better m128i constant materialization
[official-gcc.git] / libdecnumber / decNumberLocal.h
blob8beb8b12a00b3eb76d55b237b1419ee61cca657e
1 /* Local definitions for the decNumber C Library.
2 Copyright (C) 2007 Free Software Foundation, Inc.
3 Contributed by IBM Corporation. Author Mike Cowlishaw.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 In addition to the permissions in the GNU General Public License,
13 the Free Software Foundation gives you unlimited permission to link
14 the compiled version of this file into combinations with other
15 programs, and to distribute those combinations without any
16 restriction coming from the use of this file. (The General Public
17 License restrictions do apply in other respects; for example, they
18 cover modification of the file, and distribution when not linked
19 into a combine executable.)
21 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22 WARRANTY; without even the implied warranty of MERCHANTABILITY or
23 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
24 for more details.
26 You should have received a copy of the GNU General Public License
27 along with GCC; see the file COPYING. If not, write to the Free
28 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
29 02110-1301, USA. */
31 /* ------------------------------------------------------------------ */
32 /* decNumber package local type, tuning, and macro definitions */
33 /* ------------------------------------------------------------------ */
34 /* This header file is included by all modules in the decNumber */
35 /* library, and contains local type definitions, tuning parameters, */
36 /* etc. It should not need to be used by application programs. */
37 /* decNumber.h or one of decDouble (etc.) must be included first. */
38 /* ------------------------------------------------------------------ */
40 #if !defined(DECNUMBERLOC)
41 #define DECNUMBERLOC
42 #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */
43 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
45 #include <stdlib.h> /* for abs */
46 #include <string.h> /* for memset, strcpy */
47 #include "dconfig.h" /* for WORDS_BIGENDIAN */
49 /* Conditional code flag -- set this to match hardware platform */
50 /* 1=little-endian, 0=big-endian */
51 #if WORDS_BIGENDIAN
52 #define DECLITEND 0
53 #else
54 #define DECLITEND 1
55 #endif
57 #if !defined(DECLITEND)
58 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */
59 #endif
61 /* Conditional code flag -- set this to 1 for best performance */
62 #if !defined(DECUSE64)
63 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
64 #endif
66 /* Conditional check flags -- set these to 0 for best performance */
67 #if !defined(DECCHECK)
68 #define DECCHECK 0 /* 1 to enable robust checking */
69 #endif
70 #if !defined(DECALLOC)
71 #define DECALLOC 0 /* 1 to enable memory accounting */
72 #endif
73 #if !defined(DECTRACE)
74 #define DECTRACE 0 /* 1 to trace certain internals, etc. */
75 #endif
77 /* Tuning parameter for decNumber (arbitrary precision) module */
78 #if !defined(DECBUFFER)
79 #define DECBUFFER 36 /* Size basis for local buffers. This */
80 /* should be a common maximum precision */
81 /* rounded up to a multiple of 4; must */
82 /* be zero or positive. */
83 #endif
85 /* ---------------------------------------------------------------- */
86 /* Definitions for all modules (general-purpose) */
87 /* ---------------------------------------------------------------- */
89 /* Local names for common types -- for safety, decNumber modules do */
90 /* not use int or long directly. */
91 #define Flag uint8_t
92 #define Byte int8_t
93 #define uByte uint8_t
94 #define Short int16_t
95 #define uShort uint16_t
96 #define Int int32_t
97 #define uInt uint32_t
98 #define Unit decNumberUnit
99 #if DECUSE64
100 #define Long int64_t
101 #define uLong uint64_t
102 #endif
104 /* Development-use definitions */
105 typedef long int LI; /* for printf arguments only */
106 #define DECNOINT 0 /* 1 to check no internal use of 'int' */
107 /* or stdint types */
108 #if DECNOINT
109 /* if these interfere with your C includes, do not set DECNOINT */
110 #define int ? /* enable to ensure that plain C 'int' */
111 #define long ?? /* .. or 'long' types are not used */
112 #endif
114 /* Shared lookup tables */
115 extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */
116 extern const uInt DECPOWERS[10]; /* powers of ten table */
117 /* The following are included from decDPD.h */
118 #include "decDPDSymbols.h"
119 extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */
120 extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */
121 extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */
122 extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */
123 extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */
124 extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */
125 extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/
127 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
128 /* (that is, sets w to be the high-order word of the 64-bit result; */
129 /* the low-order word is simply u*v.) */
130 /* This version is derived from Knuth via Hacker's Delight; */
131 /* it seems to optimize better than some others tried */
132 #define LONGMUL32HI(w, u, v) { \
133 uInt u0, u1, v0, v1, w0, w1, w2, t; \
134 u0=u & 0xffff; u1=u>>16; \
135 v0=v & 0xffff; v1=v>>16; \
136 w0=u0*v0; \
137 t=u1*v0 + (w0>>16); \
138 w1=t & 0xffff; w2=t>>16; \
139 w1=u0*v1 + w1; \
140 (w)=u1*v1 + w2 + (w1>>16);}
142 /* ROUNDUP -- round an integer up to a multiple of n */
143 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
144 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */
146 /* ROUNDDOWN -- round an integer down to a multiple of n */
147 #define ROUNDDOWN(i, n) (((i)/n)*n)
148 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
150 /* References to multi-byte sequences under different sizes; these */
151 /* require locally declared variables, but do not violate strict */
152 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */
153 /* Variables needed are uswork, uiwork, etc. [so do not use at same */
154 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */
156 /* Return a uInt, etc., from bytes starting at a char* or uByte* */
157 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork)
158 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork)
160 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */
161 /* Returns i, evaluated, for convenience; has to use uiwork because */
162 /* i may be an expression. */
163 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork)
164 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork)
166 /* X10 and X100 -- multiply integer i by 10 or 100 */
167 /* [shifts are usually faster than multiply; could be conditional] */
168 #define X10(i) (((i)<<1)+((i)<<3))
169 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
171 /* MAXI and MINI -- general max & min (not in ANSI) for integers */
172 #define MAXI(x,y) ((x)<(y)?(y):(x))
173 #define MINI(x,y) ((x)>(y)?(y):(x))
175 /* Useful constants */
176 #define BILLION 1000000000 /* 10**9 */
177 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
178 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
181 /* ---------------------------------------------------------------- */
182 /* Definitions for arbitary-precision modules (only valid after */
183 /* decNumber.h has been included) */
184 /* ---------------------------------------------------------------- */
186 /* Limits and constants */
187 #define DECNUMMAXP 999999999 /* maximum precision code can handle */
188 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
189 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
190 #if (DECNUMMAXP != DEC_MAX_DIGITS)
191 #error Maximum digits mismatch
192 #endif
193 #if (DECNUMMAXE != DEC_MAX_EMAX)
194 #error Maximum exponent mismatch
195 #endif
196 #if (DECNUMMINE != DEC_MIN_EMIN)
197 #error Minimum exponent mismatch
198 #endif
200 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
201 /* digits, and D2UTABLE -- the initializer for the D2U table */
202 #if DECDPUN==1
203 #define DECDPUNMAX 9
204 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
205 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
206 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
207 48,49}
208 #elif DECDPUN==2
209 #define DECDPUNMAX 99
210 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
211 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
212 18,19,19,20,20,21,21,22,22,23,23,24,24,25}
213 #elif DECDPUN==3
214 #define DECDPUNMAX 999
215 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
216 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
217 13,14,14,14,15,15,15,16,16,16,17}
218 #elif DECDPUN==4
219 #define DECDPUNMAX 9999
220 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
221 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
222 11,11,11,12,12,12,12,13}
223 #elif DECDPUN==5
224 #define DECDPUNMAX 99999
225 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
226 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
227 9,9,10,10,10,10}
228 #elif DECDPUN==6
229 #define DECDPUNMAX 999999
230 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
231 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
232 8,8,8,8,8,9}
233 #elif DECDPUN==7
234 #define DECDPUNMAX 9999999
235 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
236 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
237 7,7,7,7,7,7}
238 #elif DECDPUN==8
239 #define DECDPUNMAX 99999999
240 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
241 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
242 6,6,6,6,6,7}
243 #elif DECDPUN==9
244 #define DECDPUNMAX 999999999
245 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
246 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
247 5,5,6,6,6,6}
248 #elif defined(DECDPUN)
249 #error DECDPUN must be in the range 1-9
250 #endif
252 /* ----- Shared data (in decNumber.c) ----- */
253 /* Public lookup table used by the D2U macro (see below) */
254 #define DECMAXD2U 49
255 extern const uByte d2utable[DECMAXD2U+1];
257 /* ----- Macros ----- */
258 /* ISZERO -- return true if decNumber dn is a zero */
259 /* [performance-critical in some situations] */
260 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
262 /* D2U -- return the number of Units needed to hold d digits */
263 /* (runtime version, with table lookaside for small d) */
264 #if DECDPUN==8
265 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
266 #elif DECDPUN==4
267 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
268 #else
269 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
270 #endif
271 /* SD2U -- static D2U macro (for compile-time calculation) */
272 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
274 /* MSUDIGITS -- returns digits in msu, from digits, calculated */
275 /* using D2U */
276 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
278 /* D2N -- return the number of decNumber structs that would be */
279 /* needed to contain that number of digits (and the initial */
280 /* decNumber struct) safely. Note that one Unit is included in the */
281 /* initial structure. Used for allocating space that is aligned on */
282 /* a decNumber struct boundary. */
283 #define D2N(d) \
284 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
286 /* TODIGIT -- macro to remove the leading digit from the unsigned */
287 /* integer u at column cut (counting from the right, LSD=0) and */
288 /* place it as an ASCII character into the character pointed to by */
289 /* c. Note that cut must be <= 9, and the maximum value for u is */
290 /* 2,000,000,000 (as is needed for negative exponents of */
291 /* subnormals). The unsigned integer pow is used as a temporary */
292 /* variable. */
293 #define TODIGIT(u, cut, c, pow) { \
294 *(c)='0'; \
295 pow=DECPOWERS[cut]*2; \
296 if ((u)>pow) { \
297 pow*=4; \
298 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
299 pow/=2; \
300 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
301 pow/=2; \
303 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
304 pow/=2; \
305 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
308 /* ---------------------------------------------------------------- */
309 /* Definitions for fixed-precision modules (only valid after */
310 /* decSingle.h, decDouble.h, or decQuad.h has been included) */
311 /* ---------------------------------------------------------------- */
313 /* bcdnum -- a structure describing a format-independent finite */
314 /* number, whose coefficient is a string of bcd8 uBytes */
315 typedef struct {
316 uByte *msd; /* -> most significant digit */
317 uByte *lsd; /* -> least ditto */
318 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
319 Int exponent; /* Unadjusted signed exponent (q), or */
320 /* DECFLOAT_NaN etc. for a special */
321 } bcdnum;
323 /* Test if exponent or bcdnum exponent must be a special, etc. */
324 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
325 #define EXPISINF(exp) (exp==DECFLOAT_Inf)
326 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
327 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
329 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
330 /* (array) notation (the 0 word or byte contains the sign bit), */
331 /* automatically adjusting for endianness; similarly address a word */
332 /* in the next-wider format (decFloatWider, or dfw) */
333 #define DECWORDS (DECBYTES/4)
334 #define DECWWORDS (DECWBYTES/4)
335 #if DECLITEND
336 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
337 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
338 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
339 #else
340 #define DFBYTE(df, off) ((df)->bytes[off])
341 #define DFWORD(df, off) ((df)->words[off])
342 #define DFWWORD(dfw, off) ((dfw)->words[off])
343 #endif
345 /* Tests for sign or specials, directly on DECFLOATs */
346 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
347 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
348 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
349 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
350 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
351 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
353 /* Shared lookup tables */
354 #include "decCommonSymbols.h"
355 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
356 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
358 /* Private generic (utility) routine */
359 #if DECCHECK || DECTRACE
360 extern void decShowNum(const bcdnum *, const char *);
361 #endif
363 /* Format-dependent macros and constants */
364 #if defined(DECPMAX)
366 /* Useful constants */
367 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
368 /* Top words for a zero */
369 #define SINGLEZERO 0x22500000
370 #define DOUBLEZERO 0x22380000
371 #define QUADZERO 0x22080000
372 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
374 /* Format-dependent common tests: */
375 /* DFISZERO -- test for (any) zero */
376 /* DFISCCZERO -- test for coefficient continuation being zero */
377 /* DFISCC01 -- test for coefficient contains only 0s and 1s */
378 /* DFISINT -- test for finite and exponent q=0 */
379 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
380 /* MSD=0 or 1 */
381 /* ZEROWORD is also defined here. */
382 /* In DFISZERO the first test checks the least-significant word */
383 /* (most likely to be non-zero); the penultimate tests MSD and */
384 /* DPDs in the signword, and the final test excludes specials and */
385 /* MSD>7. DFISINT similarly has to allow for the two forms of */
386 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
387 /* code. */
388 #if DECPMAX==7
389 #define ZEROWORD SINGLEZERO
390 /* [test macros not needed except for Zero] */
391 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
392 && (DFWORD(df, 0)&0x60000000)!=0x60000000)
393 #elif DECPMAX==16
394 #define ZEROWORD DOUBLEZERO
395 #define DFISZERO(df) ((DFWORD(df, 1)==0 \
396 && (DFWORD(df, 0)&0x1c03ffff)==0 \
397 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
398 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
399 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
400 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
401 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
402 && (DFWORD(df, 0)&0x0003ffff)==0)
403 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
404 && (DFWORD(df, 1)&~0x49124491)==0)
405 #elif DECPMAX==34
406 #define ZEROWORD QUADZERO
407 #define DFISZERO(df) ((DFWORD(df, 3)==0 \
408 && DFWORD(df, 2)==0 \
409 && DFWORD(df, 1)==0 \
410 && (DFWORD(df, 0)&0x1c003fff)==0 \
411 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
412 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
413 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
414 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
415 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
416 && DFWORD(df, 2)==0 \
417 && DFWORD(df, 1)==0 \
418 && (DFWORD(df, 0)&0x00003fff)==0)
420 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
421 && (DFWORD(df, 1)&~0x44912449)==0 \
422 && (DFWORD(df, 2)&~0x12449124)==0 \
423 && (DFWORD(df, 3)&~0x49124491)==0)
424 #endif
426 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
427 /* are a canonical declet [higher or lower bits are ignored]. */
428 /* declet is at offset 0 (from the right) in a uInt: */
429 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
430 /* declet is at offset k (a multiple of 2) in a uInt: */
431 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
432 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
433 /* declet is at offset k (a multiple of 2) in a pair of uInts: */
434 /* [the top 2 bits will always be in the more-significant uInt] */
435 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
436 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
437 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
439 /* Macro to test whether a full-length (length DECPMAX) BCD8 */
440 /* coefficient, starting at uByte u, is all zeros */
441 /* Test just the LSWord first, then the remainder as a sequence */
442 /* of tests in order to avoid same-level use of UBTOUI */
443 #if DECPMAX==7
444 #define ISCOEFFZERO(u) ( \
445 UBTOUI((u)+DECPMAX-4)==0 \
446 && UBTOUS((u)+DECPMAX-6)==0 \
447 && *(u)==0)
448 #elif DECPMAX==16
449 #define ISCOEFFZERO(u) ( \
450 UBTOUI((u)+DECPMAX-4)==0 \
451 && UBTOUI((u)+DECPMAX-8)==0 \
452 && UBTOUI((u)+DECPMAX-12)==0 \
453 && UBTOUI(u)==0)
454 #elif DECPMAX==34
455 #define ISCOEFFZERO(u) ( \
456 UBTOUI((u)+DECPMAX-4)==0 \
457 && UBTOUI((u)+DECPMAX-8)==0 \
458 && UBTOUI((u)+DECPMAX-12)==0 \
459 && UBTOUI((u)+DECPMAX-16)==0 \
460 && UBTOUI((u)+DECPMAX-20)==0 \
461 && UBTOUI((u)+DECPMAX-24)==0 \
462 && UBTOUI((u)+DECPMAX-28)==0 \
463 && UBTOUI((u)+DECPMAX-32)==0 \
464 && UBTOUS(u)==0)
465 #endif
467 /* Macros and masks for the exponent continuation field and MSD */
468 /* Get the exponent continuation from a decFloat *df as an Int */
469 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
470 /* Ditto, from the next-wider format */
471 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
472 /* Get the biased exponent similarly */
473 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
474 /* Get the unbiased exponent similarly */
475 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
476 /* Get the MSD similarly (as uInt) */
477 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
479 /* Compile-time computes of the exponent continuation field masks */
480 /* full exponent continuation field: */
481 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
482 /* same, not including its first digit (the qNaN/sNaN selector): */
483 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
485 /* Macros to decode the coefficient in a finite decFloat *df into */
486 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */
488 /* In-line sequence to convert least significant 10 bits of uInt */
489 /* dpd to three BCD8 digits starting at uByte u. Note that an */
490 /* extra byte is written to the right of the three digits because */
491 /* four bytes are moved at a time for speed; the alternative */
492 /* macro moves exactly three bytes (usually slower). */
493 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4)
494 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3)
496 /* Decode the declets. After extracting each one, it is decoded */
497 /* to BCD8 using a table lookup (also used for variable-length */
498 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
499 /* length which is not used, here). Fixed-length 4-byte moves */
500 /* are fast, however, almost everywhere, and so are used except */
501 /* for the final three bytes (to avoid overrun). The code below */
502 /* is 36 instructions for Doubles and about 70 for Quads, even */
503 /* on IA32. */
505 /* Two macros are defined for each format: */
506 /* GETCOEFF extracts the coefficient of the current format */
507 /* GETWCOEFF extracts the coefficient of the next-wider format. */
508 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
510 #if DECPMAX==7
511 #define GETCOEFF(df, bcd) { \
512 uInt sourhi=DFWORD(df, 0); \
513 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
514 dpd2bcd8(bcd+1, sourhi>>10); \
515 dpd2bcd83(bcd+4, sourhi);}
516 #define GETWCOEFF(df, bcd) { \
517 uInt sourhi=DFWWORD(df, 0); \
518 uInt sourlo=DFWWORD(df, 1); \
519 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
520 dpd2bcd8(bcd+1, sourhi>>8); \
521 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
522 dpd2bcd8(bcd+7, sourlo>>20); \
523 dpd2bcd8(bcd+10, sourlo>>10); \
524 dpd2bcd83(bcd+13, sourlo);}
526 #elif DECPMAX==16
527 #define GETCOEFF(df, bcd) { \
528 uInt sourhi=DFWORD(df, 0); \
529 uInt sourlo=DFWORD(df, 1); \
530 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
531 dpd2bcd8(bcd+1, sourhi>>8); \
532 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
533 dpd2bcd8(bcd+7, sourlo>>20); \
534 dpd2bcd8(bcd+10, sourlo>>10); \
535 dpd2bcd83(bcd+13, sourlo);}
536 #define GETWCOEFF(df, bcd) { \
537 uInt sourhi=DFWWORD(df, 0); \
538 uInt sourmh=DFWWORD(df, 1); \
539 uInt sourml=DFWWORD(df, 2); \
540 uInt sourlo=DFWWORD(df, 3); \
541 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
542 dpd2bcd8(bcd+1, sourhi>>4); \
543 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
544 dpd2bcd8(bcd+7, sourmh>>16); \
545 dpd2bcd8(bcd+10, sourmh>>6); \
546 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
547 dpd2bcd8(bcd+16, sourml>>18); \
548 dpd2bcd8(bcd+19, sourml>>8); \
549 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
550 dpd2bcd8(bcd+25, sourlo>>20); \
551 dpd2bcd8(bcd+28, sourlo>>10); \
552 dpd2bcd83(bcd+31, sourlo);}
554 #elif DECPMAX==34
555 #define GETCOEFF(df, bcd) { \
556 uInt sourhi=DFWORD(df, 0); \
557 uInt sourmh=DFWORD(df, 1); \
558 uInt sourml=DFWORD(df, 2); \
559 uInt sourlo=DFWORD(df, 3); \
560 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
561 dpd2bcd8(bcd+1, sourhi>>4); \
562 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
563 dpd2bcd8(bcd+7, sourmh>>16); \
564 dpd2bcd8(bcd+10, sourmh>>6); \
565 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
566 dpd2bcd8(bcd+16, sourml>>18); \
567 dpd2bcd8(bcd+19, sourml>>8); \
568 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
569 dpd2bcd8(bcd+25, sourlo>>20); \
570 dpd2bcd8(bcd+28, sourlo>>10); \
571 dpd2bcd83(bcd+31, sourlo);}
573 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
574 #endif
576 /* Macros to decode the coefficient in a finite decFloat *df into */
577 /* a base-billion uInt array, with the least-significant */
578 /* 0-999999999 'digit' at offset 0. */
580 /* Decode the declets. After extracting each one, it is decoded */
581 /* to binary using a table lookup. Three tables are used; one */
582 /* the usual DPD to binary, the other two pre-multiplied by 1000 */
583 /* and 1000000 to avoid multiplication during decode. These */
584 /* tables can also be used for multiplying up the MSD as the DPD */
585 /* code for 0 through 9 is the identity. */
586 #define DPD2BIN0 DPD2BIN /* for prettier code */
588 #if DECPMAX==7
589 #define GETCOEFFBILL(df, buf) { \
590 uInt sourhi=DFWORD(df, 0); \
591 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
592 +DPD2BINK[(sourhi>>10)&0x3ff] \
593 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
595 #elif DECPMAX==16
596 #define GETCOEFFBILL(df, buf) { \
597 uInt sourhi, sourlo; \
598 sourlo=DFWORD(df, 1); \
599 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
600 +DPD2BINK[(sourlo>>10)&0x3ff] \
601 +DPD2BINM[(sourlo>>20)&0x3ff]; \
602 sourhi=DFWORD(df, 0); \
603 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
604 +DPD2BINK[(sourhi>>8)&0x3ff] \
605 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
607 #elif DECPMAX==34
608 #define GETCOEFFBILL(df, buf) { \
609 uInt sourhi, sourmh, sourml, sourlo; \
610 sourlo=DFWORD(df, 3); \
611 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
612 +DPD2BINK[(sourlo>>10)&0x3ff] \
613 +DPD2BINM[(sourlo>>20)&0x3ff]; \
614 sourml=DFWORD(df, 2); \
615 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
616 +DPD2BINK[(sourml>>8)&0x3ff] \
617 +DPD2BINM[(sourml>>18)&0x3ff]; \
618 sourmh=DFWORD(df, 1); \
619 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
620 +DPD2BINK[(sourmh>>6)&0x3ff] \
621 +DPD2BINM[(sourmh>>16)&0x3ff]; \
622 sourhi=DFWORD(df, 0); \
623 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
624 +DPD2BINK[(sourhi>>4)&0x3ff] \
625 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
627 #endif
629 /* Macros to decode the coefficient in a finite decFloat *df into */
630 /* a base-thousand uInt array (of size DECLETS+1, to allow for */
631 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/
633 /* Decode the declets. After extracting each one, it is decoded */
634 /* to binary using a table lookup. */
635 #if DECPMAX==7
636 #define GETCOEFFTHOU(df, buf) { \
637 uInt sourhi=DFWORD(df, 0); \
638 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
639 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
640 (buf)[2]=DECCOMBMSD[sourhi>>26];}
642 #elif DECPMAX==16
643 #define GETCOEFFTHOU(df, buf) { \
644 uInt sourhi, sourlo; \
645 sourlo=DFWORD(df, 1); \
646 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
647 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
648 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
649 sourhi=DFWORD(df, 0); \
650 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
651 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
652 (buf)[5]=DECCOMBMSD[sourhi>>26];}
654 #elif DECPMAX==34
655 #define GETCOEFFTHOU(df, buf) { \
656 uInt sourhi, sourmh, sourml, sourlo; \
657 sourlo=DFWORD(df, 3); \
658 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
659 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
660 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
661 sourml=DFWORD(df, 2); \
662 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
663 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
664 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
665 sourmh=DFWORD(df, 1); \
666 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
667 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
668 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
669 sourhi=DFWORD(df, 0); \
670 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
671 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
672 (buf)[11]=DECCOMBMSD[sourhi>>26];}
673 #endif
676 /* Macros to decode the coefficient in a finite decFloat *df and */
677 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */
678 /* After the addition then most significant 'digit' in the array */
679 /* might have a value larger then 10 (with a maximum of 19). */
680 #if DECPMAX==7
681 #define ADDCOEFFTHOU(df, buf) { \
682 uInt sourhi=DFWORD(df, 0); \
683 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \
684 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
685 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \
686 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
687 (buf)[2]+=DECCOMBMSD[sourhi>>26];}
689 #elif DECPMAX==16
690 #define ADDCOEFFTHOU(df, buf) { \
691 uInt sourhi, sourlo; \
692 sourlo=DFWORD(df, 1); \
693 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
694 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
695 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
696 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
697 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
698 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
699 sourhi=DFWORD(df, 0); \
700 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
701 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
702 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \
703 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
704 (buf)[5]+=DECCOMBMSD[sourhi>>26];}
706 #elif DECPMAX==34
707 #define ADDCOEFFTHOU(df, buf) { \
708 uInt sourhi, sourmh, sourml, sourlo; \
709 sourlo=DFWORD(df, 3); \
710 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
711 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
712 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
713 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
714 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
715 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
716 sourml=DFWORD(df, 2); \
717 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
718 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
719 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \
720 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
721 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \
722 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \
723 sourmh=DFWORD(df, 1); \
724 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
725 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \
726 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \
727 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \
728 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \
729 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \
730 sourhi=DFWORD(df, 0); \
731 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
732 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \
733 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \
734 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \
735 (buf)[11]+=DECCOMBMSD[sourhi>>26];}
736 #endif
739 /* Set a decFloat to the maximum positive finite number (Nmax) */
740 #if DECPMAX==7
741 #define DFSETNMAX(df) \
742 {DFWORD(df, 0)=0x77f3fcff;}
743 #elif DECPMAX==16
744 #define DFSETNMAX(df) \
745 {DFWORD(df, 0)=0x77fcff3f; \
746 DFWORD(df, 1)=0xcff3fcff;}
747 #elif DECPMAX==34
748 #define DFSETNMAX(df) \
749 {DFWORD(df, 0)=0x77ffcff3; \
750 DFWORD(df, 1)=0xfcff3fcf; \
751 DFWORD(df, 2)=0xf3fcff3f; \
752 DFWORD(df, 3)=0xcff3fcff;}
753 #endif
755 /* [end of format-dependent macros and constants] */
756 #endif
758 #else
759 #error decNumberLocal included more than once
760 #endif