;
7397 S := Tsk;
7398 exit;
7400 elsif S = Scope_Stack.Table (J).Entity then
7402 -- Call to current task. Will be transformed into call to Self
7404 exit;
7406 end if;
7407 end loop;
7409 New_N :=
7410 Make_Selected_Component (Loc,
7411 Prefix => New_Occurrence_Of (S, Loc),
7412 Selector_Name =>
7413 New_Occurrence_Of (Entity (E_Name), Loc));
7414 Rewrite (E_Name, New_N);
7415 Analyze (E_Name);
7417 elsif Nkind (Entry_Name) = N_Selected_Component
7418 and then Is_Overloaded (Prefix (Entry_Name))
7419 then
7420 -- Use the entry name (which must be unique at this point) to find
7421 -- the prefix that returns the corresponding task/protected type.
7423 declare
7424 Pref : constant Node_Id := Prefix (Entry_Name);
7425 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7426 I : Interp_Index;
7427 It : Interp;
7429 begin
7430 Get_First_Interp (Pref, I, It);
7431 while Present (It.Typ) loop
7432 if Scope (Ent) = It.Typ then
7433 Set_Etype (Pref, It.Typ);
7434 exit;
7435 end if;
7437 Get_Next_Interp (I, It);
7438 end loop;
7439 end;
7440 end if;
7442 if Nkind (Entry_Name) = N_Selected_Component then
7443 Resolve (Prefix (Entry_Name));
7445 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7446 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7447 Resolve (Prefix (Prefix (Entry_Name)));
7448 Index := First (Expressions (Entry_Name));
7449 Resolve (Index, Entry_Index_Type (Nam));
7451 -- Up to this point the expression could have been the actual in a
7452 -- simple entry call, and be given by a named association.
7454 if Nkind (Index) = N_Parameter_Association then
7455 Error_Msg_N ("expect expression for entry index", Index);
7456 else
7457 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7458 end if;
7459 end if;
7460 end Resolve_Entry;
7462 ------------------------
7463 -- Resolve_Entry_Call --
7464 ------------------------
7466 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7467 Entry_Name : constant Node_Id := Name (N);
7468 Loc : constant Source_Ptr := Sloc (Entry_Name);
7469 Actuals : List_Id;
7470 First_Named : Node_Id;
7471 Nam : Entity_Id;
7472 Norm_OK : Boolean;
7473 Obj : Node_Id;
7474 Was_Over : Boolean;
7476 begin
7477 -- We kill all checks here, because it does not seem worth the effort to
7478 -- do anything better, an entry call is a big operation.
7480 Kill_All_Checks;
7482 -- Processing of the name is similar for entry calls and protected
7483 -- operation calls. Once the entity is determined, we can complete
7484 -- the resolution of the actuals.
7486 -- The selector may be overloaded, in the case of a protected object
7487 -- with overloaded functions. The type of the context is used for
7488 -- resolution.
7490 if Nkind (Entry_Name) = N_Selected_Component
7491 and then Is_Overloaded (Selector_Name (Entry_Name))
7492 and then Typ /= Standard_Void_Type
7493 then
7494 declare
7495 I : Interp_Index;
7496 It : Interp;
7498 begin
7499 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7500 while Present (It.Typ) loop
7501 if Covers (Typ, It.Typ) then
7502 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7503 Set_Etype (Entry_Name, It.Typ);
7505 Generate_Reference (It.Typ, N, ' ');
7506 end if;
7508 Get_Next_Interp (I, It);
7509 end loop;
7510 end;
7511 end if;
7513 Resolve_Entry (Entry_Name);
7515 if Nkind (Entry_Name) = N_Selected_Component then
7517 -- Simple entry call
7519 Nam := Entity (Selector_Name (Entry_Name));
7520 Obj := Prefix (Entry_Name);
7521 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7523 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7525 -- Call to member of entry family
7527 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7528 Obj := Prefix (Prefix (Entry_Name));
7529 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7530 end if;
7532 -- We cannot in general check the maximum depth of protected entry calls
7533 -- at compile time. But we can tell that any protected entry call at all
7534 -- violates a specified nesting depth of zero.
7536 if Is_Protected_Type (Scope (Nam)) then
7537 Check_Restriction (Max_Entry_Queue_Length, N);
7538 end if;
7540 -- Use context type to disambiguate a protected function that can be
7541 -- called without actuals and that returns an array type, and where the
7542 -- argument list may be an indexing of the returned value.
7544 if Ekind (Nam) = E_Function
7545 and then Needs_No_Actuals (Nam)
7546 and then Present (Parameter_Associations (N))
7547 and then
7548 ((Is_Array_Type (Etype (Nam))
7549 and then Covers (Typ, Component_Type (Etype (Nam))))
7551 or else (Is_Access_Type (Etype (Nam))
7552 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7553 and then
7554 Covers
7555 (Typ,
7556 Component_Type (Designated_Type (Etype (Nam))))))
7557 then
7558 declare
7559 Index_Node : Node_Id;
7561 begin
7562 Index_Node :=
7563 Make_Indexed_Component (Loc,
7564 Prefix =>
7565 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7566 Expressions => Parameter_Associations (N));
7568 -- Since we are correcting a node classification error made by the
7569 -- parser, we call Replace rather than Rewrite.
7571 Replace (N, Index_Node);
7572 Set_Etype (Prefix (N), Etype (Nam));
7573 Set_Etype (N, Typ);
7574 Resolve_Indexed_Component (N, Typ);
7575 return;
7576 end;
7577 end if;
7579 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7580 and then Present (Contract_Wrapper (Nam))
7581 and then Current_Scope /= Contract_Wrapper (Nam)
7582 then
7584 -- Note the entity being called before rewriting the call, so that
7585 -- it appears used at this point.
7587 Generate_Reference (Nam, Entry_Name, 'r');
7589 -- Rewrite as call to the precondition wrapper, adding the task
7590 -- object to the list of actuals. If the call is to a member of an
7591 -- entry family, include the index as well.
7593 declare
7594 New_Call : Node_Id;
7595 New_Actuals : List_Id;
7597 begin
7598 New_Actuals := New_List (Obj);
7600 if Nkind (Entry_Name) = N_Indexed_Component then
7601 Append_To (New_Actuals,
7602 New_Copy_Tree (First (Expressions (Entry_Name))));
7603 end if;
7605 Append_List (Parameter_Associations (N), New_Actuals);
7606 New_Call :=
7607 Make_Procedure_Call_Statement (Loc,
7608 Name =>
7609 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7610 Parameter_Associations => New_Actuals);
7611 Rewrite (N, New_Call);
7613 -- Preanalyze and resolve new call. Current procedure is called
7614 -- from Resolve_Call, after which expansion will take place.
7616 Preanalyze_And_Resolve (N);
7617 return;
7618 end;
7619 end if;
7621 -- The operation name may have been overloaded. Order the actuals
7622 -- according to the formals of the resolved entity, and set the return
7623 -- type to that of the operation.
7625 if Was_Over then
7626 Normalize_Actuals (N, Nam, False, Norm_OK);
7627 pragma Assert (Norm_OK);
7628 Set_Etype (N, Etype (Nam));
7630 -- Reset the Is_Overloaded flag, since resolution is now completed
7632 -- Simple entry call
7634 if Nkind (Entry_Name) = N_Selected_Component then
7635 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7637 -- Call to a member of an entry family
7639 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7640 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7641 end if;
7642 end if;
7644 Resolve_Actuals (N, Nam);
7645 Check_Internal_Protected_Use (N, Nam);
7647 -- Create a call reference to the entry
7649 Generate_Reference (Nam, Entry_Name, 's');
7651 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7652 Check_Potentially_Blocking_Operation (N);
7653 end if;
7655 -- Verify that a procedure call cannot masquerade as an entry
7656 -- call where an entry call is expected.
7658 if Ekind (Nam) = E_Procedure then
7659 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7660 and then N = Entry_Call_Statement (Parent (N))
7661 then
7662 Error_Msg_N ("entry call required in select statement", N);
7664 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7665 and then N = Triggering_Statement (Parent (N))
7666 then
7667 Error_Msg_N ("triggering statement cannot be procedure call", N);
7669 elsif Ekind (Scope (Nam)) = E_Task_Type
7670 and then not In_Open_Scopes (Scope (Nam))
7671 then
7672 Error_Msg_N ("task has no entry with this name", Entry_Name);
7673 end if;
7674 end if;
7676 -- After resolution, entry calls and protected procedure calls are
7677 -- changed into entry calls, for expansion. The structure of the node
7678 -- does not change, so it can safely be done in place. Protected
7679 -- function calls must keep their structure because they are
7680 -- subexpressions.
7682 if Ekind (Nam) /= E_Function then
7684 -- A protected operation that is not a function may modify the
7685 -- corresponding object, and cannot apply to a constant. If this
7686 -- is an internal call, the prefix is the type itself.
7688 if Is_Protected_Type (Scope (Nam))
7689 and then not Is_Variable (Obj)
7690 and then (not Is_Entity_Name (Obj)
7691 or else not Is_Type (Entity (Obj)))
7692 then
7693 Error_Msg_N
7694 ("prefix of protected procedure or entry call must be variable",
7695 Entry_Name);
7696 end if;
7698 Actuals := Parameter_Associations (N);
7699 First_Named := First_Named_Actual (N);
7701 Rewrite (N,
7702 Make_Entry_Call_Statement (Loc,
7703 Name => Entry_Name,
7704 Parameter_Associations => Actuals));
7706 Set_First_Named_Actual (N, First_Named);
7707 Set_Analyzed (N, True);
7709 -- Protected functions can return on the secondary stack, in which
7710 -- case we must trigger the transient scope mechanism.
7712 elsif Expander_Active
7713 and then Requires_Transient_Scope (Etype (Nam))
7714 then
7715 Establish_Transient_Scope (N, Sec_Stack => True);
7716 end if;
7717 end Resolve_Entry_Call;
7719 -------------------------
7720 -- Resolve_Equality_Op --
7721 -------------------------
7723 -- Both arguments must have the same type, and the boolean context does
7724 -- not participate in the resolution. The first pass verifies that the
7725 -- interpretation is not ambiguous, and the type of the left argument is
7726 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7727 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7728 -- though they carry a single (universal) type. Diagnose this case here.
7730 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7731 L : constant Node_Id := Left_Opnd (N);
7732 R : constant Node_Id := Right_Opnd (N);
7733 T : Entity_Id := Find_Unique_Type (L, R);
7735 procedure Check_If_Expression (Cond : Node_Id);
7736 -- The resolution rule for if expressions requires that each such must
7737 -- have a unique type. This means that if several dependent expressions
7738 -- are of a non-null anonymous access type, and the context does not
7739 -- impose an expected type (as can be the case in an equality operation)
7740 -- the expression must be rejected.
7742 procedure Explain_Redundancy (N : Node_Id);
7743 -- Attempt to explain the nature of a redundant comparison with True. If
7744 -- the expression N is too complex, this routine issues a general error
7745 -- message.
7747 function Find_Unique_Access_Type return Entity_Id;
7748 -- In the case of allocators and access attributes, the context must
7749 -- provide an indication of the specific access type to be used. If
7750 -- one operand is of such a "generic" access type, check whether there
7751 -- is a specific visible access type that has the same designated type.
7752 -- This is semantically dubious, and of no interest to any real code,
7753 -- but c48008a makes it all worthwhile.
7755 -------------------------
7756 -- Check_If_Expression --
7757 -------------------------
7759 procedure Check_If_Expression (Cond : Node_Id) is
7760 Then_Expr : Node_Id;
7761 Else_Expr : Node_Id;
7763 begin
7764 if Nkind (Cond) = N_If_Expression then
7765 Then_Expr := Next (First (Expressions (Cond)));
7766 Else_Expr := Next (Then_Expr);
7768 if Nkind (Then_Expr) /= N_Null
7769 and then Nkind (Else_Expr) /= N_Null
7770 then
7771 Error_Msg_N ("cannot determine type of if expression", Cond);
7772 end if;
7773 end if;
7774 end Check_If_Expression;
7776 ------------------------
7777 -- Explain_Redundancy --
7778 ------------------------
7780 procedure Explain_Redundancy (N : Node_Id) is
7781 Error : Name_Id;
7782 Val : Node_Id;
7783 Val_Id : Entity_Id;
7785 begin
7786 Val := N;
7788 -- Strip the operand down to an entity
7790 loop
7791 if Nkind (Val) = N_Selected_Component then
7792 Val := Selector_Name (Val);
7793 else
7794 exit;
7795 end if;
7796 end loop;
7798 -- The construct denotes an entity
7800 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7801 Val_Id := Entity (Val);
7803 -- Do not generate an error message when the comparison is done
7804 -- against the enumeration literal Standard.True.
7806 if Ekind (Val_Id) /= E_Enumeration_Literal then
7808 -- Build a customized error message
7810 Name_Len := 0;
7811 Add_Str_To_Name_Buffer ("?r?");
7813 if Ekind (Val_Id) = E_Component then
7814 Add_Str_To_Name_Buffer ("component ");
7816 elsif Ekind (Val_Id) = E_Constant then
7817 Add_Str_To_Name_Buffer ("constant ");
7819 elsif Ekind (Val_Id) = E_Discriminant then
7820 Add_Str_To_Name_Buffer ("discriminant ");
7822 elsif Is_Formal (Val_Id) then
7823 Add_Str_To_Name_Buffer ("parameter ");
7825 elsif Ekind (Val_Id) = E_Variable then
7826 Add_Str_To_Name_Buffer ("variable ");
7827 end if;
7829 Add_Str_To_Name_Buffer ("& is always True!");
7830 Error := Name_Find;
7832 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7833 end if;
7835 -- The construct is too complex to disect, issue a general message
7837 else
7838 Error_Msg_N ("?r?expression is always True!", Val);
7839 end if;
7840 end Explain_Redundancy;
7842 -----------------------------
7843 -- Find_Unique_Access_Type --
7844 -----------------------------
7846 function Find_Unique_Access_Type return Entity_Id is
7847 Acc : Entity_Id;
7848 E : Entity_Id;
7849 S : Entity_Id;
7851 begin
7852 if Ekind_In (Etype (R), E_Allocator_Type,
7853 E_Access_Attribute_Type)
7854 then
7855 Acc := Designated_Type (Etype (R));
7857 elsif Ekind_In (Etype (L), E_Allocator_Type,
7858 E_Access_Attribute_Type)
7859 then
7860 Acc := Designated_Type (Etype (L));
7861 else
7862 return Empty;
7863 end if;
7865 S := Current_Scope;
7866 while S /= Standard_Standard loop
7867 E := First_Entity (S);
7868 while Present (E) loop
7869 if Is_Type (E)
7870 and then Is_Access_Type (E)
7871 and then Ekind (E) /= E_Allocator_Type
7872 and then Designated_Type (E) = Base_Type (Acc)
7873 then
7874 return E;
7875 end if;
7877 Next_Entity (E);
7878 end loop;
7880 S := Scope (S);
7881 end loop;
7883 return Empty;
7884 end Find_Unique_Access_Type;
7886 -- Start of processing for Resolve_Equality_Op
7888 begin
7889 Set_Etype (N, Base_Type (Typ));
7890 Generate_Reference (T, N, ' ');
7892 if T = Any_Fixed then
7893 T := Unique_Fixed_Point_Type (L);
7894 end if;
7896 if T /= Any_Type then
7897 if T = Any_String or else
7898 T = Any_Composite or else
7899 T = Any_Character
7900 then
7901 if T = Any_Character then
7902 Ambiguous_Character (L);
7903 else
7904 Error_Msg_N ("ambiguous operands for equality", N);
7905 end if;
7907 Set_Etype (N, Any_Type);
7908 return;
7910 elsif T = Any_Access
7911 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7912 then
7913 T := Find_Unique_Access_Type;
7915 if No (T) then
7916 Error_Msg_N ("ambiguous operands for equality", N);
7917 Set_Etype (N, Any_Type);
7918 return;
7919 end if;
7921 -- If expressions must have a single type, and if the context does
7922 -- not impose one the dependent expressions cannot be anonymous
7923 -- access types.
7925 -- Why no similar processing for case expressions???
7927 elsif Ada_Version >= Ada_2012
7928 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7929 E_Anonymous_Access_Subprogram_Type)
7930 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7931 E_Anonymous_Access_Subprogram_Type)
7932 then
7933 Check_If_Expression (L);
7934 Check_If_Expression (R);
7935 end if;
7937 Resolve (L, T);
7938 Resolve (R, T);
7940 -- In SPARK, equality operators = and /= for array types other than
7941 -- String are only defined when, for each index position, the
7942 -- operands have equal static bounds.
7944 if Is_Array_Type (T) then
7946 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7947 -- operation if not needed.
7949 if Restriction_Check_Required (SPARK_05)
7950 and then Base_Type (T) /= Standard_String
7951 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7952 and then Etype (L) /= Any_Composite -- or else L in error
7953 and then Etype (R) /= Any_Composite -- or else R in error
7954 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7955 then
7956 Check_SPARK_05_Restriction
7957 ("array types should have matching static bounds", N);
7958 end if;
7959 end if;
7961 -- If the unique type is a class-wide type then it will be expanded
7962 -- into a dispatching call to the predefined primitive. Therefore we
7963 -- check here for potential violation of such restriction.
7965 if Is_Class_Wide_Type (T) then
7966 Check_Restriction (No_Dispatching_Calls, N);
7967 end if;
7969 if Warn_On_Redundant_Constructs
7970 and then Comes_From_Source (N)
7971 and then Comes_From_Source (R)
7972 and then Is_Entity_Name (R)
7973 and then Entity (R) = Standard_True
7974 then
7975 Error_Msg_N -- CODEFIX
7976 ("?r?comparison with True is redundant!", N);
7977 Explain_Redundancy (Original_Node (R));
7978 end if;
7980 Check_Unset_Reference (L);
7981 Check_Unset_Reference (R);
7982 Generate_Operator_Reference (N, T);
7983 Check_Low_Bound_Tested (N);
7985 -- If this is an inequality, it may be the implicit inequality
7986 -- created for a user-defined operation, in which case the corres-
7987 -- ponding equality operation is not intrinsic, and the operation
7988 -- cannot be constant-folded. Else fold.
7990 if Nkind (N) = N_Op_Eq
7991 or else Comes_From_Source (Entity (N))
7992 or else Ekind (Entity (N)) = E_Operator
7993 or else Is_Intrinsic_Subprogram
7994 (Corresponding_Equality (Entity (N)))
7995 then
7996 Analyze_Dimension (N);
7997 Eval_Relational_Op (N);
7999 elsif Nkind (N) = N_Op_Ne
8000 and then Is_Abstract_Subprogram (Entity (N))
8001 then
8002 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8003 end if;
8005 -- Ada 2005: If one operand is an anonymous access type, convert the
8006 -- other operand to it, to ensure that the underlying types match in
8007 -- the back-end. Same for access_to_subprogram, and the conversion
8008 -- verifies that the types are subtype conformant.
8010 -- We apply the same conversion in the case one of the operands is a
8011 -- private subtype of the type of the other.
8013 -- Why the Expander_Active test here ???
8015 if Expander_Active
8016 and then
8017 (Ekind_In (T, E_Anonymous_Access_Type,
8018 E_Anonymous_Access_Subprogram_Type)
8019 or else Is_Private_Type (T))
8020 then
8021 if Etype (L) /= T then
8022 Rewrite (L,
8023 Make_Unchecked_Type_Conversion (Sloc (L),
8024 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8025 Expression => Relocate_Node (L)));
8026 Analyze_And_Resolve (L, T);
8027 end if;
8029 if (Etype (R)) /= T then
8030 Rewrite (R,
8031 Make_Unchecked_Type_Conversion (Sloc (R),
8032 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8033 Expression => Relocate_Node (R)));
8034 Analyze_And_Resolve (R, T);
8035 end if;
8036 end if;
8037 end if;
8038 end Resolve_Equality_Op;
8040 ----------------------------------
8041 -- Resolve_Explicit_Dereference --
8042 ----------------------------------
8044 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8045 Loc : constant Source_Ptr := Sloc (N);
8046 New_N : Node_Id;
8047 P : constant Node_Id := Prefix (N);
8049 P_Typ : Entity_Id;
8050 -- The candidate prefix type, if overloaded
8052 I : Interp_Index;
8053 It : Interp;
8055 begin
8056 Check_Fully_Declared_Prefix (Typ, P);
8057 P_Typ := Empty;
8059 -- A useful optimization: check whether the dereference denotes an
8060 -- element of a container, and if so rewrite it as a call to the
8061 -- corresponding Element function.
8063 -- Disabled for now, on advice of ARG. A more restricted form of the
8064 -- predicate might be acceptable ???
8066 -- if Is_Container_Element (N) then
8067 -- return;
8068 -- end if;
8070 if Is_Overloaded (P) then
8072 -- Use the context type to select the prefix that has the correct
8073 -- designated type. Keep the first match, which will be the inner-
8074 -- most.
8076 Get_First_Interp (P, I, It);
8078 while Present (It.Typ) loop
8079 if Is_Access_Type (It.Typ)
8080 and then Covers (Typ, Designated_Type (It.Typ))
8081 then
8082 if No (P_Typ) then
8083 P_Typ := It.Typ;
8084 end if;
8086 -- Remove access types that do not match, but preserve access
8087 -- to subprogram interpretations, in case a further dereference
8088 -- is needed (see below).
8090 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8091 Remove_Interp (I);
8092 end if;
8094 Get_Next_Interp (I, It);
8095 end loop;
8097 if Present (P_Typ) then
8098 Resolve (P, P_Typ);
8099 Set_Etype (N, Designated_Type (P_Typ));
8101 else
8102 -- If no interpretation covers the designated type of the prefix,
8103 -- this is the pathological case where not all implementations of
8104 -- the prefix allow the interpretation of the node as a call. Now
8105 -- that the expected type is known, Remove other interpretations
8106 -- from prefix, rewrite it as a call, and resolve again, so that
8107 -- the proper call node is generated.
8109 Get_First_Interp (P, I, It);
8110 while Present (It.Typ) loop
8111 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8112 Remove_Interp (I);
8113 end if;
8115 Get_Next_Interp (I, It);
8116 end loop;
8118 New_N :=
8119 Make_Function_Call (Loc,
8120 Name =>
8121 Make_Explicit_Dereference (Loc,
8122 Prefix => P),
8123 Parameter_Associations => New_List);
8125 Save_Interps (N, New_N);
8126 Rewrite (N, New_N);
8127 Analyze_And_Resolve (N, Typ);
8128 return;
8129 end if;
8131 -- If not overloaded, resolve P with its own type
8133 else
8134 Resolve (P);
8135 end if;
8137 -- If the prefix might be null, add an access check
8139 if Is_Access_Type (Etype (P))
8140 and then not Can_Never_Be_Null (Etype (P))
8141 then
8142 Apply_Access_Check (N);
8143 end if;
8145 -- If the designated type is a packed unconstrained array type, and the
8146 -- explicit dereference is not in the context of an attribute reference,
8147 -- then we must compute and set the actual subtype, since it is needed
8148 -- by Gigi. The reason we exclude the attribute case is that this is
8149 -- handled fine by Gigi, and in fact we use such attributes to build the
8150 -- actual subtype. We also exclude generated code (which builds actual
8151 -- subtypes directly if they are needed).
8153 if Is_Array_Type (Etype (N))
8154 and then Is_Packed (Etype (N))
8155 and then not Is_Constrained (Etype (N))
8156 and then Nkind (Parent (N)) /= N_Attribute_Reference
8157 and then Comes_From_Source (N)
8158 then
8159 Set_Etype (N, Get_Actual_Subtype (N));
8160 end if;
8162 Analyze_Dimension (N);
8164 -- Note: No Eval processing is required for an explicit dereference,
8165 -- because such a name can never be static.
8167 end Resolve_Explicit_Dereference;
8169 -------------------------------------
8170 -- Resolve_Expression_With_Actions --
8171 -------------------------------------
8173 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8174 begin
8175 Set_Etype (N, Typ);
8177 -- If N has no actions, and its expression has been constant folded,
8178 -- then rewrite N as just its expression. Note, we can't do this in
8179 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8180 -- Expression (N) to be expanded again.
8182 if Is_Empty_List (Actions (N))
8183 and then Compile_Time_Known_Value (Expression (N))
8184 then
8185 Rewrite (N, Expression (N));
8186 end if;
8187 end Resolve_Expression_With_Actions;
8189 ----------------------------------
8190 -- Resolve_Generalized_Indexing --
8191 ----------------------------------
8193 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8194 Indexing : constant Node_Id := Generalized_Indexing (N);
8195 Call : Node_Id;
8196 Indexes : List_Id;
8197 Pref : Node_Id;
8199 begin
8200 -- In ASIS mode, propagate the information about the indexes back to
8201 -- to the original indexing node. The generalized indexing is either
8202 -- a function call, or a dereference of one. The actuals include the
8203 -- prefix of the original node, which is the container expression.
8205 if ASIS_Mode then
8206 Resolve (Indexing, Typ);
8207 Set_Etype (N, Etype (Indexing));
8208 Set_Is_Overloaded (N, False);
8210 Call := Indexing;
8211 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8212 loop
8213 Call := Prefix (Call);
8214 end loop;
8216 if Nkind (Call) = N_Function_Call then
8217 Indexes := New_Copy_List (Parameter_Associations (Call));
8218 Pref := Remove_Head (Indexes);
8219 Set_Expressions (N, Indexes);
8221 -- If expression is to be reanalyzed, reset Generalized_Indexing
8222 -- to recreate call node, as is the case when the expression is
8223 -- part of an expression function.
8225 if In_Spec_Expression then
8226 Set_Generalized_Indexing (N, Empty);
8227 end if;
8229 Set_Prefix (N, Pref);
8230 end if;
8232 else
8233 Rewrite (N, Indexing);
8234 Resolve (N, Typ);
8235 end if;
8236 end Resolve_Generalized_Indexing;
8238 ---------------------------
8239 -- Resolve_If_Expression --
8240 ---------------------------
8242 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8243 Condition : constant Node_Id := First (Expressions (N));
8244 Then_Expr : constant Node_Id := Next (Condition);
8245 Else_Expr : Node_Id := Next (Then_Expr);
8246 Else_Typ : Entity_Id;
8247 Then_Typ : Entity_Id;
8249 begin
8250 Resolve (Condition, Any_Boolean);
8251 Resolve (Then_Expr, Typ);
8252 Then_Typ := Etype (Then_Expr);
8254 -- When the "then" expression is of a scalar subtype different from the
8255 -- result subtype, then insert a conversion to ensure the generation of
8256 -- a constraint check. The same is done for the else part below, again
8257 -- comparing subtypes rather than base types.
8259 if Is_Scalar_Type (Then_Typ)
8260 and then Then_Typ /= Typ
8261 then
8262 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8263 Analyze_And_Resolve (Then_Expr, Typ);
8264 end if;
8266 -- If ELSE expression present, just resolve using the determined type
8267 -- If type is universal, resolve to any member of the class.
8269 if Present (Else_Expr) then
8270 if Typ = Universal_Integer then
8271 Resolve (Else_Expr, Any_Integer);
8273 elsif Typ = Universal_Real then
8274 Resolve (Else_Expr, Any_Real);
8276 else
8277 Resolve (Else_Expr, Typ);
8278 end if;
8280 Else_Typ := Etype (Else_Expr);
8282 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8283 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8284 Analyze_And_Resolve (Else_Expr, Typ);
8286 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8287 -- dynamically tagged must be known statically.
8289 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8290 if Is_Dynamically_Tagged (Then_Expr) /=
8291 Is_Dynamically_Tagged (Else_Expr)
8292 then
8293 Error_Msg_N ("all or none of the dependent expressions "
8294 & "can be dynamically tagged", N);
8295 end if;
8296 end if;
8298 -- If no ELSE expression is present, root type must be Standard.Boolean
8299 -- and we provide a Standard.True result converted to the appropriate
8300 -- Boolean type (in case it is a derived boolean type).
8302 elsif Root_Type (Typ) = Standard_Boolean then
8303 Else_Expr :=
8304 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8305 Analyze_And_Resolve (Else_Expr, Typ);
8306 Append_To (Expressions (N), Else_Expr);
8308 else
8309 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8310 Append_To (Expressions (N), Error);
8311 end if;
8313 Set_Etype (N, Typ);
8314 Eval_If_Expression (N);
8315 end Resolve_If_Expression;
8317 -------------------------------
8318 -- Resolve_Indexed_Component --
8319 -------------------------------
8321 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8322 Name : constant Node_Id := Prefix (N);
8323 Expr : Node_Id;
8324 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8325 Index : Node_Id;
8327 begin
8328 if Present (Generalized_Indexing (N)) then
8329 Resolve_Generalized_Indexing (N, Typ);
8330 return;
8331 end if;
8333 if Is_Overloaded (Name) then
8335 -- Use the context type to select the prefix that yields the correct
8336 -- component type.
8338 declare
8339 I : Interp_Index;
8340 It : Interp;
8341 I1 : Interp_Index := 0;
8342 P : constant Node_Id := Prefix (N);
8343 Found : Boolean := False;
8345 begin
8346 Get_First_Interp (P, I, It);
8347 while Present (It.Typ) loop
8348 if (Is_Array_Type (It.Typ)
8349 and then Covers (Typ, Component_Type (It.Typ)))
8350 or else (Is_Access_Type (It.Typ)
8351 and then Is_Array_Type (Designated_Type (It.Typ))
8352 and then
8353 Covers
8354 (Typ,
8355 Component_Type (Designated_Type (It.Typ))))
8356 then
8357 if Found then
8358 It := Disambiguate (P, I1, I, Any_Type);
8360 if It = No_Interp then
8361 Error_Msg_N ("ambiguous prefix for indexing", N);
8362 Set_Etype (N, Typ);
8363 return;
8365 else
8366 Found := True;
8367 Array_Type := It.Typ;
8368 I1 := I;
8369 end if;
8371 else
8372 Found := True;
8373 Array_Type := It.Typ;
8374 I1 := I;
8375 end if;
8376 end if;
8378 Get_Next_Interp (I, It);
8379 end loop;
8380 end;
8382 else
8383 Array_Type := Etype (Name);
8384 end if;
8386 Resolve (Name, Array_Type);
8387 Array_Type := Get_Actual_Subtype_If_Available (Name);
8389 -- If prefix is access type, dereference to get real array type.
8390 -- Note: we do not apply an access check because the expander always
8391 -- introduces an explicit dereference, and the check will happen there.
8393 if Is_Access_Type (Array_Type) then
8394 Array_Type := Designated_Type (Array_Type);
8395 end if;
8397 -- If name was overloaded, set component type correctly now
8398 -- If a misplaced call to an entry family (which has no index types)
8399 -- return. Error will be diagnosed from calling context.
8401 if Is_Array_Type (Array_Type) then
8402 Set_Etype (N, Component_Type (Array_Type));
8403 else
8404 return;
8405 end if;
8407 Index := First_Index (Array_Type);
8408 Expr := First (Expressions (N));
8410 -- The prefix may have resolved to a string literal, in which case its
8411 -- etype has a special representation. This is only possible currently
8412 -- if the prefix is a static concatenation, written in functional
8413 -- notation.
8415 if Ekind (Array_Type) = E_String_Literal_Subtype then
8416 Resolve (Expr, Standard_Positive);
8418 else
8419 while Present (Index) and Present (Expr) loop
8420 Resolve (Expr, Etype (Index));
8421 Check_Unset_Reference (Expr);
8423 if Is_Scalar_Type (Etype (Expr)) then
8424 Apply_Scalar_Range_Check (Expr, Etype (Index));
8425 else
8426 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8427 end if;
8429 Next_Index (Index);
8430 Next (Expr);
8431 end loop;
8432 end if;
8434 Analyze_Dimension (N);
8436 -- Do not generate the warning on suspicious index if we are analyzing
8437 -- package Ada.Tags; otherwise we will report the warning with the
8438 -- Prims_Ptr field of the dispatch table.
8440 if Scope (Etype (Prefix (N))) = Standard_Standard
8441 or else not
8442 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8443 Ada_Tags)
8444 then
8445 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8446 Eval_Indexed_Component (N);
8447 end if;
8449 -- If the array type is atomic, and the component is not atomic, then
8450 -- this is worth a warning, since we have a situation where the access
8451 -- to the component may cause extra read/writes of the atomic array
8452 -- object, or partial word accesses, which could be unexpected.
8454 if Nkind (N) = N_Indexed_Component
8455 and then Is_Atomic_Ref_With_Address (N)
8456 and then not (Has_Atomic_Components (Array_Type)
8457 or else (Is_Entity_Name (Prefix (N))
8458 and then Has_Atomic_Components
8459 (Entity (Prefix (N)))))
8460 and then not Is_Atomic (Component_Type (Array_Type))
8461 then
8462 Error_Msg_N
8463 ("??access to non-atomic component of atomic array", Prefix (N));
8464 Error_Msg_N
8465 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8466 end if;
8467 end Resolve_Indexed_Component;
8469 -----------------------------
8470 -- Resolve_Integer_Literal --
8471 -----------------------------
8473 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8474 begin
8475 Set_Etype (N, Typ);
8476 Eval_Integer_Literal (N);
8477 end Resolve_Integer_Literal;
8479 --------------------------------
8480 -- Resolve_Intrinsic_Operator --
8481 --------------------------------
8483 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8484 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8485 Op : Entity_Id;
8486 Arg1 : Node_Id;
8487 Arg2 : Node_Id;
8489 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8490 -- If the operand is a literal, it cannot be the expression in a
8491 -- conversion. Use a qualified expression instead.
8493 ---------------------
8494 -- Convert_Operand --
8495 ---------------------
8497 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8498 Loc : constant Source_Ptr := Sloc (Opnd);
8499 Res : Node_Id;
8501 begin
8502 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8503 Res :=
8504 Make_Qualified_Expression (Loc,
8505 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8506 Expression => Relocate_Node (Opnd));
8507 Analyze (Res);
8509 else
8510 Res := Unchecked_Convert_To (Btyp, Opnd);
8511 end if;
8513 return Res;
8514 end Convert_Operand;
8516 -- Start of processing for Resolve_Intrinsic_Operator
8518 begin
8519 -- We must preserve the original entity in a generic setting, so that
8520 -- the legality of the operation can be verified in an instance.
8522 if not Expander_Active then
8523 return;
8524 end if;
8526 Op := Entity (N);
8527 while Scope (Op) /= Standard_Standard loop
8528 Op := Homonym (Op);
8529 pragma Assert (Present (Op));
8530 end loop;
8532 Set_Entity (N, Op);
8533 Set_Is_Overloaded (N, False);
8535 -- If the result or operand types are private, rewrite with unchecked
8536 -- conversions on the operands and the result, to expose the proper
8537 -- underlying numeric type.
8539 if Is_Private_Type (Typ)
8540 or else Is_Private_Type (Etype (Left_Opnd (N)))
8541 or else Is_Private_Type (Etype (Right_Opnd (N)))
8542 then
8543 Arg1 := Convert_Operand (Left_Opnd (N));
8545 if Nkind (N) = N_Op_Expon then
8546 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8547 else
8548 Arg2 := Convert_Operand (Right_Opnd (N));
8549 end if;
8551 if Nkind (Arg1) = N_Type_Conversion then
8552 Save_Interps (Left_Opnd (N), Expression (Arg1));
8553 end if;
8555 if Nkind (Arg2) = N_Type_Conversion then
8556 Save_Interps (Right_Opnd (N), Expression (Arg2));
8557 end if;
8559 Set_Left_Opnd (N, Arg1);
8560 Set_Right_Opnd (N, Arg2);
8562 Set_Etype (N, Btyp);
8563 Rewrite (N, Unchecked_Convert_To (Typ, N));
8564 Resolve (N, Typ);
8566 elsif Typ /= Etype (Left_Opnd (N))
8567 or else Typ /= Etype (Right_Opnd (N))
8568 then
8569 -- Add explicit conversion where needed, and save interpretations in
8570 -- case operands are overloaded.
8572 Arg1 := Convert_To (Typ, Left_Opnd (N));
8573 Arg2 := Convert_To (Typ, Right_Opnd (N));
8575 if Nkind (Arg1) = N_Type_Conversion then
8576 Save_Interps (Left_Opnd (N), Expression (Arg1));
8577 else
8578 Save_Interps (Left_Opnd (N), Arg1);
8579 end if;
8581 if Nkind (Arg2) = N_Type_Conversion then
8582 Save_Interps (Right_Opnd (N), Expression (Arg2));
8583 else
8584 Save_Interps (Right_Opnd (N), Arg2);
8585 end if;
8587 Rewrite (Left_Opnd (N), Arg1);
8588 Rewrite (Right_Opnd (N), Arg2);
8589 Analyze (Arg1);
8590 Analyze (Arg2);
8591 Resolve_Arithmetic_Op (N, Typ);
8593 else
8594 Resolve_Arithmetic_Op (N, Typ);
8595 end if;
8596 end Resolve_Intrinsic_Operator;
8598 --------------------------------------
8599 -- Resolve_Intrinsic_Unary_Operator --
8600 --------------------------------------
8602 procedure Resolve_Intrinsic_Unary_Operator
8603 (N : Node_Id;
8604 Typ : Entity_Id)
8606 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8607 Op : Entity_Id;
8608 Arg2 : Node_Id;
8610 begin
8611 Op := Entity (N);
8612 while Scope (Op) /= Standard_Standard loop
8613 Op := Homonym (Op);
8614 pragma Assert (Present (Op));
8615 end loop;
8617 Set_Entity (N, Op);
8619 if Is_Private_Type (Typ) then
8620 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8621 Save_Interps (Right_Opnd (N), Expression (Arg2));
8623 Set_Right_Opnd (N, Arg2);
8625 Set_Etype (N, Btyp);
8626 Rewrite (N, Unchecked_Convert_To (Typ, N));
8627 Resolve (N, Typ);
8629 else
8630 Resolve_Unary_Op (N, Typ);
8631 end if;
8632 end Resolve_Intrinsic_Unary_Operator;
8634 ------------------------
8635 -- Resolve_Logical_Op --
8636 ------------------------
8638 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8639 B_Typ : Entity_Id;
8641 begin
8642 Check_No_Direct_Boolean_Operators (N);
8644 -- Predefined operations on scalar types yield the base type. On the
8645 -- other hand, logical operations on arrays yield the type of the
8646 -- arguments (and the context).
8648 if Is_Array_Type (Typ) then
8649 B_Typ := Typ;
8650 else
8651 B_Typ := Base_Type (Typ);
8652 end if;
8654 -- The following test is required because the operands of the operation
8655 -- may be literals, in which case the resulting type appears to be
8656 -- compatible with a signed integer type, when in fact it is compatible
8657 -- only with modular types. If the context itself is universal, the
8658 -- operation is illegal.
8660 if not Valid_Boolean_Arg (Typ) then
8661 Error_Msg_N ("invalid context for logical operation", N);
8662 Set_Etype (N, Any_Type);
8663 return;
8665 elsif Typ = Any_Modular then
8666 Error_Msg_N
8667 ("no modular type available in this context", N);
8668 Set_Etype (N, Any_Type);
8669 return;
8671 elsif Is_Modular_Integer_Type (Typ)
8672 and then Etype (Left_Opnd (N)) = Universal_Integer
8673 and then Etype (Right_Opnd (N)) = Universal_Integer
8674 then
8675 Check_For_Visible_Operator (N, B_Typ);
8676 end if;
8678 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8679 -- is active and the result type is standard Boolean (do not mess with
8680 -- ops that return a nonstandard Boolean type, because something strange
8681 -- is going on).
8683 -- Note: you might expect this replacement to be done during expansion,
8684 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8685 -- is used, no part of the right operand of an "and" or "or" operator
8686 -- should be executed if the left operand would short-circuit the
8687 -- evaluation of the corresponding "and then" or "or else". If we left
8688 -- the replacement to expansion time, then run-time checks associated
8689 -- with such operands would be evaluated unconditionally, due to being
8690 -- before the condition prior to the rewriting as short-circuit forms
8691 -- during expansion.
8693 if Short_Circuit_And_Or
8694 and then B_Typ = Standard_Boolean
8695 and then Nkind_In (N, N_Op_And, N_Op_Or)
8696 then
8697 -- Mark the corresponding putative SCO operator as truly a logical
8698 -- (and short-circuit) operator.
8700 if Generate_SCO and then Comes_From_Source (N) then
8701 Set_SCO_Logical_Operator (N);
8702 end if;
8704 if Nkind (N) = N_Op_And then
8705 Rewrite (N,
8706 Make_And_Then (Sloc (N),
8707 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8708 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8709 Analyze_And_Resolve (N, B_Typ);
8711 -- Case of OR changed to OR ELSE
8713 else
8714 Rewrite (N,
8715 Make_Or_Else (Sloc (N),
8716 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8717 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8718 Analyze_And_Resolve (N, B_Typ);
8719 end if;
8721 -- Return now, since analysis of the rewritten ops will take care of
8722 -- other reference bookkeeping and expression folding.
8724 return;
8725 end if;
8727 Resolve (Left_Opnd (N), B_Typ);
8728 Resolve (Right_Opnd (N), B_Typ);
8730 Check_Unset_Reference (Left_Opnd (N));
8731 Check_Unset_Reference (Right_Opnd (N));
8733 Set_Etype (N, B_Typ);
8734 Generate_Operator_Reference (N, B_Typ);
8735 Eval_Logical_Op (N);
8737 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8738 -- only when both operands have same static lower and higher bounds. Of
8739 -- course the types have to match, so only check if operands are
8740 -- compatible and the node itself has no errors.
8742 if Is_Array_Type (B_Typ)
8743 and then Nkind (N) in N_Binary_Op
8744 then
8745 declare
8746 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8747 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8749 begin
8750 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8751 -- operation if not needed.
8753 if Restriction_Check_Required (SPARK_05)
8754 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8755 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8756 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8757 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8758 then
8759 Check_SPARK_05_Restriction
8760 ("array types should have matching static bounds", N);
8761 end if;
8762 end;
8763 end if;
8764 end Resolve_Logical_Op;
8766 ---------------------------
8767 -- Resolve_Membership_Op --
8768 ---------------------------
8770 -- The context can only be a boolean type, and does not determine the
8771 -- arguments. Arguments should be unambiguous, but the preference rule for
8772 -- universal types applies.
8774 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8775 pragma Warnings (Off, Typ);
8777 L : constant Node_Id := Left_Opnd (N);
8778 R : constant Node_Id := Right_Opnd (N);
8779 T : Entity_Id;
8781 procedure Resolve_Set_Membership;
8782 -- Analysis has determined a unique type for the left operand. Use it to
8783 -- resolve the disjuncts.
8785 ----------------------------
8786 -- Resolve_Set_Membership --
8787 ----------------------------
8789 procedure Resolve_Set_Membership is
8790 Alt : Node_Id;
8791 Ltyp : Entity_Id;
8793 begin
8794 -- If the left operand is overloaded, find type compatible with not
8795 -- overloaded alternative of the right operand.
8797 if Is_Overloaded (L) then
8798 Ltyp := Empty;
8799 Alt := First (Alternatives (N));
8800 while Present (Alt) loop
8801 if not Is_Overloaded (Alt) then
8802 Ltyp := Intersect_Types (L, Alt);
8803 exit;
8804 else
8805 Next (Alt);
8806 end if;
8807 end loop;
8809 -- Unclear how to resolve expression if all alternatives are also
8810 -- overloaded.
8812 if No (Ltyp) then
8813 Error_Msg_N ("ambiguous expression", N);
8814 end if;
8816 else
8817 Ltyp := Etype (L);
8818 end if;
8820 Resolve (L, Ltyp);
8822 Alt := First (Alternatives (N));
8823 while Present (Alt) loop
8825 -- Alternative is an expression, a range
8826 -- or a subtype mark.
8828 if not Is_Entity_Name (Alt)
8829 or else not Is_Type (Entity (Alt))
8830 then
8831 Resolve (Alt, Ltyp);
8832 end if;
8834 Next (Alt);
8835 end loop;
8837 -- Check for duplicates for discrete case
8839 if Is_Discrete_Type (Ltyp) then
8840 declare
8841 type Ent is record
8842 Alt : Node_Id;
8843 Val : Uint;
8844 end record;
8846 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8847 Nalts : Nat;
8849 begin
8850 -- Loop checking duplicates. This is quadratic, but giant sets
8851 -- are unlikely in this context so it's a reasonable choice.
8853 Nalts := 0;
8854 Alt := First (Alternatives (N));
8855 while Present (Alt) loop
8856 if Is_OK_Static_Expression (Alt)
8857 and then (Nkind_In (Alt, N_Integer_Literal,
8858 N_Character_Literal)
8859 or else Nkind (Alt) in N_Has_Entity)
8860 then
8861 Nalts := Nalts + 1;
8862 Alts (Nalts) := (Alt, Expr_Value (Alt));
8864 for J in 1 .. Nalts - 1 loop
8865 if Alts (J).Val = Alts (Nalts).Val then
8866 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8867 Error_Msg_N ("duplicate of value given#??", Alt);
8868 end if;
8869 end loop;
8870 end if;
8872 Alt := Next (Alt);
8873 end loop;
8874 end;
8875 end if;
8876 end Resolve_Set_Membership;
8878 -- Start of processing for Resolve_Membership_Op
8880 begin
8881 if L = Error or else R = Error then
8882 return;
8883 end if;
8885 if Present (Alternatives (N)) then
8886 Resolve_Set_Membership;
8887 goto SM_Exit;
8889 elsif not Is_Overloaded (R)
8890 and then
8891 (Etype (R) = Universal_Integer
8892 or else
8893 Etype (R) = Universal_Real)
8894 and then Is_Overloaded (L)
8895 then
8896 T := Etype (R);
8898 -- Ada 2005 (AI-251): Support the following case:
8900 -- type I is interface;
8901 -- type T is tagged ...
8903 -- function Test (O : I'Class) is
8904 -- begin
8905 -- return O in T'Class.
8906 -- end Test;
8908 -- In this case we have nothing else to do. The membership test will be
8909 -- done at run time.
8911 elsif Ada_Version >= Ada_2005
8912 and then Is_Class_Wide_Type (Etype (L))
8913 and then Is_Interface (Etype (L))
8914 and then Is_Class_Wide_Type (Etype (R))
8915 and then not Is_Interface (Etype (R))
8916 then
8917 return;
8918 else
8919 T := Intersect_Types (L, R);
8920 end if;
8922 -- If mixed-mode operations are present and operands are all literal,
8923 -- the only interpretation involves Duration, which is probably not
8924 -- the intention of the programmer.
8926 if T = Any_Fixed then
8927 T := Unique_Fixed_Point_Type (N);
8929 if T = Any_Type then
8930 return;
8931 end if;
8932 end if;
8934 Resolve (L, T);
8935 Check_Unset_Reference (L);
8937 if Nkind (R) = N_Range
8938 and then not Is_Scalar_Type (T)
8939 then
8940 Error_Msg_N ("scalar type required for range", R);
8941 end if;
8943 if Is_Entity_Name (R) then
8944 Freeze_Expression (R);
8945 else
8946 Resolve (R, T);
8947 Check_Unset_Reference (R);
8948 end if;
8950 -- Here after resolving membership operation
8952 <<SM_Exit>>
8954 Eval_Membership_Op (N);
8955 end Resolve_Membership_Op;
8957 ------------------
8958 -- Resolve_Null --
8959 ------------------
8961 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8962 Loc : constant Source_Ptr := Sloc (N);
8964 begin
8965 -- Handle restriction against anonymous null access values This
8966 -- restriction can be turned off using -gnatdj.
8968 -- Ada 2005 (AI-231): Remove restriction
8970 if Ada_Version < Ada_2005
8971 and then not Debug_Flag_J
8972 and then Ekind (Typ) = E_Anonymous_Access_Type
8973 and then Comes_From_Source (N)
8974 then
8975 -- In the common case of a call which uses an explicitly null value
8976 -- for an access parameter, give specialized error message.
8978 if Nkind (Parent (N)) in N_Subprogram_Call then
8979 Error_Msg_N
8980 ("null is not allowed as argument for an access parameter", N);
8982 -- Standard message for all other cases (are there any?)
8984 else
8985 Error_Msg_N
8986 ("null cannot be of an anonymous access type", N);
8987 end if;
8988 end if;
8990 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8991 -- assignment to a null-excluding object
8993 if Ada_Version >= Ada_2005
8994 and then Can_Never_Be_Null (Typ)
8995 and then Nkind (Parent (N)) = N_Assignment_Statement
8996 then
8997 if not Inside_Init_Proc then
8998 Insert_Action
8999 (Compile_Time_Constraint_Error (N,
9000 "(Ada 2005) null not allowed in null-excluding objects??"),
9001 Make_Raise_Constraint_Error (Loc,
9002 Reason => CE_Access_Check_Failed));
9003 else
9004 Insert_Action (N,
9005 Make_Raise_Constraint_Error (Loc,
9006 Reason => CE_Access_Check_Failed));
9007 end if;
9008 end if;
9010 -- In a distributed context, null for a remote access to subprogram may
9011 -- need to be replaced with a special record aggregate. In this case,
9012 -- return after having done the transformation.
9014 if (Ekind (Typ) = E_Record_Type
9015 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9016 and then Remote_AST_Null_Value (N, Typ)
9017 then
9018 return;
9019 end if;
9021 -- The null literal takes its type from the context
9023 Set_Etype (N, Typ);
9024 end Resolve_Null;
9026 -----------------------
9027 -- Resolve_Op_Concat --
9028 -----------------------
9030 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9032 -- We wish to avoid deep recursion, because concatenations are often
9033 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9034 -- operands nonrecursively until we find something that is not a simple
9035 -- concatenation (A in this case). We resolve that, and then walk back
9036 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9037 -- to do the rest of the work at each level. The Parent pointers allow
9038 -- us to avoid recursion, and thus avoid running out of memory. See also
9039 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9041 NN : Node_Id := N;
9042 Op1 : Node_Id;
9044 begin
9045 -- The following code is equivalent to:
9047 -- Resolve_Op_Concat_First (NN, Typ);
9048 -- Resolve_Op_Concat_Arg (N, ...);
9049 -- Resolve_Op_Concat_Rest (N, Typ);
9051 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9052 -- operand is a concatenation.
9054 -- Walk down left operands
9056 loop
9057 Resolve_Op_Concat_First (NN, Typ);
9058 Op1 := Left_Opnd (NN);
9059 exit when not (Nkind (Op1) = N_Op_Concat
9060 and then not Is_Array_Type (Component_Type (Typ))
9061 and then Entity (Op1) = Entity (NN));
9062 NN := Op1;
9063 end loop;
9065 -- Now (given the above example) NN is A&B and Op1 is A
9067 -- First resolve Op1 ...
9069 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9071 -- ... then walk NN back up until we reach N (where we started), calling
9072 -- Resolve_Op_Concat_Rest along the way.
9074 loop
9075 Resolve_Op_Concat_Rest (NN, Typ);
9076 exit when NN = N;
9077 NN := Parent (NN);
9078 end loop;
9080 if Base_Type (Etype (N)) /= Standard_String then
9081 Check_SPARK_05_Restriction
9082 ("result of concatenation should have type String", N);
9083 end if;
9084 end Resolve_Op_Concat;
9086 ---------------------------
9087 -- Resolve_Op_Concat_Arg --
9088 ---------------------------
9090 procedure Resolve_Op_Concat_Arg
9091 (N : Node_Id;
9092 Arg : Node_Id;
9093 Typ : Entity_Id;
9094 Is_Comp : Boolean)
9096 Btyp : constant Entity_Id := Base_Type (Typ);
9097 Ctyp : constant Entity_Id := Component_Type (Typ);
9099 begin
9100 if In_Instance then
9101 if Is_Comp
9102 or else (not Is_Overloaded (Arg)
9103 and then Etype (Arg) /= Any_Composite
9104 and then Covers (Ctyp, Etype (Arg)))
9105 then
9106 Resolve (Arg, Ctyp);
9107 else
9108 Resolve (Arg, Btyp);
9109 end if;
9111 -- If both Array & Array and Array & Component are visible, there is a
9112 -- potential ambiguity that must be reported.
9114 elsif Has_Compatible_Type (Arg, Ctyp) then
9115 if Nkind (Arg) = N_Aggregate
9116 and then Is_Composite_Type (Ctyp)
9117 then
9118 if Is_Private_Type (Ctyp) then
9119 Resolve (Arg, Btyp);
9121 -- If the operation is user-defined and not overloaded use its
9122 -- profile. The operation may be a renaming, in which case it has
9123 -- been rewritten, and we want the original profile.
9125 elsif not Is_Overloaded (N)
9126 and then Comes_From_Source (Entity (Original_Node (N)))
9127 and then Ekind (Entity (Original_Node (N))) = E_Function
9128 then
9129 Resolve (Arg,
9130 Etype
9131 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9132 return;
9134 -- Otherwise an aggregate may match both the array type and the
9135 -- component type.
9137 else
9138 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9139 Set_Etype (Arg, Any_Type);
9140 end if;
9142 else
9143 if Is_Overloaded (Arg)
9144 and then Has_Compatible_Type (Arg, Typ)
9145 and then Etype (Arg) /= Any_Type
9146 then
9147 declare
9148 I : Interp_Index;
9149 It : Interp;
9150 Func : Entity_Id;
9152 begin
9153 Get_First_Interp (Arg, I, It);
9154 Func := It.Nam;
9155 Get_Next_Interp (I, It);
9157 -- Special-case the error message when the overloading is
9158 -- caused by a function that yields an array and can be
9159 -- called without parameters.
9161 if It.Nam = Func then
9162 Error_Msg_Sloc := Sloc (Func);
9163 Error_Msg_N ("ambiguous call to function#", Arg);
9164 Error_Msg_NE
9165 ("\\interpretation as call yields&", Arg, Typ);
9166 Error_Msg_NE
9167 ("\\interpretation as indexing of call yields&",
9168 Arg, Component_Type (Typ));
9170 else
9171 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9173 Get_First_Interp (Arg, I, It);
9174 while Present (It.Nam) loop
9175 Error_Msg_Sloc := Sloc (It.Nam);
9177 if Base_Type (It.Typ) = Btyp
9178 or else
9179 Base_Type (It.Typ) = Base_Type (Ctyp)
9180 then
9181 Error_Msg_N -- CODEFIX
9182 ("\\possible interpretation#", Arg);
9183 end if;
9185 Get_Next_Interp (I, It);
9186 end loop;
9187 end if;
9188 end;
9189 end if;
9191 Resolve (Arg, Component_Type (Typ));
9193 if Nkind (Arg) = N_String_Literal then
9194 Set_Etype (Arg, Component_Type (Typ));
9195 end if;
9197 if Arg = Left_Opnd (N) then
9198 Set_Is_Component_Left_Opnd (N);
9199 else
9200 Set_Is_Component_Right_Opnd (N);
9201 end if;
9202 end if;
9204 else
9205 Resolve (Arg, Btyp);
9206 end if;
9208 -- Concatenation is restricted in SPARK: each operand must be either a
9209 -- string literal, the name of a string constant, a static character or
9210 -- string expression, or another concatenation. Arg cannot be a
9211 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9212 -- separately on each final operand, past concatenation operations.
9214 if Is_Character_Type (Etype (Arg)) then
9215 if not Is_OK_Static_Expression (Arg) then
9216 Check_SPARK_05_Restriction
9217 ("character operand for concatenation should be static", Arg);
9218 end if;
9220 elsif Is_String_Type (Etype (Arg)) then
9221 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9222 and then Is_Constant_Object (Entity (Arg)))
9223 and then not Is_OK_Static_Expression (Arg)
9224 then
9225 Check_SPARK_05_Restriction
9226 ("string operand for concatenation should be static", Arg);
9227 end if;
9229 -- Do not issue error on an operand that is neither a character nor a
9230 -- string, as the error is issued in Resolve_Op_Concat.
9232 else
9233 null;
9234 end if;
9236 Check_Unset_Reference (Arg);
9237 end Resolve_Op_Concat_Arg;
9239 -----------------------------
9240 -- Resolve_Op_Concat_First --
9241 -----------------------------
9243 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9244 Btyp : constant Entity_Id := Base_Type (Typ);
9245 Op1 : constant Node_Id := Left_Opnd (N);
9246 Op2 : constant Node_Id := Right_Opnd (N);
9248 begin
9249 -- The parser folds an enormous sequence of concatenations of string
9250 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9251 -- in the right operand. If the expression resolves to a predefined "&"
9252 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9253 -- we give an error. See P_Simple_Expression in Par.Ch4.
9255 if Nkind (Op2) = N_String_Literal
9256 and then Is_Folded_In_Parser (Op2)
9257 and then Ekind (Entity (N)) = E_Function
9258 then
9259 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9260 and then String_Length (Strval (Op1)) = 0);
9261 Error_Msg_N ("too many user-defined concatenations", N);
9262 return;
9263 end if;
9265 Set_Etype (N, Btyp);
9267 if Is_Limited_Composite (Btyp) then
9268 Error_Msg_N ("concatenation not available for limited array", N);
9269 Explain_Limited_Type (Btyp, N);
9270 end if;
9271 end Resolve_Op_Concat_First;
9273 ----------------------------
9274 -- Resolve_Op_Concat_Rest --
9275 ----------------------------
9277 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9278 Op1 : constant Node_Id := Left_Opnd (N);
9279 Op2 : constant Node_Id := Right_Opnd (N);
9281 begin
9282 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9284 Generate_Operator_Reference (N, Typ);
9286 if Is_String_Type (Typ) then
9287 Eval_Concatenation (N);
9288 end if;
9290 -- If this is not a static concatenation, but the result is a string
9291 -- type (and not an array of strings) ensure that static string operands
9292 -- have their subtypes properly constructed.
9294 if Nkind (N) /= N_String_Literal
9295 and then Is_Character_Type (Component_Type (Typ))
9296 then
9297 Set_String_Literal_Subtype (Op1, Typ);
9298 Set_String_Literal_Subtype (Op2, Typ);
9299 end if;
9300 end Resolve_Op_Concat_Rest;
9302 ----------------------
9303 -- Resolve_Op_Expon --
9304 ----------------------
9306 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9307 B_Typ : constant Entity_Id := Base_Type (Typ);
9309 begin
9310 -- Catch attempts to do fixed-point exponentiation with universal
9311 -- operands, which is a case where the illegality is not caught during
9312 -- normal operator analysis. This is not done in preanalysis mode
9313 -- since the tree is not fully decorated during preanalysis.
9315 if Full_Analysis then
9316 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9317 Error_Msg_N ("exponentiation not available for fixed point", N);
9318 return;
9320 elsif Nkind (Parent (N)) in N_Op
9321 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9322 and then Etype (N) = Universal_Real
9323 and then Comes_From_Source (N)
9324 then
9325 Error_Msg_N ("exponentiation not available for fixed point", N);
9326 return;
9327 end if;
9328 end if;
9330 if Comes_From_Source (N)
9331 and then Ekind (Entity (N)) = E_Function
9332 and then Is_Imported (Entity (N))
9333 and then Is_Intrinsic_Subprogram (Entity (N))
9334 then
9335 Resolve_Intrinsic_Operator (N, Typ);
9336 return;
9337 end if;
9339 if Etype (Left_Opnd (N)) = Universal_Integer
9340 or else Etype (Left_Opnd (N)) = Universal_Real
9341 then
9342 Check_For_Visible_Operator (N, B_Typ);
9343 end if;
9345 -- We do the resolution using the base type, because intermediate values
9346 -- in expressions are always of the base type, not a subtype of it.
9348 Resolve (Left_Opnd (N), B_Typ);
9349 Resolve (Right_Opnd (N), Standard_Integer);
9351 -- For integer types, right argument must be in Natural range
9353 if Is_Integer_Type (Typ) then
9354 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9355 end if;
9357 Check_Unset_Reference (Left_Opnd (N));
9358 Check_Unset_Reference (Right_Opnd (N));
9360 Set_Etype (N, B_Typ);
9361 Generate_Operator_Reference (N, B_Typ);
9363 Analyze_Dimension (N);
9365 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9366 -- Evaluate the exponentiation operator for dimensioned type
9368 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9369 else
9370 Eval_Op_Expon (N);
9371 end if;
9373 -- Set overflow checking bit. Much cleverer code needed here eventually
9374 -- and perhaps the Resolve routines should be separated for the various
9375 -- arithmetic operations, since they will need different processing. ???
9377 if Nkind (N) in N_Op then
9378 if not Overflow_Checks_Suppressed (Etype (N)) then
9379 Enable_Overflow_Check (N);
9380 end if;
9381 end if;
9382 end Resolve_Op_Expon;
9384 --------------------
9385 -- Resolve_Op_Not --
9386 --------------------
9388 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9389 B_Typ : Entity_Id;
9391 function Parent_Is_Boolean return Boolean;
9392 -- This function determines if the parent node is a boolean operator or
9393 -- operation (comparison op, membership test, or short circuit form) and
9394 -- the not in question is the left operand of this operation. Note that
9395 -- if the not is in parens, then false is returned.
9397 -----------------------
9398 -- Parent_Is_Boolean --
9399 -----------------------
9401 function Parent_Is_Boolean return Boolean is
9402 begin
9403 if Paren_Count (N) /= 0 then
9404 return False;
9406 else
9407 case Nkind (Parent (N)) is
9408 when N_And_Then
9409 | N_In
9410 | N_Not_In
9411 | N_Op_And
9412 | N_Op_Eq
9413 | N_Op_Ge
9414 | N_Op_Gt
9415 | N_Op_Le
9416 | N_Op_Lt
9417 | N_Op_Ne
9418 | N_Op_Or
9419 | N_Op_Xor
9420 | N_Or_Else
9422 return Left_Opnd (Parent (N)) = N;
9424 when others =>
9425 return False;
9426 end case;
9427 end if;
9428 end Parent_Is_Boolean;
9430 -- Start of processing for Resolve_Op_Not
9432 begin
9433 -- Predefined operations on scalar types yield the base type. On the
9434 -- other hand, logical operations on arrays yield the type of the
9435 -- arguments (and the context).
9437 if Is_Array_Type (Typ) then
9438 B_Typ := Typ;
9439 else
9440 B_Typ := Base_Type (Typ);
9441 end if;
9443 -- Straightforward case of incorrect arguments
9445 if not Valid_Boolean_Arg (Typ) then
9446 Error_Msg_N ("invalid operand type for operator&", N);
9447 Set_Etype (N, Any_Type);
9448 return;
9450 -- Special case of probable missing parens
9452 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9453 if Parent_Is_Boolean then
9454 Error_Msg_N
9455 ("operand of not must be enclosed in parentheses",
9456 Right_Opnd (N));
9457 else
9458 Error_Msg_N
9459 ("no modular type available in this context", N);
9460 end if;
9462 Set_Etype (N, Any_Type);
9463 return;
9465 -- OK resolution of NOT
9467 else
9468 -- Warn if non-boolean types involved. This is a case like not a < b
9469 -- where a and b are modular, where we will get (not a) < b and most
9470 -- likely not (a < b) was intended.
9472 if Warn_On_Questionable_Missing_Parens
9473 and then not Is_Boolean_Type (Typ)
9474 and then Parent_Is_Boolean
9475 then
9476 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9477 end if;
9479 -- Warn on double negation if checking redundant constructs
9481 if Warn_On_Redundant_Constructs
9482 and then Comes_From_Source (N)
9483 and then Comes_From_Source (Right_Opnd (N))
9484 and then Root_Type (Typ) = Standard_Boolean
9485 and then Nkind (Right_Opnd (N)) = N_Op_Not
9486 then
9487 Error_Msg_N ("redundant double negation?r?", N);
9488 end if;
9490 -- Complete resolution and evaluation of NOT
9492 Resolve (Right_Opnd (N), B_Typ);
9493 Check_Unset_Reference (Right_Opnd (N));
9494 Set_Etype (N, B_Typ);
9495 Generate_Operator_Reference (N, B_Typ);
9496 Eval_Op_Not (N);
9497 end if;
9498 end Resolve_Op_Not;
9500 -----------------------------
9501 -- Resolve_Operator_Symbol --
9502 -----------------------------
9504 -- Nothing to be done, all resolved already
9506 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9507 pragma Warnings (Off, N);
9508 pragma Warnings (Off, Typ);
9510 begin
9511 null;
9512 end Resolve_Operator_Symbol;
9514 ----------------------------------
9515 -- Resolve_Qualified_Expression --
9516 ----------------------------------
9518 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9519 pragma Warnings (Off, Typ);
9521 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9522 Expr : constant Node_Id := Expression (N);
9524 begin
9525 Resolve (Expr, Target_Typ);
9527 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9528 -- operation if not needed.
9530 if Restriction_Check_Required (SPARK_05)
9531 and then Is_Array_Type (Target_Typ)
9532 and then Is_Array_Type (Etype (Expr))
9533 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9534 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9535 then
9536 Check_SPARK_05_Restriction
9537 ("array types should have matching static bounds", N);
9538 end if;
9540 -- A qualified expression requires an exact match of the type, class-
9541 -- wide matching is not allowed. However, if the qualifying type is
9542 -- specific and the expression has a class-wide type, it may still be
9543 -- okay, since it can be the result of the expansion of a call to a
9544 -- dispatching function, so we also have to check class-wideness of the
9545 -- type of the expression's original node.
9547 if (Is_Class_Wide_Type (Target_Typ)
9548 or else
9549 (Is_Class_Wide_Type (Etype (Expr))
9550 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9551 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9552 then
9553 Wrong_Type (Expr, Target_Typ);
9554 end if;
9556 -- If the target type is unconstrained, then we reset the type of the
9557 -- result from the type of the expression. For other cases, the actual
9558 -- subtype of the expression is the target type.
9560 if Is_Composite_Type (Target_Typ)
9561 and then not Is_Constrained (Target_Typ)
9562 then
9563 Set_Etype (N, Etype (Expr));
9564 end if;
9566 Analyze_Dimension (N);
9567 Eval_Qualified_Expression (N);
9569 -- If we still have a qualified expression after the static evaluation,
9570 -- then apply a scalar range check if needed. The reason that we do this
9571 -- after the Eval call is that otherwise, the application of the range
9572 -- check may convert an illegal static expression and result in warning
9573 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9575 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9576 Apply_Scalar_Range_Check (Expr, Typ);
9577 end if;
9579 -- Finally, check whether a predicate applies to the target type. This
9580 -- comes from AI12-0100. As for type conversions, check the enclosing
9581 -- context to prevent an infinite expansion.
9583 if Has_Predicates (Target_Typ) then
9584 if Nkind (Parent (N)) = N_Function_Call
9585 and then Present (Name (Parent (N)))
9586 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9587 or else
9588 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9589 then
9590 null;
9592 -- In the case of a qualified expression in an allocator, the check
9593 -- is applied when expanding the allocator, so avoid redundant check.
9595 elsif Nkind (N) = N_Qualified_Expression
9596 and then Nkind (Parent (N)) /= N_Allocator
9597 then
9598 Apply_Predicate_Check (N, Target_Typ);
9599 end if;
9600 end if;
9601 end Resolve_Qualified_Expression;
9603 ------------------------------
9604 -- Resolve_Raise_Expression --
9605 ------------------------------
9607 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9608 begin
9609 if Typ = Raise_Type then
9610 Error_Msg_N ("cannot find unique type for raise expression", N);
9611 Set_Etype (N, Any_Type);
9612 else
9613 Set_Etype (N, Typ);
9614 end if;
9615 end Resolve_Raise_Expression;
9617 -------------------
9618 -- Resolve_Range --
9619 -------------------
9621 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9622 L : constant Node_Id := Low_Bound (N);
9623 H : constant Node_Id := High_Bound (N);
9625 function First_Last_Ref return Boolean;
9626 -- Returns True if N is of the form X'First .. X'Last where X is the
9627 -- same entity for both attributes.
9629 --------------------
9630 -- First_Last_Ref --
9631 --------------------
9633 function First_Last_Ref return Boolean is
9634 Lorig : constant Node_Id := Original_Node (L);
9635 Horig : constant Node_Id := Original_Node (H);
9637 begin
9638 if Nkind (Lorig) = N_Attribute_Reference
9639 and then Nkind (Horig) = N_Attribute_Reference
9640 and then Attribute_Name (Lorig) = Name_First
9641 and then Attribute_Name (Horig) = Name_Last
9642 then
9643 declare
9644 PL : constant Node_Id := Prefix (Lorig);
9645 PH : constant Node_Id := Prefix (Horig);
9646 begin
9647 if Is_Entity_Name (PL)
9648 and then Is_Entity_Name (PH)
9649 and then Entity (PL) = Entity (PH)
9650 then
9651 return True;
9652 end if;
9653 end;
9654 end if;
9656 return False;
9657 end First_Last_Ref;
9659 -- Start of processing for Resolve_Range
9661 begin
9662 Set_Etype (N, Typ);
9664 -- The lower bound should be in Typ. The higher bound can be in Typ's
9665 -- base type if the range is null. It may still be invalid if it is
9666 -- higher than the lower bound. This is checked later in the context in
9667 -- which the range appears.
9669 Resolve (L, Typ);
9670 Resolve (H, Base_Type (Typ));
9672 -- Check for inappropriate range on unordered enumeration type
9674 if Bad_Unordered_Enumeration_Reference (N, Typ)
9676 -- Exclude X'First .. X'Last if X is the same entity for both
9678 and then not First_Last_Ref
9679 then
9680 Error_Msg_Sloc := Sloc (Typ);
9681 Error_Msg_NE
9682 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9683 end if;
9685 Check_Unset_Reference (L);
9686 Check_Unset_Reference (H);
9688 -- We have to check the bounds for being within the base range as
9689 -- required for a non-static context. Normally this is automatic and
9690 -- done as part of evaluating expressions, but the N_Range node is an
9691 -- exception, since in GNAT we consider this node to be a subexpression,
9692 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9693 -- this, but that would put the test on the main evaluation path for
9694 -- expressions.
9696 Check_Non_Static_Context (L);
9697 Check_Non_Static_Context (H);
9699 -- Check for an ambiguous range over character literals. This will
9700 -- happen with a membership test involving only literals.
9702 if Typ = Any_Character then
9703 Ambiguous_Character (L);
9704 Set_Etype (N, Any_Type);
9705 return;
9706 end if;
9708 -- If bounds are static, constant-fold them, so size computations are
9709 -- identical between front-end and back-end. Do not perform this
9710 -- transformation while analyzing generic units, as type information
9711 -- would be lost when reanalyzing the constant node in the instance.
9713 if Is_Discrete_Type (Typ) and then Expander_Active then
9714 if Is_OK_Static_Expression (L) then
9715 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9716 end if;
9718 if Is_OK_Static_Expression (H) then
9719 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9720 end if;
9721 end if;
9722 end Resolve_Range;
9724 --------------------------
9725 -- Resolve_Real_Literal --
9726 --------------------------
9728 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9729 Actual_Typ : constant Entity_Id := Etype (N);
9731 begin
9732 -- Special processing for fixed-point literals to make sure that the
9733 -- value is an exact multiple of small where this is required. We skip
9734 -- this for the universal real case, and also for generic types.
9736 if Is_Fixed_Point_Type (Typ)
9737 and then Typ /= Universal_Fixed
9738 and then Typ /= Any_Fixed
9739 and then not Is_Generic_Type (Typ)
9740 then
9741 declare
9742 Val : constant Ureal := Realval (N);
9743 Cintr : constant Ureal := Val / Small_Value (Typ);
9744 Cint : constant Uint := UR_Trunc (Cintr);
9745 Den : constant Uint := Norm_Den (Cintr);
9746 Stat : Boolean;
9748 begin
9749 -- Case of literal is not an exact multiple of the Small
9751 if Den /= 1 then
9753 -- For a source program literal for a decimal fixed-point type,
9754 -- this is statically illegal (RM 4.9(36)).
9756 if Is_Decimal_Fixed_Point_Type (Typ)
9757 and then Actual_Typ = Universal_Real
9758 and then Comes_From_Source (N)
9759 then
9760 Error_Msg_N ("value has extraneous low order digits", N);
9761 end if;
9763 -- Generate a warning if literal from source
9765 if Is_OK_Static_Expression (N)
9766 and then Warn_On_Bad_Fixed_Value
9767 then
9768 Error_Msg_N
9769 ("?b?static fixed-point value is not a multiple of Small!",
9771 end if;
9773 -- Replace literal by a value that is the exact representation
9774 -- of a value of the type, i.e. a multiple of the small value,
9775 -- by truncation, since Machine_Rounds is false for all GNAT
9776 -- fixed-point types (RM 4.9(38)).
9778 Stat := Is_OK_Static_Expression (N);
9779 Rewrite (N,
9780 Make_Real_Literal (Sloc (N),
9781 Realval => Small_Value (Typ) * Cint));
9783 Set_Is_Static_Expression (N, Stat);
9784 end if;
9786 -- In all cases, set the corresponding integer field
9788 Set_Corresponding_Integer_Value (N, Cint);
9789 end;
9790 end if;
9792 -- Now replace the actual type by the expected type as usual
9794 Set_Etype (N, Typ);
9795 Eval_Real_Literal (N);
9796 end Resolve_Real_Literal;
9798 -----------------------
9799 -- Resolve_Reference --
9800 -----------------------
9802 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9803 P : constant Node_Id := Prefix (N);
9805 begin
9806 -- Replace general access with specific type
9808 if Ekind (Etype (N)) = E_Allocator_Type then
9809 Set_Etype (N, Base_Type (Typ));
9810 end if;
9812 Resolve (P, Designated_Type (Etype (N)));
9814 -- If we are taking the reference of a volatile entity, then treat it as
9815 -- a potential modification of this entity. This is too conservative,
9816 -- but necessary because remove side effects can cause transformations
9817 -- of normal assignments into reference sequences that otherwise fail to
9818 -- notice the modification.
9820 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9821 Note_Possible_Modification (P, Sure => False);
9822 end if;
9823 end Resolve_Reference;
9825 --------------------------------
9826 -- Resolve_Selected_Component --
9827 --------------------------------
9829 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9830 Comp : Entity_Id;
9831 Comp1 : Entity_Id := Empty; -- prevent junk warning
9832 P : constant Node_Id := Prefix (N);
9833 S : constant Node_Id := Selector_Name (N);
9834 T : Entity_Id := Etype (P);
9835 I : Interp_Index;
9836 I1 : Interp_Index := 0; -- prevent junk warning
9837 It : Interp;
9838 It1 : Interp;
9839 Found : Boolean;
9841 function Init_Component return Boolean;
9842 -- Check whether this is the initialization of a component within an
9843 -- init proc (by assignment or call to another init proc). If true,
9844 -- there is no need for a discriminant check.
9846 --------------------
9847 -- Init_Component --
9848 --------------------
9850 function Init_Component return Boolean is
9851 begin
9852 return Inside_Init_Proc
9853 and then Nkind (Prefix (N)) = N_Identifier
9854 and then Chars (Prefix (N)) = Name_uInit
9855 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9856 end Init_Component;
9858 -- Start of processing for Resolve_Selected_Component
9860 begin
9861 if Is_Overloaded (P) then
9863 -- Use the context type to select the prefix that has a selector
9864 -- of the correct name and type.
9866 Found := False;
9867 Get_First_Interp (P, I, It);
9869 Search : while Present (It.Typ) loop
9870 if Is_Access_Type (It.Typ) then
9871 T := Designated_Type (It.Typ);
9872 else
9873 T := It.Typ;
9874 end if;
9876 -- Locate selected component. For a private prefix the selector
9877 -- can denote a discriminant.
9879 if Is_Record_Type (T) or else Is_Private_Type (T) then
9881 -- The visible components of a class-wide type are those of
9882 -- the root type.
9884 if Is_Class_Wide_Type (T) then
9885 T := Etype (T);
9886 end if;
9888 Comp := First_Entity (T);
9889 while Present (Comp) loop
9890 if Chars (Comp) = Chars (S)
9891 and then Covers (Typ, Etype (Comp))
9892 then
9893 if not Found then
9894 Found := True;
9895 I1 := I;
9896 It1 := It;
9897 Comp1 := Comp;
9899 else
9900 It := Disambiguate (P, I1, I, Any_Type);
9902 if It = No_Interp then
9903 Error_Msg_N
9904 ("ambiguous prefix for selected component", N);
9905 Set_Etype (N, Typ);
9906 return;
9908 else
9909 It1 := It;
9911 -- There may be an implicit dereference. Retrieve
9912 -- designated record type.
9914 if Is_Access_Type (It1.Typ) then
9915 T := Designated_Type (It1.Typ);
9916 else
9917 T := It1.Typ;
9918 end if;
9920 if Scope (Comp1) /= T then
9922 -- Resolution chooses the new interpretation.
9923 -- Find the component with the right name.
9925 Comp1 := First_Entity (T);
9926 while Present (Comp1)
9927 and then Chars (Comp1) /= Chars (S)
9928 loop
9929 Comp1 := Next_Entity (Comp1);
9930 end loop;
9931 end if;
9933 exit Search;
9934 end if;
9935 end if;
9936 end if;
9938 Comp := Next_Entity (Comp);
9939 end loop;
9940 end if;
9942 Get_Next_Interp (I, It);
9943 end loop Search;
9945 -- There must be a legal interpretation at this point
9947 pragma Assert (Found);
9948 Resolve (P, It1.Typ);
9949 Set_Etype (N, Typ);
9950 Set_Entity_With_Checks (S, Comp1);
9952 else
9953 -- Resolve prefix with its type
9955 Resolve (P, T);
9956 end if;
9958 -- Generate cross-reference. We needed to wait until full overloading
9959 -- resolution was complete to do this, since otherwise we can't tell if
9960 -- we are an lvalue or not.
9962 if May_Be_Lvalue (N) then
9963 Generate_Reference (Entity (S), S, 'm');
9964 else
9965 Generate_Reference (Entity (S), S, 'r');
9966 end if;
9968 -- If prefix is an access type, the node will be transformed into an
9969 -- explicit dereference during expansion. The type of the node is the
9970 -- designated type of that of the prefix.
9972 if Is_Access_Type (Etype (P)) then
9973 T := Designated_Type (Etype (P));
9974 Check_Fully_Declared_Prefix (T, P);
9975 else
9976 T := Etype (P);
9977 end if;
9979 -- Set flag for expander if discriminant check required on a component
9980 -- appearing within a variant.
9982 if Has_Discriminants (T)
9983 and then Ekind (Entity (S)) = E_Component
9984 and then Present (Original_Record_Component (Entity (S)))
9985 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9986 and then
9987 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
9988 and then not Discriminant_Checks_Suppressed (T)
9989 and then not Init_Component
9990 then
9991 Set_Do_Discriminant_Check (N);
9992 end if;
9994 if Ekind (Entity (S)) = E_Void then
9995 Error_Msg_N ("premature use of component", S);
9996 end if;
9998 -- If the prefix is a record conversion, this may be a renamed
9999 -- discriminant whose bounds differ from those of the original
10000 -- one, so we must ensure that a range check is performed.
10002 if Nkind (P) = N_Type_Conversion
10003 and then Ekind (Entity (S)) = E_Discriminant
10004 and then Is_Discrete_Type (Typ)
10005 then
10006 Set_Etype (N, Base_Type (Typ));
10007 end if;
10009 -- Note: No Eval processing is required, because the prefix is of a
10010 -- record type, or protected type, and neither can possibly be static.
10012 -- If the record type is atomic, and the component is non-atomic, then
10013 -- this is worth a warning, since we have a situation where the access
10014 -- to the component may cause extra read/writes of the atomic array
10015 -- object, or partial word accesses, both of which may be unexpected.
10017 if Nkind (N) = N_Selected_Component
10018 and then Is_Atomic_Ref_With_Address (N)
10019 and then not Is_Atomic (Entity (S))
10020 and then not Is_Atomic (Etype (Entity (S)))
10021 then
10022 Error_Msg_N
10023 ("??access to non-atomic component of atomic record",
10024 Prefix (N));
10025 Error_Msg_N
10026 ("\??may cause unexpected accesses to atomic object",
10027 Prefix (N));
10028 end if;
10030 Analyze_Dimension (N);
10031 end Resolve_Selected_Component;
10033 -------------------
10034 -- Resolve_Shift --
10035 -------------------
10037 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10038 B_Typ : constant Entity_Id := Base_Type (Typ);
10039 L : constant Node_Id := Left_Opnd (N);
10040 R : constant Node_Id := Right_Opnd (N);
10042 begin
10043 -- We do the resolution using the base type, because intermediate values
10044 -- in expressions always are of the base type, not a subtype of it.
10046 Resolve (L, B_Typ);
10047 Resolve (R, Standard_Natural);
10049 Check_Unset_Reference (L);
10050 Check_Unset_Reference (R);
10052 Set_Etype (N, B_Typ);
10053 Generate_Operator_Reference (N, B_Typ);
10054 Eval_Shift (N);
10055 end Resolve_Shift;
10057 ---------------------------
10058 -- Resolve_Short_Circuit --
10059 ---------------------------
10061 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10062 B_Typ : constant Entity_Id := Base_Type (Typ);
10063 L : constant Node_Id := Left_Opnd (N);
10064 R : constant Node_Id := Right_Opnd (N);
10066 begin
10067 -- Ensure all actions associated with the left operand (e.g.
10068 -- finalization of transient objects) are fully evaluated locally within
10069 -- an expression with actions. This is particularly helpful for coverage
10070 -- analysis. However this should not happen in generics or if option
10071 -- Minimize_Expression_With_Actions is set.
10073 if Expander_Active and not Minimize_Expression_With_Actions then
10074 declare
10075 Reloc_L : constant Node_Id := Relocate_Node (L);
10076 begin
10077 Save_Interps (Old_N => L, New_N => Reloc_L);
10079 Rewrite (L,
10080 Make_Expression_With_Actions (Sloc (L),
10081 Actions => New_List,
10082 Expression => Reloc_L));
10084 -- Set Comes_From_Source on L to preserve warnings for unset
10085 -- reference.
10087 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10088 end;
10089 end if;
10091 Resolve (L, B_Typ);
10092 Resolve (R, B_Typ);
10094 -- Check for issuing warning for always False assert/check, this happens
10095 -- when assertions are turned off, in which case the pragma Assert/Check
10096 -- was transformed into:
10098 -- if False and then <condition> then ...
10100 -- and we detect this pattern
10102 if Warn_On_Assertion_Failure
10103 and then Is_Entity_Name (R)
10104 and then Entity (R) = Standard_False
10105 and then Nkind (Parent (N)) = N_If_Statement
10106 and then Nkind (N) = N_And_Then
10107 and then Is_Entity_Name (L)
10108 and then Entity (L) = Standard_False
10109 then
10110 declare
10111 Orig : constant Node_Id := Original_Node (Parent (N));
10113 begin
10114 -- Special handling of Asssert pragma
10116 if Nkind (Orig) = N_Pragma
10117 and then Pragma_Name (Orig) = Name_Assert
10118 then
10119 declare
10120 Expr : constant Node_Id :=
10121 Original_Node
10122 (Expression
10123 (First (Pragma_Argument_Associations (Orig))));
10125 begin
10126 -- Don't warn if original condition is explicit False,
10127 -- since obviously the failure is expected in this case.
10129 if Is_Entity_Name (Expr)
10130 and then Entity (Expr) = Standard_False
10131 then
10132 null;
10134 -- Issue warning. We do not want the deletion of the
10135 -- IF/AND-THEN to take this message with it. We achieve this
10136 -- by making sure that the expanded code points to the Sloc
10137 -- of the expression, not the original pragma.
10139 else
10140 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10141 -- The source location of the expression is not usually
10142 -- the best choice here. For example, it gets located on
10143 -- the last AND keyword in a chain of boolean expressiond
10144 -- AND'ed together. It is best to put the message on the
10145 -- first character of the assertion, which is the effect
10146 -- of the First_Node call here.
10148 Error_Msg_F
10149 ("?A?assertion would fail at run time!",
10150 Expression
10151 (First (Pragma_Argument_Associations (Orig))));
10152 end if;
10153 end;
10155 -- Similar processing for Check pragma
10157 elsif Nkind (Orig) = N_Pragma
10158 and then Pragma_Name (Orig) = Name_Check
10159 then
10160 -- Don't want to warn if original condition is explicit False
10162 declare
10163 Expr : constant Node_Id :=
10164 Original_Node
10165 (Expression
10166 (Next (First (Pragma_Argument_Associations (Orig)))));
10167 begin
10168 if Is_Entity_Name (Expr)
10169 and then Entity (Expr) = Standard_False
10170 then
10171 null;
10173 -- Post warning
10175 else
10176 -- Again use Error_Msg_F rather than Error_Msg_N, see
10177 -- comment above for an explanation of why we do this.
10179 Error_Msg_F
10180 ("?A?check would fail at run time!",
10181 Expression
10182 (Last (Pragma_Argument_Associations (Orig))));
10183 end if;
10184 end;
10185 end if;
10186 end;
10187 end if;
10189 -- Continue with processing of short circuit
10191 Check_Unset_Reference (L);
10192 Check_Unset_Reference (R);
10194 Set_Etype (N, B_Typ);
10195 Eval_Short_Circuit (N);
10196 end Resolve_Short_Circuit;
10198 -------------------
10199 -- Resolve_Slice --
10200 -------------------
10202 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10203 Drange : constant Node_Id := Discrete_Range (N);
10204 Name : constant Node_Id := Prefix (N);
10205 Array_Type : Entity_Id := Empty;
10206 Dexpr : Node_Id := Empty;
10207 Index_Type : Entity_Id;
10209 begin
10210 if Is_Overloaded (Name) then
10212 -- Use the context type to select the prefix that yields the correct
10213 -- array type.
10215 declare
10216 I : Interp_Index;
10217 I1 : Interp_Index := 0;
10218 It : Interp;
10219 P : constant Node_Id := Prefix (N);
10220 Found : Boolean := False;
10222 begin
10223 Get_First_Interp (P, I, It);
10224 while Present (It.Typ) loop
10225 if (Is_Array_Type (It.Typ)
10226 and then Covers (Typ, It.Typ))
10227 or else (Is_Access_Type (It.Typ)
10228 and then Is_Array_Type (Designated_Type (It.Typ))
10229 and then Covers (Typ, Designated_Type (It.Typ)))
10230 then
10231 if Found then
10232 It := Disambiguate (P, I1, I, Any_Type);
10234 if It = No_Interp then
10235 Error_Msg_N ("ambiguous prefix for slicing", N);
10236 Set_Etype (N, Typ);
10237 return;
10238 else
10239 Found := True;
10240 Array_Type := It.Typ;
10241 I1 := I;
10242 end if;
10243 else
10244 Found := True;
10245 Array_Type := It.Typ;
10246 I1 := I;
10247 end if;
10248 end if;
10250 Get_Next_Interp (I, It);
10251 end loop;
10252 end;
10254 else
10255 Array_Type := Etype (Name);
10256 end if;
10258 Resolve (Name, Array_Type);
10260 if Is_Access_Type (Array_Type) then
10261 Apply_Access_Check (N);
10262 Array_Type := Designated_Type (Array_Type);
10264 -- If the prefix is an access to an unconstrained array, we must use
10265 -- the actual subtype of the object to perform the index checks. The
10266 -- object denoted by the prefix is implicit in the node, so we build
10267 -- an explicit representation for it in order to compute the actual
10268 -- subtype.
10270 if not Is_Constrained (Array_Type) then
10271 Remove_Side_Effects (Prefix (N));
10273 declare
10274 Obj : constant Node_Id :=
10275 Make_Explicit_Dereference (Sloc (N),
10276 Prefix => New_Copy_Tree (Prefix (N)));
10277 begin
10278 Set_Etype (Obj, Array_Type);
10279 Set_Parent (Obj, Parent (N));
10280 Array_Type := Get_Actual_Subtype (Obj);
10281 end;
10282 end if;
10284 elsif Is_Entity_Name (Name)
10285 or else Nkind (Name) = N_Explicit_Dereference
10286 or else (Nkind (Name) = N_Function_Call
10287 and then not Is_Constrained (Etype (Name)))
10288 then
10289 Array_Type := Get_Actual_Subtype (Name);
10291 -- If the name is a selected component that depends on discriminants,
10292 -- build an actual subtype for it. This can happen only when the name
10293 -- itself is overloaded; otherwise the actual subtype is created when
10294 -- the selected component is analyzed.
10296 elsif Nkind (Name) = N_Selected_Component
10297 and then Full_Analysis
10298 and then Depends_On_Discriminant (First_Index (Array_Type))
10299 then
10300 declare
10301 Act_Decl : constant Node_Id :=
10302 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10303 begin
10304 Insert_Action (N, Act_Decl);
10305 Array_Type := Defining_Identifier (Act_Decl);
10306 end;
10308 -- Maybe this should just be "else", instead of checking for the
10309 -- specific case of slice??? This is needed for the case where the
10310 -- prefix is an Image attribute, which gets expanded to a slice, and so
10311 -- has a constrained subtype which we want to use for the slice range
10312 -- check applied below (the range check won't get done if the
10313 -- unconstrained subtype of the 'Image is used).
10315 elsif Nkind (Name) = N_Slice then
10316 Array_Type := Etype (Name);
10317 end if;
10319 -- Obtain the type of the array index
10321 if Ekind (Array_Type) = E_String_Literal_Subtype then
10322 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10323 else
10324 Index_Type := Etype (First_Index (Array_Type));
10325 end if;
10327 -- If name was overloaded, set slice type correctly now
10329 Set_Etype (N, Array_Type);
10331 -- Handle the generation of a range check that compares the array index
10332 -- against the discrete_range. The check is not applied to internally
10333 -- built nodes associated with the expansion of dispatch tables. Check
10334 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10335 -- the unit.
10337 if Tagged_Type_Expansion
10338 and then RTU_Loaded (Ada_Tags)
10339 and then Nkind (Prefix (N)) = N_Selected_Component
10340 and then Present (Entity (Selector_Name (Prefix (N))))
10341 and then Entity (Selector_Name (Prefix (N))) =
10342 RTE_Record_Component (RE_Prims_Ptr)
10343 then
10344 null;
10346 -- The discrete_range is specified by a subtype indication. Create a
10347 -- shallow copy and inherit the type, parent and source location from
10348 -- the discrete_range. This ensures that the range check is inserted
10349 -- relative to the slice and that the runtime exception points to the
10350 -- proper construct.
10352 elsif Is_Entity_Name (Drange) then
10353 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10355 Set_Etype (Dexpr, Etype (Drange));
10356 Set_Parent (Dexpr, Parent (Drange));
10357 Set_Sloc (Dexpr, Sloc (Drange));
10359 -- The discrete_range is a regular range. Resolve the bounds and remove
10360 -- their side effects.
10362 else
10363 Resolve (Drange, Base_Type (Index_Type));
10365 if Nkind (Drange) = N_Range then
10366 Force_Evaluation (Low_Bound (Drange));
10367 Force_Evaluation (High_Bound (Drange));
10369 Dexpr := Drange;
10370 end if;
10371 end if;
10373 if Present (Dexpr) then
10374 Apply_Range_Check (Dexpr, Index_Type);
10375 end if;
10377 Set_Slice_Subtype (N);
10379 -- Check bad use of type with predicates
10381 declare
10382 Subt : Entity_Id;
10384 begin
10385 if Nkind (Drange) = N_Subtype_Indication
10386 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10387 then
10388 Subt := Entity (Subtype_Mark (Drange));
10389 else
10390 Subt := Etype (Drange);
10391 end if;
10393 if Has_Predicates (Subt) then
10394 Bad_Predicated_Subtype_Use
10395 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10396 end if;
10397 end;
10399 -- Otherwise here is where we check suspicious indexes
10401 if Nkind (Drange) = N_Range then
10402 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10403 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10404 end if;
10406 Analyze_Dimension (N);
10407 Eval_Slice (N);
10408 end Resolve_Slice;
10410 ----------------------------
10411 -- Resolve_String_Literal --
10412 ----------------------------
10414 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10415 C_Typ : constant Entity_Id := Component_Type (Typ);
10416 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10417 Loc : constant Source_Ptr := Sloc (N);
10418 Str : constant String_Id := Strval (N);
10419 Strlen : constant Nat := String_Length (Str);
10420 Subtype_Id : Entity_Id;
10421 Need_Check : Boolean;
10423 begin
10424 -- For a string appearing in a concatenation, defer creation of the
10425 -- string_literal_subtype until the end of the resolution of the
10426 -- concatenation, because the literal may be constant-folded away. This
10427 -- is a useful optimization for long concatenation expressions.
10429 -- If the string is an aggregate built for a single character (which
10430 -- happens in a non-static context) or a is null string to which special
10431 -- checks may apply, we build the subtype. Wide strings must also get a
10432 -- string subtype if they come from a one character aggregate. Strings
10433 -- generated by attributes might be static, but it is often hard to
10434 -- determine whether the enclosing context is static, so we generate
10435 -- subtypes for them as well, thus losing some rarer optimizations ???
10436 -- Same for strings that come from a static conversion.
10438 Need_Check :=
10439 (Strlen = 0 and then Typ /= Standard_String)
10440 or else Nkind (Parent (N)) /= N_Op_Concat
10441 or else (N /= Left_Opnd (Parent (N))
10442 and then N /= Right_Opnd (Parent (N)))
10443 or else ((Typ = Standard_Wide_String
10444 or else Typ = Standard_Wide_Wide_String)
10445 and then Nkind (Original_Node (N)) /= N_String_Literal);
10447 -- If the resolving type is itself a string literal subtype, we can just
10448 -- reuse it, since there is no point in creating another.
10450 if Ekind (Typ) = E_String_Literal_Subtype then
10451 Subtype_Id := Typ;
10453 elsif Nkind (Parent (N)) = N_Op_Concat
10454 and then not Need_Check
10455 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10456 N_Attribute_Reference,
10457 N_Qualified_Expression,
10458 N_Type_Conversion)
10459 then
10460 Subtype_Id := Typ;
10462 -- Do not generate a string literal subtype for the default expression
10463 -- of a formal parameter in GNATprove mode. This is because the string
10464 -- subtype is associated with the freezing actions of the subprogram,
10465 -- however freezing is disabled in GNATprove mode and as a result the
10466 -- subtype is unavailable.
10468 elsif GNATprove_Mode
10469 and then Nkind (Parent (N)) = N_Parameter_Specification
10470 then
10471 Subtype_Id := Typ;
10473 -- Otherwise we must create a string literal subtype. Note that the
10474 -- whole idea of string literal subtypes is simply to avoid the need
10475 -- for building a full fledged array subtype for each literal.
10477 else
10478 Set_String_Literal_Subtype (N, Typ);
10479 Subtype_Id := Etype (N);
10480 end if;
10482 if Nkind (Parent (N)) /= N_Op_Concat
10483 or else Need_Check
10484 then
10485 Set_Etype (N, Subtype_Id);
10486 Eval_String_Literal (N);
10487 end if;
10489 if Is_Limited_Composite (Typ)
10490 or else Is_Private_Composite (Typ)
10491 then
10492 Error_Msg_N ("string literal not available for private array", N);
10493 Set_Etype (N, Any_Type);
10494 return;
10495 end if;
10497 -- The validity of a null string has been checked in the call to
10498 -- Eval_String_Literal.
10500 if Strlen = 0 then
10501 return;
10503 -- Always accept string literal with component type Any_Character, which
10504 -- occurs in error situations and in comparisons of literals, both of
10505 -- which should accept all literals.
10507 elsif R_Typ = Any_Character then
10508 return;
10510 -- If the type is bit-packed, then we always transform the string
10511 -- literal into a full fledged aggregate.
10513 elsif Is_Bit_Packed_Array (Typ) then
10514 null;
10516 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10518 else
10519 -- For Standard.Wide_Wide_String, or any other type whose component
10520 -- type is Standard.Wide_Wide_Character, we know that all the
10521 -- characters in the string must be acceptable, since the parser
10522 -- accepted the characters as valid character literals.
10524 if R_Typ = Standard_Wide_Wide_Character then
10525 null;
10527 -- For the case of Standard.String, or any other type whose component
10528 -- type is Standard.Character, we must make sure that there are no
10529 -- wide characters in the string, i.e. that it is entirely composed
10530 -- of characters in range of type Character.
10532 -- If the string literal is the result of a static concatenation, the
10533 -- test has already been performed on the components, and need not be
10534 -- repeated.
10536 elsif R_Typ = Standard_Character
10537 and then Nkind (Original_Node (N)) /= N_Op_Concat
10538 then
10539 for J in 1 .. Strlen loop
10540 if not In_Character_Range (Get_String_Char (Str, J)) then
10542 -- If we are out of range, post error. This is one of the
10543 -- very few places that we place the flag in the middle of
10544 -- a token, right under the offending wide character. Not
10545 -- quite clear if this is right wrt wide character encoding
10546 -- sequences, but it's only an error message.
10548 Error_Msg
10549 ("literal out of range of type Standard.Character",
10550 Source_Ptr (Int (Loc) + J));
10551 return;
10552 end if;
10553 end loop;
10555 -- For the case of Standard.Wide_String, or any other type whose
10556 -- component type is Standard.Wide_Character, we must make sure that
10557 -- there are no wide characters in the string, i.e. that it is
10558 -- entirely composed of characters in range of type Wide_Character.
10560 -- If the string literal is the result of a static concatenation,
10561 -- the test has already been performed on the components, and need
10562 -- not be repeated.
10564 elsif R_Typ = Standard_Wide_Character
10565 and then Nkind (Original_Node (N)) /= N_Op_Concat
10566 then
10567 for J in 1 .. Strlen loop
10568 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10570 -- If we are out of range, post error. This is one of the
10571 -- very few places that we place the flag in the middle of
10572 -- a token, right under the offending wide character.
10574 -- This is not quite right, because characters in general
10575 -- will take more than one character position ???
10577 Error_Msg
10578 ("literal out of range of type Standard.Wide_Character",
10579 Source_Ptr (Int (Loc) + J));
10580 return;
10581 end if;
10582 end loop;
10584 -- If the root type is not a standard character, then we will convert
10585 -- the string into an aggregate and will let the aggregate code do
10586 -- the checking. Standard Wide_Wide_Character is also OK here.
10588 else
10589 null;
10590 end if;
10592 -- See if the component type of the array corresponding to the string
10593 -- has compile time known bounds. If yes we can directly check
10594 -- whether the evaluation of the string will raise constraint error.
10595 -- Otherwise we need to transform the string literal into the
10596 -- corresponding character aggregate and let the aggregate code do
10597 -- the checking.
10599 if Is_Standard_Character_Type (R_Typ) then
10601 -- Check for the case of full range, where we are definitely OK
10603 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10604 return;
10605 end if;
10607 -- Here the range is not the complete base type range, so check
10609 declare
10610 Comp_Typ_Lo : constant Node_Id :=
10611 Type_Low_Bound (Component_Type (Typ));
10612 Comp_Typ_Hi : constant Node_Id :=
10613 Type_High_Bound (Component_Type (Typ));
10615 Char_Val : Uint;
10617 begin
10618 if Compile_Time_Known_Value (Comp_Typ_Lo)
10619 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10620 then
10621 for J in 1 .. Strlen loop
10622 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10624 if Char_Val < Expr_Value (Comp_Typ_Lo)
10625 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10626 then
10627 Apply_Compile_Time_Constraint_Error
10628 (N, "character out of range??",
10629 CE_Range_Check_Failed,
10630 Loc => Source_Ptr (Int (Loc) + J));
10631 end if;
10632 end loop;
10634 return;
10635 end if;
10636 end;
10637 end if;
10638 end if;
10640 -- If we got here we meed to transform the string literal into the
10641 -- equivalent qualified positional array aggregate. This is rather
10642 -- heavy artillery for this situation, but it is hard work to avoid.
10644 declare
10645 Lits : constant List_Id := New_List;
10646 P : Source_Ptr := Loc + 1;
10647 C : Char_Code;
10649 begin
10650 -- Build the character literals, we give them source locations that
10651 -- correspond to the string positions, which is a bit tricky given
10652 -- the possible presence of wide character escape sequences.
10654 for J in 1 .. Strlen loop
10655 C := Get_String_Char (Str, J);
10656 Set_Character_Literal_Name (C);
10658 Append_To (Lits,
10659 Make_Character_Literal (P,
10660 Chars => Name_Find,
10661 Char_Literal_Value => UI_From_CC (C)));
10663 if In_Character_Range (C) then
10664 P := P + 1;
10666 -- Should we have a call to Skip_Wide here ???
10668 -- ??? else
10669 -- Skip_Wide (P);
10671 end if;
10672 end loop;
10674 Rewrite (N,
10675 Make_Qualified_Expression (Loc,
10676 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10677 Expression =>
10678 Make_Aggregate (Loc, Expressions => Lits)));
10680 Analyze_And_Resolve (N, Typ);
10681 end;
10682 end Resolve_String_Literal;
10684 -------------------------
10685 -- Resolve_Target_Name --
10686 -------------------------
10688 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10689 begin
10690 Set_Etype (N, Typ);
10691 end Resolve_Target_Name;
10693 -----------------------------
10694 -- Resolve_Type_Conversion --
10695 -----------------------------
10697 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10698 Conv_OK : constant Boolean := Conversion_OK (N);
10699 Operand : constant Node_Id := Expression (N);
10700 Operand_Typ : constant Entity_Id := Etype (Operand);
10701 Target_Typ : constant Entity_Id := Etype (N);
10702 Rop : Node_Id;
10703 Orig_N : Node_Id;
10704 Orig_T : Node_Id;
10706 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10707 -- Set to False to suppress cases where we want to suppress the test
10708 -- for redundancy to avoid possible false positives on this warning.
10710 begin
10711 if not Conv_OK
10712 and then not Valid_Conversion (N, Target_Typ, Operand)
10713 then
10714 return;
10715 end if;
10717 -- If the Operand Etype is Universal_Fixed, then the conversion is
10718 -- never redundant. We need this check because by the time we have
10719 -- finished the rather complex transformation, the conversion looks
10720 -- redundant when it is not.
10722 if Operand_Typ = Universal_Fixed then
10723 Test_Redundant := False;
10725 -- If the operand is marked as Any_Fixed, then special processing is
10726 -- required. This is also a case where we suppress the test for a
10727 -- redundant conversion, since most certainly it is not redundant.
10729 elsif Operand_Typ = Any_Fixed then
10730 Test_Redundant := False;
10732 -- Mixed-mode operation involving a literal. Context must be a fixed
10733 -- type which is applied to the literal subsequently.
10735 -- Multiplication and division involving two fixed type operands must
10736 -- yield a universal real because the result is computed in arbitrary
10737 -- precision.
10739 if Is_Fixed_Point_Type (Typ)
10740 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10741 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10742 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10743 then
10744 Set_Etype (Operand, Universal_Real);
10746 elsif Is_Numeric_Type (Typ)
10747 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10748 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10749 or else
10750 Etype (Left_Opnd (Operand)) = Universal_Real)
10751 then
10752 -- Return if expression is ambiguous
10754 if Unique_Fixed_Point_Type (N) = Any_Type then
10755 return;
10757 -- If nothing else, the available fixed type is Duration
10759 else
10760 Set_Etype (Operand, Standard_Duration);
10761 end if;
10763 -- Resolve the real operand with largest available precision
10765 if Etype (Right_Opnd (Operand)) = Universal_Real then
10766 Rop := New_Copy_Tree (Right_Opnd (Operand));
10767 else
10768 Rop := New_Copy_Tree (Left_Opnd (Operand));
10769 end if;
10771 Resolve (Rop, Universal_Real);
10773 -- If the operand is a literal (it could be a non-static and
10774 -- illegal exponentiation) check whether the use of Duration
10775 -- is potentially inaccurate.
10777 if Nkind (Rop) = N_Real_Literal
10778 and then Realval (Rop) /= Ureal_0
10779 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10780 then
10781 Error_Msg_N
10782 ("??universal real operand can only "
10783 & "be interpreted as Duration!", Rop);
10784 Error_Msg_N
10785 ("\??precision will be lost in the conversion!", Rop);
10786 end if;
10788 elsif Is_Numeric_Type (Typ)
10789 and then Nkind (Operand) in N_Op
10790 and then Unique_Fixed_Point_Type (N) /= Any_Type
10791 then
10792 Set_Etype (Operand, Standard_Duration);
10794 else
10795 Error_Msg_N ("invalid context for mixed mode operation", N);
10796 Set_Etype (Operand, Any_Type);
10797 return;
10798 end if;
10799 end if;
10801 Resolve (Operand);
10803 -- In SPARK, a type conversion between array types should be restricted
10804 -- to types which have matching static bounds.
10806 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10807 -- operation if not needed.
10809 if Restriction_Check_Required (SPARK_05)
10810 and then Is_Array_Type (Target_Typ)
10811 and then Is_Array_Type (Operand_Typ)
10812 and then Operand_Typ /= Any_Composite -- or else Operand in error
10813 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10814 then
10815 Check_SPARK_05_Restriction
10816 ("array types should have matching static bounds", N);
10817 end if;
10819 -- In formal mode, the operand of an ancestor type conversion must be an
10820 -- object (not an expression).
10822 if Is_Tagged_Type (Target_Typ)
10823 and then not Is_Class_Wide_Type (Target_Typ)
10824 and then Is_Tagged_Type (Operand_Typ)
10825 and then not Is_Class_Wide_Type (Operand_Typ)
10826 and then Is_Ancestor (Target_Typ, Operand_Typ)
10827 and then not Is_SPARK_05_Object_Reference (Operand)
10828 then
10829 Check_SPARK_05_Restriction ("object required", Operand);
10830 end if;
10832 Analyze_Dimension (N);
10834 -- Note: we do the Eval_Type_Conversion call before applying the
10835 -- required checks for a subtype conversion. This is important, since
10836 -- both are prepared under certain circumstances to change the type
10837 -- conversion to a constraint error node, but in the case of
10838 -- Eval_Type_Conversion this may reflect an illegality in the static
10839 -- case, and we would miss the illegality (getting only a warning
10840 -- message), if we applied the type conversion checks first.
10842 Eval_Type_Conversion (N);
10844 -- Even when evaluation is not possible, we may be able to simplify the
10845 -- conversion or its expression. This needs to be done before applying
10846 -- checks, since otherwise the checks may use the original expression
10847 -- and defeat the simplifications. This is specifically the case for
10848 -- elimination of the floating-point Truncation attribute in
10849 -- float-to-int conversions.
10851 Simplify_Type_Conversion (N);
10853 -- If after evaluation we still have a type conversion, then we may need
10854 -- to apply checks required for a subtype conversion.
10856 -- Skip these type conversion checks if universal fixed operands
10857 -- operands involved, since range checks are handled separately for
10858 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10860 if Nkind (N) = N_Type_Conversion
10861 and then not Is_Generic_Type (Root_Type (Target_Typ))
10862 and then Target_Typ /= Universal_Fixed
10863 and then Operand_Typ /= Universal_Fixed
10864 then
10865 Apply_Type_Conversion_Checks (N);
10866 end if;
10868 -- Issue warning for conversion of simple object to its own type. We
10869 -- have to test the original nodes, since they may have been rewritten
10870 -- by various optimizations.
10872 Orig_N := Original_Node (N);
10874 -- Here we test for a redundant conversion if the warning mode is
10875 -- active (and was not locally reset), and we have a type conversion
10876 -- from source not appearing in a generic instance.
10878 if Test_Redundant
10879 and then Nkind (Orig_N) = N_Type_Conversion
10880 and then Comes_From_Source (Orig_N)
10881 and then not In_Instance
10882 then
10883 Orig_N := Original_Node (Expression (Orig_N));
10884 Orig_T := Target_Typ;
10886 -- If the node is part of a larger expression, the Target_Type
10887 -- may not be the original type of the node if the context is a
10888 -- condition. Recover original type to see if conversion is needed.
10890 if Is_Boolean_Type (Orig_T)
10891 and then Nkind (Parent (N)) in N_Op
10892 then
10893 Orig_T := Etype (Parent (N));
10894 end if;
10896 -- If we have an entity name, then give the warning if the entity
10897 -- is the right type, or if it is a loop parameter covered by the
10898 -- original type (that's needed because loop parameters have an
10899 -- odd subtype coming from the bounds).
10901 if (Is_Entity_Name (Orig_N)
10902 and then
10903 (Etype (Entity (Orig_N)) = Orig_T
10904 or else
10905 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10906 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10908 -- If not an entity, then type of expression must match
10910 or else Etype (Orig_N) = Orig_T
10911 then
10912 -- One more check, do not give warning if the analyzed conversion
10913 -- has an expression with non-static bounds, and the bounds of the
10914 -- target are static. This avoids junk warnings in cases where the
10915 -- conversion is necessary to establish staticness, for example in
10916 -- a case statement.
10918 if not Is_OK_Static_Subtype (Operand_Typ)
10919 and then Is_OK_Static_Subtype (Target_Typ)
10920 then
10921 null;
10923 -- Finally, if this type conversion occurs in a context requiring
10924 -- a prefix, and the expression is a qualified expression then the
10925 -- type conversion is not redundant, since a qualified expression
10926 -- is not a prefix, whereas a type conversion is. For example, "X
10927 -- := T'(Funx(...)).Y;" is illegal because a selected component
10928 -- requires a prefix, but a type conversion makes it legal: "X :=
10929 -- T(T'(Funx(...))).Y;"
10931 -- In Ada 2012, a qualified expression is a name, so this idiom is
10932 -- no longer needed, but we still suppress the warning because it
10933 -- seems unfriendly for warnings to pop up when you switch to the
10934 -- newer language version.
10936 elsif Nkind (Orig_N) = N_Qualified_Expression
10937 and then Nkind_In (Parent (N), N_Attribute_Reference,
10938 N_Indexed_Component,
10939 N_Selected_Component,
10940 N_Slice,
10941 N_Explicit_Dereference)
10942 then
10943 null;
10945 -- Never warn on conversion to Long_Long_Integer'Base since
10946 -- that is most likely an artifact of the extended overflow
10947 -- checking and comes from complex expanded code.
10949 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10950 null;
10952 -- Here we give the redundant conversion warning. If it is an
10953 -- entity, give the name of the entity in the message. If not,
10954 -- just mention the expression.
10956 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10958 else
10959 if Is_Entity_Name (Orig_N) then
10960 Error_Msg_Node_2 := Orig_T;
10961 Error_Msg_NE -- CODEFIX
10962 ("??redundant conversion, & is of type &!",
10963 N, Entity (Orig_N));
10964 else
10965 Error_Msg_NE
10966 ("??redundant conversion, expression is of type&!",
10967 N, Orig_T);
10968 end if;
10969 end if;
10970 end if;
10971 end if;
10973 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10974 -- No need to perform any interface conversion if the type of the
10975 -- expression coincides with the target type.
10977 if Ada_Version >= Ada_2005
10978 and then Expander_Active
10979 and then Operand_Typ /= Target_Typ
10980 then
10981 declare
10982 Opnd : Entity_Id := Operand_Typ;
10983 Target : Entity_Id := Target_Typ;
10985 begin
10986 -- If the type of the operand is a limited view, use nonlimited
10987 -- view when available. If it is a class-wide type, recover the
10988 -- class-wide type of the nonlimited view.
10990 if From_Limited_With (Opnd)
10991 and then Has_Non_Limited_View (Opnd)
10992 then
10993 Opnd := Non_Limited_View (Opnd);
10994 Set_Etype (Expression (N), Opnd);
10995 end if;
10997 if Is_Access_Type (Opnd) then
10998 Opnd := Designated_Type (Opnd);
10999 end if;
11001 if Is_Access_Type (Target_Typ) then
11002 Target := Designated_Type (Target);
11003 end if;
11005 if Opnd = Target then
11006 null;
11008 -- Conversion from interface type
11010 elsif Is_Interface (Opnd) then
11012 -- Ada 2005 (AI-217): Handle entities from limited views
11014 if From_Limited_With (Opnd) then
11015 Error_Msg_Qual_Level := 99;
11016 Error_Msg_NE -- CODEFIX
11017 ("missing WITH clause on package &", N,
11018 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11019 Error_Msg_N
11020 ("type conversions require visibility of the full view",
11023 elsif From_Limited_With (Target)
11024 and then not
11025 (Is_Access_Type (Target_Typ)
11026 and then Present (Non_Limited_View (Etype (Target))))
11027 then
11028 Error_Msg_Qual_Level := 99;
11029 Error_Msg_NE -- CODEFIX
11030 ("missing WITH clause on package &", N,
11031 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11032 Error_Msg_N
11033 ("type conversions require visibility of the full view",
11036 else
11037 Expand_Interface_Conversion (N);
11038 end if;
11040 -- Conversion to interface type
11042 elsif Is_Interface (Target) then
11044 -- Handle subtypes
11046 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11047 Opnd := Etype (Opnd);
11048 end if;
11050 if Is_Class_Wide_Type (Opnd)
11051 or else Interface_Present_In_Ancestor
11052 (Typ => Opnd,
11053 Iface => Target)
11054 then
11055 Expand_Interface_Conversion (N);
11056 else
11057 Error_Msg_Name_1 := Chars (Etype (Target));
11058 Error_Msg_Name_2 := Chars (Opnd);
11059 Error_Msg_N
11060 ("wrong interface conversion (% is not a progenitor "
11061 & "of %)", N);
11062 end if;
11063 end if;
11064 end;
11065 end if;
11067 -- Ada 2012: once the type conversion is resolved, check whether the
11068 -- operand statisfies the static predicate of the target type.
11070 if Has_Predicates (Target_Typ) then
11071 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11072 end if;
11074 -- If at this stage we have a real to integer conversion, make sure that
11075 -- the Do_Range_Check flag is set, because such conversions in general
11076 -- need a range check. We only need this if expansion is off.
11077 -- In GNATprove mode, we only do that when converting from fixed-point
11078 -- (as floating-point to integer conversions are now handled in
11079 -- GNATprove mode).
11081 if Nkind (N) = N_Type_Conversion
11082 and then not Expander_Active
11083 and then Is_Integer_Type (Target_Typ)
11084 and then (Is_Fixed_Point_Type (Operand_Typ)
11085 or else (not GNATprove_Mode
11086 and then Is_Floating_Point_Type (Operand_Typ)))
11087 then
11088 Set_Do_Range_Check (Operand);
11089 end if;
11091 -- Generating C code a type conversion of an access to constrained
11092 -- array type to access to unconstrained array type involves building
11093 -- a fat pointer which in general cannot be generated on the fly. We
11094 -- remove side effects in order to store the result of the conversion
11095 -- into a temporary.
11097 if Modify_Tree_For_C
11098 and then Nkind (N) = N_Type_Conversion
11099 and then Nkind (Parent (N)) /= N_Object_Declaration
11100 and then Is_Access_Type (Etype (N))
11101 and then Is_Array_Type (Designated_Type (Etype (N)))
11102 and then not Is_Constrained (Designated_Type (Etype (N)))
11103 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11104 then
11105 Remove_Side_Effects (N);
11106 end if;
11107 end Resolve_Type_Conversion;
11109 ----------------------
11110 -- Resolve_Unary_Op --
11111 ----------------------
11113 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11114 B_Typ : constant Entity_Id := Base_Type (Typ);
11115 R : constant Node_Id := Right_Opnd (N);
11116 OK : Boolean;
11117 Lo : Uint;
11118 Hi : Uint;
11120 begin
11121 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11122 Error_Msg_Name_1 := Chars (Typ);
11123 Check_SPARK_05_Restriction
11124 ("unary operator not defined for modular type%", N);
11125 end if;
11127 -- Deal with intrinsic unary operators
11129 if Comes_From_Source (N)
11130 and then Ekind (Entity (N)) = E_Function
11131 and then Is_Imported (Entity (N))
11132 and then Is_Intrinsic_Subprogram (Entity (N))
11133 then
11134 Resolve_Intrinsic_Unary_Operator (N, Typ);
11135 return;
11136 end if;
11138 -- Deal with universal cases
11140 if Etype (R) = Universal_Integer
11141 or else
11142 Etype (R) = Universal_Real
11143 then
11144 Check_For_Visible_Operator (N, B_Typ);
11145 end if;
11147 Set_Etype (N, B_Typ);
11148 Resolve (R, B_Typ);
11150 -- Generate warning for expressions like abs (x mod 2)
11152 if Warn_On_Redundant_Constructs
11153 and then Nkind (N) = N_Op_Abs
11154 then
11155 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11157 if OK and then Hi >= Lo and then Lo >= 0 then
11158 Error_Msg_N -- CODEFIX
11159 ("?r?abs applied to known non-negative value has no effect", N);
11160 end if;
11161 end if;
11163 -- Deal with reference generation
11165 Check_Unset_Reference (R);
11166 Generate_Operator_Reference (N, B_Typ);
11167 Analyze_Dimension (N);
11168 Eval_Unary_Op (N);
11170 -- Set overflow checking bit. Much cleverer code needed here eventually
11171 -- and perhaps the Resolve routines should be separated for the various
11172 -- arithmetic operations, since they will need different processing ???
11174 if Nkind (N) in N_Op then
11175 if not Overflow_Checks_Suppressed (Etype (N)) then
11176 Enable_Overflow_Check (N);
11177 end if;
11178 end if;
11180 -- Generate warning for expressions like -5 mod 3 for integers. No need
11181 -- to worry in the floating-point case, since parens do not affect the
11182 -- result so there is no point in giving in a warning.
11184 declare
11185 Norig : constant Node_Id := Original_Node (N);
11186 Rorig : Node_Id;
11187 Val : Uint;
11188 HB : Uint;
11189 LB : Uint;
11190 Lval : Uint;
11191 Opnd : Node_Id;
11193 begin
11194 if Warn_On_Questionable_Missing_Parens
11195 and then Comes_From_Source (Norig)
11196 and then Is_Integer_Type (Typ)
11197 and then Nkind (Norig) = N_Op_Minus
11198 then
11199 Rorig := Original_Node (Right_Opnd (Norig));
11201 -- We are looking for cases where the right operand is not
11202 -- parenthesized, and is a binary operator, multiply, divide, or
11203 -- mod. These are the cases where the grouping can affect results.
11205 if Paren_Count (Rorig) = 0
11206 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11207 then
11208 -- For mod, we always give the warning, since the value is
11209 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11210 -- -(5 mod 315)). But for the other cases, the only concern is
11211 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11212 -- overflows, but (-2) * 64 does not). So we try to give the
11213 -- message only when overflow is possible.
11215 if Nkind (Rorig) /= N_Op_Mod
11216 and then Compile_Time_Known_Value (R)
11217 then
11218 Val := Expr_Value (R);
11220 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11221 HB := Expr_Value (Type_High_Bound (Typ));
11222 else
11223 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11224 end if;
11226 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11227 LB := Expr_Value (Type_Low_Bound (Typ));
11228 else
11229 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11230 end if;
11232 -- Note that the test below is deliberately excluding the
11233 -- largest negative number, since that is a potentially
11234 -- troublesome case (e.g. -2 * x, where the result is the
11235 -- largest negative integer has an overflow with 2 * x).
11237 if Val > LB and then Val <= HB then
11238 return;
11239 end if;
11240 end if;
11242 -- For the multiplication case, the only case we have to worry
11243 -- about is when (-a)*b is exactly the largest negative number
11244 -- so that -(a*b) can cause overflow. This can only happen if
11245 -- a is a power of 2, and more generally if any operand is a
11246 -- constant that is not a power of 2, then the parentheses
11247 -- cannot affect whether overflow occurs. We only bother to
11248 -- test the left most operand
11250 -- Loop looking at left operands for one that has known value
11252 Opnd := Rorig;
11253 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11254 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11255 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11257 -- Operand value of 0 or 1 skips warning
11259 if Lval <= 1 then
11260 return;
11262 -- Otherwise check power of 2, if power of 2, warn, if
11263 -- anything else, skip warning.
11265 else
11266 while Lval /= 2 loop
11267 if Lval mod 2 = 1 then
11268 return;
11269 else
11270 Lval := Lval / 2;
11271 end if;
11272 end loop;
11274 exit Opnd_Loop;
11275 end if;
11276 end if;
11278 -- Keep looking at left operands
11280 Opnd := Left_Opnd (Opnd);
11281 end loop Opnd_Loop;
11283 -- For rem or "/" we can only have a problematic situation
11284 -- if the divisor has a value of minus one or one. Otherwise
11285 -- overflow is impossible (divisor > 1) or we have a case of
11286 -- division by zero in any case.
11288 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11289 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11290 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11291 then
11292 return;
11293 end if;
11295 -- If we fall through warning should be issued
11297 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11299 Error_Msg_N
11300 ("??unary minus expression should be parenthesized here!", N);
11301 end if;
11302 end if;
11303 end;
11304 end Resolve_Unary_Op;
11306 ----------------------------------
11307 -- Resolve_Unchecked_Expression --
11308 ----------------------------------
11310 procedure Resolve_Unchecked_Expression
11311 (N : Node_Id;
11312 Typ : Entity_Id)
11314 begin
11315 Resolve (Expression (N), Typ, Suppress => All_Checks);
11316 Set_Etype (N, Typ);
11317 end Resolve_Unchecked_Expression;
11319 ---------------------------------------
11320 -- Resolve_Unchecked_Type_Conversion --
11321 ---------------------------------------
11323 procedure Resolve_Unchecked_Type_Conversion
11324 (N : Node_Id;
11325 Typ : Entity_Id)
11327 pragma Warnings (Off, Typ);
11329 Operand : constant Node_Id := Expression (N);
11330 Opnd_Type : constant Entity_Id := Etype (Operand);
11332 begin
11333 -- Resolve operand using its own type
11335 Resolve (Operand, Opnd_Type);
11337 -- In an inlined context, the unchecked conversion may be applied
11338 -- to a literal, in which case its type is the type of the context.
11339 -- (In other contexts conversions cannot apply to literals).
11341 if In_Inlined_Body
11342 and then (Opnd_Type = Any_Character or else
11343 Opnd_Type = Any_Integer or else
11344 Opnd_Type = Any_Real)
11345 then
11346 Set_Etype (Operand, Typ);
11347 end if;
11349 Analyze_Dimension (N);
11350 Eval_Unchecked_Conversion (N);
11351 end Resolve_Unchecked_Type_Conversion;
11353 ------------------------------
11354 -- Rewrite_Operator_As_Call --
11355 ------------------------------
11357 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11358 Loc : constant Source_Ptr := Sloc (N);
11359 Actuals : constant List_Id := New_List;
11360 New_N : Node_Id;
11362 begin
11363 if Nkind (N) in N_Binary_Op then
11364 Append (Left_Opnd (N), Actuals);
11365 end if;
11367 Append (Right_Opnd (N), Actuals);
11369 New_N :=
11370 Make_Function_Call (Sloc => Loc,
11371 Name => New_Occurrence_Of (Nam, Loc),
11372 Parameter_Associations => Actuals);
11374 Preserve_Comes_From_Source (New_N, N);
11375 Preserve_Comes_From_Source (Name (New_N), N);
11376 Rewrite (N, New_N);
11377 Set_Etype (N, Etype (Nam));
11378 end Rewrite_Operator_As_Call;
11380 ------------------------------
11381 -- Rewrite_Renamed_Operator --
11382 ------------------------------
11384 procedure Rewrite_Renamed_Operator
11385 (N : Node_Id;
11386 Op : Entity_Id;
11387 Typ : Entity_Id)
11389 Nam : constant Name_Id := Chars (Op);
11390 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11391 Op_Node : Node_Id;
11393 begin
11394 -- Do not perform this transformation within a pre/postcondition,
11395 -- because the expression will be re-analyzed, and the transformation
11396 -- might affect the visibility of the operator, e.g. in an instance.
11397 -- Note that fully analyzed and expanded pre/postconditions appear as
11398 -- pragma Check equivalents.
11400 if In_Pre_Post_Condition (N) then
11401 return;
11402 end if;
11404 -- Rewrite the operator node using the real operator, not its renaming.
11405 -- Exclude user-defined intrinsic operations of the same name, which are
11406 -- treated separately and rewritten as calls.
11408 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11409 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11410 Set_Chars (Op_Node, Nam);
11411 Set_Etype (Op_Node, Etype (N));
11412 Set_Entity (Op_Node, Op);
11413 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11415 -- Indicate that both the original entity and its renaming are
11416 -- referenced at this point.
11418 Generate_Reference (Entity (N), N);
11419 Generate_Reference (Op, N);
11421 if Is_Binary then
11422 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11423 end if;
11425 Rewrite (N, Op_Node);
11427 -- If the context type is private, add the appropriate conversions so
11428 -- that the operator is applied to the full view. This is done in the
11429 -- routines that resolve intrinsic operators.
11431 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11432 case Nkind (N) is
11433 when N_Op_Add
11434 | N_Op_Divide
11435 | N_Op_Expon
11436 | N_Op_Mod
11437 | N_Op_Multiply
11438 | N_Op_Rem
11439 | N_Op_Subtract
11441 Resolve_Intrinsic_Operator (N, Typ);
11443 when N_Op_Abs
11444 | N_Op_Minus
11445 | N_Op_Plus
11447 Resolve_Intrinsic_Unary_Operator (N, Typ);
11449 when others =>
11450 Resolve (N, Typ);
11451 end case;
11452 end if;
11454 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11456 -- Operator renames a user-defined operator of the same name. Use the
11457 -- original operator in the node, which is the one Gigi knows about.
11459 Set_Entity (N, Op);
11460 Set_Is_Overloaded (N, False);
11461 end if;
11462 end Rewrite_Renamed_Operator;
11464 -----------------------
11465 -- Set_Slice_Subtype --
11466 -----------------------
11468 -- Build an implicit subtype declaration to represent the type delivered by
11469 -- the slice. This is an abbreviated version of an array subtype. We define
11470 -- an index subtype for the slice, using either the subtype name or the
11471 -- discrete range of the slice. To be consistent with index usage elsewhere
11472 -- we create a list header to hold the single index. This list is not
11473 -- otherwise attached to the syntax tree.
11475 procedure Set_Slice_Subtype (N : Node_Id) is
11476 Loc : constant Source_Ptr := Sloc (N);
11477 Index_List : constant List_Id := New_List;
11478 Index : Node_Id;
11479 Index_Subtype : Entity_Id;
11480 Index_Type : Entity_Id;
11481 Slice_Subtype : Entity_Id;
11482 Drange : constant Node_Id := Discrete_Range (N);
11484 begin
11485 Index_Type := Base_Type (Etype (Drange));
11487 if Is_Entity_Name (Drange) then
11488 Index_Subtype := Entity (Drange);
11490 else
11491 -- We force the evaluation of a range. This is definitely needed in
11492 -- the renamed case, and seems safer to do unconditionally. Note in
11493 -- any case that since we will create and insert an Itype referring
11494 -- to this range, we must make sure any side effect removal actions
11495 -- are inserted before the Itype definition.
11497 if Nkind (Drange) = N_Range then
11498 Force_Evaluation (Low_Bound (Drange));
11499 Force_Evaluation (High_Bound (Drange));
11501 -- If the discrete range is given by a subtype indication, the
11502 -- type of the slice is the base of the subtype mark.
11504 elsif Nkind (Drange) = N_Subtype_Indication then
11505 declare
11506 R : constant Node_Id := Range_Expression (Constraint (Drange));
11507 begin
11508 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11509 Force_Evaluation (Low_Bound (R));
11510 Force_Evaluation (High_Bound (R));
11511 end;
11512 end if;
11514 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11516 -- Take a new copy of Drange (where bounds have been rewritten to
11517 -- reference side-effect-free names). Using a separate tree ensures
11518 -- that further expansion (e.g. while rewriting a slice assignment
11519 -- into a FOR loop) does not attempt to remove side effects on the
11520 -- bounds again (which would cause the bounds in the index subtype
11521 -- definition to refer to temporaries before they are defined) (the
11522 -- reason is that some names are considered side effect free here
11523 -- for the subtype, but not in the context of a loop iteration
11524 -- scheme).
11526 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11527 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11528 Set_Etype (Index_Subtype, Index_Type);
11529 Set_Size_Info (Index_Subtype, Index_Type);
11530 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11531 end if;
11533 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11535 Index := New_Occurrence_Of (Index_Subtype, Loc);
11536 Set_Etype (Index, Index_Subtype);
11537 Append (Index, Index_List);
11539 Set_First_Index (Slice_Subtype, Index);
11540 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11541 Set_Is_Constrained (Slice_Subtype, True);
11543 Check_Compile_Time_Size (Slice_Subtype);
11545 -- The Etype of the existing Slice node is reset to this slice subtype.
11546 -- Its bounds are obtained from its first index.
11548 Set_Etype (N, Slice_Subtype);
11550 -- For bit-packed slice subtypes, freeze immediately (except in the case
11551 -- of being in a "spec expression" where we never freeze when we first
11552 -- see the expression).
11554 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11555 Freeze_Itype (Slice_Subtype, N);
11557 -- For all other cases insert an itype reference in the slice's actions
11558 -- so that the itype is frozen at the proper place in the tree (i.e. at
11559 -- the point where actions for the slice are analyzed). Note that this
11560 -- is different from freezing the itype immediately, which might be
11561 -- premature (e.g. if the slice is within a transient scope). This needs
11562 -- to be done only if expansion is enabled.
11564 elsif Expander_Active then
11565 Ensure_Defined (Typ => Slice_Subtype, N => N);
11566 end if;
11567 end Set_Slice_Subtype;
11569 --------------------------------
11570 -- Set_String_Literal_Subtype --
11571 --------------------------------
11573 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11574 Loc : constant Source_Ptr := Sloc (N);
11575 Low_Bound : constant Node_Id :=
11576 Type_Low_Bound (Etype (First_Index (Typ)));
11577 Subtype_Id : Entity_Id;
11579 begin
11580 if Nkind (N) /= N_String_Literal then
11581 return;
11582 end if;
11584 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11585 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11586 (String_Length (Strval (N))));
11587 Set_Etype (Subtype_Id, Base_Type (Typ));
11588 Set_Is_Constrained (Subtype_Id);
11589 Set_Etype (N, Subtype_Id);
11591 -- The low bound is set from the low bound of the corresponding index
11592 -- type. Note that we do not store the high bound in the string literal
11593 -- subtype, but it can be deduced if necessary from the length and the
11594 -- low bound.
11596 if Is_OK_Static_Expression (Low_Bound) then
11597 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11599 -- If the lower bound is not static we create a range for the string
11600 -- literal, using the index type and the known length of the literal.
11601 -- The index type is not necessarily Positive, so the upper bound is
11602 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11604 else
11605 declare
11606 Index_List : constant List_Id := New_List;
11607 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11608 High_Bound : constant Node_Id :=
11609 Make_Attribute_Reference (Loc,
11610 Attribute_Name => Name_Val,
11611 Prefix =>
11612 New_Occurrence_Of (Index_Type, Loc),
11613 Expressions => New_List (
11614 Make_Op_Add (Loc,
11615 Left_Opnd =>
11616 Make_Attribute_Reference (Loc,
11617 Attribute_Name => Name_Pos,
11618 Prefix =>
11619 New_Occurrence_Of (Index_Type, Loc),
11620 Expressions =>
11621 New_List (New_Copy_Tree (Low_Bound))),
11622 Right_Opnd =>
11623 Make_Integer_Literal (Loc,
11624 String_Length (Strval (N)) - 1))));
11626 Array_Subtype : Entity_Id;
11627 Drange : Node_Id;
11628 Index : Node_Id;
11629 Index_Subtype : Entity_Id;
11631 begin
11632 if Is_Integer_Type (Index_Type) then
11633 Set_String_Literal_Low_Bound
11634 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11636 else
11637 -- If the index type is an enumeration type, build bounds
11638 -- expression with attributes.
11640 Set_String_Literal_Low_Bound
11641 (Subtype_Id,
11642 Make_Attribute_Reference (Loc,
11643 Attribute_Name => Name_First,
11644 Prefix =>
11645 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11646 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11647 end if;
11649 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11651 -- Build bona fide subtype for the string, and wrap it in an
11652 -- unchecked conversion, because the backend expects the
11653 -- String_Literal_Subtype to have a static lower bound.
11655 Index_Subtype :=
11656 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11657 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11658 Set_Scalar_Range (Index_Subtype, Drange);
11659 Set_Parent (Drange, N);
11660 Analyze_And_Resolve (Drange, Index_Type);
11662 -- In the context, the Index_Type may already have a constraint,
11663 -- so use common base type on string subtype. The base type may
11664 -- be used when generating attributes of the string, for example
11665 -- in the context of a slice assignment.
11667 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11668 Set_Size_Info (Index_Subtype, Index_Type);
11669 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11671 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11673 Index := New_Occurrence_Of (Index_Subtype, Loc);
11674 Set_Etype (Index, Index_Subtype);
11675 Append (Index, Index_List);
11677 Set_First_Index (Array_Subtype, Index);
11678 Set_Etype (Array_Subtype, Base_Type (Typ));
11679 Set_Is_Constrained (Array_Subtype, True);
11681 Rewrite (N,
11682 Make_Unchecked_Type_Conversion (Loc,
11683 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11684 Expression => Relocate_Node (N)));
11685 Set_Etype (N, Array_Subtype);
11686 end;
11687 end if;
11688 end Set_String_Literal_Subtype;
11690 ------------------------------
11691 -- Simplify_Type_Conversion --
11692 ------------------------------
11694 procedure Simplify_Type_Conversion (N : Node_Id) is
11695 begin
11696 if Nkind (N) = N_Type_Conversion then
11697 declare
11698 Operand : constant Node_Id := Expression (N);
11699 Target_Typ : constant Entity_Id := Etype (N);
11700 Opnd_Typ : constant Entity_Id := Etype (Operand);
11702 begin
11703 -- Special processing if the conversion is the expression of a
11704 -- Rounding or Truncation attribute reference. In this case we
11705 -- replace:
11707 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11709 -- by
11711 -- ityp (x)
11713 -- with the Float_Truncate flag set to False or True respectively,
11714 -- which is more efficient.
11716 if Is_Floating_Point_Type (Opnd_Typ)
11717 and then
11718 (Is_Integer_Type (Target_Typ)
11719 or else (Is_Fixed_Point_Type (Target_Typ)
11720 and then Conversion_OK (N)))
11721 and then Nkind (Operand) = N_Attribute_Reference
11722 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11723 Name_Truncation)
11724 then
11725 declare
11726 Truncate : constant Boolean :=
11727 Attribute_Name (Operand) = Name_Truncation;
11728 begin
11729 Rewrite (Operand,
11730 Relocate_Node (First (Expressions (Operand))));
11731 Set_Float_Truncate (N, Truncate);
11732 end;
11733 end if;
11734 end;
11735 end if;
11736 end Simplify_Type_Conversion;
11738 -----------------------------
11739 -- Unique_Fixed_Point_Type --
11740 -----------------------------
11742 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11743 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11744 -- Give error messages for true ambiguity. Messages are posted on node
11745 -- N, and entities T1, T2 are the possible interpretations.
11747 -----------------------
11748 -- Fixed_Point_Error --
11749 -----------------------
11751 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11752 begin
11753 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11754 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11755 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11756 end Fixed_Point_Error;
11758 -- Local variables
11760 ErrN : Node_Id;
11761 Item : Node_Id;
11762 Scop : Entity_Id;
11763 T1 : Entity_Id;
11764 T2 : Entity_Id;
11766 -- Start of processing for Unique_Fixed_Point_Type
11768 begin
11769 -- The operations on Duration are visible, so Duration is always a
11770 -- possible interpretation.
11772 T1 := Standard_Duration;
11774 -- Look for fixed-point types in enclosing scopes
11776 Scop := Current_Scope;
11777 while Scop /= Standard_Standard loop
11778 T2 := First_Entity (Scop);
11779 while Present (T2) loop
11780 if Is_Fixed_Point_Type (T2)
11781 and then Current_Entity (T2) = T2
11782 and then Scope (Base_Type (T2)) = Scop
11783 then
11784 if Present (T1) then
11785 Fixed_Point_Error (T1, T2);
11786 return Any_Type;
11787 else
11788 T1 := T2;
11789 end if;
11790 end if;
11792 Next_Entity (T2);
11793 end loop;
11795 Scop := Scope (Scop);
11796 end loop;
11798 -- Look for visible fixed type declarations in the context
11800 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11801 while Present (Item) loop
11802 if Nkind (Item) = N_With_Clause then
11803 Scop := Entity (Name (Item));
11804 T2 := First_Entity (Scop);
11805 while Present (T2) loop
11806 if Is_Fixed_Point_Type (T2)
11807 and then Scope (Base_Type (T2)) = Scop
11808 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11809 then
11810 if Present (T1) then
11811 Fixed_Point_Error (T1, T2);
11812 return Any_Type;
11813 else
11814 T1 := T2;
11815 end if;
11816 end if;
11818 Next_Entity (T2);
11819 end loop;
11820 end if;
11822 Next (Item);
11823 end loop;
11825 if Nkind (N) = N_Real_Literal then
11826 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
11828 else
11829 -- When the context is a type conversion, issue the warning on the
11830 -- expression of the conversion because it is the actual operation.
11832 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
11833 ErrN := Expression (N);
11834 else
11835 ErrN := N;
11836 end if;
11838 Error_Msg_NE
11839 ("??universal_fixed expression interpreted as }!", ErrN, T1);
11840 end if;
11842 return T1;
11843 end Unique_Fixed_Point_Type;
11845 ----------------------
11846 -- Valid_Conversion --
11847 ----------------------
11849 function Valid_Conversion
11850 (N : Node_Id;
11851 Target : Entity_Id;
11852 Operand : Node_Id;
11853 Report_Errs : Boolean := True) return Boolean
11855 Target_Type : constant Entity_Id := Base_Type (Target);
11856 Opnd_Type : Entity_Id := Etype (Operand);
11857 Inc_Ancestor : Entity_Id;
11859 function Conversion_Check
11860 (Valid : Boolean;
11861 Msg : String) return Boolean;
11862 -- Little routine to post Msg if Valid is False, returns Valid value
11864 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11865 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11867 procedure Conversion_Error_NE
11868 (Msg : String;
11869 N : Node_Or_Entity_Id;
11870 E : Node_Or_Entity_Id);
11871 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11873 function In_Instance_Code return Boolean;
11874 -- Return True if expression is within an instance but is not in one of
11875 -- the actuals of the instantiation. Type conversions within an instance
11876 -- are not rechecked because type visbility may lead to spurious errors,
11877 -- but conversions in an actual for a formal object must be checked.
11879 function Valid_Tagged_Conversion
11880 (Target_Type : Entity_Id;
11881 Opnd_Type : Entity_Id) return Boolean;
11882 -- Specifically test for validity of tagged conversions
11884 function Valid_Array_Conversion return Boolean;
11885 -- Check index and component conformance, and accessibility levels if
11886 -- the component types are anonymous access types (Ada 2005).
11888 ----------------------
11889 -- Conversion_Check --
11890 ----------------------
11892 function Conversion_Check
11893 (Valid : Boolean;
11894 Msg : String) return Boolean
11896 begin
11897 if not Valid
11899 -- A generic unit has already been analyzed and we have verified
11900 -- that a particular conversion is OK in that context. Since the
11901 -- instance is reanalyzed without relying on the relationships
11902 -- established during the analysis of the generic, it is possible
11903 -- to end up with inconsistent views of private types. Do not emit
11904 -- the error message in such cases. The rest of the machinery in
11905 -- Valid_Conversion still ensures the proper compatibility of
11906 -- target and operand types.
11908 and then not In_Instance_Code
11909 then
11910 Conversion_Error_N (Msg, Operand);
11911 end if;
11913 return Valid;
11914 end Conversion_Check;
11916 ------------------------
11917 -- Conversion_Error_N --
11918 ------------------------
11920 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11921 begin
11922 if Report_Errs then
11923 Error_Msg_N (Msg, N);
11924 end if;
11925 end Conversion_Error_N;
11927 -------------------------
11928 -- Conversion_Error_NE --
11929 -------------------------
11931 procedure Conversion_Error_NE
11932 (Msg : String;
11933 N : Node_Or_Entity_Id;
11934 E : Node_Or_Entity_Id)
11936 begin
11937 if Report_Errs then
11938 Error_Msg_NE (Msg, N, E);
11939 end if;
11940 end Conversion_Error_NE;
11942 ----------------------
11943 -- In_Instance_Code --
11944 ----------------------
11946 function In_Instance_Code return Boolean is
11947 Par : Node_Id;
11949 begin
11950 if not In_Instance then
11951 return False;
11953 else
11954 Par := Parent (N);
11955 while Present (Par) loop
11957 -- The expression is part of an actual object if it appears in
11958 -- the generated object declaration in the instance.
11960 if Nkind (Par) = N_Object_Declaration
11961 and then Present (Corresponding_Generic_Association (Par))
11962 then
11963 return False;
11965 else
11966 exit when
11967 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
11968 or else Nkind (Par) in N_Subprogram_Call
11969 or else Nkind (Par) in N_Declaration;
11970 end if;
11972 Par := Parent (Par);
11973 end loop;
11975 -- Otherwise the expression appears within the instantiated unit
11977 return True;
11978 end if;
11979 end In_Instance_Code;
11981 ----------------------------
11982 -- Valid_Array_Conversion --
11983 ----------------------------
11985 function Valid_Array_Conversion return Boolean is
11986 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11987 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11989 Opnd_Index : Node_Id;
11990 Opnd_Index_Type : Entity_Id;
11992 Target_Comp_Type : constant Entity_Id :=
11993 Component_Type (Target_Type);
11994 Target_Comp_Base : constant Entity_Id :=
11995 Base_Type (Target_Comp_Type);
11997 Target_Index : Node_Id;
11998 Target_Index_Type : Entity_Id;
12000 begin
12001 -- Error if wrong number of dimensions
12004 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12005 then
12006 Conversion_Error_N
12007 ("incompatible number of dimensions for conversion", Operand);
12008 return False;
12010 -- Number of dimensions matches
12012 else
12013 -- Loop through indexes of the two arrays
12015 Target_Index := First_Index (Target_Type);
12016 Opnd_Index := First_Index (Opnd_Type);
12017 while Present (Target_Index) and then Present (Opnd_Index) loop
12018 Target_Index_Type := Etype (Target_Index);
12019 Opnd_Index_Type := Etype (Opnd_Index);
12021 -- Error if index types are incompatible
12023 if not (Is_Integer_Type (Target_Index_Type)
12024 and then Is_Integer_Type (Opnd_Index_Type))
12025 and then (Root_Type (Target_Index_Type)
12026 /= Root_Type (Opnd_Index_Type))
12027 then
12028 Conversion_Error_N
12029 ("incompatible index types for array conversion",
12030 Operand);
12031 return False;
12032 end if;
12034 Next_Index (Target_Index);
12035 Next_Index (Opnd_Index);
12036 end loop;
12038 -- If component types have same base type, all set
12040 if Target_Comp_Base = Opnd_Comp_Base then
12041 null;
12043 -- Here if base types of components are not the same. The only
12044 -- time this is allowed is if we have anonymous access types.
12046 -- The conversion of arrays of anonymous access types can lead
12047 -- to dangling pointers. AI-392 formalizes the accessibility
12048 -- checks that must be applied to such conversions to prevent
12049 -- out-of-scope references.
12051 elsif Ekind_In
12052 (Target_Comp_Base, E_Anonymous_Access_Type,
12053 E_Anonymous_Access_Subprogram_Type)
12054 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12055 and then
12056 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12057 then
12058 if Type_Access_Level (Target_Type) <
12059 Deepest_Type_Access_Level (Opnd_Type)
12060 then
12061 if In_Instance_Body then
12062 Error_Msg_Warn := SPARK_Mode /= On;
12063 Conversion_Error_N
12064 ("source array type has deeper accessibility "
12065 & "level than target<<", Operand);
12066 Conversion_Error_N ("\Program_Error [<<", Operand);
12067 Rewrite (N,
12068 Make_Raise_Program_Error (Sloc (N),
12069 Reason => PE_Accessibility_Check_Failed));
12070 Set_Etype (N, Target_Type);
12071 return False;
12073 -- Conversion not allowed because of accessibility levels
12075 else
12076 Conversion_Error_N
12077 ("source array type has deeper accessibility "
12078 & "level than target", Operand);
12079 return False;
12080 end if;
12082 else
12083 null;
12084 end if;
12086 -- All other cases where component base types do not match
12088 else
12089 Conversion_Error_N
12090 ("incompatible component types for array conversion",
12091 Operand);
12092 return False;
12093 end if;
12095 -- Check that component subtypes statically match. For numeric
12096 -- types this means that both must be either constrained or
12097 -- unconstrained. For enumeration types the bounds must match.
12098 -- All of this is checked in Subtypes_Statically_Match.
12100 if not Subtypes_Statically_Match
12101 (Target_Comp_Type, Opnd_Comp_Type)
12102 then
12103 Conversion_Error_N
12104 ("component subtypes must statically match", Operand);
12105 return False;
12106 end if;
12107 end if;
12109 return True;
12110 end Valid_Array_Conversion;
12112 -----------------------------
12113 -- Valid_Tagged_Conversion --
12114 -----------------------------
12116 function Valid_Tagged_Conversion
12117 (Target_Type : Entity_Id;
12118 Opnd_Type : Entity_Id) return Boolean
12120 begin
12121 -- Upward conversions are allowed (RM 4.6(22))
12123 if Covers (Target_Type, Opnd_Type)
12124 or else Is_Ancestor (Target_Type, Opnd_Type)
12125 then
12126 return True;
12128 -- Downward conversion are allowed if the operand is class-wide
12129 -- (RM 4.6(23)).
12131 elsif Is_Class_Wide_Type (Opnd_Type)
12132 and then Covers (Opnd_Type, Target_Type)
12133 then
12134 return True;
12136 elsif Covers (Opnd_Type, Target_Type)
12137 or else Is_Ancestor (Opnd_Type, Target_Type)
12138 then
12139 return
12140 Conversion_Check (False,
12141 "downward conversion of tagged objects not allowed");
12143 -- Ada 2005 (AI-251): The conversion to/from interface types is
12144 -- always valid. The types involved may be class-wide (sub)types.
12146 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12147 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12148 then
12149 return True;
12151 -- If the operand is a class-wide type obtained through a limited_
12152 -- with clause, and the context includes the nonlimited view, use
12153 -- it to determine whether the conversion is legal.
12155 elsif Is_Class_Wide_Type (Opnd_Type)
12156 and then From_Limited_With (Opnd_Type)
12157 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12158 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12159 then
12160 return True;
12162 elsif Is_Access_Type (Opnd_Type)
12163 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12164 then
12165 return True;
12167 else
12168 Conversion_Error_NE
12169 ("invalid tagged conversion, not compatible with}",
12170 N, First_Subtype (Opnd_Type));
12171 return False;
12172 end if;
12173 end Valid_Tagged_Conversion;
12175 -- Start of processing for Valid_Conversion
12177 begin
12178 Check_Parameterless_Call (Operand);
12180 if Is_Overloaded (Operand) then
12181 declare
12182 I : Interp_Index;
12183 I1 : Interp_Index;
12184 It : Interp;
12185 It1 : Interp;
12186 N1 : Entity_Id;
12187 T1 : Entity_Id;
12189 begin
12190 -- Remove procedure calls, which syntactically cannot appear in
12191 -- this context, but which cannot be removed by type checking,
12192 -- because the context does not impose a type.
12194 -- The node may be labelled overloaded, but still contain only one
12195 -- interpretation because others were discarded earlier. If this
12196 -- is the case, retain the single interpretation if legal.
12198 Get_First_Interp (Operand, I, It);
12199 Opnd_Type := It.Typ;
12200 Get_Next_Interp (I, It);
12202 if Present (It.Typ)
12203 and then Opnd_Type /= Standard_Void_Type
12204 then
12205 -- More than one candidate interpretation is available
12207 Get_First_Interp (Operand, I, It);
12208 while Present (It.Typ) loop
12209 if It.Typ = Standard_Void_Type then
12210 Remove_Interp (I);
12211 end if;
12213 -- When compiling for a system where Address is of a visible
12214 -- integer type, spurious ambiguities can be produced when
12215 -- arithmetic operations have a literal operand and return
12216 -- System.Address or a descendant of it. These ambiguities
12217 -- are usually resolved by the context, but for conversions
12218 -- there is no context type and the removal of the spurious
12219 -- operations must be done explicitly here.
12221 if not Address_Is_Private
12222 and then Is_Descendant_Of_Address (It.Typ)
12223 then
12224 Remove_Interp (I);
12225 end if;
12227 Get_Next_Interp (I, It);
12228 end loop;
12229 end if;
12231 Get_First_Interp (Operand, I, It);
12232 I1 := I;
12233 It1 := It;
12235 if No (It.Typ) then
12236 Conversion_Error_N ("illegal operand in conversion", Operand);
12237 return False;
12238 end if;
12240 Get_Next_Interp (I, It);
12242 if Present (It.Typ) then
12243 N1 := It1.Nam;
12244 T1 := It1.Typ;
12245 It1 := Disambiguate (Operand, I1, I, Any_Type);
12247 if It1 = No_Interp then
12248 Conversion_Error_N
12249 ("ambiguous operand in conversion", Operand);
12251 -- If the interpretation involves a standard operator, use
12252 -- the location of the type, which may be user-defined.
12254 if Sloc (It.Nam) = Standard_Location then
12255 Error_Msg_Sloc := Sloc (It.Typ);
12256 else
12257 Error_Msg_Sloc := Sloc (It.Nam);
12258 end if;
12260 Conversion_Error_N -- CODEFIX
12261 ("\\possible interpretation#!", Operand);
12263 if Sloc (N1) = Standard_Location then
12264 Error_Msg_Sloc := Sloc (T1);
12265 else
12266 Error_Msg_Sloc := Sloc (N1);
12267 end if;
12269 Conversion_Error_N -- CODEFIX
12270 ("\\possible interpretation#!", Operand);
12272 return False;
12273 end if;
12274 end if;
12276 Set_Etype (Operand, It1.Typ);
12277 Opnd_Type := It1.Typ;
12278 end;
12279 end if;
12281 -- Deal with conversion of integer type to address if the pragma
12282 -- Allow_Integer_Address is in effect. We convert the conversion to
12283 -- an unchecked conversion in this case and we are all done.
12285 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12286 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12287 Analyze_And_Resolve (N, Target_Type);
12288 return True;
12289 end if;
12291 -- If we are within a child unit, check whether the type of the
12292 -- expression has an ancestor in a parent unit, in which case it
12293 -- belongs to its derivation class even if the ancestor is private.
12294 -- See RM 7.3.1 (5.2/3).
12296 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12298 -- Numeric types
12300 if Is_Numeric_Type (Target_Type) then
12302 -- A universal fixed expression can be converted to any numeric type
12304 if Opnd_Type = Universal_Fixed then
12305 return True;
12307 -- Also no need to check when in an instance or inlined body, because
12308 -- the legality has been established when the template was analyzed.
12309 -- Furthermore, numeric conversions may occur where only a private
12310 -- view of the operand type is visible at the instantiation point.
12311 -- This results in a spurious error if we check that the operand type
12312 -- is a numeric type.
12314 -- Note: in a previous version of this unit, the following tests were
12315 -- applied only for generated code (Comes_From_Source set to False),
12316 -- but in fact the test is required for source code as well, since
12317 -- this situation can arise in source code.
12319 elsif In_Instance_Code or else In_Inlined_Body then
12320 return True;
12322 -- Otherwise we need the conversion check
12324 else
12325 return Conversion_Check
12326 (Is_Numeric_Type (Opnd_Type)
12327 or else
12328 (Present (Inc_Ancestor)
12329 and then Is_Numeric_Type (Inc_Ancestor)),
12330 "illegal operand for numeric conversion");
12331 end if;
12333 -- Array types
12335 elsif Is_Array_Type (Target_Type) then
12336 if not Is_Array_Type (Opnd_Type)
12337 or else Opnd_Type = Any_Composite
12338 or else Opnd_Type = Any_String
12339 then
12340 Conversion_Error_N
12341 ("illegal operand for array conversion", Operand);
12342 return False;
12344 else
12345 return Valid_Array_Conversion;
12346 end if;
12348 -- Ada 2005 (AI-251): Internally generated conversions of access to
12349 -- interface types added to force the displacement of the pointer to
12350 -- reference the corresponding dispatch table.
12352 elsif not Comes_From_Source (N)
12353 and then Is_Access_Type (Target_Type)
12354 and then Is_Interface (Designated_Type (Target_Type))
12355 then
12356 return True;
12358 -- Ada 2005 (AI-251): Anonymous access types where target references an
12359 -- interface type.
12361 elsif Is_Access_Type (Opnd_Type)
12362 and then Ekind_In (Target_Type, E_General_Access_Type,
12363 E_Anonymous_Access_Type)
12364 and then Is_Interface (Directly_Designated_Type (Target_Type))
12365 then
12366 -- Check the static accessibility rule of 4.6(17). Note that the
12367 -- check is not enforced when within an instance body, since the
12368 -- RM requires such cases to be caught at run time.
12370 -- If the operand is a rewriting of an allocator no check is needed
12371 -- because there are no accessibility issues.
12373 if Nkind (Original_Node (N)) = N_Allocator then
12374 null;
12376 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12377 if Type_Access_Level (Opnd_Type) >
12378 Deepest_Type_Access_Level (Target_Type)
12379 then
12380 -- In an instance, this is a run-time check, but one we know
12381 -- will fail, so generate an appropriate warning. The raise
12382 -- will be generated by Expand_N_Type_Conversion.
12384 if In_Instance_Body then
12385 Error_Msg_Warn := SPARK_Mode /= On;
12386 Conversion_Error_N
12387 ("cannot convert local pointer to non-local access type<<",
12388 Operand);
12389 Conversion_Error_N ("\Program_Error [<<", Operand);
12391 else
12392 Conversion_Error_N
12393 ("cannot convert local pointer to non-local access type",
12394 Operand);
12395 return False;
12396 end if;
12398 -- Special accessibility checks are needed in the case of access
12399 -- discriminants declared for a limited type.
12401 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12402 and then not Is_Local_Anonymous_Access (Opnd_Type)
12403 then
12404 -- When the operand is a selected access discriminant the check
12405 -- needs to be made against the level of the object denoted by
12406 -- the prefix of the selected name (Object_Access_Level handles
12407 -- checking the prefix of the operand for this case).
12409 if Nkind (Operand) = N_Selected_Component
12410 and then Object_Access_Level (Operand) >
12411 Deepest_Type_Access_Level (Target_Type)
12412 then
12413 -- In an instance, this is a run-time check, but one we know
12414 -- will fail, so generate an appropriate warning. The raise
12415 -- will be generated by Expand_N_Type_Conversion.
12417 if In_Instance_Body then
12418 Error_Msg_Warn := SPARK_Mode /= On;
12419 Conversion_Error_N
12420 ("cannot convert access discriminant to non-local "
12421 & "access type<<", Operand);
12422 Conversion_Error_N ("\Program_Error [<<", Operand);
12424 -- Real error if not in instance body
12426 else
12427 Conversion_Error_N
12428 ("cannot convert access discriminant to non-local "
12429 & "access type", Operand);
12430 return False;
12431 end if;
12432 end if;
12434 -- The case of a reference to an access discriminant from
12435 -- within a limited type declaration (which will appear as
12436 -- a discriminal) is always illegal because the level of the
12437 -- discriminant is considered to be deeper than any (nameable)
12438 -- access type.
12440 if Is_Entity_Name (Operand)
12441 and then not Is_Local_Anonymous_Access (Opnd_Type)
12442 and then
12443 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12444 and then Present (Discriminal_Link (Entity (Operand)))
12445 then
12446 Conversion_Error_N
12447 ("discriminant has deeper accessibility level than target",
12448 Operand);
12449 return False;
12450 end if;
12451 end if;
12452 end if;
12454 return True;
12456 -- General and anonymous access types
12458 elsif Ekind_In (Target_Type, E_General_Access_Type,
12459 E_Anonymous_Access_Type)
12460 and then
12461 Conversion_Check
12462 (Is_Access_Type (Opnd_Type)
12463 and then not
12464 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12465 E_Access_Protected_Subprogram_Type),
12466 "must be an access-to-object type")
12467 then
12468 if Is_Access_Constant (Opnd_Type)
12469 and then not Is_Access_Constant (Target_Type)
12470 then
12471 Conversion_Error_N
12472 ("access-to-constant operand type not allowed", Operand);
12473 return False;
12474 end if;
12476 -- Check the static accessibility rule of 4.6(17). Note that the
12477 -- check is not enforced when within an instance body, since the RM
12478 -- requires such cases to be caught at run time.
12480 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12481 or else Is_Local_Anonymous_Access (Target_Type)
12482 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12483 N_Object_Declaration
12484 then
12485 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12486 -- conversions from an anonymous access type to a named general
12487 -- access type. Such conversions are not allowed in the case of
12488 -- access parameters and stand-alone objects of an anonymous
12489 -- access type. The implicit conversion case is recognized by
12490 -- testing that Comes_From_Source is False and that it's been
12491 -- rewritten. The Comes_From_Source test isn't sufficient because
12492 -- nodes in inlined calls to predefined library routines can have
12493 -- Comes_From_Source set to False. (Is there a better way to test
12494 -- for implicit conversions???)
12496 if Ada_Version >= Ada_2012
12497 and then not Comes_From_Source (N)
12498 and then N /= Original_Node (N)
12499 and then Ekind (Target_Type) = E_General_Access_Type
12500 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12501 then
12502 if Is_Itype (Opnd_Type) then
12504 -- Implicit conversions aren't allowed for objects of an
12505 -- anonymous access type, since such objects have nonstatic
12506 -- levels in Ada 2012.
12508 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12509 N_Object_Declaration
12510 then
12511 Conversion_Error_N
12512 ("implicit conversion of stand-alone anonymous "
12513 & "access object not allowed", Operand);
12514 return False;
12516 -- Implicit conversions aren't allowed for anonymous access
12517 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12518 -- is done to exclude anonymous access results.
12520 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12521 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12522 N_Function_Specification,
12523 N_Procedure_Specification)
12524 then
12525 Conversion_Error_N
12526 ("implicit conversion of anonymous access formal "
12527 & "not allowed", Operand);
12528 return False;
12530 -- This is a case where there's an enclosing object whose
12531 -- to which the "statically deeper than" relationship does
12532 -- not apply (such as an access discriminant selected from
12533 -- a dereference of an access parameter).
12535 elsif Object_Access_Level (Operand)
12536 = Scope_Depth (Standard_Standard)
12537 then
12538 Conversion_Error_N
12539 ("implicit conversion of anonymous access value "
12540 & "not allowed", Operand);
12541 return False;
12543 -- In other cases, the level of the operand's type must be
12544 -- statically less deep than that of the target type, else
12545 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12547 elsif Type_Access_Level (Opnd_Type) >
12548 Deepest_Type_Access_Level (Target_Type)
12549 then
12550 Conversion_Error_N
12551 ("implicit conversion of anonymous access value "
12552 & "violates accessibility", Operand);
12553 return False;
12554 end if;
12555 end if;
12557 elsif Type_Access_Level (Opnd_Type) >
12558 Deepest_Type_Access_Level (Target_Type)
12559 then
12560 -- In an instance, this is a run-time check, but one we know
12561 -- will fail, so generate an appropriate warning. The raise
12562 -- will be generated by Expand_N_Type_Conversion.
12564 if In_Instance_Body then
12565 Error_Msg_Warn := SPARK_Mode /= On;
12566 Conversion_Error_N
12567 ("cannot convert local pointer to non-local access type<<",
12568 Operand);
12569 Conversion_Error_N ("\Program_Error [<<", Operand);
12571 -- If not in an instance body, this is a real error
12573 else
12574 -- Avoid generation of spurious error message
12576 if not Error_Posted (N) then
12577 Conversion_Error_N
12578 ("cannot convert local pointer to non-local access type",
12579 Operand);
12580 end if;
12582 return False;
12583 end if;
12585 -- Special accessibility checks are needed in the case of access
12586 -- discriminants declared for a limited type.
12588 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12589 and then not Is_Local_Anonymous_Access (Opnd_Type)
12590 then
12591 -- When the operand is a selected access discriminant the check
12592 -- needs to be made against the level of the object denoted by
12593 -- the prefix of the selected name (Object_Access_Level handles
12594 -- checking the prefix of the operand for this case).
12596 if Nkind (Operand) = N_Selected_Component
12597 and then Object_Access_Level (Operand) >
12598 Deepest_Type_Access_Level (Target_Type)
12599 then
12600 -- In an instance, this is a run-time check, but one we know
12601 -- will fail, so generate an appropriate warning. The raise
12602 -- will be generated by Expand_N_Type_Conversion.
12604 if In_Instance_Body then
12605 Error_Msg_Warn := SPARK_Mode /= On;
12606 Conversion_Error_N
12607 ("cannot convert access discriminant to non-local "
12608 & "access type<<", Operand);
12609 Conversion_Error_N ("\Program_Error [<<", Operand);
12611 -- If not in an instance body, this is a real error
12613 else
12614 Conversion_Error_N
12615 ("cannot convert access discriminant to non-local "
12616 & "access type", Operand);
12617 return False;
12618 end if;
12619 end if;
12621 -- The case of a reference to an access discriminant from
12622 -- within a limited type declaration (which will appear as
12623 -- a discriminal) is always illegal because the level of the
12624 -- discriminant is considered to be deeper than any (nameable)
12625 -- access type.
12627 if Is_Entity_Name (Operand)
12628 and then
12629 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12630 and then Present (Discriminal_Link (Entity (Operand)))
12631 then
12632 Conversion_Error_N
12633 ("discriminant has deeper accessibility level than target",
12634 Operand);
12635 return False;
12636 end if;
12637 end if;
12638 end if;
12640 -- In the presence of limited_with clauses we have to use nonlimited
12641 -- views, if available.
12643 Check_Limited : declare
12644 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12645 -- Helper function to handle limited views
12647 --------------------------
12648 -- Full_Designated_Type --
12649 --------------------------
12651 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12652 Desig : constant Entity_Id := Designated_Type (T);
12654 begin
12655 -- Handle the limited view of a type
12657 if From_Limited_With (Desig)
12658 and then Has_Non_Limited_View (Desig)
12659 then
12660 return Available_View (Desig);
12661 else
12662 return Desig;
12663 end if;
12664 end Full_Designated_Type;
12666 -- Local Declarations
12668 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12669 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12671 Same_Base : constant Boolean :=
12672 Base_Type (Target) = Base_Type (Opnd);
12674 -- Start of processing for Check_Limited
12676 begin
12677 if Is_Tagged_Type (Target) then
12678 return Valid_Tagged_Conversion (Target, Opnd);
12680 else
12681 if not Same_Base then
12682 Conversion_Error_NE
12683 ("target designated type not compatible with }",
12684 N, Base_Type (Opnd));
12685 return False;
12687 -- Ada 2005 AI-384: legality rule is symmetric in both
12688 -- designated types. The conversion is legal (with possible
12689 -- constraint check) if either designated type is
12690 -- unconstrained.
12692 elsif Subtypes_Statically_Match (Target, Opnd)
12693 or else
12694 (Has_Discriminants (Target)
12695 and then
12696 (not Is_Constrained (Opnd)
12697 or else not Is_Constrained (Target)))
12698 then
12699 -- Special case, if Value_Size has been used to make the
12700 -- sizes different, the conversion is not allowed even
12701 -- though the subtypes statically match.
12703 if Known_Static_RM_Size (Target)
12704 and then Known_Static_RM_Size (Opnd)
12705 and then RM_Size (Target) /= RM_Size (Opnd)
12706 then
12707 Conversion_Error_NE
12708 ("target designated subtype not compatible with }",
12709 N, Opnd);
12710 Conversion_Error_NE
12711 ("\because sizes of the two designated subtypes differ",
12712 N, Opnd);
12713 return False;
12715 -- Normal case where conversion is allowed
12717 else
12718 return True;
12719 end if;
12721 else
12722 Error_Msg_NE
12723 ("target designated subtype not compatible with }",
12724 N, Opnd);
12725 return False;
12726 end if;
12727 end if;
12728 end Check_Limited;
12730 -- Access to subprogram types. If the operand is an access parameter,
12731 -- the type has a deeper accessibility that any master, and cannot be
12732 -- assigned. We must make an exception if the conversion is part of an
12733 -- assignment and the target is the return object of an extended return
12734 -- statement, because in that case the accessibility check takes place
12735 -- after the return.
12737 elsif Is_Access_Subprogram_Type (Target_Type)
12739 -- Note: this test of Opnd_Type is there to prevent entering this
12740 -- branch in the case of a remote access to subprogram type, which
12741 -- is internally represented as an E_Record_Type.
12743 and then Is_Access_Type (Opnd_Type)
12744 then
12745 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12746 and then Is_Entity_Name (Operand)
12747 and then Ekind (Entity (Operand)) = E_In_Parameter
12748 and then
12749 (Nkind (Parent (N)) /= N_Assignment_Statement
12750 or else not Is_Entity_Name (Name (Parent (N)))
12751 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12752 then
12753 Conversion_Error_N
12754 ("illegal attempt to store anonymous access to subprogram",
12755 Operand);
12756 Conversion_Error_N
12757 ("\value has deeper accessibility than any master "
12758 & "(RM 3.10.2 (13))",
12759 Operand);
12761 Error_Msg_NE
12762 ("\use named access type for& instead of access parameter",
12763 Operand, Entity (Operand));
12764 end if;
12766 -- Check that the designated types are subtype conformant
12768 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12769 Old_Id => Designated_Type (Opnd_Type),
12770 Err_Loc => N);
12772 -- Check the static accessibility rule of 4.6(20)
12774 if Type_Access_Level (Opnd_Type) >
12775 Deepest_Type_Access_Level (Target_Type)
12776 then
12777 Conversion_Error_N
12778 ("operand type has deeper accessibility level than target",
12779 Operand);
12781 -- Check that if the operand type is declared in a generic body,
12782 -- then the target type must be declared within that same body
12783 -- (enforces last sentence of 4.6(20)).
12785 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12786 declare
12787 O_Gen : constant Node_Id :=
12788 Enclosing_Generic_Body (Opnd_Type);
12790 T_Gen : Node_Id;
12792 begin
12793 T_Gen := Enclosing_Generic_Body (Target_Type);
12794 while Present (T_Gen) and then T_Gen /= O_Gen loop
12795 T_Gen := Enclosing_Generic_Body (T_Gen);
12796 end loop;
12798 if T_Gen /= O_Gen then
12799 Conversion_Error_N
12800 ("target type must be declared in same generic body "
12801 & "as operand type", N);
12802 end if;
12803 end;
12804 end if;
12806 return True;
12808 -- Remote access to subprogram types
12810 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12811 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12812 then
12813 -- It is valid to convert from one RAS type to another provided
12814 -- that their specification statically match.
12816 -- Note: at this point, remote access to subprogram types have been
12817 -- expanded to their E_Record_Type representation, and we need to
12818 -- go back to the original access type definition using the
12819 -- Corresponding_Remote_Type attribute in order to check that the
12820 -- designated profiles match.
12822 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12823 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12825 Check_Subtype_Conformant
12826 (New_Id =>
12827 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12828 Old_Id =>
12829 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12830 Err_Loc =>
12832 return True;
12834 -- If it was legal in the generic, it's legal in the instance
12836 elsif In_Instance_Body then
12837 return True;
12839 -- If both are tagged types, check legality of view conversions
12841 elsif Is_Tagged_Type (Target_Type)
12842 and then
12843 Is_Tagged_Type (Opnd_Type)
12844 then
12845 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12847 -- Types derived from the same root type are convertible
12849 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12850 return True;
12852 -- In an instance or an inlined body, there may be inconsistent views of
12853 -- the same type, or of types derived from a common root.
12855 elsif (In_Instance or In_Inlined_Body)
12856 and then
12857 Root_Type (Underlying_Type (Target_Type)) =
12858 Root_Type (Underlying_Type (Opnd_Type))
12859 then
12860 return True;
12862 -- Special check for common access type error case
12864 elsif Ekind (Target_Type) = E_Access_Type
12865 and then Is_Access_Type (Opnd_Type)
12866 then
12867 Conversion_Error_N ("target type must be general access type!", N);
12868 Conversion_Error_NE -- CODEFIX
12869 ("add ALL to }!", N, Target_Type);
12870 return False;
12872 -- Here we have a real conversion error
12874 else
12875 Conversion_Error_NE
12876 ("invalid conversion, not compatible with }", N, Opnd_Type);
12877 return False;
12878 end if;
12879 end Valid_Conversion;
12881 end Sem_Res;