hppa: Export main in pr104869.C on hpux
[official-gcc.git] / gcc / tree-ssa-loop-niter.cc
blob2098bef9a9704b998b90ac68229c4d7c43d1b9ad
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "intl.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
41 #include "cfgloop.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "tree-dfa.h"
45 #include "internal-fn.h"
46 #include "gimple-range.h"
47 #include "sreal.h"
50 /* The maximum number of dominator BBs we search for conditions
51 of loop header copies we use for simplifying a conditional
52 expression. */
53 #define MAX_DOMINATORS_TO_WALK 8
57 Analysis of number of iterations of an affine exit test.
61 /* Bounds on some value, BELOW <= X <= UP. */
63 struct bounds
65 mpz_t below, up;
68 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
70 static void
71 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
73 tree type = TREE_TYPE (expr);
74 tree op0, op1;
75 bool negate = false;
77 *var = expr;
78 mpz_set_ui (offset, 0);
80 switch (TREE_CODE (expr))
82 case MINUS_EXPR:
83 negate = true;
84 /* Fallthru. */
86 case PLUS_EXPR:
87 case POINTER_PLUS_EXPR:
88 op0 = TREE_OPERAND (expr, 0);
89 op1 = TREE_OPERAND (expr, 1);
91 if (TREE_CODE (op1) != INTEGER_CST)
92 break;
94 *var = op0;
95 /* Always sign extend the offset. */
96 wi::to_mpz (wi::to_wide (op1), offset, SIGNED);
97 if (negate)
98 mpz_neg (offset, offset);
99 break;
101 case INTEGER_CST:
102 *var = build_int_cst_type (type, 0);
103 wi::to_mpz (wi::to_wide (expr), offset, TYPE_SIGN (type));
104 break;
106 default:
107 break;
111 /* From condition C0 CMP C1 derives information regarding the value range
112 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
114 static void
115 refine_value_range_using_guard (tree type, tree var,
116 tree c0, enum tree_code cmp, tree c1,
117 mpz_t below, mpz_t up)
119 tree varc0, varc1, ctype;
120 mpz_t offc0, offc1;
121 mpz_t mint, maxt, minc1, maxc1;
122 bool no_wrap = nowrap_type_p (type);
123 bool c0_ok, c1_ok;
124 signop sgn = TYPE_SIGN (type);
126 switch (cmp)
128 case LT_EXPR:
129 case LE_EXPR:
130 case GT_EXPR:
131 case GE_EXPR:
132 STRIP_SIGN_NOPS (c0);
133 STRIP_SIGN_NOPS (c1);
134 ctype = TREE_TYPE (c0);
135 if (!useless_type_conversion_p (ctype, type))
136 return;
138 break;
140 case EQ_EXPR:
141 /* We could derive quite precise information from EQ_EXPR, however,
142 such a guard is unlikely to appear, so we do not bother with
143 handling it. */
144 return;
146 case NE_EXPR:
147 /* NE_EXPR comparisons do not contain much of useful information,
148 except for cases of comparing with bounds. */
149 if (TREE_CODE (c1) != INTEGER_CST
150 || !INTEGRAL_TYPE_P (type))
151 return;
153 /* Ensure that the condition speaks about an expression in the same
154 type as X and Y. */
155 ctype = TREE_TYPE (c0);
156 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
157 return;
158 c0 = fold_convert (type, c0);
159 c1 = fold_convert (type, c1);
161 if (operand_equal_p (var, c0, 0))
163 /* Case of comparing VAR with its below/up bounds. */
164 auto_mpz valc1;
165 wi::to_mpz (wi::to_wide (c1), valc1, TYPE_SIGN (type));
166 if (mpz_cmp (valc1, below) == 0)
167 cmp = GT_EXPR;
168 if (mpz_cmp (valc1, up) == 0)
169 cmp = LT_EXPR;
171 else
173 /* Case of comparing with the bounds of the type. */
174 wide_int min = wi::min_value (type);
175 wide_int max = wi::max_value (type);
177 if (wi::to_wide (c1) == min)
178 cmp = GT_EXPR;
179 if (wi::to_wide (c1) == max)
180 cmp = LT_EXPR;
183 /* Quick return if no useful information. */
184 if (cmp == NE_EXPR)
185 return;
187 break;
189 default:
190 return;
193 mpz_init (offc0);
194 mpz_init (offc1);
195 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
196 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
198 /* We are only interested in comparisons of expressions based on VAR. */
199 if (operand_equal_p (var, varc1, 0))
201 std::swap (varc0, varc1);
202 mpz_swap (offc0, offc1);
203 cmp = swap_tree_comparison (cmp);
205 else if (!operand_equal_p (var, varc0, 0))
207 mpz_clear (offc0);
208 mpz_clear (offc1);
209 return;
212 mpz_init (mint);
213 mpz_init (maxt);
214 get_type_static_bounds (type, mint, maxt);
215 mpz_init (minc1);
216 mpz_init (maxc1);
217 Value_Range r (TREE_TYPE (varc1));
218 /* Setup range information for varc1. */
219 if (integer_zerop (varc1))
221 wi::to_mpz (0, minc1, TYPE_SIGN (type));
222 wi::to_mpz (0, maxc1, TYPE_SIGN (type));
224 else if (TREE_CODE (varc1) == SSA_NAME
225 && INTEGRAL_TYPE_P (type)
226 && get_range_query (cfun)->range_of_expr (r, varc1)
227 && !r.undefined_p ()
228 && !r.varying_p ())
230 gcc_assert (wi::le_p (r.lower_bound (), r.upper_bound (), sgn));
231 wi::to_mpz (r.lower_bound (), minc1, sgn);
232 wi::to_mpz (r.upper_bound (), maxc1, sgn);
234 else
236 mpz_set (minc1, mint);
237 mpz_set (maxc1, maxt);
240 /* Compute valid range information for varc1 + offc1. Note nothing
241 useful can be derived if it overflows or underflows. Overflow or
242 underflow could happen when:
244 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
245 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
246 mpz_add (minc1, minc1, offc1);
247 mpz_add (maxc1, maxc1, offc1);
248 c1_ok = (no_wrap
249 || mpz_sgn (offc1) == 0
250 || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
251 || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
252 if (!c1_ok)
253 goto end;
255 if (mpz_cmp (minc1, mint) < 0)
256 mpz_set (minc1, mint);
257 if (mpz_cmp (maxc1, maxt) > 0)
258 mpz_set (maxc1, maxt);
260 if (cmp == LT_EXPR)
262 cmp = LE_EXPR;
263 mpz_sub_ui (maxc1, maxc1, 1);
265 if (cmp == GT_EXPR)
267 cmp = GE_EXPR;
268 mpz_add_ui (minc1, minc1, 1);
271 /* Compute range information for varc0. If there is no overflow,
272 the condition implied that
274 (varc0) cmp (varc1 + offc1 - offc0)
276 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
277 or the below bound if cmp is GE_EXPR.
279 To prove there is no overflow/underflow, we need to check below
280 four cases:
281 1) cmp == LE_EXPR && offc0 > 0
283 (varc0 + offc0) doesn't overflow
284 && (varc1 + offc1 - offc0) doesn't underflow
286 2) cmp == LE_EXPR && offc0 < 0
288 (varc0 + offc0) doesn't underflow
289 && (varc1 + offc1 - offc0) doesn't overfloe
291 In this case, (varc0 + offc0) will never underflow if we can
292 prove (varc1 + offc1 - offc0) doesn't overflow.
294 3) cmp == GE_EXPR && offc0 < 0
296 (varc0 + offc0) doesn't underflow
297 && (varc1 + offc1 - offc0) doesn't overflow
299 4) cmp == GE_EXPR && offc0 > 0
301 (varc0 + offc0) doesn't overflow
302 && (varc1 + offc1 - offc0) doesn't underflow
304 In this case, (varc0 + offc0) will never overflow if we can
305 prove (varc1 + offc1 - offc0) doesn't underflow.
307 Note we only handle case 2 and 4 in below code. */
309 mpz_sub (minc1, minc1, offc0);
310 mpz_sub (maxc1, maxc1, offc0);
311 c0_ok = (no_wrap
312 || mpz_sgn (offc0) == 0
313 || (cmp == LE_EXPR
314 && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
315 || (cmp == GE_EXPR
316 && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
317 if (!c0_ok)
318 goto end;
320 if (cmp == LE_EXPR)
322 if (mpz_cmp (up, maxc1) > 0)
323 mpz_set (up, maxc1);
325 else
327 if (mpz_cmp (below, minc1) < 0)
328 mpz_set (below, minc1);
331 end:
332 mpz_clear (mint);
333 mpz_clear (maxt);
334 mpz_clear (minc1);
335 mpz_clear (maxc1);
336 mpz_clear (offc0);
337 mpz_clear (offc1);
340 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
341 in TYPE to MIN and MAX. */
343 static void
344 determine_value_range (class loop *loop, tree type, tree var, mpz_t off,
345 mpz_t min, mpz_t max)
347 int cnt = 0;
348 mpz_t minm, maxm;
349 basic_block bb;
350 wide_int minv, maxv;
351 enum value_range_kind rtype = VR_VARYING;
353 /* If the expression is a constant, we know its value exactly. */
354 if (integer_zerop (var))
356 mpz_set (min, off);
357 mpz_set (max, off);
358 return;
361 get_type_static_bounds (type, min, max);
363 /* See if we have some range info from VRP. */
364 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
366 edge e = loop_preheader_edge (loop);
367 signop sgn = TYPE_SIGN (type);
368 gphi_iterator gsi;
370 /* Either for VAR itself... */
371 Value_Range var_range (TREE_TYPE (var));
372 get_range_query (cfun)->range_of_expr (var_range, var);
373 if (var_range.varying_p () || var_range.undefined_p ())
374 rtype = VR_VARYING;
375 else
376 rtype = VR_RANGE;
377 if (!var_range.undefined_p ())
379 minv = var_range.lower_bound ();
380 maxv = var_range.upper_bound ();
383 /* Or for PHI results in loop->header where VAR is used as
384 PHI argument from the loop preheader edge. */
385 Value_Range phi_range (TREE_TYPE (var));
386 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
388 gphi *phi = gsi.phi ();
389 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
390 && get_range_query (cfun)->range_of_expr (phi_range,
391 gimple_phi_result (phi))
392 && !phi_range.varying_p ()
393 && !phi_range.undefined_p ())
395 if (rtype != VR_RANGE)
397 rtype = VR_RANGE;
398 minv = phi_range.lower_bound ();
399 maxv = phi_range.upper_bound ();
401 else
403 minv = wi::max (minv, phi_range.lower_bound (), sgn);
404 maxv = wi::min (maxv, phi_range.upper_bound (), sgn);
405 /* If the PHI result range are inconsistent with
406 the VAR range, give up on looking at the PHI
407 results. This can happen if VR_UNDEFINED is
408 involved. */
409 if (wi::gt_p (minv, maxv, sgn))
411 Value_Range vr (TREE_TYPE (var));
412 get_range_query (cfun)->range_of_expr (vr, var);
413 if (vr.varying_p () || vr.undefined_p ())
414 rtype = VR_VARYING;
415 else
416 rtype = VR_RANGE;
417 if (!vr.undefined_p ())
419 minv = vr.lower_bound ();
420 maxv = vr.upper_bound ();
422 break;
427 mpz_init (minm);
428 mpz_init (maxm);
429 if (rtype != VR_RANGE)
431 mpz_set (minm, min);
432 mpz_set (maxm, max);
434 else
436 gcc_assert (wi::le_p (minv, maxv, sgn));
437 wi::to_mpz (minv, minm, sgn);
438 wi::to_mpz (maxv, maxm, sgn);
440 /* Now walk the dominators of the loop header and use the entry
441 guards to refine the estimates. */
442 for (bb = loop->header;
443 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
444 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
446 edge e;
447 tree c0, c1;
448 enum tree_code cmp;
450 if (!single_pred_p (bb))
451 continue;
452 e = single_pred_edge (bb);
454 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
455 continue;
457 gcond *cond = as_a <gcond *> (*gsi_last_bb (e->src));
458 c0 = gimple_cond_lhs (cond);
459 cmp = gimple_cond_code (cond);
460 c1 = gimple_cond_rhs (cond);
462 if (e->flags & EDGE_FALSE_VALUE)
463 cmp = invert_tree_comparison (cmp, false);
465 refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm);
466 ++cnt;
469 mpz_add (minm, minm, off);
470 mpz_add (maxm, maxm, off);
471 /* If the computation may not wrap or off is zero, then this
472 is always fine. If off is negative and minv + off isn't
473 smaller than type's minimum, or off is positive and
474 maxv + off isn't bigger than type's maximum, use the more
475 precise range too. */
476 if (nowrap_type_p (type)
477 || mpz_sgn (off) == 0
478 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
479 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
481 mpz_set (min, minm);
482 mpz_set (max, maxm);
483 mpz_clear (minm);
484 mpz_clear (maxm);
485 return;
487 mpz_clear (minm);
488 mpz_clear (maxm);
491 /* If the computation may wrap, we know nothing about the value, except for
492 the range of the type. */
493 if (!nowrap_type_p (type))
494 return;
496 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
497 add it to MIN, otherwise to MAX. */
498 if (mpz_sgn (off) < 0)
499 mpz_add (max, max, off);
500 else
501 mpz_add (min, min, off);
504 /* Stores the bounds on the difference of the values of the expressions
505 (var + X) and (var + Y), computed in TYPE, to BNDS. */
507 static void
508 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
509 bounds *bnds)
511 int rel = mpz_cmp (x, y);
512 bool may_wrap = !nowrap_type_p (type);
514 /* If X == Y, then the expressions are always equal.
515 If X > Y, there are the following possibilities:
516 a) neither of var + X and var + Y overflow or underflow, or both of
517 them do. Then their difference is X - Y.
518 b) var + X overflows, and var + Y does not. Then the values of the
519 expressions are var + X - M and var + Y, where M is the range of
520 the type, and their difference is X - Y - M.
521 c) var + Y underflows and var + X does not. Their difference again
522 is M - X + Y.
523 Therefore, if the arithmetics in type does not overflow, then the
524 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
525 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
526 (X - Y, X - Y + M). */
528 if (rel == 0)
530 mpz_set_ui (bnds->below, 0);
531 mpz_set_ui (bnds->up, 0);
532 return;
535 auto_mpz m;
536 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
537 mpz_add_ui (m, m, 1);
538 mpz_sub (bnds->up, x, y);
539 mpz_set (bnds->below, bnds->up);
541 if (may_wrap)
543 if (rel > 0)
544 mpz_sub (bnds->below, bnds->below, m);
545 else
546 mpz_add (bnds->up, bnds->up, m);
550 /* From condition C0 CMP C1 derives information regarding the
551 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
552 and stores it to BNDS. */
554 static void
555 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
556 tree vary, mpz_t offy,
557 tree c0, enum tree_code cmp, tree c1,
558 bounds *bnds)
560 tree varc0, varc1, ctype;
561 mpz_t offc0, offc1, loffx, loffy, bnd;
562 bool lbound = false;
563 bool no_wrap = nowrap_type_p (type);
564 bool x_ok, y_ok;
566 switch (cmp)
568 case LT_EXPR:
569 case LE_EXPR:
570 case GT_EXPR:
571 case GE_EXPR:
572 STRIP_SIGN_NOPS (c0);
573 STRIP_SIGN_NOPS (c1);
574 ctype = TREE_TYPE (c0);
575 if (!useless_type_conversion_p (ctype, type))
576 return;
578 break;
580 case EQ_EXPR:
581 /* We could derive quite precise information from EQ_EXPR, however, such
582 a guard is unlikely to appear, so we do not bother with handling
583 it. */
584 return;
586 case NE_EXPR:
587 /* NE_EXPR comparisons do not contain much of useful information, except for
588 special case of comparing with the bounds of the type. */
589 if (TREE_CODE (c1) != INTEGER_CST
590 || !INTEGRAL_TYPE_P (type))
591 return;
593 /* Ensure that the condition speaks about an expression in the same type
594 as X and Y. */
595 ctype = TREE_TYPE (c0);
596 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
597 return;
598 c0 = fold_convert (type, c0);
599 c1 = fold_convert (type, c1);
601 if (TYPE_MIN_VALUE (type)
602 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
604 cmp = GT_EXPR;
605 break;
607 if (TYPE_MAX_VALUE (type)
608 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
610 cmp = LT_EXPR;
611 break;
614 return;
615 default:
616 return;
619 mpz_init (offc0);
620 mpz_init (offc1);
621 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
622 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
624 /* We are only interested in comparisons of expressions based on VARX and
625 VARY. TODO -- we might also be able to derive some bounds from
626 expressions containing just one of the variables. */
628 if (operand_equal_p (varx, varc1, 0))
630 std::swap (varc0, varc1);
631 mpz_swap (offc0, offc1);
632 cmp = swap_tree_comparison (cmp);
635 if (!operand_equal_p (varx, varc0, 0)
636 || !operand_equal_p (vary, varc1, 0))
637 goto end;
639 mpz_init_set (loffx, offx);
640 mpz_init_set (loffy, offy);
642 if (cmp == GT_EXPR || cmp == GE_EXPR)
644 std::swap (varx, vary);
645 mpz_swap (offc0, offc1);
646 mpz_swap (loffx, loffy);
647 cmp = swap_tree_comparison (cmp);
648 lbound = true;
651 /* If there is no overflow, the condition implies that
653 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
655 The overflows and underflows may complicate things a bit; each
656 overflow decreases the appropriate offset by M, and underflow
657 increases it by M. The above inequality would not necessarily be
658 true if
660 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
661 VARX + OFFC0 overflows, but VARX + OFFX does not.
662 This may only happen if OFFX < OFFC0.
663 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
664 VARY + OFFC1 underflows and VARY + OFFY does not.
665 This may only happen if OFFY > OFFC1. */
667 if (no_wrap)
669 x_ok = true;
670 y_ok = true;
672 else
674 x_ok = (integer_zerop (varx)
675 || mpz_cmp (loffx, offc0) >= 0);
676 y_ok = (integer_zerop (vary)
677 || mpz_cmp (loffy, offc1) <= 0);
680 if (x_ok && y_ok)
682 mpz_init (bnd);
683 mpz_sub (bnd, loffx, loffy);
684 mpz_add (bnd, bnd, offc1);
685 mpz_sub (bnd, bnd, offc0);
687 if (cmp == LT_EXPR)
688 mpz_sub_ui (bnd, bnd, 1);
690 if (lbound)
692 mpz_neg (bnd, bnd);
693 if (mpz_cmp (bnds->below, bnd) < 0)
694 mpz_set (bnds->below, bnd);
696 else
698 if (mpz_cmp (bnd, bnds->up) < 0)
699 mpz_set (bnds->up, bnd);
701 mpz_clear (bnd);
704 mpz_clear (loffx);
705 mpz_clear (loffy);
706 end:
707 mpz_clear (offc0);
708 mpz_clear (offc1);
711 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
712 The subtraction is considered to be performed in arbitrary precision,
713 without overflows.
715 We do not attempt to be too clever regarding the value ranges of X and
716 Y; most of the time, they are just integers or ssa names offsetted by
717 integer. However, we try to use the information contained in the
718 comparisons before the loop (usually created by loop header copying). */
720 static void
721 bound_difference (class loop *loop, tree x, tree y, bounds *bnds)
723 tree type = TREE_TYPE (x);
724 tree varx, vary;
725 mpz_t offx, offy;
726 int cnt = 0;
727 edge e;
728 basic_block bb;
729 tree c0, c1;
730 enum tree_code cmp;
732 /* Get rid of unnecessary casts, but preserve the value of
733 the expressions. */
734 STRIP_SIGN_NOPS (x);
735 STRIP_SIGN_NOPS (y);
737 mpz_init (bnds->below);
738 mpz_init (bnds->up);
739 mpz_init (offx);
740 mpz_init (offy);
741 split_to_var_and_offset (x, &varx, offx);
742 split_to_var_and_offset (y, &vary, offy);
744 if (!integer_zerop (varx)
745 && operand_equal_p (varx, vary, 0))
747 /* Special case VARX == VARY -- we just need to compare the
748 offsets. The matters are a bit more complicated in the
749 case addition of offsets may wrap. */
750 bound_difference_of_offsetted_base (type, offx, offy, bnds);
752 else
754 /* Otherwise, use the value ranges to determine the initial
755 estimates on below and up. */
756 auto_mpz minx, maxx, miny, maxy;
757 determine_value_range (loop, type, varx, offx, minx, maxx);
758 determine_value_range (loop, type, vary, offy, miny, maxy);
760 mpz_sub (bnds->below, minx, maxy);
761 mpz_sub (bnds->up, maxx, miny);
764 /* If both X and Y are constants, we cannot get any more precise. */
765 if (integer_zerop (varx) && integer_zerop (vary))
766 goto end;
768 /* Now walk the dominators of the loop header and use the entry
769 guards to refine the estimates. */
770 for (bb = loop->header;
771 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
772 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
774 if (!single_pred_p (bb))
775 continue;
776 e = single_pred_edge (bb);
778 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
779 continue;
781 gcond *cond = as_a <gcond *> (*gsi_last_bb (e->src));
782 c0 = gimple_cond_lhs (cond);
783 cmp = gimple_cond_code (cond);
784 c1 = gimple_cond_rhs (cond);
786 if (e->flags & EDGE_FALSE_VALUE)
787 cmp = invert_tree_comparison (cmp, false);
789 refine_bounds_using_guard (type, varx, offx, vary, offy,
790 c0, cmp, c1, bnds);
791 ++cnt;
794 end:
795 mpz_clear (offx);
796 mpz_clear (offy);
799 /* Update the bounds in BNDS that restrict the value of X to the bounds
800 that restrict the value of X + DELTA. X can be obtained as a
801 difference of two values in TYPE. */
803 static void
804 bounds_add (bounds *bnds, const widest_int &delta, tree type)
806 mpz_t mdelta, max;
808 mpz_init (mdelta);
809 wi::to_mpz (delta, mdelta, SIGNED);
811 mpz_init (max);
812 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
814 mpz_add (bnds->up, bnds->up, mdelta);
815 mpz_add (bnds->below, bnds->below, mdelta);
817 if (mpz_cmp (bnds->up, max) > 0)
818 mpz_set (bnds->up, max);
820 mpz_neg (max, max);
821 if (mpz_cmp (bnds->below, max) < 0)
822 mpz_set (bnds->below, max);
824 mpz_clear (mdelta);
825 mpz_clear (max);
828 /* Update the bounds in BNDS that restrict the value of X to the bounds
829 that restrict the value of -X. */
831 static void
832 bounds_negate (bounds *bnds)
834 mpz_t tmp;
836 mpz_init_set (tmp, bnds->up);
837 mpz_neg (bnds->up, bnds->below);
838 mpz_neg (bnds->below, tmp);
839 mpz_clear (tmp);
842 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
844 static tree
845 inverse (tree x, tree mask)
847 tree type = TREE_TYPE (x);
848 tree rslt;
849 unsigned ctr = tree_floor_log2 (mask);
851 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
853 unsigned HOST_WIDE_INT ix;
854 unsigned HOST_WIDE_INT imask;
855 unsigned HOST_WIDE_INT irslt = 1;
857 gcc_assert (cst_and_fits_in_hwi (x));
858 gcc_assert (cst_and_fits_in_hwi (mask));
860 ix = int_cst_value (x);
861 imask = int_cst_value (mask);
863 for (; ctr; ctr--)
865 irslt *= ix;
866 ix *= ix;
868 irslt &= imask;
870 rslt = build_int_cst_type (type, irslt);
872 else
874 rslt = build_int_cst (type, 1);
875 for (; ctr; ctr--)
877 rslt = int_const_binop (MULT_EXPR, rslt, x);
878 x = int_const_binop (MULT_EXPR, x, x);
880 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
883 return rslt;
886 /* Derives the upper bound BND on the number of executions of loop with exit
887 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
888 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
889 that the loop ends through this exit, i.e., the induction variable ever
890 reaches the value of C.
892 The value C is equal to final - base, where final and base are the final and
893 initial value of the actual induction variable in the analysed loop. BNDS
894 bounds the value of this difference when computed in signed type with
895 unbounded range, while the computation of C is performed in an unsigned
896 type with the range matching the range of the type of the induction variable.
897 In particular, BNDS.up contains an upper bound on C in the following cases:
898 -- if the iv must reach its final value without overflow, i.e., if
899 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
900 -- if final >= base, which we know to hold when BNDS.below >= 0. */
902 static void
903 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
904 bounds *bnds, bool exit_must_be_taken)
906 widest_int max;
907 mpz_t d;
908 tree type = TREE_TYPE (c);
909 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
910 || mpz_sgn (bnds->below) >= 0);
912 if (integer_onep (s)
913 || (TREE_CODE (c) == INTEGER_CST
914 && TREE_CODE (s) == INTEGER_CST
915 && wi::mod_trunc (wi::to_wide (c), wi::to_wide (s),
916 TYPE_SIGN (type)) == 0)
917 || (TYPE_OVERFLOW_UNDEFINED (type)
918 && multiple_of_p (type, c, s)))
920 /* If C is an exact multiple of S, then its value will be reached before
921 the induction variable overflows (unless the loop is exited in some
922 other way before). Note that the actual induction variable in the
923 loop (which ranges from base to final instead of from 0 to C) may
924 overflow, in which case BNDS.up will not be giving a correct upper
925 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
926 no_overflow = true;
927 exit_must_be_taken = true;
930 /* If the induction variable can overflow, the number of iterations is at
931 most the period of the control variable (or infinite, but in that case
932 the whole # of iterations analysis will fail). */
933 if (!no_overflow)
935 max = wi::mask <widest_int> (TYPE_PRECISION (type)
936 - wi::ctz (wi::to_wide (s)), false);
937 wi::to_mpz (max, bnd, UNSIGNED);
938 return;
941 /* Now we know that the induction variable does not overflow, so the loop
942 iterates at most (range of type / S) times. */
943 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
945 /* If the induction variable is guaranteed to reach the value of C before
946 overflow, ... */
947 if (exit_must_be_taken)
949 /* ... then we can strengthen this to C / S, and possibly we can use
950 the upper bound on C given by BNDS. */
951 if (TREE_CODE (c) == INTEGER_CST)
952 wi::to_mpz (wi::to_wide (c), bnd, UNSIGNED);
953 else if (bnds_u_valid)
954 mpz_set (bnd, bnds->up);
957 mpz_init (d);
958 wi::to_mpz (wi::to_wide (s), d, UNSIGNED);
959 mpz_fdiv_q (bnd, bnd, d);
960 mpz_clear (d);
963 /* Determines number of iterations of loop whose ending condition
964 is IV <> FINAL. TYPE is the type of the iv. The number of
965 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
966 we know that the exit must be taken eventually, i.e., that the IV
967 ever reaches the value FINAL (we derived this earlier, and possibly set
968 NITER->assumptions to make sure this is the case). BNDS contains the
969 bounds on the difference FINAL - IV->base. */
971 static bool
972 number_of_iterations_ne (class loop *loop, tree type, affine_iv *iv,
973 tree final, class tree_niter_desc *niter,
974 bool exit_must_be_taken, bounds *bnds)
976 tree niter_type = unsigned_type_for (type);
977 tree s, c, d, bits, assumption, tmp, bound;
979 niter->control = *iv;
980 niter->bound = final;
981 niter->cmp = NE_EXPR;
983 /* Rearrange the terms so that we get inequality S * i <> C, with S
984 positive. Also cast everything to the unsigned type. If IV does
985 not overflow, BNDS bounds the value of C. Also, this is the
986 case if the computation |FINAL - IV->base| does not overflow, i.e.,
987 if BNDS->below in the result is nonnegative. */
988 if (tree_int_cst_sign_bit (iv->step))
990 s = fold_convert (niter_type,
991 fold_build1 (NEGATE_EXPR, type, iv->step));
992 c = fold_build2 (MINUS_EXPR, niter_type,
993 fold_convert (niter_type, iv->base),
994 fold_convert (niter_type, final));
995 bounds_negate (bnds);
997 else
999 s = fold_convert (niter_type, iv->step);
1000 c = fold_build2 (MINUS_EXPR, niter_type,
1001 fold_convert (niter_type, final),
1002 fold_convert (niter_type, iv->base));
1005 auto_mpz max;
1006 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
1007 exit_must_be_taken);
1008 niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
1009 TYPE_SIGN (niter_type));
1011 /* Compute no-overflow information for the control iv. This can be
1012 proven when below two conditions are satisfied:
1014 1) IV evaluates toward FINAL at beginning, i.e:
1015 base <= FINAL ; step > 0
1016 base >= FINAL ; step < 0
1018 2) |FINAL - base| is an exact multiple of step.
1020 Unfortunately, it's hard to prove above conditions after pass loop-ch
1021 because loop with exit condition (IV != FINAL) usually will be guarded
1022 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1023 can alternatively try to prove below conditions:
1025 1') IV evaluates toward FINAL at beginning, i.e:
1026 new_base = base - step < FINAL ; step > 0
1027 && base - step doesn't underflow
1028 new_base = base - step > FINAL ; step < 0
1029 && base - step doesn't overflow
1031 Please refer to PR34114 as an example of loop-ch's impact.
1033 Note, for NE_EXPR, base equals to FINAL is a special case, in
1034 which the loop exits immediately, and the iv does not overflow.
1036 Also note, we prove condition 2) by checking base and final seperately
1037 along with condition 1) or 1'). Since we ensure the difference
1038 computation of c does not wrap with cond below and the adjusted s
1039 will fit a signed type as well as an unsigned we can safely do
1040 this using the type of the IV if it is not pointer typed. */
1041 tree mtype = type;
1042 if (POINTER_TYPE_P (type))
1043 mtype = niter_type;
1044 if (!niter->control.no_overflow
1045 && (integer_onep (s)
1046 || (multiple_of_p (mtype, fold_convert (mtype, iv->base),
1047 fold_convert (mtype, s), false)
1048 && multiple_of_p (mtype, fold_convert (mtype, final),
1049 fold_convert (mtype, s), false))))
1051 tree t, cond, relaxed_cond = boolean_false_node;
1053 if (tree_int_cst_sign_bit (iv->step))
1055 cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
1056 if (TREE_CODE (type) == INTEGER_TYPE)
1058 /* Only when base - step doesn't overflow. */
1059 t = TYPE_MAX_VALUE (type);
1060 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1061 t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
1062 if (integer_nonzerop (t))
1064 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1065 relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node, t,
1066 final);
1070 else
1072 cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
1073 if (TREE_CODE (type) == INTEGER_TYPE)
1075 /* Only when base - step doesn't underflow. */
1076 t = TYPE_MIN_VALUE (type);
1077 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1078 t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
1079 if (integer_nonzerop (t))
1081 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1082 relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node, t,
1083 final);
1088 t = simplify_using_initial_conditions (loop, cond);
1089 if (!t || !integer_onep (t))
1090 t = simplify_using_initial_conditions (loop, relaxed_cond);
1092 if (t && integer_onep (t))
1094 niter->control.no_overflow = true;
1095 niter->niter = fold_build2 (EXACT_DIV_EXPR, niter_type, c, s);
1096 return true;
1100 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1101 is infinite. Otherwise, the number of iterations is
1102 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1103 bits = num_ending_zeros (s);
1104 bound = build_low_bits_mask (niter_type,
1105 (TYPE_PRECISION (niter_type)
1106 - tree_to_uhwi (bits)));
1108 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
1109 build_int_cst (niter_type, 1), bits);
1110 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
1112 if (!exit_must_be_taken)
1114 /* If we cannot assume that the exit is taken eventually, record the
1115 assumptions for divisibility of c. */
1116 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
1117 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
1118 assumption, build_int_cst (niter_type, 0));
1119 if (!integer_nonzerop (assumption))
1120 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1121 niter->assumptions, assumption);
1124 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
1125 if (integer_onep (s))
1127 niter->niter = c;
1129 else
1131 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
1132 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
1134 return true;
1137 /* Checks whether we can determine the final value of the control variable
1138 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1139 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1140 of the step. The assumptions necessary to ensure that the computation
1141 of the final value does not overflow are recorded in NITER. If we
1142 find the final value, we adjust DELTA and return TRUE. Otherwise
1143 we return false. BNDS bounds the value of IV1->base - IV0->base,
1144 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1145 true if we know that the exit must be taken eventually. */
1147 static bool
1148 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
1149 class tree_niter_desc *niter,
1150 tree *delta, tree step,
1151 bool exit_must_be_taken, bounds *bnds)
1153 tree niter_type = TREE_TYPE (step);
1154 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
1155 tree tmod;
1156 tree assumption = boolean_true_node, bound, noloop;
1157 bool fv_comp_no_overflow;
1158 tree type1 = type;
1159 if (POINTER_TYPE_P (type))
1160 type1 = sizetype;
1162 if (TREE_CODE (mod) != INTEGER_CST)
1163 return false;
1164 if (integer_nonzerop (mod))
1165 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
1166 tmod = fold_convert (type1, mod);
1168 auto_mpz mmod;
1169 wi::to_mpz (wi::to_wide (mod), mmod, UNSIGNED);
1170 mpz_neg (mmod, mmod);
1172 /* If the induction variable does not overflow and the exit is taken,
1173 then the computation of the final value does not overflow. This is
1174 also obviously the case if the new final value is equal to the
1175 current one. Finally, we postulate this for pointer type variables,
1176 as the code cannot rely on the object to that the pointer points being
1177 placed at the end of the address space (and more pragmatically,
1178 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1179 if (integer_zerop (mod) || POINTER_TYPE_P (type))
1180 fv_comp_no_overflow = true;
1181 else if (!exit_must_be_taken)
1182 fv_comp_no_overflow = false;
1183 else
1184 fv_comp_no_overflow =
1185 (iv0->no_overflow && integer_nonzerop (iv0->step))
1186 || (iv1->no_overflow && integer_nonzerop (iv1->step));
1188 if (integer_nonzerop (iv0->step))
1190 /* The final value of the iv is iv1->base + MOD, assuming that this
1191 computation does not overflow, and that
1192 iv0->base <= iv1->base + MOD. */
1193 if (!fv_comp_no_overflow)
1195 bound = fold_build2 (MINUS_EXPR, type1,
1196 TYPE_MAX_VALUE (type1), tmod);
1197 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1198 iv1->base, bound);
1199 if (integer_zerop (assumption))
1200 return false;
1202 if (mpz_cmp (mmod, bnds->below) < 0)
1203 noloop = boolean_false_node;
1204 else if (POINTER_TYPE_P (type))
1205 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1206 iv0->base,
1207 fold_build_pointer_plus (iv1->base, tmod));
1208 else
1209 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1210 iv0->base,
1211 fold_build2 (PLUS_EXPR, type1,
1212 iv1->base, tmod));
1214 else
1216 /* The final value of the iv is iv0->base - MOD, assuming that this
1217 computation does not overflow, and that
1218 iv0->base - MOD <= iv1->base. */
1219 if (!fv_comp_no_overflow)
1221 bound = fold_build2 (PLUS_EXPR, type1,
1222 TYPE_MIN_VALUE (type1), tmod);
1223 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1224 iv0->base, bound);
1225 if (integer_zerop (assumption))
1226 return false;
1228 if (mpz_cmp (mmod, bnds->below) < 0)
1229 noloop = boolean_false_node;
1230 else if (POINTER_TYPE_P (type))
1231 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1232 fold_build_pointer_plus (iv0->base,
1233 fold_build1 (NEGATE_EXPR,
1234 type1, tmod)),
1235 iv1->base);
1236 else
1237 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1238 fold_build2 (MINUS_EXPR, type1,
1239 iv0->base, tmod),
1240 iv1->base);
1243 if (!integer_nonzerop (assumption))
1244 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1245 niter->assumptions,
1246 assumption);
1247 if (!integer_zerop (noloop))
1248 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1249 niter->may_be_zero,
1250 noloop);
1251 bounds_add (bnds, wi::to_widest (mod), type);
1252 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
1254 return true;
1257 /* Add assertions to NITER that ensure that the control variable of the loop
1258 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1259 are TYPE. Returns false if we can prove that there is an overflow, true
1260 otherwise. STEP is the absolute value of the step. */
1262 static bool
1263 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1264 class tree_niter_desc *niter, tree step)
1266 tree bound, d, assumption, diff;
1267 tree niter_type = TREE_TYPE (step);
1269 if (integer_nonzerop (iv0->step))
1271 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1272 if (iv0->no_overflow)
1273 return true;
1275 /* If iv0->base is a constant, we can determine the last value before
1276 overflow precisely; otherwise we conservatively assume
1277 MAX - STEP + 1. */
1279 if (TREE_CODE (iv0->base) == INTEGER_CST)
1281 d = fold_build2 (MINUS_EXPR, niter_type,
1282 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
1283 fold_convert (niter_type, iv0->base));
1284 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1286 else
1287 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1288 build_int_cst (niter_type, 1));
1289 bound = fold_build2 (MINUS_EXPR, type,
1290 TYPE_MAX_VALUE (type), fold_convert (type, diff));
1291 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1292 iv1->base, bound);
1294 else
1296 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1297 if (iv1->no_overflow)
1298 return true;
1300 if (TREE_CODE (iv1->base) == INTEGER_CST)
1302 d = fold_build2 (MINUS_EXPR, niter_type,
1303 fold_convert (niter_type, iv1->base),
1304 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
1305 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1307 else
1308 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1309 build_int_cst (niter_type, 1));
1310 bound = fold_build2 (PLUS_EXPR, type,
1311 TYPE_MIN_VALUE (type), fold_convert (type, diff));
1312 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1313 iv0->base, bound);
1316 if (integer_zerop (assumption))
1317 return false;
1318 if (!integer_nonzerop (assumption))
1319 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1320 niter->assumptions, assumption);
1322 iv0->no_overflow = true;
1323 iv1->no_overflow = true;
1324 return true;
1327 /* Add an assumption to NITER that a loop whose ending condition
1328 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1329 bounds the value of IV1->base - IV0->base. */
1331 static void
1332 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1333 class tree_niter_desc *niter, bounds *bnds)
1335 tree assumption = boolean_true_node, bound, diff;
1336 tree mbz, mbzl, mbzr, type1;
1337 bool rolls_p, no_overflow_p;
1338 widest_int dstep;
1339 mpz_t mstep, max;
1341 /* We are going to compute the number of iterations as
1342 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1343 variant of TYPE. This formula only works if
1345 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1347 (where MAX is the maximum value of the unsigned variant of TYPE, and
1348 the computations in this formula are performed in full precision,
1349 i.e., without overflows).
1351 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1352 we have a condition of the form iv0->base - step < iv1->base before the loop,
1353 and for loops iv0->base < iv1->base - step * i the condition
1354 iv0->base < iv1->base + step, due to loop header copying, which enable us
1355 to prove the lower bound.
1357 The upper bound is more complicated. Unless the expressions for initial
1358 and final value themselves contain enough information, we usually cannot
1359 derive it from the context. */
1361 /* First check whether the answer does not follow from the bounds we gathered
1362 before. */
1363 if (integer_nonzerop (iv0->step))
1364 dstep = wi::to_widest (iv0->step);
1365 else
1367 dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
1368 dstep = -dstep;
1371 mpz_init (mstep);
1372 wi::to_mpz (dstep, mstep, UNSIGNED);
1373 mpz_neg (mstep, mstep);
1374 mpz_add_ui (mstep, mstep, 1);
1376 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1378 mpz_init (max);
1379 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1380 mpz_add (max, max, mstep);
1381 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1382 /* For pointers, only values lying inside a single object
1383 can be compared or manipulated by pointer arithmetics.
1384 Gcc in general does not allow or handle objects larger
1385 than half of the address space, hence the upper bound
1386 is satisfied for pointers. */
1387 || POINTER_TYPE_P (type));
1388 mpz_clear (mstep);
1389 mpz_clear (max);
1391 if (rolls_p && no_overflow_p)
1392 return;
1394 type1 = type;
1395 if (POINTER_TYPE_P (type))
1396 type1 = sizetype;
1398 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1399 we must be careful not to introduce overflow. */
1401 if (integer_nonzerop (iv0->step))
1403 diff = fold_build2 (MINUS_EXPR, type1,
1404 iv0->step, build_int_cst (type1, 1));
1406 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1407 0 address never belongs to any object, we can assume this for
1408 pointers. */
1409 if (!POINTER_TYPE_P (type))
1411 bound = fold_build2 (PLUS_EXPR, type1,
1412 TYPE_MIN_VALUE (type), diff);
1413 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1414 iv0->base, bound);
1417 /* And then we can compute iv0->base - diff, and compare it with
1418 iv1->base. */
1419 mbzl = fold_build2 (MINUS_EXPR, type1,
1420 fold_convert (type1, iv0->base), diff);
1421 mbzr = fold_convert (type1, iv1->base);
1423 else
1425 diff = fold_build2 (PLUS_EXPR, type1,
1426 iv1->step, build_int_cst (type1, 1));
1428 if (!POINTER_TYPE_P (type))
1430 bound = fold_build2 (PLUS_EXPR, type1,
1431 TYPE_MAX_VALUE (type), diff);
1432 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1433 iv1->base, bound);
1436 mbzl = fold_convert (type1, iv0->base);
1437 mbzr = fold_build2 (MINUS_EXPR, type1,
1438 fold_convert (type1, iv1->base), diff);
1441 if (!integer_nonzerop (assumption))
1442 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1443 niter->assumptions, assumption);
1444 if (!rolls_p)
1446 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1447 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1448 niter->may_be_zero, mbz);
1452 /* Determines number of iterations of loop whose ending condition
1453 is IV0 < IV1 which likes: {base, -C} < n, or n < {base, C}.
1454 The number of iterations is stored to NITER. */
1456 static bool
1457 number_of_iterations_until_wrap (class loop *loop, tree type, affine_iv *iv0,
1458 affine_iv *iv1, class tree_niter_desc *niter)
1460 tree niter_type = unsigned_type_for (type);
1461 tree step, num, assumptions, may_be_zero, span;
1462 wide_int high, low, max, min;
1464 may_be_zero = fold_build2 (LE_EXPR, boolean_type_node, iv1->base, iv0->base);
1465 if (integer_onep (may_be_zero))
1466 return false;
1468 int prec = TYPE_PRECISION (type);
1469 signop sgn = TYPE_SIGN (type);
1470 min = wi::min_value (prec, sgn);
1471 max = wi::max_value (prec, sgn);
1473 /* n < {base, C}. */
1474 if (integer_zerop (iv0->step) && !tree_int_cst_sign_bit (iv1->step))
1476 step = iv1->step;
1477 /* MIN + C - 1 <= n. */
1478 tree last = wide_int_to_tree (type, min + wi::to_wide (step) - 1);
1479 assumptions = fold_build2 (LE_EXPR, boolean_type_node, last, iv0->base);
1480 if (integer_zerop (assumptions))
1481 return false;
1483 num = fold_build2 (MINUS_EXPR, niter_type,
1484 wide_int_to_tree (niter_type, max),
1485 fold_convert (niter_type, iv1->base));
1487 /* When base has the form iv + 1, if we know iv >= n, then iv + 1 < n
1488 only when iv + 1 overflows, i.e. when iv == TYPE_VALUE_MAX. */
1489 if (sgn == UNSIGNED
1490 && integer_onep (step)
1491 && TREE_CODE (iv1->base) == PLUS_EXPR
1492 && integer_onep (TREE_OPERAND (iv1->base, 1)))
1494 tree cond = fold_build2 (GE_EXPR, boolean_type_node,
1495 TREE_OPERAND (iv1->base, 0), iv0->base);
1496 cond = simplify_using_initial_conditions (loop, cond);
1497 if (integer_onep (cond))
1498 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node,
1499 TREE_OPERAND (iv1->base, 0),
1500 TYPE_MAX_VALUE (type));
1503 high = max;
1504 if (TREE_CODE (iv1->base) == INTEGER_CST)
1505 low = wi::to_wide (iv1->base) - 1;
1506 else if (TREE_CODE (iv0->base) == INTEGER_CST)
1507 low = wi::to_wide (iv0->base);
1508 else
1509 low = min;
1511 /* {base, -C} < n. */
1512 else if (tree_int_cst_sign_bit (iv0->step) && integer_zerop (iv1->step))
1514 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv0->step), iv0->step);
1515 /* MAX - C + 1 >= n. */
1516 tree last = wide_int_to_tree (type, max - wi::to_wide (step) + 1);
1517 assumptions = fold_build2 (GE_EXPR, boolean_type_node, last, iv1->base);
1518 if (integer_zerop (assumptions))
1519 return false;
1521 num = fold_build2 (MINUS_EXPR, niter_type,
1522 fold_convert (niter_type, iv0->base),
1523 wide_int_to_tree (niter_type, min));
1524 low = min;
1525 if (TREE_CODE (iv0->base) == INTEGER_CST)
1526 high = wi::to_wide (iv0->base) + 1;
1527 else if (TREE_CODE (iv1->base) == INTEGER_CST)
1528 high = wi::to_wide (iv1->base);
1529 else
1530 high = max;
1532 else
1533 return false;
1535 /* (delta + step - 1) / step */
1536 step = fold_convert (niter_type, step);
1537 num = fold_build2 (PLUS_EXPR, niter_type, num, step);
1538 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, num, step);
1540 widest_int delta, s;
1541 delta = widest_int::from (high, sgn) - widest_int::from (low, sgn);
1542 s = wi::to_widest (step);
1543 delta = delta + s - 1;
1544 niter->max = wi::udiv_floor (delta, s);
1546 niter->may_be_zero = may_be_zero;
1548 if (!integer_nonzerop (assumptions))
1549 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1550 niter->assumptions, assumptions);
1552 niter->control.no_overflow = false;
1554 /* Update bound and exit condition as:
1555 bound = niter * STEP + (IVbase - STEP).
1556 { IVbase - STEP, +, STEP } != bound
1557 Here, biasing IVbase by 1 step makes 'bound' be the value before wrap.
1559 tree base_type = TREE_TYPE (niter->control.base);
1560 if (POINTER_TYPE_P (base_type))
1562 tree utype = unsigned_type_for (base_type);
1563 niter->control.base
1564 = fold_build2 (MINUS_EXPR, utype,
1565 fold_convert (utype, niter->control.base),
1566 fold_convert (utype, niter->control.step));
1567 niter->control.base = fold_convert (base_type, niter->control.base);
1569 else
1570 niter->control.base
1571 = fold_build2 (MINUS_EXPR, base_type, niter->control.base,
1572 niter->control.step);
1574 span = fold_build2 (MULT_EXPR, niter_type, niter->niter,
1575 fold_convert (niter_type, niter->control.step));
1576 niter->bound = fold_build2 (PLUS_EXPR, niter_type, span,
1577 fold_convert (niter_type, niter->control.base));
1578 niter->bound = fold_convert (type, niter->bound);
1579 niter->cmp = NE_EXPR;
1581 return true;
1584 /* Determines number of iterations of loop whose ending condition
1585 is IV0 < IV1. TYPE is the type of the iv. The number of
1586 iterations is stored to NITER. BNDS bounds the difference
1587 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1588 that the exit must be taken eventually. */
1590 static bool
1591 number_of_iterations_lt (class loop *loop, tree type, affine_iv *iv0,
1592 affine_iv *iv1, class tree_niter_desc *niter,
1593 bool exit_must_be_taken, bounds *bnds)
1595 tree niter_type = unsigned_type_for (type);
1596 tree delta, step, s;
1597 mpz_t mstep, tmp;
1599 if (integer_nonzerop (iv0->step))
1601 niter->control = *iv0;
1602 niter->cmp = LT_EXPR;
1603 niter->bound = iv1->base;
1605 else
1607 niter->control = *iv1;
1608 niter->cmp = GT_EXPR;
1609 niter->bound = iv0->base;
1612 /* {base, -C} < n, or n < {base, C} */
1613 if (tree_int_cst_sign_bit (iv0->step)
1614 || (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step)))
1615 return number_of_iterations_until_wrap (loop, type, iv0, iv1, niter);
1617 delta = fold_build2 (MINUS_EXPR, niter_type,
1618 fold_convert (niter_type, iv1->base),
1619 fold_convert (niter_type, iv0->base));
1621 /* First handle the special case that the step is +-1. */
1622 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1623 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1625 /* for (i = iv0->base; i < iv1->base; i++)
1629 for (i = iv1->base; i > iv0->base; i--).
1631 In both cases # of iterations is iv1->base - iv0->base, assuming that
1632 iv1->base >= iv0->base.
1634 First try to derive a lower bound on the value of
1635 iv1->base - iv0->base, computed in full precision. If the difference
1636 is nonnegative, we are done, otherwise we must record the
1637 condition. */
1639 if (mpz_sgn (bnds->below) < 0)
1640 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1641 iv1->base, iv0->base);
1642 niter->niter = delta;
1643 niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
1644 TYPE_SIGN (niter_type));
1645 niter->control.no_overflow = true;
1646 return true;
1649 if (integer_nonzerop (iv0->step))
1650 step = fold_convert (niter_type, iv0->step);
1651 else
1652 step = fold_convert (niter_type,
1653 fold_build1 (NEGATE_EXPR, type, iv1->step));
1655 /* If we can determine the final value of the control iv exactly, we can
1656 transform the condition to != comparison. In particular, this will be
1657 the case if DELTA is constant. */
1658 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1659 exit_must_be_taken, bnds))
1661 affine_iv zps;
1663 zps.base = build_int_cst (niter_type, 0);
1664 zps.step = step;
1665 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1666 zps does not overflow. */
1667 zps.no_overflow = true;
1669 return number_of_iterations_ne (loop, type, &zps,
1670 delta, niter, true, bnds);
1673 /* Make sure that the control iv does not overflow. */
1674 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1675 return false;
1677 /* We determine the number of iterations as (delta + step - 1) / step. For
1678 this to work, we must know that iv1->base >= iv0->base - step + 1,
1679 otherwise the loop does not roll. */
1680 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1682 s = fold_build2 (MINUS_EXPR, niter_type,
1683 step, build_int_cst (niter_type, 1));
1684 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1685 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1687 mpz_init (mstep);
1688 mpz_init (tmp);
1689 wi::to_mpz (wi::to_wide (step), mstep, UNSIGNED);
1690 mpz_add (tmp, bnds->up, mstep);
1691 mpz_sub_ui (tmp, tmp, 1);
1692 mpz_fdiv_q (tmp, tmp, mstep);
1693 niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
1694 TYPE_SIGN (niter_type));
1695 mpz_clear (mstep);
1696 mpz_clear (tmp);
1698 return true;
1701 /* Determines number of iterations of loop whose ending condition
1702 is IV0 <= IV1. TYPE is the type of the iv. The number of
1703 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1704 we know that this condition must eventually become false (we derived this
1705 earlier, and possibly set NITER->assumptions to make sure this
1706 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1708 static bool
1709 number_of_iterations_le (class loop *loop, tree type, affine_iv *iv0,
1710 affine_iv *iv1, class tree_niter_desc *niter,
1711 bool exit_must_be_taken, bounds *bnds)
1713 tree assumption;
1714 tree type1 = type;
1715 if (POINTER_TYPE_P (type))
1716 type1 = sizetype;
1718 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1719 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1720 value of the type. This we must know anyway, since if it is
1721 equal to this value, the loop rolls forever. We do not check
1722 this condition for pointer type ivs, as the code cannot rely on
1723 the object to that the pointer points being placed at the end of
1724 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1725 not defined for pointers). */
1727 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1729 if (integer_nonzerop (iv0->step))
1730 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1731 iv1->base, TYPE_MAX_VALUE (type));
1732 else
1733 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1734 iv0->base, TYPE_MIN_VALUE (type));
1736 if (integer_zerop (assumption))
1737 return false;
1738 if (!integer_nonzerop (assumption))
1739 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1740 niter->assumptions, assumption);
1743 if (integer_nonzerop (iv0->step))
1745 if (POINTER_TYPE_P (type))
1746 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1747 else
1748 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1749 build_int_cst (type1, 1));
1751 else if (POINTER_TYPE_P (type))
1752 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1753 else
1754 iv0->base = fold_build2 (MINUS_EXPR, type1,
1755 iv0->base, build_int_cst (type1, 1));
1757 bounds_add (bnds, 1, type1);
1759 return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
1760 bnds);
1763 /* Dumps description of affine induction variable IV to FILE. */
1765 static void
1766 dump_affine_iv (FILE *file, affine_iv *iv)
1768 if (!integer_zerop (iv->step))
1769 fprintf (file, "[");
1771 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1773 if (!integer_zerop (iv->step))
1775 fprintf (file, ", + , ");
1776 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1777 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1781 /* Determine the number of iterations according to condition (for staying
1782 inside loop) which compares two induction variables using comparison
1783 operator CODE. The induction variable on left side of the comparison
1784 is IV0, the right-hand side is IV1. Both induction variables must have
1785 type TYPE, which must be an integer or pointer type. The steps of the
1786 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1788 LOOP is the loop whose number of iterations we are determining.
1790 ONLY_EXIT is true if we are sure this is the only way the loop could be
1791 exited (including possibly non-returning function calls, exceptions, etc.)
1792 -- in this case we can use the information whether the control induction
1793 variables can overflow or not in a more efficient way.
1795 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1797 The results (number of iterations and assumptions as described in
1798 comments at class tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1799 Returns false if it fails to determine number of iterations, true if it
1800 was determined (possibly with some assumptions). */
1802 static bool
1803 number_of_iterations_cond (class loop *loop,
1804 tree type, affine_iv *iv0, enum tree_code code,
1805 affine_iv *iv1, class tree_niter_desc *niter,
1806 bool only_exit, bool every_iteration)
1808 bool exit_must_be_taken = false, ret;
1809 bounds bnds;
1811 /* If the test is not executed every iteration, wrapping may make the test
1812 to pass again.
1813 TODO: the overflow case can be still used as unreliable estimate of upper
1814 bound. But we have no API to pass it down to number of iterations code
1815 and, at present, it will not use it anyway. */
1816 if (!every_iteration
1817 && (!iv0->no_overflow || !iv1->no_overflow
1818 || code == NE_EXPR || code == EQ_EXPR))
1819 return false;
1821 /* The meaning of these assumptions is this:
1822 if !assumptions
1823 then the rest of information does not have to be valid
1824 if may_be_zero then the loop does not roll, even if
1825 niter != 0. */
1826 niter->assumptions = boolean_true_node;
1827 niter->may_be_zero = boolean_false_node;
1828 niter->niter = NULL_TREE;
1829 niter->max = 0;
1830 niter->bound = NULL_TREE;
1831 niter->cmp = ERROR_MARK;
1833 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1834 the control variable is on lhs. */
1835 if (code == GE_EXPR || code == GT_EXPR
1836 || (code == NE_EXPR && integer_zerop (iv0->step)))
1838 std::swap (iv0, iv1);
1839 code = swap_tree_comparison (code);
1842 if (POINTER_TYPE_P (type))
1844 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1845 to the same object. If they do, the control variable cannot wrap
1846 (as wrap around the bounds of memory will never return a pointer
1847 that would be guaranteed to point to the same object, even if we
1848 avoid undefined behavior by casting to size_t and back). */
1849 iv0->no_overflow = true;
1850 iv1->no_overflow = true;
1853 /* If the control induction variable does not overflow and the only exit
1854 from the loop is the one that we analyze, we know it must be taken
1855 eventually. */
1856 if (only_exit)
1858 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1859 exit_must_be_taken = true;
1860 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1861 exit_must_be_taken = true;
1864 /* We can handle cases which neither of the sides of the comparison is
1865 invariant:
1867 {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
1868 as if:
1869 {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
1871 provided that either below condition is satisfied:
1873 a) the test is NE_EXPR;
1874 b) iv0 and iv1 do not overflow and iv0.step - iv1.step is of
1875 the same sign and of less or equal magnitude than iv0.step
1877 This rarely occurs in practice, but it is simple enough to manage. */
1878 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1880 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1881 tree step = fold_binary_to_constant (MINUS_EXPR, step_type,
1882 iv0->step, iv1->step);
1884 /* For code other than NE_EXPR we have to ensure moving the evolution
1885 of IV1 to that of IV0 does not introduce overflow. */
1886 if (TREE_CODE (step) != INTEGER_CST
1887 || !iv0->no_overflow || !iv1->no_overflow)
1889 if (code != NE_EXPR)
1890 return false;
1891 iv0->no_overflow = false;
1893 /* If the new step of IV0 has changed sign or is of greater
1894 magnitude then we do not know whether IV0 does overflow
1895 and thus the transform is not valid for code other than NE_EXPR. */
1896 else if (tree_int_cst_sign_bit (step) != tree_int_cst_sign_bit (iv0->step)
1897 || wi::gtu_p (wi::abs (wi::to_widest (step)),
1898 wi::abs (wi::to_widest (iv0->step))))
1900 if (POINTER_TYPE_P (type) && code != NE_EXPR)
1901 /* For relational pointer compares we have further guarantees
1902 that the pointers always point to the same object (or one
1903 after it) and that objects do not cross the zero page. So
1904 not only is the transform always valid for relational
1905 pointer compares, we also know the resulting IV does not
1906 overflow. */
1908 else if (code != NE_EXPR)
1909 return false;
1910 else
1911 iv0->no_overflow = false;
1914 iv0->step = step;
1915 iv1->step = build_int_cst (step_type, 0);
1916 iv1->no_overflow = true;
1919 /* If the result of the comparison is a constant, the loop is weird. More
1920 precise handling would be possible, but the situation is not common enough
1921 to waste time on it. */
1922 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1923 return false;
1925 /* If the loop exits immediately, there is nothing to do. */
1926 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1927 if (tem && integer_zerop (tem))
1929 if (!every_iteration)
1930 return false;
1931 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1932 niter->max = 0;
1933 return true;
1936 /* OK, now we know we have a senseful loop. Handle several cases, depending
1937 on what comparison operator is used. */
1938 bound_difference (loop, iv1->base, iv0->base, &bnds);
1940 if (dump_file && (dump_flags & TDF_DETAILS))
1942 fprintf (dump_file,
1943 "Analyzing # of iterations of loop %d\n", loop->num);
1945 fprintf (dump_file, " exit condition ");
1946 dump_affine_iv (dump_file, iv0);
1947 fprintf (dump_file, " %s ",
1948 code == NE_EXPR ? "!="
1949 : code == LT_EXPR ? "<"
1950 : "<=");
1951 dump_affine_iv (dump_file, iv1);
1952 fprintf (dump_file, "\n");
1954 fprintf (dump_file, " bounds on difference of bases: ");
1955 mpz_out_str (dump_file, 10, bnds.below);
1956 fprintf (dump_file, " ... ");
1957 mpz_out_str (dump_file, 10, bnds.up);
1958 fprintf (dump_file, "\n");
1961 switch (code)
1963 case NE_EXPR:
1964 gcc_assert (integer_zerop (iv1->step));
1965 ret = number_of_iterations_ne (loop, type, iv0, iv1->base, niter,
1966 exit_must_be_taken, &bnds);
1967 break;
1969 case LT_EXPR:
1970 ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
1971 exit_must_be_taken, &bnds);
1972 break;
1974 case LE_EXPR:
1975 ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
1976 exit_must_be_taken, &bnds);
1977 break;
1979 default:
1980 gcc_unreachable ();
1983 mpz_clear (bnds.up);
1984 mpz_clear (bnds.below);
1986 if (dump_file && (dump_flags & TDF_DETAILS))
1988 if (ret)
1990 fprintf (dump_file, " result:\n");
1991 if (!integer_nonzerop (niter->assumptions))
1993 fprintf (dump_file, " under assumptions ");
1994 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1995 fprintf (dump_file, "\n");
1998 if (!integer_zerop (niter->may_be_zero))
2000 fprintf (dump_file, " zero if ");
2001 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
2002 fprintf (dump_file, "\n");
2005 fprintf (dump_file, " # of iterations ");
2006 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
2007 fprintf (dump_file, ", bounded by ");
2008 print_decu (niter->max, dump_file);
2009 fprintf (dump_file, "\n");
2011 else
2012 fprintf (dump_file, " failed\n\n");
2014 return ret;
2017 /* Return an expression that computes the popcount of src. */
2019 static tree
2020 build_popcount_expr (tree src)
2022 tree fn;
2023 bool use_ifn = false;
2024 int prec = TYPE_PRECISION (TREE_TYPE (src));
2025 int i_prec = TYPE_PRECISION (integer_type_node);
2026 int li_prec = TYPE_PRECISION (long_integer_type_node);
2027 int lli_prec = TYPE_PRECISION (long_long_integer_type_node);
2029 tree utype = unsigned_type_for (TREE_TYPE (src));
2030 src = fold_convert (utype, src);
2032 if (direct_internal_fn_supported_p (IFN_POPCOUNT, utype, OPTIMIZE_FOR_BOTH))
2033 use_ifn = true;
2034 else if (prec <= i_prec)
2035 fn = builtin_decl_implicit (BUILT_IN_POPCOUNT);
2036 else if (prec == li_prec)
2037 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTL);
2038 else if (prec == lli_prec || prec == 2 * lli_prec)
2039 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTLL);
2040 else
2041 return NULL_TREE;
2043 tree call;
2044 if (use_ifn)
2045 call = build_call_expr_internal_loc (UNKNOWN_LOCATION, IFN_POPCOUNT,
2046 integer_type_node, 1, src);
2047 else if (prec == 2 * lli_prec)
2049 tree src1 = fold_convert (long_long_unsigned_type_node,
2050 fold_build2 (RSHIFT_EXPR, TREE_TYPE (src),
2051 unshare_expr (src),
2052 build_int_cst (integer_type_node,
2053 lli_prec)));
2054 tree src2 = fold_convert (long_long_unsigned_type_node, src);
2055 tree call1 = build_call_expr (fn, 1, src1);
2056 tree call2 = build_call_expr (fn, 1, src2);
2057 call = fold_build2 (PLUS_EXPR, integer_type_node, call1, call2);
2059 else
2061 if (prec < i_prec)
2062 src = fold_convert (unsigned_type_node, src);
2064 call = build_call_expr (fn, 1, src);
2067 return call;
2070 /* Utility function to check if OP is defined by a stmt
2071 that is a val - 1. */
2073 static bool
2074 ssa_defined_by_minus_one_stmt_p (tree op, tree val)
2076 gimple *stmt;
2077 return (TREE_CODE (op) == SSA_NAME
2078 && (stmt = SSA_NAME_DEF_STMT (op))
2079 && is_gimple_assign (stmt)
2080 && (gimple_assign_rhs_code (stmt) == PLUS_EXPR)
2081 && val == gimple_assign_rhs1 (stmt)
2082 && integer_minus_onep (gimple_assign_rhs2 (stmt)));
2085 /* See comment below for number_of_iterations_bitcount.
2086 For popcount, we have:
2088 modify:
2089 _1 = iv_1 + -1
2090 iv_2 = iv_1 & _1
2092 test:
2093 if (iv != 0)
2095 modification count:
2096 popcount (src)
2100 static bool
2101 number_of_iterations_popcount (loop_p loop, edge exit,
2102 enum tree_code code,
2103 class tree_niter_desc *niter)
2105 bool modify_before_test = true;
2106 HOST_WIDE_INT max;
2108 /* Check that condition for staying inside the loop is like
2109 if (iv != 0). */
2110 gcond *cond_stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (exit->src));
2111 if (!cond_stmt
2112 || code != NE_EXPR
2113 || !integer_zerop (gimple_cond_rhs (cond_stmt))
2114 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2115 return false;
2117 tree iv_2 = gimple_cond_lhs (cond_stmt);
2118 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2120 /* If the test comes before the iv modification, then these will actually be
2121 iv_1 and a phi node. */
2122 if (gimple_code (iv_2_stmt) == GIMPLE_PHI
2123 && gimple_bb (iv_2_stmt) == loop->header
2124 && gimple_phi_num_args (iv_2_stmt) == 2
2125 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2126 loop_latch_edge (loop)->dest_idx))
2127 == SSA_NAME))
2129 /* iv_2 is actually one of the inputs to the phi. */
2130 iv_2 = gimple_phi_arg_def (iv_2_stmt, loop_latch_edge (loop)->dest_idx);
2131 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2132 modify_before_test = false;
2135 /* Make sure iv_2_stmt is an and stmt (iv_2 = _1 & iv_1). */
2136 if (!is_gimple_assign (iv_2_stmt)
2137 || gimple_assign_rhs_code (iv_2_stmt) != BIT_AND_EXPR)
2138 return false;
2140 tree iv_1 = gimple_assign_rhs1 (iv_2_stmt);
2141 tree _1 = gimple_assign_rhs2 (iv_2_stmt);
2143 /* Check that _1 is defined by (_1 = iv_1 + -1).
2144 Also make sure that _1 is the same in and_stmt and _1 defining stmt.
2145 Also canonicalize if _1 and _b11 are revrsed. */
2146 if (ssa_defined_by_minus_one_stmt_p (iv_1, _1))
2147 std::swap (iv_1, _1);
2148 else if (ssa_defined_by_minus_one_stmt_p (_1, iv_1))
2150 else
2151 return false;
2153 /* Check the recurrence. */
2154 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2155 if (gimple_code (phi) != GIMPLE_PHI
2156 || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
2157 || (iv_2 != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
2158 return false;
2160 /* We found a match. */
2161 tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
2162 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2164 /* Get the corresponding popcount builtin. */
2165 tree expr = build_popcount_expr (src);
2167 if (!expr)
2168 return false;
2170 max = src_precision;
2172 tree may_be_zero = boolean_false_node;
2174 if (modify_before_test)
2176 expr = fold_build2 (MINUS_EXPR, integer_type_node, expr,
2177 integer_one_node);
2178 max = max - 1;
2179 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2180 build_zero_cst (TREE_TYPE (src)));
2183 expr = fold_convert (unsigned_type_node, expr);
2185 niter->assumptions = boolean_true_node;
2186 niter->may_be_zero = simplify_using_initial_conditions (loop, may_be_zero);
2187 niter->niter = simplify_using_initial_conditions(loop, expr);
2189 if (TREE_CODE (niter->niter) == INTEGER_CST)
2190 niter->max = tree_to_uhwi (niter->niter);
2191 else
2192 niter->max = max;
2194 niter->bound = NULL_TREE;
2195 niter->cmp = ERROR_MARK;
2196 return true;
2199 /* Return an expression that counts the leading/trailing zeroes of src.
2201 If define_at_zero is true, then the built expression will be defined to
2202 return the precision of src when src == 0 (using either a conditional
2203 expression or a suitable internal function).
2204 Otherwise, we can elide the conditional expression and let src = 0 invoke
2205 undefined behaviour. */
2207 static tree
2208 build_cltz_expr (tree src, bool leading, bool define_at_zero)
2210 tree fn;
2211 internal_fn ifn = leading ? IFN_CLZ : IFN_CTZ;
2212 bool use_ifn = false;
2213 int prec = TYPE_PRECISION (TREE_TYPE (src));
2214 int i_prec = TYPE_PRECISION (integer_type_node);
2215 int li_prec = TYPE_PRECISION (long_integer_type_node);
2216 int lli_prec = TYPE_PRECISION (long_long_integer_type_node);
2218 tree utype = unsigned_type_for (TREE_TYPE (src));
2219 src = fold_convert (utype, src);
2221 if (direct_internal_fn_supported_p (ifn, utype, OPTIMIZE_FOR_BOTH))
2222 use_ifn = true;
2223 else if (prec <= i_prec)
2224 fn = leading ? builtin_decl_implicit (BUILT_IN_CLZ)
2225 : builtin_decl_implicit (BUILT_IN_CTZ);
2226 else if (prec == li_prec)
2227 fn = leading ? builtin_decl_implicit (BUILT_IN_CLZL)
2228 : builtin_decl_implicit (BUILT_IN_CTZL);
2229 else if (prec == lli_prec || prec == 2 * lli_prec)
2230 fn = leading ? builtin_decl_implicit (BUILT_IN_CLZLL)
2231 : builtin_decl_implicit (BUILT_IN_CTZLL);
2232 else
2233 return NULL_TREE;
2235 tree call;
2236 if (use_ifn)
2238 int val;
2239 int optab_defined_at_zero
2240 = (leading
2241 ? CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (utype), val)
2242 : CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (utype), val));
2243 tree arg2 = NULL_TREE;
2244 if (define_at_zero && optab_defined_at_zero == 2 && val == prec)
2245 arg2 = build_int_cst (integer_type_node, val);
2246 call = build_call_expr_internal_loc (UNKNOWN_LOCATION, ifn,
2247 integer_type_node, arg2 ? 2 : 1,
2248 src, arg2);
2249 if (define_at_zero && arg2 == NULL_TREE)
2251 tree is_zero = fold_build2 (NE_EXPR, boolean_type_node, src,
2252 build_zero_cst (TREE_TYPE (src)));
2253 call = fold_build3 (COND_EXPR, integer_type_node, is_zero, call,
2254 build_int_cst (integer_type_node, prec));
2257 else if (prec == 2 * lli_prec)
2259 tree src1 = fold_convert (long_long_unsigned_type_node,
2260 fold_build2 (RSHIFT_EXPR, TREE_TYPE (src),
2261 unshare_expr (src),
2262 build_int_cst (integer_type_node,
2263 lli_prec)));
2264 tree src2 = fold_convert (long_long_unsigned_type_node, src);
2265 /* We count the zeroes in src1, and add the number in src2 when src1
2266 is 0. */
2267 if (!leading)
2268 std::swap (src1, src2);
2269 tree call1 = build_call_expr (fn, 1, src1);
2270 tree call2 = build_call_expr (fn, 1, src2);
2271 if (define_at_zero)
2273 tree is_zero2 = fold_build2 (NE_EXPR, boolean_type_node, src2,
2274 build_zero_cst (TREE_TYPE (src2)));
2275 call2 = fold_build3 (COND_EXPR, integer_type_node, is_zero2, call2,
2276 build_int_cst (integer_type_node, lli_prec));
2278 tree is_zero1 = fold_build2 (NE_EXPR, boolean_type_node, src1,
2279 build_zero_cst (TREE_TYPE (src1)));
2280 call = fold_build3 (COND_EXPR, integer_type_node, is_zero1, call1,
2281 fold_build2 (PLUS_EXPR, integer_type_node, call2,
2282 build_int_cst (integer_type_node,
2283 lli_prec)));
2285 else
2287 if (prec < i_prec)
2288 src = fold_convert (unsigned_type_node, src);
2290 call = build_call_expr (fn, 1, src);
2291 if (define_at_zero)
2293 tree is_zero = fold_build2 (NE_EXPR, boolean_type_node, src,
2294 build_zero_cst (TREE_TYPE (src)));
2295 call = fold_build3 (COND_EXPR, integer_type_node, is_zero, call,
2296 build_int_cst (integer_type_node, prec));
2299 if (leading && prec < i_prec)
2300 call = fold_build2 (MINUS_EXPR, integer_type_node, call,
2301 build_int_cst (integer_type_node, i_prec - prec));
2304 return call;
2307 /* See comment below for number_of_iterations_bitcount.
2308 For c[lt]z, we have:
2310 modify:
2311 iv_2 = iv_1 << 1 OR iv_1 >> 1
2313 test:
2314 if (iv & 1 << (prec-1)) OR (iv & 1)
2316 modification count:
2317 src precision - c[lt]z (src)
2321 static bool
2322 number_of_iterations_cltz (loop_p loop, edge exit,
2323 enum tree_code code,
2324 class tree_niter_desc *niter)
2326 bool modify_before_test = true;
2327 HOST_WIDE_INT max;
2328 int checked_bit;
2329 tree iv_2;
2331 /* Check that condition for staying inside the loop is like
2332 if (iv == 0). */
2333 gcond *cond_stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (exit->src));
2334 if (!cond_stmt
2335 || (code != EQ_EXPR && code != GE_EXPR)
2336 || !integer_zerop (gimple_cond_rhs (cond_stmt))
2337 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2338 return false;
2340 if (code == EQ_EXPR)
2342 /* Make sure we check a bitwise and with a suitable constant */
2343 gimple *and_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond_stmt));
2344 if (!is_gimple_assign (and_stmt)
2345 || gimple_assign_rhs_code (and_stmt) != BIT_AND_EXPR
2346 || !integer_pow2p (gimple_assign_rhs2 (and_stmt))
2347 || TREE_CODE (gimple_assign_rhs1 (and_stmt)) != SSA_NAME)
2348 return false;
2350 checked_bit = tree_log2 (gimple_assign_rhs2 (and_stmt));
2352 iv_2 = gimple_assign_rhs1 (and_stmt);
2354 else
2356 /* We have a GE_EXPR - a signed comparison with zero is equivalent to
2357 testing the leading bit, so check for this pattern too. */
2359 iv_2 = gimple_cond_lhs (cond_stmt);
2360 tree test_value_type = TREE_TYPE (iv_2);
2362 if (TYPE_UNSIGNED (test_value_type))
2363 return false;
2365 gimple *test_value_stmt = SSA_NAME_DEF_STMT (iv_2);
2367 if (is_gimple_assign (test_value_stmt)
2368 && gimple_assign_rhs_code (test_value_stmt) == NOP_EXPR)
2370 /* If the test value comes from a NOP_EXPR, then we need to unwrap
2371 this. We conservatively require that both types have the same
2372 precision. */
2373 iv_2 = gimple_assign_rhs1 (test_value_stmt);
2374 tree rhs_type = TREE_TYPE (iv_2);
2375 if (TREE_CODE (iv_2) != SSA_NAME
2376 || TREE_CODE (rhs_type) != INTEGER_TYPE
2377 || (TYPE_PRECISION (rhs_type)
2378 != TYPE_PRECISION (test_value_type)))
2379 return false;
2382 checked_bit = TYPE_PRECISION (test_value_type) - 1;
2385 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2387 /* If the test comes before the iv modification, then these will actually be
2388 iv_1 and a phi node. */
2389 if (gimple_code (iv_2_stmt) == GIMPLE_PHI
2390 && gimple_bb (iv_2_stmt) == loop->header
2391 && gimple_phi_num_args (iv_2_stmt) == 2
2392 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2393 loop_latch_edge (loop)->dest_idx))
2394 == SSA_NAME))
2396 /* iv_2 is actually one of the inputs to the phi. */
2397 iv_2 = gimple_phi_arg_def (iv_2_stmt, loop_latch_edge (loop)->dest_idx);
2398 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2399 modify_before_test = false;
2402 /* Make sure iv_2_stmt is a logical shift by one stmt:
2403 iv_2 = iv_1 {<<|>>} 1 */
2404 if (!is_gimple_assign (iv_2_stmt)
2405 || (gimple_assign_rhs_code (iv_2_stmt) != LSHIFT_EXPR
2406 && (gimple_assign_rhs_code (iv_2_stmt) != RSHIFT_EXPR
2407 || !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_lhs (iv_2_stmt)))))
2408 || !integer_onep (gimple_assign_rhs2 (iv_2_stmt)))
2409 return false;
2411 bool left_shift = (gimple_assign_rhs_code (iv_2_stmt) == LSHIFT_EXPR);
2413 tree iv_1 = gimple_assign_rhs1 (iv_2_stmt);
2415 /* Check the recurrence. */
2416 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2417 if (gimple_code (phi) != GIMPLE_PHI
2418 || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
2419 || (iv_2 != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
2420 return false;
2422 /* We found a match. */
2423 tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
2424 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2426 /* Apply any needed preprocessing to src. */
2427 int num_ignored_bits;
2428 if (left_shift)
2429 num_ignored_bits = src_precision - checked_bit - 1;
2430 else
2431 num_ignored_bits = checked_bit;
2433 if (modify_before_test)
2434 num_ignored_bits++;
2436 if (num_ignored_bits != 0)
2437 src = fold_build2 (left_shift ? LSHIFT_EXPR : RSHIFT_EXPR,
2438 TREE_TYPE (src), src,
2439 build_int_cst (integer_type_node, num_ignored_bits));
2441 /* Get the corresponding c[lt]z builtin. */
2442 tree expr = build_cltz_expr (src, left_shift, false);
2444 if (!expr)
2445 return false;
2447 max = src_precision - num_ignored_bits - 1;
2449 expr = fold_convert (unsigned_type_node, expr);
2451 tree assumptions = fold_build2 (NE_EXPR, boolean_type_node, src,
2452 build_zero_cst (TREE_TYPE (src)));
2454 niter->assumptions = simplify_using_initial_conditions (loop, assumptions);
2455 niter->may_be_zero = boolean_false_node;
2456 niter->niter = simplify_using_initial_conditions (loop, expr);
2458 if (TREE_CODE (niter->niter) == INTEGER_CST)
2459 niter->max = tree_to_uhwi (niter->niter);
2460 else
2461 niter->max = max;
2463 niter->bound = NULL_TREE;
2464 niter->cmp = ERROR_MARK;
2466 return true;
2469 /* See comment below for number_of_iterations_bitcount.
2470 For c[lt]z complement, we have:
2472 modify:
2473 iv_2 = iv_1 >> 1 OR iv_1 << 1
2475 test:
2476 if (iv != 0)
2478 modification count:
2479 src precision - c[lt]z (src)
2483 static bool
2484 number_of_iterations_cltz_complement (loop_p loop, edge exit,
2485 enum tree_code code,
2486 class tree_niter_desc *niter)
2488 bool modify_before_test = true;
2489 HOST_WIDE_INT max;
2491 /* Check that condition for staying inside the loop is like
2492 if (iv != 0). */
2493 gcond *cond_stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (exit->src));
2494 if (!cond_stmt
2495 || code != NE_EXPR
2496 || !integer_zerop (gimple_cond_rhs (cond_stmt))
2497 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2498 return false;
2500 tree iv_2 = gimple_cond_lhs (cond_stmt);
2501 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2503 /* If the test comes before the iv modification, then these will actually be
2504 iv_1 and a phi node. */
2505 if (gimple_code (iv_2_stmt) == GIMPLE_PHI
2506 && gimple_bb (iv_2_stmt) == loop->header
2507 && gimple_phi_num_args (iv_2_stmt) == 2
2508 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2509 loop_latch_edge (loop)->dest_idx))
2510 == SSA_NAME))
2512 /* iv_2 is actually one of the inputs to the phi. */
2513 iv_2 = gimple_phi_arg_def (iv_2_stmt, loop_latch_edge (loop)->dest_idx);
2514 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2515 modify_before_test = false;
2518 /* Make sure iv_2_stmt is a logical shift by one stmt:
2519 iv_2 = iv_1 {>>|<<} 1 */
2520 if (!is_gimple_assign (iv_2_stmt)
2521 || (gimple_assign_rhs_code (iv_2_stmt) != LSHIFT_EXPR
2522 && (gimple_assign_rhs_code (iv_2_stmt) != RSHIFT_EXPR
2523 || !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_lhs (iv_2_stmt)))))
2524 || !integer_onep (gimple_assign_rhs2 (iv_2_stmt)))
2525 return false;
2527 bool left_shift = (gimple_assign_rhs_code (iv_2_stmt) == LSHIFT_EXPR);
2529 tree iv_1 = gimple_assign_rhs1 (iv_2_stmt);
2531 /* Check the recurrence. */
2532 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2533 if (gimple_code (phi) != GIMPLE_PHI
2534 || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
2535 || (iv_2 != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
2536 return false;
2538 /* We found a match. */
2539 tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
2540 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2542 /* Get the corresponding c[lt]z builtin. */
2543 tree expr = build_cltz_expr (src, !left_shift, true);
2545 if (!expr)
2546 return false;
2548 expr = fold_build2 (MINUS_EXPR, integer_type_node,
2549 build_int_cst (integer_type_node, src_precision),
2550 expr);
2552 max = src_precision;
2554 tree may_be_zero = boolean_false_node;
2556 if (modify_before_test)
2558 expr = fold_build2 (MINUS_EXPR, integer_type_node, expr,
2559 integer_one_node);
2560 max = max - 1;
2561 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2562 build_zero_cst (TREE_TYPE (src)));
2565 expr = fold_convert (unsigned_type_node, expr);
2567 niter->assumptions = boolean_true_node;
2568 niter->may_be_zero = simplify_using_initial_conditions (loop, may_be_zero);
2569 niter->niter = simplify_using_initial_conditions (loop, expr);
2571 if (TREE_CODE (niter->niter) == INTEGER_CST)
2572 niter->max = tree_to_uhwi (niter->niter);
2573 else
2574 niter->max = max;
2576 niter->bound = NULL_TREE;
2577 niter->cmp = ERROR_MARK;
2578 return true;
2581 /* See if LOOP contains a bit counting idiom. The idiom consists of two parts:
2582 1. A modification to the induction variabler;.
2583 2. A test to determine whether or not to exit the loop.
2585 These can come in either order - i.e.:
2587 <bb 3>
2588 iv_1 = PHI <src(2), iv_2(4)>
2589 if (test (iv_1))
2590 goto <bb 4>
2591 else
2592 goto <bb 5>
2594 <bb 4>
2595 iv_2 = modify (iv_1)
2596 goto <bb 3>
2600 <bb 3>
2601 iv_1 = PHI <src(2), iv_2(4)>
2602 iv_2 = modify (iv_1)
2604 <bb 4>
2605 if (test (iv_2))
2606 goto <bb 3>
2607 else
2608 goto <bb 5>
2610 The second form can be generated by copying the loop header out of the loop.
2612 In the first case, the number of latch executions will be equal to the
2613 number of induction variable modifications required before the test fails.
2615 In the second case (modify_before_test), if we assume that the number of
2616 modifications required before the test fails is nonzero, then the number of
2617 latch executions will be one less than this number.
2619 If we recognise the pattern, then we update niter accordingly, and return
2620 true. */
2622 static bool
2623 number_of_iterations_bitcount (loop_p loop, edge exit,
2624 enum tree_code code,
2625 class tree_niter_desc *niter)
2627 return (number_of_iterations_popcount (loop, exit, code, niter)
2628 || number_of_iterations_cltz (loop, exit, code, niter)
2629 || number_of_iterations_cltz_complement (loop, exit, code, niter));
2632 /* Substitute NEW_TREE for OLD in EXPR and fold the result.
2633 If VALUEIZE is non-NULL then OLD and NEW_TREE are ignored and instead
2634 all SSA names are replaced with the result of calling the VALUEIZE
2635 function with the SSA name as argument. */
2637 tree
2638 simplify_replace_tree (tree expr, tree old, tree new_tree,
2639 tree (*valueize) (tree, void*), void *context,
2640 bool do_fold)
2642 unsigned i, n;
2643 tree ret = NULL_TREE, e, se;
2645 if (!expr)
2646 return NULL_TREE;
2648 /* Do not bother to replace constants. */
2649 if (CONSTANT_CLASS_P (expr))
2650 return expr;
2652 if (valueize)
2654 if (TREE_CODE (expr) == SSA_NAME)
2656 new_tree = valueize (expr, context);
2657 if (new_tree != expr)
2658 return new_tree;
2661 else if (expr == old
2662 || operand_equal_p (expr, old, 0))
2663 return unshare_expr (new_tree);
2665 if (!EXPR_P (expr))
2666 return expr;
2668 n = TREE_OPERAND_LENGTH (expr);
2669 for (i = 0; i < n; i++)
2671 e = TREE_OPERAND (expr, i);
2672 se = simplify_replace_tree (e, old, new_tree, valueize, context, do_fold);
2673 if (e == se)
2674 continue;
2676 if (!ret)
2677 ret = copy_node (expr);
2679 TREE_OPERAND (ret, i) = se;
2682 return (ret ? (do_fold ? fold (ret) : ret) : expr);
2685 /* Expand definitions of ssa names in EXPR as long as they are simple
2686 enough, and return the new expression. If STOP is specified, stop
2687 expanding if EXPR equals to it. */
2689 static tree
2690 expand_simple_operations (tree expr, tree stop, hash_map<tree, tree> &cache)
2692 unsigned i, n;
2693 tree ret = NULL_TREE, e, ee, e1;
2694 enum tree_code code;
2695 gimple *stmt;
2697 if (expr == NULL_TREE)
2698 return expr;
2700 if (is_gimple_min_invariant (expr))
2701 return expr;
2703 code = TREE_CODE (expr);
2704 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
2706 n = TREE_OPERAND_LENGTH (expr);
2707 for (i = 0; i < n; i++)
2709 e = TREE_OPERAND (expr, i);
2710 if (!e)
2711 continue;
2712 /* SCEV analysis feeds us with a proper expression
2713 graph matching the SSA graph. Avoid turning it
2714 into a tree here, thus handle tree sharing
2715 properly.
2716 ??? The SSA walk below still turns the SSA graph
2717 into a tree but until we find a testcase do not
2718 introduce additional tree sharing here. */
2719 bool existed_p;
2720 tree &cee = cache.get_or_insert (e, &existed_p);
2721 if (existed_p)
2722 ee = cee;
2723 else
2725 cee = e;
2726 ee = expand_simple_operations (e, stop, cache);
2727 if (ee != e)
2728 *cache.get (e) = ee;
2730 if (e == ee)
2731 continue;
2733 if (!ret)
2734 ret = copy_node (expr);
2736 TREE_OPERAND (ret, i) = ee;
2739 if (!ret)
2740 return expr;
2742 fold_defer_overflow_warnings ();
2743 ret = fold (ret);
2744 fold_undefer_and_ignore_overflow_warnings ();
2745 return ret;
2748 /* Stop if it's not ssa name or the one we don't want to expand. */
2749 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
2750 return expr;
2752 stmt = SSA_NAME_DEF_STMT (expr);
2753 if (gimple_code (stmt) == GIMPLE_PHI)
2755 basic_block src, dest;
2757 if (gimple_phi_num_args (stmt) != 1)
2758 return expr;
2759 e = PHI_ARG_DEF (stmt, 0);
2761 /* Avoid propagating through loop exit phi nodes, which
2762 could break loop-closed SSA form restrictions. */
2763 dest = gimple_bb (stmt);
2764 src = single_pred (dest);
2765 if (TREE_CODE (e) == SSA_NAME
2766 && src->loop_father != dest->loop_father)
2767 return expr;
2769 return expand_simple_operations (e, stop, cache);
2771 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2772 return expr;
2774 /* Avoid expanding to expressions that contain SSA names that need
2775 to take part in abnormal coalescing. */
2776 ssa_op_iter iter;
2777 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
2778 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
2779 return expr;
2781 e = gimple_assign_rhs1 (stmt);
2782 code = gimple_assign_rhs_code (stmt);
2783 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2785 if (is_gimple_min_invariant (e))
2786 return e;
2788 if (code == SSA_NAME)
2789 return expand_simple_operations (e, stop, cache);
2790 else if (code == ADDR_EXPR)
2792 poly_int64 offset;
2793 tree base = get_addr_base_and_unit_offset (TREE_OPERAND (e, 0),
2794 &offset);
2795 if (base
2796 && TREE_CODE (base) == MEM_REF)
2798 ee = expand_simple_operations (TREE_OPERAND (base, 0), stop,
2799 cache);
2800 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (expr), ee,
2801 wide_int_to_tree (sizetype,
2802 mem_ref_offset (base)
2803 + offset));
2807 return expr;
2810 switch (code)
2812 CASE_CONVERT:
2813 /* Casts are simple. */
2814 ee = expand_simple_operations (e, stop, cache);
2815 return fold_build1 (code, TREE_TYPE (expr), ee);
2817 case PLUS_EXPR:
2818 case MINUS_EXPR:
2819 case MULT_EXPR:
2820 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
2821 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
2822 return expr;
2823 /* Fallthru. */
2824 case POINTER_PLUS_EXPR:
2825 /* And increments and decrements by a constant are simple. */
2826 e1 = gimple_assign_rhs2 (stmt);
2827 if (!is_gimple_min_invariant (e1))
2828 return expr;
2830 ee = expand_simple_operations (e, stop, cache);
2831 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
2833 default:
2834 return expr;
2838 tree
2839 expand_simple_operations (tree expr, tree stop)
2841 hash_map<tree, tree> cache;
2842 return expand_simple_operations (expr, stop, cache);
2845 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2846 expression (or EXPR unchanged, if no simplification was possible). */
2848 static tree
2849 tree_simplify_using_condition_1 (tree cond, tree expr)
2851 bool changed;
2852 tree e, e0, e1, e2, notcond;
2853 enum tree_code code = TREE_CODE (expr);
2855 if (code == INTEGER_CST)
2856 return expr;
2858 if (code == TRUTH_OR_EXPR
2859 || code == TRUTH_AND_EXPR
2860 || code == COND_EXPR)
2862 changed = false;
2864 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
2865 if (TREE_OPERAND (expr, 0) != e0)
2866 changed = true;
2868 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
2869 if (TREE_OPERAND (expr, 1) != e1)
2870 changed = true;
2872 if (code == COND_EXPR)
2874 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
2875 if (TREE_OPERAND (expr, 2) != e2)
2876 changed = true;
2878 else
2879 e2 = NULL_TREE;
2881 if (changed)
2883 if (code == COND_EXPR)
2884 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2885 else
2886 expr = fold_build2 (code, boolean_type_node, e0, e1);
2889 return expr;
2892 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
2893 propagation, and vice versa. Fold does not handle this, since it is
2894 considered too expensive. */
2895 if (TREE_CODE (cond) == EQ_EXPR)
2897 e0 = TREE_OPERAND (cond, 0);
2898 e1 = TREE_OPERAND (cond, 1);
2900 /* We know that e0 == e1. Check whether we cannot simplify expr
2901 using this fact. */
2902 e = simplify_replace_tree (expr, e0, e1);
2903 if (integer_zerop (e) || integer_nonzerop (e))
2904 return e;
2906 e = simplify_replace_tree (expr, e1, e0);
2907 if (integer_zerop (e) || integer_nonzerop (e))
2908 return e;
2910 if (TREE_CODE (expr) == EQ_EXPR)
2912 e0 = TREE_OPERAND (expr, 0);
2913 e1 = TREE_OPERAND (expr, 1);
2915 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2916 e = simplify_replace_tree (cond, e0, e1);
2917 if (integer_zerop (e))
2918 return e;
2919 e = simplify_replace_tree (cond, e1, e0);
2920 if (integer_zerop (e))
2921 return e;
2923 if (TREE_CODE (expr) == NE_EXPR)
2925 e0 = TREE_OPERAND (expr, 0);
2926 e1 = TREE_OPERAND (expr, 1);
2928 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2929 e = simplify_replace_tree (cond, e0, e1);
2930 if (integer_zerop (e))
2931 return boolean_true_node;
2932 e = simplify_replace_tree (cond, e1, e0);
2933 if (integer_zerop (e))
2934 return boolean_true_node;
2937 /* Check whether COND ==> EXPR. */
2938 notcond = invert_truthvalue (cond);
2939 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
2940 if (e && integer_nonzerop (e))
2941 return e;
2943 /* Check whether COND ==> not EXPR. */
2944 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
2945 if (e && integer_zerop (e))
2946 return e;
2948 return expr;
2951 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2952 expression (or EXPR unchanged, if no simplification was possible).
2953 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2954 of simple operations in definitions of ssa names in COND are expanded,
2955 so that things like casts or incrementing the value of the bound before
2956 the loop do not cause us to fail. */
2958 static tree
2959 tree_simplify_using_condition (tree cond, tree expr)
2961 cond = expand_simple_operations (cond);
2963 return tree_simplify_using_condition_1 (cond, expr);
2966 /* Tries to simplify EXPR using the conditions on entry to LOOP.
2967 Returns the simplified expression (or EXPR unchanged, if no
2968 simplification was possible). */
2970 tree
2971 simplify_using_initial_conditions (class loop *loop, tree expr)
2973 edge e;
2974 basic_block bb;
2975 tree cond, expanded, backup;
2976 int cnt = 0;
2978 if (TREE_CODE (expr) == INTEGER_CST)
2979 return expr;
2981 backup = expanded = expand_simple_operations (expr);
2983 /* Limit walking the dominators to avoid quadraticness in
2984 the number of BBs times the number of loops in degenerate
2985 cases. */
2986 for (bb = loop->header;
2987 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
2988 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
2990 if (!single_pred_p (bb))
2991 continue;
2992 e = single_pred_edge (bb);
2994 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2995 continue;
2997 gcond *stmt = as_a <gcond *> (*gsi_last_bb (e->src));
2998 cond = fold_build2 (gimple_cond_code (stmt),
2999 boolean_type_node,
3000 gimple_cond_lhs (stmt),
3001 gimple_cond_rhs (stmt));
3002 if (e->flags & EDGE_FALSE_VALUE)
3003 cond = invert_truthvalue (cond);
3004 expanded = tree_simplify_using_condition (cond, expanded);
3005 /* Break if EXPR is simplified to const values. */
3006 if (expanded
3007 && (integer_zerop (expanded) || integer_nonzerop (expanded)))
3008 return expanded;
3010 ++cnt;
3013 /* Return the original expression if no simplification is done. */
3014 return operand_equal_p (backup, expanded, 0) ? expr : expanded;
3017 /* Tries to simplify EXPR using the evolutions of the loop invariants
3018 in the superloops of LOOP. Returns the simplified expression
3019 (or EXPR unchanged, if no simplification was possible). */
3021 static tree
3022 simplify_using_outer_evolutions (class loop *loop, tree expr)
3024 enum tree_code code = TREE_CODE (expr);
3025 bool changed;
3026 tree e, e0, e1, e2;
3028 if (is_gimple_min_invariant (expr))
3029 return expr;
3031 if (code == TRUTH_OR_EXPR
3032 || code == TRUTH_AND_EXPR
3033 || code == COND_EXPR)
3035 changed = false;
3037 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
3038 if (TREE_OPERAND (expr, 0) != e0)
3039 changed = true;
3041 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
3042 if (TREE_OPERAND (expr, 1) != e1)
3043 changed = true;
3045 if (code == COND_EXPR)
3047 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
3048 if (TREE_OPERAND (expr, 2) != e2)
3049 changed = true;
3051 else
3052 e2 = NULL_TREE;
3054 if (changed)
3056 if (code == COND_EXPR)
3057 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
3058 else
3059 expr = fold_build2 (code, boolean_type_node, e0, e1);
3062 return expr;
3065 e = instantiate_parameters (loop, expr);
3066 if (is_gimple_min_invariant (e))
3067 return e;
3069 return expr;
3072 /* Returns true if EXIT is the only possible exit from LOOP. */
3074 bool
3075 loop_only_exit_p (const class loop *loop, basic_block *body, const_edge exit)
3077 gimple_stmt_iterator bsi;
3078 unsigned i;
3080 if (exit != single_exit (loop))
3081 return false;
3083 for (i = 0; i < loop->num_nodes; i++)
3084 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
3085 if (stmt_can_terminate_bb_p (gsi_stmt (bsi)))
3086 return false;
3088 return true;
3091 /* Stores description of number of iterations of LOOP derived from
3092 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
3093 information could be derived (and fields of NITER have meaning described
3094 in comments at class tree_niter_desc declaration), false otherwise.
3095 When EVERY_ITERATION is true, only tests that are known to be executed
3096 every iteration are considered (i.e. only test that alone bounds the loop).
3097 If AT_STMT is not NULL, this function stores LOOP's condition statement in
3098 it when returning true. */
3100 bool
3101 number_of_iterations_exit_assumptions (class loop *loop, edge exit,
3102 class tree_niter_desc *niter,
3103 gcond **at_stmt, bool every_iteration,
3104 basic_block *body)
3106 tree type;
3107 tree op0, op1;
3108 enum tree_code code;
3109 affine_iv iv0, iv1;
3110 bool safe;
3112 /* The condition at a fake exit (if it exists) does not control its
3113 execution. */
3114 if (exit->flags & EDGE_FAKE)
3115 return false;
3117 /* Nothing to analyze if the loop is known to be infinite. */
3118 if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
3119 return false;
3121 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
3123 if (every_iteration && !safe)
3124 return false;
3126 niter->assumptions = boolean_false_node;
3127 niter->control.base = NULL_TREE;
3128 niter->control.step = NULL_TREE;
3129 niter->control.no_overflow = false;
3130 gcond *stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (exit->src));
3131 if (!stmt)
3132 return false;
3134 if (at_stmt)
3135 *at_stmt = stmt;
3137 /* We want the condition for staying inside loop. */
3138 code = gimple_cond_code (stmt);
3139 if (exit->flags & EDGE_TRUE_VALUE)
3140 code = invert_tree_comparison (code, false);
3142 switch (code)
3144 case GT_EXPR:
3145 case GE_EXPR:
3146 case LT_EXPR:
3147 case LE_EXPR:
3148 case NE_EXPR:
3149 break;
3151 case EQ_EXPR:
3152 return number_of_iterations_cltz (loop, exit, code, niter);
3154 default:
3155 return false;
3158 op0 = gimple_cond_lhs (stmt);
3159 op1 = gimple_cond_rhs (stmt);
3160 type = TREE_TYPE (op0);
3162 if (TREE_CODE (type) != INTEGER_TYPE
3163 && !POINTER_TYPE_P (type))
3164 return false;
3166 tree iv0_niters = NULL_TREE;
3167 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
3168 op0, &iv0, safe ? &iv0_niters : NULL, false))
3169 return number_of_iterations_bitcount (loop, exit, code, niter);
3170 tree iv1_niters = NULL_TREE;
3171 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
3172 op1, &iv1, safe ? &iv1_niters : NULL, false))
3173 return false;
3174 /* Give up on complicated case. */
3175 if (iv0_niters && iv1_niters)
3176 return false;
3178 /* We don't want to see undefined signed overflow warnings while
3179 computing the number of iterations. */
3180 fold_defer_overflow_warnings ();
3182 iv0.base = expand_simple_operations (iv0.base);
3183 iv1.base = expand_simple_operations (iv1.base);
3184 bool body_from_caller = true;
3185 if (!body)
3187 body = get_loop_body (loop);
3188 body_from_caller = false;
3190 bool only_exit_p = loop_only_exit_p (loop, body, exit);
3191 if (!body_from_caller)
3192 free (body);
3193 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
3194 only_exit_p, safe))
3196 fold_undefer_and_ignore_overflow_warnings ();
3197 return false;
3200 /* Incorporate additional assumption implied by control iv. */
3201 tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
3202 if (iv_niters)
3204 tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
3205 fold_convert (TREE_TYPE (niter->niter),
3206 iv_niters));
3208 if (!integer_nonzerop (assumption))
3209 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3210 niter->assumptions, assumption);
3212 /* Refine upper bound if possible. */
3213 if (TREE_CODE (iv_niters) == INTEGER_CST
3214 && niter->max > wi::to_widest (iv_niters))
3215 niter->max = wi::to_widest (iv_niters);
3218 /* There is no assumptions if the loop is known to be finite. */
3219 if (!integer_zerop (niter->assumptions)
3220 && loop_constraint_set_p (loop, LOOP_C_FINITE))
3221 niter->assumptions = boolean_true_node;
3223 if (optimize >= 3)
3225 niter->assumptions = simplify_using_outer_evolutions (loop,
3226 niter->assumptions);
3227 niter->may_be_zero = simplify_using_outer_evolutions (loop,
3228 niter->may_be_zero);
3229 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
3232 niter->assumptions
3233 = simplify_using_initial_conditions (loop,
3234 niter->assumptions);
3235 niter->may_be_zero
3236 = simplify_using_initial_conditions (loop,
3237 niter->may_be_zero);
3239 fold_undefer_and_ignore_overflow_warnings ();
3241 /* If NITER has simplified into a constant, update MAX. */
3242 if (TREE_CODE (niter->niter) == INTEGER_CST)
3243 niter->max = wi::to_widest (niter->niter);
3245 return (!integer_zerop (niter->assumptions));
3248 /* Like number_of_iterations_exit_assumptions, but return TRUE only if
3249 the niter information holds unconditionally. */
3251 bool
3252 number_of_iterations_exit (class loop *loop, edge exit,
3253 class tree_niter_desc *niter,
3254 bool warn, bool every_iteration,
3255 basic_block *body)
3257 gcond *stmt;
3258 if (!number_of_iterations_exit_assumptions (loop, exit, niter,
3259 &stmt, every_iteration, body))
3260 return false;
3262 if (integer_nonzerop (niter->assumptions))
3263 return true;
3265 if (warn && dump_enabled_p ())
3266 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmt,
3267 "missed loop optimization: niters analysis ends up "
3268 "with assumptions.\n");
3270 return false;
3273 /* Try to determine the number of iterations of LOOP. If we succeed,
3274 expression giving number of iterations is returned and *EXIT is
3275 set to the edge from that the information is obtained. Otherwise
3276 chrec_dont_know is returned. */
3278 tree
3279 find_loop_niter (class loop *loop, edge *exit)
3281 unsigned i;
3282 auto_vec<edge> exits = get_loop_exit_edges (loop);
3283 edge ex;
3284 tree niter = NULL_TREE, aniter;
3285 class tree_niter_desc desc;
3287 *exit = NULL;
3288 FOR_EACH_VEC_ELT (exits, i, ex)
3290 if (!number_of_iterations_exit (loop, ex, &desc, false))
3291 continue;
3293 if (integer_nonzerop (desc.may_be_zero))
3295 /* We exit in the first iteration through this exit.
3296 We won't find anything better. */
3297 niter = build_int_cst (unsigned_type_node, 0);
3298 *exit = ex;
3299 break;
3302 if (!integer_zerop (desc.may_be_zero))
3303 continue;
3305 aniter = desc.niter;
3307 if (!niter)
3309 /* Nothing recorded yet. */
3310 niter = aniter;
3311 *exit = ex;
3312 continue;
3315 /* Prefer constants, the lower the better. */
3316 if (TREE_CODE (aniter) != INTEGER_CST)
3317 continue;
3319 if (TREE_CODE (niter) != INTEGER_CST)
3321 niter = aniter;
3322 *exit = ex;
3323 continue;
3326 if (tree_int_cst_lt (aniter, niter))
3328 niter = aniter;
3329 *exit = ex;
3330 continue;
3334 return niter ? niter : chrec_dont_know;
3337 /* Return true if loop is known to have bounded number of iterations. */
3339 bool
3340 finite_loop_p (class loop *loop)
3342 widest_int nit;
3343 int flags;
3345 if (loop->finite_p)
3347 unsigned i;
3348 auto_vec<edge> exits = get_loop_exit_edges (loop);
3349 edge ex;
3351 /* If the loop has a normal exit, we can assume it will terminate. */
3352 FOR_EACH_VEC_ELT (exits, i, ex)
3353 if (!(ex->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_FAKE)))
3355 if (dump_file)
3356 fprintf (dump_file, "Assume loop %i to be finite: it has an exit "
3357 "and -ffinite-loops is on or loop was "
3358 "previously finite.\n",
3359 loop->num);
3360 return true;
3364 flags = flags_from_decl_or_type (current_function_decl);
3365 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
3367 if (dump_file && (dump_flags & TDF_DETAILS))
3368 fprintf (dump_file,
3369 "Found loop %i to be finite: it is within "
3370 "pure or const function.\n",
3371 loop->num);
3372 loop->finite_p = true;
3373 return true;
3376 if (loop->any_upper_bound
3377 /* Loop with no normal exit will not pass max_loop_iterations. */
3378 || (!loop->finite_p && max_loop_iterations (loop, &nit)))
3380 if (dump_file && (dump_flags & TDF_DETAILS))
3381 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
3382 loop->num);
3383 loop->finite_p = true;
3384 return true;
3387 return false;
3392 Analysis of a number of iterations of a loop by a brute-force evaluation.
3396 /* Bound on the number of iterations we try to evaluate. */
3398 #define MAX_ITERATIONS_TO_TRACK \
3399 ((unsigned) param_max_iterations_to_track)
3401 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
3402 result by a chain of operations such that all but exactly one of their
3403 operands are constants. */
3405 static gphi *
3406 chain_of_csts_start (class loop *loop, tree x)
3408 gimple *stmt = SSA_NAME_DEF_STMT (x);
3409 tree use;
3410 basic_block bb = gimple_bb (stmt);
3411 enum tree_code code;
3413 if (!bb
3414 || !flow_bb_inside_loop_p (loop, bb))
3415 return NULL;
3417 if (gimple_code (stmt) == GIMPLE_PHI)
3419 if (bb == loop->header)
3420 return as_a <gphi *> (stmt);
3422 return NULL;
3425 if (gimple_code (stmt) != GIMPLE_ASSIGN
3426 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
3427 return NULL;
3429 code = gimple_assign_rhs_code (stmt);
3430 if (gimple_references_memory_p (stmt)
3431 || TREE_CODE_CLASS (code) == tcc_reference
3432 || (code == ADDR_EXPR
3433 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
3434 return NULL;
3436 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
3437 if (use == NULL_TREE)
3438 return NULL;
3440 return chain_of_csts_start (loop, use);
3443 /* Determines whether the expression X is derived from a result of a phi node
3444 in header of LOOP such that
3446 * the derivation of X consists only from operations with constants
3447 * the initial value of the phi node is constant
3448 * the value of the phi node in the next iteration can be derived from the
3449 value in the current iteration by a chain of operations with constants,
3450 or is also a constant
3452 If such phi node exists, it is returned, otherwise NULL is returned. */
3454 static gphi *
3455 get_base_for (class loop *loop, tree x)
3457 gphi *phi;
3458 tree init, next;
3460 if (is_gimple_min_invariant (x))
3461 return NULL;
3463 phi = chain_of_csts_start (loop, x);
3464 if (!phi)
3465 return NULL;
3467 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3468 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3470 if (!is_gimple_min_invariant (init))
3471 return NULL;
3473 if (TREE_CODE (next) == SSA_NAME
3474 && chain_of_csts_start (loop, next) != phi)
3475 return NULL;
3477 return phi;
3480 /* Given an expression X, then
3482 * if X is NULL_TREE, we return the constant BASE.
3483 * if X is a constant, we return the constant X.
3484 * otherwise X is a SSA name, whose value in the considered loop is derived
3485 by a chain of operations with constant from a result of a phi node in
3486 the header of the loop. Then we return value of X when the value of the
3487 result of this phi node is given by the constant BASE. */
3489 static tree
3490 get_val_for (tree x, tree base)
3492 gimple *stmt;
3494 gcc_checking_assert (is_gimple_min_invariant (base));
3496 if (!x)
3497 return base;
3498 else if (is_gimple_min_invariant (x))
3499 return x;
3501 stmt = SSA_NAME_DEF_STMT (x);
3502 if (gimple_code (stmt) == GIMPLE_PHI)
3503 return base;
3505 gcc_checking_assert (is_gimple_assign (stmt));
3507 /* STMT must be either an assignment of a single SSA name or an
3508 expression involving an SSA name and a constant. Try to fold that
3509 expression using the value for the SSA name. */
3510 if (gimple_assign_ssa_name_copy_p (stmt))
3511 return get_val_for (gimple_assign_rhs1 (stmt), base);
3512 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
3513 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
3514 return fold_build1 (gimple_assign_rhs_code (stmt),
3515 TREE_TYPE (gimple_assign_lhs (stmt)),
3516 get_val_for (gimple_assign_rhs1 (stmt), base));
3517 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
3519 tree rhs1 = gimple_assign_rhs1 (stmt);
3520 tree rhs2 = gimple_assign_rhs2 (stmt);
3521 if (TREE_CODE (rhs1) == SSA_NAME)
3522 rhs1 = get_val_for (rhs1, base);
3523 else if (TREE_CODE (rhs2) == SSA_NAME)
3524 rhs2 = get_val_for (rhs2, base);
3525 else
3526 gcc_unreachable ();
3527 return fold_build2 (gimple_assign_rhs_code (stmt),
3528 TREE_TYPE (gimple_assign_lhs (stmt)), rhs1, rhs2);
3530 else
3531 gcc_unreachable ();
3535 /* Tries to count the number of iterations of LOOP till it exits by EXIT
3536 by brute force -- i.e. by determining the value of the operands of the
3537 condition at EXIT in first few iterations of the loop (assuming that
3538 these values are constant) and determining the first one in that the
3539 condition is not satisfied. Returns the constant giving the number
3540 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
3542 tree
3543 loop_niter_by_eval (class loop *loop, edge exit)
3545 tree acnd;
3546 tree op[2], val[2], next[2], aval[2];
3547 gphi *phi;
3548 unsigned i, j;
3549 enum tree_code cmp;
3551 gcond *cond = safe_dyn_cast <gcond *> (*gsi_last_bb (exit->src));
3552 if (!cond)
3553 return chrec_dont_know;
3555 cmp = gimple_cond_code (cond);
3556 if (exit->flags & EDGE_TRUE_VALUE)
3557 cmp = invert_tree_comparison (cmp, false);
3559 switch (cmp)
3561 case EQ_EXPR:
3562 case NE_EXPR:
3563 case GT_EXPR:
3564 case GE_EXPR:
3565 case LT_EXPR:
3566 case LE_EXPR:
3567 op[0] = gimple_cond_lhs (cond);
3568 op[1] = gimple_cond_rhs (cond);
3569 break;
3571 default:
3572 return chrec_dont_know;
3575 for (j = 0; j < 2; j++)
3577 if (is_gimple_min_invariant (op[j]))
3579 val[j] = op[j];
3580 next[j] = NULL_TREE;
3581 op[j] = NULL_TREE;
3583 else
3585 phi = get_base_for (loop, op[j]);
3586 if (!phi)
3587 return chrec_dont_know;
3588 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3589 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3593 /* Don't issue signed overflow warnings. */
3594 fold_defer_overflow_warnings ();
3596 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
3598 for (j = 0; j < 2; j++)
3599 aval[j] = get_val_for (op[j], val[j]);
3601 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
3602 if (acnd && integer_zerop (acnd))
3604 fold_undefer_and_ignore_overflow_warnings ();
3605 if (dump_file && (dump_flags & TDF_DETAILS))
3606 fprintf (dump_file,
3607 "Proved that loop %d iterates %d times using brute force.\n",
3608 loop->num, i);
3609 return build_int_cst (unsigned_type_node, i);
3612 for (j = 0; j < 2; j++)
3614 aval[j] = val[j];
3615 val[j] = get_val_for (next[j], val[j]);
3616 if (!is_gimple_min_invariant (val[j]))
3618 fold_undefer_and_ignore_overflow_warnings ();
3619 return chrec_dont_know;
3623 /* If the next iteration would use the same base values
3624 as the current one, there is no point looping further,
3625 all following iterations will be the same as this one. */
3626 if (val[0] == aval[0] && val[1] == aval[1])
3627 break;
3630 fold_undefer_and_ignore_overflow_warnings ();
3632 return chrec_dont_know;
3635 /* Finds the exit of the LOOP by that the loop exits after a constant
3636 number of iterations and stores the exit edge to *EXIT. The constant
3637 giving the number of iterations of LOOP is returned. The number of
3638 iterations is determined using loop_niter_by_eval (i.e. by brute force
3639 evaluation). If we are unable to find the exit for that loop_niter_by_eval
3640 determines the number of iterations, chrec_dont_know is returned. */
3642 tree
3643 find_loop_niter_by_eval (class loop *loop, edge *exit)
3645 unsigned i;
3646 auto_vec<edge> exits = get_loop_exit_edges (loop);
3647 edge ex;
3648 tree niter = NULL_TREE, aniter;
3650 *exit = NULL;
3652 /* Loops with multiple exits are expensive to handle and less important. */
3653 if (!flag_expensive_optimizations
3654 && exits.length () > 1)
3655 return chrec_dont_know;
3657 FOR_EACH_VEC_ELT (exits, i, ex)
3659 if (!just_once_each_iteration_p (loop, ex->src))
3660 continue;
3662 aniter = loop_niter_by_eval (loop, ex);
3663 if (chrec_contains_undetermined (aniter))
3664 continue;
3666 if (niter
3667 && !tree_int_cst_lt (aniter, niter))
3668 continue;
3670 niter = aniter;
3671 *exit = ex;
3674 return niter ? niter : chrec_dont_know;
3679 Analysis of upper bounds on number of iterations of a loop.
3683 static widest_int derive_constant_upper_bound_ops (tree, tree,
3684 enum tree_code, tree);
3686 /* Returns a constant upper bound on the value of the right-hand side of
3687 an assignment statement STMT. */
3689 static widest_int
3690 derive_constant_upper_bound_assign (gimple *stmt)
3692 enum tree_code code = gimple_assign_rhs_code (stmt);
3693 tree op0 = gimple_assign_rhs1 (stmt);
3694 tree op1 = gimple_assign_rhs2 (stmt);
3696 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
3697 op0, code, op1);
3700 /* Returns a constant upper bound on the value of expression VAL. VAL
3701 is considered to be unsigned. If its type is signed, its value must
3702 be nonnegative. */
3704 static widest_int
3705 derive_constant_upper_bound (tree val)
3707 enum tree_code code;
3708 tree op0, op1, op2;
3710 extract_ops_from_tree (val, &code, &op0, &op1, &op2);
3711 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
3714 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
3715 whose type is TYPE. The expression is considered to be unsigned. If
3716 its type is signed, its value must be nonnegative. */
3718 static widest_int
3719 derive_constant_upper_bound_ops (tree type, tree op0,
3720 enum tree_code code, tree op1)
3722 tree subtype, maxt;
3723 widest_int bnd, max, cst;
3724 gimple *stmt;
3726 if (INTEGRAL_TYPE_P (type))
3727 maxt = TYPE_MAX_VALUE (type);
3728 else
3729 maxt = upper_bound_in_type (type, type);
3731 max = wi::to_widest (maxt);
3733 switch (code)
3735 case INTEGER_CST:
3736 return wi::to_widest (op0);
3738 CASE_CONVERT:
3739 subtype = TREE_TYPE (op0);
3740 if (!TYPE_UNSIGNED (subtype)
3741 /* If TYPE is also signed, the fact that VAL is nonnegative implies
3742 that OP0 is nonnegative. */
3743 && TYPE_UNSIGNED (type)
3744 && !tree_expr_nonnegative_p (op0))
3746 /* If we cannot prove that the casted expression is nonnegative,
3747 we cannot establish more useful upper bound than the precision
3748 of the type gives us. */
3749 return max;
3752 /* We now know that op0 is an nonnegative value. Try deriving an upper
3753 bound for it. */
3754 bnd = derive_constant_upper_bound (op0);
3756 /* If the bound does not fit in TYPE, max. value of TYPE could be
3757 attained. */
3758 if (wi::ltu_p (max, bnd))
3759 return max;
3761 return bnd;
3763 case PLUS_EXPR:
3764 case POINTER_PLUS_EXPR:
3765 case MINUS_EXPR:
3766 if (TREE_CODE (op1) != INTEGER_CST
3767 || !tree_expr_nonnegative_p (op0))
3768 return max;
3770 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
3771 choose the most logical way how to treat this constant regardless
3772 of the signedness of the type. */
3773 cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
3774 if (code != MINUS_EXPR)
3775 cst = -cst;
3777 bnd = derive_constant_upper_bound (op0);
3779 if (wi::neg_p (cst))
3781 cst = -cst;
3782 /* Avoid CST == 0x80000... */
3783 if (wi::neg_p (cst))
3784 return max;
3786 /* OP0 + CST. We need to check that
3787 BND <= MAX (type) - CST. */
3789 widest_int mmax = max - cst;
3790 if (wi::leu_p (bnd, mmax))
3791 return max;
3793 return bnd + cst;
3795 else
3797 /* OP0 - CST, where CST >= 0.
3799 If TYPE is signed, we have already verified that OP0 >= 0, and we
3800 know that the result is nonnegative. This implies that
3801 VAL <= BND - CST.
3803 If TYPE is unsigned, we must additionally know that OP0 >= CST,
3804 otherwise the operation underflows.
3807 /* This should only happen if the type is unsigned; however, for
3808 buggy programs that use overflowing signed arithmetics even with
3809 -fno-wrapv, this condition may also be true for signed values. */
3810 if (wi::ltu_p (bnd, cst))
3811 return max;
3813 if (TYPE_UNSIGNED (type))
3815 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
3816 wide_int_to_tree (type, cst));
3817 if (!tem || integer_nonzerop (tem))
3818 return max;
3821 bnd -= cst;
3824 return bnd;
3826 case FLOOR_DIV_EXPR:
3827 case EXACT_DIV_EXPR:
3828 if (TREE_CODE (op1) != INTEGER_CST
3829 || tree_int_cst_sign_bit (op1))
3830 return max;
3832 bnd = derive_constant_upper_bound (op0);
3833 return wi::udiv_floor (bnd, wi::to_widest (op1));
3835 case BIT_AND_EXPR:
3836 if (TREE_CODE (op1) != INTEGER_CST
3837 || tree_int_cst_sign_bit (op1))
3838 return max;
3839 return wi::to_widest (op1);
3841 case SSA_NAME:
3842 stmt = SSA_NAME_DEF_STMT (op0);
3843 if (gimple_code (stmt) != GIMPLE_ASSIGN
3844 || gimple_assign_lhs (stmt) != op0)
3845 return max;
3846 return derive_constant_upper_bound_assign (stmt);
3848 default:
3849 return max;
3853 /* Emit a -Waggressive-loop-optimizations warning if needed. */
3855 static void
3856 do_warn_aggressive_loop_optimizations (class loop *loop,
3857 widest_int i_bound, gimple *stmt)
3859 /* Don't warn if the loop doesn't have known constant bound. */
3860 if (!loop->nb_iterations
3861 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
3862 || !warn_aggressive_loop_optimizations
3863 /* To avoid warning multiple times for the same loop,
3864 only start warning when we preserve loops. */
3865 || (cfun->curr_properties & PROP_loops) == 0
3866 /* Only warn once per loop. */
3867 || loop->warned_aggressive_loop_optimizations
3868 /* Only warn if undefined behavior gives us lower estimate than the
3869 known constant bound. */
3870 || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
3871 /* And undefined behavior happens unconditionally. */
3872 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
3873 return;
3875 edge e = single_exit (loop);
3876 if (e == NULL)
3877 return;
3879 gimple *estmt = last_nondebug_stmt (e->src);
3880 char buf[WIDE_INT_PRINT_BUFFER_SIZE], *p;
3881 unsigned len;
3882 if (print_dec_buf_size (i_bound, TYPE_SIGN (TREE_TYPE (loop->nb_iterations)),
3883 &len))
3884 p = XALLOCAVEC (char, len);
3885 else
3886 p = buf;
3887 print_dec (i_bound, p, TYPE_SIGN (TREE_TYPE (loop->nb_iterations)));
3888 auto_diagnostic_group d;
3889 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
3890 "iteration %s invokes undefined behavior", p))
3891 inform (gimple_location (estmt), "within this loop");
3892 loop->warned_aggressive_loop_optimizations = true;
3895 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
3896 is true if the loop is exited immediately after STMT, and this exit
3897 is taken at last when the STMT is executed BOUND + 1 times.
3898 REALISTIC is true if BOUND is expected to be close to the real number
3899 of iterations. UPPER is true if we are sure the loop iterates at most
3900 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
3902 static void
3903 record_estimate (class loop *loop, tree bound, const widest_int &i_bound,
3904 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
3906 widest_int delta;
3908 if (dump_file && (dump_flags & TDF_DETAILS))
3910 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
3911 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
3912 fprintf (dump_file, " is %sexecuted at most ",
3913 upper ? "" : "probably ");
3914 print_generic_expr (dump_file, bound, TDF_SLIM);
3915 fprintf (dump_file, " (bounded by ");
3916 print_decu (i_bound, dump_file);
3917 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
3920 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
3921 real number of iterations. */
3922 if (TREE_CODE (bound) != INTEGER_CST)
3923 realistic = false;
3924 else
3925 gcc_checking_assert (i_bound == wi::to_widest (bound));
3927 if (wi::min_precision (i_bound, SIGNED) > bound_wide_int ().get_precision ())
3928 return;
3930 /* If we have a guaranteed upper bound, record it in the appropriate
3931 list, unless this is an !is_exit bound (i.e. undefined behavior in
3932 at_stmt) in a loop with known constant number of iterations. */
3933 if (upper
3934 && (is_exit
3935 || loop->nb_iterations == NULL_TREE
3936 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
3938 class nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
3940 elt->bound = bound_wide_int::from (i_bound, SIGNED);
3941 elt->stmt = at_stmt;
3942 elt->is_exit = is_exit;
3943 elt->next = loop->bounds;
3944 loop->bounds = elt;
3947 /* If statement is executed on every path to the loop latch, we can directly
3948 infer the upper bound on the # of iterations of the loop. */
3949 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
3950 upper = false;
3952 /* Update the number of iteration estimates according to the bound.
3953 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3954 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3955 later if such statement must be executed on last iteration */
3956 if (is_exit)
3957 delta = 0;
3958 else
3959 delta = 1;
3960 widest_int new_i_bound = i_bound + delta;
3962 /* If an overflow occurred, ignore the result. */
3963 if (wi::ltu_p (new_i_bound, delta))
3964 return;
3966 if (upper && !is_exit)
3967 do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
3968 record_niter_bound (loop, new_i_bound, realistic, upper);
3971 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
3972 and doesn't overflow. */
3974 static void
3975 record_control_iv (class loop *loop, class tree_niter_desc *niter)
3977 struct control_iv *iv;
3979 if (!niter->control.base || !niter->control.step)
3980 return;
3982 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
3983 return;
3985 iv = ggc_alloc<control_iv> ();
3986 iv->base = niter->control.base;
3987 iv->step = niter->control.step;
3988 iv->next = loop->control_ivs;
3989 loop->control_ivs = iv;
3991 return;
3994 /* This function returns TRUE if below conditions are satisfied:
3995 1) VAR is SSA variable.
3996 2) VAR is an IV:{base, step} in its defining loop.
3997 3) IV doesn't overflow.
3998 4) Both base and step are integer constants.
3999 5) Base is the MIN/MAX value depends on IS_MIN.
4000 Store value of base to INIT correspondingly. */
4002 static bool
4003 get_cst_init_from_scev (tree var, wide_int *init, bool is_min)
4005 if (TREE_CODE (var) != SSA_NAME)
4006 return false;
4008 gimple *def_stmt = SSA_NAME_DEF_STMT (var);
4009 class loop *loop = loop_containing_stmt (def_stmt);
4011 if (loop == NULL)
4012 return false;
4014 affine_iv iv;
4015 if (!simple_iv (loop, loop, var, &iv, false))
4016 return false;
4018 if (!iv.no_overflow)
4019 return false;
4021 if (TREE_CODE (iv.base) != INTEGER_CST || TREE_CODE (iv.step) != INTEGER_CST)
4022 return false;
4024 if (is_min == tree_int_cst_sign_bit (iv.step))
4025 return false;
4027 *init = wi::to_wide (iv.base);
4028 return true;
4031 /* Record the estimate on number of iterations of LOOP based on the fact that
4032 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
4033 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
4034 estimated number of iterations is expected to be close to the real one.
4035 UPPER is true if we are sure the induction variable does not wrap. */
4037 static void
4038 record_nonwrapping_iv (class loop *loop, tree base, tree step, gimple *stmt,
4039 tree low, tree high, bool realistic, bool upper)
4041 tree niter_bound, extreme, delta;
4042 tree type = TREE_TYPE (base), unsigned_type;
4043 tree orig_base = base;
4045 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
4046 return;
4048 if (dump_file && (dump_flags & TDF_DETAILS))
4050 fprintf (dump_file, "Induction variable (");
4051 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
4052 fprintf (dump_file, ") ");
4053 print_generic_expr (dump_file, base, TDF_SLIM);
4054 fprintf (dump_file, " + ");
4055 print_generic_expr (dump_file, step, TDF_SLIM);
4056 fprintf (dump_file, " * iteration does not wrap in statement ");
4057 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
4058 fprintf (dump_file, " in loop %d.\n", loop->num);
4061 unsigned_type = unsigned_type_for (type);
4062 base = fold_convert (unsigned_type, base);
4063 step = fold_convert (unsigned_type, step);
4065 if (tree_int_cst_sign_bit (step))
4067 wide_int max;
4068 Value_Range base_range (TREE_TYPE (orig_base));
4069 if (get_range_query (cfun)->range_of_expr (base_range, orig_base)
4070 && !base_range.undefined_p ())
4071 max = base_range.upper_bound ();
4072 extreme = fold_convert (unsigned_type, low);
4073 if (TREE_CODE (orig_base) == SSA_NAME
4074 && TREE_CODE (high) == INTEGER_CST
4075 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
4076 && ((!base_range.varying_p ()
4077 && !base_range.undefined_p ())
4078 || get_cst_init_from_scev (orig_base, &max, false))
4079 && wi::gts_p (wi::to_wide (high), max))
4080 base = wide_int_to_tree (unsigned_type, max);
4081 else if (TREE_CODE (base) != INTEGER_CST
4082 && dominated_by_p (CDI_DOMINATORS,
4083 loop->latch, gimple_bb (stmt)))
4084 base = fold_convert (unsigned_type, high);
4085 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
4086 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
4088 else
4090 wide_int min;
4091 Value_Range base_range (TREE_TYPE (orig_base));
4092 if (get_range_query (cfun)->range_of_expr (base_range, orig_base)
4093 && !base_range.undefined_p ())
4094 min = base_range.lower_bound ();
4095 extreme = fold_convert (unsigned_type, high);
4096 if (TREE_CODE (orig_base) == SSA_NAME
4097 && TREE_CODE (low) == INTEGER_CST
4098 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
4099 && ((!base_range.varying_p ()
4100 && !base_range.undefined_p ())
4101 || get_cst_init_from_scev (orig_base, &min, true))
4102 && wi::gts_p (min, wi::to_wide (low)))
4103 base = wide_int_to_tree (unsigned_type, min);
4104 else if (TREE_CODE (base) != INTEGER_CST
4105 && dominated_by_p (CDI_DOMINATORS,
4106 loop->latch, gimple_bb (stmt)))
4107 base = fold_convert (unsigned_type, low);
4108 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
4111 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
4112 would get out of the range. */
4113 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
4114 widest_int max = derive_constant_upper_bound (niter_bound);
4115 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
4118 /* Determine information about number of iterations a LOOP from the index
4119 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
4120 guaranteed to be executed in every iteration of LOOP. Callback for
4121 for_each_index. */
4123 struct ilb_data
4125 class loop *loop;
4126 gimple *stmt;
4129 static bool
4130 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
4132 struct ilb_data *data = (struct ilb_data *) dta;
4133 tree ev, init, step;
4134 tree low, high, type, next;
4135 bool sign, upper = true, has_flexible_size = false;
4136 class loop *loop = data->loop;
4138 if (TREE_CODE (base) != ARRAY_REF)
4139 return true;
4141 /* For arrays that might have flexible sizes, it is not guaranteed that they
4142 do not really extend over their declared size. */
4143 if (array_ref_flexible_size_p (base))
4145 has_flexible_size = true;
4146 upper = false;
4149 class loop *dloop = loop_containing_stmt (data->stmt);
4150 if (!dloop)
4151 return true;
4153 ev = analyze_scalar_evolution (dloop, *idx);
4154 ev = instantiate_parameters (loop, ev);
4155 init = initial_condition (ev);
4156 step = evolution_part_in_loop_num (ev, loop->num);
4158 if (!init
4159 || !step
4160 || TREE_CODE (step) != INTEGER_CST
4161 || integer_zerop (step)
4162 || tree_contains_chrecs (init, NULL)
4163 || chrec_contains_symbols_defined_in_loop (init, loop->num))
4164 return true;
4166 low = array_ref_low_bound (base);
4167 high = array_ref_up_bound (base);
4169 /* The case of nonconstant bounds could be handled, but it would be
4170 complicated. */
4171 if (TREE_CODE (low) != INTEGER_CST
4172 || !high
4173 || TREE_CODE (high) != INTEGER_CST)
4174 return true;
4175 sign = tree_int_cst_sign_bit (step);
4176 type = TREE_TYPE (step);
4178 /* The array that might have flexible size most likely extends
4179 beyond its bounds. */
4180 if (has_flexible_size
4181 && operand_equal_p (low, high, 0))
4182 return true;
4184 /* In case the relevant bound of the array does not fit in type, or
4185 it does, but bound + step (in type) still belongs into the range of the
4186 array, the index may wrap and still stay within the range of the array
4187 (consider e.g. if the array is indexed by the full range of
4188 unsigned char).
4190 To make things simpler, we require both bounds to fit into type, although
4191 there are cases where this would not be strictly necessary. */
4192 if (!int_fits_type_p (high, type)
4193 || !int_fits_type_p (low, type))
4194 return true;
4195 low = fold_convert (type, low);
4196 high = fold_convert (type, high);
4198 if (sign)
4199 next = fold_binary (PLUS_EXPR, type, low, step);
4200 else
4201 next = fold_binary (PLUS_EXPR, type, high, step);
4203 if (tree_int_cst_compare (low, next) <= 0
4204 && tree_int_cst_compare (next, high) <= 0)
4205 return true;
4207 /* If access is not executed on every iteration, we must ensure that overlow
4208 may not make the access valid later. */
4209 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
4210 && scev_probably_wraps_p (NULL_TREE,
4211 initial_condition_in_loop_num (ev, loop->num),
4212 step, data->stmt, loop, true))
4213 upper = false;
4215 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, false, upper);
4216 return true;
4219 /* Determine information about number of iterations a LOOP from the bounds
4220 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
4221 STMT is guaranteed to be executed in every iteration of LOOP.*/
4223 static void
4224 infer_loop_bounds_from_ref (class loop *loop, gimple *stmt, tree ref)
4226 struct ilb_data data;
4228 data.loop = loop;
4229 data.stmt = stmt;
4230 for_each_index (&ref, idx_infer_loop_bounds, &data);
4233 /* Determine information about number of iterations of a LOOP from the way
4234 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
4235 executed in every iteration of LOOP. */
4237 static void
4238 infer_loop_bounds_from_array (class loop *loop, gimple *stmt)
4240 if (is_gimple_assign (stmt))
4242 tree op0 = gimple_assign_lhs (stmt);
4243 tree op1 = gimple_assign_rhs1 (stmt);
4245 /* For each memory access, analyze its access function
4246 and record a bound on the loop iteration domain. */
4247 if (REFERENCE_CLASS_P (op0))
4248 infer_loop_bounds_from_ref (loop, stmt, op0);
4250 if (REFERENCE_CLASS_P (op1))
4251 infer_loop_bounds_from_ref (loop, stmt, op1);
4253 else if (is_gimple_call (stmt))
4255 tree arg, lhs;
4256 unsigned i, n = gimple_call_num_args (stmt);
4258 lhs = gimple_call_lhs (stmt);
4259 if (lhs && REFERENCE_CLASS_P (lhs))
4260 infer_loop_bounds_from_ref (loop, stmt, lhs);
4262 for (i = 0; i < n; i++)
4264 arg = gimple_call_arg (stmt, i);
4265 if (REFERENCE_CLASS_P (arg))
4266 infer_loop_bounds_from_ref (loop, stmt, arg);
4271 /* Determine information about number of iterations of a LOOP from the fact
4272 that pointer arithmetics in STMT does not overflow. */
4274 static void
4275 infer_loop_bounds_from_pointer_arith (class loop *loop, gimple *stmt)
4277 tree def, base, step, scev, type, low, high;
4278 tree var, ptr;
4280 if (!is_gimple_assign (stmt)
4281 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
4282 return;
4284 def = gimple_assign_lhs (stmt);
4285 if (TREE_CODE (def) != SSA_NAME)
4286 return;
4288 type = TREE_TYPE (def);
4289 if (!nowrap_type_p (type))
4290 return;
4292 ptr = gimple_assign_rhs1 (stmt);
4293 if (!expr_invariant_in_loop_p (loop, ptr))
4294 return;
4296 var = gimple_assign_rhs2 (stmt);
4297 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
4298 return;
4300 class loop *uloop = loop_containing_stmt (stmt);
4301 scev = instantiate_parameters (loop, analyze_scalar_evolution (uloop, def));
4302 if (chrec_contains_undetermined (scev))
4303 return;
4305 base = initial_condition_in_loop_num (scev, loop->num);
4306 step = evolution_part_in_loop_num (scev, loop->num);
4308 if (!base || !step
4309 || TREE_CODE (step) != INTEGER_CST
4310 || tree_contains_chrecs (base, NULL)
4311 || chrec_contains_symbols_defined_in_loop (base, loop->num))
4312 return;
4314 low = lower_bound_in_type (type, type);
4315 high = upper_bound_in_type (type, type);
4317 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
4318 produce a NULL pointer. The contrary would mean NULL points to an object,
4319 while NULL is supposed to compare unequal with the address of all objects.
4320 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
4321 NULL pointer since that would mean wrapping, which we assume here not to
4322 happen. So, we can exclude NULL from the valid range of pointer
4323 arithmetic. */
4324 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
4325 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
4327 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
4330 /* Determine information about number of iterations of a LOOP from the fact
4331 that signed arithmetics in STMT does not overflow. */
4333 static void
4334 infer_loop_bounds_from_signedness (class loop *loop, gimple *stmt)
4336 tree def, base, step, scev, type, low, high;
4338 if (gimple_code (stmt) != GIMPLE_ASSIGN)
4339 return;
4341 def = gimple_assign_lhs (stmt);
4343 if (TREE_CODE (def) != SSA_NAME)
4344 return;
4346 type = TREE_TYPE (def);
4347 if (!INTEGRAL_TYPE_P (type)
4348 || !TYPE_OVERFLOW_UNDEFINED (type))
4349 return;
4351 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
4352 if (chrec_contains_undetermined (scev))
4353 return;
4355 base = initial_condition_in_loop_num (scev, loop->num);
4356 step = evolution_part_in_loop_num (scev, loop->num);
4358 if (!base || !step
4359 || TREE_CODE (step) != INTEGER_CST
4360 || tree_contains_chrecs (base, NULL)
4361 || chrec_contains_symbols_defined_in_loop (base, loop->num))
4362 return;
4364 low = lower_bound_in_type (type, type);
4365 high = upper_bound_in_type (type, type);
4366 Value_Range r (TREE_TYPE (def));
4367 get_range_query (cfun)->range_of_expr (r, def);
4368 if (!r.varying_p () && !r.undefined_p ())
4370 low = wide_int_to_tree (type, r.lower_bound ());
4371 high = wide_int_to_tree (type, r.upper_bound ());
4374 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
4377 /* The following analyzers are extracting informations on the bounds
4378 of LOOP from the following undefined behaviors:
4380 - data references should not access elements over the statically
4381 allocated size,
4383 - signed variables should not overflow when flag_wrapv is not set.
4386 static void
4387 infer_loop_bounds_from_undefined (class loop *loop, basic_block *bbs)
4389 unsigned i;
4390 gimple_stmt_iterator bsi;
4391 basic_block bb;
4392 bool reliable;
4394 for (i = 0; i < loop->num_nodes; i++)
4396 bb = bbs[i];
4398 /* If BB is not executed in each iteration of the loop, we cannot
4399 use the operations in it to infer reliable upper bound on the
4400 # of iterations of the loop. However, we can use it as a guess.
4401 Reliable guesses come only from array bounds. */
4402 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
4404 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4406 gimple *stmt = gsi_stmt (bsi);
4408 infer_loop_bounds_from_array (loop, stmt);
4410 if (reliable)
4412 infer_loop_bounds_from_signedness (loop, stmt);
4413 infer_loop_bounds_from_pointer_arith (loop, stmt);
4420 /* Compare wide ints, callback for qsort. */
4422 static int
4423 wide_int_cmp (const void *p1, const void *p2)
4425 const bound_wide_int *d1 = (const bound_wide_int *) p1;
4426 const bound_wide_int *d2 = (const bound_wide_int *) p2;
4427 return wi::cmpu (*d1, *d2);
4430 /* Return index of BOUND in BOUNDS array sorted in increasing order.
4431 Lookup by binary search. */
4433 static int
4434 bound_index (const vec<bound_wide_int> &bounds, const bound_wide_int &bound)
4436 unsigned int end = bounds.length ();
4437 unsigned int begin = 0;
4439 /* Find a matching index by means of a binary search. */
4440 while (begin != end)
4442 unsigned int middle = (begin + end) / 2;
4443 bound_wide_int index = bounds[middle];
4445 if (index == bound)
4446 return middle;
4447 else if (wi::ltu_p (index, bound))
4448 begin = middle + 1;
4449 else
4450 end = middle;
4452 gcc_unreachable ();
4455 /* We recorded loop bounds only for statements dominating loop latch (and thus
4456 executed each loop iteration). If there are any bounds on statements not
4457 dominating the loop latch we can improve the estimate by walking the loop
4458 body and seeing if every path from loop header to loop latch contains
4459 some bounded statement. */
4461 static void
4462 discover_iteration_bound_by_body_walk (class loop *loop)
4464 class nb_iter_bound *elt;
4465 auto_vec<bound_wide_int> bounds;
4466 vec<vec<basic_block> > queues = vNULL;
4467 vec<basic_block> queue = vNULL;
4468 ptrdiff_t queue_index;
4469 ptrdiff_t latch_index = 0;
4471 /* Discover what bounds may interest us. */
4472 for (elt = loop->bounds; elt; elt = elt->next)
4474 bound_wide_int bound = elt->bound;
4476 /* Exit terminates loop at given iteration, while non-exits produce undefined
4477 effect on the next iteration. */
4478 if (!elt->is_exit)
4480 bound += 1;
4481 /* If an overflow occurred, ignore the result. */
4482 if (bound == 0)
4483 continue;
4486 if (!loop->any_upper_bound
4487 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
4488 bounds.safe_push (bound);
4491 /* Exit early if there is nothing to do. */
4492 if (!bounds.exists ())
4493 return;
4495 if (dump_file && (dump_flags & TDF_DETAILS))
4496 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
4498 /* Sort the bounds in decreasing order. */
4499 bounds.qsort (wide_int_cmp);
4501 /* For every basic block record the lowest bound that is guaranteed to
4502 terminate the loop. */
4504 hash_map<basic_block, ptrdiff_t> bb_bounds;
4505 for (elt = loop->bounds; elt; elt = elt->next)
4507 bound_wide_int bound = elt->bound;
4508 if (!elt->is_exit)
4510 bound += 1;
4511 /* If an overflow occurred, ignore the result. */
4512 if (bound == 0)
4513 continue;
4516 if (!loop->any_upper_bound
4517 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
4519 ptrdiff_t index = bound_index (bounds, bound);
4520 ptrdiff_t *entry = bb_bounds.get (gimple_bb (elt->stmt));
4521 if (!entry)
4522 bb_bounds.put (gimple_bb (elt->stmt), index);
4523 else if ((ptrdiff_t)*entry > index)
4524 *entry = index;
4528 hash_map<basic_block, ptrdiff_t> block_priority;
4530 /* Perform shortest path discovery loop->header ... loop->latch.
4532 The "distance" is given by the smallest loop bound of basic block
4533 present in the path and we look for path with largest smallest bound
4534 on it.
4536 To avoid the need for fibonacci heap on double ints we simply compress
4537 double ints into indexes to BOUNDS array and then represent the queue
4538 as arrays of queues for every index.
4539 Index of BOUNDS.length() means that the execution of given BB has
4540 no bounds determined.
4542 VISITED is a pointer map translating basic block into smallest index
4543 it was inserted into the priority queue with. */
4544 latch_index = -1;
4546 /* Start walk in loop header with index set to infinite bound. */
4547 queue_index = bounds.length ();
4548 queues.safe_grow_cleared (queue_index + 1, true);
4549 queue.safe_push (loop->header);
4550 queues[queue_index] = queue;
4551 block_priority.put (loop->header, queue_index);
4553 for (; queue_index >= 0; queue_index--)
4555 if (latch_index < queue_index)
4557 while (queues[queue_index].length ())
4559 basic_block bb;
4560 ptrdiff_t bound_index = queue_index;
4561 edge e;
4562 edge_iterator ei;
4564 queue = queues[queue_index];
4565 bb = queue.pop ();
4567 /* OK, we later inserted the BB with lower priority, skip it. */
4568 if (*block_priority.get (bb) > queue_index)
4569 continue;
4571 /* See if we can improve the bound. */
4572 ptrdiff_t *entry = bb_bounds.get (bb);
4573 if (entry && *entry < bound_index)
4574 bound_index = *entry;
4576 /* Insert succesors into the queue, watch for latch edge
4577 and record greatest index we saw. */
4578 FOR_EACH_EDGE (e, ei, bb->succs)
4580 bool insert = false;
4582 if (loop_exit_edge_p (loop, e))
4583 continue;
4585 if (e == loop_latch_edge (loop)
4586 && latch_index < bound_index)
4587 latch_index = bound_index;
4588 else if (!(entry = block_priority.get (e->dest)))
4590 insert = true;
4591 block_priority.put (e->dest, bound_index);
4593 else if (*entry < bound_index)
4595 insert = true;
4596 *entry = bound_index;
4599 if (insert)
4600 queues[bound_index].safe_push (e->dest);
4604 queues[queue_index].release ();
4607 gcc_assert (latch_index >= 0);
4608 if ((unsigned)latch_index < bounds.length ())
4610 if (dump_file && (dump_flags & TDF_DETAILS))
4612 fprintf (dump_file, "Found better loop bound ");
4613 print_decu (bounds[latch_index], dump_file);
4614 fprintf (dump_file, "\n");
4616 record_niter_bound (loop, widest_int::from (bounds[latch_index],
4617 SIGNED), false, true);
4620 queues.release ();
4623 /* See if every path cross the loop goes through a statement that is known
4624 to not execute at the last iteration. In that case we can decrese iteration
4625 count by 1. */
4627 static void
4628 maybe_lower_iteration_bound (class loop *loop)
4630 hash_set<gimple *> *not_executed_last_iteration = NULL;
4631 class nb_iter_bound *elt;
4632 bool found_exit = false;
4633 auto_vec<basic_block> queue;
4634 bitmap visited;
4636 /* Collect all statements with interesting (i.e. lower than
4637 nb_iterations_upper_bound) bound on them.
4639 TODO: Due to the way record_estimate choose estimates to store, the bounds
4640 will be always nb_iterations_upper_bound-1. We can change this to record
4641 also statements not dominating the loop latch and update the walk bellow
4642 to the shortest path algorithm. */
4643 for (elt = loop->bounds; elt; elt = elt->next)
4645 if (!elt->is_exit
4646 && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
4648 if (!not_executed_last_iteration)
4649 not_executed_last_iteration = new hash_set<gimple *>;
4650 not_executed_last_iteration->add (elt->stmt);
4653 if (!not_executed_last_iteration)
4654 return;
4656 /* Start DFS walk in the loop header and see if we can reach the
4657 loop latch or any of the exits (including statements with side
4658 effects that may terminate the loop otherwise) without visiting
4659 any of the statements known to have undefined effect on the last
4660 iteration. */
4661 queue.safe_push (loop->header);
4662 visited = BITMAP_ALLOC (NULL);
4663 bitmap_set_bit (visited, loop->header->index);
4664 found_exit = false;
4668 basic_block bb = queue.pop ();
4669 gimple_stmt_iterator gsi;
4670 bool stmt_found = false;
4672 /* Loop for possible exits and statements bounding the execution. */
4673 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4675 gimple *stmt = gsi_stmt (gsi);
4676 if (not_executed_last_iteration->contains (stmt))
4678 stmt_found = true;
4679 break;
4681 if (gimple_has_side_effects (stmt))
4683 found_exit = true;
4684 break;
4687 if (found_exit)
4688 break;
4690 /* If no bounding statement is found, continue the walk. */
4691 if (!stmt_found)
4693 edge e;
4694 edge_iterator ei;
4696 FOR_EACH_EDGE (e, ei, bb->succs)
4698 if (loop_exit_edge_p (loop, e)
4699 || e == loop_latch_edge (loop))
4701 found_exit = true;
4702 break;
4704 if (bitmap_set_bit (visited, e->dest->index))
4705 queue.safe_push (e->dest);
4709 while (queue.length () && !found_exit);
4711 /* If every path through the loop reach bounding statement before exit,
4712 then we know the last iteration of the loop will have undefined effect
4713 and we can decrease number of iterations. */
4715 if (!found_exit)
4717 if (dump_file && (dump_flags & TDF_DETAILS))
4718 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
4719 "undefined statement must be executed at the last iteration.\n");
4720 record_niter_bound (loop, widest_int::from (loop->nb_iterations_upper_bound,
4721 SIGNED) - 1,
4722 false, true);
4725 BITMAP_FREE (visited);
4726 delete not_executed_last_iteration;
4729 /* Get expected upper bound for number of loop iterations for
4730 BUILT_IN_EXPECT_WITH_PROBABILITY for a condition COND. */
4732 static tree
4733 get_upper_bound_based_on_builtin_expr_with_prob (gcond *cond)
4735 if (cond == NULL)
4736 return NULL_TREE;
4738 tree lhs = gimple_cond_lhs (cond);
4739 if (TREE_CODE (lhs) != SSA_NAME)
4740 return NULL_TREE;
4742 gimple *stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
4743 gcall *def = dyn_cast<gcall *> (stmt);
4744 if (def == NULL)
4745 return NULL_TREE;
4747 tree decl = gimple_call_fndecl (def);
4748 if (!decl
4749 || !fndecl_built_in_p (decl, BUILT_IN_EXPECT_WITH_PROBABILITY)
4750 || gimple_call_num_args (stmt) != 3)
4751 return NULL_TREE;
4753 tree c = gimple_call_arg (def, 1);
4754 tree condt = TREE_TYPE (lhs);
4755 tree res = fold_build2 (gimple_cond_code (cond),
4756 condt, c,
4757 gimple_cond_rhs (cond));
4758 if (TREE_CODE (res) != INTEGER_CST)
4759 return NULL_TREE;
4762 tree prob = gimple_call_arg (def, 2);
4763 tree t = TREE_TYPE (prob);
4764 tree one
4765 = build_real_from_int_cst (t,
4766 integer_one_node);
4767 if (integer_zerop (res))
4768 prob = fold_build2 (MINUS_EXPR, t, one, prob);
4769 tree r = fold_build2 (RDIV_EXPR, t, one, prob);
4770 if (TREE_CODE (r) != REAL_CST)
4771 return NULL_TREE;
4773 HOST_WIDE_INT probi
4774 = real_to_integer (TREE_REAL_CST_PTR (r));
4775 return build_int_cst (condt, probi);
4778 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
4779 is true also use estimates derived from undefined behavior. */
4781 void
4782 estimate_numbers_of_iterations (class loop *loop)
4784 tree niter, type;
4785 unsigned i;
4786 class tree_niter_desc niter_desc;
4787 edge ex;
4788 widest_int bound;
4789 edge likely_exit;
4791 /* Give up if we already have tried to compute an estimation. */
4792 if (loop->estimate_state != EST_NOT_COMPUTED)
4793 return;
4795 if (dump_file && (dump_flags & TDF_DETAILS))
4796 fprintf (dump_file, "Estimating # of iterations of loop %d\n", loop->num);
4798 loop->estimate_state = EST_AVAILABLE;
4800 sreal nit;
4801 bool reliable;
4803 /* If we have a measured profile, use it to estimate the number of
4804 iterations. Normally this is recorded by branch_prob right after
4805 reading the profile. In case we however found a new loop, record the
4806 information here.
4808 Explicitly check for profile status so we do not report
4809 wrong prediction hitrates for guessed loop iterations heuristics.
4810 Do not recompute already recorded bounds - we ought to be better on
4811 updating iteration bounds than updating profile in general and thus
4812 recomputing iteration bounds later in the compilation process will just
4813 introduce random roundoff errors. */
4814 if (!loop->any_estimate
4815 && expected_loop_iterations_by_profile (loop, &nit, &reliable)
4816 && reliable)
4818 bound = nit.to_nearest_int ();
4819 record_niter_bound (loop, bound, true, false);
4822 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
4823 to be constant, we avoid undefined behavior implied bounds and instead
4824 diagnose those loops with -Waggressive-loop-optimizations. */
4825 number_of_latch_executions (loop);
4827 basic_block *body = get_loop_body (loop);
4828 auto_vec<edge> exits = get_loop_exit_edges (loop, body);
4829 likely_exit = single_likely_exit (loop, exits);
4830 FOR_EACH_VEC_ELT (exits, i, ex)
4832 if (ex == likely_exit)
4834 gimple *stmt = *gsi_last_bb (ex->src);
4835 if (stmt != NULL)
4837 gcond *cond = dyn_cast<gcond *> (stmt);
4838 tree niter_bound
4839 = get_upper_bound_based_on_builtin_expr_with_prob (cond);
4840 if (niter_bound != NULL_TREE)
4842 widest_int max = derive_constant_upper_bound (niter_bound);
4843 record_estimate (loop, niter_bound, max, cond,
4844 true, true, false);
4849 if (!number_of_iterations_exit (loop, ex, &niter_desc,
4850 false, false, body))
4851 continue;
4853 niter = niter_desc.niter;
4854 type = TREE_TYPE (niter);
4855 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
4856 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
4857 build_int_cst (type, 0),
4858 niter);
4859 record_estimate (loop, niter, niter_desc.max,
4860 last_nondebug_stmt (ex->src),
4861 true, ex == likely_exit, true);
4862 record_control_iv (loop, &niter_desc);
4865 if (flag_aggressive_loop_optimizations)
4866 infer_loop_bounds_from_undefined (loop, body);
4867 free (body);
4869 discover_iteration_bound_by_body_walk (loop);
4871 maybe_lower_iteration_bound (loop);
4873 /* If we know the exact number of iterations of this loop, try to
4874 not break code with undefined behavior by not recording smaller
4875 maximum number of iterations. */
4876 if (loop->nb_iterations
4877 && TREE_CODE (loop->nb_iterations) == INTEGER_CST
4878 && (wi::min_precision (wi::to_widest (loop->nb_iterations), SIGNED)
4879 <= bound_wide_int ().get_precision ()))
4881 loop->any_upper_bound = true;
4882 loop->nb_iterations_upper_bound
4883 = bound_wide_int::from (wi::to_widest (loop->nb_iterations), SIGNED);
4887 /* Sets NIT to the estimated number of executions of the latch of the
4888 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
4889 large as the number of iterations. If we have no reliable estimate,
4890 the function returns false, otherwise returns true. */
4892 bool
4893 estimated_loop_iterations (class loop *loop, widest_int *nit)
4895 /* When SCEV information is available, try to update loop iterations
4896 estimate. Otherwise just return whatever we recorded earlier. */
4897 if (scev_initialized_p ())
4898 estimate_numbers_of_iterations (loop);
4900 return (get_estimated_loop_iterations (loop, nit));
4903 /* Similar to estimated_loop_iterations, but returns the estimate only
4904 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4905 on the number of iterations of LOOP could not be derived, returns -1. */
4907 HOST_WIDE_INT
4908 estimated_loop_iterations_int (class loop *loop)
4910 widest_int nit;
4911 HOST_WIDE_INT hwi_nit;
4913 if (!estimated_loop_iterations (loop, &nit))
4914 return -1;
4916 if (!wi::fits_shwi_p (nit))
4917 return -1;
4918 hwi_nit = nit.to_shwi ();
4920 return hwi_nit < 0 ? -1 : hwi_nit;
4924 /* Sets NIT to an upper bound for the maximum number of executions of the
4925 latch of the LOOP. If we have no reliable estimate, the function returns
4926 false, otherwise returns true. */
4928 bool
4929 max_loop_iterations (class loop *loop, widest_int *nit)
4931 /* When SCEV information is available, try to update loop iterations
4932 estimate. Otherwise just return whatever we recorded earlier. */
4933 if (scev_initialized_p ())
4934 estimate_numbers_of_iterations (loop);
4936 return get_max_loop_iterations (loop, nit);
4939 /* Similar to max_loop_iterations, but returns the estimate only
4940 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4941 on the number of iterations of LOOP could not be derived, returns -1. */
4943 HOST_WIDE_INT
4944 max_loop_iterations_int (class loop *loop)
4946 widest_int nit;
4947 HOST_WIDE_INT hwi_nit;
4949 if (!max_loop_iterations (loop, &nit))
4950 return -1;
4952 if (!wi::fits_shwi_p (nit))
4953 return -1;
4954 hwi_nit = nit.to_shwi ();
4956 return hwi_nit < 0 ? -1 : hwi_nit;
4959 /* Sets NIT to an likely upper bound for the maximum number of executions of the
4960 latch of the LOOP. If we have no reliable estimate, the function returns
4961 false, otherwise returns true. */
4963 bool
4964 likely_max_loop_iterations (class loop *loop, widest_int *nit)
4966 /* When SCEV information is available, try to update loop iterations
4967 estimate. Otherwise just return whatever we recorded earlier. */
4968 if (scev_initialized_p ())
4969 estimate_numbers_of_iterations (loop);
4971 return get_likely_max_loop_iterations (loop, nit);
4974 /* Similar to max_loop_iterations, but returns the estimate only
4975 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4976 on the number of iterations of LOOP could not be derived, returns -1. */
4978 HOST_WIDE_INT
4979 likely_max_loop_iterations_int (class loop *loop)
4981 widest_int nit;
4982 HOST_WIDE_INT hwi_nit;
4984 if (!likely_max_loop_iterations (loop, &nit))
4985 return -1;
4987 if (!wi::fits_shwi_p (nit))
4988 return -1;
4989 hwi_nit = nit.to_shwi ();
4991 return hwi_nit < 0 ? -1 : hwi_nit;
4994 /* Returns an estimate for the number of executions of statements
4995 in the LOOP. For statements before the loop exit, this exceeds
4996 the number of execution of the latch by one. */
4998 HOST_WIDE_INT
4999 estimated_stmt_executions_int (class loop *loop)
5001 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
5002 HOST_WIDE_INT snit;
5004 if (nit == -1)
5005 return -1;
5007 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
5009 /* If the computation overflows, return -1. */
5010 return snit < 0 ? -1 : snit;
5013 /* Sets NIT to the maximum number of executions of the latch of the
5014 LOOP, plus one. If we have no reliable estimate, the function returns
5015 false, otherwise returns true. */
5017 bool
5018 max_stmt_executions (class loop *loop, widest_int *nit)
5020 widest_int nit_minus_one;
5022 if (!max_loop_iterations (loop, nit))
5023 return false;
5025 nit_minus_one = *nit;
5027 *nit += 1;
5029 return wi::gtu_p (*nit, nit_minus_one);
5032 /* Sets NIT to the estimated maximum number of executions of the latch of the
5033 LOOP, plus one. If we have no likely estimate, the function returns
5034 false, otherwise returns true. */
5036 bool
5037 likely_max_stmt_executions (class loop *loop, widest_int *nit)
5039 widest_int nit_minus_one;
5041 if (!likely_max_loop_iterations (loop, nit))
5042 return false;
5044 nit_minus_one = *nit;
5046 *nit += 1;
5048 return wi::gtu_p (*nit, nit_minus_one);
5051 /* Sets NIT to the estimated number of executions of the latch of the
5052 LOOP, plus one. If we have no reliable estimate, the function returns
5053 false, otherwise returns true. */
5055 bool
5056 estimated_stmt_executions (class loop *loop, widest_int *nit)
5058 widest_int nit_minus_one;
5060 if (!estimated_loop_iterations (loop, nit))
5061 return false;
5063 nit_minus_one = *nit;
5065 *nit += 1;
5067 return wi::gtu_p (*nit, nit_minus_one);
5070 /* Records estimates on numbers of iterations of loops. */
5072 void
5073 estimate_numbers_of_iterations (function *fn)
5075 /* We don't want to issue signed overflow warnings while getting
5076 loop iteration estimates. */
5077 fold_defer_overflow_warnings ();
5079 for (auto loop : loops_list (fn, 0))
5080 estimate_numbers_of_iterations (loop);
5082 fold_undefer_and_ignore_overflow_warnings ();
5085 /* Returns true if statement S1 dominates statement S2. */
5087 bool
5088 stmt_dominates_stmt_p (gimple *s1, gimple *s2)
5090 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
5092 if (!bb1
5093 || s1 == s2)
5094 return true;
5096 if (bb1 == bb2)
5098 gimple_stmt_iterator bsi;
5100 if (gimple_code (s2) == GIMPLE_PHI)
5101 return false;
5103 if (gimple_code (s1) == GIMPLE_PHI)
5104 return true;
5106 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
5107 if (gsi_stmt (bsi) == s1)
5108 return true;
5110 return false;
5113 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
5116 /* Returns true when we can prove that the number of executions of
5117 STMT in the loop is at most NITER, according to the bound on
5118 the number of executions of the statement NITER_BOUND->stmt recorded in
5119 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
5121 ??? This code can become quite a CPU hog - we can have many bounds,
5122 and large basic block forcing stmt_dominates_stmt_p to be queried
5123 many times on a large basic blocks, so the whole thing is O(n^2)
5124 for scev_probably_wraps_p invocation (that can be done n times).
5126 It would make more sense (and give better answers) to remember BB
5127 bounds computed by discover_iteration_bound_by_body_walk. */
5129 static bool
5130 n_of_executions_at_most (gimple *stmt,
5131 class nb_iter_bound *niter_bound,
5132 tree niter)
5134 widest_int bound = widest_int::from (niter_bound->bound, SIGNED);
5135 tree nit_type = TREE_TYPE (niter), e;
5136 enum tree_code cmp;
5138 gcc_assert (TYPE_UNSIGNED (nit_type));
5140 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
5141 the number of iterations is small. */
5142 if (!wi::fits_to_tree_p (bound, nit_type))
5143 return false;
5145 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
5146 times. This means that:
5148 -- if NITER_BOUND->is_exit is true, then everything after
5149 it at most NITER_BOUND->bound times.
5151 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
5152 is executed, then NITER_BOUND->stmt is executed as well in the same
5153 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
5155 If we can determine that NITER_BOUND->stmt is always executed
5156 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
5157 We conclude that if both statements belong to the same
5158 basic block and STMT is before NITER_BOUND->stmt and there are no
5159 statements with side effects in between. */
5161 if (niter_bound->is_exit)
5163 if (stmt == niter_bound->stmt
5164 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
5165 return false;
5166 cmp = GE_EXPR;
5168 else
5170 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
5172 gimple_stmt_iterator bsi;
5173 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
5174 || gimple_code (stmt) == GIMPLE_PHI
5175 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
5176 return false;
5178 /* By stmt_dominates_stmt_p we already know that STMT appears
5179 before NITER_BOUND->STMT. Still need to test that the loop
5180 cannot be terinated by a side effect in between. */
5181 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
5182 gsi_next (&bsi))
5183 if (gimple_has_side_effects (gsi_stmt (bsi)))
5184 return false;
5185 bound += 1;
5186 if (bound == 0
5187 || !wi::fits_to_tree_p (bound, nit_type))
5188 return false;
5190 cmp = GT_EXPR;
5193 e = fold_binary (cmp, boolean_type_node,
5194 niter, wide_int_to_tree (nit_type, bound));
5195 return e && integer_nonzerop (e);
5198 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
5200 bool
5201 nowrap_type_p (tree type)
5203 if (ANY_INTEGRAL_TYPE_P (type)
5204 && TYPE_OVERFLOW_UNDEFINED (type))
5205 return true;
5207 if (POINTER_TYPE_P (type))
5208 return true;
5210 return false;
5213 /* Return true if we can prove LOOP is exited before evolution of induction
5214 variable {BASE, STEP} overflows with respect to its type bound. */
5216 static bool
5217 loop_exits_before_overflow (tree base, tree step,
5218 gimple *at_stmt, class loop *loop)
5220 widest_int niter;
5221 struct control_iv *civ;
5222 class nb_iter_bound *bound;
5223 tree e, delta, step_abs, unsigned_base;
5224 tree type = TREE_TYPE (step);
5225 tree unsigned_type, valid_niter;
5227 /* Don't issue signed overflow warnings. */
5228 fold_defer_overflow_warnings ();
5230 /* Compute the number of iterations before we reach the bound of the
5231 type, and verify that the loop is exited before this occurs. */
5232 unsigned_type = unsigned_type_for (type);
5233 unsigned_base = fold_convert (unsigned_type, base);
5235 if (tree_int_cst_sign_bit (step))
5237 tree extreme = fold_convert (unsigned_type,
5238 lower_bound_in_type (type, type));
5239 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
5240 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
5241 fold_convert (unsigned_type, step));
5243 else
5245 tree extreme = fold_convert (unsigned_type,
5246 upper_bound_in_type (type, type));
5247 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
5248 step_abs = fold_convert (unsigned_type, step);
5251 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
5253 estimate_numbers_of_iterations (loop);
5255 if (max_loop_iterations (loop, &niter)
5256 && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
5257 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
5258 wide_int_to_tree (TREE_TYPE (valid_niter),
5259 niter))) != NULL
5260 && integer_nonzerop (e))
5262 fold_undefer_and_ignore_overflow_warnings ();
5263 return true;
5265 if (at_stmt)
5266 for (bound = loop->bounds; bound; bound = bound->next)
5268 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
5270 fold_undefer_and_ignore_overflow_warnings ();
5271 return true;
5274 fold_undefer_and_ignore_overflow_warnings ();
5276 /* Try to prove loop is exited before {base, step} overflows with the
5277 help of analyzed loop control IV. This is done only for IVs with
5278 constant step because otherwise we don't have the information. */
5279 if (TREE_CODE (step) == INTEGER_CST)
5281 for (civ = loop->control_ivs; civ; civ = civ->next)
5283 enum tree_code code;
5284 tree civ_type = TREE_TYPE (civ->step);
5286 /* Have to consider type difference because operand_equal_p ignores
5287 that for constants. */
5288 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
5289 || element_precision (type) != element_precision (civ_type))
5290 continue;
5292 /* Only consider control IV with same step. */
5293 if (!operand_equal_p (step, civ->step, 0))
5294 continue;
5296 /* Done proving if this is a no-overflow control IV. */
5297 if (operand_equal_p (base, civ->base, 0))
5298 return true;
5300 /* Control IV is recorded after expanding simple operations,
5301 Here we expand base and compare it too. */
5302 tree expanded_base = expand_simple_operations (base);
5303 if (operand_equal_p (expanded_base, civ->base, 0))
5304 return true;
5306 /* If this is a before stepping control IV, in other words, we have
5308 {civ_base, step} = {base + step, step}
5310 Because civ {base + step, step} doesn't overflow during loop
5311 iterations, {base, step} will not overflow if we can prove the
5312 operation "base + step" does not overflow. Specifically, we try
5313 to prove below conditions are satisfied:
5315 base <= UPPER_BOUND (type) - step ;;step > 0
5316 base >= LOWER_BOUND (type) - step ;;step < 0
5318 by proving the reverse conditions are false using loop's initial
5319 condition. */
5320 if (POINTER_TYPE_P (TREE_TYPE (base)))
5321 code = POINTER_PLUS_EXPR;
5322 else
5323 code = PLUS_EXPR;
5325 tree stepped = fold_build2 (code, TREE_TYPE (base), base, step);
5326 tree expanded_stepped = fold_build2 (code, TREE_TYPE (base),
5327 expanded_base, step);
5328 if (operand_equal_p (stepped, civ->base, 0)
5329 || operand_equal_p (expanded_stepped, civ->base, 0))
5331 tree extreme;
5333 if (tree_int_cst_sign_bit (step))
5335 code = LT_EXPR;
5336 extreme = lower_bound_in_type (type, type);
5338 else
5340 code = GT_EXPR;
5341 extreme = upper_bound_in_type (type, type);
5343 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
5344 e = fold_build2 (code, boolean_type_node, base, extreme);
5345 e = simplify_using_initial_conditions (loop, e);
5346 if (integer_zerop (e))
5347 return true;
5352 return false;
5355 /* VAR is scev variable whose evolution part is constant STEP, this function
5356 proves that VAR can't overflow by using value range info. If VAR's value
5357 range is [MIN, MAX], it can be proven by:
5358 MAX + step doesn't overflow ; if step > 0
5360 MIN + step doesn't underflow ; if step < 0.
5362 We can only do this if var is computed in every loop iteration, i.e, var's
5363 definition has to dominate loop latch. Consider below example:
5366 unsigned int i;
5368 <bb 3>:
5370 <bb 4>:
5371 # RANGE [0, 4294967294] NONZERO 65535
5372 # i_21 = PHI <0(3), i_18(9)>
5373 if (i_21 != 0)
5374 goto <bb 6>;
5375 else
5376 goto <bb 8>;
5378 <bb 6>:
5379 # RANGE [0, 65533] NONZERO 65535
5380 _6 = i_21 + 4294967295;
5381 # RANGE [0, 65533] NONZERO 65535
5382 _7 = (long unsigned int) _6;
5383 # RANGE [0, 524264] NONZERO 524280
5384 _8 = _7 * 8;
5385 # PT = nonlocal escaped
5386 _9 = a_14 + _8;
5387 *_9 = 0;
5389 <bb 8>:
5390 # RANGE [1, 65535] NONZERO 65535
5391 i_18 = i_21 + 1;
5392 if (i_18 >= 65535)
5393 goto <bb 10>;
5394 else
5395 goto <bb 9>;
5397 <bb 9>:
5398 goto <bb 4>;
5400 <bb 10>:
5401 return;
5404 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
5405 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
5406 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
5407 (4294967295, 4294967296, ...). */
5409 static bool
5410 scev_var_range_cant_overflow (tree var, tree step, class loop *loop)
5412 tree type;
5413 wide_int minv, maxv, diff, step_wi;
5415 if (TREE_CODE (step) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (var)))
5416 return false;
5418 /* Check if VAR evaluates in every loop iteration. It's not the case
5419 if VAR is default definition or does not dominate loop's latch. */
5420 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
5421 if (!def_bb || !dominated_by_p (CDI_DOMINATORS, loop->latch, def_bb))
5422 return false;
5424 Value_Range r (TREE_TYPE (var));
5425 get_range_query (cfun)->range_of_expr (r, var);
5426 if (r.varying_p () || r.undefined_p ())
5427 return false;
5429 /* VAR is a scev whose evolution part is STEP and value range info
5430 is [MIN, MAX], we can prove its no-overflowness by conditions:
5432 type_MAX - MAX >= step ; if step > 0
5433 MIN - type_MIN >= |step| ; if step < 0.
5435 Or VAR must take value outside of value range, which is not true. */
5436 step_wi = wi::to_wide (step);
5437 type = TREE_TYPE (var);
5438 if (tree_int_cst_sign_bit (step))
5440 diff = r.lower_bound () - wi::to_wide (lower_bound_in_type (type, type));
5441 step_wi = - step_wi;
5443 else
5444 diff = wi::to_wide (upper_bound_in_type (type, type)) - r.upper_bound ();
5446 return (wi::geu_p (diff, step_wi));
5449 /* Return false only when the induction variable BASE + STEP * I is
5450 known to not overflow: i.e. when the number of iterations is small
5451 enough with respect to the step and initial condition in order to
5452 keep the evolution confined in TYPEs bounds. Return true when the
5453 iv is known to overflow or when the property is not computable.
5455 USE_OVERFLOW_SEMANTICS is true if this function should assume that
5456 the rules for overflow of the given language apply (e.g., that signed
5457 arithmetics in C does not overflow).
5459 If VAR is a ssa variable, this function also returns false if VAR can
5460 be proven not overflow with value range info. */
5462 bool
5463 scev_probably_wraps_p (tree var, tree base, tree step,
5464 gimple *at_stmt, class loop *loop,
5465 bool use_overflow_semantics)
5467 /* FIXME: We really need something like
5468 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
5470 We used to test for the following situation that frequently appears
5471 during address arithmetics:
5473 D.1621_13 = (long unsigned intD.4) D.1620_12;
5474 D.1622_14 = D.1621_13 * 8;
5475 D.1623_15 = (doubleD.29 *) D.1622_14;
5477 And derived that the sequence corresponding to D_14
5478 can be proved to not wrap because it is used for computing a
5479 memory access; however, this is not really the case -- for example,
5480 if D_12 = (unsigned char) [254,+,1], then D_14 has values
5481 2032, 2040, 0, 8, ..., but the code is still legal. */
5483 if (chrec_contains_undetermined (base)
5484 || chrec_contains_undetermined (step))
5485 return true;
5487 if (integer_zerop (step))
5488 return false;
5490 /* If we can use the fact that signed and pointer arithmetics does not
5491 wrap, we are done. */
5492 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
5493 return false;
5495 /* To be able to use estimates on number of iterations of the loop,
5496 we must have an upper bound on the absolute value of the step. */
5497 if (TREE_CODE (step) != INTEGER_CST)
5498 return true;
5500 /* Check if var can be proven not overflow with value range info. */
5501 if (var && TREE_CODE (var) == SSA_NAME
5502 && scev_var_range_cant_overflow (var, step, loop))
5503 return false;
5505 if (loop_exits_before_overflow (base, step, at_stmt, loop))
5506 return false;
5508 /* At this point we still don't have a proof that the iv does not
5509 overflow: give up. */
5510 return true;
5513 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
5515 void
5516 free_numbers_of_iterations_estimates (class loop *loop)
5518 struct control_iv *civ;
5519 class nb_iter_bound *bound;
5521 loop->nb_iterations = NULL;
5522 loop->estimate_state = EST_NOT_COMPUTED;
5523 for (bound = loop->bounds; bound;)
5525 class nb_iter_bound *next = bound->next;
5526 ggc_free (bound);
5527 bound = next;
5529 loop->bounds = NULL;
5531 for (civ = loop->control_ivs; civ;)
5533 struct control_iv *next = civ->next;
5534 ggc_free (civ);
5535 civ = next;
5537 loop->control_ivs = NULL;
5540 /* Frees the information on upper bounds on numbers of iterations of loops. */
5542 void
5543 free_numbers_of_iterations_estimates (function *fn)
5545 for (auto loop : loops_list (fn, 0))
5546 free_numbers_of_iterations_estimates (loop);
5549 /* Substitute value VAL for ssa name NAME inside expressions held
5550 at LOOP. */
5552 void
5553 substitute_in_loop_info (class loop *loop, tree name, tree val)
5555 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);