hppa: Export main in pr104869.C on hpux
[official-gcc.git] / gcc / tree-vect-loop-manip.cc
blobbcd90a331f5ad3d44486d87b97fb0c6110bee0de
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
50 #include "insn-config.h"
51 #include "rtl.h"
52 #include "recog.h"
53 #include "langhooks.h"
54 #include "tree-vector-builder.h"
55 #include "optabs-tree.h"
57 /*************************************************************************
58 Simple Loop Peeling Utilities
60 Utilities to support loop peeling for vectorization purposes.
61 *************************************************************************/
64 /* Renames the use *OP_P. */
66 static void
67 rename_use_op (use_operand_p op_p)
69 tree new_name;
71 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
72 return;
74 new_name = get_current_def (USE_FROM_PTR (op_p));
76 /* Something defined outside of the loop. */
77 if (!new_name)
78 return;
80 /* An ordinary ssa name defined in the loop. */
82 SET_USE (op_p, new_name);
86 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
87 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
88 true. */
90 static void
91 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
93 gimple *stmt;
94 use_operand_p use_p;
95 ssa_op_iter iter;
96 edge e;
97 edge_iterator ei;
98 class loop *loop = bb->loop_father;
99 class loop *outer_loop = NULL;
101 if (rename_from_outer_loop)
103 gcc_assert (loop);
104 outer_loop = loop_outer (loop);
107 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
108 gsi_next (&gsi))
110 stmt = gsi_stmt (gsi);
111 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
112 rename_use_op (use_p);
115 FOR_EACH_EDGE (e, ei, bb->preds)
117 if (!flow_bb_inside_loop_p (loop, e->src))
119 if (!rename_from_outer_loop)
120 continue;
121 if (e->src != outer_loop->header)
123 if (outer_loop->inner->next)
125 /* If outer_loop has 2 inner loops, allow there to
126 be an extra basic block which decides which of the
127 two loops to use using LOOP_VECTORIZED. */
128 if (!single_pred_p (e->src)
129 || single_pred (e->src) != outer_loop->header)
130 continue;
134 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
135 gsi_next (&gsi))
136 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
141 struct adjust_info
143 tree from, to;
144 basic_block bb;
147 /* A stack of values to be adjusted in debug stmts. We have to
148 process them LIFO, so that the closest substitution applies. If we
149 processed them FIFO, without the stack, we might substitute uses
150 with a PHI DEF that would soon become non-dominant, and when we got
151 to the suitable one, it wouldn't have anything to substitute any
152 more. */
153 static vec<adjust_info, va_heap> adjust_vec;
155 /* Adjust any debug stmts that referenced AI->from values to use the
156 loop-closed AI->to, if the references are dominated by AI->bb and
157 not by the definition of AI->from. */
159 static void
160 adjust_debug_stmts_now (adjust_info *ai)
162 basic_block bbphi = ai->bb;
163 tree orig_def = ai->from;
164 tree new_def = ai->to;
165 imm_use_iterator imm_iter;
166 gimple *stmt;
167 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
169 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
171 /* Adjust any debug stmts that held onto non-loop-closed
172 references. */
173 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
175 use_operand_p use_p;
176 basic_block bbuse;
178 if (!is_gimple_debug (stmt))
179 continue;
181 gcc_assert (gimple_debug_bind_p (stmt));
183 bbuse = gimple_bb (stmt);
185 if ((bbuse == bbphi
186 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
187 && !(bbuse == bbdef
188 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
190 if (new_def)
191 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
192 SET_USE (use_p, new_def);
193 else
195 gimple_debug_bind_reset_value (stmt);
196 update_stmt (stmt);
202 /* Adjust debug stmts as scheduled before. */
204 static void
205 adjust_vec_debug_stmts (void)
207 if (!MAY_HAVE_DEBUG_BIND_STMTS)
208 return;
210 gcc_assert (adjust_vec.exists ());
212 while (!adjust_vec.is_empty ())
214 adjust_debug_stmts_now (&adjust_vec.last ());
215 adjust_vec.pop ();
219 /* Adjust any debug stmts that referenced FROM values to use the
220 loop-closed TO, if the references are dominated by BB and not by
221 the definition of FROM. If adjust_vec is non-NULL, adjustments
222 will be postponed until adjust_vec_debug_stmts is called. */
224 static void
225 adjust_debug_stmts (tree from, tree to, basic_block bb)
227 adjust_info ai;
229 if (MAY_HAVE_DEBUG_BIND_STMTS
230 && TREE_CODE (from) == SSA_NAME
231 && ! SSA_NAME_IS_DEFAULT_DEF (from)
232 && ! virtual_operand_p (from))
234 ai.from = from;
235 ai.to = to;
236 ai.bb = bb;
238 if (adjust_vec.exists ())
239 adjust_vec.safe_push (ai);
240 else
241 adjust_debug_stmts_now (&ai);
245 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
246 to adjust any debug stmts that referenced the old phi arg,
247 presumably non-loop-closed references left over from other
248 transformations. */
250 static void
251 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
253 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
255 gcc_assert (TREE_CODE (orig_def) != SSA_NAME
256 || orig_def != new_def);
258 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
260 if (MAY_HAVE_DEBUG_BIND_STMTS)
261 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
262 gimple_bb (update_phi));
265 /* Define one loop rgroup control CTRL from loop LOOP. INIT_CTRL is the value
266 that the control should have during the first iteration and NEXT_CTRL is the
267 value that it should have on subsequent iterations. */
269 static void
270 vect_set_loop_control (class loop *loop, tree ctrl, tree init_ctrl,
271 tree next_ctrl)
273 gphi *phi = create_phi_node (ctrl, loop->header);
274 add_phi_arg (phi, init_ctrl, loop_preheader_edge (loop), UNKNOWN_LOCATION);
275 add_phi_arg (phi, next_ctrl, loop_latch_edge (loop), UNKNOWN_LOCATION);
278 /* Add SEQ to the end of LOOP's preheader block. */
280 static void
281 add_preheader_seq (class loop *loop, gimple_seq seq)
283 if (seq)
285 edge pe = loop_preheader_edge (loop);
286 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
287 gcc_assert (!new_bb);
291 /* Add SEQ to the beginning of LOOP's header block. */
293 static void
294 add_header_seq (class loop *loop, gimple_seq seq)
296 if (seq)
298 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
299 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
303 /* Return true if the target can interleave elements of two vectors.
304 OFFSET is 0 if the first half of the vectors should be interleaved
305 or 1 if the second half should. When returning true, store the
306 associated permutation in INDICES. */
308 static bool
309 interleave_supported_p (vec_perm_indices *indices, tree vectype,
310 unsigned int offset)
312 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
313 poly_uint64 base = exact_div (nelts, 2) * offset;
314 vec_perm_builder sel (nelts, 2, 3);
315 for (unsigned int i = 0; i < 3; ++i)
317 sel.quick_push (base + i);
318 sel.quick_push (base + i + nelts);
320 indices->new_vector (sel, 2, nelts);
321 return can_vec_perm_const_p (TYPE_MODE (vectype), TYPE_MODE (vectype),
322 *indices);
325 /* Try to use permutes to define the masks in DEST_RGM using the masks
326 in SRC_RGM, given that the former has twice as many masks as the
327 latter. Return true on success, adding any new statements to SEQ. */
329 static bool
330 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_controls *dest_rgm,
331 rgroup_controls *src_rgm)
333 tree src_masktype = src_rgm->type;
334 tree dest_masktype = dest_rgm->type;
335 machine_mode src_mode = TYPE_MODE (src_masktype);
336 insn_code icode1, icode2;
337 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
338 && (icode1 = optab_handler (vec_unpacku_hi_optab,
339 src_mode)) != CODE_FOR_nothing
340 && (icode2 = optab_handler (vec_unpacku_lo_optab,
341 src_mode)) != CODE_FOR_nothing)
343 /* Unpacking the source masks gives at least as many mask bits as
344 we need. We can then VIEW_CONVERT any excess bits away. */
345 machine_mode dest_mode = insn_data[icode1].operand[0].mode;
346 gcc_assert (dest_mode == insn_data[icode2].operand[0].mode);
347 tree unpack_masktype = vect_halve_mask_nunits (src_masktype, dest_mode);
348 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
350 tree src = src_rgm->controls[i / 2];
351 tree dest = dest_rgm->controls[i];
352 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
353 ? VEC_UNPACK_HI_EXPR
354 : VEC_UNPACK_LO_EXPR);
355 gassign *stmt;
356 if (dest_masktype == unpack_masktype)
357 stmt = gimple_build_assign (dest, code, src);
358 else
360 tree temp = make_ssa_name (unpack_masktype);
361 stmt = gimple_build_assign (temp, code, src);
362 gimple_seq_add_stmt (seq, stmt);
363 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
364 build1 (VIEW_CONVERT_EXPR,
365 dest_masktype, temp));
367 gimple_seq_add_stmt (seq, stmt);
369 return true;
371 vec_perm_indices indices[2];
372 if (dest_masktype == src_masktype
373 && interleave_supported_p (&indices[0], src_masktype, 0)
374 && interleave_supported_p (&indices[1], src_masktype, 1))
376 /* The destination requires twice as many mask bits as the source, so
377 we can use interleaving permutes to double up the number of bits. */
378 tree masks[2];
379 for (unsigned int i = 0; i < 2; ++i)
380 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
381 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
383 tree src = src_rgm->controls[i / 2];
384 tree dest = dest_rgm->controls[i];
385 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
386 src, src, masks[i & 1]);
387 gimple_seq_add_stmt (seq, stmt);
389 return true;
391 return false;
394 /* Populate DEST_RGM->controls, given that they should add up to STEP.
396 STEP = MIN_EXPR <ivtmp_34, VF>;
398 First length (MIN (X, VF/N)):
399 loop_len_15 = MIN_EXPR <STEP, VF/N>;
401 Second length:
402 tmp = STEP - loop_len_15;
403 loop_len_16 = MIN (tmp, VF/N);
405 Third length:
406 tmp2 = tmp - loop_len_16;
407 loop_len_17 = MIN (tmp2, VF/N);
409 Last length:
410 loop_len_18 = tmp2 - loop_len_17;
413 static void
414 vect_adjust_loop_lens_control (tree iv_type, gimple_seq *seq,
415 rgroup_controls *dest_rgm, tree step)
417 tree ctrl_type = dest_rgm->type;
418 poly_uint64 nitems_per_ctrl
419 = TYPE_VECTOR_SUBPARTS (ctrl_type) * dest_rgm->factor;
420 tree length_limit = build_int_cst (iv_type, nitems_per_ctrl);
422 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
424 tree ctrl = dest_rgm->controls[i];
425 if (i == 0)
427 /* First iteration: MIN (X, VF/N) capped to the range [0, VF/N]. */
428 gassign *assign
429 = gimple_build_assign (ctrl, MIN_EXPR, step, length_limit);
430 gimple_seq_add_stmt (seq, assign);
432 else if (i == dest_rgm->controls.length () - 1)
434 /* Last iteration: Remain capped to the range [0, VF/N]. */
435 gassign *assign = gimple_build_assign (ctrl, MINUS_EXPR, step,
436 dest_rgm->controls[i - 1]);
437 gimple_seq_add_stmt (seq, assign);
439 else
441 /* (MIN (remain, VF*I/N)) capped to the range [0, VF/N]. */
442 step = gimple_build (seq, MINUS_EXPR, iv_type, step,
443 dest_rgm->controls[i - 1]);
444 gassign *assign
445 = gimple_build_assign (ctrl, MIN_EXPR, step, length_limit);
446 gimple_seq_add_stmt (seq, assign);
451 /* Helper for vect_set_loop_condition_partial_vectors. Generate definitions
452 for all the rgroup controls in RGC and return a control that is nonzero
453 when the loop needs to iterate. Add any new preheader statements to
454 PREHEADER_SEQ. Use LOOP_COND_GSI to insert code before the exit gcond.
456 RGC belongs to loop LOOP. The loop originally iterated NITERS
457 times and has been vectorized according to LOOP_VINFO.
459 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
460 starts with NITERS_SKIP dummy iterations of the scalar loop before
461 the real work starts. The mask elements for these dummy iterations
462 must be 0, to ensure that the extra iterations do not have an effect.
464 It is known that:
466 NITERS * RGC->max_nscalars_per_iter * RGC->factor
468 does not overflow. However, MIGHT_WRAP_P says whether an induction
469 variable that starts at 0 and has step:
471 VF * RGC->max_nscalars_per_iter * RGC->factor
473 might overflow before hitting a value above:
475 (NITERS + NITERS_SKIP) * RGC->max_nscalars_per_iter * RGC->factor
477 This means that we cannot guarantee that such an induction variable
478 would ever hit a value that produces a set of all-false masks or zero
479 lengths for RGC.
481 Note: the cost of the code generated by this function is modeled
482 by vect_estimate_min_profitable_iters, so changes here may need
483 corresponding changes there. */
485 static tree
486 vect_set_loop_controls_directly (class loop *loop, loop_vec_info loop_vinfo,
487 gimple_seq *preheader_seq,
488 gimple_seq *header_seq,
489 gimple_stmt_iterator loop_cond_gsi,
490 rgroup_controls *rgc, tree niters,
491 tree niters_skip, bool might_wrap_p,
492 tree *iv_step, tree *compare_step)
494 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
495 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
496 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
498 tree ctrl_type = rgc->type;
499 unsigned int nitems_per_iter = rgc->max_nscalars_per_iter * rgc->factor;
500 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type) * rgc->factor;
501 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
502 tree length_limit = NULL_TREE;
503 /* For length, we need length_limit to ensure length in range. */
504 if (!use_masks_p)
505 length_limit = build_int_cst (compare_type, nitems_per_ctrl);
507 /* Calculate the maximum number of item values that the rgroup
508 handles in total, the number that it handles for each iteration
509 of the vector loop, and the number that it should skip during the
510 first iteration of the vector loop. */
511 tree nitems_total = niters;
512 tree nitems_step = build_int_cst (iv_type, vf);
513 tree nitems_skip = niters_skip;
514 if (nitems_per_iter != 1)
516 /* We checked before setting LOOP_VINFO_USING_PARTIAL_VECTORS_P that
517 these multiplications don't overflow. */
518 tree compare_factor = build_int_cst (compare_type, nitems_per_iter);
519 tree iv_factor = build_int_cst (iv_type, nitems_per_iter);
520 nitems_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
521 nitems_total, compare_factor);
522 nitems_step = gimple_build (preheader_seq, MULT_EXPR, iv_type,
523 nitems_step, iv_factor);
524 if (nitems_skip)
525 nitems_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
526 nitems_skip, compare_factor);
529 /* Create an induction variable that counts the number of items
530 processed. */
531 tree index_before_incr, index_after_incr;
532 gimple_stmt_iterator incr_gsi;
533 bool insert_after;
534 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
535 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo))
537 /* Create an IV that counts down from niters_total and whose step
538 is the (variable) amount processed in the current iteration:
540 _10 = (unsigned long) count_12(D);
542 # ivtmp_9 = PHI <ivtmp_35(6), _10(5)>
543 _36 = (MIN_EXPR | SELECT_VL) <ivtmp_9, POLY_INT_CST [4, 4]>;
545 vect__4.8_28 = .LEN_LOAD (_17, 32B, _36, 0);
547 ivtmp_35 = ivtmp_9 - POLY_INT_CST [4, 4];
549 if (ivtmp_9 > POLY_INT_CST [4, 4])
550 goto <bb 4>; [83.33%]
551 else
552 goto <bb 5>; [16.67%]
554 nitems_total = gimple_convert (preheader_seq, iv_type, nitems_total);
555 tree step = rgc->controls.length () == 1 ? rgc->controls[0]
556 : make_ssa_name (iv_type);
557 /* Create decrement IV. */
558 if (LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo))
560 create_iv (nitems_total, MINUS_EXPR, step, NULL_TREE, loop, &incr_gsi,
561 insert_after, &index_before_incr, &index_after_incr);
562 tree len = gimple_build (header_seq, IFN_SELECT_VL, iv_type,
563 index_before_incr, nitems_step);
564 gimple_seq_add_stmt (header_seq, gimple_build_assign (step, len));
566 else
568 create_iv (nitems_total, MINUS_EXPR, nitems_step, NULL_TREE, loop,
569 &incr_gsi, insert_after, &index_before_incr,
570 &index_after_incr);
571 gimple_seq_add_stmt (header_seq,
572 gimple_build_assign (step, MIN_EXPR,
573 index_before_incr,
574 nitems_step));
576 *iv_step = step;
577 *compare_step = nitems_step;
578 return LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo) ? index_after_incr
579 : index_before_incr;
582 /* Create increment IV. */
583 create_iv (build_int_cst (iv_type, 0), PLUS_EXPR, nitems_step, NULL_TREE,
584 loop, &incr_gsi, insert_after, &index_before_incr,
585 &index_after_incr);
587 tree zero_index = build_int_cst (compare_type, 0);
588 tree test_index, test_limit, first_limit;
589 gimple_stmt_iterator *test_gsi;
590 if (might_wrap_p)
592 /* In principle the loop should stop iterating once the incremented
593 IV reaches a value greater than or equal to:
595 NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP
597 However, there's no guarantee that this addition doesn't overflow
598 the comparison type, or that the IV hits a value above it before
599 wrapping around. We therefore adjust the limit down by one
600 IV step:
602 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
603 -[infinite-prec] NITEMS_STEP
605 and compare the IV against this limit _before_ incrementing it.
606 Since the comparison type is unsigned, we actually want the
607 subtraction to saturate at zero:
609 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
610 -[sat] NITEMS_STEP
612 And since NITEMS_SKIP < NITEMS_STEP, we can reassociate this as:
614 NITEMS_TOTAL -[sat] (NITEMS_STEP - NITEMS_SKIP)
616 where the rightmost subtraction can be done directly in
617 COMPARE_TYPE. */
618 test_index = index_before_incr;
619 tree adjust = gimple_convert (preheader_seq, compare_type,
620 nitems_step);
621 if (nitems_skip)
622 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
623 adjust, nitems_skip);
624 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
625 nitems_total, adjust);
626 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
627 test_limit, adjust);
628 test_gsi = &incr_gsi;
630 /* Get a safe limit for the first iteration. */
631 if (nitems_skip)
633 /* The first vector iteration can handle at most NITEMS_STEP
634 items. NITEMS_STEP <= CONST_LIMIT, and adding
635 NITEMS_SKIP to that cannot overflow. */
636 tree const_limit = build_int_cst (compare_type,
637 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
638 * nitems_per_iter);
639 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
640 nitems_total, const_limit);
641 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
642 first_limit, nitems_skip);
644 else
645 /* For the first iteration it doesn't matter whether the IV hits
646 a value above NITEMS_TOTAL. That only matters for the latch
647 condition. */
648 first_limit = nitems_total;
650 else
652 /* Test the incremented IV, which will always hit a value above
653 the bound before wrapping. */
654 test_index = index_after_incr;
655 test_limit = nitems_total;
656 if (nitems_skip)
657 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
658 test_limit, nitems_skip);
659 test_gsi = &loop_cond_gsi;
661 first_limit = test_limit;
664 /* Convert the IV value to the comparison type (either a no-op or
665 a demotion). */
666 gimple_seq test_seq = NULL;
667 test_index = gimple_convert (&test_seq, compare_type, test_index);
668 gsi_insert_seq_before (test_gsi, test_seq, GSI_SAME_STMT);
670 /* Provide a definition of each control in the group. */
671 tree next_ctrl = NULL_TREE;
672 tree ctrl;
673 unsigned int i;
674 FOR_EACH_VEC_ELT_REVERSE (rgc->controls, i, ctrl)
676 /* Previous controls will cover BIAS items. This control covers the
677 next batch. */
678 poly_uint64 bias = nitems_per_ctrl * i;
679 tree bias_tree = build_int_cst (compare_type, bias);
681 /* See whether the first iteration of the vector loop is known
682 to have a full control. */
683 poly_uint64 const_limit;
684 bool first_iteration_full
685 = (poly_int_tree_p (first_limit, &const_limit)
686 && known_ge (const_limit, (i + 1) * nitems_per_ctrl));
688 /* Rather than have a new IV that starts at BIAS and goes up to
689 TEST_LIMIT, prefer to use the same 0-based IV for each control
690 and adjust the bound down by BIAS. */
691 tree this_test_limit = test_limit;
692 if (i != 0)
694 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
695 compare_type, this_test_limit,
696 bias_tree);
697 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
698 compare_type, this_test_limit,
699 bias_tree);
702 /* Create the initial control. First include all items that
703 are within the loop limit. */
704 tree init_ctrl = NULL_TREE;
705 if (!first_iteration_full)
707 tree start, end;
708 if (first_limit == test_limit)
710 /* Use a natural test between zero (the initial IV value)
711 and the loop limit. The "else" block would be valid too,
712 but this choice can avoid the need to load BIAS_TREE into
713 a register. */
714 start = zero_index;
715 end = this_test_limit;
717 else
719 /* FIRST_LIMIT is the maximum number of items handled by the
720 first iteration of the vector loop. Test the portion
721 associated with this control. */
722 start = bias_tree;
723 end = first_limit;
726 if (use_masks_p)
727 init_ctrl = vect_gen_while (preheader_seq, ctrl_type,
728 start, end, "max_mask");
729 else
731 init_ctrl = make_temp_ssa_name (compare_type, NULL, "max_len");
732 gimple_seq seq = vect_gen_len (init_ctrl, start,
733 end, length_limit);
734 gimple_seq_add_seq (preheader_seq, seq);
738 /* Now AND out the bits that are within the number of skipped
739 items. */
740 poly_uint64 const_skip;
741 if (nitems_skip
742 && !(poly_int_tree_p (nitems_skip, &const_skip)
743 && known_le (const_skip, bias)))
745 gcc_assert (use_masks_p);
746 tree unskipped_mask = vect_gen_while_not (preheader_seq, ctrl_type,
747 bias_tree, nitems_skip);
748 if (init_ctrl)
749 init_ctrl = gimple_build (preheader_seq, BIT_AND_EXPR, ctrl_type,
750 init_ctrl, unskipped_mask);
751 else
752 init_ctrl = unskipped_mask;
755 if (!init_ctrl)
757 /* First iteration is full. */
758 if (use_masks_p)
759 init_ctrl = build_minus_one_cst (ctrl_type);
760 else
761 init_ctrl = length_limit;
764 /* Get the control value for the next iteration of the loop. */
765 if (use_masks_p)
767 gimple_seq stmts = NULL;
768 next_ctrl = vect_gen_while (&stmts, ctrl_type, test_index,
769 this_test_limit, "next_mask");
770 gsi_insert_seq_before (test_gsi, stmts, GSI_SAME_STMT);
772 else
774 next_ctrl = make_temp_ssa_name (compare_type, NULL, "next_len");
775 gimple_seq seq = vect_gen_len (next_ctrl, test_index, this_test_limit,
776 length_limit);
777 gsi_insert_seq_before (test_gsi, seq, GSI_SAME_STMT);
780 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
783 int partial_load_bias = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
784 if (partial_load_bias != 0)
786 tree adjusted_len = rgc->bias_adjusted_ctrl;
787 gassign *minus = gimple_build_assign (adjusted_len, PLUS_EXPR,
788 rgc->controls[0],
789 build_int_cst
790 (TREE_TYPE (rgc->controls[0]),
791 partial_load_bias));
792 gimple_seq_add_stmt (header_seq, minus);
795 return next_ctrl;
798 /* Set up the iteration condition and rgroup controls for LOOP, given
799 that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the vectorized
800 loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
801 the number of iterations of the original scalar loop that should be
802 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
803 for vect_set_loop_condition.
805 Insert the branch-back condition before LOOP_COND_GSI and return the
806 final gcond. */
808 static gcond *
809 vect_set_loop_condition_partial_vectors (class loop *loop, edge exit_edge,
810 loop_vec_info loop_vinfo, tree niters,
811 tree final_iv, bool niters_maybe_zero,
812 gimple_stmt_iterator loop_cond_gsi)
814 gimple_seq preheader_seq = NULL;
815 gimple_seq header_seq = NULL;
817 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
818 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
819 unsigned int compare_precision = TYPE_PRECISION (compare_type);
820 tree orig_niters = niters;
822 /* Type of the initial value of NITERS. */
823 tree ni_actual_type = TREE_TYPE (niters);
824 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
825 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
826 if (niters_skip)
827 niters_skip = gimple_convert (&preheader_seq, compare_type, niters_skip);
829 /* Convert NITERS to the same size as the compare. */
830 if (compare_precision > ni_actual_precision
831 && niters_maybe_zero)
833 /* We know that there is always at least one iteration, so if the
834 count is zero then it must have wrapped. Cope with this by
835 subtracting 1 before the conversion and adding 1 to the result. */
836 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
837 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
838 niters, build_minus_one_cst (ni_actual_type));
839 niters = gimple_convert (&preheader_seq, compare_type, niters);
840 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
841 niters, build_one_cst (compare_type));
843 else
844 niters = gimple_convert (&preheader_seq, compare_type, niters);
846 /* Iterate over all the rgroups and fill in their controls. We could use
847 the first control from any rgroup for the loop condition; here we
848 arbitrarily pick the last. */
849 tree test_ctrl = NULL_TREE;
850 tree iv_step = NULL_TREE;
851 tree compare_step = NULL_TREE;
852 rgroup_controls *rgc;
853 rgroup_controls *iv_rgc = nullptr;
854 unsigned int i;
855 auto_vec<rgroup_controls> *controls = use_masks_p
856 ? &LOOP_VINFO_MASKS (loop_vinfo).rgc_vec
857 : &LOOP_VINFO_LENS (loop_vinfo);
858 FOR_EACH_VEC_ELT (*controls, i, rgc)
859 if (!rgc->controls.is_empty ())
861 /* First try using permutes. This adds a single vector
862 instruction to the loop for each mask, but needs no extra
863 loop invariants or IVs. */
864 unsigned int nmasks = i + 1;
865 if (use_masks_p && (nmasks & 1) == 0)
867 rgroup_controls *half_rgc = &(*controls)[nmasks / 2 - 1];
868 if (!half_rgc->controls.is_empty ()
869 && vect_maybe_permute_loop_masks (&header_seq, rgc, half_rgc))
870 continue;
873 if (!LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
874 || !iv_rgc
875 || (iv_rgc->max_nscalars_per_iter * iv_rgc->factor
876 != rgc->max_nscalars_per_iter * rgc->factor))
878 /* See whether zero-based IV would ever generate all-false masks
879 or zero length before wrapping around. */
880 bool might_wrap_p = vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc);
882 /* Set up all controls for this group. */
883 test_ctrl
884 = vect_set_loop_controls_directly (loop, loop_vinfo,
885 &preheader_seq, &header_seq,
886 loop_cond_gsi, rgc, niters,
887 niters_skip, might_wrap_p,
888 &iv_step, &compare_step);
890 iv_rgc = rgc;
893 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
894 && rgc->controls.length () > 1)
896 /* vect_set_loop_controls_directly creates an IV whose step
897 is equal to the expected sum of RGC->controls. Use that
898 information to populate RGC->controls. */
899 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
900 gcc_assert (iv_step);
901 vect_adjust_loop_lens_control (iv_type, &header_seq, rgc, iv_step);
905 /* Emit all accumulated statements. */
906 add_preheader_seq (loop, preheader_seq);
907 add_header_seq (loop, header_seq);
909 /* Get a boolean result that tells us whether to iterate. */
910 gcond *cond_stmt;
911 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
912 && !LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo))
914 gcc_assert (compare_step);
915 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? LE_EXPR : GT_EXPR;
916 cond_stmt = gimple_build_cond (code, test_ctrl, compare_step, NULL_TREE,
917 NULL_TREE);
919 else
921 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
922 tree zero_ctrl = build_zero_cst (TREE_TYPE (test_ctrl));
923 cond_stmt
924 = gimple_build_cond (code, test_ctrl, zero_ctrl, NULL_TREE, NULL_TREE);
926 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
928 /* The loop iterates (NITERS - 1) / VF + 1 times.
929 Subtract one from this to get the latch count. */
930 tree step = build_int_cst (compare_type,
931 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
932 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
933 build_minus_one_cst (compare_type));
934 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
935 niters_minus_one, step);
937 if (final_iv)
939 gassign *assign = gimple_build_assign (final_iv, orig_niters);
940 gsi_insert_on_edge_immediate (exit_edge, assign);
943 return cond_stmt;
946 /* Set up the iteration condition and rgroup controls for LOOP in AVX512
947 style, given that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the
948 vectorized loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
949 the number of iterations of the original scalar loop that should be
950 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
951 for vect_set_loop_condition.
953 Insert the branch-back condition before LOOP_COND_GSI and return the
954 final gcond. */
956 static gcond *
957 vect_set_loop_condition_partial_vectors_avx512 (class loop *loop,
958 edge exit_edge,
959 loop_vec_info loop_vinfo, tree niters,
960 tree final_iv,
961 bool niters_maybe_zero,
962 gimple_stmt_iterator loop_cond_gsi)
964 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
965 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
966 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
967 tree orig_niters = niters;
968 gimple_seq preheader_seq = NULL;
970 /* Create an IV that counts down from niters and whose step
971 is the number of iterations processed in the current iteration.
972 Produce the controls with compares like the following.
974 # iv_2 = PHI <niters, iv_3>
975 rem_4 = MIN <iv_2, VF>;
976 remv_6 = { rem_4, rem_4, rem_4, ... }
977 mask_5 = { 0, 0, 1, 1, 2, 2, ... } < remv6;
978 iv_3 = iv_2 - VF;
979 if (iv_2 > VF)
980 continue;
982 Where the constant is built with elements at most VF - 1 and
983 repetitions according to max_nscalars_per_iter which is guarnateed
984 to be the same within a group. */
986 /* Convert NITERS to the determined IV type. */
987 if (TYPE_PRECISION (iv_type) > TYPE_PRECISION (TREE_TYPE (niters))
988 && niters_maybe_zero)
990 /* We know that there is always at least one iteration, so if the
991 count is zero then it must have wrapped. Cope with this by
992 subtracting 1 before the conversion and adding 1 to the result. */
993 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (niters)));
994 niters = gimple_build (&preheader_seq, PLUS_EXPR, TREE_TYPE (niters),
995 niters, build_minus_one_cst (TREE_TYPE (niters)));
996 niters = gimple_convert (&preheader_seq, iv_type, niters);
997 niters = gimple_build (&preheader_seq, PLUS_EXPR, iv_type,
998 niters, build_one_cst (iv_type));
1000 else
1001 niters = gimple_convert (&preheader_seq, iv_type, niters);
1003 /* Bias the initial value of the IV in case we need to skip iterations
1004 at the beginning. */
1005 tree niters_adj = niters;
1006 if (niters_skip)
1008 tree skip = gimple_convert (&preheader_seq, iv_type, niters_skip);
1009 niters_adj = gimple_build (&preheader_seq, PLUS_EXPR,
1010 iv_type, niters, skip);
1013 /* The iteration step is the vectorization factor. */
1014 tree iv_step = build_int_cst (iv_type, vf);
1016 /* Create the decrement IV. */
1017 tree index_before_incr, index_after_incr;
1018 gimple_stmt_iterator incr_gsi;
1019 bool insert_after;
1020 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
1021 create_iv (niters_adj, MINUS_EXPR, iv_step, NULL_TREE, loop,
1022 &incr_gsi, insert_after, &index_before_incr,
1023 &index_after_incr);
1025 /* Iterate over all the rgroups and fill in their controls. */
1026 for (auto &rgc : LOOP_VINFO_MASKS (loop_vinfo).rgc_vec)
1028 if (rgc.controls.is_empty ())
1029 continue;
1031 tree ctrl_type = rgc.type;
1032 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type);
1034 tree vectype = rgc.compare_type;
1036 /* index_after_incr is the IV specifying the remaining iterations in
1037 the next iteration. */
1038 tree rem = index_after_incr;
1039 /* When the data type for the compare to produce the mask is
1040 smaller than the IV type we need to saturate. Saturate to
1041 the smallest possible value (IV_TYPE) so we only have to
1042 saturate once (CSE will catch redundant ones we add). */
1043 if (TYPE_PRECISION (TREE_TYPE (vectype)) < TYPE_PRECISION (iv_type))
1044 rem = gimple_build (&incr_gsi, false, GSI_CONTINUE_LINKING,
1045 UNKNOWN_LOCATION,
1046 MIN_EXPR, TREE_TYPE (rem), rem, iv_step);
1047 rem = gimple_convert (&incr_gsi, false, GSI_CONTINUE_LINKING,
1048 UNKNOWN_LOCATION, TREE_TYPE (vectype), rem);
1050 /* Build a data vector composed of the remaining iterations. */
1051 rem = gimple_build_vector_from_val (&incr_gsi, false, GSI_CONTINUE_LINKING,
1052 UNKNOWN_LOCATION, vectype, rem);
1054 /* Provide a definition of each vector in the control group. */
1055 tree next_ctrl = NULL_TREE;
1056 tree first_rem = NULL_TREE;
1057 tree ctrl;
1058 unsigned int i;
1059 FOR_EACH_VEC_ELT_REVERSE (rgc.controls, i, ctrl)
1061 /* Previous controls will cover BIAS items. This control covers the
1062 next batch. */
1063 poly_uint64 bias = nitems_per_ctrl * i;
1065 /* Build the constant to compare the remaining iters against,
1066 this is sth like { 0, 0, 1, 1, 2, 2, 3, 3, ... } appropriately
1067 split into pieces. */
1068 unsigned n = TYPE_VECTOR_SUBPARTS (ctrl_type).to_constant ();
1069 tree_vector_builder builder (vectype, n, 1);
1070 for (unsigned i = 0; i < n; ++i)
1072 unsigned HOST_WIDE_INT val
1073 = (i + bias.to_constant ()) / rgc.max_nscalars_per_iter;
1074 gcc_assert (val < vf.to_constant ());
1075 builder.quick_push (build_int_cst (TREE_TYPE (vectype), val));
1077 tree cmp_series = builder.build ();
1079 /* Create the initial control. First include all items that
1080 are within the loop limit. */
1081 tree init_ctrl = NULL_TREE;
1082 poly_uint64 const_limit;
1083 /* See whether the first iteration of the vector loop is known
1084 to have a full control. */
1085 if (poly_int_tree_p (niters, &const_limit)
1086 && known_ge (const_limit, (i + 1) * nitems_per_ctrl))
1087 init_ctrl = build_minus_one_cst (ctrl_type);
1088 else
1090 /* The remaining work items initially are niters. Saturate,
1091 splat and compare. */
1092 if (!first_rem)
1094 first_rem = niters;
1095 if (TYPE_PRECISION (TREE_TYPE (vectype))
1096 < TYPE_PRECISION (iv_type))
1097 first_rem = gimple_build (&preheader_seq,
1098 MIN_EXPR, TREE_TYPE (first_rem),
1099 first_rem, iv_step);
1100 first_rem = gimple_convert (&preheader_seq, TREE_TYPE (vectype),
1101 first_rem);
1102 first_rem = gimple_build_vector_from_val (&preheader_seq,
1103 vectype, first_rem);
1105 init_ctrl = gimple_build (&preheader_seq, LT_EXPR, ctrl_type,
1106 cmp_series, first_rem);
1109 /* Now AND out the bits that are within the number of skipped
1110 items. */
1111 poly_uint64 const_skip;
1112 if (niters_skip
1113 && !(poly_int_tree_p (niters_skip, &const_skip)
1114 && known_le (const_skip, bias)))
1116 /* For integer mode masks it's cheaper to shift out the bits
1117 since that avoids loading a constant. */
1118 gcc_assert (GET_MODE_CLASS (TYPE_MODE (ctrl_type)) == MODE_INT);
1119 init_ctrl = gimple_build (&preheader_seq, VIEW_CONVERT_EXPR,
1120 lang_hooks.types.type_for_mode
1121 (TYPE_MODE (ctrl_type), 1),
1122 init_ctrl);
1123 /* ??? But when the shift amount isn't constant this requires
1124 a round-trip to GRPs. We could apply the bias to either
1125 side of the compare instead. */
1126 tree shift = gimple_build (&preheader_seq, MULT_EXPR,
1127 TREE_TYPE (niters_skip), niters_skip,
1128 build_int_cst (TREE_TYPE (niters_skip),
1129 rgc.max_nscalars_per_iter));
1130 init_ctrl = gimple_build (&preheader_seq, LSHIFT_EXPR,
1131 TREE_TYPE (init_ctrl),
1132 init_ctrl, shift);
1133 init_ctrl = gimple_build (&preheader_seq, VIEW_CONVERT_EXPR,
1134 ctrl_type, init_ctrl);
1137 /* Get the control value for the next iteration of the loop. */
1138 next_ctrl = gimple_build (&incr_gsi, false, GSI_CONTINUE_LINKING,
1139 UNKNOWN_LOCATION,
1140 LT_EXPR, ctrl_type, cmp_series, rem);
1142 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
1146 /* Emit all accumulated statements. */
1147 add_preheader_seq (loop, preheader_seq);
1149 /* Adjust the exit test using the decrementing IV. */
1150 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? LE_EXPR : GT_EXPR;
1151 /* When we peel for alignment with niter_skip != 0 this can
1152 cause niter + niter_skip to wrap and since we are comparing the
1153 value before the decrement here we get a false early exit.
1154 We can't compare the value after decrement either because that
1155 decrement could wrap as well as we're not doing a saturating
1156 decrement. To avoid this situation we force a larger
1157 iv_type. */
1158 gcond *cond_stmt = gimple_build_cond (code, index_before_incr, iv_step,
1159 NULL_TREE, NULL_TREE);
1160 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
1162 /* The loop iterates (NITERS - 1 + NITERS_SKIP) / VF + 1 times.
1163 Subtract one from this to get the latch count. */
1164 tree niters_minus_one
1165 = fold_build2 (PLUS_EXPR, TREE_TYPE (orig_niters), orig_niters,
1166 build_minus_one_cst (TREE_TYPE (orig_niters)));
1167 tree niters_adj2 = fold_convert (iv_type, niters_minus_one);
1168 if (niters_skip)
1169 niters_adj2 = fold_build2 (PLUS_EXPR, iv_type, niters_minus_one,
1170 fold_convert (iv_type, niters_skip));
1171 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, iv_type,
1172 niters_adj2, iv_step);
1174 if (final_iv)
1176 gassign *assign = gimple_build_assign (final_iv, orig_niters);
1177 gsi_insert_on_edge_immediate (single_exit (loop), assign);
1180 return cond_stmt;
1184 /* Like vect_set_loop_condition, but handle the case in which the vector
1185 loop handles exactly VF scalars per iteration. */
1187 static gcond *
1188 vect_set_loop_condition_normal (loop_vec_info /* loop_vinfo */, edge exit_edge,
1189 class loop *loop, tree niters, tree step,
1190 tree final_iv, bool niters_maybe_zero,
1191 gimple_stmt_iterator loop_cond_gsi)
1193 tree indx_before_incr, indx_after_incr;
1194 gcond *cond_stmt;
1195 gcond *orig_cond;
1196 edge pe = loop_preheader_edge (loop);
1197 gimple_stmt_iterator incr_gsi;
1198 bool insert_after;
1199 enum tree_code code;
1200 tree niters_type = TREE_TYPE (niters);
1202 orig_cond = get_loop_exit_condition (exit_edge);
1203 gcc_assert (orig_cond);
1204 loop_cond_gsi = gsi_for_stmt (orig_cond);
1206 tree init, limit;
1207 if (!niters_maybe_zero && integer_onep (step))
1209 /* In this case we can use a simple 0-based IV:
1212 x = 0;
1216 x += 1;
1218 while (x < NITERS); */
1219 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
1220 init = build_zero_cst (niters_type);
1221 limit = niters;
1223 else
1225 /* The following works for all values of NITERS except 0:
1228 x = 0;
1232 x += STEP;
1234 while (x <= NITERS - STEP);
1236 so that the loop continues to iterate if x + STEP - 1 < NITERS
1237 but stops if x + STEP - 1 >= NITERS.
1239 However, if NITERS is zero, x never hits a value above NITERS - STEP
1240 before wrapping around. There are two obvious ways of dealing with
1241 this:
1243 - start at STEP - 1 and compare x before incrementing it
1244 - start at -1 and compare x after incrementing it
1246 The latter is simpler and is what we use. The loop in this case
1247 looks like:
1250 x = -1;
1254 x += STEP;
1256 while (x < NITERS - STEP);
1258 In both cases the loop limit is NITERS - STEP. */
1259 gimple_seq seq = NULL;
1260 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
1261 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
1262 if (seq)
1264 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1265 gcc_assert (!new_bb);
1267 if (niters_maybe_zero)
1269 /* Case C. */
1270 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
1271 init = build_all_ones_cst (niters_type);
1273 else
1275 /* Case B. */
1276 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
1277 init = build_zero_cst (niters_type);
1281 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
1282 create_iv (init, PLUS_EXPR, step, NULL_TREE, loop,
1283 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
1284 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
1285 true, NULL_TREE, true,
1286 GSI_SAME_STMT);
1287 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
1288 true, GSI_SAME_STMT);
1290 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
1291 NULL_TREE);
1293 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
1295 /* Record the number of latch iterations. */
1296 if (limit == niters)
1297 /* Case A: the loop iterates NITERS times. Subtract one to get the
1298 latch count. */
1299 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
1300 build_int_cst (niters_type, 1));
1301 else
1302 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
1303 Subtract one from this to get the latch count. */
1304 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
1305 limit, step);
1307 if (final_iv)
1309 gassign *assign;
1310 gcc_assert (single_pred_p (exit_edge->dest));
1311 tree phi_dest
1312 = integer_zerop (init) ? final_iv : copy_ssa_name (indx_after_incr);
1313 /* Make sure to maintain LC SSA form here and elide the subtraction
1314 if the value is zero. */
1315 gphi *phi = create_phi_node (phi_dest, exit_edge->dest);
1316 add_phi_arg (phi, indx_after_incr, exit_edge, UNKNOWN_LOCATION);
1317 if (!integer_zerop (init))
1319 assign = gimple_build_assign (final_iv, MINUS_EXPR,
1320 phi_dest, init);
1321 gimple_stmt_iterator gsi = gsi_after_labels (exit_edge->dest);
1322 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
1326 return cond_stmt;
1329 /* If we're using fully-masked loops, make LOOP iterate:
1331 N == (NITERS - 1) / STEP + 1
1333 times. When NITERS is zero, this is equivalent to making the loop
1334 execute (1 << M) / STEP times, where M is the precision of NITERS.
1335 NITERS_MAYBE_ZERO is true if this last case might occur.
1337 If we're not using fully-masked loops, make LOOP iterate:
1339 N == (NITERS - STEP) / STEP + 1
1341 times, where NITERS is known to be outside the range [1, STEP - 1].
1342 This is equivalent to making the loop execute NITERS / STEP times
1343 when NITERS is nonzero and (1 << M) / STEP times otherwise.
1344 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
1346 If FINAL_IV is nonnull, it is an SSA name that should be set to
1347 N * STEP on exit from the loop.
1349 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
1351 void
1352 vect_set_loop_condition (class loop *loop, edge loop_e, loop_vec_info loop_vinfo,
1353 tree niters, tree step, tree final_iv,
1354 bool niters_maybe_zero)
1356 gcond *cond_stmt;
1357 gcond *orig_cond = get_loop_exit_condition (loop_e);
1358 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
1360 if (loop_vinfo && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
1362 if (LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo) == vect_partial_vectors_avx512)
1363 cond_stmt = vect_set_loop_condition_partial_vectors_avx512 (loop, loop_e,
1364 loop_vinfo,
1365 niters, final_iv,
1366 niters_maybe_zero,
1367 loop_cond_gsi);
1368 else
1369 cond_stmt = vect_set_loop_condition_partial_vectors (loop, loop_e,
1370 loop_vinfo,
1371 niters, final_iv,
1372 niters_maybe_zero,
1373 loop_cond_gsi);
1375 else
1376 cond_stmt = vect_set_loop_condition_normal (loop_vinfo, loop_e, loop,
1377 niters,
1378 step, final_iv,
1379 niters_maybe_zero,
1380 loop_cond_gsi);
1382 /* Remove old loop exit test. */
1383 stmt_vec_info orig_cond_info;
1384 if (loop_vinfo
1385 && (orig_cond_info = loop_vinfo->lookup_stmt (orig_cond)))
1386 loop_vinfo->remove_stmt (orig_cond_info);
1387 else
1388 gsi_remove (&loop_cond_gsi, true);
1390 if (dump_enabled_p ())
1391 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: %G",
1392 (gimple *) cond_stmt);
1395 /* Given LOOP this function generates a new copy of it and puts it
1396 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
1397 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
1398 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
1399 entry or exit of LOOP. If FLOW_LOOPS then connect LOOP to SCALAR_LOOP as a
1400 continuation. This is correct for cases where one loop continues from the
1401 other like in the vectorizer, but not true for uses in e.g. loop distribution
1402 where the contents of the loop body are split but the iteration space of both
1403 copies remains the same.
1405 If UPDATED_DOMS is not NULL it is update with the list of basic blocks whoms
1406 dominators were updated during the peeling. */
1408 class loop *
1409 slpeel_tree_duplicate_loop_to_edge_cfg (class loop *loop, edge loop_exit,
1410 class loop *scalar_loop,
1411 edge scalar_exit, edge e, edge *new_e,
1412 bool flow_loops)
1414 class loop *new_loop;
1415 basic_block *new_bbs, *bbs, *pbbs;
1416 bool at_exit;
1417 bool was_imm_dom;
1418 basic_block exit_dest;
1419 edge exit, new_exit;
1420 bool duplicate_outer_loop = false;
1422 exit = loop_exit;
1423 at_exit = (e == exit);
1424 if (!at_exit && e != loop_preheader_edge (loop))
1425 return NULL;
1427 if (scalar_loop == NULL)
1429 scalar_loop = loop;
1430 scalar_exit = loop_exit;
1432 else if (scalar_loop == loop)
1433 scalar_exit = loop_exit;
1434 else
1436 /* Loop has been version, match exits up using the aux index. */
1437 for (edge exit : get_loop_exit_edges (scalar_loop))
1438 if (exit->aux == loop_exit->aux)
1440 scalar_exit = exit;
1441 break;
1444 gcc_assert (scalar_exit);
1447 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1448 pbbs = bbs + 1;
1449 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1450 /* Allow duplication of outer loops. */
1451 if (scalar_loop->inner)
1452 duplicate_outer_loop = true;
1454 /* Generate new loop structure. */
1455 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1456 duplicate_subloops (scalar_loop, new_loop);
1458 exit_dest = exit->dest;
1459 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1460 exit_dest) == loop->header ?
1461 true : false);
1463 /* Also copy the pre-header, this avoids jumping through hoops to
1464 duplicate the loop entry PHI arguments. Create an empty
1465 pre-header unconditionally for this. */
1466 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1467 edge entry_e = single_pred_edge (preheader);
1468 bbs[0] = preheader;
1469 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1471 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1472 &scalar_exit, 1, &new_exit, NULL,
1473 at_exit ? loop->latch : e->src, true);
1474 exit = loop_exit;
1475 basic_block new_preheader = new_bbs[0];
1477 gcc_assert (new_exit);
1479 /* Record the new loop exit information. new_loop doesn't have SCEV data and
1480 so we must initialize the exit information. */
1481 if (new_e)
1482 *new_e = new_exit;
1484 /* Before installing PHI arguments make sure that the edges
1485 into them match that of the scalar loop we analyzed. This
1486 makes sure the SLP tree matches up between the main vectorized
1487 loop and the epilogue vectorized copies. */
1488 if (single_succ_edge (preheader)->dest_idx
1489 != single_succ_edge (new_bbs[0])->dest_idx)
1491 basic_block swap_bb = new_bbs[1];
1492 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1493 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1494 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1495 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1497 if (duplicate_outer_loop)
1499 class loop *new_inner_loop = get_loop_copy (scalar_loop->inner);
1500 if (loop_preheader_edge (scalar_loop)->dest_idx
1501 != loop_preheader_edge (new_inner_loop)->dest_idx)
1503 basic_block swap_bb = new_inner_loop->header;
1504 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1505 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1506 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1507 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1511 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1513 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1514 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1515 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1517 /* Rename the exit uses. */
1518 for (edge exit : get_loop_exit_edges (new_loop))
1519 for (auto gsi = gsi_start_phis (exit->dest);
1520 !gsi_end_p (gsi); gsi_next (&gsi))
1522 tree orig_def = PHI_ARG_DEF_FROM_EDGE (gsi.phi (), exit);
1523 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), exit));
1524 if (MAY_HAVE_DEBUG_BIND_STMTS)
1525 adjust_debug_stmts (orig_def, PHI_RESULT (gsi.phi ()), exit->dest);
1528 auto loop_exits = get_loop_exit_edges (loop);
1529 auto_vec<basic_block> doms;
1531 if (at_exit) /* Add the loop copy at exit. */
1533 if (scalar_loop != loop && new_exit->dest != exit_dest)
1535 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1536 flush_pending_stmts (new_exit);
1539 auto_vec <gimple *> new_phis;
1540 hash_map <tree, tree> new_phi_args;
1541 /* First create the empty phi nodes so that when we flush the
1542 statements they can be filled in. However because there is no order
1543 between the PHI nodes in the exits and the loop headers we need to
1544 order them base on the order of the two headers. First record the new
1545 phi nodes. */
1546 for (auto gsi_from = gsi_start_phis (scalar_exit->dest);
1547 !gsi_end_p (gsi_from); gsi_next (&gsi_from))
1549 gimple *from_phi = gsi_stmt (gsi_from);
1550 tree new_res = copy_ssa_name (gimple_phi_result (from_phi));
1551 gphi *res = create_phi_node (new_res, new_preheader);
1552 new_phis.safe_push (res);
1555 /* Then redirect the edges and flush the changes. This writes out the new
1556 SSA names. */
1557 for (edge exit : loop_exits)
1559 edge temp_e = redirect_edge_and_branch (exit, new_preheader);
1560 flush_pending_stmts (temp_e);
1562 /* Record the new SSA names in the cache so that we can skip materializing
1563 them again when we fill in the rest of the LCSSA variables. */
1564 for (auto phi : new_phis)
1566 tree new_arg = gimple_phi_arg (phi, 0)->def;
1568 if (!SSA_VAR_P (new_arg))
1569 continue;
1570 /* If the PHI MEM node dominates the loop then we shouldn't create
1571 a new LC-SSSA PHI for it in the intermediate block. */
1572 /* A MEM phi that consitutes a new DEF for the vUSE chain can either
1573 be a .VDEF or a PHI that operates on MEM. And said definition
1574 must not be inside the main loop. Or we must be a parameter.
1575 In the last two cases we may remove a non-MEM PHI node, but since
1576 they dominate both loops the removal is unlikely to cause trouble
1577 as the exits must already be using them. */
1578 if (virtual_operand_p (new_arg)
1579 && (SSA_NAME_IS_DEFAULT_DEF (new_arg)
1580 || !flow_bb_inside_loop_p (loop,
1581 gimple_bb (SSA_NAME_DEF_STMT (new_arg)))))
1583 auto gsi = gsi_for_stmt (phi);
1584 remove_phi_node (&gsi, true);
1585 continue;
1587 new_phi_args.put (new_arg, gimple_phi_result (phi));
1589 if (TREE_CODE (new_arg) != SSA_NAME)
1590 continue;
1593 /* Copy the current loop LC PHI nodes between the original loop exit
1594 block and the new loop header. This allows us to later split the
1595 preheader block and still find the right LC nodes. */
1596 edge loop_entry = single_succ_edge (new_preheader);
1597 if (flow_loops)
1598 for (auto gsi_from = gsi_start_phis (loop->header),
1599 gsi_to = gsi_start_phis (new_loop->header);
1600 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1601 gsi_next (&gsi_from), gsi_next (&gsi_to))
1603 gimple *from_phi = gsi_stmt (gsi_from);
1604 gimple *to_phi = gsi_stmt (gsi_to);
1605 tree new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1606 loop_latch_edge (loop));
1608 /* Check if we've already created a new phi node during edge
1609 redirection. If we have, only propagate the value downwards. */
1610 if (tree *res = new_phi_args.get (new_arg))
1612 adjust_phi_and_debug_stmts (to_phi, loop_entry, *res);
1613 continue;
1616 tree new_res = copy_ssa_name (gimple_phi_result (from_phi));
1617 gphi *lcssa_phi = create_phi_node (new_res, new_preheader);
1619 /* Main loop exit should use the final iter value. */
1620 add_phi_arg (lcssa_phi, new_arg, loop_exit, UNKNOWN_LOCATION);
1622 adjust_phi_and_debug_stmts (to_phi, loop_entry, new_res);
1625 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
1627 if (was_imm_dom || duplicate_outer_loop)
1628 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1630 /* And remove the non-necessary forwarder again. Keep the other
1631 one so we have a proper pre-header for the loop at the exit edge. */
1632 redirect_edge_pred (single_succ_edge (preheader),
1633 single_pred (preheader));
1634 delete_basic_block (preheader);
1635 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1636 loop_preheader_edge (scalar_loop)->src);
1638 else /* Add the copy at entry. */
1640 /* Copy the current loop LC PHI nodes between the original loop exit
1641 block and the new loop header. This allows us to later split the
1642 preheader block and still find the right LC nodes. */
1643 if (flow_loops)
1644 for (auto gsi_from = gsi_start_phis (new_loop->header),
1645 gsi_to = gsi_start_phis (loop->header);
1646 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1647 gsi_next (&gsi_from), gsi_next (&gsi_to))
1649 gimple *from_phi = gsi_stmt (gsi_from);
1650 gimple *to_phi = gsi_stmt (gsi_to);
1651 tree new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1652 loop_latch_edge (new_loop));
1653 adjust_phi_and_debug_stmts (to_phi, loop_preheader_edge (loop),
1654 new_arg);
1657 if (scalar_loop != loop)
1659 /* Remove the non-necessary forwarder of scalar_loop again. */
1660 redirect_edge_pred (single_succ_edge (preheader),
1661 single_pred (preheader));
1662 delete_basic_block (preheader);
1663 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1664 loop_preheader_edge (scalar_loop)->src);
1665 preheader = split_edge (loop_preheader_edge (loop));
1666 entry_e = single_pred_edge (preheader);
1669 redirect_edge_and_branch_force (entry_e, new_preheader);
1670 flush_pending_stmts (entry_e);
1671 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1673 redirect_edge_and_branch_force (new_exit, preheader);
1674 flush_pending_stmts (new_exit);
1675 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1677 /* And remove the non-necessary forwarder again. Keep the other
1678 one so we have a proper pre-header for the loop at the exit edge. */
1679 redirect_edge_pred (single_succ_edge (new_preheader),
1680 single_pred (new_preheader));
1681 delete_basic_block (new_preheader);
1682 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1683 loop_preheader_edge (new_loop)->src);
1686 free (new_bbs);
1687 free (bbs);
1689 checking_verify_dominators (CDI_DOMINATORS);
1691 return new_loop;
1695 /* Given the condition expression COND, put it as the last statement of
1696 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1697 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1698 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1699 new edge as irreducible if IRREDUCIBLE_P is true. */
1701 static edge
1702 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1703 basic_block guard_to, basic_block dom_bb,
1704 profile_probability probability, bool irreducible_p)
1706 gimple_stmt_iterator gsi;
1707 edge new_e, enter_e;
1708 gcond *cond_stmt;
1709 gimple_seq gimplify_stmt_list = NULL;
1711 enter_e = EDGE_SUCC (guard_bb, 0);
1712 enter_e->flags &= ~EDGE_FALLTHRU;
1713 enter_e->flags |= EDGE_FALSE_VALUE;
1714 gsi = gsi_last_bb (guard_bb);
1716 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list,
1717 is_gimple_condexpr_for_cond, NULL_TREE);
1718 if (gimplify_stmt_list)
1719 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1721 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1722 gsi = gsi_last_bb (guard_bb);
1723 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1725 /* Add new edge to connect guard block to the merge/loop-exit block. */
1726 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1728 new_e->probability = probability;
1729 if (irreducible_p)
1730 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1732 enter_e->probability = probability.invert ();
1733 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1735 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1736 if (enter_e->dest->loop_father->header == enter_e->dest)
1737 split_edge (enter_e);
1739 return new_e;
1743 /* This function verifies that the following restrictions apply to LOOP:
1744 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1745 for innermost loop and 5 basic blocks for outer-loop.
1746 (2) it is single entry, single exit
1747 (3) its exit condition is the last stmt in the header
1748 (4) E is the entry/exit edge of LOOP.
1751 bool
1752 slpeel_can_duplicate_loop_p (const class loop *loop, const_edge exit_e,
1753 const_edge e)
1755 edge entry_e = loop_preheader_edge (loop);
1756 gcond *orig_cond = get_loop_exit_condition (exit_e);
1757 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1758 unsigned int num_bb = loop->inner? 5 : 2;
1760 /* All loops have an outer scope; the only case loop->outer is NULL is for
1761 the function itself. */
1762 if (!loop_outer (loop)
1763 || loop->num_nodes != num_bb
1764 || !empty_block_p (loop->latch)
1765 || !exit_e
1766 /* Verify that new loop exit condition can be trivially modified. */
1767 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1768 || (e != exit_e && e != entry_e))
1769 return false;
1771 basic_block *bbs = XNEWVEC (basic_block, loop->num_nodes);
1772 get_loop_body_with_size (loop, bbs, loop->num_nodes);
1773 bool ret = can_copy_bbs_p (bbs, loop->num_nodes);
1774 free (bbs);
1775 return ret;
1778 /* Function find_loop_location.
1780 Extract the location of the loop in the source code.
1781 If the loop is not well formed for vectorization, an estimated
1782 location is calculated.
1783 Return the loop location if succeed and NULL if not. */
1785 dump_user_location_t
1786 find_loop_location (class loop *loop)
1788 gimple *stmt = NULL;
1789 basic_block bb;
1790 gimple_stmt_iterator si;
1792 if (!loop)
1793 return dump_user_location_t ();
1795 /* For the root of the loop tree return the function location. */
1796 if (!loop_outer (loop))
1797 return dump_user_location_t::from_function_decl (cfun->decl);
1799 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1801 /* We only care about the loop location, so use any exit with location
1802 information. */
1803 for (edge e : get_loop_exit_edges (loop))
1805 stmt = get_loop_exit_condition (e);
1807 if (stmt
1808 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1809 return stmt;
1813 /* If we got here the loop is probably not "well formed",
1814 try to estimate the loop location */
1816 if (!loop->header)
1817 return dump_user_location_t ();
1819 bb = loop->header;
1821 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1823 stmt = gsi_stmt (si);
1824 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1825 return stmt;
1828 return dump_user_location_t ();
1831 /* Return true if the phi described by STMT_INFO defines an IV of the
1832 loop to be vectorized. */
1834 static bool
1835 iv_phi_p (stmt_vec_info stmt_info)
1837 gphi *phi = as_a <gphi *> (stmt_info->stmt);
1838 if (virtual_operand_p (PHI_RESULT (phi)))
1839 return false;
1841 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1842 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1843 return false;
1845 return true;
1848 /* Return true if vectorizer can peel for nonlinear iv. */
1849 static bool
1850 vect_can_peel_nonlinear_iv_p (loop_vec_info loop_vinfo,
1851 stmt_vec_info stmt_info)
1853 enum vect_induction_op_type induction_type
1854 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info);
1855 tree niters_skip;
1856 /* Init_expr will be update by vect_update_ivs_after_vectorizer,
1857 if niters or vf is unkown:
1858 For shift, when shift mount >= precision, there would be UD.
1859 For mult, don't known how to generate
1860 init_expr * pow (step, niters) for variable niters.
1861 For neg, it should be ok, since niters of vectorized main loop
1862 will always be multiple of 2. */
1863 if ((!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1864 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ())
1865 && induction_type != vect_step_op_neg)
1867 if (dump_enabled_p ())
1868 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1869 "Peeling for epilogue is not supported"
1870 " for nonlinear induction except neg"
1871 " when iteration count is unknown.\n");
1872 return false;
1875 /* Avoid compile time hog on vect_peel_nonlinear_iv_init. */
1876 if (induction_type == vect_step_op_mul)
1878 tree step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1879 tree type = TREE_TYPE (step_expr);
1881 if (wi::exact_log2 (wi::to_wide (step_expr)) == -1
1882 && LOOP_VINFO_INT_NITERS(loop_vinfo) >= TYPE_PRECISION (type))
1884 if (dump_enabled_p ())
1885 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1886 "Avoid compile time hog on"
1887 " vect_peel_nonlinear_iv_init"
1888 " for nonlinear induction vec_step_op_mul"
1889 " when iteration count is too big.\n");
1890 return false;
1894 /* Also doens't support peel for neg when niter is variable.
1895 ??? generate something like niter_expr & 1 ? init_expr : -init_expr? */
1896 niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
1897 if ((niters_skip != NULL_TREE
1898 && (TREE_CODE (niters_skip) != INTEGER_CST
1899 || (HOST_WIDE_INT) TREE_INT_CST_LOW (niters_skip) < 0))
1900 || (!vect_use_loop_mask_for_alignment_p (loop_vinfo)
1901 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0))
1903 if (dump_enabled_p ())
1904 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1905 "Peeling for alignement is not supported"
1906 " for nonlinear induction when niters_skip"
1907 " is not constant.\n");
1908 return false;
1911 return true;
1914 /* Function vect_can_advance_ivs_p
1916 In case the number of iterations that LOOP iterates is unknown at compile
1917 time, an epilog loop will be generated, and the loop induction variables
1918 (IVs) will be "advanced" to the value they are supposed to take just before
1919 the epilog loop. Here we check that the access function of the loop IVs
1920 and the expression that represents the loop bound are simple enough.
1921 These restrictions will be relaxed in the future. */
1923 bool
1924 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1926 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1927 basic_block bb = loop->header;
1928 gphi_iterator gsi;
1930 /* Analyze phi functions of the loop header. */
1932 if (dump_enabled_p ())
1933 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1934 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1936 tree evolution_part;
1937 enum vect_induction_op_type induction_type;
1939 gphi *phi = gsi.phi ();
1940 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
1941 if (dump_enabled_p ())
1942 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
1943 phi_info->stmt);
1945 /* Skip virtual phi's. The data dependences that are associated with
1946 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
1948 Skip reduction phis. */
1949 if (!iv_phi_p (phi_info))
1951 if (dump_enabled_p ())
1952 dump_printf_loc (MSG_NOTE, vect_location,
1953 "reduc or virtual phi. skip.\n");
1954 continue;
1957 induction_type = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
1958 if (induction_type != vect_step_op_add)
1960 if (!vect_can_peel_nonlinear_iv_p (loop_vinfo, phi_info))
1961 return false;
1963 continue;
1966 /* Analyze the evolution function. */
1968 evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
1969 if (evolution_part == NULL_TREE)
1971 if (dump_enabled_p ())
1972 dump_printf (MSG_MISSED_OPTIMIZATION,
1973 "No access function or evolution.\n");
1974 return false;
1977 /* FORNOW: We do not transform initial conditions of IVs
1978 which evolution functions are not invariants in the loop. */
1980 if (!expr_invariant_in_loop_p (loop, evolution_part))
1982 if (dump_enabled_p ())
1983 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1984 "evolution not invariant in loop.\n");
1985 return false;
1988 /* FORNOW: We do not transform initial conditions of IVs
1989 which evolution functions are a polynomial of degree >= 2. */
1991 if (tree_is_chrec (evolution_part))
1993 if (dump_enabled_p ())
1994 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1995 "evolution is chrec.\n");
1996 return false;
2000 return true;
2004 /* Function vect_update_ivs_after_vectorizer.
2006 "Advance" the induction variables of LOOP to the value they should take
2007 after the execution of LOOP. This is currently necessary because the
2008 vectorizer does not handle induction variables that are used after the
2009 loop. Such a situation occurs when the last iterations of LOOP are
2010 peeled, because:
2011 1. We introduced new uses after LOOP for IVs that were not originally used
2012 after LOOP: the IVs of LOOP are now used by an epilog loop.
2013 2. LOOP is going to be vectorized; this means that it will iterate N/VF
2014 times, whereas the loop IVs should be bumped N times.
2016 Input:
2017 - LOOP - a loop that is going to be vectorized. The last few iterations
2018 of LOOP were peeled.
2019 - NITERS - the number of iterations that LOOP executes (before it is
2020 vectorized). i.e, the number of times the ivs should be bumped.
2021 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
2022 coming out from LOOP on which there are uses of the LOOP ivs
2023 (this is the path from LOOP->exit to epilog_loop->preheader).
2025 The new definitions of the ivs are placed in LOOP->exit.
2026 The phi args associated with the edge UPDATE_E in the bb
2027 UPDATE_E->dest are updated accordingly.
2029 Assumption 1: Like the rest of the vectorizer, this function assumes
2030 a single loop exit that has a single predecessor.
2032 Assumption 2: The phi nodes in the LOOP header and in update_bb are
2033 organized in the same order.
2035 Assumption 3: The access function of the ivs is simple enough (see
2036 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
2038 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
2039 coming out of LOOP on which the ivs of LOOP are used (this is the path
2040 that leads to the epilog loop; other paths skip the epilog loop). This
2041 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
2042 needs to have its phis updated.
2045 static void
2046 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
2047 tree niters, edge update_e)
2049 gphi_iterator gsi, gsi1;
2050 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2051 basic_block update_bb = update_e->dest;
2053 basic_block exit_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
2055 /* Make sure there exists a single-predecessor exit bb: */
2056 gcc_assert (single_pred_p (exit_bb));
2057 gcc_assert (single_succ_edge (exit_bb) == update_e);
2059 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
2060 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
2061 gsi_next (&gsi), gsi_next (&gsi1))
2063 tree init_expr;
2064 tree step_expr, off;
2065 tree type;
2066 tree var, ni, ni_name;
2067 gimple_stmt_iterator last_gsi;
2069 gphi *phi = gsi.phi ();
2070 gphi *phi1 = gsi1.phi ();
2071 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
2072 if (dump_enabled_p ())
2073 dump_printf_loc (MSG_NOTE, vect_location,
2074 "vect_update_ivs_after_vectorizer: phi: %G",
2075 (gimple *) phi);
2077 /* Skip reduction and virtual phis. */
2078 if (!iv_phi_p (phi_info))
2080 if (dump_enabled_p ())
2081 dump_printf_loc (MSG_NOTE, vect_location,
2082 "reduc or virtual phi. skip.\n");
2083 continue;
2086 type = TREE_TYPE (gimple_phi_result (phi));
2087 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
2088 step_expr = unshare_expr (step_expr);
2090 /* FORNOW: We do not support IVs whose evolution function is a polynomial
2091 of degree >= 2 or exponential. */
2092 gcc_assert (!tree_is_chrec (step_expr));
2094 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2095 gimple_seq stmts = NULL;
2096 enum vect_induction_op_type induction_type
2097 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
2099 if (induction_type == vect_step_op_add)
2101 tree stype = TREE_TYPE (step_expr);
2102 off = fold_build2 (MULT_EXPR, stype,
2103 fold_convert (stype, niters), step_expr);
2104 if (POINTER_TYPE_P (type))
2105 ni = fold_build_pointer_plus (init_expr, off);
2106 else
2107 ni = fold_convert (type,
2108 fold_build2 (PLUS_EXPR, stype,
2109 fold_convert (stype, init_expr),
2110 off));
2112 /* Don't bother call vect_peel_nonlinear_iv_init. */
2113 else if (induction_type == vect_step_op_neg)
2114 ni = init_expr;
2115 else
2116 ni = vect_peel_nonlinear_iv_init (&stmts, init_expr,
2117 niters, step_expr,
2118 induction_type);
2120 var = create_tmp_var (type, "tmp");
2122 last_gsi = gsi_last_bb (exit_bb);
2123 gimple_seq new_stmts = NULL;
2124 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
2125 /* Exit_bb shouldn't be empty. */
2126 if (!gsi_end_p (last_gsi))
2128 gsi_insert_seq_after (&last_gsi, stmts, GSI_SAME_STMT);
2129 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
2131 else
2133 gsi_insert_seq_before (&last_gsi, stmts, GSI_SAME_STMT);
2134 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
2137 /* Fix phi expressions in the successor bb. */
2138 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
2142 /* Return a gimple value containing the misalignment (measured in vector
2143 elements) for the loop described by LOOP_VINFO, i.e. how many elements
2144 it is away from a perfectly aligned address. Add any new statements
2145 to SEQ. */
2147 static tree
2148 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
2150 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2151 stmt_vec_info stmt_info = dr_info->stmt;
2152 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2154 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
2155 unsigned HOST_WIDE_INT target_align_c;
2156 tree target_align_minus_1;
2158 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
2159 size_zero_node) < 0;
2160 tree offset = (negative
2161 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
2162 * TREE_INT_CST_LOW
2163 (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
2164 : size_zero_node);
2165 tree start_addr = vect_create_addr_base_for_vector_ref (loop_vinfo,
2166 stmt_info, seq,
2167 offset);
2168 tree type = unsigned_type_for (TREE_TYPE (start_addr));
2169 if (target_align.is_constant (&target_align_c))
2170 target_align_minus_1 = build_int_cst (type, target_align_c - 1);
2171 else
2173 tree vla = build_int_cst (type, target_align);
2174 tree vla_align = fold_build2 (BIT_AND_EXPR, type, vla,
2175 fold_build2 (MINUS_EXPR, type,
2176 build_int_cst (type, 0), vla));
2177 target_align_minus_1 = fold_build2 (MINUS_EXPR, type, vla_align,
2178 build_int_cst (type, 1));
2181 HOST_WIDE_INT elem_size
2182 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2183 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
2185 /* Create: misalign_in_bytes = addr & (target_align - 1). */
2186 tree int_start_addr = fold_convert (type, start_addr);
2187 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
2188 target_align_minus_1);
2190 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
2191 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
2192 elem_size_log);
2194 return misalign_in_elems;
2197 /* Function vect_gen_prolog_loop_niters
2199 Generate the number of iterations which should be peeled as prolog for the
2200 loop represented by LOOP_VINFO. It is calculated as the misalignment of
2201 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
2202 As a result, after the execution of this loop, the data reference DR will
2203 refer to an aligned location. The following computation is generated:
2205 If the misalignment of DR is known at compile time:
2206 addr_mis = int mis = DR_MISALIGNMENT (dr);
2207 Else, compute address misalignment in bytes:
2208 addr_mis = addr & (target_align - 1)
2210 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
2212 (elem_size = element type size; an element is the scalar element whose type
2213 is the inner type of the vectype)
2215 The computations will be emitted at the end of BB. We also compute and
2216 store upper bound (included) of the result in BOUND.
2218 When the step of the data-ref in the loop is not 1 (as in interleaved data
2219 and SLP), the number of iterations of the prolog must be divided by the step
2220 (which is equal to the size of interleaved group).
2222 The above formulas assume that VF == number of elements in the vector. This
2223 may not hold when there are multiple-types in the loop.
2224 In this case, for some data-references in the loop the VF does not represent
2225 the number of elements that fit in the vector. Therefore, instead of VF we
2226 use TYPE_VECTOR_SUBPARTS. */
2228 static tree
2229 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
2230 basic_block bb, int *bound)
2232 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2233 tree var;
2234 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
2235 gimple_seq stmts = NULL, new_stmts = NULL;
2236 tree iters, iters_name;
2237 stmt_vec_info stmt_info = dr_info->stmt;
2238 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2239 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
2241 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2243 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2245 if (dump_enabled_p ())
2246 dump_printf_loc (MSG_NOTE, vect_location,
2247 "known peeling = %d.\n", npeel);
2249 iters = build_int_cst (niters_type, npeel);
2250 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2252 else
2254 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
2255 tree type = TREE_TYPE (misalign_in_elems);
2256 HOST_WIDE_INT elem_size
2257 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2258 /* We only do prolog peeling if the target alignment is known at compile
2259 time. */
2260 poly_uint64 align_in_elems =
2261 exact_div (target_align, elem_size);
2262 tree align_in_elems_minus_1 =
2263 build_int_cst (type, align_in_elems - 1);
2264 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
2266 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
2267 & (align_in_elems - 1)). */
2268 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
2269 size_zero_node) < 0;
2270 if (negative)
2271 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
2272 align_in_elems_tree);
2273 else
2274 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
2275 misalign_in_elems);
2276 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
2277 iters = fold_convert (niters_type, iters);
2278 unsigned HOST_WIDE_INT align_in_elems_c;
2279 if (align_in_elems.is_constant (&align_in_elems_c))
2280 *bound = align_in_elems_c - 1;
2281 else
2282 *bound = -1;
2285 if (dump_enabled_p ())
2286 dump_printf_loc (MSG_NOTE, vect_location,
2287 "niters for prolog loop: %T\n", iters);
2289 var = create_tmp_var (niters_type, "prolog_loop_niters");
2290 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
2292 if (new_stmts)
2293 gimple_seq_add_seq (&stmts, new_stmts);
2294 if (stmts)
2296 gcc_assert (single_succ_p (bb));
2297 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2298 if (gsi_end_p (gsi))
2299 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2300 else
2301 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
2303 return iters_name;
2307 /* Function vect_update_init_of_dr
2309 If CODE is PLUS, the vector loop starts NITERS iterations after the
2310 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
2311 iterations before the scalar one (using masking to skip inactive
2312 elements). This function updates the information recorded in DR to
2313 account for the difference. Specifically, it updates the OFFSET
2314 field of DR_INFO. */
2316 static void
2317 vect_update_init_of_dr (dr_vec_info *dr_info, tree niters, tree_code code)
2319 struct data_reference *dr = dr_info->dr;
2320 tree offset = dr_info->offset;
2321 if (!offset)
2322 offset = build_zero_cst (sizetype);
2324 niters = fold_build2 (MULT_EXPR, sizetype,
2325 fold_convert (sizetype, niters),
2326 fold_convert (sizetype, DR_STEP (dr)));
2327 offset = fold_build2 (code, sizetype,
2328 fold_convert (sizetype, offset), niters);
2329 dr_info->offset = offset;
2333 /* Function vect_update_inits_of_drs
2335 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
2336 CODE and NITERS are as for vect_update_inits_of_dr. */
2338 void
2339 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
2340 tree_code code)
2342 unsigned int i;
2343 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2344 struct data_reference *dr;
2346 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
2348 /* Adjust niters to sizetype. We used to insert the stmts on loop preheader
2349 here, but since we might use these niters to update the epilogues niters
2350 and data references we can't insert them here as this definition might not
2351 always dominate its uses. */
2352 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
2353 niters = fold_convert (sizetype, niters);
2355 FOR_EACH_VEC_ELT (datarefs, i, dr)
2357 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2358 if (!STMT_VINFO_GATHER_SCATTER_P (dr_info->stmt)
2359 && !STMT_VINFO_SIMD_LANE_ACCESS_P (dr_info->stmt))
2360 vect_update_init_of_dr (dr_info, niters, code);
2364 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
2365 by masking. This involves calculating the number of iterations to
2366 be peeled and then aligning all memory references appropriately. */
2368 void
2369 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
2371 tree misalign_in_elems;
2372 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
2374 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
2376 /* From the information recorded in LOOP_VINFO get the number of iterations
2377 that need to be skipped via masking. */
2378 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2380 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
2381 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
2382 misalign_in_elems = build_int_cst (type, misalign);
2384 else
2386 gimple_seq seq1 = NULL, seq2 = NULL;
2387 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
2388 misalign_in_elems = fold_convert (type, misalign_in_elems);
2389 misalign_in_elems = force_gimple_operand (misalign_in_elems,
2390 &seq2, true, NULL_TREE);
2391 gimple_seq_add_seq (&seq1, seq2);
2392 if (seq1)
2394 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2395 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
2396 gcc_assert (!new_bb);
2400 if (dump_enabled_p ())
2401 dump_printf_loc (MSG_NOTE, vect_location,
2402 "misalignment for fully-masked loop: %T\n",
2403 misalign_in_elems);
2405 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
2407 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
2410 /* This function builds ni_name = number of iterations. Statements
2411 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
2412 it to TRUE if new ssa_var is generated. */
2414 tree
2415 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
2417 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
2418 if (TREE_CODE (ni) == INTEGER_CST)
2419 return ni;
2420 else
2422 tree ni_name, var;
2423 gimple_seq stmts = NULL;
2424 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2426 var = create_tmp_var (TREE_TYPE (ni), "niters");
2427 ni_name = force_gimple_operand (ni, &stmts, false, var);
2428 if (stmts)
2430 gsi_insert_seq_on_edge_immediate (pe, stmts);
2431 if (new_var_p != NULL)
2432 *new_var_p = true;
2435 return ni_name;
2439 /* Calculate the number of iterations above which vectorized loop will be
2440 preferred than scalar loop. NITERS_PROLOG is the number of iterations
2441 of prolog loop. If it's integer const, the integer number is also passed
2442 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
2443 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
2444 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
2445 threshold below which the scalar (rather than vectorized) loop will be
2446 executed. This function stores the upper bound (inclusive) of the result
2447 in BOUND_SCALAR. */
2449 static tree
2450 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
2451 int bound_prolog, poly_int64 bound_epilog, int th,
2452 poly_uint64 *bound_scalar,
2453 bool check_profitability)
2455 tree type = TREE_TYPE (niters_prolog);
2456 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
2457 build_int_cst (type, bound_epilog));
2459 *bound_scalar = bound_prolog + bound_epilog;
2460 if (check_profitability)
2462 /* TH indicates the minimum niters of vectorized loop, while we
2463 compute the maximum niters of scalar loop. */
2464 th--;
2465 /* Peeling for constant times. */
2466 if (int_niters_prolog >= 0)
2468 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
2469 return build_int_cst (type, *bound_scalar);
2471 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
2472 and BOUND_EPILOG are inclusive upper bounds. */
2473 if (known_ge (th, bound_prolog + bound_epilog))
2475 *bound_scalar = th;
2476 return build_int_cst (type, th);
2478 /* Need to do runtime comparison. */
2479 else if (maybe_gt (th, bound_epilog))
2481 *bound_scalar = upper_bound (*bound_scalar, th);
2482 return fold_build2 (MAX_EXPR, type,
2483 build_int_cst (type, th), niters);
2486 return niters;
2489 /* NITERS is the number of times that the original scalar loop executes
2490 after peeling. Work out the maximum number of iterations N that can
2491 be handled by the vectorized form of the loop and then either:
2493 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
2495 niters_vector = N
2497 b) set *STEP_VECTOR_PTR to one and generate:
2499 niters_vector = N / vf
2501 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
2502 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
2503 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
2505 void
2506 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
2507 tree *niters_vector_ptr, tree *step_vector_ptr,
2508 bool niters_no_overflow)
2510 tree ni_minus_gap, var;
2511 tree niters_vector, step_vector, type = TREE_TYPE (niters);
2512 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2513 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2514 tree log_vf = NULL_TREE;
2516 /* If epilogue loop is required because of data accesses with gaps, we
2517 subtract one iteration from the total number of iterations here for
2518 correct calculation of RATIO. */
2519 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2521 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
2522 build_one_cst (type));
2523 if (!is_gimple_val (ni_minus_gap))
2525 var = create_tmp_var (type, "ni_gap");
2526 gimple *stmts = NULL;
2527 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
2528 true, var);
2529 gsi_insert_seq_on_edge_immediate (pe, stmts);
2532 else
2533 ni_minus_gap = niters;
2535 /* To silence some unexpected warnings, simply initialize to 0. */
2536 unsigned HOST_WIDE_INT const_vf = 0;
2537 if (vf.is_constant (&const_vf)
2538 && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
2540 /* Create: niters >> log2(vf) */
2541 /* If it's known that niters == number of latch executions + 1 doesn't
2542 overflow, we can generate niters >> log2(vf); otherwise we generate
2543 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
2544 will be at least one. */
2545 log_vf = build_int_cst (type, exact_log2 (const_vf));
2546 if (niters_no_overflow)
2547 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
2548 else
2549 niters_vector
2550 = fold_build2 (PLUS_EXPR, type,
2551 fold_build2 (RSHIFT_EXPR, type,
2552 fold_build2 (MINUS_EXPR, type,
2553 ni_minus_gap,
2554 build_int_cst (type, vf)),
2555 log_vf),
2556 build_int_cst (type, 1));
2557 step_vector = build_one_cst (type);
2559 else
2561 niters_vector = ni_minus_gap;
2562 step_vector = build_int_cst (type, vf);
2565 if (!is_gimple_val (niters_vector))
2567 var = create_tmp_var (type, "bnd");
2568 gimple_seq stmts = NULL;
2569 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
2570 gsi_insert_seq_on_edge_immediate (pe, stmts);
2571 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
2572 we set range information to make niters analyzer's life easier.
2573 Note the number of latch iteration value can be TYPE_MAX_VALUE so
2574 we have to represent the vector niter TYPE_MAX_VALUE + 1 >> log_vf. */
2575 if (stmts != NULL && log_vf)
2577 if (niters_no_overflow)
2579 value_range vr (type,
2580 wi::one (TYPE_PRECISION (type)),
2581 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2582 TYPE_SIGN (type)),
2583 exact_log2 (const_vf),
2584 TYPE_SIGN (type)));
2585 set_range_info (niters_vector, vr);
2587 /* For VF == 1 the vector IV might also overflow so we cannot
2588 assert a minimum value of 1. */
2589 else if (const_vf > 1)
2591 value_range vr (type,
2592 wi::one (TYPE_PRECISION (type)),
2593 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2594 TYPE_SIGN (type))
2595 - (const_vf - 1),
2596 exact_log2 (const_vf), TYPE_SIGN (type))
2597 + 1);
2598 set_range_info (niters_vector, vr);
2602 *niters_vector_ptr = niters_vector;
2603 *step_vector_ptr = step_vector;
2605 return;
2608 /* Given NITERS_VECTOR which is the number of iterations for vectorized
2609 loop specified by LOOP_VINFO after vectorization, compute the number
2610 of iterations before vectorization (niters_vector * vf) and store it
2611 to NITERS_VECTOR_MULT_VF_PTR. */
2613 static void
2614 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
2615 tree niters_vector,
2616 tree *niters_vector_mult_vf_ptr)
2618 /* We should be using a step_vector of VF if VF is variable. */
2619 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
2620 tree type = TREE_TYPE (niters_vector);
2621 tree log_vf = build_int_cst (type, exact_log2 (vf));
2622 basic_block exit_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
2624 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2625 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2626 niters_vector, log_vf);
2627 if (!is_gimple_val (niters_vector_mult_vf))
2629 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2630 gimple_seq stmts = NULL;
2631 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2632 &stmts, true, var);
2633 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2634 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2636 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2639 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2640 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2641 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2642 appear like below:
2644 guard_bb:
2645 if (cond)
2646 goto merge_bb;
2647 else
2648 goto skip_loop;
2650 skip_loop:
2651 header_a:
2652 i_1 = PHI<i_0, i_2>;
2654 i_2 = i_1 + 1;
2655 if (cond_a)
2656 goto latch_a;
2657 else
2658 goto exit_a;
2659 latch_a:
2660 goto header_a;
2662 exit_a:
2663 i_5 = PHI<i_2>;
2665 merge_bb:
2666 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2668 update_loop:
2669 header_b:
2670 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2672 i_4 = i_3 + 1;
2673 if (cond_b)
2674 goto latch_b;
2675 else
2676 goto exit_bb;
2677 latch_b:
2678 goto header_b;
2680 exit_bb:
2682 This function creates PHI nodes at merge_bb and replaces the use of i_5
2683 in the update_loop's PHI node with the result of new PHI result. */
2685 static void
2686 slpeel_update_phi_nodes_for_guard1 (class loop *skip_loop,
2687 class loop *update_loop,
2688 edge guard_edge, edge merge_edge)
2690 location_t merge_loc, guard_loc;
2691 edge orig_e = loop_preheader_edge (skip_loop);
2692 edge update_e = loop_preheader_edge (update_loop);
2693 gphi_iterator gsi_orig, gsi_update;
2695 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2696 gsi_update = gsi_start_phis (update_loop->header));
2697 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2698 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2700 gphi *orig_phi = gsi_orig.phi ();
2701 gphi *update_phi = gsi_update.phi ();
2703 /* Generate new phi node at merge bb of the guard. */
2704 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2705 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2707 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2708 args in NEW_PHI for these edges. */
2709 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2710 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2711 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2712 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2713 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2714 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2716 /* Update phi in UPDATE_PHI. */
2717 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2721 /* LOOP_VINFO is an epilogue loop whose corresponding main loop can be skipped.
2722 Return a value that equals:
2724 - MAIN_LOOP_VALUE when LOOP_VINFO is entered from the main loop and
2725 - SKIP_VALUE when the main loop is skipped. */
2727 tree
2728 vect_get_main_loop_result (loop_vec_info loop_vinfo, tree main_loop_value,
2729 tree skip_value)
2731 gcc_assert (loop_vinfo->main_loop_edge);
2733 tree phi_result = make_ssa_name (TREE_TYPE (main_loop_value));
2734 basic_block bb = loop_vinfo->main_loop_edge->dest;
2735 gphi *new_phi = create_phi_node (phi_result, bb);
2736 add_phi_arg (new_phi, main_loop_value, loop_vinfo->main_loop_edge,
2737 UNKNOWN_LOCATION);
2738 add_phi_arg (new_phi, skip_value,
2739 loop_vinfo->skip_main_loop_edge, UNKNOWN_LOCATION);
2740 return phi_result;
2743 /* Function vect_do_peeling.
2745 Input:
2746 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2748 preheader:
2749 LOOP:
2750 header_bb:
2751 loop_body
2752 if (exit_loop_cond) goto exit_bb
2753 else goto header_bb
2754 exit_bb:
2756 - NITERS: The number of iterations of the loop.
2757 - NITERSM1: The number of iterations of the loop's latch.
2758 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2759 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2760 CHECK_PROFITABILITY is true.
2761 Output:
2762 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2763 iterate after vectorization; see vect_set_loop_condition for details.
2764 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2765 should be set to the number of scalar iterations handled by the
2766 vector loop. The SSA name is only used on exit from the loop.
2768 This function peels prolog and epilog from the loop, adds guards skipping
2769 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2770 would look like:
2772 guard_bb_1:
2773 if (prefer_scalar_loop) goto merge_bb_1
2774 else goto guard_bb_2
2776 guard_bb_2:
2777 if (skip_prolog) goto merge_bb_2
2778 else goto prolog_preheader
2780 prolog_preheader:
2781 PROLOG:
2782 prolog_header_bb:
2783 prolog_body
2784 if (exit_prolog_cond) goto prolog_exit_bb
2785 else goto prolog_header_bb
2786 prolog_exit_bb:
2788 merge_bb_2:
2790 vector_preheader:
2791 VECTOR LOOP:
2792 vector_header_bb:
2793 vector_body
2794 if (exit_vector_cond) goto vector_exit_bb
2795 else goto vector_header_bb
2796 vector_exit_bb:
2798 guard_bb_3:
2799 if (skip_epilog) goto merge_bb_3
2800 else goto epilog_preheader
2802 merge_bb_1:
2804 epilog_preheader:
2805 EPILOG:
2806 epilog_header_bb:
2807 epilog_body
2808 if (exit_epilog_cond) goto merge_bb_3
2809 else goto epilog_header_bb
2811 merge_bb_3:
2813 Note this function peels prolog and epilog only if it's necessary,
2814 as well as guards.
2815 This function returns the epilogue loop if a decision was made to vectorize
2816 it, otherwise NULL.
2818 The analysis resulting in this epilogue loop's loop_vec_info was performed
2819 in the same vect_analyze_loop call as the main loop's. At that time
2820 vect_analyze_loop constructs a list of accepted loop_vec_info's for lower
2821 vectorization factors than the main loop. This list is stored in the main
2822 loop's loop_vec_info in the 'epilogue_vinfos' member. Everytime we decide to
2823 vectorize the epilogue loop for a lower vectorization factor, the
2824 loop_vec_info sitting at the top of the epilogue_vinfos list is removed,
2825 updated and linked to the epilogue loop. This is later used to vectorize
2826 the epilogue. The reason the loop_vec_info needs updating is that it was
2827 constructed based on the original main loop, and the epilogue loop is a
2828 copy of this loop, so all links pointing to statements in the original loop
2829 need updating. Furthermore, these loop_vec_infos share the
2830 data_reference's records, which will also need to be updated.
2832 TODO: Guard for prefer_scalar_loop should be emitted along with
2833 versioning conditions if loop versioning is needed. */
2836 class loop *
2837 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
2838 tree *niters_vector, tree *step_vector,
2839 tree *niters_vector_mult_vf_var, int th,
2840 bool check_profitability, bool niters_no_overflow,
2841 tree *advance)
2843 edge e, guard_e;
2844 tree type = TREE_TYPE (niters), guard_cond;
2845 basic_block guard_bb, guard_to;
2846 profile_probability prob_prolog, prob_vector, prob_epilog;
2847 int estimated_vf;
2848 int prolog_peeling = 0;
2849 bool vect_epilogues = loop_vinfo->epilogue_vinfos.length () > 0;
2850 /* We currently do not support prolog peeling if the target alignment is not
2851 known at compile time. 'vect_gen_prolog_loop_niters' depends on the
2852 target alignment being constant. */
2853 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2854 if (dr_info && !DR_TARGET_ALIGNMENT (dr_info).is_constant ())
2855 return NULL;
2857 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
2858 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2860 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2861 poly_uint64 bound_epilog = 0;
2862 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
2863 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2864 bound_epilog += vf - 1;
2865 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2866 bound_epilog += 1;
2867 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
2868 poly_uint64 bound_scalar = bound_epilog;
2870 if (!prolog_peeling && !epilog_peeling)
2871 return NULL;
2873 /* Before doing any peeling make sure to reset debug binds outside of
2874 the loop refering to defs not in LC SSA. */
2875 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2876 for (unsigned i = 0; i < loop->num_nodes; ++i)
2878 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2879 imm_use_iterator ui;
2880 gimple *use_stmt;
2881 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
2882 gsi_next (&gsi))
2884 FOR_EACH_IMM_USE_STMT (use_stmt, ui, gimple_phi_result (gsi.phi ()))
2885 if (gimple_debug_bind_p (use_stmt)
2886 && loop != gimple_bb (use_stmt)->loop_father
2887 && !flow_loop_nested_p (loop,
2888 gimple_bb (use_stmt)->loop_father))
2890 gimple_debug_bind_reset_value (use_stmt);
2891 update_stmt (use_stmt);
2894 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2895 gsi_next (&gsi))
2897 ssa_op_iter op_iter;
2898 def_operand_p def_p;
2899 FOR_EACH_SSA_DEF_OPERAND (def_p, gsi_stmt (gsi), op_iter, SSA_OP_DEF)
2900 FOR_EACH_IMM_USE_STMT (use_stmt, ui, DEF_FROM_PTR (def_p))
2901 if (gimple_debug_bind_p (use_stmt)
2902 && loop != gimple_bb (use_stmt)->loop_father
2903 && !flow_loop_nested_p (loop,
2904 gimple_bb (use_stmt)->loop_father))
2906 gimple_debug_bind_reset_value (use_stmt);
2907 update_stmt (use_stmt);
2912 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
2913 estimated_vf = vect_vf_for_cost (loop_vinfo);
2914 if (estimated_vf == 2)
2915 estimated_vf = 3;
2916 prob_prolog = prob_epilog = profile_probability::guessed_always ()
2917 .apply_scale (estimated_vf - 1, estimated_vf);
2919 class loop *prolog, *epilog = NULL;
2920 class loop *first_loop = loop;
2921 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
2923 /* SSA form needs to be up-to-date since we are going to manually
2924 update SSA form in slpeel_tree_duplicate_loop_to_edge_cfg and delete all
2925 update SSA state after that, so we have to make sure to not lose any
2926 pending update needs. */
2927 gcc_assert (!need_ssa_update_p (cfun));
2929 /* If we're vectorizing an epilogue loop, we have ensured that the
2930 virtual operand is in SSA form throughout the vectorized main loop.
2931 Normally it is possible to trace the updated
2932 vector-stmt vdefs back to scalar-stmt vdefs and vector-stmt vuses
2933 back to scalar-stmt vuses, meaning that the effect of the SSA update
2934 remains local to the main loop. However, there are rare cases in
2935 which the vectorized loop should have vdefs even when the original scalar
2936 loop didn't. For example, vectorizing a load with IFN_LOAD_LANES
2937 introduces clobbers of the temporary vector array, which in turn
2938 needs new vdefs. If the scalar loop doesn't write to memory, these
2939 new vdefs will be the only ones in the vector loop.
2940 We are currently defering updating virtual SSA form and creating
2941 of a virtual PHI for this case so we do not have to make sure the
2942 newly introduced virtual def is in LCSSA form. */
2944 if (MAY_HAVE_DEBUG_BIND_STMTS)
2946 gcc_assert (!adjust_vec.exists ());
2947 adjust_vec.create (32);
2949 initialize_original_copy_tables ();
2951 /* Record the anchor bb at which the guard should be placed if the scalar
2952 loop might be preferred. */
2953 basic_block anchor = loop_preheader_edge (loop)->src;
2955 /* Generate the number of iterations for the prolog loop. We do this here
2956 so that we can also get the upper bound on the number of iterations. */
2957 tree niters_prolog;
2958 int bound_prolog = 0;
2959 if (prolog_peeling)
2961 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
2962 &bound_prolog);
2963 /* If algonment peeling is known, we will always execute prolog. */
2964 if (TREE_CODE (niters_prolog) == INTEGER_CST)
2965 prob_prolog = profile_probability::always ();
2967 else
2968 niters_prolog = build_int_cst (type, 0);
2970 loop_vec_info epilogue_vinfo = NULL;
2971 if (vect_epilogues)
2973 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
2974 loop_vinfo->epilogue_vinfos.ordered_remove (0);
2977 tree niters_vector_mult_vf = NULL_TREE;
2978 /* Saving NITERs before the loop, as this may be changed by prologue. */
2979 tree before_loop_niters = LOOP_VINFO_NITERS (loop_vinfo);
2980 edge update_e = NULL, skip_e = NULL;
2981 unsigned int lowest_vf = constant_lower_bound (vf);
2982 /* Prolog loop may be skipped. */
2983 bool skip_prolog = (prolog_peeling != 0);
2984 /* Skip this loop to epilog when there are not enough iterations to enter this
2985 vectorized loop. If true we should perform runtime checks on the NITERS
2986 to check whether we should skip the current vectorized loop. If we know
2987 the number of scalar iterations we may choose to add a runtime check if
2988 this number "maybe" smaller than the number of iterations required
2989 when we know the number of scalar iterations may potentially
2990 be smaller than the number of iterations required to enter this loop, for
2991 this we use the upper bounds on the prolog and epilog peeling. When we
2992 don't know the number of iterations and don't require versioning it is
2993 because we have asserted that there are enough scalar iterations to enter
2994 the main loop, so this skip is not necessary. When we are versioning then
2995 we only add such a skip if we have chosen to vectorize the epilogue. */
2996 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2997 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
2998 bound_prolog + bound_epilog)
2999 : (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
3000 || vect_epilogues));
3001 /* Epilog loop must be executed if the number of iterations for epilog
3002 loop is known at compile time, otherwise we need to add a check at
3003 the end of vector loop and skip to the end of epilog loop. */
3004 bool skip_epilog = (prolog_peeling < 0
3005 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3006 || !vf.is_constant ());
3007 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
3008 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
3009 skip_epilog = false;
3011 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3012 auto_vec<profile_count> original_counts;
3013 basic_block *original_bbs = NULL;
3015 if (skip_vector)
3017 split_edge (loop_preheader_edge (loop));
3019 if (epilog_peeling && (vect_epilogues || scalar_loop == NULL))
3021 original_bbs = get_loop_body (loop);
3022 for (unsigned int i = 0; i < loop->num_nodes; i++)
3023 original_counts.safe_push(original_bbs[i]->count);
3026 /* Due to the order in which we peel prolog and epilog, we first
3027 propagate probability to the whole loop. The purpose is to
3028 avoid adjusting probabilities of both prolog and vector loops
3029 separately. Note in this case, the probability of epilog loop
3030 needs to be scaled back later. */
3031 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
3032 if (prob_vector.initialized_p ())
3034 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
3035 scale_loop_profile (loop, prob_vector, -1);
3039 if (vect_epilogues)
3041 /* Make sure to set the epilogue's epilogue scalar loop, such that we can
3042 use the original scalar loop as remaining epilogue if necessary. */
3043 LOOP_VINFO_SCALAR_LOOP (epilogue_vinfo)
3044 = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3045 LOOP_VINFO_SCALAR_IV_EXIT (epilogue_vinfo)
3046 = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3049 if (prolog_peeling)
3051 e = loop_preheader_edge (loop);
3052 edge exit_e = LOOP_VINFO_IV_EXIT (loop_vinfo);
3053 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop, exit_e, e));
3055 /* Peel prolog and put it on preheader edge of loop. */
3056 edge scalar_e = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3057 edge prolog_e = NULL;
3058 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, exit_e,
3059 scalar_loop, scalar_e,
3060 e, &prolog_e);
3061 gcc_assert (prolog);
3062 prolog->force_vectorize = false;
3064 first_loop = prolog;
3065 reset_original_copy_tables ();
3067 /* Update the number of iterations for prolog loop. */
3068 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
3069 vect_set_loop_condition (prolog, prolog_e, NULL, niters_prolog,
3070 step_prolog, NULL_TREE, false);
3072 /* Skip the prolog loop. */
3073 if (skip_prolog)
3075 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3076 niters_prolog, build_int_cst (type, 0));
3077 guard_bb = loop_preheader_edge (prolog)->src;
3078 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
3079 guard_to = split_edge (loop_preheader_edge (loop));
3080 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
3081 guard_to, guard_bb,
3082 prob_prolog.invert (),
3083 irred_flag);
3084 e = EDGE_PRED (guard_to, 0);
3085 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
3086 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
3088 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
3089 scale_loop_profile (prolog, prob_prolog, bound_prolog - 1);
3092 /* Update init address of DRs. */
3093 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
3094 /* Update niters for vector loop. */
3095 LOOP_VINFO_NITERS (loop_vinfo)
3096 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
3097 LOOP_VINFO_NITERSM1 (loop_vinfo)
3098 = fold_build2 (MINUS_EXPR, type,
3099 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
3100 bool new_var_p = false;
3101 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
3102 /* It's guaranteed that vector loop bound before vectorization is at
3103 least VF, so set range information for newly generated var. */
3104 if (new_var_p)
3106 value_range vr (type,
3107 wi::to_wide (build_int_cst (type, lowest_vf)),
3108 wi::to_wide (TYPE_MAX_VALUE (type)));
3109 set_range_info (niters, vr);
3112 /* Prolog iterates at most bound_prolog times, latch iterates at
3113 most bound_prolog - 1 times. */
3114 record_niter_bound (prolog, bound_prolog - 1, false, true);
3115 delete_update_ssa ();
3116 adjust_vec_debug_stmts ();
3117 scev_reset ();
3119 basic_block bb_before_epilog = NULL;
3121 if (epilog_peeling)
3123 e = LOOP_VINFO_IV_EXIT (loop_vinfo);
3124 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop, e, e));
3126 /* Peel epilog and put it on exit edge of loop. If we are vectorizing
3127 said epilog then we should use a copy of the main loop as a starting
3128 point. This loop may have already had some preliminary transformations
3129 to allow for more optimal vectorization, for example if-conversion.
3130 If we are not vectorizing the epilog then we should use the scalar loop
3131 as the transformations mentioned above make less or no sense when not
3132 vectorizing. */
3133 edge scalar_e = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3134 epilog = vect_epilogues ? get_loop_copy (loop) : scalar_loop;
3135 edge epilog_e = vect_epilogues ? e : scalar_e;
3136 edge new_epilog_e = NULL;
3137 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e, epilog,
3138 epilog_e, e,
3139 &new_epilog_e);
3140 LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo) = new_epilog_e;
3141 gcc_assert (epilog);
3142 epilog->force_vectorize = false;
3143 bb_before_epilog = loop_preheader_edge (epilog)->src;
3145 /* Scalar version loop may be preferred. In this case, add guard
3146 and skip to epilog. Note this only happens when the number of
3147 iterations of loop is unknown at compile time, otherwise this
3148 won't be vectorized. */
3149 if (skip_vector)
3151 /* Additional epilogue iteration is peeled if gap exists. */
3152 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
3153 bound_prolog, bound_epilog,
3154 th, &bound_scalar,
3155 check_profitability);
3156 /* Build guard against NITERSM1 since NITERS may overflow. */
3157 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
3158 guard_bb = anchor;
3159 guard_to = split_edge (loop_preheader_edge (epilog));
3160 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
3161 guard_to, guard_bb,
3162 prob_vector.invert (),
3163 irred_flag);
3164 skip_e = guard_e;
3165 e = EDGE_PRED (guard_to, 0);
3166 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
3167 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
3169 /* Simply propagate profile info from guard_bb to guard_to which is
3170 a merge point of control flow. */
3171 profile_count old_count = guard_to->count;
3172 guard_to->count = guard_bb->count;
3174 /* Restore the counts of the epilog loop if we didn't use the scalar loop. */
3175 if (vect_epilogues || scalar_loop == NULL)
3177 gcc_assert(epilog->num_nodes == loop->num_nodes);
3178 basic_block *bbs = get_loop_body (epilog);
3179 for (unsigned int i = 0; i < epilog->num_nodes; i++)
3181 gcc_assert(get_bb_original (bbs[i]) == original_bbs[i]);
3182 bbs[i]->count = original_counts[i];
3184 free (bbs);
3185 free (original_bbs);
3187 else if (old_count.nonzero_p ())
3188 scale_loop_profile (epilog, guard_to->count.probability_in (old_count), -1);
3190 /* Only need to handle basic block before epilog loop if it's not
3191 the guard_bb, which is the case when skip_vector is true. */
3192 if (guard_bb != bb_before_epilog)
3193 bb_before_epilog->count = single_pred_edge (bb_before_epilog)->count ();
3194 bb_before_epilog = loop_preheader_edge (epilog)->src;
3196 /* If loop is peeled for non-zero constant times, now niters refers to
3197 orig_niters - prolog_peeling, it won't overflow even the orig_niters
3198 overflows. */
3199 niters_no_overflow |= (prolog_peeling > 0);
3200 vect_gen_vector_loop_niters (loop_vinfo, niters,
3201 niters_vector, step_vector,
3202 niters_no_overflow);
3203 if (!integer_onep (*step_vector))
3205 /* On exit from the loop we will have an easy way of calcalating
3206 NITERS_VECTOR / STEP * STEP. Install a dummy definition
3207 until then. */
3208 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
3209 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
3210 *niters_vector_mult_vf_var = niters_vector_mult_vf;
3212 else
3213 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
3214 &niters_vector_mult_vf);
3215 /* Update IVs of original loop as if they were advanced by
3216 niters_vector_mult_vf steps. */
3217 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
3218 update_e = skip_vector ? e : loop_preheader_edge (epilog);
3219 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
3220 update_e);
3222 if (skip_epilog)
3224 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3225 niters, niters_vector_mult_vf);
3226 guard_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
3227 edge epilog_e = LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo);
3228 guard_to = epilog_e->dest;
3229 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
3230 skip_vector ? anchor : guard_bb,
3231 prob_epilog.invert (),
3232 irred_flag);
3233 if (vect_epilogues)
3234 epilogue_vinfo->skip_this_loop_edge = guard_e;
3235 edge main_iv = LOOP_VINFO_IV_EXIT (loop_vinfo);
3236 gphi_iterator gsi2 = gsi_start_phis (main_iv->dest);
3237 for (gphi_iterator gsi = gsi_start_phis (guard_to);
3238 !gsi_end_p (gsi); gsi_next (&gsi))
3240 /* We are expecting all of the PHIs we have on epilog_e
3241 to be also on the main loop exit. But sometimes
3242 a stray virtual definition can appear at epilog_e
3243 which we can then take as the same on all exits,
3244 we've removed the LC SSA PHI on the main exit before
3245 so we wouldn't need to create a loop PHI for it. */
3246 if (virtual_operand_p (gimple_phi_result (*gsi))
3247 && (gsi_end_p (gsi2)
3248 || !virtual_operand_p (gimple_phi_result (*gsi2))))
3249 add_phi_arg (*gsi,
3250 gimple_phi_arg_def_from_edge (*gsi, epilog_e),
3251 guard_e, UNKNOWN_LOCATION);
3252 else
3254 add_phi_arg (*gsi, gimple_phi_result (*gsi2), guard_e,
3255 UNKNOWN_LOCATION);
3256 gsi_next (&gsi2);
3260 /* Only need to handle basic block before epilog loop if it's not
3261 the guard_bb, which is the case when skip_vector is true. */
3262 if (guard_bb != bb_before_epilog)
3264 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
3266 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
3268 scale_loop_profile (epilog, prob_epilog, -1);
3271 unsigned HOST_WIDE_INT bound;
3272 if (bound_scalar.is_constant (&bound))
3274 gcc_assert (bound != 0);
3275 /* -1 to convert loop iterations to latch iterations. */
3276 record_niter_bound (epilog, bound - 1, false, true);
3277 scale_loop_profile (epilog, profile_probability::always (),
3278 bound - 1);
3281 delete_update_ssa ();
3282 adjust_vec_debug_stmts ();
3283 scev_reset ();
3286 if (vect_epilogues)
3288 epilog->aux = epilogue_vinfo;
3289 LOOP_VINFO_LOOP (epilogue_vinfo) = epilog;
3290 LOOP_VINFO_IV_EXIT (epilogue_vinfo)
3291 = LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo);
3293 loop_constraint_clear (epilog, LOOP_C_INFINITE);
3295 /* We now must calculate the number of NITERS performed by the previous
3296 loop and EPILOGUE_NITERS to be performed by the epilogue. */
3297 tree niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters_vector_mult_vf),
3298 niters_prolog, niters_vector_mult_vf);
3300 /* If skip_vector we may skip the previous loop, we insert a phi-node to
3301 determine whether we are coming from the previous vectorized loop
3302 using the update_e edge or the skip_vector basic block using the
3303 skip_e edge. */
3304 if (skip_vector)
3306 gcc_assert (update_e != NULL && skip_e != NULL);
3307 gphi *new_phi = create_phi_node (make_ssa_name (TREE_TYPE (niters)),
3308 update_e->dest);
3309 tree new_ssa = make_ssa_name (TREE_TYPE (niters));
3310 gimple *stmt = gimple_build_assign (new_ssa, niters);
3311 gimple_stmt_iterator gsi;
3312 if (TREE_CODE (niters_vector_mult_vf) == SSA_NAME
3313 && SSA_NAME_DEF_STMT (niters_vector_mult_vf)->bb != NULL)
3315 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (niters_vector_mult_vf));
3316 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
3318 else
3320 gsi = gsi_last_bb (update_e->src);
3321 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
3324 niters = new_ssa;
3325 add_phi_arg (new_phi, niters, update_e, UNKNOWN_LOCATION);
3326 add_phi_arg (new_phi, build_zero_cst (TREE_TYPE (niters)), skip_e,
3327 UNKNOWN_LOCATION);
3328 niters = PHI_RESULT (new_phi);
3329 epilogue_vinfo->main_loop_edge = update_e;
3330 epilogue_vinfo->skip_main_loop_edge = skip_e;
3333 /* Set ADVANCE to the number of iterations performed by the previous
3334 loop and its prologue. */
3335 *advance = niters;
3337 /* Subtract the number of iterations performed by the vectorized loop
3338 from the number of total iterations. */
3339 tree epilogue_niters = fold_build2 (MINUS_EXPR, TREE_TYPE (niters),
3340 before_loop_niters,
3341 niters);
3343 LOOP_VINFO_NITERS (epilogue_vinfo) = epilogue_niters;
3344 LOOP_VINFO_NITERSM1 (epilogue_vinfo)
3345 = fold_build2 (MINUS_EXPR, TREE_TYPE (epilogue_niters),
3346 epilogue_niters,
3347 build_one_cst (TREE_TYPE (epilogue_niters)));
3349 /* Decide what to do if the number of epilogue iterations is not
3350 a multiple of the epilogue loop's vectorization factor.
3351 We should have rejected the loop during the analysis phase
3352 if this fails. */
3353 bool res = vect_determine_partial_vectors_and_peeling (epilogue_vinfo);
3354 gcc_assert (res);
3357 adjust_vec.release ();
3358 free_original_copy_tables ();
3360 return vect_epilogues ? epilog : NULL;
3363 /* Function vect_create_cond_for_niters_checks.
3365 Create a conditional expression that represents the run-time checks for
3366 loop's niter. The loop is guaranteed to terminate if the run-time
3367 checks hold.
3369 Input:
3370 COND_EXPR - input conditional expression. New conditions will be chained
3371 with logical AND operation. If it is NULL, then the function
3372 is used to return the number of alias checks.
3373 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3374 to be checked.
3376 Output:
3377 COND_EXPR - conditional expression.
3379 The returned COND_EXPR is the conditional expression to be used in the
3380 if statement that controls which version of the loop gets executed at
3381 runtime. */
3383 static void
3384 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
3386 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
3388 if (*cond_expr)
3389 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3390 *cond_expr, part_cond_expr);
3391 else
3392 *cond_expr = part_cond_expr;
3395 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3396 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
3398 static void
3399 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
3401 if (*cond_expr)
3402 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3403 *cond_expr, part_cond_expr);
3404 else
3405 *cond_expr = part_cond_expr;
3408 /* Function vect_create_cond_for_align_checks.
3410 Create a conditional expression that represents the alignment checks for
3411 all of data references (array element references) whose alignment must be
3412 checked at runtime.
3414 Input:
3415 COND_EXPR - input conditional expression. New conditions will be chained
3416 with logical AND operation.
3417 LOOP_VINFO - two fields of the loop information are used.
3418 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
3419 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
3421 Output:
3422 COND_EXPR_STMT_LIST - statements needed to construct the conditional
3423 expression.
3424 The returned value is the conditional expression to be used in the if
3425 statement that controls which version of the loop gets executed at runtime.
3427 The algorithm makes two assumptions:
3428 1) The number of bytes "n" in a vector is a power of 2.
3429 2) An address "a" is aligned if a%n is zero and that this
3430 test can be done as a&(n-1) == 0. For example, for 16
3431 byte vectors the test is a&0xf == 0. */
3433 static void
3434 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
3435 tree *cond_expr,
3436 gimple_seq *cond_expr_stmt_list)
3438 const vec<stmt_vec_info> &may_misalign_stmts
3439 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
3440 stmt_vec_info stmt_info;
3441 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
3442 tree mask_cst;
3443 unsigned int i;
3444 tree int_ptrsize_type;
3445 char tmp_name[20];
3446 tree or_tmp_name = NULL_TREE;
3447 tree and_tmp_name;
3448 gimple *and_stmt;
3449 tree ptrsize_zero;
3450 tree part_cond_expr;
3452 /* Check that mask is one less than a power of 2, i.e., mask is
3453 all zeros followed by all ones. */
3454 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
3456 int_ptrsize_type = signed_type_for (ptr_type_node);
3458 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
3459 of the first vector of the i'th data reference. */
3461 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
3463 gimple_seq new_stmt_list = NULL;
3464 tree addr_base;
3465 tree addr_tmp_name;
3466 tree new_or_tmp_name;
3467 gimple *addr_stmt, *or_stmt;
3468 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3469 bool negative = tree_int_cst_compare
3470 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
3471 tree offset = negative
3472 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
3473 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
3474 : size_zero_node;
3476 /* create: addr_tmp = (int)(address_of_first_vector) */
3477 addr_base =
3478 vect_create_addr_base_for_vector_ref (loop_vinfo,
3479 stmt_info, &new_stmt_list,
3480 offset);
3481 if (new_stmt_list != NULL)
3482 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
3484 sprintf (tmp_name, "addr2int%d", i);
3485 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3486 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
3487 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
3489 /* The addresses are OR together. */
3491 if (or_tmp_name != NULL_TREE)
3493 /* create: or_tmp = or_tmp | addr_tmp */
3494 sprintf (tmp_name, "orptrs%d", i);
3495 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3496 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
3497 or_tmp_name, addr_tmp_name);
3498 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
3499 or_tmp_name = new_or_tmp_name;
3501 else
3502 or_tmp_name = addr_tmp_name;
3504 } /* end for i */
3506 mask_cst = build_int_cst (int_ptrsize_type, mask);
3508 /* create: and_tmp = or_tmp & mask */
3509 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
3511 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
3512 or_tmp_name, mask_cst);
3513 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
3515 /* Make and_tmp the left operand of the conditional test against zero.
3516 if and_tmp has a nonzero bit then some address is unaligned. */
3517 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
3518 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
3519 and_tmp_name, ptrsize_zero);
3520 chain_cond_expr (cond_expr, part_cond_expr);
3523 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
3524 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
3525 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3526 and this new condition are true. Treat a null *COND_EXPR as "true". */
3528 static void
3529 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
3531 const vec<vec_object_pair> &pairs
3532 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3533 unsigned int i;
3534 vec_object_pair *pair;
3535 FOR_EACH_VEC_ELT (pairs, i, pair)
3537 tree addr1 = build_fold_addr_expr (pair->first);
3538 tree addr2 = build_fold_addr_expr (pair->second);
3539 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
3540 addr1, addr2);
3541 chain_cond_expr (cond_expr, part_cond_expr);
3545 /* Create an expression that is true when all lower-bound conditions for
3546 the vectorized loop are met. Chain this condition with *COND_EXPR. */
3548 static void
3549 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
3551 const vec<vec_lower_bound> &lower_bounds
3552 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3553 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3555 tree expr = lower_bounds[i].expr;
3556 tree type = unsigned_type_for (TREE_TYPE (expr));
3557 expr = fold_convert (type, expr);
3558 poly_uint64 bound = lower_bounds[i].min_value;
3559 if (!lower_bounds[i].unsigned_p)
3561 expr = fold_build2 (PLUS_EXPR, type, expr,
3562 build_int_cstu (type, bound - 1));
3563 bound += bound - 1;
3565 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
3566 build_int_cstu (type, bound));
3567 chain_cond_expr (cond_expr, part_cond_expr);
3571 /* Function vect_create_cond_for_alias_checks.
3573 Create a conditional expression that represents the run-time checks for
3574 overlapping of address ranges represented by a list of data references
3575 relations passed as input.
3577 Input:
3578 COND_EXPR - input conditional expression. New conditions will be chained
3579 with logical AND operation. If it is NULL, then the function
3580 is used to return the number of alias checks.
3581 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3582 to be checked.
3584 Output:
3585 COND_EXPR - conditional expression.
3587 The returned COND_EXPR is the conditional expression to be used in the if
3588 statement that controls which version of the loop gets executed at runtime.
3591 void
3592 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
3594 const vec<dr_with_seg_len_pair_t> &comp_alias_ddrs =
3595 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3597 if (comp_alias_ddrs.is_empty ())
3598 return;
3600 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
3601 &comp_alias_ddrs, cond_expr);
3602 if (dump_enabled_p ())
3603 dump_printf_loc (MSG_NOTE, vect_location,
3604 "created %u versioning for alias checks.\n",
3605 comp_alias_ddrs.length ());
3609 /* Function vect_loop_versioning.
3611 If the loop has data references that may or may not be aligned or/and
3612 has data reference relations whose independence was not proven then
3613 two versions of the loop need to be generated, one which is vectorized
3614 and one which isn't. A test is then generated to control which of the
3615 loops is executed. The test checks for the alignment of all of the
3616 data references that may or may not be aligned. An additional
3617 sequence of runtime tests is generated for each pairs of DDRs whose
3618 independence was not proven. The vectorized version of loop is
3619 executed only if both alias and alignment tests are passed.
3621 The test generated to check which version of loop is executed
3622 is modified to also check for profitability as indicated by the
3623 cost model threshold TH.
3625 The versioning precondition(s) are placed in *COND_EXPR and
3626 *COND_EXPR_STMT_LIST. */
3628 class loop *
3629 vect_loop_versioning (loop_vec_info loop_vinfo,
3630 gimple *loop_vectorized_call)
3632 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
3633 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3634 basic_block condition_bb;
3635 gphi_iterator gsi;
3636 gimple_stmt_iterator cond_exp_gsi;
3637 basic_block merge_bb;
3638 basic_block new_exit_bb;
3639 edge new_exit_e, e;
3640 gphi *orig_phi, *new_phi;
3641 tree cond_expr = NULL_TREE;
3642 gimple_seq cond_expr_stmt_list = NULL;
3643 tree arg;
3644 profile_probability prob = profile_probability::likely ();
3645 gimple_seq gimplify_stmt_list = NULL;
3646 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
3647 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
3648 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
3649 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
3650 poly_uint64 versioning_threshold
3651 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
3652 tree version_simd_if_cond
3653 = LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (loop_vinfo);
3654 unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
3656 if (vect_apply_runtime_profitability_check_p (loop_vinfo)
3657 && !ordered_p (th, versioning_threshold))
3658 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3659 build_int_cst (TREE_TYPE (scalar_loop_iters),
3660 th - 1));
3661 if (maybe_ne (versioning_threshold, 0U))
3663 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3664 build_int_cst (TREE_TYPE (scalar_loop_iters),
3665 versioning_threshold - 1));
3666 if (cond_expr)
3667 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
3668 expr, cond_expr);
3669 else
3670 cond_expr = expr;
3673 tree cost_name = NULL_TREE;
3674 profile_probability prob2 = profile_probability::always ();
3675 if (cond_expr
3676 && EXPR_P (cond_expr)
3677 && (version_niter
3678 || version_align
3679 || version_alias
3680 || version_simd_if_cond))
3682 cost_name = cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3683 &cond_expr_stmt_list,
3684 is_gimple_val, NULL_TREE);
3685 /* Split prob () into two so that the overall probability of passing
3686 both the cost-model and versioning checks is the orig prob. */
3687 prob2 = prob = prob.sqrt ();
3690 if (version_niter)
3691 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3693 if (cond_expr)
3695 gimple_seq tem = NULL;
3696 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3697 &tem, is_gimple_condexpr_for_cond,
3698 NULL_TREE);
3699 gimple_seq_add_seq (&cond_expr_stmt_list, tem);
3702 if (version_align)
3703 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3704 &cond_expr_stmt_list);
3706 if (version_alias)
3708 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
3709 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
3710 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3713 if (version_simd_if_cond)
3715 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
3716 if (flag_checking)
3717 if (basic_block bb
3718 = gimple_bb (SSA_NAME_DEF_STMT (version_simd_if_cond)))
3719 gcc_assert (bb != loop->header
3720 && dominated_by_p (CDI_DOMINATORS, loop->header, bb)
3721 && (scalar_loop == NULL
3722 || (bb != scalar_loop->header
3723 && dominated_by_p (CDI_DOMINATORS,
3724 scalar_loop->header, bb))));
3725 tree zero = build_zero_cst (TREE_TYPE (version_simd_if_cond));
3726 tree c = fold_build2 (NE_EXPR, boolean_type_node,
3727 version_simd_if_cond, zero);
3728 if (cond_expr)
3729 cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3730 c, cond_expr);
3731 else
3732 cond_expr = c;
3733 if (dump_enabled_p ())
3734 dump_printf_loc (MSG_NOTE, vect_location,
3735 "created versioning for simd if condition check.\n");
3738 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3739 &gimplify_stmt_list,
3740 is_gimple_condexpr_for_cond, NULL_TREE);
3741 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
3743 /* Compute the outermost loop cond_expr and cond_expr_stmt_list are
3744 invariant in. */
3745 class loop *outermost = outermost_invariant_loop_for_expr (loop, cond_expr);
3746 for (gimple_stmt_iterator gsi = gsi_start (cond_expr_stmt_list);
3747 !gsi_end_p (gsi); gsi_next (&gsi))
3749 gimple *stmt = gsi_stmt (gsi);
3750 update_stmt (stmt);
3751 ssa_op_iter iter;
3752 use_operand_p use_p;
3753 basic_block def_bb;
3754 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
3755 if ((def_bb = gimple_bb (SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p))))
3756 && flow_bb_inside_loop_p (outermost, def_bb))
3757 outermost = superloop_at_depth (loop, bb_loop_depth (def_bb) + 1);
3760 /* Search for the outermost loop we can version. Avoid versioning of
3761 non-perfect nests but allow if-conversion versioned loops inside. */
3762 class loop *loop_to_version = loop;
3763 if (flow_loop_nested_p (outermost, loop))
3765 if (dump_enabled_p ())
3766 dump_printf_loc (MSG_NOTE, vect_location,
3767 "trying to apply versioning to outer loop %d\n",
3768 outermost->num);
3769 if (outermost->num == 0)
3770 outermost = superloop_at_depth (loop, 1);
3771 /* And avoid applying versioning on non-perfect nests. */
3772 while (loop_to_version != outermost
3773 && (e = single_exit (loop_outer (loop_to_version)))
3774 && !(e->flags & EDGE_COMPLEX)
3775 && (!loop_outer (loop_to_version)->inner->next
3776 || vect_loop_vectorized_call (loop_to_version))
3777 && (!loop_outer (loop_to_version)->inner->next
3778 || !loop_outer (loop_to_version)->inner->next->next))
3779 loop_to_version = loop_outer (loop_to_version);
3782 /* Apply versioning. If there is already a scalar version created by
3783 if-conversion re-use that. Note we cannot re-use the copy of
3784 an if-converted outer-loop when vectorizing the inner loop only. */
3785 gcond *cond;
3786 if ((!loop_to_version->inner || loop == loop_to_version)
3787 && loop_vectorized_call)
3789 gcc_assert (scalar_loop);
3790 condition_bb = gimple_bb (loop_vectorized_call);
3791 cond = as_a <gcond *> (*gsi_last_bb (condition_bb));
3792 gimple_cond_set_condition_from_tree (cond, cond_expr);
3793 update_stmt (cond);
3795 if (cond_expr_stmt_list)
3797 cond_exp_gsi = gsi_for_stmt (loop_vectorized_call);
3798 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3799 GSI_SAME_STMT);
3802 /* if-conversion uses profile_probability::always () for both paths,
3803 reset the paths probabilities appropriately. */
3804 edge te, fe;
3805 extract_true_false_edges_from_block (condition_bb, &te, &fe);
3806 te->probability = prob;
3807 fe->probability = prob.invert ();
3808 /* We can scale loops counts immediately but have to postpone
3809 scaling the scalar loop because we re-use it during peeling.
3811 Ifcvt duplicates loop preheader, loop body and produces an basic
3812 block after loop exit. We need to scale all that. */
3813 basic_block preheader = loop_preheader_edge (loop_to_version)->src;
3814 preheader->count = preheader->count.apply_probability (prob * prob2);
3815 scale_loop_frequencies (loop_to_version, prob * prob2);
3816 single_exit (loop_to_version)->dest->count = preheader->count;
3817 LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo) = (prob * prob2).invert ();
3819 nloop = scalar_loop;
3820 if (dump_enabled_p ())
3821 dump_printf_loc (MSG_NOTE, vect_location,
3822 "reusing %sloop version created by if conversion\n",
3823 loop_to_version != loop ? "outer " : "");
3825 else
3827 if (loop_to_version != loop
3828 && dump_enabled_p ())
3829 dump_printf_loc (MSG_NOTE, vect_location,
3830 "applying loop versioning to outer loop %d\n",
3831 loop_to_version->num);
3833 unsigned orig_pe_idx = loop_preheader_edge (loop)->dest_idx;
3835 initialize_original_copy_tables ();
3836 nloop = loop_version (loop_to_version, cond_expr, &condition_bb,
3837 prob * prob2, (prob * prob2).invert (),
3838 prob * prob2, (prob * prob2).invert (),
3839 true);
3840 /* We will later insert second conditional so overall outcome of
3841 both is prob * prob2. */
3842 edge true_e, false_e;
3843 extract_true_false_edges_from_block (condition_bb, &true_e, &false_e);
3844 true_e->probability = prob;
3845 false_e->probability = prob.invert ();
3846 gcc_assert (nloop);
3847 nloop = get_loop_copy (loop);
3849 /* For cycle vectorization with SLP we rely on the PHI arguments
3850 appearing in the same order as the SLP node operands which for the
3851 loop PHI nodes means the preheader edge dest index needs to remain
3852 the same for the analyzed loop which also becomes the vectorized one.
3853 Make it so in case the state after versioning differs by redirecting
3854 the first edge into the header to the same destination which moves
3855 it last. */
3856 if (loop_preheader_edge (loop)->dest_idx != orig_pe_idx)
3858 edge e = EDGE_PRED (loop->header, 0);
3859 ssa_redirect_edge (e, e->dest);
3860 flush_pending_stmts (e);
3862 gcc_assert (loop_preheader_edge (loop)->dest_idx == orig_pe_idx);
3864 /* Kill off IFN_LOOP_VECTORIZED_CALL in the copy, nobody will
3865 reap those otherwise; they also refer to the original
3866 loops. */
3867 class loop *l = loop;
3868 while (gimple *call = vect_loop_vectorized_call (l))
3870 call = SSA_NAME_DEF_STMT (get_current_def (gimple_call_lhs (call)));
3871 fold_loop_internal_call (call, boolean_false_node);
3872 l = loop_outer (l);
3874 free_original_copy_tables ();
3876 if (cond_expr_stmt_list)
3878 cond_exp_gsi = gsi_last_bb (condition_bb);
3879 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3880 GSI_SAME_STMT);
3883 /* Loop versioning violates an assumption we try to maintain during
3884 vectorization - that the loop exit block has a single predecessor.
3885 After versioning, the exit block of both loop versions is the same
3886 basic block (i.e. it has two predecessors). Just in order to simplify
3887 following transformations in the vectorizer, we fix this situation
3888 here by adding a new (empty) block on the exit-edge of the loop,
3889 with the proper loop-exit phis to maintain loop-closed-form.
3890 If loop versioning wasn't done from loop, but scalar_loop instead,
3891 merge_bb will have already just a single successor. */
3893 merge_bb = single_exit (loop_to_version)->dest;
3894 if (EDGE_COUNT (merge_bb->preds) >= 2)
3896 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
3897 new_exit_bb = split_edge (single_exit (loop_to_version));
3898 new_exit_e = single_exit (loop_to_version);
3899 e = EDGE_SUCC (new_exit_bb, 0);
3901 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi);
3902 gsi_next (&gsi))
3904 tree new_res;
3905 orig_phi = gsi.phi ();
3906 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
3907 new_phi = create_phi_node (new_res, new_exit_bb);
3908 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
3909 add_phi_arg (new_phi, arg, new_exit_e,
3910 gimple_phi_arg_location_from_edge (orig_phi, e));
3911 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
3915 update_ssa (TODO_update_ssa_no_phi);
3918 /* Split the cost model check off to a separate BB. Costing assumes
3919 this is the only thing we perform when we enter the scalar loop
3920 from a failed cost decision. */
3921 if (cost_name && TREE_CODE (cost_name) == SSA_NAME)
3923 gimple *def = SSA_NAME_DEF_STMT (cost_name);
3924 gcc_assert (gimple_bb (def) == condition_bb);
3925 /* All uses of the cost check are 'true' after the check we
3926 are going to insert. */
3927 replace_uses_by (cost_name, boolean_true_node);
3928 /* And we're going to build the new single use of it. */
3929 gcond *cond = gimple_build_cond (NE_EXPR, cost_name, boolean_false_node,
3930 NULL_TREE, NULL_TREE);
3931 edge e = split_block (gimple_bb (def), def);
3932 gimple_stmt_iterator gsi = gsi_for_stmt (def);
3933 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
3934 edge true_e, false_e;
3935 extract_true_false_edges_from_block (e->dest, &true_e, &false_e);
3936 e->flags &= ~EDGE_FALLTHRU;
3937 e->flags |= EDGE_TRUE_VALUE;
3938 edge e2 = make_edge (e->src, false_e->dest, EDGE_FALSE_VALUE);
3939 e->probability = prob2;
3940 e2->probability = prob2.invert ();
3941 e->dest->count = e->count ();
3942 set_immediate_dominator (CDI_DOMINATORS, false_e->dest, e->src);
3943 auto_vec<basic_block, 3> adj;
3944 for (basic_block son = first_dom_son (CDI_DOMINATORS, e->dest);
3945 son;
3946 son = next_dom_son (CDI_DOMINATORS, son))
3947 if (EDGE_COUNT (son->preds) > 1)
3948 adj.safe_push (son);
3949 for (auto son : adj)
3950 set_immediate_dominator (CDI_DOMINATORS, son, e->src);
3951 //debug_bb (condition_bb);
3952 //debug_bb (e->src);
3955 if (version_niter)
3957 /* The versioned loop could be infinite, we need to clear existing
3958 niter information which is copied from the original loop. */
3959 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
3960 vect_free_loop_info_assumptions (nloop);
3963 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
3964 && dump_enabled_p ())
3966 if (version_alias)
3967 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
3968 vect_location,
3969 "loop versioned for vectorization because of "
3970 "possible aliasing\n");
3971 if (version_align)
3972 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
3973 vect_location,
3974 "loop versioned for vectorization to enhance "
3975 "alignment\n");
3979 return nloop;