[34/77] Add a SCALAR_INT_TYPE_MODE macro
[official-gcc.git] / gcc / tree-vrp.c
blobdc5f00ed0ec0f3e1d6d89198970fe4b4d0976b4d
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "intl.h"
51 #include "cfgloop.h"
52 #include "tree-scalar-evolution.h"
53 #include "tree-ssa-propagate.h"
54 #include "tree-chrec.h"
55 #include "tree-ssa-threadupdate.h"
56 #include "tree-ssa-scopedtables.h"
57 #include "tree-ssa-threadedge.h"
58 #include "omp-general.h"
59 #include "target.h"
60 #include "case-cfn-macros.h"
61 #include "params.h"
62 #include "alloc-pool.h"
63 #include "domwalk.h"
64 #include "tree-cfgcleanup.h"
65 #include "stringpool.h"
66 #include "attribs.h"
68 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
70 /* Allocation pools for tree-vrp allocations. */
71 static object_allocator<value_range> vrp_value_range_pool ("Tree VRP value ranges");
72 static bitmap_obstack vrp_equiv_obstack;
74 /* Set of SSA names found live during the RPO traversal of the function
75 for still active basic-blocks. */
76 static sbitmap *live;
78 /* Return true if the SSA name NAME is live on the edge E. */
80 static bool
81 live_on_edge (edge e, tree name)
83 return (live[e->dest->index]
84 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
87 /* Local functions. */
88 static int compare_values (tree val1, tree val2);
89 static int compare_values_warnv (tree val1, tree val2, bool *);
90 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
91 tree, tree, bool, bool *,
92 bool *);
94 struct assert_info
96 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
97 enum tree_code comp_code;
99 /* Name to register the assert for. */
100 tree name;
102 /* Value being compared against. */
103 tree val;
105 /* Expression to compare. */
106 tree expr;
109 /* Location information for ASSERT_EXPRs. Each instance of this
110 structure describes an ASSERT_EXPR for an SSA name. Since a single
111 SSA name may have more than one assertion associated with it, these
112 locations are kept in a linked list attached to the corresponding
113 SSA name. */
114 struct assert_locus
116 /* Basic block where the assertion would be inserted. */
117 basic_block bb;
119 /* Some assertions need to be inserted on an edge (e.g., assertions
120 generated by COND_EXPRs). In those cases, BB will be NULL. */
121 edge e;
123 /* Pointer to the statement that generated this assertion. */
124 gimple_stmt_iterator si;
126 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
127 enum tree_code comp_code;
129 /* Value being compared against. */
130 tree val;
132 /* Expression to compare. */
133 tree expr;
135 /* Next node in the linked list. */
136 assert_locus *next;
139 /* If bit I is present, it means that SSA name N_i has a list of
140 assertions that should be inserted in the IL. */
141 static bitmap need_assert_for;
143 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
144 holds a list of ASSERT_LOCUS_T nodes that describe where
145 ASSERT_EXPRs for SSA name N_I should be inserted. */
146 static assert_locus **asserts_for;
148 /* Value range array. After propagation, VR_VALUE[I] holds the range
149 of values that SSA name N_I may take. */
150 static unsigned num_vr_values;
151 static value_range **vr_value;
152 static bool values_propagated;
154 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
155 number of executable edges we saw the last time we visited the
156 node. */
157 static int *vr_phi_edge_counts;
159 struct switch_update {
160 gswitch *stmt;
161 tree vec;
164 static vec<edge> to_remove_edges;
165 static vec<switch_update> to_update_switch_stmts;
168 /* Return the maximum value for TYPE. */
170 static inline tree
171 vrp_val_max (const_tree type)
173 if (!INTEGRAL_TYPE_P (type))
174 return NULL_TREE;
176 return TYPE_MAX_VALUE (type);
179 /* Return the minimum value for TYPE. */
181 static inline tree
182 vrp_val_min (const_tree type)
184 if (!INTEGRAL_TYPE_P (type))
185 return NULL_TREE;
187 return TYPE_MIN_VALUE (type);
190 /* Return whether VAL is equal to the maximum value of its type.
191 We can't do a simple equality comparison with TYPE_MAX_VALUE because
192 C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
193 is not == to the integer constant with the same value in the type. */
195 static inline bool
196 vrp_val_is_max (const_tree val)
198 tree type_max = vrp_val_max (TREE_TYPE (val));
199 return (val == type_max
200 || (type_max != NULL_TREE
201 && operand_equal_p (val, type_max, 0)));
204 /* Return whether VAL is equal to the minimum value of its type. */
206 static inline bool
207 vrp_val_is_min (const_tree val)
209 tree type_min = vrp_val_min (TREE_TYPE (val));
210 return (val == type_min
211 || (type_min != NULL_TREE
212 && operand_equal_p (val, type_min, 0)));
216 /* Set value range VR to VR_UNDEFINED. */
218 static inline void
219 set_value_range_to_undefined (value_range *vr)
221 vr->type = VR_UNDEFINED;
222 vr->min = vr->max = NULL_TREE;
223 if (vr->equiv)
224 bitmap_clear (vr->equiv);
228 /* Set value range VR to VR_VARYING. */
230 static inline void
231 set_value_range_to_varying (value_range *vr)
233 vr->type = VR_VARYING;
234 vr->min = vr->max = NULL_TREE;
235 if (vr->equiv)
236 bitmap_clear (vr->equiv);
240 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
242 static void
243 set_value_range (value_range *vr, enum value_range_type t, tree min,
244 tree max, bitmap equiv)
246 /* Check the validity of the range. */
247 if (flag_checking
248 && (t == VR_RANGE || t == VR_ANTI_RANGE))
250 int cmp;
252 gcc_assert (min && max);
254 gcc_assert (!TREE_OVERFLOW_P (min) && !TREE_OVERFLOW_P (max));
256 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
257 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
259 cmp = compare_values (min, max);
260 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
263 if (flag_checking
264 && (t == VR_UNDEFINED || t == VR_VARYING))
266 gcc_assert (min == NULL_TREE && max == NULL_TREE);
267 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
270 vr->type = t;
271 vr->min = min;
272 vr->max = max;
274 /* Since updating the equivalence set involves deep copying the
275 bitmaps, only do it if absolutely necessary. */
276 if (vr->equiv == NULL
277 && equiv != NULL)
278 vr->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
280 if (equiv != vr->equiv)
282 if (equiv && !bitmap_empty_p (equiv))
283 bitmap_copy (vr->equiv, equiv);
284 else
285 bitmap_clear (vr->equiv);
290 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
291 This means adjusting T, MIN and MAX representing the case of a
292 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
293 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
294 In corner cases where MAX+1 or MIN-1 wraps this will fall back
295 to varying.
296 This routine exists to ease canonicalization in the case where we
297 extract ranges from var + CST op limit. */
299 static void
300 set_and_canonicalize_value_range (value_range *vr, enum value_range_type t,
301 tree min, tree max, bitmap equiv)
303 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
304 if (t == VR_UNDEFINED)
306 set_value_range_to_undefined (vr);
307 return;
309 else if (t == VR_VARYING)
311 set_value_range_to_varying (vr);
312 return;
315 /* Nothing to canonicalize for symbolic ranges. */
316 if (TREE_CODE (min) != INTEGER_CST
317 || TREE_CODE (max) != INTEGER_CST)
319 set_value_range (vr, t, min, max, equiv);
320 return;
323 /* Wrong order for min and max, to swap them and the VR type we need
324 to adjust them. */
325 if (tree_int_cst_lt (max, min))
327 tree one, tmp;
329 /* For one bit precision if max < min, then the swapped
330 range covers all values, so for VR_RANGE it is varying and
331 for VR_ANTI_RANGE empty range, so drop to varying as well. */
332 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
334 set_value_range_to_varying (vr);
335 return;
338 one = build_int_cst (TREE_TYPE (min), 1);
339 tmp = int_const_binop (PLUS_EXPR, max, one);
340 max = int_const_binop (MINUS_EXPR, min, one);
341 min = tmp;
343 /* There's one corner case, if we had [C+1, C] before we now have
344 that again. But this represents an empty value range, so drop
345 to varying in this case. */
346 if (tree_int_cst_lt (max, min))
348 set_value_range_to_varying (vr);
349 return;
352 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
355 /* Anti-ranges that can be represented as ranges should be so. */
356 if (t == VR_ANTI_RANGE)
358 bool is_min = vrp_val_is_min (min);
359 bool is_max = vrp_val_is_max (max);
361 if (is_min && is_max)
363 /* We cannot deal with empty ranges, drop to varying.
364 ??? This could be VR_UNDEFINED instead. */
365 set_value_range_to_varying (vr);
366 return;
368 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
369 && (is_min || is_max))
371 /* Non-empty boolean ranges can always be represented
372 as a singleton range. */
373 if (is_min)
374 min = max = vrp_val_max (TREE_TYPE (min));
375 else
376 min = max = vrp_val_min (TREE_TYPE (min));
377 t = VR_RANGE;
379 else if (is_min
380 /* As a special exception preserve non-null ranges. */
381 && !(TYPE_UNSIGNED (TREE_TYPE (min))
382 && integer_zerop (max)))
384 tree one = build_int_cst (TREE_TYPE (max), 1);
385 min = int_const_binop (PLUS_EXPR, max, one);
386 max = vrp_val_max (TREE_TYPE (max));
387 t = VR_RANGE;
389 else if (is_max)
391 tree one = build_int_cst (TREE_TYPE (min), 1);
392 max = int_const_binop (MINUS_EXPR, min, one);
393 min = vrp_val_min (TREE_TYPE (min));
394 t = VR_RANGE;
398 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
399 to make sure VRP iteration terminates, otherwise we can get into
400 oscillations. */
402 set_value_range (vr, t, min, max, equiv);
405 /* Copy value range FROM into value range TO. */
407 static inline void
408 copy_value_range (value_range *to, value_range *from)
410 set_value_range (to, from->type, from->min, from->max, from->equiv);
413 /* Set value range VR to a single value. This function is only called
414 with values we get from statements, and exists to clear the
415 TREE_OVERFLOW flag. */
417 static inline void
418 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
420 gcc_assert (is_gimple_min_invariant (val));
421 if (TREE_OVERFLOW_P (val))
422 val = drop_tree_overflow (val);
423 set_value_range (vr, VR_RANGE, val, val, equiv);
426 /* Set value range VR to a non-negative range of type TYPE. */
428 static inline void
429 set_value_range_to_nonnegative (value_range *vr, tree type)
431 tree zero = build_int_cst (type, 0);
432 set_value_range (vr, VR_RANGE, zero, vrp_val_max (type), vr->equiv);
435 /* Set value range VR to a non-NULL range of type TYPE. */
437 static inline void
438 set_value_range_to_nonnull (value_range *vr, tree type)
440 tree zero = build_int_cst (type, 0);
441 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
445 /* Set value range VR to a NULL range of type TYPE. */
447 static inline void
448 set_value_range_to_null (value_range *vr, tree type)
450 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
454 /* Set value range VR to a range of a truthvalue of type TYPE. */
456 static inline void
457 set_value_range_to_truthvalue (value_range *vr, tree type)
459 if (TYPE_PRECISION (type) == 1)
460 set_value_range_to_varying (vr);
461 else
462 set_value_range (vr, VR_RANGE,
463 build_int_cst (type, 0), build_int_cst (type, 1),
464 vr->equiv);
468 /* If abs (min) < abs (max), set VR to [-max, max], if
469 abs (min) >= abs (max), set VR to [-min, min]. */
471 static void
472 abs_extent_range (value_range *vr, tree min, tree max)
474 int cmp;
476 gcc_assert (TREE_CODE (min) == INTEGER_CST);
477 gcc_assert (TREE_CODE (max) == INTEGER_CST);
478 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
479 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
480 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
481 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
482 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
484 set_value_range_to_varying (vr);
485 return;
487 cmp = compare_values (min, max);
488 if (cmp == -1)
489 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
490 else if (cmp == 0 || cmp == 1)
492 max = min;
493 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
495 else
497 set_value_range_to_varying (vr);
498 return;
500 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
504 /* Return value range information for VAR.
506 If we have no values ranges recorded (ie, VRP is not running), then
507 return NULL. Otherwise create an empty range if none existed for VAR. */
509 static value_range *
510 get_value_range (const_tree var)
512 static const value_range vr_const_varying
513 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
514 value_range *vr;
515 tree sym;
516 unsigned ver = SSA_NAME_VERSION (var);
518 /* If we have no recorded ranges, then return NULL. */
519 if (! vr_value)
520 return NULL;
522 /* If we query the range for a new SSA name return an unmodifiable VARYING.
523 We should get here at most from the substitute-and-fold stage which
524 will never try to change values. */
525 if (ver >= num_vr_values)
526 return CONST_CAST (value_range *, &vr_const_varying);
528 vr = vr_value[ver];
529 if (vr)
530 return vr;
532 /* After propagation finished do not allocate new value-ranges. */
533 if (values_propagated)
534 return CONST_CAST (value_range *, &vr_const_varying);
536 /* Create a default value range. */
537 vr_value[ver] = vr = vrp_value_range_pool.allocate ();
538 memset (vr, 0, sizeof (*vr));
540 /* Defer allocating the equivalence set. */
541 vr->equiv = NULL;
543 /* If VAR is a default definition of a parameter, the variable can
544 take any value in VAR's type. */
545 if (SSA_NAME_IS_DEFAULT_DEF (var))
547 sym = SSA_NAME_VAR (var);
548 if (TREE_CODE (sym) == PARM_DECL)
550 /* Try to use the "nonnull" attribute to create ~[0, 0]
551 anti-ranges for pointers. Note that this is only valid with
552 default definitions of PARM_DECLs. */
553 if (POINTER_TYPE_P (TREE_TYPE (sym))
554 && (nonnull_arg_p (sym)
555 || get_ptr_nonnull (var)))
556 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
557 else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
559 wide_int min, max;
560 value_range_type rtype = get_range_info (var, &min, &max);
561 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
562 set_value_range (vr, rtype,
563 wide_int_to_tree (TREE_TYPE (var), min),
564 wide_int_to_tree (TREE_TYPE (var), max),
565 NULL);
566 else
567 set_value_range_to_varying (vr);
569 else
570 set_value_range_to_varying (vr);
572 else if (TREE_CODE (sym) == RESULT_DECL
573 && DECL_BY_REFERENCE (sym))
574 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
577 return vr;
580 /* Set value-ranges of all SSA names defined by STMT to varying. */
582 static void
583 set_defs_to_varying (gimple *stmt)
585 ssa_op_iter i;
586 tree def;
587 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
589 value_range *vr = get_value_range (def);
590 /* Avoid writing to vr_const_varying get_value_range may return. */
591 if (vr->type != VR_VARYING)
592 set_value_range_to_varying (vr);
597 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
599 static inline bool
600 vrp_operand_equal_p (const_tree val1, const_tree val2)
602 if (val1 == val2)
603 return true;
604 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
605 return false;
606 return true;
609 /* Return true, if the bitmaps B1 and B2 are equal. */
611 static inline bool
612 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
614 return (b1 == b2
615 || ((!b1 || bitmap_empty_p (b1))
616 && (!b2 || bitmap_empty_p (b2)))
617 || (b1 && b2
618 && bitmap_equal_p (b1, b2)));
621 /* Update the value range and equivalence set for variable VAR to
622 NEW_VR. Return true if NEW_VR is different from VAR's previous
623 value.
625 NOTE: This function assumes that NEW_VR is a temporary value range
626 object created for the sole purpose of updating VAR's range. The
627 storage used by the equivalence set from NEW_VR will be freed by
628 this function. Do not call update_value_range when NEW_VR
629 is the range object associated with another SSA name. */
631 static inline bool
632 update_value_range (const_tree var, value_range *new_vr)
634 value_range *old_vr;
635 bool is_new;
637 /* If there is a value-range on the SSA name from earlier analysis
638 factor that in. */
639 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
641 wide_int min, max;
642 value_range_type rtype = get_range_info (var, &min, &max);
643 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
645 tree nr_min, nr_max;
646 nr_min = wide_int_to_tree (TREE_TYPE (var), min);
647 nr_max = wide_int_to_tree (TREE_TYPE (var), max);
648 value_range nr = VR_INITIALIZER;
649 set_and_canonicalize_value_range (&nr, rtype, nr_min, nr_max, NULL);
650 vrp_intersect_ranges (new_vr, &nr);
654 /* Update the value range, if necessary. */
655 old_vr = get_value_range (var);
656 is_new = old_vr->type != new_vr->type
657 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
658 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
659 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
661 if (is_new)
663 /* Do not allow transitions up the lattice. The following
664 is slightly more awkward than just new_vr->type < old_vr->type
665 because VR_RANGE and VR_ANTI_RANGE need to be considered
666 the same. We may not have is_new when transitioning to
667 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
668 called. */
669 if (new_vr->type == VR_UNDEFINED)
671 BITMAP_FREE (new_vr->equiv);
672 set_value_range_to_varying (old_vr);
673 set_value_range_to_varying (new_vr);
674 return true;
676 else
677 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
678 new_vr->equiv);
681 BITMAP_FREE (new_vr->equiv);
683 return is_new;
687 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
688 point where equivalence processing can be turned on/off. */
690 static void
691 add_equivalence (bitmap *equiv, const_tree var)
693 unsigned ver = SSA_NAME_VERSION (var);
694 value_range *vr = get_value_range (var);
696 if (*equiv == NULL)
697 *equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
698 bitmap_set_bit (*equiv, ver);
699 if (vr && vr->equiv)
700 bitmap_ior_into (*equiv, vr->equiv);
704 /* Return true if VR is ~[0, 0]. */
706 static inline bool
707 range_is_nonnull (value_range *vr)
709 return vr->type == VR_ANTI_RANGE
710 && integer_zerop (vr->min)
711 && integer_zerop (vr->max);
715 /* Return true if VR is [0, 0]. */
717 static inline bool
718 range_is_null (value_range *vr)
720 return vr->type == VR_RANGE
721 && integer_zerop (vr->min)
722 && integer_zerop (vr->max);
725 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
726 a singleton. */
728 static inline bool
729 range_int_cst_p (value_range *vr)
731 return (vr->type == VR_RANGE
732 && TREE_CODE (vr->max) == INTEGER_CST
733 && TREE_CODE (vr->min) == INTEGER_CST);
736 /* Return true if VR is a INTEGER_CST singleton. */
738 static inline bool
739 range_int_cst_singleton_p (value_range *vr)
741 return (range_int_cst_p (vr)
742 && tree_int_cst_equal (vr->min, vr->max));
745 /* Return true if value range VR involves at least one symbol. */
747 static inline bool
748 symbolic_range_p (value_range *vr)
750 return (!is_gimple_min_invariant (vr->min)
751 || !is_gimple_min_invariant (vr->max));
754 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
755 otherwise. We only handle additive operations and set NEG to true if the
756 symbol is negated and INV to the invariant part, if any. */
758 static tree
759 get_single_symbol (tree t, bool *neg, tree *inv)
761 bool neg_;
762 tree inv_;
764 *inv = NULL_TREE;
765 *neg = false;
767 if (TREE_CODE (t) == PLUS_EXPR
768 || TREE_CODE (t) == POINTER_PLUS_EXPR
769 || TREE_CODE (t) == MINUS_EXPR)
771 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
773 neg_ = (TREE_CODE (t) == MINUS_EXPR);
774 inv_ = TREE_OPERAND (t, 0);
775 t = TREE_OPERAND (t, 1);
777 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
779 neg_ = false;
780 inv_ = TREE_OPERAND (t, 1);
781 t = TREE_OPERAND (t, 0);
783 else
784 return NULL_TREE;
786 else
788 neg_ = false;
789 inv_ = NULL_TREE;
792 if (TREE_CODE (t) == NEGATE_EXPR)
794 t = TREE_OPERAND (t, 0);
795 neg_ = !neg_;
798 if (TREE_CODE (t) != SSA_NAME)
799 return NULL_TREE;
801 if (inv_ && TREE_OVERFLOW_P (inv_))
802 inv_ = drop_tree_overflow (inv_);
804 *neg = neg_;
805 *inv = inv_;
806 return t;
809 /* The reverse operation: build a symbolic expression with TYPE
810 from symbol SYM, negated according to NEG, and invariant INV. */
812 static tree
813 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
815 const bool pointer_p = POINTER_TYPE_P (type);
816 tree t = sym;
818 if (neg)
819 t = build1 (NEGATE_EXPR, type, t);
821 if (integer_zerop (inv))
822 return t;
824 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
827 /* Return true if value range VR involves exactly one symbol SYM. */
829 static bool
830 symbolic_range_based_on_p (value_range *vr, const_tree sym)
832 bool neg, min_has_symbol, max_has_symbol;
833 tree inv;
835 if (is_gimple_min_invariant (vr->min))
836 min_has_symbol = false;
837 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
838 min_has_symbol = true;
839 else
840 return false;
842 if (is_gimple_min_invariant (vr->max))
843 max_has_symbol = false;
844 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
845 max_has_symbol = true;
846 else
847 return false;
849 return (min_has_symbol || max_has_symbol);
852 /* Return true if the result of assignment STMT is know to be non-zero. */
854 static bool
855 gimple_assign_nonzero_p (gimple *stmt)
857 enum tree_code code = gimple_assign_rhs_code (stmt);
858 bool strict_overflow_p;
859 switch (get_gimple_rhs_class (code))
861 case GIMPLE_UNARY_RHS:
862 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
863 gimple_expr_type (stmt),
864 gimple_assign_rhs1 (stmt),
865 &strict_overflow_p);
866 case GIMPLE_BINARY_RHS:
867 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
868 gimple_expr_type (stmt),
869 gimple_assign_rhs1 (stmt),
870 gimple_assign_rhs2 (stmt),
871 &strict_overflow_p);
872 case GIMPLE_TERNARY_RHS:
873 return false;
874 case GIMPLE_SINGLE_RHS:
875 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
876 &strict_overflow_p);
877 case GIMPLE_INVALID_RHS:
878 gcc_unreachable ();
879 default:
880 gcc_unreachable ();
884 /* Return true if STMT is known to compute a non-zero value. */
886 static bool
887 gimple_stmt_nonzero_p (gimple *stmt)
889 switch (gimple_code (stmt))
891 case GIMPLE_ASSIGN:
892 return gimple_assign_nonzero_p (stmt);
893 case GIMPLE_CALL:
895 tree fndecl = gimple_call_fndecl (stmt);
896 if (!fndecl) return false;
897 if (flag_delete_null_pointer_checks && !flag_check_new
898 && DECL_IS_OPERATOR_NEW (fndecl)
899 && !TREE_NOTHROW (fndecl))
900 return true;
901 /* References are always non-NULL. */
902 if (flag_delete_null_pointer_checks
903 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
904 return true;
905 if (flag_delete_null_pointer_checks &&
906 lookup_attribute ("returns_nonnull",
907 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
908 return true;
910 gcall *call_stmt = as_a<gcall *> (stmt);
911 unsigned rf = gimple_call_return_flags (call_stmt);
912 if (rf & ERF_RETURNS_ARG)
914 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
915 if (argnum < gimple_call_num_args (call_stmt))
917 tree arg = gimple_call_arg (call_stmt, argnum);
918 if (SSA_VAR_P (arg)
919 && infer_nonnull_range_by_attribute (stmt, arg))
920 return true;
923 return gimple_alloca_call_p (stmt);
925 default:
926 gcc_unreachable ();
930 /* Like tree_expr_nonzero_p, but this function uses value ranges
931 obtained so far. */
933 static bool
934 vrp_stmt_computes_nonzero (gimple *stmt)
936 if (gimple_stmt_nonzero_p (stmt))
937 return true;
939 /* If we have an expression of the form &X->a, then the expression
940 is nonnull if X is nonnull. */
941 if (is_gimple_assign (stmt)
942 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
944 tree expr = gimple_assign_rhs1 (stmt);
945 tree base = get_base_address (TREE_OPERAND (expr, 0));
947 if (base != NULL_TREE
948 && TREE_CODE (base) == MEM_REF
949 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
951 value_range *vr = get_value_range (TREE_OPERAND (base, 0));
952 if (range_is_nonnull (vr))
953 return true;
957 return false;
960 /* Returns true if EXPR is a valid value (as expected by compare_values) --
961 a gimple invariant, or SSA_NAME +- CST. */
963 static bool
964 valid_value_p (tree expr)
966 if (TREE_CODE (expr) == SSA_NAME)
967 return true;
969 if (TREE_CODE (expr) == PLUS_EXPR
970 || TREE_CODE (expr) == MINUS_EXPR)
971 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
972 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
974 return is_gimple_min_invariant (expr);
977 /* Return
978 1 if VAL < VAL2
979 0 if !(VAL < VAL2)
980 -2 if those are incomparable. */
981 static inline int
982 operand_less_p (tree val, tree val2)
984 /* LT is folded faster than GE and others. Inline the common case. */
985 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
986 return tree_int_cst_lt (val, val2);
987 else
989 tree tcmp;
991 fold_defer_overflow_warnings ();
993 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
995 fold_undefer_and_ignore_overflow_warnings ();
997 if (!tcmp
998 || TREE_CODE (tcmp) != INTEGER_CST)
999 return -2;
1001 if (!integer_zerop (tcmp))
1002 return 1;
1005 return 0;
1008 /* Compare two values VAL1 and VAL2. Return
1010 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1011 -1 if VAL1 < VAL2,
1012 0 if VAL1 == VAL2,
1013 +1 if VAL1 > VAL2, and
1014 +2 if VAL1 != VAL2
1016 This is similar to tree_int_cst_compare but supports pointer values
1017 and values that cannot be compared at compile time.
1019 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1020 true if the return value is only valid if we assume that signed
1021 overflow is undefined. */
1023 static int
1024 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1026 if (val1 == val2)
1027 return 0;
1029 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1030 both integers. */
1031 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1032 == POINTER_TYPE_P (TREE_TYPE (val2)));
1034 /* Convert the two values into the same type. This is needed because
1035 sizetype causes sign extension even for unsigned types. */
1036 val2 = fold_convert (TREE_TYPE (val1), val2);
1037 STRIP_USELESS_TYPE_CONVERSION (val2);
1039 const bool overflow_undefined
1040 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1041 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1042 tree inv1, inv2;
1043 bool neg1, neg2;
1044 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1045 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1047 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1048 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1049 if (sym1 && sym2)
1051 /* Both values must use the same name with the same sign. */
1052 if (sym1 != sym2 || neg1 != neg2)
1053 return -2;
1055 /* [-]NAME + CST == [-]NAME + CST. */
1056 if (inv1 == inv2)
1057 return 0;
1059 /* If overflow is defined we cannot simplify more. */
1060 if (!overflow_undefined)
1061 return -2;
1063 if (strict_overflow_p != NULL
1064 /* Symbolic range building sets TREE_NO_WARNING to declare
1065 that overflow doesn't happen. */
1066 && (!inv1 || !TREE_NO_WARNING (val1))
1067 && (!inv2 || !TREE_NO_WARNING (val2)))
1068 *strict_overflow_p = true;
1070 if (!inv1)
1071 inv1 = build_int_cst (TREE_TYPE (val1), 0);
1072 if (!inv2)
1073 inv2 = build_int_cst (TREE_TYPE (val2), 0);
1075 return wi::cmp (inv1, inv2, TYPE_SIGN (TREE_TYPE (val1)));
1078 const bool cst1 = is_gimple_min_invariant (val1);
1079 const bool cst2 = is_gimple_min_invariant (val2);
1081 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1082 it might be possible to say something depending on the constants. */
1083 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1085 if (!overflow_undefined)
1086 return -2;
1088 if (strict_overflow_p != NULL
1089 /* Symbolic range building sets TREE_NO_WARNING to declare
1090 that overflow doesn't happen. */
1091 && (!sym1 || !TREE_NO_WARNING (val1))
1092 && (!sym2 || !TREE_NO_WARNING (val2)))
1093 *strict_overflow_p = true;
1095 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1096 tree cst = cst1 ? val1 : val2;
1097 tree inv = cst1 ? inv2 : inv1;
1099 /* Compute the difference between the constants. If it overflows or
1100 underflows, this means that we can trivially compare the NAME with
1101 it and, consequently, the two values with each other. */
1102 wide_int diff = wi::sub (cst, inv);
1103 if (wi::cmp (0, inv, sgn) != wi::cmp (diff, cst, sgn))
1105 const int res = wi::cmp (cst, inv, sgn);
1106 return cst1 ? res : -res;
1109 return -2;
1112 /* We cannot say anything more for non-constants. */
1113 if (!cst1 || !cst2)
1114 return -2;
1116 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1118 /* We cannot compare overflowed values. */
1119 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1120 return -2;
1122 return tree_int_cst_compare (val1, val2);
1124 else
1126 tree t;
1128 /* First see if VAL1 and VAL2 are not the same. */
1129 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1130 return 0;
1132 /* If VAL1 is a lower address than VAL2, return -1. */
1133 if (operand_less_p (val1, val2) == 1)
1134 return -1;
1136 /* If VAL1 is a higher address than VAL2, return +1. */
1137 if (operand_less_p (val2, val1) == 1)
1138 return 1;
1140 /* If VAL1 is different than VAL2, return +2.
1141 For integer constants we either have already returned -1 or 1
1142 or they are equivalent. We still might succeed in proving
1143 something about non-trivial operands. */
1144 if (TREE_CODE (val1) != INTEGER_CST
1145 || TREE_CODE (val2) != INTEGER_CST)
1147 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1148 if (t && integer_onep (t))
1149 return 2;
1152 return -2;
1156 /* Compare values like compare_values_warnv. */
1158 static int
1159 compare_values (tree val1, tree val2)
1161 bool sop;
1162 return compare_values_warnv (val1, val2, &sop);
1166 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1167 0 if VAL is not inside [MIN, MAX],
1168 -2 if we cannot tell either way.
1170 Benchmark compile/20001226-1.c compilation time after changing this
1171 function. */
1173 static inline int
1174 value_inside_range (tree val, tree min, tree max)
1176 int cmp1, cmp2;
1178 cmp1 = operand_less_p (val, min);
1179 if (cmp1 == -2)
1180 return -2;
1181 if (cmp1 == 1)
1182 return 0;
1184 cmp2 = operand_less_p (max, val);
1185 if (cmp2 == -2)
1186 return -2;
1188 return !cmp2;
1192 /* Return true if value ranges VR0 and VR1 have a non-empty
1193 intersection.
1195 Benchmark compile/20001226-1.c compilation time after changing this
1196 function.
1199 static inline bool
1200 value_ranges_intersect_p (value_range *vr0, value_range *vr1)
1202 /* The value ranges do not intersect if the maximum of the first range is
1203 less than the minimum of the second range or vice versa.
1204 When those relations are unknown, we can't do any better. */
1205 if (operand_less_p (vr0->max, vr1->min) != 0)
1206 return false;
1207 if (operand_less_p (vr1->max, vr0->min) != 0)
1208 return false;
1209 return true;
1213 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1214 include the value zero, -2 if we cannot tell. */
1216 static inline int
1217 range_includes_zero_p (tree min, tree max)
1219 tree zero = build_int_cst (TREE_TYPE (min), 0);
1220 return value_inside_range (zero, min, max);
1223 /* Return true if *VR is know to only contain nonnegative values. */
1225 static inline bool
1226 value_range_nonnegative_p (value_range *vr)
1228 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1229 which would return a useful value should be encoded as a
1230 VR_RANGE. */
1231 if (vr->type == VR_RANGE)
1233 int result = compare_values (vr->min, integer_zero_node);
1234 return (result == 0 || result == 1);
1237 return false;
1240 /* If *VR has a value rante that is a single constant value return that,
1241 otherwise return NULL_TREE. */
1243 static tree
1244 value_range_constant_singleton (value_range *vr)
1246 if (vr->type == VR_RANGE
1247 && vrp_operand_equal_p (vr->min, vr->max)
1248 && is_gimple_min_invariant (vr->min))
1249 return vr->min;
1251 return NULL_TREE;
1254 /* If OP has a value range with a single constant value return that,
1255 otherwise return NULL_TREE. This returns OP itself if OP is a
1256 constant. */
1258 static tree
1259 op_with_constant_singleton_value_range (tree op)
1261 if (is_gimple_min_invariant (op))
1262 return op;
1264 if (TREE_CODE (op) != SSA_NAME)
1265 return NULL_TREE;
1267 return value_range_constant_singleton (get_value_range (op));
1270 /* Return true if op is in a boolean [0, 1] value-range. */
1272 static bool
1273 op_with_boolean_value_range_p (tree op)
1275 value_range *vr;
1277 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1278 return true;
1280 if (integer_zerop (op)
1281 || integer_onep (op))
1282 return true;
1284 if (TREE_CODE (op) != SSA_NAME)
1285 return false;
1287 vr = get_value_range (op);
1288 return (vr->type == VR_RANGE
1289 && integer_zerop (vr->min)
1290 && integer_onep (vr->max));
1293 /* Extract value range information for VAR when (OP COND_CODE LIMIT) is
1294 true and store it in *VR_P. */
1296 static void
1297 extract_range_for_var_from_comparison_expr (tree var, enum tree_code cond_code,
1298 tree op, tree limit,
1299 value_range *vr_p)
1301 tree min, max, type;
1302 value_range *limit_vr;
1303 type = TREE_TYPE (var);
1304 gcc_assert (limit != var);
1306 /* For pointer arithmetic, we only keep track of pointer equality
1307 and inequality. */
1308 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1310 set_value_range_to_varying (vr_p);
1311 return;
1314 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1315 try to use LIMIT's range to avoid creating symbolic ranges
1316 unnecessarily. */
1317 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1319 /* LIMIT's range is only interesting if it has any useful information. */
1320 if (! limit_vr
1321 || limit_vr->type == VR_UNDEFINED
1322 || limit_vr->type == VR_VARYING
1323 || (symbolic_range_p (limit_vr)
1324 && ! (limit_vr->type == VR_RANGE
1325 && (limit_vr->min == limit_vr->max
1326 || operand_equal_p (limit_vr->min, limit_vr->max, 0)))))
1327 limit_vr = NULL;
1329 /* Initially, the new range has the same set of equivalences of
1330 VAR's range. This will be revised before returning the final
1331 value. Since assertions may be chained via mutually exclusive
1332 predicates, we will need to trim the set of equivalences before
1333 we are done. */
1334 gcc_assert (vr_p->equiv == NULL);
1335 add_equivalence (&vr_p->equiv, var);
1337 /* Extract a new range based on the asserted comparison for VAR and
1338 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1339 will only use it for equality comparisons (EQ_EXPR). For any
1340 other kind of assertion, we cannot derive a range from LIMIT's
1341 anti-range that can be used to describe the new range. For
1342 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1343 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1344 no single range for x_2 that could describe LE_EXPR, so we might
1345 as well build the range [b_4, +INF] for it.
1346 One special case we handle is extracting a range from a
1347 range test encoded as (unsigned)var + CST <= limit. */
1348 if (TREE_CODE (op) == NOP_EXPR
1349 || TREE_CODE (op) == PLUS_EXPR)
1351 if (TREE_CODE (op) == PLUS_EXPR)
1353 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
1354 TREE_OPERAND (op, 1));
1355 max = int_const_binop (PLUS_EXPR, limit, min);
1356 op = TREE_OPERAND (op, 0);
1358 else
1360 min = build_int_cst (TREE_TYPE (var), 0);
1361 max = limit;
1364 /* Make sure to not set TREE_OVERFLOW on the final type
1365 conversion. We are willingly interpreting large positive
1366 unsigned values as negative signed values here. */
1367 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1368 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1370 /* We can transform a max, min range to an anti-range or
1371 vice-versa. Use set_and_canonicalize_value_range which does
1372 this for us. */
1373 if (cond_code == LE_EXPR)
1374 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1375 min, max, vr_p->equiv);
1376 else if (cond_code == GT_EXPR)
1377 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1378 min, max, vr_p->equiv);
1379 else
1380 gcc_unreachable ();
1382 else if (cond_code == EQ_EXPR)
1384 enum value_range_type range_type;
1386 if (limit_vr)
1388 range_type = limit_vr->type;
1389 min = limit_vr->min;
1390 max = limit_vr->max;
1392 else
1394 range_type = VR_RANGE;
1395 min = limit;
1396 max = limit;
1399 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1401 /* When asserting the equality VAR == LIMIT and LIMIT is another
1402 SSA name, the new range will also inherit the equivalence set
1403 from LIMIT. */
1404 if (TREE_CODE (limit) == SSA_NAME)
1405 add_equivalence (&vr_p->equiv, limit);
1407 else if (cond_code == NE_EXPR)
1409 /* As described above, when LIMIT's range is an anti-range and
1410 this assertion is an inequality (NE_EXPR), then we cannot
1411 derive anything from the anti-range. For instance, if
1412 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1413 not imply that VAR's range is [0, 0]. So, in the case of
1414 anti-ranges, we just assert the inequality using LIMIT and
1415 not its anti-range.
1417 If LIMIT_VR is a range, we can only use it to build a new
1418 anti-range if LIMIT_VR is a single-valued range. For
1419 instance, if LIMIT_VR is [0, 1], the predicate
1420 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1421 Rather, it means that for value 0 VAR should be ~[0, 0]
1422 and for value 1, VAR should be ~[1, 1]. We cannot
1423 represent these ranges.
1425 The only situation in which we can build a valid
1426 anti-range is when LIMIT_VR is a single-valued range
1427 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1428 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1429 if (limit_vr
1430 && limit_vr->type == VR_RANGE
1431 && compare_values (limit_vr->min, limit_vr->max) == 0)
1433 min = limit_vr->min;
1434 max = limit_vr->max;
1436 else
1438 /* In any other case, we cannot use LIMIT's range to build a
1439 valid anti-range. */
1440 min = max = limit;
1443 /* If MIN and MAX cover the whole range for their type, then
1444 just use the original LIMIT. */
1445 if (INTEGRAL_TYPE_P (type)
1446 && vrp_val_is_min (min)
1447 && vrp_val_is_max (max))
1448 min = max = limit;
1450 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1451 min, max, vr_p->equiv);
1453 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1455 min = TYPE_MIN_VALUE (type);
1457 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1458 max = limit;
1459 else
1461 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1462 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1463 LT_EXPR. */
1464 max = limit_vr->max;
1467 /* If the maximum value forces us to be out of bounds, simply punt.
1468 It would be pointless to try and do anything more since this
1469 all should be optimized away above us. */
1470 if (cond_code == LT_EXPR
1471 && compare_values (max, min) == 0)
1472 set_value_range_to_varying (vr_p);
1473 else
1475 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1476 if (cond_code == LT_EXPR)
1478 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1479 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1480 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1481 build_int_cst (TREE_TYPE (max), -1));
1482 else
1483 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1484 build_int_cst (TREE_TYPE (max), 1));
1485 /* Signal to compare_values_warnv this expr doesn't overflow. */
1486 if (EXPR_P (max))
1487 TREE_NO_WARNING (max) = 1;
1490 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1493 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1495 max = TYPE_MAX_VALUE (type);
1497 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1498 min = limit;
1499 else
1501 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1502 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1503 GT_EXPR. */
1504 min = limit_vr->min;
1507 /* If the minimum value forces us to be out of bounds, simply punt.
1508 It would be pointless to try and do anything more since this
1509 all should be optimized away above us. */
1510 if (cond_code == GT_EXPR
1511 && compare_values (min, max) == 0)
1512 set_value_range_to_varying (vr_p);
1513 else
1515 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1516 if (cond_code == GT_EXPR)
1518 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1519 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1520 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1521 build_int_cst (TREE_TYPE (min), -1));
1522 else
1523 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1524 build_int_cst (TREE_TYPE (min), 1));
1525 /* Signal to compare_values_warnv this expr doesn't overflow. */
1526 if (EXPR_P (min))
1527 TREE_NO_WARNING (min) = 1;
1530 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1533 else
1534 gcc_unreachable ();
1536 /* Finally intersect the new range with what we already know about var. */
1537 vrp_intersect_ranges (vr_p, get_value_range (var));
1540 /* Extract value range information from an ASSERT_EXPR EXPR and store
1541 it in *VR_P. */
1543 static void
1544 extract_range_from_assert (value_range *vr_p, tree expr)
1546 tree var = ASSERT_EXPR_VAR (expr);
1547 tree cond = ASSERT_EXPR_COND (expr);
1548 tree limit, op;
1549 enum tree_code cond_code;
1550 gcc_assert (COMPARISON_CLASS_P (cond));
1552 /* Find VAR in the ASSERT_EXPR conditional. */
1553 if (var == TREE_OPERAND (cond, 0)
1554 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1555 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1557 /* If the predicate is of the form VAR COMP LIMIT, then we just
1558 take LIMIT from the RHS and use the same comparison code. */
1559 cond_code = TREE_CODE (cond);
1560 limit = TREE_OPERAND (cond, 1);
1561 op = TREE_OPERAND (cond, 0);
1563 else
1565 /* If the predicate is of the form LIMIT COMP VAR, then we need
1566 to flip around the comparison code to create the proper range
1567 for VAR. */
1568 cond_code = swap_tree_comparison (TREE_CODE (cond));
1569 limit = TREE_OPERAND (cond, 0);
1570 op = TREE_OPERAND (cond, 1);
1572 extract_range_for_var_from_comparison_expr (var, cond_code, op,
1573 limit, vr_p);
1576 /* Extract range information from SSA name VAR and store it in VR. If
1577 VAR has an interesting range, use it. Otherwise, create the
1578 range [VAR, VAR] and return it. This is useful in situations where
1579 we may have conditionals testing values of VARYING names. For
1580 instance,
1582 x_3 = y_5;
1583 if (x_3 > y_5)
1586 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1587 always false. */
1589 static void
1590 extract_range_from_ssa_name (value_range *vr, tree var)
1592 value_range *var_vr = get_value_range (var);
1594 if (var_vr->type != VR_VARYING)
1595 copy_value_range (vr, var_vr);
1596 else
1597 set_value_range (vr, VR_RANGE, var, var, NULL);
1599 add_equivalence (&vr->equiv, var);
1603 /* Wrapper around int_const_binop. If the operation overflows and
1604 overflow is undefined, then adjust the result to be
1605 -INF or +INF depending on CODE, VAL1 and VAL2. Sets *OVERFLOW_P
1606 to whether the operation overflowed. For division by zero
1607 the result is indeterminate but *OVERFLOW_P is set. */
1609 static wide_int
1610 vrp_int_const_binop (enum tree_code code, tree val1, tree val2,
1611 bool *overflow_p)
1613 bool overflow = false;
1614 signop sign = TYPE_SIGN (TREE_TYPE (val1));
1615 wide_int res;
1617 *overflow_p = false;
1619 switch (code)
1621 case RSHIFT_EXPR:
1622 case LSHIFT_EXPR:
1624 wide_int wval2 = wi::to_wide (val2, TYPE_PRECISION (TREE_TYPE (val1)));
1625 if (wi::neg_p (wval2))
1627 wval2 = -wval2;
1628 if (code == RSHIFT_EXPR)
1629 code = LSHIFT_EXPR;
1630 else
1631 code = RSHIFT_EXPR;
1634 if (code == RSHIFT_EXPR)
1635 /* It's unclear from the C standard whether shifts can overflow.
1636 The following code ignores overflow; perhaps a C standard
1637 interpretation ruling is needed. */
1638 res = wi::rshift (val1, wval2, sign);
1639 else
1640 res = wi::lshift (val1, wval2);
1641 break;
1644 case MULT_EXPR:
1645 res = wi::mul (val1, val2, sign, &overflow);
1646 break;
1648 case TRUNC_DIV_EXPR:
1649 case EXACT_DIV_EXPR:
1650 if (val2 == 0)
1652 *overflow_p = true;
1653 return res;
1655 else
1656 res = wi::div_trunc (val1, val2, sign, &overflow);
1657 break;
1659 case FLOOR_DIV_EXPR:
1660 if (val2 == 0)
1662 *overflow_p = true;
1663 return res;
1665 res = wi::div_floor (val1, val2, sign, &overflow);
1666 break;
1668 case CEIL_DIV_EXPR:
1669 if (val2 == 0)
1671 *overflow_p = true;
1672 return res;
1674 res = wi::div_ceil (val1, val2, sign, &overflow);
1675 break;
1677 case ROUND_DIV_EXPR:
1678 if (val2 == 0)
1680 *overflow_p = 0;
1681 return res;
1683 res = wi::div_round (val1, val2, sign, &overflow);
1684 break;
1686 default:
1687 gcc_unreachable ();
1690 if (overflow
1691 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1693 /* If the operation overflowed return -INF or +INF depending
1694 on the operation and the combination of signs of the operands. */
1695 int sgn1 = tree_int_cst_sgn (val1);
1696 int sgn2 = tree_int_cst_sgn (val2);
1698 /* Notice that we only need to handle the restricted set of
1699 operations handled by extract_range_from_binary_expr.
1700 Among them, only multiplication, addition and subtraction
1701 can yield overflow without overflown operands because we
1702 are working with integral types only... except in the
1703 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1704 for division too. */
1706 /* For multiplication, the sign of the overflow is given
1707 by the comparison of the signs of the operands. */
1708 if ((code == MULT_EXPR && sgn1 == sgn2)
1709 /* For addition, the operands must be of the same sign
1710 to yield an overflow. Its sign is therefore that
1711 of one of the operands, for example the first. */
1712 || (code == PLUS_EXPR && sgn1 >= 0)
1713 /* For subtraction, operands must be of
1714 different signs to yield an overflow. Its sign is
1715 therefore that of the first operand or the opposite of
1716 that of the second operand. A first operand of 0 counts
1717 as positive here, for the corner case 0 - (-INF), which
1718 overflows, but must yield +INF. */
1719 || (code == MINUS_EXPR && sgn1 >= 0)
1720 /* For division, the only case is -INF / -1 = +INF. */
1721 || code == TRUNC_DIV_EXPR
1722 || code == FLOOR_DIV_EXPR
1723 || code == CEIL_DIV_EXPR
1724 || code == EXACT_DIV_EXPR
1725 || code == ROUND_DIV_EXPR)
1726 return wi::max_value (TYPE_PRECISION (TREE_TYPE (val1)),
1727 TYPE_SIGN (TREE_TYPE (val1)));
1728 else
1729 return wi::min_value (TYPE_PRECISION (TREE_TYPE (val1)),
1730 TYPE_SIGN (TREE_TYPE (val1)));
1733 *overflow_p = overflow;
1735 return res;
1739 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
1740 bitmask if some bit is unset, it means for all numbers in the range
1741 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1742 bitmask if some bit is set, it means for all numbers in the range
1743 the bit is 1, otherwise it might be 0 or 1. */
1745 static bool
1746 zero_nonzero_bits_from_vr (const tree expr_type,
1747 value_range *vr,
1748 wide_int *may_be_nonzero,
1749 wide_int *must_be_nonzero)
1751 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1752 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1753 if (!range_int_cst_p (vr))
1754 return false;
1756 if (range_int_cst_singleton_p (vr))
1758 *may_be_nonzero = vr->min;
1759 *must_be_nonzero = *may_be_nonzero;
1761 else if (tree_int_cst_sgn (vr->min) >= 0
1762 || tree_int_cst_sgn (vr->max) < 0)
1764 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
1765 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
1766 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
1767 if (xor_mask != 0)
1769 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1770 may_be_nonzero->get_precision ());
1771 *may_be_nonzero = *may_be_nonzero | mask;
1772 *must_be_nonzero = must_be_nonzero->and_not (mask);
1776 return true;
1779 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
1780 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
1781 false otherwise. If *AR can be represented with a single range
1782 *VR1 will be VR_UNDEFINED. */
1784 static bool
1785 ranges_from_anti_range (value_range *ar,
1786 value_range *vr0, value_range *vr1)
1788 tree type = TREE_TYPE (ar->min);
1790 vr0->type = VR_UNDEFINED;
1791 vr1->type = VR_UNDEFINED;
1793 if (ar->type != VR_ANTI_RANGE
1794 || TREE_CODE (ar->min) != INTEGER_CST
1795 || TREE_CODE (ar->max) != INTEGER_CST
1796 || !vrp_val_min (type)
1797 || !vrp_val_max (type))
1798 return false;
1800 if (!vrp_val_is_min (ar->min))
1802 vr0->type = VR_RANGE;
1803 vr0->min = vrp_val_min (type);
1804 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
1806 if (!vrp_val_is_max (ar->max))
1808 vr1->type = VR_RANGE;
1809 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
1810 vr1->max = vrp_val_max (type);
1812 if (vr0->type == VR_UNDEFINED)
1814 *vr0 = *vr1;
1815 vr1->type = VR_UNDEFINED;
1818 return vr0->type != VR_UNDEFINED;
1821 /* Helper to extract a value-range *VR for a multiplicative operation
1822 *VR0 CODE *VR1. */
1824 static void
1825 extract_range_from_multiplicative_op_1 (value_range *vr,
1826 enum tree_code code,
1827 value_range *vr0, value_range *vr1)
1829 enum value_range_type rtype;
1830 wide_int val, min, max;
1831 bool sop;
1832 tree type;
1834 /* Multiplications, divisions and shifts are a bit tricky to handle,
1835 depending on the mix of signs we have in the two ranges, we
1836 need to operate on different values to get the minimum and
1837 maximum values for the new range. One approach is to figure
1838 out all the variations of range combinations and do the
1839 operations.
1841 However, this involves several calls to compare_values and it
1842 is pretty convoluted. It's simpler to do the 4 operations
1843 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1844 MAX1) and then figure the smallest and largest values to form
1845 the new range. */
1846 gcc_assert (code == MULT_EXPR
1847 || code == TRUNC_DIV_EXPR
1848 || code == FLOOR_DIV_EXPR
1849 || code == CEIL_DIV_EXPR
1850 || code == EXACT_DIV_EXPR
1851 || code == ROUND_DIV_EXPR
1852 || code == RSHIFT_EXPR
1853 || code == LSHIFT_EXPR);
1854 gcc_assert ((vr0->type == VR_RANGE
1855 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
1856 && vr0->type == vr1->type);
1858 rtype = vr0->type;
1859 type = TREE_TYPE (vr0->min);
1860 signop sgn = TYPE_SIGN (type);
1862 /* Compute the 4 cross operations and their minimum and maximum value. */
1863 sop = false;
1864 val = vrp_int_const_binop (code, vr0->min, vr1->min, &sop);
1865 if (! sop)
1866 min = max = val;
1868 if (vr1->max == vr1->min)
1870 else if (! sop)
1872 val = vrp_int_const_binop (code, vr0->min, vr1->max, &sop);
1873 if (! sop)
1875 if (wi::lt_p (val, min, sgn))
1876 min = val;
1877 else if (wi::gt_p (val, max, sgn))
1878 max = val;
1882 if (vr0->max == vr0->min)
1884 else if (! sop)
1886 val = vrp_int_const_binop (code, vr0->max, vr1->min, &sop);
1887 if (! sop)
1889 if (wi::lt_p (val, min, sgn))
1890 min = val;
1891 else if (wi::gt_p (val, max, sgn))
1892 max = val;
1896 if (vr0->min == vr0->max || vr1->min == vr1->max)
1898 else if (! sop)
1900 val = vrp_int_const_binop (code, vr0->max, vr1->max, &sop);
1901 if (! sop)
1903 if (wi::lt_p (val, min, sgn))
1904 min = val;
1905 else if (wi::gt_p (val, max, sgn))
1906 max = val;
1910 /* If either operation overflowed, drop to VARYING. */
1911 if (sop)
1913 set_value_range_to_varying (vr);
1914 return;
1917 /* If the new range has its limits swapped around (MIN > MAX),
1918 then the operation caused one of them to wrap around, mark
1919 the new range VARYING. */
1920 if (wi::gt_p (min, max, sgn))
1922 set_value_range_to_varying (vr);
1923 return;
1926 /* We punt for [-INF, +INF].
1927 We learn nothing when we have INF on both sides.
1928 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
1929 if (wi::eq_p (min, wi::min_value (TYPE_PRECISION (type), sgn))
1930 && wi::eq_p (max, wi::max_value (TYPE_PRECISION (type), sgn)))
1932 set_value_range_to_varying (vr);
1933 return;
1936 set_value_range (vr, rtype,
1937 wide_int_to_tree (type, min),
1938 wide_int_to_tree (type, max), NULL);
1941 /* Extract range information from a binary operation CODE based on
1942 the ranges of each of its operands *VR0 and *VR1 with resulting
1943 type EXPR_TYPE. The resulting range is stored in *VR. */
1945 static void
1946 extract_range_from_binary_expr_1 (value_range *vr,
1947 enum tree_code code, tree expr_type,
1948 value_range *vr0_, value_range *vr1_)
1950 value_range vr0 = *vr0_, vr1 = *vr1_;
1951 value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
1952 enum value_range_type type;
1953 tree min = NULL_TREE, max = NULL_TREE;
1954 int cmp;
1956 if (!INTEGRAL_TYPE_P (expr_type)
1957 && !POINTER_TYPE_P (expr_type))
1959 set_value_range_to_varying (vr);
1960 return;
1963 /* Not all binary expressions can be applied to ranges in a
1964 meaningful way. Handle only arithmetic operations. */
1965 if (code != PLUS_EXPR
1966 && code != MINUS_EXPR
1967 && code != POINTER_PLUS_EXPR
1968 && code != MULT_EXPR
1969 && code != TRUNC_DIV_EXPR
1970 && code != FLOOR_DIV_EXPR
1971 && code != CEIL_DIV_EXPR
1972 && code != EXACT_DIV_EXPR
1973 && code != ROUND_DIV_EXPR
1974 && code != TRUNC_MOD_EXPR
1975 && code != RSHIFT_EXPR
1976 && code != LSHIFT_EXPR
1977 && code != MIN_EXPR
1978 && code != MAX_EXPR
1979 && code != BIT_AND_EXPR
1980 && code != BIT_IOR_EXPR
1981 && code != BIT_XOR_EXPR)
1983 set_value_range_to_varying (vr);
1984 return;
1987 /* If both ranges are UNDEFINED, so is the result. */
1988 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
1990 set_value_range_to_undefined (vr);
1991 return;
1993 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
1994 code. At some point we may want to special-case operations that
1995 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
1996 operand. */
1997 else if (vr0.type == VR_UNDEFINED)
1998 set_value_range_to_varying (&vr0);
1999 else if (vr1.type == VR_UNDEFINED)
2000 set_value_range_to_varying (&vr1);
2002 /* We get imprecise results from ranges_from_anti_range when
2003 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
2004 range, but then we also need to hack up vrp_meet. It's just
2005 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
2006 if (code == EXACT_DIV_EXPR
2007 && vr0.type == VR_ANTI_RANGE
2008 && vr0.min == vr0.max
2009 && integer_zerop (vr0.min))
2011 set_value_range_to_nonnull (vr, expr_type);
2012 return;
2015 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2016 and express ~[] op X as ([]' op X) U ([]'' op X). */
2017 if (vr0.type == VR_ANTI_RANGE
2018 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2020 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2021 if (vrtem1.type != VR_UNDEFINED)
2023 value_range vrres = VR_INITIALIZER;
2024 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2025 &vrtem1, vr1_);
2026 vrp_meet (vr, &vrres);
2028 return;
2030 /* Likewise for X op ~[]. */
2031 if (vr1.type == VR_ANTI_RANGE
2032 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2034 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2035 if (vrtem1.type != VR_UNDEFINED)
2037 value_range vrres = VR_INITIALIZER;
2038 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2039 vr0_, &vrtem1);
2040 vrp_meet (vr, &vrres);
2042 return;
2045 /* The type of the resulting value range defaults to VR0.TYPE. */
2046 type = vr0.type;
2048 /* Refuse to operate on VARYING ranges, ranges of different kinds
2049 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2050 because we may be able to derive a useful range even if one of
2051 the operands is VR_VARYING or symbolic range. Similarly for
2052 divisions, MIN/MAX and PLUS/MINUS.
2054 TODO, we may be able to derive anti-ranges in some cases. */
2055 if (code != BIT_AND_EXPR
2056 && code != BIT_IOR_EXPR
2057 && code != TRUNC_DIV_EXPR
2058 && code != FLOOR_DIV_EXPR
2059 && code != CEIL_DIV_EXPR
2060 && code != EXACT_DIV_EXPR
2061 && code != ROUND_DIV_EXPR
2062 && code != TRUNC_MOD_EXPR
2063 && code != MIN_EXPR
2064 && code != MAX_EXPR
2065 && code != PLUS_EXPR
2066 && code != MINUS_EXPR
2067 && code != RSHIFT_EXPR
2068 && (vr0.type == VR_VARYING
2069 || vr1.type == VR_VARYING
2070 || vr0.type != vr1.type
2071 || symbolic_range_p (&vr0)
2072 || symbolic_range_p (&vr1)))
2074 set_value_range_to_varying (vr);
2075 return;
2078 /* Now evaluate the expression to determine the new range. */
2079 if (POINTER_TYPE_P (expr_type))
2081 if (code == MIN_EXPR || code == MAX_EXPR)
2083 /* For MIN/MAX expressions with pointers, we only care about
2084 nullness, if both are non null, then the result is nonnull.
2085 If both are null, then the result is null. Otherwise they
2086 are varying. */
2087 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2088 set_value_range_to_nonnull (vr, expr_type);
2089 else if (range_is_null (&vr0) && range_is_null (&vr1))
2090 set_value_range_to_null (vr, expr_type);
2091 else
2092 set_value_range_to_varying (vr);
2094 else if (code == POINTER_PLUS_EXPR)
2096 /* For pointer types, we are really only interested in asserting
2097 whether the expression evaluates to non-NULL. */
2098 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2099 set_value_range_to_nonnull (vr, expr_type);
2100 else if (range_is_null (&vr0) && range_is_null (&vr1))
2101 set_value_range_to_null (vr, expr_type);
2102 else
2103 set_value_range_to_varying (vr);
2105 else if (code == BIT_AND_EXPR)
2107 /* For pointer types, we are really only interested in asserting
2108 whether the expression evaluates to non-NULL. */
2109 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2110 set_value_range_to_nonnull (vr, expr_type);
2111 else if (range_is_null (&vr0) || range_is_null (&vr1))
2112 set_value_range_to_null (vr, expr_type);
2113 else
2114 set_value_range_to_varying (vr);
2116 else
2117 set_value_range_to_varying (vr);
2119 return;
2122 /* For integer ranges, apply the operation to each end of the
2123 range and see what we end up with. */
2124 if (code == PLUS_EXPR || code == MINUS_EXPR)
2126 const bool minus_p = (code == MINUS_EXPR);
2127 tree min_op0 = vr0.min;
2128 tree min_op1 = minus_p ? vr1.max : vr1.min;
2129 tree max_op0 = vr0.max;
2130 tree max_op1 = minus_p ? vr1.min : vr1.max;
2131 tree sym_min_op0 = NULL_TREE;
2132 tree sym_min_op1 = NULL_TREE;
2133 tree sym_max_op0 = NULL_TREE;
2134 tree sym_max_op1 = NULL_TREE;
2135 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2137 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2138 single-symbolic ranges, try to compute the precise resulting range,
2139 but only if we know that this resulting range will also be constant
2140 or single-symbolic. */
2141 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2142 && (TREE_CODE (min_op0) == INTEGER_CST
2143 || (sym_min_op0
2144 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2145 && (TREE_CODE (min_op1) == INTEGER_CST
2146 || (sym_min_op1
2147 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2148 && (!(sym_min_op0 && sym_min_op1)
2149 || (sym_min_op0 == sym_min_op1
2150 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2151 && (TREE_CODE (max_op0) == INTEGER_CST
2152 || (sym_max_op0
2153 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2154 && (TREE_CODE (max_op1) == INTEGER_CST
2155 || (sym_max_op1
2156 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2157 && (!(sym_max_op0 && sym_max_op1)
2158 || (sym_max_op0 == sym_max_op1
2159 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2161 const signop sgn = TYPE_SIGN (expr_type);
2162 const unsigned int prec = TYPE_PRECISION (expr_type);
2163 wide_int type_min, type_max, wmin, wmax;
2164 int min_ovf = 0;
2165 int max_ovf = 0;
2167 /* Get the lower and upper bounds of the type. */
2168 if (TYPE_OVERFLOW_WRAPS (expr_type))
2170 type_min = wi::min_value (prec, sgn);
2171 type_max = wi::max_value (prec, sgn);
2173 else
2175 type_min = vrp_val_min (expr_type);
2176 type_max = vrp_val_max (expr_type);
2179 /* Combine the lower bounds, if any. */
2180 if (min_op0 && min_op1)
2182 if (minus_p)
2184 wmin = wi::sub (min_op0, min_op1);
2186 /* Check for overflow. */
2187 if (wi::cmp (0, min_op1, sgn)
2188 != wi::cmp (wmin, min_op0, sgn))
2189 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2191 else
2193 wmin = wi::add (min_op0, min_op1);
2195 /* Check for overflow. */
2196 if (wi::cmp (min_op1, 0, sgn)
2197 != wi::cmp (wmin, min_op0, sgn))
2198 min_ovf = wi::cmp (min_op0, wmin, sgn);
2201 else if (min_op0)
2202 wmin = min_op0;
2203 else if (min_op1)
2205 if (minus_p)
2207 wmin = wi::neg (min_op1);
2209 /* Check for overflow. */
2210 if (sgn == SIGNED && wi::neg_p (min_op1) && wi::neg_p (wmin))
2211 min_ovf = 1;
2212 else if (sgn == UNSIGNED && wi::ne_p (min_op1, 0))
2213 min_ovf = -1;
2215 else
2216 wmin = min_op1;
2218 else
2219 wmin = wi::shwi (0, prec);
2221 /* Combine the upper bounds, if any. */
2222 if (max_op0 && max_op1)
2224 if (minus_p)
2226 wmax = wi::sub (max_op0, max_op1);
2228 /* Check for overflow. */
2229 if (wi::cmp (0, max_op1, sgn)
2230 != wi::cmp (wmax, max_op0, sgn))
2231 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2233 else
2235 wmax = wi::add (max_op0, max_op1);
2237 if (wi::cmp (max_op1, 0, sgn)
2238 != wi::cmp (wmax, max_op0, sgn))
2239 max_ovf = wi::cmp (max_op0, wmax, sgn);
2242 else if (max_op0)
2243 wmax = max_op0;
2244 else if (max_op1)
2246 if (minus_p)
2248 wmax = wi::neg (max_op1);
2250 /* Check for overflow. */
2251 if (sgn == SIGNED && wi::neg_p (max_op1) && wi::neg_p (wmax))
2252 max_ovf = 1;
2253 else if (sgn == UNSIGNED && wi::ne_p (max_op1, 0))
2254 max_ovf = -1;
2256 else
2257 wmax = max_op1;
2259 else
2260 wmax = wi::shwi (0, prec);
2262 /* Check for type overflow. */
2263 if (min_ovf == 0)
2265 if (wi::cmp (wmin, type_min, sgn) == -1)
2266 min_ovf = -1;
2267 else if (wi::cmp (wmin, type_max, sgn) == 1)
2268 min_ovf = 1;
2270 if (max_ovf == 0)
2272 if (wi::cmp (wmax, type_min, sgn) == -1)
2273 max_ovf = -1;
2274 else if (wi::cmp (wmax, type_max, sgn) == 1)
2275 max_ovf = 1;
2278 /* If we have overflow for the constant part and the resulting
2279 range will be symbolic, drop to VR_VARYING. */
2280 if ((min_ovf && sym_min_op0 != sym_min_op1)
2281 || (max_ovf && sym_max_op0 != sym_max_op1))
2283 set_value_range_to_varying (vr);
2284 return;
2287 if (TYPE_OVERFLOW_WRAPS (expr_type))
2289 /* If overflow wraps, truncate the values and adjust the
2290 range kind and bounds appropriately. */
2291 wide_int tmin = wide_int::from (wmin, prec, sgn);
2292 wide_int tmax = wide_int::from (wmax, prec, sgn);
2293 if (min_ovf == max_ovf)
2295 /* No overflow or both overflow or underflow. The
2296 range kind stays VR_RANGE. */
2297 min = wide_int_to_tree (expr_type, tmin);
2298 max = wide_int_to_tree (expr_type, tmax);
2300 else if ((min_ovf == -1 && max_ovf == 0)
2301 || (max_ovf == 1 && min_ovf == 0))
2303 /* Min underflow or max overflow. The range kind
2304 changes to VR_ANTI_RANGE. */
2305 bool covers = false;
2306 wide_int tem = tmin;
2307 type = VR_ANTI_RANGE;
2308 tmin = tmax + 1;
2309 if (wi::cmp (tmin, tmax, sgn) < 0)
2310 covers = true;
2311 tmax = tem - 1;
2312 if (wi::cmp (tmax, tem, sgn) > 0)
2313 covers = true;
2314 /* If the anti-range would cover nothing, drop to varying.
2315 Likewise if the anti-range bounds are outside of the
2316 types values. */
2317 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2319 set_value_range_to_varying (vr);
2320 return;
2322 min = wide_int_to_tree (expr_type, tmin);
2323 max = wide_int_to_tree (expr_type, tmax);
2325 else
2327 /* Other underflow and/or overflow, drop to VR_VARYING. */
2328 set_value_range_to_varying (vr);
2329 return;
2332 else
2334 /* If overflow does not wrap, saturate to the types min/max
2335 value. */
2336 if (min_ovf == -1)
2337 min = wide_int_to_tree (expr_type, type_min);
2338 else if (min_ovf == 1)
2339 min = wide_int_to_tree (expr_type, type_max);
2340 else
2341 min = wide_int_to_tree (expr_type, wmin);
2343 if (max_ovf == -1)
2344 max = wide_int_to_tree (expr_type, type_min);
2345 else if (max_ovf == 1)
2346 max = wide_int_to_tree (expr_type, type_max);
2347 else
2348 max = wide_int_to_tree (expr_type, wmax);
2351 /* If the result lower bound is constant, we're done;
2352 otherwise, build the symbolic lower bound. */
2353 if (sym_min_op0 == sym_min_op1)
2355 else if (sym_min_op0)
2356 min = build_symbolic_expr (expr_type, sym_min_op0,
2357 neg_min_op0, min);
2358 else if (sym_min_op1)
2360 /* We may not negate if that might introduce
2361 undefined overflow. */
2362 if (! minus_p
2363 || neg_min_op1
2364 || TYPE_OVERFLOW_WRAPS (expr_type))
2365 min = build_symbolic_expr (expr_type, sym_min_op1,
2366 neg_min_op1 ^ minus_p, min);
2367 else
2368 min = NULL_TREE;
2371 /* Likewise for the upper bound. */
2372 if (sym_max_op0 == sym_max_op1)
2374 else if (sym_max_op0)
2375 max = build_symbolic_expr (expr_type, sym_max_op0,
2376 neg_max_op0, max);
2377 else if (sym_max_op1)
2379 /* We may not negate if that might introduce
2380 undefined overflow. */
2381 if (! minus_p
2382 || neg_max_op1
2383 || TYPE_OVERFLOW_WRAPS (expr_type))
2384 max = build_symbolic_expr (expr_type, sym_max_op1,
2385 neg_max_op1 ^ minus_p, max);
2386 else
2387 max = NULL_TREE;
2390 else
2392 /* For other cases, for example if we have a PLUS_EXPR with two
2393 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2394 to compute a precise range for such a case.
2395 ??? General even mixed range kind operations can be expressed
2396 by for example transforming ~[3, 5] + [1, 2] to range-only
2397 operations and a union primitive:
2398 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2399 [-INF+1, 4] U [6, +INF(OVF)]
2400 though usually the union is not exactly representable with
2401 a single range or anti-range as the above is
2402 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2403 but one could use a scheme similar to equivalences for this. */
2404 set_value_range_to_varying (vr);
2405 return;
2408 else if (code == MIN_EXPR
2409 || code == MAX_EXPR)
2411 if (vr0.type == VR_RANGE
2412 && !symbolic_range_p (&vr0))
2414 type = VR_RANGE;
2415 if (vr1.type == VR_RANGE
2416 && !symbolic_range_p (&vr1))
2418 /* For operations that make the resulting range directly
2419 proportional to the original ranges, apply the operation to
2420 the same end of each range. */
2421 min = int_const_binop (code, vr0.min, vr1.min);
2422 max = int_const_binop (code, vr0.max, vr1.max);
2424 else if (code == MIN_EXPR)
2426 min = vrp_val_min (expr_type);
2427 max = vr0.max;
2429 else if (code == MAX_EXPR)
2431 min = vr0.min;
2432 max = vrp_val_max (expr_type);
2435 else if (vr1.type == VR_RANGE
2436 && !symbolic_range_p (&vr1))
2438 type = VR_RANGE;
2439 if (code == MIN_EXPR)
2441 min = vrp_val_min (expr_type);
2442 max = vr1.max;
2444 else if (code == MAX_EXPR)
2446 min = vr1.min;
2447 max = vrp_val_max (expr_type);
2450 else
2452 set_value_range_to_varying (vr);
2453 return;
2456 else if (code == MULT_EXPR)
2458 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2459 drop to varying. This test requires 2*prec bits if both
2460 operands are signed and 2*prec + 2 bits if either is not. */
2462 signop sign = TYPE_SIGN (expr_type);
2463 unsigned int prec = TYPE_PRECISION (expr_type);
2465 if (range_int_cst_p (&vr0)
2466 && range_int_cst_p (&vr1)
2467 && TYPE_OVERFLOW_WRAPS (expr_type))
2469 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2470 typedef generic_wide_int
2471 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2472 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2473 vrp_int size = sizem1 + 1;
2475 /* Extend the values using the sign of the result to PREC2.
2476 From here on out, everthing is just signed math no matter
2477 what the input types were. */
2478 vrp_int min0 = vrp_int_cst (vr0.min);
2479 vrp_int max0 = vrp_int_cst (vr0.max);
2480 vrp_int min1 = vrp_int_cst (vr1.min);
2481 vrp_int max1 = vrp_int_cst (vr1.max);
2482 /* Canonicalize the intervals. */
2483 if (sign == UNSIGNED)
2485 if (wi::ltu_p (size, min0 + max0))
2487 min0 -= size;
2488 max0 -= size;
2491 if (wi::ltu_p (size, min1 + max1))
2493 min1 -= size;
2494 max1 -= size;
2498 vrp_int prod0 = min0 * min1;
2499 vrp_int prod1 = min0 * max1;
2500 vrp_int prod2 = max0 * min1;
2501 vrp_int prod3 = max0 * max1;
2503 /* Sort the 4 products so that min is in prod0 and max is in
2504 prod3. */
2505 /* min0min1 > max0max1 */
2506 if (prod0 > prod3)
2507 std::swap (prod0, prod3);
2509 /* min0max1 > max0min1 */
2510 if (prod1 > prod2)
2511 std::swap (prod1, prod2);
2513 if (prod0 > prod1)
2514 std::swap (prod0, prod1);
2516 if (prod2 > prod3)
2517 std::swap (prod2, prod3);
2519 /* diff = max - min. */
2520 prod2 = prod3 - prod0;
2521 if (wi::geu_p (prod2, sizem1))
2523 /* the range covers all values. */
2524 set_value_range_to_varying (vr);
2525 return;
2528 /* The following should handle the wrapping and selecting
2529 VR_ANTI_RANGE for us. */
2530 min = wide_int_to_tree (expr_type, prod0);
2531 max = wide_int_to_tree (expr_type, prod3);
2532 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2533 return;
2536 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2537 drop to VR_VARYING. It would take more effort to compute a
2538 precise range for such a case. For example, if we have
2539 op0 == 65536 and op1 == 65536 with their ranges both being
2540 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2541 we cannot claim that the product is in ~[0,0]. Note that we
2542 are guaranteed to have vr0.type == vr1.type at this
2543 point. */
2544 if (vr0.type == VR_ANTI_RANGE
2545 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2547 set_value_range_to_varying (vr);
2548 return;
2551 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2552 return;
2554 else if (code == RSHIFT_EXPR
2555 || code == LSHIFT_EXPR)
2557 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2558 then drop to VR_VARYING. Outside of this range we get undefined
2559 behavior from the shift operation. We cannot even trust
2560 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2561 shifts, and the operation at the tree level may be widened. */
2562 if (range_int_cst_p (&vr1)
2563 && compare_tree_int (vr1.min, 0) >= 0
2564 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2566 if (code == RSHIFT_EXPR)
2568 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2569 useful ranges just from the shift count. E.g.
2570 x >> 63 for signed 64-bit x is always [-1, 0]. */
2571 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2573 vr0.type = type = VR_RANGE;
2574 vr0.min = vrp_val_min (expr_type);
2575 vr0.max = vrp_val_max (expr_type);
2577 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2578 return;
2580 /* We can map lshifts by constants to MULT_EXPR handling. */
2581 else if (code == LSHIFT_EXPR
2582 && range_int_cst_singleton_p (&vr1))
2584 bool saved_flag_wrapv;
2585 value_range vr1p = VR_INITIALIZER;
2586 vr1p.type = VR_RANGE;
2587 vr1p.min = (wide_int_to_tree
2588 (expr_type,
2589 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2590 TYPE_PRECISION (expr_type))));
2591 vr1p.max = vr1p.min;
2592 /* We have to use a wrapping multiply though as signed overflow
2593 on lshifts is implementation defined in C89. */
2594 saved_flag_wrapv = flag_wrapv;
2595 flag_wrapv = 1;
2596 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2597 &vr0, &vr1p);
2598 flag_wrapv = saved_flag_wrapv;
2599 return;
2601 else if (code == LSHIFT_EXPR
2602 && range_int_cst_p (&vr0))
2604 int prec = TYPE_PRECISION (expr_type);
2605 int overflow_pos = prec;
2606 int bound_shift;
2607 wide_int low_bound, high_bound;
2608 bool uns = TYPE_UNSIGNED (expr_type);
2609 bool in_bounds = false;
2611 if (!uns)
2612 overflow_pos -= 1;
2614 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2615 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2616 overflow. However, for that to happen, vr1.max needs to be
2617 zero, which means vr1 is a singleton range of zero, which
2618 means it should be handled by the previous LSHIFT_EXPR
2619 if-clause. */
2620 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2621 wide_int complement = ~(bound - 1);
2623 if (uns)
2625 low_bound = bound;
2626 high_bound = complement;
2627 if (wi::ltu_p (vr0.max, low_bound))
2629 /* [5, 6] << [1, 2] == [10, 24]. */
2630 /* We're shifting out only zeroes, the value increases
2631 monotonically. */
2632 in_bounds = true;
2634 else if (wi::ltu_p (high_bound, vr0.min))
2636 /* [0xffffff00, 0xffffffff] << [1, 2]
2637 == [0xfffffc00, 0xfffffffe]. */
2638 /* We're shifting out only ones, the value decreases
2639 monotonically. */
2640 in_bounds = true;
2643 else
2645 /* [-1, 1] << [1, 2] == [-4, 4]. */
2646 low_bound = complement;
2647 high_bound = bound;
2648 if (wi::lts_p (vr0.max, high_bound)
2649 && wi::lts_p (low_bound, vr0.min))
2651 /* For non-negative numbers, we're shifting out only
2652 zeroes, the value increases monotonically.
2653 For negative numbers, we're shifting out only ones, the
2654 value decreases monotomically. */
2655 in_bounds = true;
2659 if (in_bounds)
2661 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2662 return;
2666 set_value_range_to_varying (vr);
2667 return;
2669 else if (code == TRUNC_DIV_EXPR
2670 || code == FLOOR_DIV_EXPR
2671 || code == CEIL_DIV_EXPR
2672 || code == EXACT_DIV_EXPR
2673 || code == ROUND_DIV_EXPR)
2675 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2677 /* For division, if op1 has VR_RANGE but op0 does not, something
2678 can be deduced just from that range. Say [min, max] / [4, max]
2679 gives [min / 4, max / 4] range. */
2680 if (vr1.type == VR_RANGE
2681 && !symbolic_range_p (&vr1)
2682 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2684 vr0.type = type = VR_RANGE;
2685 vr0.min = vrp_val_min (expr_type);
2686 vr0.max = vrp_val_max (expr_type);
2688 else
2690 set_value_range_to_varying (vr);
2691 return;
2695 /* For divisions, if flag_non_call_exceptions is true, we must
2696 not eliminate a division by zero. */
2697 if (cfun->can_throw_non_call_exceptions
2698 && (vr1.type != VR_RANGE
2699 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2701 set_value_range_to_varying (vr);
2702 return;
2705 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2706 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2707 include 0. */
2708 if (vr0.type == VR_RANGE
2709 && (vr1.type != VR_RANGE
2710 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2712 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2713 int cmp;
2715 min = NULL_TREE;
2716 max = NULL_TREE;
2717 if (TYPE_UNSIGNED (expr_type)
2718 || value_range_nonnegative_p (&vr1))
2720 /* For unsigned division or when divisor is known
2721 to be non-negative, the range has to cover
2722 all numbers from 0 to max for positive max
2723 and all numbers from min to 0 for negative min. */
2724 cmp = compare_values (vr0.max, zero);
2725 if (cmp == -1)
2727 /* When vr0.max < 0, vr1.min != 0 and value
2728 ranges for dividend and divisor are available. */
2729 if (vr1.type == VR_RANGE
2730 && !symbolic_range_p (&vr0)
2731 && !symbolic_range_p (&vr1)
2732 && compare_values (vr1.min, zero) != 0)
2733 max = int_const_binop (code, vr0.max, vr1.min);
2734 else
2735 max = zero;
2737 else if (cmp == 0 || cmp == 1)
2738 max = vr0.max;
2739 else
2740 type = VR_VARYING;
2741 cmp = compare_values (vr0.min, zero);
2742 if (cmp == 1)
2744 /* For unsigned division when value ranges for dividend
2745 and divisor are available. */
2746 if (vr1.type == VR_RANGE
2747 && !symbolic_range_p (&vr0)
2748 && !symbolic_range_p (&vr1)
2749 && compare_values (vr1.max, zero) != 0)
2750 min = int_const_binop (code, vr0.min, vr1.max);
2751 else
2752 min = zero;
2754 else if (cmp == 0 || cmp == -1)
2755 min = vr0.min;
2756 else
2757 type = VR_VARYING;
2759 else
2761 /* Otherwise the range is -max .. max or min .. -min
2762 depending on which bound is bigger in absolute value,
2763 as the division can change the sign. */
2764 abs_extent_range (vr, vr0.min, vr0.max);
2765 return;
2767 if (type == VR_VARYING)
2769 set_value_range_to_varying (vr);
2770 return;
2773 else if (!symbolic_range_p (&vr0) && !symbolic_range_p (&vr1))
2775 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2776 return;
2779 else if (code == TRUNC_MOD_EXPR)
2781 if (range_is_null (&vr1))
2783 set_value_range_to_undefined (vr);
2784 return;
2786 /* ABS (A % B) < ABS (B) and either
2787 0 <= A % B <= A or A <= A % B <= 0. */
2788 type = VR_RANGE;
2789 signop sgn = TYPE_SIGN (expr_type);
2790 unsigned int prec = TYPE_PRECISION (expr_type);
2791 wide_int wmin, wmax, tmp;
2792 wide_int zero = wi::zero (prec);
2793 wide_int one = wi::one (prec);
2794 if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
2796 wmax = wi::sub (vr1.max, one);
2797 if (sgn == SIGNED)
2799 tmp = wi::sub (wi::minus_one (prec), vr1.min);
2800 wmax = wi::smax (wmax, tmp);
2803 else
2805 wmax = wi::max_value (prec, sgn);
2806 /* X % INT_MIN may be INT_MAX. */
2807 if (sgn == UNSIGNED)
2808 wmax = wmax - one;
2811 if (sgn == UNSIGNED)
2812 wmin = zero;
2813 else
2815 wmin = -wmax;
2816 if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
2818 tmp = vr0.min;
2819 if (wi::gts_p (tmp, zero))
2820 tmp = zero;
2821 wmin = wi::smax (wmin, tmp);
2825 if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
2827 tmp = vr0.max;
2828 if (sgn == SIGNED && wi::neg_p (tmp))
2829 tmp = zero;
2830 wmax = wi::min (wmax, tmp, sgn);
2833 min = wide_int_to_tree (expr_type, wmin);
2834 max = wide_int_to_tree (expr_type, wmax);
2836 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2838 bool int_cst_range0, int_cst_range1;
2839 wide_int may_be_nonzero0, may_be_nonzero1;
2840 wide_int must_be_nonzero0, must_be_nonzero1;
2842 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
2843 &may_be_nonzero0,
2844 &must_be_nonzero0);
2845 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
2846 &may_be_nonzero1,
2847 &must_be_nonzero1);
2849 if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR)
2851 value_range *vr0p = NULL, *vr1p = NULL;
2852 if (range_int_cst_singleton_p (&vr1))
2854 vr0p = &vr0;
2855 vr1p = &vr1;
2857 else if (range_int_cst_singleton_p (&vr0))
2859 vr0p = &vr1;
2860 vr1p = &vr0;
2862 /* For op & or | attempt to optimize:
2863 [x, y] op z into [x op z, y op z]
2864 if z is a constant which (for op | its bitwise not) has n
2865 consecutive least significant bits cleared followed by m 1
2866 consecutive bits set immediately above it and either
2867 m + n == precision, or (x >> (m + n)) == (y >> (m + n)).
2868 The least significant n bits of all the values in the range are
2869 cleared or set, the m bits above it are preserved and any bits
2870 above these are required to be the same for all values in the
2871 range. */
2872 if (vr0p && range_int_cst_p (vr0p))
2874 wide_int w = vr1p->min;
2875 int m = 0, n = 0;
2876 if (code == BIT_IOR_EXPR)
2877 w = ~w;
2878 if (wi::eq_p (w, 0))
2879 n = TYPE_PRECISION (expr_type);
2880 else
2882 n = wi::ctz (w);
2883 w = ~(w | wi::mask (n, false, w.get_precision ()));
2884 if (wi::eq_p (w, 0))
2885 m = TYPE_PRECISION (expr_type) - n;
2886 else
2887 m = wi::ctz (w) - n;
2889 wide_int mask = wi::mask (m + n, true, w.get_precision ());
2890 if (wi::eq_p (mask & vr0p->min, mask & vr0p->max))
2892 min = int_const_binop (code, vr0p->min, vr1p->min);
2893 max = int_const_binop (code, vr0p->max, vr1p->min);
2898 type = VR_RANGE;
2899 if (min && max)
2900 /* Optimized above already. */;
2901 else if (code == BIT_AND_EXPR)
2903 min = wide_int_to_tree (expr_type,
2904 must_be_nonzero0 & must_be_nonzero1);
2905 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
2906 /* If both input ranges contain only negative values we can
2907 truncate the result range maximum to the minimum of the
2908 input range maxima. */
2909 if (int_cst_range0 && int_cst_range1
2910 && tree_int_cst_sgn (vr0.max) < 0
2911 && tree_int_cst_sgn (vr1.max) < 0)
2913 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
2914 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
2916 /* If either input range contains only non-negative values
2917 we can truncate the result range maximum to the respective
2918 maximum of the input range. */
2919 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2920 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
2921 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2922 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
2923 max = wide_int_to_tree (expr_type, wmax);
2924 cmp = compare_values (min, max);
2925 /* PR68217: In case of signed & sign-bit-CST should
2926 result in [-INF, 0] instead of [-INF, INF]. */
2927 if (cmp == -2 || cmp == 1)
2929 wide_int sign_bit
2930 = wi::set_bit_in_zero (TYPE_PRECISION (expr_type) - 1,
2931 TYPE_PRECISION (expr_type));
2932 if (!TYPE_UNSIGNED (expr_type)
2933 && ((value_range_constant_singleton (&vr0)
2934 && !wi::cmps (vr0.min, sign_bit))
2935 || (value_range_constant_singleton (&vr1)
2936 && !wi::cmps (vr1.min, sign_bit))))
2938 min = TYPE_MIN_VALUE (expr_type);
2939 max = build_int_cst (expr_type, 0);
2943 else if (code == BIT_IOR_EXPR)
2945 max = wide_int_to_tree (expr_type,
2946 may_be_nonzero0 | may_be_nonzero1);
2947 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
2948 /* If the input ranges contain only positive values we can
2949 truncate the minimum of the result range to the maximum
2950 of the input range minima. */
2951 if (int_cst_range0 && int_cst_range1
2952 && tree_int_cst_sgn (vr0.min) >= 0
2953 && tree_int_cst_sgn (vr1.min) >= 0)
2955 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
2956 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
2958 /* If either input range contains only negative values
2959 we can truncate the minimum of the result range to the
2960 respective minimum range. */
2961 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
2962 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
2963 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
2964 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
2965 min = wide_int_to_tree (expr_type, wmin);
2967 else if (code == BIT_XOR_EXPR)
2969 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
2970 | ~(may_be_nonzero0 | may_be_nonzero1));
2971 wide_int result_one_bits
2972 = (must_be_nonzero0.and_not (may_be_nonzero1)
2973 | must_be_nonzero1.and_not (may_be_nonzero0));
2974 max = wide_int_to_tree (expr_type, ~result_zero_bits);
2975 min = wide_int_to_tree (expr_type, result_one_bits);
2976 /* If the range has all positive or all negative values the
2977 result is better than VARYING. */
2978 if (tree_int_cst_sgn (min) < 0
2979 || tree_int_cst_sgn (max) >= 0)
2981 else
2982 max = min = NULL_TREE;
2985 else
2986 gcc_unreachable ();
2988 /* If either MIN or MAX overflowed, then set the resulting range to
2989 VARYING. */
2990 if (min == NULL_TREE
2991 || TREE_OVERFLOW_P (min)
2992 || max == NULL_TREE
2993 || TREE_OVERFLOW_P (max))
2995 set_value_range_to_varying (vr);
2996 return;
2999 /* We punt for [-INF, +INF].
3000 We learn nothing when we have INF on both sides.
3001 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
3002 if (vrp_val_is_min (min) && vrp_val_is_max (max))
3004 set_value_range_to_varying (vr);
3005 return;
3008 cmp = compare_values (min, max);
3009 if (cmp == -2 || cmp == 1)
3011 /* If the new range has its limits swapped around (MIN > MAX),
3012 then the operation caused one of them to wrap around, mark
3013 the new range VARYING. */
3014 set_value_range_to_varying (vr);
3016 else
3017 set_value_range (vr, type, min, max, NULL);
3020 /* Extract range information from a binary expression OP0 CODE OP1 based on
3021 the ranges of each of its operands with resulting type EXPR_TYPE.
3022 The resulting range is stored in *VR. */
3024 static void
3025 extract_range_from_binary_expr (value_range *vr,
3026 enum tree_code code,
3027 tree expr_type, tree op0, tree op1)
3029 value_range vr0 = VR_INITIALIZER;
3030 value_range vr1 = VR_INITIALIZER;
3032 /* Get value ranges for each operand. For constant operands, create
3033 a new value range with the operand to simplify processing. */
3034 if (TREE_CODE (op0) == SSA_NAME)
3035 vr0 = *(get_value_range (op0));
3036 else if (is_gimple_min_invariant (op0))
3037 set_value_range_to_value (&vr0, op0, NULL);
3038 else
3039 set_value_range_to_varying (&vr0);
3041 if (TREE_CODE (op1) == SSA_NAME)
3042 vr1 = *(get_value_range (op1));
3043 else if (is_gimple_min_invariant (op1))
3044 set_value_range_to_value (&vr1, op1, NULL);
3045 else
3046 set_value_range_to_varying (&vr1);
3048 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3050 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3051 and based on the other operand, for example if it was deduced from a
3052 symbolic comparison. When a bound of the range of the first operand
3053 is invariant, we set the corresponding bound of the new range to INF
3054 in order to avoid recursing on the range of the second operand. */
3055 if (vr->type == VR_VARYING
3056 && (code == PLUS_EXPR || code == MINUS_EXPR)
3057 && TREE_CODE (op1) == SSA_NAME
3058 && vr0.type == VR_RANGE
3059 && symbolic_range_based_on_p (&vr0, op1))
3061 const bool minus_p = (code == MINUS_EXPR);
3062 value_range n_vr1 = VR_INITIALIZER;
3064 /* Try with VR0 and [-INF, OP1]. */
3065 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3066 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3068 /* Try with VR0 and [OP1, +INF]. */
3069 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3070 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3072 /* Try with VR0 and [OP1, OP1]. */
3073 else
3074 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3076 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3079 if (vr->type == VR_VARYING
3080 && (code == PLUS_EXPR || code == MINUS_EXPR)
3081 && TREE_CODE (op0) == SSA_NAME
3082 && vr1.type == VR_RANGE
3083 && symbolic_range_based_on_p (&vr1, op0))
3085 const bool minus_p = (code == MINUS_EXPR);
3086 value_range n_vr0 = VR_INITIALIZER;
3088 /* Try with [-INF, OP0] and VR1. */
3089 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3090 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3092 /* Try with [OP0, +INF] and VR1. */
3093 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3094 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3096 /* Try with [OP0, OP0] and VR1. */
3097 else
3098 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3100 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3103 /* If we didn't derive a range for MINUS_EXPR, and
3104 op1's range is ~[op0,op0] or vice-versa, then we
3105 can derive a non-null range. This happens often for
3106 pointer subtraction. */
3107 if (vr->type == VR_VARYING
3108 && code == MINUS_EXPR
3109 && TREE_CODE (op0) == SSA_NAME
3110 && ((vr0.type == VR_ANTI_RANGE
3111 && vr0.min == op1
3112 && vr0.min == vr0.max)
3113 || (vr1.type == VR_ANTI_RANGE
3114 && vr1.min == op0
3115 && vr1.min == vr1.max)))
3116 set_value_range_to_nonnull (vr, TREE_TYPE (op0));
3119 /* Extract range information from a unary operation CODE based on
3120 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3121 The resulting range is stored in *VR. */
3123 void
3124 extract_range_from_unary_expr (value_range *vr,
3125 enum tree_code code, tree type,
3126 value_range *vr0_, tree op0_type)
3128 value_range vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3130 /* VRP only operates on integral and pointer types. */
3131 if (!(INTEGRAL_TYPE_P (op0_type)
3132 || POINTER_TYPE_P (op0_type))
3133 || !(INTEGRAL_TYPE_P (type)
3134 || POINTER_TYPE_P (type)))
3136 set_value_range_to_varying (vr);
3137 return;
3140 /* If VR0 is UNDEFINED, so is the result. */
3141 if (vr0.type == VR_UNDEFINED)
3143 set_value_range_to_undefined (vr);
3144 return;
3147 /* Handle operations that we express in terms of others. */
3148 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3150 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3151 copy_value_range (vr, &vr0);
3152 return;
3154 else if (code == NEGATE_EXPR)
3156 /* -X is simply 0 - X, so re-use existing code that also handles
3157 anti-ranges fine. */
3158 value_range zero = VR_INITIALIZER;
3159 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3160 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3161 return;
3163 else if (code == BIT_NOT_EXPR)
3165 /* ~X is simply -1 - X, so re-use existing code that also handles
3166 anti-ranges fine. */
3167 value_range minusone = VR_INITIALIZER;
3168 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3169 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3170 type, &minusone, &vr0);
3171 return;
3174 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3175 and express op ~[] as (op []') U (op []''). */
3176 if (vr0.type == VR_ANTI_RANGE
3177 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3179 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
3180 if (vrtem1.type != VR_UNDEFINED)
3182 value_range vrres = VR_INITIALIZER;
3183 extract_range_from_unary_expr (&vrres, code, type,
3184 &vrtem1, op0_type);
3185 vrp_meet (vr, &vrres);
3187 return;
3190 if (CONVERT_EXPR_CODE_P (code))
3192 tree inner_type = op0_type;
3193 tree outer_type = type;
3195 /* If the expression evaluates to a pointer, we are only interested in
3196 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3197 if (POINTER_TYPE_P (type))
3199 if (range_is_nonnull (&vr0))
3200 set_value_range_to_nonnull (vr, type);
3201 else if (range_is_null (&vr0))
3202 set_value_range_to_null (vr, type);
3203 else
3204 set_value_range_to_varying (vr);
3205 return;
3208 /* If VR0 is varying and we increase the type precision, assume
3209 a full range for the following transformation. */
3210 if (vr0.type == VR_VARYING
3211 && INTEGRAL_TYPE_P (inner_type)
3212 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3214 vr0.type = VR_RANGE;
3215 vr0.min = TYPE_MIN_VALUE (inner_type);
3216 vr0.max = TYPE_MAX_VALUE (inner_type);
3219 /* If VR0 is a constant range or anti-range and the conversion is
3220 not truncating we can convert the min and max values and
3221 canonicalize the resulting range. Otherwise we can do the
3222 conversion if the size of the range is less than what the
3223 precision of the target type can represent and the range is
3224 not an anti-range. */
3225 if ((vr0.type == VR_RANGE
3226 || vr0.type == VR_ANTI_RANGE)
3227 && TREE_CODE (vr0.min) == INTEGER_CST
3228 && TREE_CODE (vr0.max) == INTEGER_CST
3229 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3230 || (vr0.type == VR_RANGE
3231 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3232 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3233 size_int (TYPE_PRECISION (outer_type)))))))
3235 tree new_min, new_max;
3236 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3237 0, false);
3238 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3239 0, false);
3240 set_and_canonicalize_value_range (vr, vr0.type,
3241 new_min, new_max, NULL);
3242 return;
3245 set_value_range_to_varying (vr);
3246 return;
3248 else if (code == ABS_EXPR)
3250 tree min, max;
3251 int cmp;
3253 /* Pass through vr0 in the easy cases. */
3254 if (TYPE_UNSIGNED (type)
3255 || value_range_nonnegative_p (&vr0))
3257 copy_value_range (vr, &vr0);
3258 return;
3261 /* For the remaining varying or symbolic ranges we can't do anything
3262 useful. */
3263 if (vr0.type == VR_VARYING
3264 || symbolic_range_p (&vr0))
3266 set_value_range_to_varying (vr);
3267 return;
3270 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3271 useful range. */
3272 if (!TYPE_OVERFLOW_UNDEFINED (type)
3273 && ((vr0.type == VR_RANGE
3274 && vrp_val_is_min (vr0.min))
3275 || (vr0.type == VR_ANTI_RANGE
3276 && !vrp_val_is_min (vr0.min))))
3278 set_value_range_to_varying (vr);
3279 return;
3282 /* ABS_EXPR may flip the range around, if the original range
3283 included negative values. */
3284 if (!vrp_val_is_min (vr0.min))
3285 min = fold_unary_to_constant (code, type, vr0.min);
3286 else
3287 min = TYPE_MAX_VALUE (type);
3289 if (!vrp_val_is_min (vr0.max))
3290 max = fold_unary_to_constant (code, type, vr0.max);
3291 else
3292 max = TYPE_MAX_VALUE (type);
3294 cmp = compare_values (min, max);
3296 /* If a VR_ANTI_RANGEs contains zero, then we have
3297 ~[-INF, min(MIN, MAX)]. */
3298 if (vr0.type == VR_ANTI_RANGE)
3300 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3302 /* Take the lower of the two values. */
3303 if (cmp != 1)
3304 max = min;
3306 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3307 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3308 flag_wrapv is set and the original anti-range doesn't include
3309 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3310 if (TYPE_OVERFLOW_WRAPS (type))
3312 tree type_min_value = TYPE_MIN_VALUE (type);
3314 min = (vr0.min != type_min_value
3315 ? int_const_binop (PLUS_EXPR, type_min_value,
3316 build_int_cst (TREE_TYPE (type_min_value), 1))
3317 : type_min_value);
3319 else
3320 min = TYPE_MIN_VALUE (type);
3322 else
3324 /* All else has failed, so create the range [0, INF], even for
3325 flag_wrapv since TYPE_MIN_VALUE is in the original
3326 anti-range. */
3327 vr0.type = VR_RANGE;
3328 min = build_int_cst (type, 0);
3329 max = TYPE_MAX_VALUE (type);
3333 /* If the range contains zero then we know that the minimum value in the
3334 range will be zero. */
3335 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3337 if (cmp == 1)
3338 max = min;
3339 min = build_int_cst (type, 0);
3341 else
3343 /* If the range was reversed, swap MIN and MAX. */
3344 if (cmp == 1)
3345 std::swap (min, max);
3348 cmp = compare_values (min, max);
3349 if (cmp == -2 || cmp == 1)
3351 /* If the new range has its limits swapped around (MIN > MAX),
3352 then the operation caused one of them to wrap around, mark
3353 the new range VARYING. */
3354 set_value_range_to_varying (vr);
3356 else
3357 set_value_range (vr, vr0.type, min, max, NULL);
3358 return;
3361 /* For unhandled operations fall back to varying. */
3362 set_value_range_to_varying (vr);
3363 return;
3367 /* Extract range information from a unary expression CODE OP0 based on
3368 the range of its operand with resulting type TYPE.
3369 The resulting range is stored in *VR. */
3371 static void
3372 extract_range_from_unary_expr (value_range *vr, enum tree_code code,
3373 tree type, tree op0)
3375 value_range vr0 = VR_INITIALIZER;
3377 /* Get value ranges for the operand. For constant operands, create
3378 a new value range with the operand to simplify processing. */
3379 if (TREE_CODE (op0) == SSA_NAME)
3380 vr0 = *(get_value_range (op0));
3381 else if (is_gimple_min_invariant (op0))
3382 set_value_range_to_value (&vr0, op0, NULL);
3383 else
3384 set_value_range_to_varying (&vr0);
3386 extract_range_from_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0));
3390 /* Extract range information from a conditional expression STMT based on
3391 the ranges of each of its operands and the expression code. */
3393 static void
3394 extract_range_from_cond_expr (value_range *vr, gassign *stmt)
3396 tree op0, op1;
3397 value_range vr0 = VR_INITIALIZER;
3398 value_range vr1 = VR_INITIALIZER;
3400 /* Get value ranges for each operand. For constant operands, create
3401 a new value range with the operand to simplify processing. */
3402 op0 = gimple_assign_rhs2 (stmt);
3403 if (TREE_CODE (op0) == SSA_NAME)
3404 vr0 = *(get_value_range (op0));
3405 else if (is_gimple_min_invariant (op0))
3406 set_value_range_to_value (&vr0, op0, NULL);
3407 else
3408 set_value_range_to_varying (&vr0);
3410 op1 = gimple_assign_rhs3 (stmt);
3411 if (TREE_CODE (op1) == SSA_NAME)
3412 vr1 = *(get_value_range (op1));
3413 else if (is_gimple_min_invariant (op1))
3414 set_value_range_to_value (&vr1, op1, NULL);
3415 else
3416 set_value_range_to_varying (&vr1);
3418 /* The resulting value range is the union of the operand ranges */
3419 copy_value_range (vr, &vr0);
3420 vrp_meet (vr, &vr1);
3424 /* Extract range information from a comparison expression EXPR based
3425 on the range of its operand and the expression code. */
3427 static void
3428 extract_range_from_comparison (value_range *vr, enum tree_code code,
3429 tree type, tree op0, tree op1)
3431 bool sop;
3432 tree val;
3434 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3435 NULL);
3436 if (val)
3438 /* Since this expression was found on the RHS of an assignment,
3439 its type may be different from _Bool. Convert VAL to EXPR's
3440 type. */
3441 val = fold_convert (type, val);
3442 if (is_gimple_min_invariant (val))
3443 set_value_range_to_value (vr, val, vr->equiv);
3444 else
3445 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3447 else
3448 /* The result of a comparison is always true or false. */
3449 set_value_range_to_truthvalue (vr, type);
3452 /* Helper function for simplify_internal_call_using_ranges and
3453 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3454 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3455 always overflow. Set *OVF to true if it is known to always
3456 overflow. */
3458 static bool
3459 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3460 tree op0, tree op1, bool *ovf)
3462 value_range vr0 = VR_INITIALIZER;
3463 value_range vr1 = VR_INITIALIZER;
3464 if (TREE_CODE (op0) == SSA_NAME)
3465 vr0 = *get_value_range (op0);
3466 else if (TREE_CODE (op0) == INTEGER_CST)
3467 set_value_range_to_value (&vr0, op0, NULL);
3468 else
3469 set_value_range_to_varying (&vr0);
3471 if (TREE_CODE (op1) == SSA_NAME)
3472 vr1 = *get_value_range (op1);
3473 else if (TREE_CODE (op1) == INTEGER_CST)
3474 set_value_range_to_value (&vr1, op1, NULL);
3475 else
3476 set_value_range_to_varying (&vr1);
3478 if (!range_int_cst_p (&vr0)
3479 || TREE_OVERFLOW (vr0.min)
3480 || TREE_OVERFLOW (vr0.max))
3482 vr0.min = vrp_val_min (TREE_TYPE (op0));
3483 vr0.max = vrp_val_max (TREE_TYPE (op0));
3485 if (!range_int_cst_p (&vr1)
3486 || TREE_OVERFLOW (vr1.min)
3487 || TREE_OVERFLOW (vr1.max))
3489 vr1.min = vrp_val_min (TREE_TYPE (op1));
3490 vr1.max = vrp_val_max (TREE_TYPE (op1));
3492 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3493 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3494 if (arith_overflowed_p (subcode, type, vr0.max,
3495 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3496 return false;
3497 if (subcode == MULT_EXPR)
3499 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3500 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3501 return false;
3503 if (*ovf)
3505 /* So far we found that there is an overflow on the boundaries.
3506 That doesn't prove that there is an overflow even for all values
3507 in between the boundaries. For that compute widest_int range
3508 of the result and see if it doesn't overlap the range of
3509 type. */
3510 widest_int wmin, wmax;
3511 widest_int w[4];
3512 int i;
3513 w[0] = wi::to_widest (vr0.min);
3514 w[1] = wi::to_widest (vr0.max);
3515 w[2] = wi::to_widest (vr1.min);
3516 w[3] = wi::to_widest (vr1.max);
3517 for (i = 0; i < 4; i++)
3519 widest_int wt;
3520 switch (subcode)
3522 case PLUS_EXPR:
3523 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3524 break;
3525 case MINUS_EXPR:
3526 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3527 break;
3528 case MULT_EXPR:
3529 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3530 break;
3531 default:
3532 gcc_unreachable ();
3534 if (i == 0)
3536 wmin = wt;
3537 wmax = wt;
3539 else
3541 wmin = wi::smin (wmin, wt);
3542 wmax = wi::smax (wmax, wt);
3545 /* The result of op0 CODE op1 is known to be in range
3546 [wmin, wmax]. */
3547 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3548 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3549 /* If all values in [wmin, wmax] are smaller than
3550 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3551 the arithmetic operation will always overflow. */
3552 if (wmax < wtmin || wmin > wtmax)
3553 return true;
3554 return false;
3556 return true;
3559 /* Try to derive a nonnegative or nonzero range out of STMT relying
3560 primarily on generic routines in fold in conjunction with range data.
3561 Store the result in *VR */
3563 static void
3564 extract_range_basic (value_range *vr, gimple *stmt)
3566 bool sop;
3567 tree type = gimple_expr_type (stmt);
3569 if (is_gimple_call (stmt))
3571 tree arg;
3572 int mini, maxi, zerov = 0, prec;
3573 enum tree_code subcode = ERROR_MARK;
3574 combined_fn cfn = gimple_call_combined_fn (stmt);
3575 scalar_int_mode mode;
3577 switch (cfn)
3579 case CFN_BUILT_IN_CONSTANT_P:
3580 /* If the call is __builtin_constant_p and the argument is a
3581 function parameter resolve it to false. This avoids bogus
3582 array bound warnings.
3583 ??? We could do this as early as inlining is finished. */
3584 arg = gimple_call_arg (stmt, 0);
3585 if (TREE_CODE (arg) == SSA_NAME
3586 && SSA_NAME_IS_DEFAULT_DEF (arg)
3587 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL
3588 && cfun->after_inlining)
3590 set_value_range_to_null (vr, type);
3591 return;
3593 break;
3594 /* Both __builtin_ffs* and __builtin_popcount return
3595 [0, prec]. */
3596 CASE_CFN_FFS:
3597 CASE_CFN_POPCOUNT:
3598 arg = gimple_call_arg (stmt, 0);
3599 prec = TYPE_PRECISION (TREE_TYPE (arg));
3600 mini = 0;
3601 maxi = prec;
3602 if (TREE_CODE (arg) == SSA_NAME)
3604 value_range *vr0 = get_value_range (arg);
3605 /* If arg is non-zero, then ffs or popcount
3606 are non-zero. */
3607 if ((vr0->type == VR_RANGE
3608 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3609 || (vr0->type == VR_ANTI_RANGE
3610 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3611 mini = 1;
3612 /* If some high bits are known to be zero,
3613 we can decrease the maximum. */
3614 if (vr0->type == VR_RANGE
3615 && TREE_CODE (vr0->max) == INTEGER_CST
3616 && !operand_less_p (vr0->min,
3617 build_zero_cst (TREE_TYPE (vr0->min))))
3618 maxi = tree_floor_log2 (vr0->max) + 1;
3620 goto bitop_builtin;
3621 /* __builtin_parity* returns [0, 1]. */
3622 CASE_CFN_PARITY:
3623 mini = 0;
3624 maxi = 1;
3625 goto bitop_builtin;
3626 /* __builtin_c[lt]z* return [0, prec-1], except for
3627 when the argument is 0, but that is undefined behavior.
3628 On many targets where the CLZ RTL or optab value is defined
3629 for 0 the value is prec, so include that in the range
3630 by default. */
3631 CASE_CFN_CLZ:
3632 arg = gimple_call_arg (stmt, 0);
3633 prec = TYPE_PRECISION (TREE_TYPE (arg));
3634 mini = 0;
3635 maxi = prec;
3636 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
3637 if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
3638 && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov)
3639 /* Handle only the single common value. */
3640 && zerov != prec)
3641 /* Magic value to give up, unless vr0 proves
3642 arg is non-zero. */
3643 mini = -2;
3644 if (TREE_CODE (arg) == SSA_NAME)
3646 value_range *vr0 = get_value_range (arg);
3647 /* From clz of VR_RANGE minimum we can compute
3648 result maximum. */
3649 if (vr0->type == VR_RANGE
3650 && TREE_CODE (vr0->min) == INTEGER_CST)
3652 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3653 if (maxi != prec)
3654 mini = 0;
3656 else if (vr0->type == VR_ANTI_RANGE
3657 && integer_zerop (vr0->min))
3659 maxi = prec - 1;
3660 mini = 0;
3662 if (mini == -2)
3663 break;
3664 /* From clz of VR_RANGE maximum we can compute
3665 result minimum. */
3666 if (vr0->type == VR_RANGE
3667 && TREE_CODE (vr0->max) == INTEGER_CST)
3669 mini = prec - 1 - tree_floor_log2 (vr0->max);
3670 if (mini == prec)
3671 break;
3674 if (mini == -2)
3675 break;
3676 goto bitop_builtin;
3677 /* __builtin_ctz* return [0, prec-1], except for
3678 when the argument is 0, but that is undefined behavior.
3679 If there is a ctz optab for this mode and
3680 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3681 otherwise just assume 0 won't be seen. */
3682 CASE_CFN_CTZ:
3683 arg = gimple_call_arg (stmt, 0);
3684 prec = TYPE_PRECISION (TREE_TYPE (arg));
3685 mini = 0;
3686 maxi = prec - 1;
3687 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
3688 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
3689 && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov))
3691 /* Handle only the two common values. */
3692 if (zerov == -1)
3693 mini = -1;
3694 else if (zerov == prec)
3695 maxi = prec;
3696 else
3697 /* Magic value to give up, unless vr0 proves
3698 arg is non-zero. */
3699 mini = -2;
3701 if (TREE_CODE (arg) == SSA_NAME)
3703 value_range *vr0 = get_value_range (arg);
3704 /* If arg is non-zero, then use [0, prec - 1]. */
3705 if ((vr0->type == VR_RANGE
3706 && integer_nonzerop (vr0->min))
3707 || (vr0->type == VR_ANTI_RANGE
3708 && integer_zerop (vr0->min)))
3710 mini = 0;
3711 maxi = prec - 1;
3713 /* If some high bits are known to be zero,
3714 we can decrease the result maximum. */
3715 if (vr0->type == VR_RANGE
3716 && TREE_CODE (vr0->max) == INTEGER_CST)
3718 maxi = tree_floor_log2 (vr0->max);
3719 /* For vr0 [0, 0] give up. */
3720 if (maxi == -1)
3721 break;
3724 if (mini == -2)
3725 break;
3726 goto bitop_builtin;
3727 /* __builtin_clrsb* returns [0, prec-1]. */
3728 CASE_CFN_CLRSB:
3729 arg = gimple_call_arg (stmt, 0);
3730 prec = TYPE_PRECISION (TREE_TYPE (arg));
3731 mini = 0;
3732 maxi = prec - 1;
3733 goto bitop_builtin;
3734 bitop_builtin:
3735 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3736 build_int_cst (type, maxi), NULL);
3737 return;
3738 case CFN_UBSAN_CHECK_ADD:
3739 subcode = PLUS_EXPR;
3740 break;
3741 case CFN_UBSAN_CHECK_SUB:
3742 subcode = MINUS_EXPR;
3743 break;
3744 case CFN_UBSAN_CHECK_MUL:
3745 subcode = MULT_EXPR;
3746 break;
3747 case CFN_GOACC_DIM_SIZE:
3748 case CFN_GOACC_DIM_POS:
3749 /* Optimizing these two internal functions helps the loop
3750 optimizer eliminate outer comparisons. Size is [1,N]
3751 and pos is [0,N-1]. */
3753 bool is_pos = cfn == CFN_GOACC_DIM_POS;
3754 int axis = oacc_get_ifn_dim_arg (stmt);
3755 int size = oacc_get_fn_dim_size (current_function_decl, axis);
3757 if (!size)
3758 /* If it's dynamic, the backend might know a hardware
3759 limitation. */
3760 size = targetm.goacc.dim_limit (axis);
3762 tree type = TREE_TYPE (gimple_call_lhs (stmt));
3763 set_value_range (vr, VR_RANGE,
3764 build_int_cst (type, is_pos ? 0 : 1),
3765 size ? build_int_cst (type, size - is_pos)
3766 : vrp_val_max (type), NULL);
3768 return;
3769 case CFN_BUILT_IN_STRLEN:
3770 if (tree lhs = gimple_call_lhs (stmt))
3771 if (ptrdiff_type_node
3772 && (TYPE_PRECISION (ptrdiff_type_node)
3773 == TYPE_PRECISION (TREE_TYPE (lhs))))
3775 tree type = TREE_TYPE (lhs);
3776 tree max = vrp_val_max (ptrdiff_type_node);
3777 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
3778 tree range_min = build_zero_cst (type);
3779 tree range_max = wide_int_to_tree (type, wmax - 1);
3780 set_value_range (vr, VR_RANGE, range_min, range_max, NULL);
3781 return;
3783 break;
3784 default:
3785 break;
3787 if (subcode != ERROR_MARK)
3789 bool saved_flag_wrapv = flag_wrapv;
3790 /* Pretend the arithmetics is wrapping. If there is
3791 any overflow, we'll complain, but will actually do
3792 wrapping operation. */
3793 flag_wrapv = 1;
3794 extract_range_from_binary_expr (vr, subcode, type,
3795 gimple_call_arg (stmt, 0),
3796 gimple_call_arg (stmt, 1));
3797 flag_wrapv = saved_flag_wrapv;
3799 /* If for both arguments vrp_valueize returned non-NULL,
3800 this should have been already folded and if not, it
3801 wasn't folded because of overflow. Avoid removing the
3802 UBSAN_CHECK_* calls in that case. */
3803 if (vr->type == VR_RANGE
3804 && (vr->min == vr->max
3805 || operand_equal_p (vr->min, vr->max, 0)))
3806 set_value_range_to_varying (vr);
3807 return;
3810 /* Handle extraction of the two results (result of arithmetics and
3811 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
3812 internal function. Similarly from ATOMIC_COMPARE_EXCHANGE. */
3813 else if (is_gimple_assign (stmt)
3814 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
3815 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
3816 && INTEGRAL_TYPE_P (type))
3818 enum tree_code code = gimple_assign_rhs_code (stmt);
3819 tree op = gimple_assign_rhs1 (stmt);
3820 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
3822 gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
3823 if (is_gimple_call (g) && gimple_call_internal_p (g))
3825 enum tree_code subcode = ERROR_MARK;
3826 switch (gimple_call_internal_fn (g))
3828 case IFN_ADD_OVERFLOW:
3829 subcode = PLUS_EXPR;
3830 break;
3831 case IFN_SUB_OVERFLOW:
3832 subcode = MINUS_EXPR;
3833 break;
3834 case IFN_MUL_OVERFLOW:
3835 subcode = MULT_EXPR;
3836 break;
3837 case IFN_ATOMIC_COMPARE_EXCHANGE:
3838 if (code == IMAGPART_EXPR)
3840 /* This is the boolean return value whether compare and
3841 exchange changed anything or not. */
3842 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
3843 build_int_cst (type, 1), NULL);
3844 return;
3846 break;
3847 default:
3848 break;
3850 if (subcode != ERROR_MARK)
3852 tree op0 = gimple_call_arg (g, 0);
3853 tree op1 = gimple_call_arg (g, 1);
3854 if (code == IMAGPART_EXPR)
3856 bool ovf = false;
3857 if (check_for_binary_op_overflow (subcode, type,
3858 op0, op1, &ovf))
3859 set_value_range_to_value (vr,
3860 build_int_cst (type, ovf),
3861 NULL);
3862 else if (TYPE_PRECISION (type) == 1
3863 && !TYPE_UNSIGNED (type))
3864 set_value_range_to_varying (vr);
3865 else
3866 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
3867 build_int_cst (type, 1), NULL);
3869 else if (types_compatible_p (type, TREE_TYPE (op0))
3870 && types_compatible_p (type, TREE_TYPE (op1)))
3872 bool saved_flag_wrapv = flag_wrapv;
3873 /* Pretend the arithmetics is wrapping. If there is
3874 any overflow, IMAGPART_EXPR will be set. */
3875 flag_wrapv = 1;
3876 extract_range_from_binary_expr (vr, subcode, type,
3877 op0, op1);
3878 flag_wrapv = saved_flag_wrapv;
3880 else
3882 value_range vr0 = VR_INITIALIZER;
3883 value_range vr1 = VR_INITIALIZER;
3884 bool saved_flag_wrapv = flag_wrapv;
3885 /* Pretend the arithmetics is wrapping. If there is
3886 any overflow, IMAGPART_EXPR will be set. */
3887 flag_wrapv = 1;
3888 extract_range_from_unary_expr (&vr0, NOP_EXPR,
3889 type, op0);
3890 extract_range_from_unary_expr (&vr1, NOP_EXPR,
3891 type, op1);
3892 extract_range_from_binary_expr_1 (vr, subcode, type,
3893 &vr0, &vr1);
3894 flag_wrapv = saved_flag_wrapv;
3896 return;
3901 if (INTEGRAL_TYPE_P (type)
3902 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3903 set_value_range_to_nonnegative (vr, type);
3904 else if (vrp_stmt_computes_nonzero (stmt))
3905 set_value_range_to_nonnull (vr, type);
3906 else
3907 set_value_range_to_varying (vr);
3911 /* Try to compute a useful range out of assignment STMT and store it
3912 in *VR. */
3914 static void
3915 extract_range_from_assignment (value_range *vr, gassign *stmt)
3917 enum tree_code code = gimple_assign_rhs_code (stmt);
3919 if (code == ASSERT_EXPR)
3920 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3921 else if (code == SSA_NAME)
3922 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3923 else if (TREE_CODE_CLASS (code) == tcc_binary)
3924 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3925 gimple_expr_type (stmt),
3926 gimple_assign_rhs1 (stmt),
3927 gimple_assign_rhs2 (stmt));
3928 else if (TREE_CODE_CLASS (code) == tcc_unary)
3929 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3930 gimple_expr_type (stmt),
3931 gimple_assign_rhs1 (stmt));
3932 else if (code == COND_EXPR)
3933 extract_range_from_cond_expr (vr, stmt);
3934 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3935 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3936 gimple_expr_type (stmt),
3937 gimple_assign_rhs1 (stmt),
3938 gimple_assign_rhs2 (stmt));
3939 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3940 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3941 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3942 else
3943 set_value_range_to_varying (vr);
3945 if (vr->type == VR_VARYING)
3946 extract_range_basic (vr, stmt);
3949 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3950 would be profitable to adjust VR using scalar evolution information
3951 for VAR. If so, update VR with the new limits. */
3953 static void
3954 adjust_range_with_scev (value_range *vr, struct loop *loop,
3955 gimple *stmt, tree var)
3957 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3958 enum ev_direction dir;
3960 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3961 better opportunities than a regular range, but I'm not sure. */
3962 if (vr->type == VR_ANTI_RANGE)
3963 return;
3965 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3967 /* Like in PR19590, scev can return a constant function. */
3968 if (is_gimple_min_invariant (chrec))
3970 set_value_range_to_value (vr, chrec, vr->equiv);
3971 return;
3974 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3975 return;
3977 init = initial_condition_in_loop_num (chrec, loop->num);
3978 tem = op_with_constant_singleton_value_range (init);
3979 if (tem)
3980 init = tem;
3981 step = evolution_part_in_loop_num (chrec, loop->num);
3982 tem = op_with_constant_singleton_value_range (step);
3983 if (tem)
3984 step = tem;
3986 /* If STEP is symbolic, we can't know whether INIT will be the
3987 minimum or maximum value in the range. Also, unless INIT is
3988 a simple expression, compare_values and possibly other functions
3989 in tree-vrp won't be able to handle it. */
3990 if (step == NULL_TREE
3991 || !is_gimple_min_invariant (step)
3992 || !valid_value_p (init))
3993 return;
3995 dir = scev_direction (chrec);
3996 if (/* Do not adjust ranges if we do not know whether the iv increases
3997 or decreases, ... */
3998 dir == EV_DIR_UNKNOWN
3999 /* ... or if it may wrap. */
4000 || scev_probably_wraps_p (NULL_TREE, init, step, stmt,
4001 get_chrec_loop (chrec), true))
4002 return;
4004 type = TREE_TYPE (var);
4005 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4006 tmin = lower_bound_in_type (type, type);
4007 else
4008 tmin = TYPE_MIN_VALUE (type);
4009 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4010 tmax = upper_bound_in_type (type, type);
4011 else
4012 tmax = TYPE_MAX_VALUE (type);
4014 /* Try to use estimated number of iterations for the loop to constrain the
4015 final value in the evolution. */
4016 if (TREE_CODE (step) == INTEGER_CST
4017 && is_gimple_val (init)
4018 && (TREE_CODE (init) != SSA_NAME
4019 || get_value_range (init)->type == VR_RANGE))
4021 widest_int nit;
4023 /* We are only entering here for loop header PHI nodes, so using
4024 the number of latch executions is the correct thing to use. */
4025 if (max_loop_iterations (loop, &nit))
4027 value_range maxvr = VR_INITIALIZER;
4028 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4029 bool overflow;
4031 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4032 &overflow);
4033 /* If the multiplication overflowed we can't do a meaningful
4034 adjustment. Likewise if the result doesn't fit in the type
4035 of the induction variable. For a signed type we have to
4036 check whether the result has the expected signedness which
4037 is that of the step as number of iterations is unsigned. */
4038 if (!overflow
4039 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4040 && (sgn == UNSIGNED
4041 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4043 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4044 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4045 TREE_TYPE (init), init, tem);
4046 /* Likewise if the addition did. */
4047 if (maxvr.type == VR_RANGE)
4049 value_range initvr = VR_INITIALIZER;
4051 if (TREE_CODE (init) == SSA_NAME)
4052 initvr = *(get_value_range (init));
4053 else if (is_gimple_min_invariant (init))
4054 set_value_range_to_value (&initvr, init, NULL);
4055 else
4056 return;
4058 /* Check if init + nit * step overflows. Though we checked
4059 scev {init, step}_loop doesn't wrap, it is not enough
4060 because the loop may exit immediately. Overflow could
4061 happen in the plus expression in this case. */
4062 if ((dir == EV_DIR_DECREASES
4063 && compare_values (maxvr.min, initvr.min) != -1)
4064 || (dir == EV_DIR_GROWS
4065 && compare_values (maxvr.max, initvr.max) != 1))
4066 return;
4068 tmin = maxvr.min;
4069 tmax = maxvr.max;
4075 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4077 min = tmin;
4078 max = tmax;
4080 /* For VARYING or UNDEFINED ranges, just about anything we get
4081 from scalar evolutions should be better. */
4083 if (dir == EV_DIR_DECREASES)
4084 max = init;
4085 else
4086 min = init;
4088 else if (vr->type == VR_RANGE)
4090 min = vr->min;
4091 max = vr->max;
4093 if (dir == EV_DIR_DECREASES)
4095 /* INIT is the maximum value. If INIT is lower than VR->MAX
4096 but no smaller than VR->MIN, set VR->MAX to INIT. */
4097 if (compare_values (init, max) == -1)
4098 max = init;
4100 /* According to the loop information, the variable does not
4101 overflow. */
4102 if (compare_values (min, tmin) == -1)
4103 min = tmin;
4106 else
4108 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4109 if (compare_values (init, min) == 1)
4110 min = init;
4112 if (compare_values (tmax, max) == -1)
4113 max = tmax;
4116 else
4117 return;
4119 /* If we just created an invalid range with the minimum
4120 greater than the maximum, we fail conservatively.
4121 This should happen only in unreachable
4122 parts of code, or for invalid programs. */
4123 if (compare_values (min, max) == 1)
4124 return;
4126 /* Even for valid range info, sometimes overflow flag will leak in.
4127 As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
4128 drop them. */
4129 if (TREE_OVERFLOW_P (min))
4130 min = drop_tree_overflow (min);
4131 if (TREE_OVERFLOW_P (max))
4132 max = drop_tree_overflow (max);
4134 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4138 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4140 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4141 all the values in the ranges.
4143 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4145 - Return NULL_TREE if it is not always possible to determine the
4146 value of the comparison.
4148 Also set *STRICT_OVERFLOW_P to indicate whether comparision evaluation
4149 assumed signed overflow is undefined. */
4152 static tree
4153 compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1,
4154 bool *strict_overflow_p)
4156 /* VARYING or UNDEFINED ranges cannot be compared. */
4157 if (vr0->type == VR_VARYING
4158 || vr0->type == VR_UNDEFINED
4159 || vr1->type == VR_VARYING
4160 || vr1->type == VR_UNDEFINED)
4161 return NULL_TREE;
4163 /* Anti-ranges need to be handled separately. */
4164 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4166 /* If both are anti-ranges, then we cannot compute any
4167 comparison. */
4168 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4169 return NULL_TREE;
4171 /* These comparisons are never statically computable. */
4172 if (comp == GT_EXPR
4173 || comp == GE_EXPR
4174 || comp == LT_EXPR
4175 || comp == LE_EXPR)
4176 return NULL_TREE;
4178 /* Equality can be computed only between a range and an
4179 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4180 if (vr0->type == VR_RANGE)
4182 /* To simplify processing, make VR0 the anti-range. */
4183 value_range *tmp = vr0;
4184 vr0 = vr1;
4185 vr1 = tmp;
4188 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4190 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4191 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4192 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4194 return NULL_TREE;
4197 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4198 operands around and change the comparison code. */
4199 if (comp == GT_EXPR || comp == GE_EXPR)
4201 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4202 std::swap (vr0, vr1);
4205 if (comp == EQ_EXPR)
4207 /* Equality may only be computed if both ranges represent
4208 exactly one value. */
4209 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4210 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4212 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4213 strict_overflow_p);
4214 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4215 strict_overflow_p);
4216 if (cmp_min == 0 && cmp_max == 0)
4217 return boolean_true_node;
4218 else if (cmp_min != -2 && cmp_max != -2)
4219 return boolean_false_node;
4221 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4222 else if (compare_values_warnv (vr0->min, vr1->max,
4223 strict_overflow_p) == 1
4224 || compare_values_warnv (vr1->min, vr0->max,
4225 strict_overflow_p) == 1)
4226 return boolean_false_node;
4228 return NULL_TREE;
4230 else if (comp == NE_EXPR)
4232 int cmp1, cmp2;
4234 /* If VR0 is completely to the left or completely to the right
4235 of VR1, they are always different. Notice that we need to
4236 make sure that both comparisons yield similar results to
4237 avoid comparing values that cannot be compared at
4238 compile-time. */
4239 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4240 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4241 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4242 return boolean_true_node;
4244 /* If VR0 and VR1 represent a single value and are identical,
4245 return false. */
4246 else if (compare_values_warnv (vr0->min, vr0->max,
4247 strict_overflow_p) == 0
4248 && compare_values_warnv (vr1->min, vr1->max,
4249 strict_overflow_p) == 0
4250 && compare_values_warnv (vr0->min, vr1->min,
4251 strict_overflow_p) == 0
4252 && compare_values_warnv (vr0->max, vr1->max,
4253 strict_overflow_p) == 0)
4254 return boolean_false_node;
4256 /* Otherwise, they may or may not be different. */
4257 else
4258 return NULL_TREE;
4260 else if (comp == LT_EXPR || comp == LE_EXPR)
4262 int tst;
4264 /* If VR0 is to the left of VR1, return true. */
4265 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4266 if ((comp == LT_EXPR && tst == -1)
4267 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4268 return boolean_true_node;
4270 /* If VR0 is to the right of VR1, return false. */
4271 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4272 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4273 || (comp == LE_EXPR && tst == 1))
4274 return boolean_false_node;
4276 /* Otherwise, we don't know. */
4277 return NULL_TREE;
4280 gcc_unreachable ();
4284 /* Given a value range VR, a value VAL and a comparison code COMP, return
4285 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4286 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4287 always returns false. Return NULL_TREE if it is not always
4288 possible to determine the value of the comparison. Also set
4289 *STRICT_OVERFLOW_P to indicate whether comparision evaluation
4290 assumed signed overflow is undefined. */
4292 static tree
4293 compare_range_with_value (enum tree_code comp, value_range *vr, tree val,
4294 bool *strict_overflow_p)
4296 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4297 return NULL_TREE;
4299 /* Anti-ranges need to be handled separately. */
4300 if (vr->type == VR_ANTI_RANGE)
4302 /* For anti-ranges, the only predicates that we can compute at
4303 compile time are equality and inequality. */
4304 if (comp == GT_EXPR
4305 || comp == GE_EXPR
4306 || comp == LT_EXPR
4307 || comp == LE_EXPR)
4308 return NULL_TREE;
4310 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4311 if (value_inside_range (val, vr->min, vr->max) == 1)
4312 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4314 return NULL_TREE;
4317 if (comp == EQ_EXPR)
4319 /* EQ_EXPR may only be computed if VR represents exactly
4320 one value. */
4321 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4323 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4324 if (cmp == 0)
4325 return boolean_true_node;
4326 else if (cmp == -1 || cmp == 1 || cmp == 2)
4327 return boolean_false_node;
4329 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4330 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4331 return boolean_false_node;
4333 return NULL_TREE;
4335 else if (comp == NE_EXPR)
4337 /* If VAL is not inside VR, then they are always different. */
4338 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4339 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4340 return boolean_true_node;
4342 /* If VR represents exactly one value equal to VAL, then return
4343 false. */
4344 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4345 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4346 return boolean_false_node;
4348 /* Otherwise, they may or may not be different. */
4349 return NULL_TREE;
4351 else if (comp == LT_EXPR || comp == LE_EXPR)
4353 int tst;
4355 /* If VR is to the left of VAL, return true. */
4356 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4357 if ((comp == LT_EXPR && tst == -1)
4358 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4359 return boolean_true_node;
4361 /* If VR is to the right of VAL, return false. */
4362 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4363 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4364 || (comp == LE_EXPR && tst == 1))
4365 return boolean_false_node;
4367 /* Otherwise, we don't know. */
4368 return NULL_TREE;
4370 else if (comp == GT_EXPR || comp == GE_EXPR)
4372 int tst;
4374 /* If VR is to the right of VAL, return true. */
4375 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4376 if ((comp == GT_EXPR && tst == 1)
4377 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4378 return boolean_true_node;
4380 /* If VR is to the left of VAL, return false. */
4381 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4382 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4383 || (comp == GE_EXPR && tst == -1))
4384 return boolean_false_node;
4386 /* Otherwise, we don't know. */
4387 return NULL_TREE;
4390 gcc_unreachable ();
4394 /* Debugging dumps. */
4396 void dump_value_range (FILE *, const value_range *);
4397 void debug_value_range (value_range *);
4398 void dump_all_value_ranges (FILE *);
4399 void debug_all_value_ranges (void);
4400 void dump_vr_equiv (FILE *, bitmap);
4401 void debug_vr_equiv (bitmap);
4404 /* Dump value range VR to FILE. */
4406 void
4407 dump_value_range (FILE *file, const value_range *vr)
4409 if (vr == NULL)
4410 fprintf (file, "[]");
4411 else if (vr->type == VR_UNDEFINED)
4412 fprintf (file, "UNDEFINED");
4413 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4415 tree type = TREE_TYPE (vr->min);
4417 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4419 if (INTEGRAL_TYPE_P (type)
4420 && !TYPE_UNSIGNED (type)
4421 && vrp_val_is_min (vr->min))
4422 fprintf (file, "-INF");
4423 else
4424 print_generic_expr (file, vr->min);
4426 fprintf (file, ", ");
4428 if (INTEGRAL_TYPE_P (type)
4429 && vrp_val_is_max (vr->max))
4430 fprintf (file, "+INF");
4431 else
4432 print_generic_expr (file, vr->max);
4434 fprintf (file, "]");
4436 if (vr->equiv)
4438 bitmap_iterator bi;
4439 unsigned i, c = 0;
4441 fprintf (file, " EQUIVALENCES: { ");
4443 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4445 print_generic_expr (file, ssa_name (i));
4446 fprintf (file, " ");
4447 c++;
4450 fprintf (file, "} (%u elements)", c);
4453 else if (vr->type == VR_VARYING)
4454 fprintf (file, "VARYING");
4455 else
4456 fprintf (file, "INVALID RANGE");
4460 /* Dump value range VR to stderr. */
4462 DEBUG_FUNCTION void
4463 debug_value_range (value_range *vr)
4465 dump_value_range (stderr, vr);
4466 fprintf (stderr, "\n");
4470 /* Dump value ranges of all SSA_NAMEs to FILE. */
4472 void
4473 dump_all_value_ranges (FILE *file)
4475 size_t i;
4477 for (i = 0; i < num_vr_values; i++)
4479 if (vr_value[i])
4481 print_generic_expr (file, ssa_name (i));
4482 fprintf (file, ": ");
4483 dump_value_range (file, vr_value[i]);
4484 fprintf (file, "\n");
4488 fprintf (file, "\n");
4492 /* Dump all value ranges to stderr. */
4494 DEBUG_FUNCTION void
4495 debug_all_value_ranges (void)
4497 dump_all_value_ranges (stderr);
4501 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4502 create a new SSA name N and return the assertion assignment
4503 'N = ASSERT_EXPR <V, V OP W>'. */
4505 static gimple *
4506 build_assert_expr_for (tree cond, tree v)
4508 tree a;
4509 gassign *assertion;
4511 gcc_assert (TREE_CODE (v) == SSA_NAME
4512 && COMPARISON_CLASS_P (cond));
4514 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4515 assertion = gimple_build_assign (NULL_TREE, a);
4517 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4518 operand of the ASSERT_EXPR. Create it so the new name and the old one
4519 are registered in the replacement table so that we can fix the SSA web
4520 after adding all the ASSERT_EXPRs. */
4521 create_new_def_for (v, assertion, NULL);
4523 return assertion;
4527 /* Return false if EXPR is a predicate expression involving floating
4528 point values. */
4530 static inline bool
4531 fp_predicate (gimple *stmt)
4533 GIMPLE_CHECK (stmt, GIMPLE_COND);
4535 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4538 /* If the range of values taken by OP can be inferred after STMT executes,
4539 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4540 describes the inferred range. Return true if a range could be
4541 inferred. */
4543 static bool
4544 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
4546 *val_p = NULL_TREE;
4547 *comp_code_p = ERROR_MARK;
4549 /* Do not attempt to infer anything in names that flow through
4550 abnormal edges. */
4551 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4552 return false;
4554 /* If STMT is the last statement of a basic block with no normal
4555 successors, there is no point inferring anything about any of its
4556 operands. We would not be able to find a proper insertion point
4557 for the assertion, anyway. */
4558 if (stmt_ends_bb_p (stmt))
4560 edge_iterator ei;
4561 edge e;
4563 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4564 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4565 break;
4566 if (e == NULL)
4567 return false;
4570 if (infer_nonnull_range (stmt, op))
4572 *val_p = build_int_cst (TREE_TYPE (op), 0);
4573 *comp_code_p = NE_EXPR;
4574 return true;
4577 return false;
4581 void dump_asserts_for (FILE *, tree);
4582 void debug_asserts_for (tree);
4583 void dump_all_asserts (FILE *);
4584 void debug_all_asserts (void);
4586 /* Dump all the registered assertions for NAME to FILE. */
4588 void
4589 dump_asserts_for (FILE *file, tree name)
4591 assert_locus *loc;
4593 fprintf (file, "Assertions to be inserted for ");
4594 print_generic_expr (file, name);
4595 fprintf (file, "\n");
4597 loc = asserts_for[SSA_NAME_VERSION (name)];
4598 while (loc)
4600 fprintf (file, "\t");
4601 print_gimple_stmt (file, gsi_stmt (loc->si), 0);
4602 fprintf (file, "\n\tBB #%d", loc->bb->index);
4603 if (loc->e)
4605 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4606 loc->e->dest->index);
4607 dump_edge_info (file, loc->e, dump_flags, 0);
4609 fprintf (file, "\n\tPREDICATE: ");
4610 print_generic_expr (file, loc->expr);
4611 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4612 print_generic_expr (file, loc->val);
4613 fprintf (file, "\n\n");
4614 loc = loc->next;
4617 fprintf (file, "\n");
4621 /* Dump all the registered assertions for NAME to stderr. */
4623 DEBUG_FUNCTION void
4624 debug_asserts_for (tree name)
4626 dump_asserts_for (stderr, name);
4630 /* Dump all the registered assertions for all the names to FILE. */
4632 void
4633 dump_all_asserts (FILE *file)
4635 unsigned i;
4636 bitmap_iterator bi;
4638 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4639 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4640 dump_asserts_for (file, ssa_name (i));
4641 fprintf (file, "\n");
4645 /* Dump all the registered assertions for all the names to stderr. */
4647 DEBUG_FUNCTION void
4648 debug_all_asserts (void)
4650 dump_all_asserts (stderr);
4653 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
4655 static void
4656 add_assert_info (vec<assert_info> &asserts,
4657 tree name, tree expr, enum tree_code comp_code, tree val)
4659 assert_info info;
4660 info.comp_code = comp_code;
4661 info.name = name;
4662 info.val = val;
4663 info.expr = expr;
4664 asserts.safe_push (info);
4667 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4668 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4669 E->DEST, then register this location as a possible insertion point
4670 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4672 BB, E and SI provide the exact insertion point for the new
4673 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4674 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4675 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4676 must not be NULL. */
4678 static void
4679 register_new_assert_for (tree name, tree expr,
4680 enum tree_code comp_code,
4681 tree val,
4682 basic_block bb,
4683 edge e,
4684 gimple_stmt_iterator si)
4686 assert_locus *n, *loc, *last_loc;
4687 basic_block dest_bb;
4689 gcc_checking_assert (bb == NULL || e == NULL);
4691 if (e == NULL)
4692 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4693 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4695 /* Never build an assert comparing against an integer constant with
4696 TREE_OVERFLOW set. This confuses our undefined overflow warning
4697 machinery. */
4698 if (TREE_OVERFLOW_P (val))
4699 val = drop_tree_overflow (val);
4701 /* The new assertion A will be inserted at BB or E. We need to
4702 determine if the new location is dominated by a previously
4703 registered location for A. If we are doing an edge insertion,
4704 assume that A will be inserted at E->DEST. Note that this is not
4705 necessarily true.
4707 If E is a critical edge, it will be split. But even if E is
4708 split, the new block will dominate the same set of blocks that
4709 E->DEST dominates.
4711 The reverse, however, is not true, blocks dominated by E->DEST
4712 will not be dominated by the new block created to split E. So,
4713 if the insertion location is on a critical edge, we will not use
4714 the new location to move another assertion previously registered
4715 at a block dominated by E->DEST. */
4716 dest_bb = (bb) ? bb : e->dest;
4718 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4719 VAL at a block dominating DEST_BB, then we don't need to insert a new
4720 one. Similarly, if the same assertion already exists at a block
4721 dominated by DEST_BB and the new location is not on a critical
4722 edge, then update the existing location for the assertion (i.e.,
4723 move the assertion up in the dominance tree).
4725 Note, this is implemented as a simple linked list because there
4726 should not be more than a handful of assertions registered per
4727 name. If this becomes a performance problem, a table hashed by
4728 COMP_CODE and VAL could be implemented. */
4729 loc = asserts_for[SSA_NAME_VERSION (name)];
4730 last_loc = loc;
4731 while (loc)
4733 if (loc->comp_code == comp_code
4734 && (loc->val == val
4735 || operand_equal_p (loc->val, val, 0))
4736 && (loc->expr == expr
4737 || operand_equal_p (loc->expr, expr, 0)))
4739 /* If E is not a critical edge and DEST_BB
4740 dominates the existing location for the assertion, move
4741 the assertion up in the dominance tree by updating its
4742 location information. */
4743 if ((e == NULL || !EDGE_CRITICAL_P (e))
4744 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4746 loc->bb = dest_bb;
4747 loc->e = e;
4748 loc->si = si;
4749 return;
4753 /* Update the last node of the list and move to the next one. */
4754 last_loc = loc;
4755 loc = loc->next;
4758 /* If we didn't find an assertion already registered for
4759 NAME COMP_CODE VAL, add a new one at the end of the list of
4760 assertions associated with NAME. */
4761 n = XNEW (struct assert_locus);
4762 n->bb = dest_bb;
4763 n->e = e;
4764 n->si = si;
4765 n->comp_code = comp_code;
4766 n->val = val;
4767 n->expr = expr;
4768 n->next = NULL;
4770 if (last_loc)
4771 last_loc->next = n;
4772 else
4773 asserts_for[SSA_NAME_VERSION (name)] = n;
4775 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4778 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4779 Extract a suitable test code and value and store them into *CODE_P and
4780 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4782 If no extraction was possible, return FALSE, otherwise return TRUE.
4784 If INVERT is true, then we invert the result stored into *CODE_P. */
4786 static bool
4787 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4788 tree cond_op0, tree cond_op1,
4789 bool invert, enum tree_code *code_p,
4790 tree *val_p)
4792 enum tree_code comp_code;
4793 tree val;
4795 /* Otherwise, we have a comparison of the form NAME COMP VAL
4796 or VAL COMP NAME. */
4797 if (name == cond_op1)
4799 /* If the predicate is of the form VAL COMP NAME, flip
4800 COMP around because we need to register NAME as the
4801 first operand in the predicate. */
4802 comp_code = swap_tree_comparison (cond_code);
4803 val = cond_op0;
4805 else if (name == cond_op0)
4807 /* The comparison is of the form NAME COMP VAL, so the
4808 comparison code remains unchanged. */
4809 comp_code = cond_code;
4810 val = cond_op1;
4812 else
4813 gcc_unreachable ();
4815 /* Invert the comparison code as necessary. */
4816 if (invert)
4817 comp_code = invert_tree_comparison (comp_code, 0);
4819 /* VRP only handles integral and pointer types. */
4820 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
4821 && ! POINTER_TYPE_P (TREE_TYPE (val)))
4822 return false;
4824 /* Do not register always-false predicates.
4825 FIXME: this works around a limitation in fold() when dealing with
4826 enumerations. Given 'enum { N1, N2 } x;', fold will not
4827 fold 'if (x > N2)' to 'if (0)'. */
4828 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4829 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4831 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4832 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4834 if (comp_code == GT_EXPR
4835 && (!max
4836 || compare_values (val, max) == 0))
4837 return false;
4839 if (comp_code == LT_EXPR
4840 && (!min
4841 || compare_values (val, min) == 0))
4842 return false;
4844 *code_p = comp_code;
4845 *val_p = val;
4846 return true;
4849 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4850 (otherwise return VAL). VAL and MASK must be zero-extended for
4851 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4852 (to transform signed values into unsigned) and at the end xor
4853 SGNBIT back. */
4855 static wide_int
4856 masked_increment (const wide_int &val_in, const wide_int &mask,
4857 const wide_int &sgnbit, unsigned int prec)
4859 wide_int bit = wi::one (prec), res;
4860 unsigned int i;
4862 wide_int val = val_in ^ sgnbit;
4863 for (i = 0; i < prec; i++, bit += bit)
4865 res = mask;
4866 if ((res & bit) == 0)
4867 continue;
4868 res = bit - 1;
4869 res = (val + bit).and_not (res);
4870 res &= mask;
4871 if (wi::gtu_p (res, val))
4872 return res ^ sgnbit;
4874 return val ^ sgnbit;
4877 /* Helper for overflow_comparison_p
4879 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
4880 OP1's defining statement to see if it ultimately has the form
4881 OP0 CODE (OP0 PLUS INTEGER_CST)
4883 If so, return TRUE indicating this is an overflow test and store into
4884 *NEW_CST an updated constant that can be used in a narrowed range test.
4886 REVERSED indicates if the comparison was originally:
4888 OP1 CODE' OP0.
4890 This affects how we build the updated constant. */
4892 static bool
4893 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
4894 bool follow_assert_exprs, bool reversed, tree *new_cst)
4896 /* See if this is a relational operation between two SSA_NAMES with
4897 unsigned, overflow wrapping values. If so, check it more deeply. */
4898 if ((code == LT_EXPR || code == LE_EXPR
4899 || code == GE_EXPR || code == GT_EXPR)
4900 && TREE_CODE (op0) == SSA_NAME
4901 && TREE_CODE (op1) == SSA_NAME
4902 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4903 && TYPE_UNSIGNED (TREE_TYPE (op0))
4904 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
4906 gimple *op1_def = SSA_NAME_DEF_STMT (op1);
4908 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
4909 if (follow_assert_exprs)
4911 while (gimple_assign_single_p (op1_def)
4912 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
4914 op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
4915 if (TREE_CODE (op1) != SSA_NAME)
4916 break;
4917 op1_def = SSA_NAME_DEF_STMT (op1);
4921 /* Now look at the defining statement of OP1 to see if it adds
4922 or subtracts a nonzero constant from another operand. */
4923 if (op1_def
4924 && is_gimple_assign (op1_def)
4925 && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
4926 && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
4927 && !integer_zerop (gimple_assign_rhs2 (op1_def)))
4929 tree target = gimple_assign_rhs1 (op1_def);
4931 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
4932 for one where TARGET appears on the RHS. */
4933 if (follow_assert_exprs)
4935 /* Now see if that "other operand" is op0, following the chain
4936 of ASSERT_EXPRs if necessary. */
4937 gimple *op0_def = SSA_NAME_DEF_STMT (op0);
4938 while (op0 != target
4939 && gimple_assign_single_p (op0_def)
4940 && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
4942 op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
4943 if (TREE_CODE (op0) != SSA_NAME)
4944 break;
4945 op0_def = SSA_NAME_DEF_STMT (op0);
4949 /* If we did not find our target SSA_NAME, then this is not
4950 an overflow test. */
4951 if (op0 != target)
4952 return false;
4954 tree type = TREE_TYPE (op0);
4955 wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
4956 tree inc = gimple_assign_rhs2 (op1_def);
4957 if (reversed)
4958 *new_cst = wide_int_to_tree (type, max + inc);
4959 else
4960 *new_cst = wide_int_to_tree (type, max - inc);
4961 return true;
4964 return false;
4967 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
4968 OP1's defining statement to see if it ultimately has the form
4969 OP0 CODE (OP0 PLUS INTEGER_CST)
4971 If so, return TRUE indicating this is an overflow test and store into
4972 *NEW_CST an updated constant that can be used in a narrowed range test.
4974 These statements are left as-is in the IL to facilitate discovery of
4975 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
4976 the alternate range representation is often useful within VRP. */
4978 static bool
4979 overflow_comparison_p (tree_code code, tree name, tree val,
4980 bool use_equiv_p, tree *new_cst)
4982 if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
4983 return true;
4984 return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
4985 use_equiv_p, true, new_cst);
4989 /* Try to register an edge assertion for SSA name NAME on edge E for
4990 the condition COND contributing to the conditional jump pointed to by BSI.
4991 Invert the condition COND if INVERT is true. */
4993 static void
4994 register_edge_assert_for_2 (tree name, edge e,
4995 enum tree_code cond_code,
4996 tree cond_op0, tree cond_op1, bool invert,
4997 vec<assert_info> &asserts)
4999 tree val;
5000 enum tree_code comp_code;
5002 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5003 cond_op0,
5004 cond_op1,
5005 invert, &comp_code, &val))
5006 return;
5008 /* Queue the assert. */
5009 tree x;
5010 if (overflow_comparison_p (comp_code, name, val, false, &x))
5012 enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
5013 ? GT_EXPR : LE_EXPR);
5014 add_assert_info (asserts, name, name, new_code, x);
5016 add_assert_info (asserts, name, name, comp_code, val);
5018 /* In the case of NAME <= CST and NAME being defined as
5019 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5020 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5021 This catches range and anti-range tests. */
5022 if ((comp_code == LE_EXPR
5023 || comp_code == GT_EXPR)
5024 && TREE_CODE (val) == INTEGER_CST
5025 && TYPE_UNSIGNED (TREE_TYPE (val)))
5027 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5028 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5030 /* Extract CST2 from the (optional) addition. */
5031 if (is_gimple_assign (def_stmt)
5032 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5034 name2 = gimple_assign_rhs1 (def_stmt);
5035 cst2 = gimple_assign_rhs2 (def_stmt);
5036 if (TREE_CODE (name2) == SSA_NAME
5037 && TREE_CODE (cst2) == INTEGER_CST)
5038 def_stmt = SSA_NAME_DEF_STMT (name2);
5041 /* Extract NAME2 from the (optional) sign-changing cast. */
5042 if (gimple_assign_cast_p (def_stmt))
5044 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5045 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5046 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5047 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5048 name3 = gimple_assign_rhs1 (def_stmt);
5051 /* If name3 is used later, create an ASSERT_EXPR for it. */
5052 if (name3 != NULL_TREE
5053 && TREE_CODE (name3) == SSA_NAME
5054 && (cst2 == NULL_TREE
5055 || TREE_CODE (cst2) == INTEGER_CST)
5056 && INTEGRAL_TYPE_P (TREE_TYPE (name3)))
5058 tree tmp;
5060 /* Build an expression for the range test. */
5061 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5062 if (cst2 != NULL_TREE)
5063 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5065 if (dump_file)
5067 fprintf (dump_file, "Adding assert for ");
5068 print_generic_expr (dump_file, name3);
5069 fprintf (dump_file, " from ");
5070 print_generic_expr (dump_file, tmp);
5071 fprintf (dump_file, "\n");
5074 add_assert_info (asserts, name3, tmp, comp_code, val);
5077 /* If name2 is used later, create an ASSERT_EXPR for it. */
5078 if (name2 != NULL_TREE
5079 && TREE_CODE (name2) == SSA_NAME
5080 && TREE_CODE (cst2) == INTEGER_CST
5081 && INTEGRAL_TYPE_P (TREE_TYPE (name2)))
5083 tree tmp;
5085 /* Build an expression for the range test. */
5086 tmp = name2;
5087 if (TREE_TYPE (name) != TREE_TYPE (name2))
5088 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5089 if (cst2 != NULL_TREE)
5090 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5092 if (dump_file)
5094 fprintf (dump_file, "Adding assert for ");
5095 print_generic_expr (dump_file, name2);
5096 fprintf (dump_file, " from ");
5097 print_generic_expr (dump_file, tmp);
5098 fprintf (dump_file, "\n");
5101 add_assert_info (asserts, name2, tmp, comp_code, val);
5105 /* In the case of post-in/decrement tests like if (i++) ... and uses
5106 of the in/decremented value on the edge the extra name we want to
5107 assert for is not on the def chain of the name compared. Instead
5108 it is in the set of use stmts.
5109 Similar cases happen for conversions that were simplified through
5110 fold_{sign_changed,widened}_comparison. */
5111 if ((comp_code == NE_EXPR
5112 || comp_code == EQ_EXPR)
5113 && TREE_CODE (val) == INTEGER_CST)
5115 imm_use_iterator ui;
5116 gimple *use_stmt;
5117 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5119 if (!is_gimple_assign (use_stmt))
5120 continue;
5122 /* Cut off to use-stmts that are dominating the predecessor. */
5123 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
5124 continue;
5126 tree name2 = gimple_assign_lhs (use_stmt);
5127 if (TREE_CODE (name2) != SSA_NAME)
5128 continue;
5130 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5131 tree cst;
5132 if (code == PLUS_EXPR
5133 || code == MINUS_EXPR)
5135 cst = gimple_assign_rhs2 (use_stmt);
5136 if (TREE_CODE (cst) != INTEGER_CST)
5137 continue;
5138 cst = int_const_binop (code, val, cst);
5140 else if (CONVERT_EXPR_CODE_P (code))
5142 /* For truncating conversions we cannot record
5143 an inequality. */
5144 if (comp_code == NE_EXPR
5145 && (TYPE_PRECISION (TREE_TYPE (name2))
5146 < TYPE_PRECISION (TREE_TYPE (name))))
5147 continue;
5148 cst = fold_convert (TREE_TYPE (name2), val);
5150 else
5151 continue;
5153 if (TREE_OVERFLOW_P (cst))
5154 cst = drop_tree_overflow (cst);
5155 add_assert_info (asserts, name2, name2, comp_code, cst);
5159 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5160 && TREE_CODE (val) == INTEGER_CST)
5162 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5163 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5164 tree val2 = NULL_TREE;
5165 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5166 wide_int mask = wi::zero (prec);
5167 unsigned int nprec = prec;
5168 enum tree_code rhs_code = ERROR_MARK;
5170 if (is_gimple_assign (def_stmt))
5171 rhs_code = gimple_assign_rhs_code (def_stmt);
5173 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
5174 assert that A != CST1 -+ CST2. */
5175 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
5176 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
5178 tree op0 = gimple_assign_rhs1 (def_stmt);
5179 tree op1 = gimple_assign_rhs2 (def_stmt);
5180 if (TREE_CODE (op0) == SSA_NAME
5181 && TREE_CODE (op1) == INTEGER_CST)
5183 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
5184 ? MINUS_EXPR : PLUS_EXPR);
5185 op1 = int_const_binop (reverse_op, val, op1);
5186 if (TREE_OVERFLOW (op1))
5187 op1 = drop_tree_overflow (op1);
5188 add_assert_info (asserts, op0, op0, comp_code, op1);
5192 /* Add asserts for NAME cmp CST and NAME being defined
5193 as NAME = (int) NAME2. */
5194 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5195 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5196 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5197 && gimple_assign_cast_p (def_stmt))
5199 name2 = gimple_assign_rhs1 (def_stmt);
5200 if (CONVERT_EXPR_CODE_P (rhs_code)
5201 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5202 && TYPE_UNSIGNED (TREE_TYPE (name2))
5203 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5204 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5205 || !tree_int_cst_equal (val,
5206 TYPE_MIN_VALUE (TREE_TYPE (val)))))
5208 tree tmp, cst;
5209 enum tree_code new_comp_code = comp_code;
5211 cst = fold_convert (TREE_TYPE (name2),
5212 TYPE_MIN_VALUE (TREE_TYPE (val)));
5213 /* Build an expression for the range test. */
5214 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5215 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5216 fold_convert (TREE_TYPE (name2), val));
5217 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5219 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5220 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5221 build_int_cst (TREE_TYPE (name2), 1));
5224 if (dump_file)
5226 fprintf (dump_file, "Adding assert for ");
5227 print_generic_expr (dump_file, name2);
5228 fprintf (dump_file, " from ");
5229 print_generic_expr (dump_file, tmp);
5230 fprintf (dump_file, "\n");
5233 add_assert_info (asserts, name2, tmp, new_comp_code, cst);
5237 /* Add asserts for NAME cmp CST and NAME being defined as
5238 NAME = NAME2 >> CST2.
5240 Extract CST2 from the right shift. */
5241 if (rhs_code == RSHIFT_EXPR)
5243 name2 = gimple_assign_rhs1 (def_stmt);
5244 cst2 = gimple_assign_rhs2 (def_stmt);
5245 if (TREE_CODE (name2) == SSA_NAME
5246 && tree_fits_uhwi_p (cst2)
5247 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5248 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5249 && type_has_mode_precision_p (TREE_TYPE (val)))
5251 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5252 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5255 if (val2 != NULL_TREE
5256 && TREE_CODE (val2) == INTEGER_CST
5257 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5258 TREE_TYPE (val),
5259 val2, cst2), val))
5261 enum tree_code new_comp_code = comp_code;
5262 tree tmp, new_val;
5264 tmp = name2;
5265 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5267 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5269 tree type = build_nonstandard_integer_type (prec, 1);
5270 tmp = build1 (NOP_EXPR, type, name2);
5271 val2 = fold_convert (type, val2);
5273 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5274 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5275 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5277 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5279 wide_int minval
5280 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5281 new_val = val2;
5282 if (minval == new_val)
5283 new_val = NULL_TREE;
5285 else
5287 wide_int maxval
5288 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5289 mask |= val2;
5290 if (mask == maxval)
5291 new_val = NULL_TREE;
5292 else
5293 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5296 if (new_val)
5298 if (dump_file)
5300 fprintf (dump_file, "Adding assert for ");
5301 print_generic_expr (dump_file, name2);
5302 fprintf (dump_file, " from ");
5303 print_generic_expr (dump_file, tmp);
5304 fprintf (dump_file, "\n");
5307 add_assert_info (asserts, name2, tmp, new_comp_code, new_val);
5311 /* Add asserts for NAME cmp CST and NAME being defined as
5312 NAME = NAME2 & CST2.
5314 Extract CST2 from the and.
5316 Also handle
5317 NAME = (unsigned) NAME2;
5318 casts where NAME's type is unsigned and has smaller precision
5319 than NAME2's type as if it was NAME = NAME2 & MASK. */
5320 names[0] = NULL_TREE;
5321 names[1] = NULL_TREE;
5322 cst2 = NULL_TREE;
5323 if (rhs_code == BIT_AND_EXPR
5324 || (CONVERT_EXPR_CODE_P (rhs_code)
5325 && INTEGRAL_TYPE_P (TREE_TYPE (val))
5326 && TYPE_UNSIGNED (TREE_TYPE (val))
5327 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5328 > prec))
5330 name2 = gimple_assign_rhs1 (def_stmt);
5331 if (rhs_code == BIT_AND_EXPR)
5332 cst2 = gimple_assign_rhs2 (def_stmt);
5333 else
5335 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5336 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5338 if (TREE_CODE (name2) == SSA_NAME
5339 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5340 && TREE_CODE (cst2) == INTEGER_CST
5341 && !integer_zerop (cst2)
5342 && (nprec > 1
5343 || TYPE_UNSIGNED (TREE_TYPE (val))))
5345 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
5346 if (gimple_assign_cast_p (def_stmt2))
5348 names[1] = gimple_assign_rhs1 (def_stmt2);
5349 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5350 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5351 || (TYPE_PRECISION (TREE_TYPE (name2))
5352 != TYPE_PRECISION (TREE_TYPE (names[1]))))
5353 names[1] = NULL_TREE;
5355 names[0] = name2;
5358 if (names[0] || names[1])
5360 wide_int minv, maxv, valv, cst2v;
5361 wide_int tem, sgnbit;
5362 bool valid_p = false, valn, cst2n;
5363 enum tree_code ccode = comp_code;
5365 valv = wide_int::from (val, nprec, UNSIGNED);
5366 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5367 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5368 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5369 /* If CST2 doesn't have most significant bit set,
5370 but VAL is negative, we have comparison like
5371 if ((x & 0x123) > -4) (always true). Just give up. */
5372 if (!cst2n && valn)
5373 ccode = ERROR_MARK;
5374 if (cst2n)
5375 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5376 else
5377 sgnbit = wi::zero (nprec);
5378 minv = valv & cst2v;
5379 switch (ccode)
5381 case EQ_EXPR:
5382 /* Minimum unsigned value for equality is VAL & CST2
5383 (should be equal to VAL, otherwise we probably should
5384 have folded the comparison into false) and
5385 maximum unsigned value is VAL | ~CST2. */
5386 maxv = valv | ~cst2v;
5387 valid_p = true;
5388 break;
5390 case NE_EXPR:
5391 tem = valv | ~cst2v;
5392 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5393 if (valv == 0)
5395 cst2n = false;
5396 sgnbit = wi::zero (nprec);
5397 goto gt_expr;
5399 /* If (VAL | ~CST2) is all ones, handle it as
5400 (X & CST2) < VAL. */
5401 if (tem == -1)
5403 cst2n = false;
5404 valn = false;
5405 sgnbit = wi::zero (nprec);
5406 goto lt_expr;
5408 if (!cst2n && wi::neg_p (cst2v))
5409 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5410 if (sgnbit != 0)
5412 if (valv == sgnbit)
5414 cst2n = true;
5415 valn = true;
5416 goto gt_expr;
5418 if (tem == wi::mask (nprec - 1, false, nprec))
5420 cst2n = true;
5421 goto lt_expr;
5423 if (!cst2n)
5424 sgnbit = wi::zero (nprec);
5426 break;
5428 case GE_EXPR:
5429 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5430 is VAL and maximum unsigned value is ~0. For signed
5431 comparison, if CST2 doesn't have most significant bit
5432 set, handle it similarly. If CST2 has MSB set,
5433 the minimum is the same, and maximum is ~0U/2. */
5434 if (minv != valv)
5436 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5437 VAL. */
5438 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5439 if (minv == valv)
5440 break;
5442 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5443 valid_p = true;
5444 break;
5446 case GT_EXPR:
5447 gt_expr:
5448 /* Find out smallest MINV where MINV > VAL
5449 && (MINV & CST2) == MINV, if any. If VAL is signed and
5450 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5451 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5452 if (minv == valv)
5453 break;
5454 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5455 valid_p = true;
5456 break;
5458 case LE_EXPR:
5459 /* Minimum unsigned value for <= is 0 and maximum
5460 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5461 Otherwise, find smallest VAL2 where VAL2 > VAL
5462 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5463 as maximum.
5464 For signed comparison, if CST2 doesn't have most
5465 significant bit set, handle it similarly. If CST2 has
5466 MSB set, the maximum is the same and minimum is INT_MIN. */
5467 if (minv == valv)
5468 maxv = valv;
5469 else
5471 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5472 if (maxv == valv)
5473 break;
5474 maxv -= 1;
5476 maxv |= ~cst2v;
5477 minv = sgnbit;
5478 valid_p = true;
5479 break;
5481 case LT_EXPR:
5482 lt_expr:
5483 /* Minimum unsigned value for < is 0 and maximum
5484 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5485 Otherwise, find smallest VAL2 where VAL2 > VAL
5486 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5487 as maximum.
5488 For signed comparison, if CST2 doesn't have most
5489 significant bit set, handle it similarly. If CST2 has
5490 MSB set, the maximum is the same and minimum is INT_MIN. */
5491 if (minv == valv)
5493 if (valv == sgnbit)
5494 break;
5495 maxv = valv;
5497 else
5499 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5500 if (maxv == valv)
5501 break;
5503 maxv -= 1;
5504 maxv |= ~cst2v;
5505 minv = sgnbit;
5506 valid_p = true;
5507 break;
5509 default:
5510 break;
5512 if (valid_p
5513 && (maxv - minv) != -1)
5515 tree tmp, new_val, type;
5516 int i;
5518 for (i = 0; i < 2; i++)
5519 if (names[i])
5521 wide_int maxv2 = maxv;
5522 tmp = names[i];
5523 type = TREE_TYPE (names[i]);
5524 if (!TYPE_UNSIGNED (type))
5526 type = build_nonstandard_integer_type (nprec, 1);
5527 tmp = build1 (NOP_EXPR, type, names[i]);
5529 if (minv != 0)
5531 tmp = build2 (PLUS_EXPR, type, tmp,
5532 wide_int_to_tree (type, -minv));
5533 maxv2 = maxv - minv;
5535 new_val = wide_int_to_tree (type, maxv2);
5537 if (dump_file)
5539 fprintf (dump_file, "Adding assert for ");
5540 print_generic_expr (dump_file, names[i]);
5541 fprintf (dump_file, " from ");
5542 print_generic_expr (dump_file, tmp);
5543 fprintf (dump_file, "\n");
5546 add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val);
5553 /* OP is an operand of a truth value expression which is known to have
5554 a particular value. Register any asserts for OP and for any
5555 operands in OP's defining statement.
5557 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5558 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5560 static void
5561 register_edge_assert_for_1 (tree op, enum tree_code code,
5562 edge e, vec<assert_info> &asserts)
5564 gimple *op_def;
5565 tree val;
5566 enum tree_code rhs_code;
5568 /* We only care about SSA_NAMEs. */
5569 if (TREE_CODE (op) != SSA_NAME)
5570 return;
5572 /* We know that OP will have a zero or nonzero value. */
5573 val = build_int_cst (TREE_TYPE (op), 0);
5574 add_assert_info (asserts, op, op, code, val);
5576 /* Now look at how OP is set. If it's set from a comparison,
5577 a truth operation or some bit operations, then we may be able
5578 to register information about the operands of that assignment. */
5579 op_def = SSA_NAME_DEF_STMT (op);
5580 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5581 return;
5583 rhs_code = gimple_assign_rhs_code (op_def);
5585 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5587 bool invert = (code == EQ_EXPR ? true : false);
5588 tree op0 = gimple_assign_rhs1 (op_def);
5589 tree op1 = gimple_assign_rhs2 (op_def);
5591 if (TREE_CODE (op0) == SSA_NAME)
5592 register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts);
5593 if (TREE_CODE (op1) == SSA_NAME)
5594 register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts);
5596 else if ((code == NE_EXPR
5597 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5598 || (code == EQ_EXPR
5599 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5601 /* Recurse on each operand. */
5602 tree op0 = gimple_assign_rhs1 (op_def);
5603 tree op1 = gimple_assign_rhs2 (op_def);
5604 if (TREE_CODE (op0) == SSA_NAME
5605 && has_single_use (op0))
5606 register_edge_assert_for_1 (op0, code, e, asserts);
5607 if (TREE_CODE (op1) == SSA_NAME
5608 && has_single_use (op1))
5609 register_edge_assert_for_1 (op1, code, e, asserts);
5611 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5612 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5614 /* Recurse, flipping CODE. */
5615 code = invert_tree_comparison (code, false);
5616 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
5618 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5620 /* Recurse through the copy. */
5621 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
5623 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5625 /* Recurse through the type conversion, unless it is a narrowing
5626 conversion or conversion from non-integral type. */
5627 tree rhs = gimple_assign_rhs1 (op_def);
5628 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5629 && (TYPE_PRECISION (TREE_TYPE (rhs))
5630 <= TYPE_PRECISION (TREE_TYPE (op))))
5631 register_edge_assert_for_1 (rhs, code, e, asserts);
5635 /* Check if comparison
5636 NAME COND_OP INTEGER_CST
5637 has a form of
5638 (X & 11...100..0) COND_OP XX...X00...0
5639 Such comparison can yield assertions like
5640 X >= XX...X00...0
5641 X <= XX...X11...1
5642 in case of COND_OP being NE_EXPR or
5643 X < XX...X00...0
5644 X > XX...X11...1
5645 in case of EQ_EXPR. */
5647 static bool
5648 is_masked_range_test (tree name, tree valt, enum tree_code cond_code,
5649 tree *new_name, tree *low, enum tree_code *low_code,
5650 tree *high, enum tree_code *high_code)
5652 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5654 if (!is_gimple_assign (def_stmt)
5655 || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
5656 return false;
5658 tree t = gimple_assign_rhs1 (def_stmt);
5659 tree maskt = gimple_assign_rhs2 (def_stmt);
5660 if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST)
5661 return false;
5663 wide_int mask = maskt;
5664 wide_int inv_mask = ~mask;
5665 wide_int val = valt; // Assume VALT is INTEGER_CST
5667 if ((inv_mask & (inv_mask + 1)) != 0
5668 || (val & mask) != val)
5669 return false;
5671 bool is_range = cond_code == EQ_EXPR;
5673 tree type = TREE_TYPE (t);
5674 wide_int min = wi::min_value (type),
5675 max = wi::max_value (type);
5677 if (is_range)
5679 *low_code = val == min ? ERROR_MARK : GE_EXPR;
5680 *high_code = val == max ? ERROR_MARK : LE_EXPR;
5682 else
5684 /* We can still generate assertion if one of alternatives
5685 is known to always be false. */
5686 if (val == min)
5688 *low_code = (enum tree_code) 0;
5689 *high_code = GT_EXPR;
5691 else if ((val | inv_mask) == max)
5693 *low_code = LT_EXPR;
5694 *high_code = (enum tree_code) 0;
5696 else
5697 return false;
5700 *new_name = t;
5701 *low = wide_int_to_tree (type, val);
5702 *high = wide_int_to_tree (type, val | inv_mask);
5704 if (wi::neg_p (val, TYPE_SIGN (type)))
5705 std::swap (*low, *high);
5707 return true;
5710 /* Try to register an edge assertion for SSA name NAME on edge E for
5711 the condition COND contributing to the conditional jump pointed to by
5712 SI. */
5714 static void
5715 register_edge_assert_for (tree name, edge e,
5716 enum tree_code cond_code, tree cond_op0,
5717 tree cond_op1, vec<assert_info> &asserts)
5719 tree val;
5720 enum tree_code comp_code;
5721 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5723 /* Do not attempt to infer anything in names that flow through
5724 abnormal edges. */
5725 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5726 return;
5728 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5729 cond_op0, cond_op1,
5730 is_else_edge,
5731 &comp_code, &val))
5732 return;
5734 /* Register ASSERT_EXPRs for name. */
5735 register_edge_assert_for_2 (name, e, cond_code, cond_op0,
5736 cond_op1, is_else_edge, asserts);
5739 /* If COND is effectively an equality test of an SSA_NAME against
5740 the value zero or one, then we may be able to assert values
5741 for SSA_NAMEs which flow into COND. */
5743 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5744 statement of NAME we can assert both operands of the BIT_AND_EXPR
5745 have nonzero value. */
5746 if (((comp_code == EQ_EXPR && integer_onep (val))
5747 || (comp_code == NE_EXPR && integer_zerop (val))))
5749 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5751 if (is_gimple_assign (def_stmt)
5752 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5754 tree op0 = gimple_assign_rhs1 (def_stmt);
5755 tree op1 = gimple_assign_rhs2 (def_stmt);
5756 register_edge_assert_for_1 (op0, NE_EXPR, e, asserts);
5757 register_edge_assert_for_1 (op1, NE_EXPR, e, asserts);
5761 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5762 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5763 have zero value. */
5764 if (((comp_code == EQ_EXPR && integer_zerop (val))
5765 || (comp_code == NE_EXPR && integer_onep (val))))
5767 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5769 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5770 necessarily zero value, or if type-precision is one. */
5771 if (is_gimple_assign (def_stmt)
5772 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5773 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5774 || comp_code == EQ_EXPR)))
5776 tree op0 = gimple_assign_rhs1 (def_stmt);
5777 tree op1 = gimple_assign_rhs2 (def_stmt);
5778 register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts);
5779 register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts);
5783 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
5784 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
5785 && TREE_CODE (val) == INTEGER_CST)
5787 enum tree_code low_code, high_code;
5788 tree low, high;
5789 if (is_masked_range_test (name, val, comp_code, &name, &low,
5790 &low_code, &high, &high_code))
5792 if (low_code != ERROR_MARK)
5793 register_edge_assert_for_2 (name, e, low_code, name,
5794 low, /*invert*/false, asserts);
5795 if (high_code != ERROR_MARK)
5796 register_edge_assert_for_2 (name, e, high_code, name,
5797 high, /*invert*/false, asserts);
5802 /* Finish found ASSERTS for E and register them at GSI. */
5804 static void
5805 finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi,
5806 vec<assert_info> &asserts)
5808 for (unsigned i = 0; i < asserts.length (); ++i)
5809 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5810 reachable from E. */
5811 if (live_on_edge (e, asserts[i].name))
5812 register_new_assert_for (asserts[i].name, asserts[i].expr,
5813 asserts[i].comp_code, asserts[i].val,
5814 NULL, e, gsi);
5819 /* Determine whether the outgoing edges of BB should receive an
5820 ASSERT_EXPR for each of the operands of BB's LAST statement.
5821 The last statement of BB must be a COND_EXPR.
5823 If any of the sub-graphs rooted at BB have an interesting use of
5824 the predicate operands, an assert location node is added to the
5825 list of assertions for the corresponding operands. */
5827 static void
5828 find_conditional_asserts (basic_block bb, gcond *last)
5830 gimple_stmt_iterator bsi;
5831 tree op;
5832 edge_iterator ei;
5833 edge e;
5834 ssa_op_iter iter;
5836 bsi = gsi_for_stmt (last);
5838 /* Look for uses of the operands in each of the sub-graphs
5839 rooted at BB. We need to check each of the outgoing edges
5840 separately, so that we know what kind of ASSERT_EXPR to
5841 insert. */
5842 FOR_EACH_EDGE (e, ei, bb->succs)
5844 if (e->dest == bb)
5845 continue;
5847 /* Register the necessary assertions for each operand in the
5848 conditional predicate. */
5849 auto_vec<assert_info, 8> asserts;
5850 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5851 register_edge_assert_for (op, e,
5852 gimple_cond_code (last),
5853 gimple_cond_lhs (last),
5854 gimple_cond_rhs (last), asserts);
5855 finish_register_edge_assert_for (e, bsi, asserts);
5859 struct case_info
5861 tree expr;
5862 basic_block bb;
5865 /* Compare two case labels sorting first by the destination bb index
5866 and then by the case value. */
5868 static int
5869 compare_case_labels (const void *p1, const void *p2)
5871 const struct case_info *ci1 = (const struct case_info *) p1;
5872 const struct case_info *ci2 = (const struct case_info *) p2;
5873 int idx1 = ci1->bb->index;
5874 int idx2 = ci2->bb->index;
5876 if (idx1 < idx2)
5877 return -1;
5878 else if (idx1 == idx2)
5880 /* Make sure the default label is first in a group. */
5881 if (!CASE_LOW (ci1->expr))
5882 return -1;
5883 else if (!CASE_LOW (ci2->expr))
5884 return 1;
5885 else
5886 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5887 CASE_LOW (ci2->expr));
5889 else
5890 return 1;
5893 /* Determine whether the outgoing edges of BB should receive an
5894 ASSERT_EXPR for each of the operands of BB's LAST statement.
5895 The last statement of BB must be a SWITCH_EXPR.
5897 If any of the sub-graphs rooted at BB have an interesting use of
5898 the predicate operands, an assert location node is added to the
5899 list of assertions for the corresponding operands. */
5901 static void
5902 find_switch_asserts (basic_block bb, gswitch *last)
5904 gimple_stmt_iterator bsi;
5905 tree op;
5906 edge e;
5907 struct case_info *ci;
5908 size_t n = gimple_switch_num_labels (last);
5909 #if GCC_VERSION >= 4000
5910 unsigned int idx;
5911 #else
5912 /* Work around GCC 3.4 bug (PR 37086). */
5913 volatile unsigned int idx;
5914 #endif
5916 bsi = gsi_for_stmt (last);
5917 op = gimple_switch_index (last);
5918 if (TREE_CODE (op) != SSA_NAME)
5919 return;
5921 /* Build a vector of case labels sorted by destination label. */
5922 ci = XNEWVEC (struct case_info, n);
5923 for (idx = 0; idx < n; ++idx)
5925 ci[idx].expr = gimple_switch_label (last, idx);
5926 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5928 edge default_edge = find_edge (bb, ci[0].bb);
5929 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5931 for (idx = 0; idx < n; ++idx)
5933 tree min, max;
5934 tree cl = ci[idx].expr;
5935 basic_block cbb = ci[idx].bb;
5937 min = CASE_LOW (cl);
5938 max = CASE_HIGH (cl);
5940 /* If there are multiple case labels with the same destination
5941 we need to combine them to a single value range for the edge. */
5942 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5944 /* Skip labels until the last of the group. */
5945 do {
5946 ++idx;
5947 } while (idx < n && cbb == ci[idx].bb);
5948 --idx;
5950 /* Pick up the maximum of the case label range. */
5951 if (CASE_HIGH (ci[idx].expr))
5952 max = CASE_HIGH (ci[idx].expr);
5953 else
5954 max = CASE_LOW (ci[idx].expr);
5957 /* Can't extract a useful assertion out of a range that includes the
5958 default label. */
5959 if (min == NULL_TREE)
5960 continue;
5962 /* Find the edge to register the assert expr on. */
5963 e = find_edge (bb, cbb);
5965 /* Register the necessary assertions for the operand in the
5966 SWITCH_EXPR. */
5967 auto_vec<assert_info, 8> asserts;
5968 register_edge_assert_for (op, e,
5969 max ? GE_EXPR : EQ_EXPR,
5970 op, fold_convert (TREE_TYPE (op), min),
5971 asserts);
5972 if (max)
5973 register_edge_assert_for (op, e, LE_EXPR, op,
5974 fold_convert (TREE_TYPE (op), max),
5975 asserts);
5976 finish_register_edge_assert_for (e, bsi, asserts);
5979 XDELETEVEC (ci);
5981 if (!live_on_edge (default_edge, op))
5982 return;
5984 /* Now register along the default label assertions that correspond to the
5985 anti-range of each label. */
5986 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
5987 if (insertion_limit == 0)
5988 return;
5990 /* We can't do this if the default case shares a label with another case. */
5991 tree default_cl = gimple_switch_default_label (last);
5992 for (idx = 1; idx < n; idx++)
5994 tree min, max;
5995 tree cl = gimple_switch_label (last, idx);
5996 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
5997 continue;
5999 min = CASE_LOW (cl);
6000 max = CASE_HIGH (cl);
6002 /* Combine contiguous case ranges to reduce the number of assertions
6003 to insert. */
6004 for (idx = idx + 1; idx < n; idx++)
6006 tree next_min, next_max;
6007 tree next_cl = gimple_switch_label (last, idx);
6008 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
6009 break;
6011 next_min = CASE_LOW (next_cl);
6012 next_max = CASE_HIGH (next_cl);
6014 wide_int difference = wi::sub (next_min, max ? max : min);
6015 if (wi::eq_p (difference, 1))
6016 max = next_max ? next_max : next_min;
6017 else
6018 break;
6020 idx--;
6022 if (max == NULL_TREE)
6024 /* Register the assertion OP != MIN. */
6025 auto_vec<assert_info, 8> asserts;
6026 min = fold_convert (TREE_TYPE (op), min);
6027 register_edge_assert_for (op, default_edge, NE_EXPR, op, min,
6028 asserts);
6029 finish_register_edge_assert_for (default_edge, bsi, asserts);
6031 else
6033 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
6034 which will give OP the anti-range ~[MIN,MAX]. */
6035 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
6036 min = fold_convert (TREE_TYPE (uop), min);
6037 max = fold_convert (TREE_TYPE (uop), max);
6039 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
6040 tree rhs = int_const_binop (MINUS_EXPR, max, min);
6041 register_new_assert_for (op, lhs, GT_EXPR, rhs,
6042 NULL, default_edge, bsi);
6045 if (--insertion_limit == 0)
6046 break;
6051 /* Traverse all the statements in block BB looking for statements that
6052 may generate useful assertions for the SSA names in their operand.
6053 If a statement produces a useful assertion A for name N_i, then the
6054 list of assertions already generated for N_i is scanned to
6055 determine if A is actually needed.
6057 If N_i already had the assertion A at a location dominating the
6058 current location, then nothing needs to be done. Otherwise, the
6059 new location for A is recorded instead.
6061 1- For every statement S in BB, all the variables used by S are
6062 added to bitmap FOUND_IN_SUBGRAPH.
6064 2- If statement S uses an operand N in a way that exposes a known
6065 value range for N, then if N was not already generated by an
6066 ASSERT_EXPR, create a new assert location for N. For instance,
6067 if N is a pointer and the statement dereferences it, we can
6068 assume that N is not NULL.
6070 3- COND_EXPRs are a special case of #2. We can derive range
6071 information from the predicate but need to insert different
6072 ASSERT_EXPRs for each of the sub-graphs rooted at the
6073 conditional block. If the last statement of BB is a conditional
6074 expression of the form 'X op Y', then
6076 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6078 b) If the conditional is the only entry point to the sub-graph
6079 corresponding to the THEN_CLAUSE, recurse into it. On
6080 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6081 an ASSERT_EXPR is added for the corresponding variable.
6083 c) Repeat step (b) on the ELSE_CLAUSE.
6085 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6087 For instance,
6089 if (a == 9)
6090 b = a;
6091 else
6092 b = c + 1;
6094 In this case, an assertion on the THEN clause is useful to
6095 determine that 'a' is always 9 on that edge. However, an assertion
6096 on the ELSE clause would be unnecessary.
6098 4- If BB does not end in a conditional expression, then we recurse
6099 into BB's dominator children.
6101 At the end of the recursive traversal, every SSA name will have a
6102 list of locations where ASSERT_EXPRs should be added. When a new
6103 location for name N is found, it is registered by calling
6104 register_new_assert_for. That function keeps track of all the
6105 registered assertions to prevent adding unnecessary assertions.
6106 For instance, if a pointer P_4 is dereferenced more than once in a
6107 dominator tree, only the location dominating all the dereference of
6108 P_4 will receive an ASSERT_EXPR. */
6110 static void
6111 find_assert_locations_1 (basic_block bb, sbitmap live)
6113 gimple *last;
6115 last = last_stmt (bb);
6117 /* If BB's last statement is a conditional statement involving integer
6118 operands, determine if we need to add ASSERT_EXPRs. */
6119 if (last
6120 && gimple_code (last) == GIMPLE_COND
6121 && !fp_predicate (last)
6122 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6123 find_conditional_asserts (bb, as_a <gcond *> (last));
6125 /* If BB's last statement is a switch statement involving integer
6126 operands, determine if we need to add ASSERT_EXPRs. */
6127 if (last
6128 && gimple_code (last) == GIMPLE_SWITCH
6129 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6130 find_switch_asserts (bb, as_a <gswitch *> (last));
6132 /* Traverse all the statements in BB marking used names and looking
6133 for statements that may infer assertions for their used operands. */
6134 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6135 gsi_prev (&si))
6137 gimple *stmt;
6138 tree op;
6139 ssa_op_iter i;
6141 stmt = gsi_stmt (si);
6143 if (is_gimple_debug (stmt))
6144 continue;
6146 /* See if we can derive an assertion for any of STMT's operands. */
6147 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6149 tree value;
6150 enum tree_code comp_code;
6152 /* If op is not live beyond this stmt, do not bother to insert
6153 asserts for it. */
6154 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6155 continue;
6157 /* If OP is used in such a way that we can infer a value
6158 range for it, and we don't find a previous assertion for
6159 it, create a new assertion location node for OP. */
6160 if (infer_value_range (stmt, op, &comp_code, &value))
6162 /* If we are able to infer a nonzero value range for OP,
6163 then walk backwards through the use-def chain to see if OP
6164 was set via a typecast.
6166 If so, then we can also infer a nonzero value range
6167 for the operand of the NOP_EXPR. */
6168 if (comp_code == NE_EXPR && integer_zerop (value))
6170 tree t = op;
6171 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
6173 while (is_gimple_assign (def_stmt)
6174 && CONVERT_EXPR_CODE_P
6175 (gimple_assign_rhs_code (def_stmt))
6176 && TREE_CODE
6177 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6178 && POINTER_TYPE_P
6179 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6181 t = gimple_assign_rhs1 (def_stmt);
6182 def_stmt = SSA_NAME_DEF_STMT (t);
6184 /* Note we want to register the assert for the
6185 operand of the NOP_EXPR after SI, not after the
6186 conversion. */
6187 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
6188 register_new_assert_for (t, t, comp_code, value,
6189 bb, NULL, si);
6193 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6197 /* Update live. */
6198 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6199 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6200 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6201 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6204 /* Traverse all PHI nodes in BB, updating live. */
6205 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6206 gsi_next (&si))
6208 use_operand_p arg_p;
6209 ssa_op_iter i;
6210 gphi *phi = si.phi ();
6211 tree res = gimple_phi_result (phi);
6213 if (virtual_operand_p (res))
6214 continue;
6216 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6218 tree arg = USE_FROM_PTR (arg_p);
6219 if (TREE_CODE (arg) == SSA_NAME)
6220 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6223 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6227 /* Do an RPO walk over the function computing SSA name liveness
6228 on-the-fly and deciding on assert expressions to insert. */
6230 static void
6231 find_assert_locations (void)
6233 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6234 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6235 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6236 int rpo_cnt, i;
6238 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6239 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6240 for (i = 0; i < rpo_cnt; ++i)
6241 bb_rpo[rpo[i]] = i;
6243 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6244 the order we compute liveness and insert asserts we otherwise
6245 fail to insert asserts into the loop latch. */
6246 loop_p loop;
6247 FOR_EACH_LOOP (loop, 0)
6249 i = loop->latch->index;
6250 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6251 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6252 !gsi_end_p (gsi); gsi_next (&gsi))
6254 gphi *phi = gsi.phi ();
6255 if (virtual_operand_p (gimple_phi_result (phi)))
6256 continue;
6257 tree arg = gimple_phi_arg_def (phi, j);
6258 if (TREE_CODE (arg) == SSA_NAME)
6260 if (live[i] == NULL)
6262 live[i] = sbitmap_alloc (num_ssa_names);
6263 bitmap_clear (live[i]);
6265 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6270 for (i = rpo_cnt - 1; i >= 0; --i)
6272 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6273 edge e;
6274 edge_iterator ei;
6276 if (!live[rpo[i]])
6278 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6279 bitmap_clear (live[rpo[i]]);
6282 /* Process BB and update the live information with uses in
6283 this block. */
6284 find_assert_locations_1 (bb, live[rpo[i]]);
6286 /* Merge liveness into the predecessor blocks and free it. */
6287 if (!bitmap_empty_p (live[rpo[i]]))
6289 int pred_rpo = i;
6290 FOR_EACH_EDGE (e, ei, bb->preds)
6292 int pred = e->src->index;
6293 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6294 continue;
6296 if (!live[pred])
6298 live[pred] = sbitmap_alloc (num_ssa_names);
6299 bitmap_clear (live[pred]);
6301 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6303 if (bb_rpo[pred] < pred_rpo)
6304 pred_rpo = bb_rpo[pred];
6307 /* Record the RPO number of the last visited block that needs
6308 live information from this block. */
6309 last_rpo[rpo[i]] = pred_rpo;
6311 else
6313 sbitmap_free (live[rpo[i]]);
6314 live[rpo[i]] = NULL;
6317 /* We can free all successors live bitmaps if all their
6318 predecessors have been visited already. */
6319 FOR_EACH_EDGE (e, ei, bb->succs)
6320 if (last_rpo[e->dest->index] == i
6321 && live[e->dest->index])
6323 sbitmap_free (live[e->dest->index]);
6324 live[e->dest->index] = NULL;
6328 XDELETEVEC (rpo);
6329 XDELETEVEC (bb_rpo);
6330 XDELETEVEC (last_rpo);
6331 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6332 if (live[i])
6333 sbitmap_free (live[i]);
6334 XDELETEVEC (live);
6337 /* Create an ASSERT_EXPR for NAME and insert it in the location
6338 indicated by LOC. Return true if we made any edge insertions. */
6340 static bool
6341 process_assert_insertions_for (tree name, assert_locus *loc)
6343 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6344 gimple *stmt;
6345 tree cond;
6346 gimple *assert_stmt;
6347 edge_iterator ei;
6348 edge e;
6350 /* If we have X <=> X do not insert an assert expr for that. */
6351 if (loc->expr == loc->val)
6352 return false;
6354 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6355 assert_stmt = build_assert_expr_for (cond, name);
6356 if (loc->e)
6358 /* We have been asked to insert the assertion on an edge. This
6359 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6360 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6361 || (gimple_code (gsi_stmt (loc->si))
6362 == GIMPLE_SWITCH));
6364 gsi_insert_on_edge (loc->e, assert_stmt);
6365 return true;
6368 /* If the stmt iterator points at the end then this is an insertion
6369 at the beginning of a block. */
6370 if (gsi_end_p (loc->si))
6372 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
6373 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
6374 return false;
6377 /* Otherwise, we can insert right after LOC->SI iff the
6378 statement must not be the last statement in the block. */
6379 stmt = gsi_stmt (loc->si);
6380 if (!stmt_ends_bb_p (stmt))
6382 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6383 return false;
6386 /* If STMT must be the last statement in BB, we can only insert new
6387 assertions on the non-abnormal edge out of BB. Note that since
6388 STMT is not control flow, there may only be one non-abnormal/eh edge
6389 out of BB. */
6390 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6391 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
6393 gsi_insert_on_edge (e, assert_stmt);
6394 return true;
6397 gcc_unreachable ();
6400 /* Qsort helper for sorting assert locations. If stable is true, don't
6401 use iterative_hash_expr because it can be unstable for -fcompare-debug,
6402 on the other side some pointers might be NULL. */
6404 template <bool stable>
6405 static int
6406 compare_assert_loc (const void *pa, const void *pb)
6408 assert_locus * const a = *(assert_locus * const *)pa;
6409 assert_locus * const b = *(assert_locus * const *)pb;
6411 /* If stable, some asserts might be optimized away already, sort
6412 them last. */
6413 if (stable)
6415 if (a == NULL)
6416 return b != NULL;
6417 else if (b == NULL)
6418 return -1;
6421 if (a->e == NULL && b->e != NULL)
6422 return 1;
6423 else if (a->e != NULL && b->e == NULL)
6424 return -1;
6426 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
6427 no need to test both a->e and b->e. */
6429 /* Sort after destination index. */
6430 if (a->e == NULL)
6432 else if (a->e->dest->index > b->e->dest->index)
6433 return 1;
6434 else if (a->e->dest->index < b->e->dest->index)
6435 return -1;
6437 /* Sort after comp_code. */
6438 if (a->comp_code > b->comp_code)
6439 return 1;
6440 else if (a->comp_code < b->comp_code)
6441 return -1;
6443 hashval_t ha, hb;
6445 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
6446 uses DECL_UID of the VAR_DECL, so sorting might differ between
6447 -g and -g0. When doing the removal of redundant assert exprs
6448 and commonization to successors, this does not matter, but for
6449 the final sort needs to be stable. */
6450 if (stable)
6452 ha = 0;
6453 hb = 0;
6455 else
6457 ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
6458 hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
6461 /* Break the tie using hashing and source/bb index. */
6462 if (ha == hb)
6463 return (a->e != NULL
6464 ? a->e->src->index - b->e->src->index
6465 : a->bb->index - b->bb->index);
6466 return ha > hb ? 1 : -1;
6469 /* Process all the insertions registered for every name N_i registered
6470 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6471 found in ASSERTS_FOR[i]. */
6473 static void
6474 process_assert_insertions (void)
6476 unsigned i;
6477 bitmap_iterator bi;
6478 bool update_edges_p = false;
6479 int num_asserts = 0;
6481 if (dump_file && (dump_flags & TDF_DETAILS))
6482 dump_all_asserts (dump_file);
6484 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6486 assert_locus *loc = asserts_for[i];
6487 gcc_assert (loc);
6489 auto_vec<assert_locus *, 16> asserts;
6490 for (; loc; loc = loc->next)
6491 asserts.safe_push (loc);
6492 asserts.qsort (compare_assert_loc<false>);
6494 /* Push down common asserts to successors and remove redundant ones. */
6495 unsigned ecnt = 0;
6496 assert_locus *common = NULL;
6497 unsigned commonj = 0;
6498 for (unsigned j = 0; j < asserts.length (); ++j)
6500 loc = asserts[j];
6501 if (! loc->e)
6502 common = NULL;
6503 else if (! common
6504 || loc->e->dest != common->e->dest
6505 || loc->comp_code != common->comp_code
6506 || ! operand_equal_p (loc->val, common->val, 0)
6507 || ! operand_equal_p (loc->expr, common->expr, 0))
6509 commonj = j;
6510 common = loc;
6511 ecnt = 1;
6513 else if (loc->e == asserts[j-1]->e)
6515 /* Remove duplicate asserts. */
6516 if (commonj == j - 1)
6518 commonj = j;
6519 common = loc;
6521 free (asserts[j-1]);
6522 asserts[j-1] = NULL;
6524 else
6526 ecnt++;
6527 if (EDGE_COUNT (common->e->dest->preds) == ecnt)
6529 /* We have the same assertion on all incoming edges of a BB.
6530 Insert it at the beginning of that block. */
6531 loc->bb = loc->e->dest;
6532 loc->e = NULL;
6533 loc->si = gsi_none ();
6534 common = NULL;
6535 /* Clear asserts commoned. */
6536 for (; commonj != j; ++commonj)
6537 if (asserts[commonj])
6539 free (asserts[commonj]);
6540 asserts[commonj] = NULL;
6546 /* The asserts vector sorting above might be unstable for
6547 -fcompare-debug, sort again to ensure a stable sort. */
6548 asserts.qsort (compare_assert_loc<true>);
6549 for (unsigned j = 0; j < asserts.length (); ++j)
6551 loc = asserts[j];
6552 if (! loc)
6553 break;
6554 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6555 num_asserts++;
6556 free (loc);
6560 if (update_edges_p)
6561 gsi_commit_edge_inserts ();
6563 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6564 num_asserts);
6568 /* Traverse the flowgraph looking for conditional jumps to insert range
6569 expressions. These range expressions are meant to provide information
6570 to optimizations that need to reason in terms of value ranges. They
6571 will not be expanded into RTL. For instance, given:
6573 x = ...
6574 y = ...
6575 if (x < y)
6576 y = x - 2;
6577 else
6578 x = y + 3;
6580 this pass will transform the code into:
6582 x = ...
6583 y = ...
6584 if (x < y)
6586 x = ASSERT_EXPR <x, x < y>
6587 y = x - 2
6589 else
6591 y = ASSERT_EXPR <y, x >= y>
6592 x = y + 3
6595 The idea is that once copy and constant propagation have run, other
6596 optimizations will be able to determine what ranges of values can 'x'
6597 take in different paths of the code, simply by checking the reaching
6598 definition of 'x'. */
6600 static void
6601 insert_range_assertions (void)
6603 need_assert_for = BITMAP_ALLOC (NULL);
6604 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
6606 calculate_dominance_info (CDI_DOMINATORS);
6608 find_assert_locations ();
6609 if (!bitmap_empty_p (need_assert_for))
6611 process_assert_insertions ();
6612 update_ssa (TODO_update_ssa_no_phi);
6615 if (dump_file && (dump_flags & TDF_DETAILS))
6617 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6618 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6621 free (asserts_for);
6622 BITMAP_FREE (need_assert_for);
6625 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6626 and "struct" hacks. If VRP can determine that the
6627 array subscript is a constant, check if it is outside valid
6628 range. If the array subscript is a RANGE, warn if it is
6629 non-overlapping with valid range.
6630 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6632 static void
6633 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6635 value_range *vr = NULL;
6636 tree low_sub, up_sub;
6637 tree low_bound, up_bound, up_bound_p1;
6639 if (TREE_NO_WARNING (ref))
6640 return;
6642 low_sub = up_sub = TREE_OPERAND (ref, 1);
6643 up_bound = array_ref_up_bound (ref);
6645 /* Can not check flexible arrays. */
6646 if (!up_bound
6647 || TREE_CODE (up_bound) != INTEGER_CST)
6648 return;
6650 /* Accesses to trailing arrays via pointers may access storage
6651 beyond the types array bounds. */
6652 if (warn_array_bounds < 2
6653 && array_at_struct_end_p (ref))
6654 return;
6656 low_bound = array_ref_low_bound (ref);
6657 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6658 build_int_cst (TREE_TYPE (up_bound), 1));
6660 /* Empty array. */
6661 if (tree_int_cst_equal (low_bound, up_bound_p1))
6663 warning_at (location, OPT_Warray_bounds,
6664 "array subscript is above array bounds");
6665 TREE_NO_WARNING (ref) = 1;
6668 if (TREE_CODE (low_sub) == SSA_NAME)
6670 vr = get_value_range (low_sub);
6671 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6673 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6674 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6678 if (vr && vr->type == VR_ANTI_RANGE)
6680 if (TREE_CODE (up_sub) == INTEGER_CST
6681 && (ignore_off_by_one
6682 ? tree_int_cst_lt (up_bound, up_sub)
6683 : tree_int_cst_le (up_bound, up_sub))
6684 && TREE_CODE (low_sub) == INTEGER_CST
6685 && tree_int_cst_le (low_sub, low_bound))
6687 warning_at (location, OPT_Warray_bounds,
6688 "array subscript is outside array bounds");
6689 TREE_NO_WARNING (ref) = 1;
6692 else if (TREE_CODE (up_sub) == INTEGER_CST
6693 && (ignore_off_by_one
6694 ? !tree_int_cst_le (up_sub, up_bound_p1)
6695 : !tree_int_cst_le (up_sub, up_bound)))
6697 if (dump_file && (dump_flags & TDF_DETAILS))
6699 fprintf (dump_file, "Array bound warning for ");
6700 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6701 fprintf (dump_file, "\n");
6703 warning_at (location, OPT_Warray_bounds,
6704 "array subscript is above array bounds");
6705 TREE_NO_WARNING (ref) = 1;
6707 else if (TREE_CODE (low_sub) == INTEGER_CST
6708 && tree_int_cst_lt (low_sub, low_bound))
6710 if (dump_file && (dump_flags & TDF_DETAILS))
6712 fprintf (dump_file, "Array bound warning for ");
6713 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6714 fprintf (dump_file, "\n");
6716 warning_at (location, OPT_Warray_bounds,
6717 "array subscript is below array bounds");
6718 TREE_NO_WARNING (ref) = 1;
6722 /* Searches if the expr T, located at LOCATION computes
6723 address of an ARRAY_REF, and call check_array_ref on it. */
6725 static void
6726 search_for_addr_array (tree t, location_t location)
6728 /* Check each ARRAY_REFs in the reference chain. */
6731 if (TREE_CODE (t) == ARRAY_REF)
6732 check_array_ref (location, t, true /*ignore_off_by_one*/);
6734 t = TREE_OPERAND (t, 0);
6736 while (handled_component_p (t));
6738 if (TREE_CODE (t) == MEM_REF
6739 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6740 && !TREE_NO_WARNING (t))
6742 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6743 tree low_bound, up_bound, el_sz;
6744 offset_int idx;
6745 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6746 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6747 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6748 return;
6750 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6751 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6752 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6753 if (!low_bound
6754 || TREE_CODE (low_bound) != INTEGER_CST
6755 || !up_bound
6756 || TREE_CODE (up_bound) != INTEGER_CST
6757 || !el_sz
6758 || TREE_CODE (el_sz) != INTEGER_CST)
6759 return;
6761 idx = mem_ref_offset (t);
6762 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6763 if (idx < 0)
6765 if (dump_file && (dump_flags & TDF_DETAILS))
6767 fprintf (dump_file, "Array bound warning for ");
6768 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6769 fprintf (dump_file, "\n");
6771 warning_at (location, OPT_Warray_bounds,
6772 "array subscript is below array bounds");
6773 TREE_NO_WARNING (t) = 1;
6775 else if (idx > (wi::to_offset (up_bound)
6776 - wi::to_offset (low_bound) + 1))
6778 if (dump_file && (dump_flags & TDF_DETAILS))
6780 fprintf (dump_file, "Array bound warning for ");
6781 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6782 fprintf (dump_file, "\n");
6784 warning_at (location, OPT_Warray_bounds,
6785 "array subscript is above array bounds");
6786 TREE_NO_WARNING (t) = 1;
6791 /* walk_tree() callback that checks if *TP is
6792 an ARRAY_REF inside an ADDR_EXPR (in which an array
6793 subscript one outside the valid range is allowed). Call
6794 check_array_ref for each ARRAY_REF found. The location is
6795 passed in DATA. */
6797 static tree
6798 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6800 tree t = *tp;
6801 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6802 location_t location;
6804 if (EXPR_HAS_LOCATION (t))
6805 location = EXPR_LOCATION (t);
6806 else
6808 location_t *locp = (location_t *) wi->info;
6809 location = *locp;
6812 *walk_subtree = TRUE;
6814 if (TREE_CODE (t) == ARRAY_REF)
6815 check_array_ref (location, t, false /*ignore_off_by_one*/);
6817 else if (TREE_CODE (t) == ADDR_EXPR)
6819 search_for_addr_array (t, location);
6820 *walk_subtree = FALSE;
6823 return NULL_TREE;
6826 /* Walk over all statements of all reachable BBs and call check_array_bounds
6827 on them. */
6829 static void
6830 check_all_array_refs (void)
6832 basic_block bb;
6833 gimple_stmt_iterator si;
6835 FOR_EACH_BB_FN (bb, cfun)
6837 edge_iterator ei;
6838 edge e;
6839 bool executable = false;
6841 /* Skip blocks that were found to be unreachable. */
6842 FOR_EACH_EDGE (e, ei, bb->preds)
6843 executable |= !!(e->flags & EDGE_EXECUTABLE);
6844 if (!executable)
6845 continue;
6847 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6849 gimple *stmt = gsi_stmt (si);
6850 struct walk_stmt_info wi;
6851 if (!gimple_has_location (stmt)
6852 || is_gimple_debug (stmt))
6853 continue;
6855 memset (&wi, 0, sizeof (wi));
6857 location_t loc = gimple_location (stmt);
6858 wi.info = &loc;
6860 walk_gimple_op (gsi_stmt (si),
6861 check_array_bounds,
6862 &wi);
6867 /* Return true if all imm uses of VAR are either in STMT, or
6868 feed (optionally through a chain of single imm uses) GIMPLE_COND
6869 in basic block COND_BB. */
6871 static bool
6872 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
6874 use_operand_p use_p, use2_p;
6875 imm_use_iterator iter;
6877 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6878 if (USE_STMT (use_p) != stmt)
6880 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
6881 if (is_gimple_debug (use_stmt))
6882 continue;
6883 while (is_gimple_assign (use_stmt)
6884 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6885 && single_imm_use (gimple_assign_lhs (use_stmt),
6886 &use2_p, &use_stmt2))
6887 use_stmt = use_stmt2;
6888 if (gimple_code (use_stmt) != GIMPLE_COND
6889 || gimple_bb (use_stmt) != cond_bb)
6890 return false;
6892 return true;
6895 /* Handle
6896 _4 = x_3 & 31;
6897 if (_4 != 0)
6898 goto <bb 6>;
6899 else
6900 goto <bb 7>;
6901 <bb 6>:
6902 __builtin_unreachable ();
6903 <bb 7>:
6904 x_5 = ASSERT_EXPR <x_3, ...>;
6905 If x_3 has no other immediate uses (checked by caller),
6906 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6907 from the non-zero bitmask. */
6909 static void
6910 maybe_set_nonzero_bits (basic_block bb, tree var)
6912 edge e = single_pred_edge (bb);
6913 basic_block cond_bb = e->src;
6914 gimple *stmt = last_stmt (cond_bb);
6915 tree cst;
6917 if (stmt == NULL
6918 || gimple_code (stmt) != GIMPLE_COND
6919 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6920 ? EQ_EXPR : NE_EXPR)
6921 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6922 || !integer_zerop (gimple_cond_rhs (stmt)))
6923 return;
6925 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6926 if (!is_gimple_assign (stmt)
6927 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6928 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6929 return;
6930 if (gimple_assign_rhs1 (stmt) != var)
6932 gimple *stmt2;
6934 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6935 return;
6936 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6937 if (!gimple_assign_cast_p (stmt2)
6938 || gimple_assign_rhs1 (stmt2) != var
6939 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6940 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6941 != TYPE_PRECISION (TREE_TYPE (var))))
6942 return;
6944 cst = gimple_assign_rhs2 (stmt);
6945 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6948 /* Convert range assertion expressions into the implied copies and
6949 copy propagate away the copies. Doing the trivial copy propagation
6950 here avoids the need to run the full copy propagation pass after
6951 VRP.
6953 FIXME, this will eventually lead to copy propagation removing the
6954 names that had useful range information attached to them. For
6955 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6956 then N_i will have the range [3, +INF].
6958 However, by converting the assertion into the implied copy
6959 operation N_i = N_j, we will then copy-propagate N_j into the uses
6960 of N_i and lose the range information. We may want to hold on to
6961 ASSERT_EXPRs a little while longer as the ranges could be used in
6962 things like jump threading.
6964 The problem with keeping ASSERT_EXPRs around is that passes after
6965 VRP need to handle them appropriately.
6967 Another approach would be to make the range information a first
6968 class property of the SSA_NAME so that it can be queried from
6969 any pass. This is made somewhat more complex by the need for
6970 multiple ranges to be associated with one SSA_NAME. */
6972 static void
6973 remove_range_assertions (void)
6975 basic_block bb;
6976 gimple_stmt_iterator si;
6977 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6978 a basic block preceeded by GIMPLE_COND branching to it and
6979 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6980 int is_unreachable;
6982 /* Note that the BSI iterator bump happens at the bottom of the
6983 loop and no bump is necessary if we're removing the statement
6984 referenced by the current BSI. */
6985 FOR_EACH_BB_FN (bb, cfun)
6986 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6988 gimple *stmt = gsi_stmt (si);
6990 if (is_gimple_assign (stmt)
6991 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6993 tree lhs = gimple_assign_lhs (stmt);
6994 tree rhs = gimple_assign_rhs1 (stmt);
6995 tree var;
6997 var = ASSERT_EXPR_VAR (rhs);
6999 if (TREE_CODE (var) == SSA_NAME
7000 && !POINTER_TYPE_P (TREE_TYPE (lhs))
7001 && SSA_NAME_RANGE_INFO (lhs))
7003 if (is_unreachable == -1)
7005 is_unreachable = 0;
7006 if (single_pred_p (bb)
7007 && assert_unreachable_fallthru_edge_p
7008 (single_pred_edge (bb)))
7009 is_unreachable = 1;
7011 /* Handle
7012 if (x_7 >= 10 && x_7 < 20)
7013 __builtin_unreachable ();
7014 x_8 = ASSERT_EXPR <x_7, ...>;
7015 if the only uses of x_7 are in the ASSERT_EXPR and
7016 in the condition. In that case, we can copy the
7017 range info from x_8 computed in this pass also
7018 for x_7. */
7019 if (is_unreachable
7020 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
7021 single_pred (bb)))
7023 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
7024 SSA_NAME_RANGE_INFO (lhs)->get_min (),
7025 SSA_NAME_RANGE_INFO (lhs)->get_max ());
7026 maybe_set_nonzero_bits (bb, var);
7030 /* Propagate the RHS into every use of the LHS. For SSA names
7031 also propagate abnormals as it merely restores the original
7032 IL in this case (an replace_uses_by would assert). */
7033 if (TREE_CODE (var) == SSA_NAME)
7035 imm_use_iterator iter;
7036 use_operand_p use_p;
7037 gimple *use_stmt;
7038 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7039 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7040 SET_USE (use_p, var);
7042 else
7043 replace_uses_by (lhs, var);
7045 /* And finally, remove the copy, it is not needed. */
7046 gsi_remove (&si, true);
7047 release_defs (stmt);
7049 else
7051 if (!is_gimple_debug (gsi_stmt (si)))
7052 is_unreachable = 0;
7053 gsi_next (&si);
7059 /* Return true if STMT is interesting for VRP. */
7061 static bool
7062 stmt_interesting_for_vrp (gimple *stmt)
7064 if (gimple_code (stmt) == GIMPLE_PHI)
7066 tree res = gimple_phi_result (stmt);
7067 return (!virtual_operand_p (res)
7068 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
7069 || POINTER_TYPE_P (TREE_TYPE (res))));
7071 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7073 tree lhs = gimple_get_lhs (stmt);
7075 /* In general, assignments with virtual operands are not useful
7076 for deriving ranges, with the obvious exception of calls to
7077 builtin functions. */
7078 if (lhs && TREE_CODE (lhs) == SSA_NAME
7079 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7080 || POINTER_TYPE_P (TREE_TYPE (lhs)))
7081 && (is_gimple_call (stmt)
7082 || !gimple_vuse (stmt)))
7083 return true;
7084 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7085 switch (gimple_call_internal_fn (stmt))
7087 case IFN_ADD_OVERFLOW:
7088 case IFN_SUB_OVERFLOW:
7089 case IFN_MUL_OVERFLOW:
7090 case IFN_ATOMIC_COMPARE_EXCHANGE:
7091 /* These internal calls return _Complex integer type,
7092 but are interesting to VRP nevertheless. */
7093 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7094 return true;
7095 break;
7096 default:
7097 break;
7100 else if (gimple_code (stmt) == GIMPLE_COND
7101 || gimple_code (stmt) == GIMPLE_SWITCH)
7102 return true;
7104 return false;
7107 /* Initialize VRP lattice. */
7109 static void
7110 vrp_initialize_lattice ()
7112 values_propagated = false;
7113 num_vr_values = num_ssa_names;
7114 vr_value = XCNEWVEC (value_range *, num_vr_values);
7115 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
7116 bitmap_obstack_initialize (&vrp_equiv_obstack);
7119 /* Initialization required by ssa_propagate engine. */
7121 static void
7122 vrp_initialize ()
7124 basic_block bb;
7126 FOR_EACH_BB_FN (bb, cfun)
7128 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7129 gsi_next (&si))
7131 gphi *phi = si.phi ();
7132 if (!stmt_interesting_for_vrp (phi))
7134 tree lhs = PHI_RESULT (phi);
7135 set_value_range_to_varying (get_value_range (lhs));
7136 prop_set_simulate_again (phi, false);
7138 else
7139 prop_set_simulate_again (phi, true);
7142 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
7143 gsi_next (&si))
7145 gimple *stmt = gsi_stmt (si);
7147 /* If the statement is a control insn, then we do not
7148 want to avoid simulating the statement once. Failure
7149 to do so means that those edges will never get added. */
7150 if (stmt_ends_bb_p (stmt))
7151 prop_set_simulate_again (stmt, true);
7152 else if (!stmt_interesting_for_vrp (stmt))
7154 set_defs_to_varying (stmt);
7155 prop_set_simulate_again (stmt, false);
7157 else
7158 prop_set_simulate_again (stmt, true);
7163 /* Return the singleton value-range for NAME or NAME. */
7165 static inline tree
7166 vrp_valueize (tree name)
7168 if (TREE_CODE (name) == SSA_NAME)
7170 value_range *vr = get_value_range (name);
7171 if (vr->type == VR_RANGE
7172 && (TREE_CODE (vr->min) == SSA_NAME
7173 || is_gimple_min_invariant (vr->min))
7174 && vrp_operand_equal_p (vr->min, vr->max))
7175 return vr->min;
7177 return name;
7180 /* Return the singleton value-range for NAME if that is a constant
7181 but signal to not follow SSA edges. */
7183 static inline tree
7184 vrp_valueize_1 (tree name)
7186 if (TREE_CODE (name) == SSA_NAME)
7188 /* If the definition may be simulated again we cannot follow
7189 this SSA edge as the SSA propagator does not necessarily
7190 re-visit the use. */
7191 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
7192 if (!gimple_nop_p (def_stmt)
7193 && prop_simulate_again_p (def_stmt))
7194 return NULL_TREE;
7195 value_range *vr = get_value_range (name);
7196 if (range_int_cst_singleton_p (vr))
7197 return vr->min;
7199 return name;
7202 /* Visit assignment STMT. If it produces an interesting range, record
7203 the range in VR and set LHS to OUTPUT_P. */
7205 static void
7206 vrp_visit_assignment_or_call (gimple *stmt, tree *output_p, value_range *vr)
7208 tree lhs;
7209 enum gimple_code code = gimple_code (stmt);
7210 lhs = gimple_get_lhs (stmt);
7211 *output_p = NULL_TREE;
7213 /* We only keep track of ranges in integral and pointer types. */
7214 if (TREE_CODE (lhs) == SSA_NAME
7215 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7216 /* It is valid to have NULL MIN/MAX values on a type. See
7217 build_range_type. */
7218 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7219 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7220 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7222 *output_p = lhs;
7224 /* Try folding the statement to a constant first. */
7225 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7226 vrp_valueize_1);
7227 if (tem)
7229 if (TREE_CODE (tem) == SSA_NAME
7230 && (SSA_NAME_IS_DEFAULT_DEF (tem)
7231 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem))))
7233 extract_range_from_ssa_name (vr, tem);
7234 return;
7236 else if (is_gimple_min_invariant (tem))
7238 set_value_range_to_value (vr, tem, NULL);
7239 return;
7242 /* Then dispatch to value-range extracting functions. */
7243 if (code == GIMPLE_CALL)
7244 extract_range_basic (vr, stmt);
7245 else
7246 extract_range_from_assignment (vr, as_a <gassign *> (stmt));
7250 /* Helper that gets the value range of the SSA_NAME with version I
7251 or a symbolic range containing the SSA_NAME only if the value range
7252 is varying or undefined. */
7254 static inline value_range
7255 get_vr_for_comparison (int i)
7257 value_range vr = *get_value_range (ssa_name (i));
7259 /* If name N_i does not have a valid range, use N_i as its own
7260 range. This allows us to compare against names that may
7261 have N_i in their ranges. */
7262 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7264 vr.type = VR_RANGE;
7265 vr.min = ssa_name (i);
7266 vr.max = ssa_name (i);
7269 return vr;
7272 /* Compare all the value ranges for names equivalent to VAR with VAL
7273 using comparison code COMP. Return the same value returned by
7274 compare_range_with_value, including the setting of
7275 *STRICT_OVERFLOW_P. */
7277 static tree
7278 compare_name_with_value (enum tree_code comp, tree var, tree val,
7279 bool *strict_overflow_p, bool use_equiv_p)
7281 bitmap_iterator bi;
7282 unsigned i;
7283 bitmap e;
7284 tree retval, t;
7285 int used_strict_overflow;
7286 bool sop;
7287 value_range equiv_vr;
7289 /* Get the set of equivalences for VAR. */
7290 e = get_value_range (var)->equiv;
7292 /* Start at -1. Set it to 0 if we do a comparison without relying
7293 on overflow, or 1 if all comparisons rely on overflow. */
7294 used_strict_overflow = -1;
7296 /* Compare vars' value range with val. */
7297 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7298 sop = false;
7299 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7300 if (retval)
7301 used_strict_overflow = sop ? 1 : 0;
7303 /* If the equiv set is empty we have done all work we need to do. */
7304 if (e == NULL)
7306 if (retval
7307 && used_strict_overflow > 0)
7308 *strict_overflow_p = true;
7309 return retval;
7312 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7314 tree name = ssa_name (i);
7315 if (! name)
7316 continue;
7318 if (! use_equiv_p
7319 && ! SSA_NAME_IS_DEFAULT_DEF (name)
7320 && prop_simulate_again_p (SSA_NAME_DEF_STMT (name)))
7321 continue;
7323 equiv_vr = get_vr_for_comparison (i);
7324 sop = false;
7325 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7326 if (t)
7328 /* If we get different answers from different members
7329 of the equivalence set this check must be in a dead
7330 code region. Folding it to a trap representation
7331 would be correct here. For now just return don't-know. */
7332 if (retval != NULL
7333 && t != retval)
7335 retval = NULL_TREE;
7336 break;
7338 retval = t;
7340 if (!sop)
7341 used_strict_overflow = 0;
7342 else if (used_strict_overflow < 0)
7343 used_strict_overflow = 1;
7347 if (retval
7348 && used_strict_overflow > 0)
7349 *strict_overflow_p = true;
7351 return retval;
7355 /* Given a comparison code COMP and names N1 and N2, compare all the
7356 ranges equivalent to N1 against all the ranges equivalent to N2
7357 to determine the value of N1 COMP N2. Return the same value
7358 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7359 whether we relied on undefined signed overflow in the comparison. */
7362 static tree
7363 compare_names (enum tree_code comp, tree n1, tree n2,
7364 bool *strict_overflow_p)
7366 tree t, retval;
7367 bitmap e1, e2;
7368 bitmap_iterator bi1, bi2;
7369 unsigned i1, i2;
7370 int used_strict_overflow;
7371 static bitmap_obstack *s_obstack = NULL;
7372 static bitmap s_e1 = NULL, s_e2 = NULL;
7374 /* Compare the ranges of every name equivalent to N1 against the
7375 ranges of every name equivalent to N2. */
7376 e1 = get_value_range (n1)->equiv;
7377 e2 = get_value_range (n2)->equiv;
7379 /* Use the fake bitmaps if e1 or e2 are not available. */
7380 if (s_obstack == NULL)
7382 s_obstack = XNEW (bitmap_obstack);
7383 bitmap_obstack_initialize (s_obstack);
7384 s_e1 = BITMAP_ALLOC (s_obstack);
7385 s_e2 = BITMAP_ALLOC (s_obstack);
7387 if (e1 == NULL)
7388 e1 = s_e1;
7389 if (e2 == NULL)
7390 e2 = s_e2;
7392 /* Add N1 and N2 to their own set of equivalences to avoid
7393 duplicating the body of the loop just to check N1 and N2
7394 ranges. */
7395 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7396 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7398 /* If the equivalence sets have a common intersection, then the two
7399 names can be compared without checking their ranges. */
7400 if (bitmap_intersect_p (e1, e2))
7402 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7403 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7405 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7406 ? boolean_true_node
7407 : boolean_false_node;
7410 /* Start at -1. Set it to 0 if we do a comparison without relying
7411 on overflow, or 1 if all comparisons rely on overflow. */
7412 used_strict_overflow = -1;
7414 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7415 N2 to their own set of equivalences to avoid duplicating the body
7416 of the loop just to check N1 and N2 ranges. */
7417 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7419 if (! ssa_name (i1))
7420 continue;
7422 value_range vr1 = get_vr_for_comparison (i1);
7424 t = retval = NULL_TREE;
7425 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7427 if (! ssa_name (i2))
7428 continue;
7430 bool sop = false;
7432 value_range vr2 = get_vr_for_comparison (i2);
7434 t = compare_ranges (comp, &vr1, &vr2, &sop);
7435 if (t)
7437 /* If we get different answers from different members
7438 of the equivalence set this check must be in a dead
7439 code region. Folding it to a trap representation
7440 would be correct here. For now just return don't-know. */
7441 if (retval != NULL
7442 && t != retval)
7444 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7445 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7446 return NULL_TREE;
7448 retval = t;
7450 if (!sop)
7451 used_strict_overflow = 0;
7452 else if (used_strict_overflow < 0)
7453 used_strict_overflow = 1;
7457 if (retval)
7459 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7460 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7461 if (used_strict_overflow > 0)
7462 *strict_overflow_p = true;
7463 return retval;
7467 /* None of the equivalent ranges are useful in computing this
7468 comparison. */
7469 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7470 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7471 return NULL_TREE;
7474 /* Helper function for vrp_evaluate_conditional_warnv & other
7475 optimizers. */
7477 static tree
7478 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7479 tree op0, tree op1,
7480 bool * strict_overflow_p)
7482 value_range *vr0, *vr1;
7484 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7485 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7487 tree res = NULL_TREE;
7488 if (vr0 && vr1)
7489 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7490 if (!res && vr0)
7491 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7492 if (!res && vr1)
7493 res = (compare_range_with_value
7494 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7495 return res;
7498 /* Helper function for vrp_evaluate_conditional_warnv. */
7500 static tree
7501 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7502 tree op1, bool use_equiv_p,
7503 bool *strict_overflow_p, bool *only_ranges)
7505 tree ret;
7506 if (only_ranges)
7507 *only_ranges = true;
7509 /* We only deal with integral and pointer types. */
7510 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7511 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7512 return NULL_TREE;
7514 /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed
7515 as a simple equality test, then prefer that over its current form
7516 for evaluation.
7518 An overflow test which collapses to an equality test can always be
7519 expressed as a comparison of one argument against zero. Overflow
7520 occurs when the chosen argument is zero and does not occur if the
7521 chosen argument is not zero. */
7522 tree x;
7523 if (overflow_comparison_p (code, op0, op1, use_equiv_p, &x))
7525 wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED);
7526 /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0)
7527 B = A - 1; if (A > B) -> B = A - 1; if (A != 0)
7528 B = A + 1; if (B < A) -> B = A + 1; if (B == 0)
7529 B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */
7530 if (integer_zerop (x))
7532 op1 = x;
7533 code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR;
7535 /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0)
7536 B = A + 1; if (A < B) -> B = A + 1; if (B != 0)
7537 B = A - 1; if (B > A) -> B = A - 1; if (A == 0)
7538 B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */
7539 else if (wi::eq_p (x, max - 1))
7541 op0 = op1;
7542 op1 = wide_int_to_tree (TREE_TYPE (op0), 0);
7543 code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR;
7547 if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7548 (code, op0, op1, strict_overflow_p)))
7549 return ret;
7550 if (only_ranges)
7551 *only_ranges = false;
7552 /* Do not use compare_names during propagation, it's quadratic. */
7553 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME
7554 && use_equiv_p)
7555 return compare_names (code, op0, op1, strict_overflow_p);
7556 else if (TREE_CODE (op0) == SSA_NAME)
7557 return compare_name_with_value (code, op0, op1,
7558 strict_overflow_p, use_equiv_p);
7559 else if (TREE_CODE (op1) == SSA_NAME)
7560 return compare_name_with_value (swap_tree_comparison (code), op1, op0,
7561 strict_overflow_p, use_equiv_p);
7562 return NULL_TREE;
7565 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7566 information. Return NULL if the conditional can not be evaluated.
7567 The ranges of all the names equivalent with the operands in COND
7568 will be used when trying to compute the value. If the result is
7569 based on undefined signed overflow, issue a warning if
7570 appropriate. */
7572 static tree
7573 vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt)
7575 bool sop;
7576 tree ret;
7577 bool only_ranges;
7579 /* Some passes and foldings leak constants with overflow flag set
7580 into the IL. Avoid doing wrong things with these and bail out. */
7581 if ((TREE_CODE (op0) == INTEGER_CST
7582 && TREE_OVERFLOW (op0))
7583 || (TREE_CODE (op1) == INTEGER_CST
7584 && TREE_OVERFLOW (op1)))
7585 return NULL_TREE;
7587 sop = false;
7588 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7589 &only_ranges);
7591 if (ret && sop)
7593 enum warn_strict_overflow_code wc;
7594 const char* warnmsg;
7596 if (is_gimple_min_invariant (ret))
7598 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7599 warnmsg = G_("assuming signed overflow does not occur when "
7600 "simplifying conditional to constant");
7602 else
7604 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7605 warnmsg = G_("assuming signed overflow does not occur when "
7606 "simplifying conditional");
7609 if (issue_strict_overflow_warning (wc))
7611 location_t location;
7613 if (!gimple_has_location (stmt))
7614 location = input_location;
7615 else
7616 location = gimple_location (stmt);
7617 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7621 if (warn_type_limits
7622 && ret && only_ranges
7623 && TREE_CODE_CLASS (code) == tcc_comparison
7624 && TREE_CODE (op0) == SSA_NAME)
7626 /* If the comparison is being folded and the operand on the LHS
7627 is being compared against a constant value that is outside of
7628 the natural range of OP0's type, then the predicate will
7629 always fold regardless of the value of OP0. If -Wtype-limits
7630 was specified, emit a warning. */
7631 tree type = TREE_TYPE (op0);
7632 value_range *vr0 = get_value_range (op0);
7634 if (vr0->type == VR_RANGE
7635 && INTEGRAL_TYPE_P (type)
7636 && vrp_val_is_min (vr0->min)
7637 && vrp_val_is_max (vr0->max)
7638 && is_gimple_min_invariant (op1))
7640 location_t location;
7642 if (!gimple_has_location (stmt))
7643 location = input_location;
7644 else
7645 location = gimple_location (stmt);
7647 warning_at (location, OPT_Wtype_limits,
7648 integer_zerop (ret)
7649 ? G_("comparison always false "
7650 "due to limited range of data type")
7651 : G_("comparison always true "
7652 "due to limited range of data type"));
7656 return ret;
7660 /* Visit conditional statement STMT. If we can determine which edge
7661 will be taken out of STMT's basic block, record it in
7662 *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
7664 static void
7665 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7667 tree val;
7669 *taken_edge_p = NULL;
7671 if (dump_file && (dump_flags & TDF_DETAILS))
7673 tree use;
7674 ssa_op_iter i;
7676 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7677 print_gimple_stmt (dump_file, stmt, 0);
7678 fprintf (dump_file, "\nWith known ranges\n");
7680 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7682 fprintf (dump_file, "\t");
7683 print_generic_expr (dump_file, use);
7684 fprintf (dump_file, ": ");
7685 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7688 fprintf (dump_file, "\n");
7691 /* Compute the value of the predicate COND by checking the known
7692 ranges of each of its operands.
7694 Note that we cannot evaluate all the equivalent ranges here
7695 because those ranges may not yet be final and with the current
7696 propagation strategy, we cannot determine when the value ranges
7697 of the names in the equivalence set have changed.
7699 For instance, given the following code fragment
7701 i_5 = PHI <8, i_13>
7703 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7704 if (i_14 == 1)
7707 Assume that on the first visit to i_14, i_5 has the temporary
7708 range [8, 8] because the second argument to the PHI function is
7709 not yet executable. We derive the range ~[0, 0] for i_14 and the
7710 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7711 the first time, since i_14 is equivalent to the range [8, 8], we
7712 determine that the predicate is always false.
7714 On the next round of propagation, i_13 is determined to be
7715 VARYING, which causes i_5 to drop down to VARYING. So, another
7716 visit to i_14 is scheduled. In this second visit, we compute the
7717 exact same range and equivalence set for i_14, namely ~[0, 0] and
7718 { i_5 }. But we did not have the previous range for i_5
7719 registered, so vrp_visit_assignment thinks that the range for
7720 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7721 is not visited again, which stops propagation from visiting
7722 statements in the THEN clause of that if().
7724 To properly fix this we would need to keep the previous range
7725 value for the names in the equivalence set. This way we would've
7726 discovered that from one visit to the other i_5 changed from
7727 range [8, 8] to VR_VARYING.
7729 However, fixing this apparent limitation may not be worth the
7730 additional checking. Testing on several code bases (GCC, DLV,
7731 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7732 4 more predicates folded in SPEC. */
7734 bool sop;
7735 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7736 gimple_cond_lhs (stmt),
7737 gimple_cond_rhs (stmt),
7738 false, &sop, NULL);
7739 if (val)
7740 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7742 if (dump_file && (dump_flags & TDF_DETAILS))
7744 fprintf (dump_file, "\nPredicate evaluates to: ");
7745 if (val == NULL_TREE)
7746 fprintf (dump_file, "DON'T KNOW\n");
7747 else
7748 print_generic_stmt (dump_file, val);
7752 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7753 that includes the value VAL. The search is restricted to the range
7754 [START_IDX, n - 1] where n is the size of VEC.
7756 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7757 returned.
7759 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7760 it is placed in IDX and false is returned.
7762 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7763 returned. */
7765 static bool
7766 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
7768 size_t n = gimple_switch_num_labels (stmt);
7769 size_t low, high;
7771 /* Find case label for minimum of the value range or the next one.
7772 At each iteration we are searching in [low, high - 1]. */
7774 for (low = start_idx, high = n; high != low; )
7776 tree t;
7777 int cmp;
7778 /* Note that i != high, so we never ask for n. */
7779 size_t i = (high + low) / 2;
7780 t = gimple_switch_label (stmt, i);
7782 /* Cache the result of comparing CASE_LOW and val. */
7783 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7785 if (cmp == 0)
7787 /* Ranges cannot be empty. */
7788 *idx = i;
7789 return true;
7791 else if (cmp > 0)
7792 high = i;
7793 else
7795 low = i + 1;
7796 if (CASE_HIGH (t) != NULL
7797 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7799 *idx = i;
7800 return true;
7805 *idx = high;
7806 return false;
7809 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7810 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7811 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7812 then MAX_IDX < MIN_IDX.
7813 Returns true if the default label is not needed. */
7815 static bool
7816 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
7817 size_t *max_idx)
7819 size_t i, j;
7820 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7821 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7823 if (i == j
7824 && min_take_default
7825 && max_take_default)
7827 /* Only the default case label reached.
7828 Return an empty range. */
7829 *min_idx = 1;
7830 *max_idx = 0;
7831 return false;
7833 else
7835 bool take_default = min_take_default || max_take_default;
7836 tree low, high;
7837 size_t k;
7839 if (max_take_default)
7840 j--;
7842 /* If the case label range is continuous, we do not need
7843 the default case label. Verify that. */
7844 high = CASE_LOW (gimple_switch_label (stmt, i));
7845 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7846 high = CASE_HIGH (gimple_switch_label (stmt, i));
7847 for (k = i + 1; k <= j; ++k)
7849 low = CASE_LOW (gimple_switch_label (stmt, k));
7850 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7852 take_default = true;
7853 break;
7855 high = low;
7856 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7857 high = CASE_HIGH (gimple_switch_label (stmt, k));
7860 *min_idx = i;
7861 *max_idx = j;
7862 return !take_default;
7866 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7867 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7868 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7869 Returns true if the default label is not needed. */
7871 static bool
7872 find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1,
7873 size_t *max_idx1, size_t *min_idx2,
7874 size_t *max_idx2)
7876 size_t i, j, k, l;
7877 unsigned int n = gimple_switch_num_labels (stmt);
7878 bool take_default;
7879 tree case_low, case_high;
7880 tree min = vr->min, max = vr->max;
7882 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7884 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7886 /* Set second range to emtpy. */
7887 *min_idx2 = 1;
7888 *max_idx2 = 0;
7890 if (vr->type == VR_RANGE)
7892 *min_idx1 = i;
7893 *max_idx1 = j;
7894 return !take_default;
7897 /* Set first range to all case labels. */
7898 *min_idx1 = 1;
7899 *max_idx1 = n - 1;
7901 if (i > j)
7902 return false;
7904 /* Make sure all the values of case labels [i , j] are contained in
7905 range [MIN, MAX]. */
7906 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7907 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7908 if (tree_int_cst_compare (case_low, min) < 0)
7909 i += 1;
7910 if (case_high != NULL_TREE
7911 && tree_int_cst_compare (max, case_high) < 0)
7912 j -= 1;
7914 if (i > j)
7915 return false;
7917 /* If the range spans case labels [i, j], the corresponding anti-range spans
7918 the labels [1, i - 1] and [j + 1, n - 1]. */
7919 k = j + 1;
7920 l = n - 1;
7921 if (k > l)
7923 k = 1;
7924 l = 0;
7927 j = i - 1;
7928 i = 1;
7929 if (i > j)
7931 i = k;
7932 j = l;
7933 k = 1;
7934 l = 0;
7937 *min_idx1 = i;
7938 *max_idx1 = j;
7939 *min_idx2 = k;
7940 *max_idx2 = l;
7941 return false;
7944 /* Visit switch statement STMT. If we can determine which edge
7945 will be taken out of STMT's basic block, record it in
7946 *TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */
7948 static void
7949 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
7951 tree op, val;
7952 value_range *vr;
7953 size_t i = 0, j = 0, k, l;
7954 bool take_default;
7956 *taken_edge_p = NULL;
7957 op = gimple_switch_index (stmt);
7958 if (TREE_CODE (op) != SSA_NAME)
7959 return;
7961 vr = get_value_range (op);
7962 if (dump_file && (dump_flags & TDF_DETAILS))
7964 fprintf (dump_file, "\nVisiting switch expression with operand ");
7965 print_generic_expr (dump_file, op);
7966 fprintf (dump_file, " with known range ");
7967 dump_value_range (dump_file, vr);
7968 fprintf (dump_file, "\n");
7971 if ((vr->type != VR_RANGE
7972 && vr->type != VR_ANTI_RANGE)
7973 || symbolic_range_p (vr))
7974 return;
7976 /* Find the single edge that is taken from the switch expression. */
7977 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7979 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7980 label */
7981 if (j < i)
7983 gcc_assert (take_default);
7984 val = gimple_switch_default_label (stmt);
7986 else
7988 /* Check if labels with index i to j and maybe the default label
7989 are all reaching the same label. */
7991 val = gimple_switch_label (stmt, i);
7992 if (take_default
7993 && CASE_LABEL (gimple_switch_default_label (stmt))
7994 != CASE_LABEL (val))
7996 if (dump_file && (dump_flags & TDF_DETAILS))
7997 fprintf (dump_file, " not a single destination for this "
7998 "range\n");
7999 return;
8001 for (++i; i <= j; ++i)
8003 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
8005 if (dump_file && (dump_flags & TDF_DETAILS))
8006 fprintf (dump_file, " not a single destination for this "
8007 "range\n");
8008 return;
8011 for (; k <= l; ++k)
8013 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
8015 if (dump_file && (dump_flags & TDF_DETAILS))
8016 fprintf (dump_file, " not a single destination for this "
8017 "range\n");
8018 return;
8023 *taken_edge_p = find_edge (gimple_bb (stmt),
8024 label_to_block (CASE_LABEL (val)));
8026 if (dump_file && (dump_flags & TDF_DETAILS))
8028 fprintf (dump_file, " will take edge to ");
8029 print_generic_stmt (dump_file, CASE_LABEL (val));
8034 /* Evaluate statement STMT. If the statement produces a useful range,
8035 set VR and corepsponding OUTPUT_P.
8037 If STMT is a conditional branch and we can determine its truth
8038 value, the taken edge is recorded in *TAKEN_EDGE_P. */
8040 static void
8041 extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
8042 tree *output_p, value_range *vr)
8045 if (dump_file && (dump_flags & TDF_DETAILS))
8047 fprintf (dump_file, "\nVisiting statement:\n");
8048 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
8051 if (!stmt_interesting_for_vrp (stmt))
8052 gcc_assert (stmt_ends_bb_p (stmt));
8053 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
8054 vrp_visit_assignment_or_call (stmt, output_p, vr);
8055 else if (gimple_code (stmt) == GIMPLE_COND)
8056 vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
8057 else if (gimple_code (stmt) == GIMPLE_SWITCH)
8058 vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
8061 /* Evaluate statement STMT. If the statement produces a useful range,
8062 return SSA_PROP_INTERESTING and record the SSA name with the
8063 interesting range into *OUTPUT_P.
8065 If STMT is a conditional branch and we can determine its truth
8066 value, the taken edge is recorded in *TAKEN_EDGE_P.
8068 If STMT produces a varying value, return SSA_PROP_VARYING. */
8070 static enum ssa_prop_result
8071 vrp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
8073 value_range vr = VR_INITIALIZER;
8074 tree lhs = gimple_get_lhs (stmt);
8075 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
8077 if (*output_p)
8079 if (update_value_range (*output_p, &vr))
8081 if (dump_file && (dump_flags & TDF_DETAILS))
8083 fprintf (dump_file, "Found new range for ");
8084 print_generic_expr (dump_file, *output_p);
8085 fprintf (dump_file, ": ");
8086 dump_value_range (dump_file, &vr);
8087 fprintf (dump_file, "\n");
8090 if (vr.type == VR_VARYING)
8091 return SSA_PROP_VARYING;
8093 return SSA_PROP_INTERESTING;
8095 return SSA_PROP_NOT_INTERESTING;
8098 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
8099 switch (gimple_call_internal_fn (stmt))
8101 case IFN_ADD_OVERFLOW:
8102 case IFN_SUB_OVERFLOW:
8103 case IFN_MUL_OVERFLOW:
8104 case IFN_ATOMIC_COMPARE_EXCHANGE:
8105 /* These internal calls return _Complex integer type,
8106 which VRP does not track, but the immediate uses
8107 thereof might be interesting. */
8108 if (lhs && TREE_CODE (lhs) == SSA_NAME)
8110 imm_use_iterator iter;
8111 use_operand_p use_p;
8112 enum ssa_prop_result res = SSA_PROP_VARYING;
8114 set_value_range_to_varying (get_value_range (lhs));
8116 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
8118 gimple *use_stmt = USE_STMT (use_p);
8119 if (!is_gimple_assign (use_stmt))
8120 continue;
8121 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
8122 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
8123 continue;
8124 tree rhs1 = gimple_assign_rhs1 (use_stmt);
8125 tree use_lhs = gimple_assign_lhs (use_stmt);
8126 if (TREE_CODE (rhs1) != rhs_code
8127 || TREE_OPERAND (rhs1, 0) != lhs
8128 || TREE_CODE (use_lhs) != SSA_NAME
8129 || !stmt_interesting_for_vrp (use_stmt)
8130 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
8131 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
8132 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
8133 continue;
8135 /* If there is a change in the value range for any of the
8136 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
8137 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
8138 or IMAGPART_EXPR immediate uses, but none of them have
8139 a change in their value ranges, return
8140 SSA_PROP_NOT_INTERESTING. If there are no
8141 {REAL,IMAG}PART_EXPR uses at all,
8142 return SSA_PROP_VARYING. */
8143 value_range new_vr = VR_INITIALIZER;
8144 extract_range_basic (&new_vr, use_stmt);
8145 value_range *old_vr = get_value_range (use_lhs);
8146 if (old_vr->type != new_vr.type
8147 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
8148 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
8149 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
8150 res = SSA_PROP_INTERESTING;
8151 else
8152 res = SSA_PROP_NOT_INTERESTING;
8153 BITMAP_FREE (new_vr.equiv);
8154 if (res == SSA_PROP_INTERESTING)
8156 *output_p = lhs;
8157 return res;
8161 return res;
8163 break;
8164 default:
8165 break;
8168 /* All other statements produce nothing of interest for VRP, so mark
8169 their outputs varying and prevent further simulation. */
8170 set_defs_to_varying (stmt);
8172 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
8175 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8176 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8177 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8178 possible such range. The resulting range is not canonicalized. */
8180 static void
8181 union_ranges (enum value_range_type *vr0type,
8182 tree *vr0min, tree *vr0max,
8183 enum value_range_type vr1type,
8184 tree vr1min, tree vr1max)
8186 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8187 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8189 /* [] is vr0, () is vr1 in the following classification comments. */
8190 if (mineq && maxeq)
8192 /* [( )] */
8193 if (*vr0type == vr1type)
8194 /* Nothing to do for equal ranges. */
8196 else if ((*vr0type == VR_RANGE
8197 && vr1type == VR_ANTI_RANGE)
8198 || (*vr0type == VR_ANTI_RANGE
8199 && vr1type == VR_RANGE))
8201 /* For anti-range with range union the result is varying. */
8202 goto give_up;
8204 else
8205 gcc_unreachable ();
8207 else if (operand_less_p (*vr0max, vr1min) == 1
8208 || operand_less_p (vr1max, *vr0min) == 1)
8210 /* [ ] ( ) or ( ) [ ]
8211 If the ranges have an empty intersection, result of the union
8212 operation is the anti-range or if both are anti-ranges
8213 it covers all. */
8214 if (*vr0type == VR_ANTI_RANGE
8215 && vr1type == VR_ANTI_RANGE)
8216 goto give_up;
8217 else if (*vr0type == VR_ANTI_RANGE
8218 && vr1type == VR_RANGE)
8220 else if (*vr0type == VR_RANGE
8221 && vr1type == VR_ANTI_RANGE)
8223 *vr0type = vr1type;
8224 *vr0min = vr1min;
8225 *vr0max = vr1max;
8227 else if (*vr0type == VR_RANGE
8228 && vr1type == VR_RANGE)
8230 /* The result is the convex hull of both ranges. */
8231 if (operand_less_p (*vr0max, vr1min) == 1)
8233 /* If the result can be an anti-range, create one. */
8234 if (TREE_CODE (*vr0max) == INTEGER_CST
8235 && TREE_CODE (vr1min) == INTEGER_CST
8236 && vrp_val_is_min (*vr0min)
8237 && vrp_val_is_max (vr1max))
8239 tree min = int_const_binop (PLUS_EXPR,
8240 *vr0max,
8241 build_int_cst (TREE_TYPE (*vr0max), 1));
8242 tree max = int_const_binop (MINUS_EXPR,
8243 vr1min,
8244 build_int_cst (TREE_TYPE (vr1min), 1));
8245 if (!operand_less_p (max, min))
8247 *vr0type = VR_ANTI_RANGE;
8248 *vr0min = min;
8249 *vr0max = max;
8251 else
8252 *vr0max = vr1max;
8254 else
8255 *vr0max = vr1max;
8257 else
8259 /* If the result can be an anti-range, create one. */
8260 if (TREE_CODE (vr1max) == INTEGER_CST
8261 && TREE_CODE (*vr0min) == INTEGER_CST
8262 && vrp_val_is_min (vr1min)
8263 && vrp_val_is_max (*vr0max))
8265 tree min = int_const_binop (PLUS_EXPR,
8266 vr1max,
8267 build_int_cst (TREE_TYPE (vr1max), 1));
8268 tree max = int_const_binop (MINUS_EXPR,
8269 *vr0min,
8270 build_int_cst (TREE_TYPE (*vr0min), 1));
8271 if (!operand_less_p (max, min))
8273 *vr0type = VR_ANTI_RANGE;
8274 *vr0min = min;
8275 *vr0max = max;
8277 else
8278 *vr0min = vr1min;
8280 else
8281 *vr0min = vr1min;
8284 else
8285 gcc_unreachable ();
8287 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8288 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8290 /* [ ( ) ] or [( ) ] or [ ( )] */
8291 if (*vr0type == VR_RANGE
8292 && vr1type == VR_RANGE)
8294 else if (*vr0type == VR_ANTI_RANGE
8295 && vr1type == VR_ANTI_RANGE)
8297 *vr0type = vr1type;
8298 *vr0min = vr1min;
8299 *vr0max = vr1max;
8301 else if (*vr0type == VR_ANTI_RANGE
8302 && vr1type == VR_RANGE)
8304 /* Arbitrarily choose the right or left gap. */
8305 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8306 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8307 build_int_cst (TREE_TYPE (vr1min), 1));
8308 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8309 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8310 build_int_cst (TREE_TYPE (vr1max), 1));
8311 else
8312 goto give_up;
8314 else if (*vr0type == VR_RANGE
8315 && vr1type == VR_ANTI_RANGE)
8316 /* The result covers everything. */
8317 goto give_up;
8318 else
8319 gcc_unreachable ();
8321 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8322 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8324 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8325 if (*vr0type == VR_RANGE
8326 && vr1type == VR_RANGE)
8328 *vr0type = vr1type;
8329 *vr0min = vr1min;
8330 *vr0max = vr1max;
8332 else if (*vr0type == VR_ANTI_RANGE
8333 && vr1type == VR_ANTI_RANGE)
8335 else if (*vr0type == VR_RANGE
8336 && vr1type == VR_ANTI_RANGE)
8338 *vr0type = VR_ANTI_RANGE;
8339 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8341 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8342 build_int_cst (TREE_TYPE (*vr0min), 1));
8343 *vr0min = vr1min;
8345 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8347 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8348 build_int_cst (TREE_TYPE (*vr0max), 1));
8349 *vr0max = vr1max;
8351 else
8352 goto give_up;
8354 else if (*vr0type == VR_ANTI_RANGE
8355 && vr1type == VR_RANGE)
8356 /* The result covers everything. */
8357 goto give_up;
8358 else
8359 gcc_unreachable ();
8361 else if ((operand_less_p (vr1min, *vr0max) == 1
8362 || operand_equal_p (vr1min, *vr0max, 0))
8363 && operand_less_p (*vr0min, vr1min) == 1
8364 && operand_less_p (*vr0max, vr1max) == 1)
8366 /* [ ( ] ) or [ ]( ) */
8367 if (*vr0type == VR_RANGE
8368 && vr1type == VR_RANGE)
8369 *vr0max = vr1max;
8370 else if (*vr0type == VR_ANTI_RANGE
8371 && vr1type == VR_ANTI_RANGE)
8372 *vr0min = vr1min;
8373 else if (*vr0type == VR_ANTI_RANGE
8374 && vr1type == VR_RANGE)
8376 if (TREE_CODE (vr1min) == INTEGER_CST)
8377 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8378 build_int_cst (TREE_TYPE (vr1min), 1));
8379 else
8380 goto give_up;
8382 else if (*vr0type == VR_RANGE
8383 && vr1type == VR_ANTI_RANGE)
8385 if (TREE_CODE (*vr0max) == INTEGER_CST)
8387 *vr0type = vr1type;
8388 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8389 build_int_cst (TREE_TYPE (*vr0max), 1));
8390 *vr0max = vr1max;
8392 else
8393 goto give_up;
8395 else
8396 gcc_unreachable ();
8398 else if ((operand_less_p (*vr0min, vr1max) == 1
8399 || operand_equal_p (*vr0min, vr1max, 0))
8400 && operand_less_p (vr1min, *vr0min) == 1
8401 && operand_less_p (vr1max, *vr0max) == 1)
8403 /* ( [ ) ] or ( )[ ] */
8404 if (*vr0type == VR_RANGE
8405 && vr1type == VR_RANGE)
8406 *vr0min = vr1min;
8407 else if (*vr0type == VR_ANTI_RANGE
8408 && vr1type == VR_ANTI_RANGE)
8409 *vr0max = vr1max;
8410 else if (*vr0type == VR_ANTI_RANGE
8411 && vr1type == VR_RANGE)
8413 if (TREE_CODE (vr1max) == INTEGER_CST)
8414 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8415 build_int_cst (TREE_TYPE (vr1max), 1));
8416 else
8417 goto give_up;
8419 else if (*vr0type == VR_RANGE
8420 && vr1type == VR_ANTI_RANGE)
8422 if (TREE_CODE (*vr0min) == INTEGER_CST)
8424 *vr0type = vr1type;
8425 *vr0min = vr1min;
8426 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8427 build_int_cst (TREE_TYPE (*vr0min), 1));
8429 else
8430 goto give_up;
8432 else
8433 gcc_unreachable ();
8435 else
8436 goto give_up;
8438 return;
8440 give_up:
8441 *vr0type = VR_VARYING;
8442 *vr0min = NULL_TREE;
8443 *vr0max = NULL_TREE;
8446 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8447 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8448 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8449 possible such range. The resulting range is not canonicalized. */
8451 static void
8452 intersect_ranges (enum value_range_type *vr0type,
8453 tree *vr0min, tree *vr0max,
8454 enum value_range_type vr1type,
8455 tree vr1min, tree vr1max)
8457 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8458 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8460 /* [] is vr0, () is vr1 in the following classification comments. */
8461 if (mineq && maxeq)
8463 /* [( )] */
8464 if (*vr0type == vr1type)
8465 /* Nothing to do for equal ranges. */
8467 else if ((*vr0type == VR_RANGE
8468 && vr1type == VR_ANTI_RANGE)
8469 || (*vr0type == VR_ANTI_RANGE
8470 && vr1type == VR_RANGE))
8472 /* For anti-range with range intersection the result is empty. */
8473 *vr0type = VR_UNDEFINED;
8474 *vr0min = NULL_TREE;
8475 *vr0max = NULL_TREE;
8477 else
8478 gcc_unreachable ();
8480 else if (operand_less_p (*vr0max, vr1min) == 1
8481 || operand_less_p (vr1max, *vr0min) == 1)
8483 /* [ ] ( ) or ( ) [ ]
8484 If the ranges have an empty intersection, the result of the
8485 intersect operation is the range for intersecting an
8486 anti-range with a range or empty when intersecting two ranges. */
8487 if (*vr0type == VR_RANGE
8488 && vr1type == VR_ANTI_RANGE)
8490 else if (*vr0type == VR_ANTI_RANGE
8491 && vr1type == VR_RANGE)
8493 *vr0type = vr1type;
8494 *vr0min = vr1min;
8495 *vr0max = vr1max;
8497 else if (*vr0type == VR_RANGE
8498 && vr1type == VR_RANGE)
8500 *vr0type = VR_UNDEFINED;
8501 *vr0min = NULL_TREE;
8502 *vr0max = NULL_TREE;
8504 else if (*vr0type == VR_ANTI_RANGE
8505 && vr1type == VR_ANTI_RANGE)
8507 /* If the anti-ranges are adjacent to each other merge them. */
8508 if (TREE_CODE (*vr0max) == INTEGER_CST
8509 && TREE_CODE (vr1min) == INTEGER_CST
8510 && operand_less_p (*vr0max, vr1min) == 1
8511 && integer_onep (int_const_binop (MINUS_EXPR,
8512 vr1min, *vr0max)))
8513 *vr0max = vr1max;
8514 else if (TREE_CODE (vr1max) == INTEGER_CST
8515 && TREE_CODE (*vr0min) == INTEGER_CST
8516 && operand_less_p (vr1max, *vr0min) == 1
8517 && integer_onep (int_const_binop (MINUS_EXPR,
8518 *vr0min, vr1max)))
8519 *vr0min = vr1min;
8520 /* Else arbitrarily take VR0. */
8523 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8524 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8526 /* [ ( ) ] or [( ) ] or [ ( )] */
8527 if (*vr0type == VR_RANGE
8528 && vr1type == VR_RANGE)
8530 /* If both are ranges the result is the inner one. */
8531 *vr0type = vr1type;
8532 *vr0min = vr1min;
8533 *vr0max = vr1max;
8535 else if (*vr0type == VR_RANGE
8536 && vr1type == VR_ANTI_RANGE)
8538 /* Choose the right gap if the left one is empty. */
8539 if (mineq)
8541 if (TREE_CODE (vr1max) != INTEGER_CST)
8542 *vr0min = vr1max;
8543 else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
8544 && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
8545 *vr0min
8546 = int_const_binop (MINUS_EXPR, vr1max,
8547 build_int_cst (TREE_TYPE (vr1max), -1));
8548 else
8549 *vr0min
8550 = int_const_binop (PLUS_EXPR, vr1max,
8551 build_int_cst (TREE_TYPE (vr1max), 1));
8553 /* Choose the left gap if the right one is empty. */
8554 else if (maxeq)
8556 if (TREE_CODE (vr1min) != INTEGER_CST)
8557 *vr0max = vr1min;
8558 else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
8559 && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
8560 *vr0max
8561 = int_const_binop (PLUS_EXPR, vr1min,
8562 build_int_cst (TREE_TYPE (vr1min), -1));
8563 else
8564 *vr0max
8565 = int_const_binop (MINUS_EXPR, vr1min,
8566 build_int_cst (TREE_TYPE (vr1min), 1));
8568 /* Choose the anti-range if the range is effectively varying. */
8569 else if (vrp_val_is_min (*vr0min)
8570 && vrp_val_is_max (*vr0max))
8572 *vr0type = vr1type;
8573 *vr0min = vr1min;
8574 *vr0max = vr1max;
8576 /* Else choose the range. */
8578 else if (*vr0type == VR_ANTI_RANGE
8579 && vr1type == VR_ANTI_RANGE)
8580 /* If both are anti-ranges the result is the outer one. */
8582 else if (*vr0type == VR_ANTI_RANGE
8583 && vr1type == VR_RANGE)
8585 /* The intersection is empty. */
8586 *vr0type = VR_UNDEFINED;
8587 *vr0min = NULL_TREE;
8588 *vr0max = NULL_TREE;
8590 else
8591 gcc_unreachable ();
8593 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8594 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8596 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8597 if (*vr0type == VR_RANGE
8598 && vr1type == VR_RANGE)
8599 /* Choose the inner range. */
8601 else if (*vr0type == VR_ANTI_RANGE
8602 && vr1type == VR_RANGE)
8604 /* Choose the right gap if the left is empty. */
8605 if (mineq)
8607 *vr0type = VR_RANGE;
8608 if (TREE_CODE (*vr0max) != INTEGER_CST)
8609 *vr0min = *vr0max;
8610 else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
8611 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
8612 *vr0min
8613 = int_const_binop (MINUS_EXPR, *vr0max,
8614 build_int_cst (TREE_TYPE (*vr0max), -1));
8615 else
8616 *vr0min
8617 = int_const_binop (PLUS_EXPR, *vr0max,
8618 build_int_cst (TREE_TYPE (*vr0max), 1));
8619 *vr0max = vr1max;
8621 /* Choose the left gap if the right is empty. */
8622 else if (maxeq)
8624 *vr0type = VR_RANGE;
8625 if (TREE_CODE (*vr0min) != INTEGER_CST)
8626 *vr0max = *vr0min;
8627 else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
8628 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
8629 *vr0max
8630 = int_const_binop (PLUS_EXPR, *vr0min,
8631 build_int_cst (TREE_TYPE (*vr0min), -1));
8632 else
8633 *vr0max
8634 = int_const_binop (MINUS_EXPR, *vr0min,
8635 build_int_cst (TREE_TYPE (*vr0min), 1));
8636 *vr0min = vr1min;
8638 /* Choose the anti-range if the range is effectively varying. */
8639 else if (vrp_val_is_min (vr1min)
8640 && vrp_val_is_max (vr1max))
8642 /* Choose the anti-range if it is ~[0,0], that range is special
8643 enough to special case when vr1's range is relatively wide. */
8644 else if (*vr0min == *vr0max
8645 && integer_zerop (*vr0min)
8646 && (TYPE_PRECISION (TREE_TYPE (*vr0min))
8647 == TYPE_PRECISION (ptr_type_node))
8648 && TREE_CODE (vr1max) == INTEGER_CST
8649 && TREE_CODE (vr1min) == INTEGER_CST
8650 && (wi::clz (wi::sub (vr1max, vr1min))
8651 < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
8653 /* Else choose the range. */
8654 else
8656 *vr0type = vr1type;
8657 *vr0min = vr1min;
8658 *vr0max = vr1max;
8661 else if (*vr0type == VR_ANTI_RANGE
8662 && vr1type == VR_ANTI_RANGE)
8664 /* If both are anti-ranges the result is the outer one. */
8665 *vr0type = vr1type;
8666 *vr0min = vr1min;
8667 *vr0max = vr1max;
8669 else if (vr1type == VR_ANTI_RANGE
8670 && *vr0type == VR_RANGE)
8672 /* The intersection is empty. */
8673 *vr0type = VR_UNDEFINED;
8674 *vr0min = NULL_TREE;
8675 *vr0max = NULL_TREE;
8677 else
8678 gcc_unreachable ();
8680 else if ((operand_less_p (vr1min, *vr0max) == 1
8681 || operand_equal_p (vr1min, *vr0max, 0))
8682 && operand_less_p (*vr0min, vr1min) == 1)
8684 /* [ ( ] ) or [ ]( ) */
8685 if (*vr0type == VR_ANTI_RANGE
8686 && vr1type == VR_ANTI_RANGE)
8687 *vr0max = vr1max;
8688 else if (*vr0type == VR_RANGE
8689 && vr1type == VR_RANGE)
8690 *vr0min = vr1min;
8691 else if (*vr0type == VR_RANGE
8692 && vr1type == VR_ANTI_RANGE)
8694 if (TREE_CODE (vr1min) == INTEGER_CST)
8695 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8696 build_int_cst (TREE_TYPE (vr1min), 1));
8697 else
8698 *vr0max = vr1min;
8700 else if (*vr0type == VR_ANTI_RANGE
8701 && vr1type == VR_RANGE)
8703 *vr0type = VR_RANGE;
8704 if (TREE_CODE (*vr0max) == INTEGER_CST)
8705 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8706 build_int_cst (TREE_TYPE (*vr0max), 1));
8707 else
8708 *vr0min = *vr0max;
8709 *vr0max = vr1max;
8711 else
8712 gcc_unreachable ();
8714 else if ((operand_less_p (*vr0min, vr1max) == 1
8715 || operand_equal_p (*vr0min, vr1max, 0))
8716 && operand_less_p (vr1min, *vr0min) == 1)
8718 /* ( [ ) ] or ( )[ ] */
8719 if (*vr0type == VR_ANTI_RANGE
8720 && vr1type == VR_ANTI_RANGE)
8721 *vr0min = vr1min;
8722 else if (*vr0type == VR_RANGE
8723 && vr1type == VR_RANGE)
8724 *vr0max = vr1max;
8725 else if (*vr0type == VR_RANGE
8726 && vr1type == VR_ANTI_RANGE)
8728 if (TREE_CODE (vr1max) == INTEGER_CST)
8729 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8730 build_int_cst (TREE_TYPE (vr1max), 1));
8731 else
8732 *vr0min = vr1max;
8734 else if (*vr0type == VR_ANTI_RANGE
8735 && vr1type == VR_RANGE)
8737 *vr0type = VR_RANGE;
8738 if (TREE_CODE (*vr0min) == INTEGER_CST)
8739 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8740 build_int_cst (TREE_TYPE (*vr0min), 1));
8741 else
8742 *vr0max = *vr0min;
8743 *vr0min = vr1min;
8745 else
8746 gcc_unreachable ();
8749 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8750 result for the intersection. That's always a conservative
8751 correct estimate unless VR1 is a constant singleton range
8752 in which case we choose that. */
8753 if (vr1type == VR_RANGE
8754 && is_gimple_min_invariant (vr1min)
8755 && vrp_operand_equal_p (vr1min, vr1max))
8757 *vr0type = vr1type;
8758 *vr0min = vr1min;
8759 *vr0max = vr1max;
8762 return;
8766 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8767 in *VR0. This may not be the smallest possible such range. */
8769 static void
8770 vrp_intersect_ranges_1 (value_range *vr0, value_range *vr1)
8772 value_range saved;
8774 /* If either range is VR_VARYING the other one wins. */
8775 if (vr1->type == VR_VARYING)
8776 return;
8777 if (vr0->type == VR_VARYING)
8779 copy_value_range (vr0, vr1);
8780 return;
8783 /* When either range is VR_UNDEFINED the resulting range is
8784 VR_UNDEFINED, too. */
8785 if (vr0->type == VR_UNDEFINED)
8786 return;
8787 if (vr1->type == VR_UNDEFINED)
8789 set_value_range_to_undefined (vr0);
8790 return;
8793 /* Save the original vr0 so we can return it as conservative intersection
8794 result when our worker turns things to varying. */
8795 saved = *vr0;
8796 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8797 vr1->type, vr1->min, vr1->max);
8798 /* Make sure to canonicalize the result though as the inversion of a
8799 VR_RANGE can still be a VR_RANGE. */
8800 set_and_canonicalize_value_range (vr0, vr0->type,
8801 vr0->min, vr0->max, vr0->equiv);
8802 /* If that failed, use the saved original VR0. */
8803 if (vr0->type == VR_VARYING)
8805 *vr0 = saved;
8806 return;
8808 /* If the result is VR_UNDEFINED there is no need to mess with
8809 the equivalencies. */
8810 if (vr0->type == VR_UNDEFINED)
8811 return;
8813 /* The resulting set of equivalences for range intersection is the union of
8814 the two sets. */
8815 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8816 bitmap_ior_into (vr0->equiv, vr1->equiv);
8817 else if (vr1->equiv && !vr0->equiv)
8819 vr0->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
8820 bitmap_copy (vr0->equiv, vr1->equiv);
8824 void
8825 vrp_intersect_ranges (value_range *vr0, value_range *vr1)
8827 if (dump_file && (dump_flags & TDF_DETAILS))
8829 fprintf (dump_file, "Intersecting\n ");
8830 dump_value_range (dump_file, vr0);
8831 fprintf (dump_file, "\nand\n ");
8832 dump_value_range (dump_file, vr1);
8833 fprintf (dump_file, "\n");
8835 vrp_intersect_ranges_1 (vr0, vr1);
8836 if (dump_file && (dump_flags & TDF_DETAILS))
8838 fprintf (dump_file, "to\n ");
8839 dump_value_range (dump_file, vr0);
8840 fprintf (dump_file, "\n");
8844 /* Meet operation for value ranges. Given two value ranges VR0 and
8845 VR1, store in VR0 a range that contains both VR0 and VR1. This
8846 may not be the smallest possible such range. */
8848 static void
8849 vrp_meet_1 (value_range *vr0, const value_range *vr1)
8851 value_range saved;
8853 if (vr0->type == VR_UNDEFINED)
8855 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8856 return;
8859 if (vr1->type == VR_UNDEFINED)
8861 /* VR0 already has the resulting range. */
8862 return;
8865 if (vr0->type == VR_VARYING)
8867 /* Nothing to do. VR0 already has the resulting range. */
8868 return;
8871 if (vr1->type == VR_VARYING)
8873 set_value_range_to_varying (vr0);
8874 return;
8877 saved = *vr0;
8878 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8879 vr1->type, vr1->min, vr1->max);
8880 if (vr0->type == VR_VARYING)
8882 /* Failed to find an efficient meet. Before giving up and setting
8883 the result to VARYING, see if we can at least derive a useful
8884 anti-range. FIXME, all this nonsense about distinguishing
8885 anti-ranges from ranges is necessary because of the odd
8886 semantics of range_includes_zero_p and friends. */
8887 if (((saved.type == VR_RANGE
8888 && range_includes_zero_p (saved.min, saved.max) == 0)
8889 || (saved.type == VR_ANTI_RANGE
8890 && range_includes_zero_p (saved.min, saved.max) == 1))
8891 && ((vr1->type == VR_RANGE
8892 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8893 || (vr1->type == VR_ANTI_RANGE
8894 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8896 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8898 /* Since this meet operation did not result from the meeting of
8899 two equivalent names, VR0 cannot have any equivalences. */
8900 if (vr0->equiv)
8901 bitmap_clear (vr0->equiv);
8902 return;
8905 set_value_range_to_varying (vr0);
8906 return;
8908 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8909 vr0->equiv);
8910 if (vr0->type == VR_VARYING)
8911 return;
8913 /* The resulting set of equivalences is always the intersection of
8914 the two sets. */
8915 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8916 bitmap_and_into (vr0->equiv, vr1->equiv);
8917 else if (vr0->equiv && !vr1->equiv)
8918 bitmap_clear (vr0->equiv);
8921 void
8922 vrp_meet (value_range *vr0, const value_range *vr1)
8924 if (dump_file && (dump_flags & TDF_DETAILS))
8926 fprintf (dump_file, "Meeting\n ");
8927 dump_value_range (dump_file, vr0);
8928 fprintf (dump_file, "\nand\n ");
8929 dump_value_range (dump_file, vr1);
8930 fprintf (dump_file, "\n");
8932 vrp_meet_1 (vr0, vr1);
8933 if (dump_file && (dump_flags & TDF_DETAILS))
8935 fprintf (dump_file, "to\n ");
8936 dump_value_range (dump_file, vr0);
8937 fprintf (dump_file, "\n");
8942 /* Visit all arguments for PHI node PHI that flow through executable
8943 edges. If a valid value range can be derived from all the incoming
8944 value ranges, set a new range in VR_RESULT. */
8946 static void
8947 extract_range_from_phi_node (gphi *phi, value_range *vr_result)
8949 size_t i;
8950 tree lhs = PHI_RESULT (phi);
8951 value_range *lhs_vr = get_value_range (lhs);
8952 bool first = true;
8953 int edges, old_edges;
8954 struct loop *l;
8956 if (dump_file && (dump_flags & TDF_DETAILS))
8958 fprintf (dump_file, "\nVisiting PHI node: ");
8959 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8962 bool may_simulate_backedge_again = false;
8963 edges = 0;
8964 for (i = 0; i < gimple_phi_num_args (phi); i++)
8966 edge e = gimple_phi_arg_edge (phi, i);
8968 if (dump_file && (dump_flags & TDF_DETAILS))
8970 fprintf (dump_file,
8971 " Argument #%d (%d -> %d %sexecutable)\n",
8972 (int) i, e->src->index, e->dest->index,
8973 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8976 if (e->flags & EDGE_EXECUTABLE)
8978 tree arg = PHI_ARG_DEF (phi, i);
8979 value_range vr_arg;
8981 ++edges;
8983 if (TREE_CODE (arg) == SSA_NAME)
8985 /* See if we are eventually going to change one of the args. */
8986 gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
8987 if (! gimple_nop_p (def_stmt)
8988 && prop_simulate_again_p (def_stmt)
8989 && e->flags & EDGE_DFS_BACK)
8990 may_simulate_backedge_again = true;
8992 vr_arg = *(get_value_range (arg));
8993 /* Do not allow equivalences or symbolic ranges to leak in from
8994 backedges. That creates invalid equivalencies.
8995 See PR53465 and PR54767. */
8996 if (e->flags & EDGE_DFS_BACK)
8998 if (vr_arg.type == VR_RANGE
8999 || vr_arg.type == VR_ANTI_RANGE)
9001 vr_arg.equiv = NULL;
9002 if (symbolic_range_p (&vr_arg))
9004 vr_arg.type = VR_VARYING;
9005 vr_arg.min = NULL_TREE;
9006 vr_arg.max = NULL_TREE;
9010 else
9012 /* If the non-backedge arguments range is VR_VARYING then
9013 we can still try recording a simple equivalence. */
9014 if (vr_arg.type == VR_VARYING)
9016 vr_arg.type = VR_RANGE;
9017 vr_arg.min = arg;
9018 vr_arg.max = arg;
9019 vr_arg.equiv = NULL;
9023 else
9025 if (TREE_OVERFLOW_P (arg))
9026 arg = drop_tree_overflow (arg);
9028 vr_arg.type = VR_RANGE;
9029 vr_arg.min = arg;
9030 vr_arg.max = arg;
9031 vr_arg.equiv = NULL;
9034 if (dump_file && (dump_flags & TDF_DETAILS))
9036 fprintf (dump_file, "\t");
9037 print_generic_expr (dump_file, arg, dump_flags);
9038 fprintf (dump_file, ": ");
9039 dump_value_range (dump_file, &vr_arg);
9040 fprintf (dump_file, "\n");
9043 if (first)
9044 copy_value_range (vr_result, &vr_arg);
9045 else
9046 vrp_meet (vr_result, &vr_arg);
9047 first = false;
9049 if (vr_result->type == VR_VARYING)
9050 break;
9054 if (vr_result->type == VR_VARYING)
9055 goto varying;
9056 else if (vr_result->type == VR_UNDEFINED)
9057 goto update_range;
9059 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
9060 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
9062 /* To prevent infinite iterations in the algorithm, derive ranges
9063 when the new value is slightly bigger or smaller than the
9064 previous one. We don't do this if we have seen a new executable
9065 edge; this helps us avoid an infinity for conditionals
9066 which are not in a loop. If the old value-range was VR_UNDEFINED
9067 use the updated range and iterate one more time. If we will not
9068 simulate this PHI again via the backedge allow us to iterate. */
9069 if (edges > 0
9070 && gimple_phi_num_args (phi) > 1
9071 && edges == old_edges
9072 && lhs_vr->type != VR_UNDEFINED
9073 && may_simulate_backedge_again)
9075 /* Compare old and new ranges, fall back to varying if the
9076 values are not comparable. */
9077 int cmp_min = compare_values (lhs_vr->min, vr_result->min);
9078 if (cmp_min == -2)
9079 goto varying;
9080 int cmp_max = compare_values (lhs_vr->max, vr_result->max);
9081 if (cmp_max == -2)
9082 goto varying;
9084 /* For non VR_RANGE or for pointers fall back to varying if
9085 the range changed. */
9086 if ((lhs_vr->type != VR_RANGE || vr_result->type != VR_RANGE
9087 || POINTER_TYPE_P (TREE_TYPE (lhs)))
9088 && (cmp_min != 0 || cmp_max != 0))
9089 goto varying;
9091 /* If the new minimum is larger than the previous one
9092 retain the old value. If the new minimum value is smaller
9093 than the previous one and not -INF go all the way to -INF + 1.
9094 In the first case, to avoid infinite bouncing between different
9095 minimums, and in the other case to avoid iterating millions of
9096 times to reach -INF. Going to -INF + 1 also lets the following
9097 iteration compute whether there will be any overflow, at the
9098 expense of one additional iteration. */
9099 if (cmp_min < 0)
9100 vr_result->min = lhs_vr->min;
9101 else if (cmp_min > 0
9102 && !vrp_val_is_min (vr_result->min))
9103 vr_result->min
9104 = int_const_binop (PLUS_EXPR,
9105 vrp_val_min (TREE_TYPE (vr_result->min)),
9106 build_int_cst (TREE_TYPE (vr_result->min), 1));
9108 /* Similarly for the maximum value. */
9109 if (cmp_max > 0)
9110 vr_result->max = lhs_vr->max;
9111 else if (cmp_max < 0
9112 && !vrp_val_is_max (vr_result->max))
9113 vr_result->max
9114 = int_const_binop (MINUS_EXPR,
9115 vrp_val_max (TREE_TYPE (vr_result->min)),
9116 build_int_cst (TREE_TYPE (vr_result->min), 1));
9118 /* If we dropped either bound to +-INF then if this is a loop
9119 PHI node SCEV may known more about its value-range. */
9120 if (cmp_min > 0 || cmp_min < 0
9121 || cmp_max < 0 || cmp_max > 0)
9122 goto scev_check;
9124 goto infinite_check;
9127 goto update_range;
9129 varying:
9130 set_value_range_to_varying (vr_result);
9132 scev_check:
9133 /* If this is a loop PHI node SCEV may known more about its value-range.
9134 scev_check can be reached from two paths, one is a fall through from above
9135 "varying" label, the other is direct goto from code block which tries to
9136 avoid infinite simulation. */
9137 if ((l = loop_containing_stmt (phi))
9138 && l->header == gimple_bb (phi))
9139 adjust_range_with_scev (vr_result, l, phi, lhs);
9141 infinite_check:
9142 /* If we will end up with a (-INF, +INF) range, set it to
9143 VARYING. Same if the previous max value was invalid for
9144 the type and we end up with vr_result.min > vr_result.max. */
9145 if ((vr_result->type == VR_RANGE || vr_result->type == VR_ANTI_RANGE)
9146 && !((vrp_val_is_max (vr_result->max) && vrp_val_is_min (vr_result->min))
9147 || compare_values (vr_result->min, vr_result->max) > 0))
9149 else
9150 set_value_range_to_varying (vr_result);
9152 /* If the new range is different than the previous value, keep
9153 iterating. */
9154 update_range:
9155 return;
9158 /* Visit all arguments for PHI node PHI that flow through executable
9159 edges. If a valid value range can be derived from all the incoming
9160 value ranges, set a new range for the LHS of PHI. */
9162 static enum ssa_prop_result
9163 vrp_visit_phi_node (gphi *phi)
9165 tree lhs = PHI_RESULT (phi);
9166 value_range vr_result = VR_INITIALIZER;
9167 extract_range_from_phi_node (phi, &vr_result);
9168 if (update_value_range (lhs, &vr_result))
9170 if (dump_file && (dump_flags & TDF_DETAILS))
9172 fprintf (dump_file, "Found new range for ");
9173 print_generic_expr (dump_file, lhs);
9174 fprintf (dump_file, ": ");
9175 dump_value_range (dump_file, &vr_result);
9176 fprintf (dump_file, "\n");
9179 if (vr_result.type == VR_VARYING)
9180 return SSA_PROP_VARYING;
9182 return SSA_PROP_INTERESTING;
9185 /* Nothing changed, don't add outgoing edges. */
9186 return SSA_PROP_NOT_INTERESTING;
9189 /* Simplify boolean operations if the source is known
9190 to be already a boolean. */
9191 static bool
9192 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9194 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9195 tree lhs, op0, op1;
9196 bool need_conversion;
9198 /* We handle only !=/== case here. */
9199 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
9201 op0 = gimple_assign_rhs1 (stmt);
9202 if (!op_with_boolean_value_range_p (op0))
9203 return false;
9205 op1 = gimple_assign_rhs2 (stmt);
9206 if (!op_with_boolean_value_range_p (op1))
9207 return false;
9209 /* Reduce number of cases to handle to NE_EXPR. As there is no
9210 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
9211 if (rhs_code == EQ_EXPR)
9213 if (TREE_CODE (op1) == INTEGER_CST)
9214 op1 = int_const_binop (BIT_XOR_EXPR, op1,
9215 build_int_cst (TREE_TYPE (op1), 1));
9216 else
9217 return false;
9220 lhs = gimple_assign_lhs (stmt);
9221 need_conversion
9222 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
9224 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9225 if (need_conversion
9226 && !TYPE_UNSIGNED (TREE_TYPE (op0))
9227 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
9228 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
9229 return false;
9231 /* For A != 0 we can substitute A itself. */
9232 if (integer_zerop (op1))
9233 gimple_assign_set_rhs_with_ops (gsi,
9234 need_conversion
9235 ? NOP_EXPR : TREE_CODE (op0), op0);
9236 /* For A != B we substitute A ^ B. Either with conversion. */
9237 else if (need_conversion)
9239 tree tem = make_ssa_name (TREE_TYPE (op0));
9240 gassign *newop
9241 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
9242 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
9243 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9244 && TYPE_PRECISION (TREE_TYPE (tem)) > 1)
9245 set_range_info (tem, VR_RANGE,
9246 wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
9247 wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
9248 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
9250 /* Or without. */
9251 else
9252 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
9253 update_stmt (gsi_stmt (*gsi));
9254 fold_stmt (gsi, follow_single_use_edges);
9256 return true;
9259 /* Simplify a division or modulo operator to a right shift or bitwise and
9260 if the first operand is unsigned or is greater than zero and the second
9261 operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with
9262 constant op1 (op1min = op1) or with op1 in [op1min, op1max] range,
9263 optimize it into just op0 if op0's range is known to be a subset of
9264 [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned
9265 modulo. */
9267 static bool
9268 simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9270 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9271 tree val = NULL;
9272 tree op0 = gimple_assign_rhs1 (stmt);
9273 tree op1 = gimple_assign_rhs2 (stmt);
9274 tree op0min = NULL_TREE, op0max = NULL_TREE;
9275 tree op1min = op1;
9276 value_range *vr = NULL;
9278 if (TREE_CODE (op0) == INTEGER_CST)
9280 op0min = op0;
9281 op0max = op0;
9283 else
9285 vr = get_value_range (op0);
9286 if (range_int_cst_p (vr))
9288 op0min = vr->min;
9289 op0max = vr->max;
9293 if (rhs_code == TRUNC_MOD_EXPR
9294 && TREE_CODE (op1) == SSA_NAME)
9296 value_range *vr1 = get_value_range (op1);
9297 if (range_int_cst_p (vr1))
9298 op1min = vr1->min;
9300 if (rhs_code == TRUNC_MOD_EXPR
9301 && TREE_CODE (op1min) == INTEGER_CST
9302 && tree_int_cst_sgn (op1min) == 1
9303 && op0max
9304 && tree_int_cst_lt (op0max, op1min))
9306 if (TYPE_UNSIGNED (TREE_TYPE (op0))
9307 || tree_int_cst_sgn (op0min) >= 0
9308 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min),
9309 op0min))
9311 /* If op0 already has the range op0 % op1 has,
9312 then TRUNC_MOD_EXPR won't change anything. */
9313 gimple_assign_set_rhs_from_tree (gsi, op0);
9314 return true;
9318 if (TREE_CODE (op0) != SSA_NAME)
9319 return false;
9321 if (!integer_pow2p (op1))
9323 /* X % -Y can be only optimized into X % Y either if
9324 X is not INT_MIN, or Y is not -1. Fold it now, as after
9325 remove_range_assertions the range info might be not available
9326 anymore. */
9327 if (rhs_code == TRUNC_MOD_EXPR
9328 && fold_stmt (gsi, follow_single_use_edges))
9329 return true;
9330 return false;
9333 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9334 val = integer_one_node;
9335 else
9337 bool sop = false;
9339 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9341 if (val
9342 && sop
9343 && integer_onep (val)
9344 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9346 location_t location;
9348 if (!gimple_has_location (stmt))
9349 location = input_location;
9350 else
9351 location = gimple_location (stmt);
9352 warning_at (location, OPT_Wstrict_overflow,
9353 "assuming signed overflow does not occur when "
9354 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9358 if (val && integer_onep (val))
9360 tree t;
9362 if (rhs_code == TRUNC_DIV_EXPR)
9364 t = build_int_cst (integer_type_node, tree_log2 (op1));
9365 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9366 gimple_assign_set_rhs1 (stmt, op0);
9367 gimple_assign_set_rhs2 (stmt, t);
9369 else
9371 t = build_int_cst (TREE_TYPE (op1), 1);
9372 t = int_const_binop (MINUS_EXPR, op1, t);
9373 t = fold_convert (TREE_TYPE (op0), t);
9375 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9376 gimple_assign_set_rhs1 (stmt, op0);
9377 gimple_assign_set_rhs2 (stmt, t);
9380 update_stmt (stmt);
9381 fold_stmt (gsi, follow_single_use_edges);
9382 return true;
9385 return false;
9388 /* Simplify a min or max if the ranges of the two operands are
9389 disjoint. Return true if we do simplify. */
9391 static bool
9392 simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9394 tree op0 = gimple_assign_rhs1 (stmt);
9395 tree op1 = gimple_assign_rhs2 (stmt);
9396 bool sop = false;
9397 tree val;
9399 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9400 (LE_EXPR, op0, op1, &sop));
9401 if (!val)
9403 sop = false;
9404 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9405 (LT_EXPR, op0, op1, &sop));
9408 if (val)
9410 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9412 location_t location;
9414 if (!gimple_has_location (stmt))
9415 location = input_location;
9416 else
9417 location = gimple_location (stmt);
9418 warning_at (location, OPT_Wstrict_overflow,
9419 "assuming signed overflow does not occur when "
9420 "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
9423 /* VAL == TRUE -> OP0 < or <= op1
9424 VAL == FALSE -> OP0 > or >= op1. */
9425 tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
9426 == integer_zerop (val)) ? op0 : op1;
9427 gimple_assign_set_rhs_from_tree (gsi, res);
9428 return true;
9431 return false;
9434 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9435 ABS_EXPR. If the operand is <= 0, then simplify the
9436 ABS_EXPR into a NEGATE_EXPR. */
9438 static bool
9439 simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9441 tree op = gimple_assign_rhs1 (stmt);
9442 value_range *vr = get_value_range (op);
9444 if (vr)
9446 tree val = NULL;
9447 bool sop = false;
9449 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9450 if (!val)
9452 /* The range is neither <= 0 nor > 0. Now see if it is
9453 either < 0 or >= 0. */
9454 sop = false;
9455 val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
9456 &sop);
9459 if (val)
9461 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9463 location_t location;
9465 if (!gimple_has_location (stmt))
9466 location = input_location;
9467 else
9468 location = gimple_location (stmt);
9469 warning_at (location, OPT_Wstrict_overflow,
9470 "assuming signed overflow does not occur when "
9471 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9474 gimple_assign_set_rhs1 (stmt, op);
9475 if (integer_zerop (val))
9476 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9477 else
9478 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9479 update_stmt (stmt);
9480 fold_stmt (gsi, follow_single_use_edges);
9481 return true;
9485 return false;
9488 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9489 If all the bits that are being cleared by & are already
9490 known to be zero from VR, or all the bits that are being
9491 set by | are already known to be one from VR, the bit
9492 operation is redundant. */
9494 static bool
9495 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9497 tree op0 = gimple_assign_rhs1 (stmt);
9498 tree op1 = gimple_assign_rhs2 (stmt);
9499 tree op = NULL_TREE;
9500 value_range vr0 = VR_INITIALIZER;
9501 value_range vr1 = VR_INITIALIZER;
9502 wide_int may_be_nonzero0, may_be_nonzero1;
9503 wide_int must_be_nonzero0, must_be_nonzero1;
9504 wide_int mask;
9506 if (TREE_CODE (op0) == SSA_NAME)
9507 vr0 = *(get_value_range (op0));
9508 else if (is_gimple_min_invariant (op0))
9509 set_value_range_to_value (&vr0, op0, NULL);
9510 else
9511 return false;
9513 if (TREE_CODE (op1) == SSA_NAME)
9514 vr1 = *(get_value_range (op1));
9515 else if (is_gimple_min_invariant (op1))
9516 set_value_range_to_value (&vr1, op1, NULL);
9517 else
9518 return false;
9520 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9521 &must_be_nonzero0))
9522 return false;
9523 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9524 &must_be_nonzero1))
9525 return false;
9527 switch (gimple_assign_rhs_code (stmt))
9529 case BIT_AND_EXPR:
9530 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9531 if (mask == 0)
9533 op = op0;
9534 break;
9536 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9537 if (mask == 0)
9539 op = op1;
9540 break;
9542 break;
9543 case BIT_IOR_EXPR:
9544 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9545 if (mask == 0)
9547 op = op1;
9548 break;
9550 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9551 if (mask == 0)
9553 op = op0;
9554 break;
9556 break;
9557 default:
9558 gcc_unreachable ();
9561 if (op == NULL_TREE)
9562 return false;
9564 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9565 update_stmt (gsi_stmt (*gsi));
9566 return true;
9569 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9570 a known value range VR.
9572 If there is one and only one value which will satisfy the
9573 conditional, then return that value. Else return NULL.
9575 If signed overflow must be undefined for the value to satisfy
9576 the conditional, then set *STRICT_OVERFLOW_P to true. */
9578 static tree
9579 test_for_singularity (enum tree_code cond_code, tree op0,
9580 tree op1, value_range *vr)
9582 tree min = NULL;
9583 tree max = NULL;
9585 /* Extract minimum/maximum values which satisfy the conditional as it was
9586 written. */
9587 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9589 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9591 max = op1;
9592 if (cond_code == LT_EXPR)
9594 tree one = build_int_cst (TREE_TYPE (op0), 1);
9595 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9596 /* Signal to compare_values_warnv this expr doesn't overflow. */
9597 if (EXPR_P (max))
9598 TREE_NO_WARNING (max) = 1;
9601 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9603 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9605 min = op1;
9606 if (cond_code == GT_EXPR)
9608 tree one = build_int_cst (TREE_TYPE (op0), 1);
9609 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9610 /* Signal to compare_values_warnv this expr doesn't overflow. */
9611 if (EXPR_P (min))
9612 TREE_NO_WARNING (min) = 1;
9616 /* Now refine the minimum and maximum values using any
9617 value range information we have for op0. */
9618 if (min && max)
9620 if (compare_values (vr->min, min) == 1)
9621 min = vr->min;
9622 if (compare_values (vr->max, max) == -1)
9623 max = vr->max;
9625 /* If the new min/max values have converged to a single value,
9626 then there is only one value which can satisfy the condition,
9627 return that value. */
9628 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9629 return min;
9631 return NULL;
9634 /* Return whether the value range *VR fits in an integer type specified
9635 by PRECISION and UNSIGNED_P. */
9637 static bool
9638 range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn)
9640 tree src_type;
9641 unsigned src_precision;
9642 widest_int tem;
9643 signop src_sgn;
9645 /* We can only handle integral and pointer types. */
9646 src_type = TREE_TYPE (vr->min);
9647 if (!INTEGRAL_TYPE_P (src_type)
9648 && !POINTER_TYPE_P (src_type))
9649 return false;
9651 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9652 and so is an identity transform. */
9653 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9654 src_sgn = TYPE_SIGN (src_type);
9655 if ((src_precision < dest_precision
9656 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9657 || (src_precision == dest_precision && src_sgn == dest_sgn))
9658 return true;
9660 /* Now we can only handle ranges with constant bounds. */
9661 if (vr->type != VR_RANGE
9662 || TREE_CODE (vr->min) != INTEGER_CST
9663 || TREE_CODE (vr->max) != INTEGER_CST)
9664 return false;
9666 /* For sign changes, the MSB of the wide_int has to be clear.
9667 An unsigned value with its MSB set cannot be represented by
9668 a signed wide_int, while a negative value cannot be represented
9669 by an unsigned wide_int. */
9670 if (src_sgn != dest_sgn
9671 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9672 return false;
9674 /* Then we can perform the conversion on both ends and compare
9675 the result for equality. */
9676 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9677 if (tem != wi::to_widest (vr->min))
9678 return false;
9679 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9680 if (tem != wi::to_widest (vr->max))
9681 return false;
9683 return true;
9686 /* Simplify a conditional using a relational operator to an equality
9687 test if the range information indicates only one value can satisfy
9688 the original conditional. */
9690 static bool
9691 simplify_cond_using_ranges_1 (gcond *stmt)
9693 tree op0 = gimple_cond_lhs (stmt);
9694 tree op1 = gimple_cond_rhs (stmt);
9695 enum tree_code cond_code = gimple_cond_code (stmt);
9697 if (cond_code != NE_EXPR
9698 && cond_code != EQ_EXPR
9699 && TREE_CODE (op0) == SSA_NAME
9700 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9701 && is_gimple_min_invariant (op1))
9703 value_range *vr = get_value_range (op0);
9705 /* If we have range information for OP0, then we might be
9706 able to simplify this conditional. */
9707 if (vr->type == VR_RANGE)
9709 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
9710 if (new_tree)
9712 if (dump_file)
9714 fprintf (dump_file, "Simplified relational ");
9715 print_gimple_stmt (dump_file, stmt, 0);
9716 fprintf (dump_file, " into ");
9719 gimple_cond_set_code (stmt, EQ_EXPR);
9720 gimple_cond_set_lhs (stmt, op0);
9721 gimple_cond_set_rhs (stmt, new_tree);
9723 update_stmt (stmt);
9725 if (dump_file)
9727 print_gimple_stmt (dump_file, stmt, 0);
9728 fprintf (dump_file, "\n");
9731 return true;
9734 /* Try again after inverting the condition. We only deal
9735 with integral types here, so no need to worry about
9736 issues with inverting FP comparisons. */
9737 new_tree = test_for_singularity
9738 (invert_tree_comparison (cond_code, false),
9739 op0, op1, vr);
9740 if (new_tree)
9742 if (dump_file)
9744 fprintf (dump_file, "Simplified relational ");
9745 print_gimple_stmt (dump_file, stmt, 0);
9746 fprintf (dump_file, " into ");
9749 gimple_cond_set_code (stmt, NE_EXPR);
9750 gimple_cond_set_lhs (stmt, op0);
9751 gimple_cond_set_rhs (stmt, new_tree);
9753 update_stmt (stmt);
9755 if (dump_file)
9757 print_gimple_stmt (dump_file, stmt, 0);
9758 fprintf (dump_file, "\n");
9761 return true;
9765 return false;
9768 /* STMT is a conditional at the end of a basic block.
9770 If the conditional is of the form SSA_NAME op constant and the SSA_NAME
9771 was set via a type conversion, try to replace the SSA_NAME with the RHS
9772 of the type conversion. Doing so makes the conversion dead which helps
9773 subsequent passes. */
9775 static void
9776 simplify_cond_using_ranges_2 (gcond *stmt)
9778 tree op0 = gimple_cond_lhs (stmt);
9779 tree op1 = gimple_cond_rhs (stmt);
9781 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9782 see if OP0 was set by a type conversion where the source of
9783 the conversion is another SSA_NAME with a range that fits
9784 into the range of OP0's type.
9786 If so, the conversion is redundant as the earlier SSA_NAME can be
9787 used for the comparison directly if we just massage the constant in the
9788 comparison. */
9789 if (TREE_CODE (op0) == SSA_NAME
9790 && TREE_CODE (op1) == INTEGER_CST)
9792 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
9793 tree innerop;
9795 if (!is_gimple_assign (def_stmt)
9796 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9797 return;
9799 innerop = gimple_assign_rhs1 (def_stmt);
9801 if (TREE_CODE (innerop) == SSA_NAME
9802 && !POINTER_TYPE_P (TREE_TYPE (innerop))
9803 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
9804 && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
9806 value_range *vr = get_value_range (innerop);
9808 if (range_int_cst_p (vr)
9809 && range_fits_type_p (vr,
9810 TYPE_PRECISION (TREE_TYPE (op0)),
9811 TYPE_SIGN (TREE_TYPE (op0)))
9812 && int_fits_type_p (op1, TREE_TYPE (innerop)))
9814 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9815 gimple_cond_set_lhs (stmt, innerop);
9816 gimple_cond_set_rhs (stmt, newconst);
9817 update_stmt (stmt);
9818 if (dump_file && (dump_flags & TDF_DETAILS))
9820 fprintf (dump_file, "Folded into: ");
9821 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
9822 fprintf (dump_file, "\n");
9829 /* Simplify a switch statement using the value range of the switch
9830 argument. */
9832 static bool
9833 simplify_switch_using_ranges (gswitch *stmt)
9835 tree op = gimple_switch_index (stmt);
9836 value_range *vr = NULL;
9837 bool take_default;
9838 edge e;
9839 edge_iterator ei;
9840 size_t i = 0, j = 0, n, n2;
9841 tree vec2;
9842 switch_update su;
9843 size_t k = 1, l = 0;
9845 if (TREE_CODE (op) == SSA_NAME)
9847 vr = get_value_range (op);
9849 /* We can only handle integer ranges. */
9850 if ((vr->type != VR_RANGE
9851 && vr->type != VR_ANTI_RANGE)
9852 || symbolic_range_p (vr))
9853 return false;
9855 /* Find case label for min/max of the value range. */
9856 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9858 else if (TREE_CODE (op) == INTEGER_CST)
9860 take_default = !find_case_label_index (stmt, 1, op, &i);
9861 if (take_default)
9863 i = 1;
9864 j = 0;
9866 else
9868 j = i;
9871 else
9872 return false;
9874 n = gimple_switch_num_labels (stmt);
9876 /* We can truncate the case label ranges that partially overlap with OP's
9877 value range. */
9878 size_t min_idx = 1, max_idx = 0;
9879 if (vr != NULL)
9880 find_case_label_range (stmt, vr->min, vr->max, &min_idx, &max_idx);
9881 if (min_idx <= max_idx)
9883 tree min_label = gimple_switch_label (stmt, min_idx);
9884 tree max_label = gimple_switch_label (stmt, max_idx);
9886 /* Avoid changing the type of the case labels when truncating. */
9887 tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
9888 tree vr_min = fold_convert (case_label_type, vr->min);
9889 tree vr_max = fold_convert (case_label_type, vr->max);
9891 if (vr->type == VR_RANGE)
9893 /* If OP's value range is [2,8] and the low label range is
9894 0 ... 3, truncate the label's range to 2 .. 3. */
9895 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9896 && CASE_HIGH (min_label) != NULL_TREE
9897 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
9898 CASE_LOW (min_label) = vr_min;
9900 /* If OP's value range is [2,8] and the high label range is
9901 7 ... 10, truncate the label's range to 7 .. 8. */
9902 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
9903 && CASE_HIGH (max_label) != NULL_TREE
9904 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
9905 CASE_HIGH (max_label) = vr_max;
9907 else if (vr->type == VR_ANTI_RANGE)
9909 tree one_cst = build_one_cst (case_label_type);
9911 if (min_label == max_label)
9913 /* If OP's value range is ~[7,8] and the label's range is
9914 7 ... 10, truncate the label's range to 9 ... 10. */
9915 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
9916 && CASE_HIGH (min_label) != NULL_TREE
9917 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
9918 CASE_LOW (min_label)
9919 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
9921 /* If OP's value range is ~[7,8] and the label's range is
9922 5 ... 8, truncate the label's range to 5 ... 6. */
9923 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9924 && CASE_HIGH (min_label) != NULL_TREE
9925 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
9926 CASE_HIGH (min_label)
9927 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
9929 else
9931 /* If OP's value range is ~[2,8] and the low label range is
9932 0 ... 3, truncate the label's range to 0 ... 1. */
9933 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9934 && CASE_HIGH (min_label) != NULL_TREE
9935 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
9936 CASE_HIGH (min_label)
9937 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
9939 /* If OP's value range is ~[2,8] and the high label range is
9940 7 ... 10, truncate the label's range to 9 ... 10. */
9941 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
9942 && CASE_HIGH (max_label) != NULL_TREE
9943 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
9944 CASE_LOW (max_label)
9945 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
9949 /* Canonicalize singleton case ranges. */
9950 if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
9951 CASE_HIGH (min_label) = NULL_TREE;
9952 if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
9953 CASE_HIGH (max_label) = NULL_TREE;
9956 /* We can also eliminate case labels that lie completely outside OP's value
9957 range. */
9959 /* Bail out if this is just all edges taken. */
9960 if (i == 1
9961 && j == n - 1
9962 && take_default)
9963 return false;
9965 /* Build a new vector of taken case labels. */
9966 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9967 n2 = 0;
9969 /* Add the default edge, if necessary. */
9970 if (take_default)
9971 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9973 for (; i <= j; ++i, ++n2)
9974 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9976 for (; k <= l; ++k, ++n2)
9977 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9979 /* Mark needed edges. */
9980 for (i = 0; i < n2; ++i)
9982 e = find_edge (gimple_bb (stmt),
9983 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9984 e->aux = (void *)-1;
9987 /* Queue not needed edges for later removal. */
9988 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9990 if (e->aux == (void *)-1)
9992 e->aux = NULL;
9993 continue;
9996 if (dump_file && (dump_flags & TDF_DETAILS))
9998 fprintf (dump_file, "removing unreachable case label\n");
10000 to_remove_edges.safe_push (e);
10001 e->flags &= ~EDGE_EXECUTABLE;
10004 /* And queue an update for the stmt. */
10005 su.stmt = stmt;
10006 su.vec = vec2;
10007 to_update_switch_stmts.safe_push (su);
10008 return false;
10011 /* Simplify an integral conversion from an SSA name in STMT. */
10013 static bool
10014 simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10016 tree innerop, middleop, finaltype;
10017 gimple *def_stmt;
10018 signop inner_sgn, middle_sgn, final_sgn;
10019 unsigned inner_prec, middle_prec, final_prec;
10020 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
10022 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
10023 if (!INTEGRAL_TYPE_P (finaltype))
10024 return false;
10025 middleop = gimple_assign_rhs1 (stmt);
10026 def_stmt = SSA_NAME_DEF_STMT (middleop);
10027 if (!is_gimple_assign (def_stmt)
10028 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
10029 return false;
10030 innerop = gimple_assign_rhs1 (def_stmt);
10031 if (TREE_CODE (innerop) != SSA_NAME
10032 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
10033 return false;
10035 /* Get the value-range of the inner operand. Use get_range_info in
10036 case innerop was created during substitute-and-fold. */
10037 wide_int imin, imax;
10038 if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))
10039 || get_range_info (innerop, &imin, &imax) != VR_RANGE)
10040 return false;
10041 innermin = widest_int::from (imin, TYPE_SIGN (TREE_TYPE (innerop)));
10042 innermax = widest_int::from (imax, TYPE_SIGN (TREE_TYPE (innerop)));
10044 /* Simulate the conversion chain to check if the result is equal if
10045 the middle conversion is removed. */
10046 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
10047 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
10048 final_prec = TYPE_PRECISION (finaltype);
10050 /* If the first conversion is not injective, the second must not
10051 be widening. */
10052 if (wi::gtu_p (innermax - innermin,
10053 wi::mask <widest_int> (middle_prec, false))
10054 && middle_prec < final_prec)
10055 return false;
10056 /* We also want a medium value so that we can track the effect that
10057 narrowing conversions with sign change have. */
10058 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
10059 if (inner_sgn == UNSIGNED)
10060 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
10061 else
10062 innermed = 0;
10063 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
10064 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
10065 innermed = innermin;
10067 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
10068 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
10069 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
10070 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
10072 /* Require that the final conversion applied to both the original
10073 and the intermediate range produces the same result. */
10074 final_sgn = TYPE_SIGN (finaltype);
10075 if (wi::ext (middlemin, final_prec, final_sgn)
10076 != wi::ext (innermin, final_prec, final_sgn)
10077 || wi::ext (middlemed, final_prec, final_sgn)
10078 != wi::ext (innermed, final_prec, final_sgn)
10079 || wi::ext (middlemax, final_prec, final_sgn)
10080 != wi::ext (innermax, final_prec, final_sgn))
10081 return false;
10083 gimple_assign_set_rhs1 (stmt, innerop);
10084 fold_stmt (gsi, follow_single_use_edges);
10085 return true;
10088 /* Simplify a conversion from integral SSA name to float in STMT. */
10090 static bool
10091 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi,
10092 gimple *stmt)
10094 tree rhs1 = gimple_assign_rhs1 (stmt);
10095 value_range *vr = get_value_range (rhs1);
10096 scalar_float_mode fltmode
10097 = SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
10098 machine_mode mode;
10099 tree tem;
10100 gassign *conv;
10102 /* We can only handle constant ranges. */
10103 if (vr->type != VR_RANGE
10104 || TREE_CODE (vr->min) != INTEGER_CST
10105 || TREE_CODE (vr->max) != INTEGER_CST)
10106 return false;
10108 /* First check if we can use a signed type in place of an unsigned. */
10109 scalar_int_mode rhs_mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs1));
10110 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
10111 && can_float_p (fltmode, rhs_mode, 0) != CODE_FOR_nothing
10112 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
10113 mode = rhs_mode;
10114 /* If we can do the conversion in the current input mode do nothing. */
10115 else if (can_float_p (fltmode, rhs_mode,
10116 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
10117 return false;
10118 /* Otherwise search for a mode we can use, starting from the narrowest
10119 integer mode available. */
10120 else
10122 mode = NARROWEST_INT_MODE;
10123 for (;;)
10125 /* If we cannot do a signed conversion to float from mode
10126 or if the value-range does not fit in the signed type
10127 try with a wider mode. */
10128 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
10129 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
10130 break;
10132 /* But do not widen the input. Instead leave that to the
10133 optabs expansion code. */
10134 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
10135 || GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
10136 return false;
10140 /* It works, insert a truncation or sign-change before the
10141 float conversion. */
10142 tem = make_ssa_name (build_nonstandard_integer_type
10143 (GET_MODE_PRECISION (mode), 0));
10144 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
10145 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
10146 gimple_assign_set_rhs1 (stmt, tem);
10147 fold_stmt (gsi, follow_single_use_edges);
10149 return true;
10152 /* Simplify an internal fn call using ranges if possible. */
10154 static bool
10155 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10157 enum tree_code subcode;
10158 bool is_ubsan = false;
10159 bool ovf = false;
10160 switch (gimple_call_internal_fn (stmt))
10162 case IFN_UBSAN_CHECK_ADD:
10163 subcode = PLUS_EXPR;
10164 is_ubsan = true;
10165 break;
10166 case IFN_UBSAN_CHECK_SUB:
10167 subcode = MINUS_EXPR;
10168 is_ubsan = true;
10169 break;
10170 case IFN_UBSAN_CHECK_MUL:
10171 subcode = MULT_EXPR;
10172 is_ubsan = true;
10173 break;
10174 case IFN_ADD_OVERFLOW:
10175 subcode = PLUS_EXPR;
10176 break;
10177 case IFN_SUB_OVERFLOW:
10178 subcode = MINUS_EXPR;
10179 break;
10180 case IFN_MUL_OVERFLOW:
10181 subcode = MULT_EXPR;
10182 break;
10183 default:
10184 return false;
10187 tree op0 = gimple_call_arg (stmt, 0);
10188 tree op1 = gimple_call_arg (stmt, 1);
10189 tree type;
10190 if (is_ubsan)
10192 type = TREE_TYPE (op0);
10193 if (VECTOR_TYPE_P (type))
10194 return false;
10196 else if (gimple_call_lhs (stmt) == NULL_TREE)
10197 return false;
10198 else
10199 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
10200 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
10201 || (is_ubsan && ovf))
10202 return false;
10204 gimple *g;
10205 location_t loc = gimple_location (stmt);
10206 if (is_ubsan)
10207 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
10208 else
10210 int prec = TYPE_PRECISION (type);
10211 tree utype = type;
10212 if (ovf
10213 || !useless_type_conversion_p (type, TREE_TYPE (op0))
10214 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
10215 utype = build_nonstandard_integer_type (prec, 1);
10216 if (TREE_CODE (op0) == INTEGER_CST)
10217 op0 = fold_convert (utype, op0);
10218 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
10220 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
10221 gimple_set_location (g, loc);
10222 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10223 op0 = gimple_assign_lhs (g);
10225 if (TREE_CODE (op1) == INTEGER_CST)
10226 op1 = fold_convert (utype, op1);
10227 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
10229 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
10230 gimple_set_location (g, loc);
10231 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10232 op1 = gimple_assign_lhs (g);
10234 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
10235 gimple_set_location (g, loc);
10236 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10237 if (utype != type)
10239 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
10240 gimple_assign_lhs (g));
10241 gimple_set_location (g, loc);
10242 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10244 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
10245 gimple_assign_lhs (g),
10246 build_int_cst (type, ovf));
10248 gimple_set_location (g, loc);
10249 gsi_replace (gsi, g, false);
10250 return true;
10253 /* Return true if VAR is a two-valued variable. Set a and b with the
10254 two-values when it is true. Return false otherwise. */
10256 static bool
10257 two_valued_val_range_p (tree var, tree *a, tree *b)
10259 value_range *vr = get_value_range (var);
10260 if ((vr->type != VR_RANGE
10261 && vr->type != VR_ANTI_RANGE)
10262 || TREE_CODE (vr->min) != INTEGER_CST
10263 || TREE_CODE (vr->max) != INTEGER_CST)
10264 return false;
10266 if (vr->type == VR_RANGE
10267 && wi::sub (vr->max, vr->min) == 1)
10269 *a = vr->min;
10270 *b = vr->max;
10271 return true;
10274 /* ~[TYPE_MIN + 1, TYPE_MAX - 1] */
10275 if (vr->type == VR_ANTI_RANGE
10276 && wi::sub (vr->min, vrp_val_min (TREE_TYPE (var))) == 1
10277 && wi::sub (vrp_val_max (TREE_TYPE (var)), vr->max) == 1)
10279 *a = vrp_val_min (TREE_TYPE (var));
10280 *b = vrp_val_max (TREE_TYPE (var));
10281 return true;
10284 return false;
10287 /* Simplify STMT using ranges if possible. */
10289 static bool
10290 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
10292 gimple *stmt = gsi_stmt (*gsi);
10293 if (is_gimple_assign (stmt))
10295 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
10296 tree rhs1 = gimple_assign_rhs1 (stmt);
10297 tree rhs2 = gimple_assign_rhs2 (stmt);
10298 tree lhs = gimple_assign_lhs (stmt);
10299 tree val1 = NULL_TREE, val2 = NULL_TREE;
10300 use_operand_p use_p;
10301 gimple *use_stmt;
10303 /* Convert:
10304 LHS = CST BINOP VAR
10305 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10307 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
10309 Also handles:
10310 LHS = VAR BINOP CST
10311 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10313 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
10315 if (TREE_CODE_CLASS (rhs_code) == tcc_binary
10316 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10317 && ((TREE_CODE (rhs1) == INTEGER_CST
10318 && TREE_CODE (rhs2) == SSA_NAME)
10319 || (TREE_CODE (rhs2) == INTEGER_CST
10320 && TREE_CODE (rhs1) == SSA_NAME))
10321 && single_imm_use (lhs, &use_p, &use_stmt)
10322 && gimple_code (use_stmt) == GIMPLE_COND)
10325 tree new_rhs1 = NULL_TREE;
10326 tree new_rhs2 = NULL_TREE;
10327 tree cmp_var = NULL_TREE;
10329 if (TREE_CODE (rhs2) == SSA_NAME
10330 && two_valued_val_range_p (rhs2, &val1, &val2))
10332 /* Optimize RHS1 OP [VAL1, VAL2]. */
10333 new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
10334 new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
10335 cmp_var = rhs2;
10337 else if (TREE_CODE (rhs1) == SSA_NAME
10338 && two_valued_val_range_p (rhs1, &val1, &val2))
10340 /* Optimize [VAL1, VAL2] OP RHS2. */
10341 new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
10342 new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
10343 cmp_var = rhs1;
10346 /* If we could not find two-vals or the optimzation is invalid as
10347 in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
10348 if (new_rhs1 && new_rhs2)
10350 tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1);
10351 gimple_assign_set_rhs_with_ops (gsi,
10352 COND_EXPR, cond,
10353 new_rhs1,
10354 new_rhs2);
10355 update_stmt (gsi_stmt (*gsi));
10356 fold_stmt (gsi, follow_single_use_edges);
10357 return true;
10361 switch (rhs_code)
10363 case EQ_EXPR:
10364 case NE_EXPR:
10365 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
10366 if the RHS is zero or one, and the LHS are known to be boolean
10367 values. */
10368 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10369 return simplify_truth_ops_using_ranges (gsi, stmt);
10370 break;
10372 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
10373 and BIT_AND_EXPR respectively if the first operand is greater
10374 than zero and the second operand is an exact power of two.
10375 Also optimize TRUNC_MOD_EXPR away if the second operand is
10376 constant and the first operand already has the right value
10377 range. */
10378 case TRUNC_DIV_EXPR:
10379 case TRUNC_MOD_EXPR:
10380 if ((TREE_CODE (rhs1) == SSA_NAME
10381 || TREE_CODE (rhs1) == INTEGER_CST)
10382 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10383 return simplify_div_or_mod_using_ranges (gsi, stmt);
10384 break;
10386 /* Transform ABS (X) into X or -X as appropriate. */
10387 case ABS_EXPR:
10388 if (TREE_CODE (rhs1) == SSA_NAME
10389 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10390 return simplify_abs_using_ranges (gsi, stmt);
10391 break;
10393 case BIT_AND_EXPR:
10394 case BIT_IOR_EXPR:
10395 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
10396 if all the bits being cleared are already cleared or
10397 all the bits being set are already set. */
10398 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10399 return simplify_bit_ops_using_ranges (gsi, stmt);
10400 break;
10402 CASE_CONVERT:
10403 if (TREE_CODE (rhs1) == SSA_NAME
10404 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10405 return simplify_conversion_using_ranges (gsi, stmt);
10406 break;
10408 case FLOAT_EXPR:
10409 if (TREE_CODE (rhs1) == SSA_NAME
10410 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10411 return simplify_float_conversion_using_ranges (gsi, stmt);
10412 break;
10414 case MIN_EXPR:
10415 case MAX_EXPR:
10416 return simplify_min_or_max_using_ranges (gsi, stmt);
10418 default:
10419 break;
10422 else if (gimple_code (stmt) == GIMPLE_COND)
10423 return simplify_cond_using_ranges_1 (as_a <gcond *> (stmt));
10424 else if (gimple_code (stmt) == GIMPLE_SWITCH)
10425 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
10426 else if (is_gimple_call (stmt)
10427 && gimple_call_internal_p (stmt))
10428 return simplify_internal_call_using_ranges (gsi, stmt);
10430 return false;
10433 /* If the statement pointed by SI has a predicate whose value can be
10434 computed using the value range information computed by VRP, compute
10435 its value and return true. Otherwise, return false. */
10437 static bool
10438 fold_predicate_in (gimple_stmt_iterator *si)
10440 bool assignment_p = false;
10441 tree val;
10442 gimple *stmt = gsi_stmt (*si);
10444 if (is_gimple_assign (stmt)
10445 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
10447 assignment_p = true;
10448 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
10449 gimple_assign_rhs1 (stmt),
10450 gimple_assign_rhs2 (stmt),
10451 stmt);
10453 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10454 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10455 gimple_cond_lhs (cond_stmt),
10456 gimple_cond_rhs (cond_stmt),
10457 stmt);
10458 else
10459 return false;
10461 if (val)
10463 if (assignment_p)
10464 val = fold_convert (gimple_expr_type (stmt), val);
10466 if (dump_file)
10468 fprintf (dump_file, "Folding predicate ");
10469 print_gimple_expr (dump_file, stmt, 0);
10470 fprintf (dump_file, " to ");
10471 print_generic_expr (dump_file, val);
10472 fprintf (dump_file, "\n");
10475 if (is_gimple_assign (stmt))
10476 gimple_assign_set_rhs_from_tree (si, val);
10477 else
10479 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10480 gcond *cond_stmt = as_a <gcond *> (stmt);
10481 if (integer_zerop (val))
10482 gimple_cond_make_false (cond_stmt);
10483 else if (integer_onep (val))
10484 gimple_cond_make_true (cond_stmt);
10485 else
10486 gcc_unreachable ();
10489 return true;
10492 return false;
10495 /* Callback for substitute_and_fold folding the stmt at *SI. */
10497 static bool
10498 vrp_fold_stmt (gimple_stmt_iterator *si)
10500 if (fold_predicate_in (si))
10501 return true;
10503 return simplify_stmt_using_ranges (si);
10506 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
10507 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
10508 BB. If no such ASSERT_EXPR is found, return OP. */
10510 static tree
10511 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
10513 imm_use_iterator imm_iter;
10514 gimple *use_stmt;
10515 use_operand_p use_p;
10517 if (TREE_CODE (op) == SSA_NAME)
10519 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
10521 use_stmt = USE_STMT (use_p);
10522 if (use_stmt != stmt
10523 && gimple_assign_single_p (use_stmt)
10524 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
10525 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
10526 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
10527 return gimple_assign_lhs (use_stmt);
10530 return op;
10533 /* A trivial wrapper so that we can present the generic jump threading
10534 code with a simple API for simplifying statements. STMT is the
10535 statement we want to simplify, WITHIN_STMT provides the location
10536 for any overflow warnings. */
10538 static tree
10539 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
10540 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
10541 basic_block bb)
10543 /* First see if the conditional is in the hash table. */
10544 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
10545 if (cached_lhs && is_gimple_min_invariant (cached_lhs))
10546 return cached_lhs;
10548 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10550 tree op0 = gimple_cond_lhs (cond_stmt);
10551 op0 = lhs_of_dominating_assert (op0, bb, stmt);
10553 tree op1 = gimple_cond_rhs (cond_stmt);
10554 op1 = lhs_of_dominating_assert (op1, bb, stmt);
10556 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10557 op0, op1, within_stmt);
10560 /* We simplify a switch statement by trying to determine which case label
10561 will be taken. If we are successful then we return the corresponding
10562 CASE_LABEL_EXPR. */
10563 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
10565 tree op = gimple_switch_index (switch_stmt);
10566 if (TREE_CODE (op) != SSA_NAME)
10567 return NULL_TREE;
10569 op = lhs_of_dominating_assert (op, bb, stmt);
10571 value_range *vr = get_value_range (op);
10572 if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE)
10573 || symbolic_range_p (vr))
10574 return NULL_TREE;
10576 if (vr->type == VR_RANGE)
10578 size_t i, j;
10579 /* Get the range of labels that contain a part of the operand's
10580 value range. */
10581 find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j);
10583 /* Is there only one such label? */
10584 if (i == j)
10586 tree label = gimple_switch_label (switch_stmt, i);
10588 /* The i'th label will be taken only if the value range of the
10589 operand is entirely within the bounds of this label. */
10590 if (CASE_HIGH (label) != NULL_TREE
10591 ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0
10592 && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0)
10593 : (tree_int_cst_equal (CASE_LOW (label), vr->min)
10594 && tree_int_cst_equal (vr->min, vr->max)))
10595 return label;
10598 /* If there are no such labels then the default label will be
10599 taken. */
10600 if (i > j)
10601 return gimple_switch_label (switch_stmt, 0);
10604 if (vr->type == VR_ANTI_RANGE)
10606 unsigned n = gimple_switch_num_labels (switch_stmt);
10607 tree min_label = gimple_switch_label (switch_stmt, 1);
10608 tree max_label = gimple_switch_label (switch_stmt, n - 1);
10610 /* The default label will be taken only if the anti-range of the
10611 operand is entirely outside the bounds of all the (non-default)
10612 case labels. */
10613 if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0
10614 && (CASE_HIGH (max_label) != NULL_TREE
10615 ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0
10616 : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0))
10617 return gimple_switch_label (switch_stmt, 0);
10620 return NULL_TREE;
10623 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10625 value_range new_vr = VR_INITIALIZER;
10626 tree lhs = gimple_assign_lhs (assign_stmt);
10628 if (TREE_CODE (lhs) == SSA_NAME
10629 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10630 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10632 extract_range_from_assignment (&new_vr, assign_stmt);
10633 if (range_int_cst_singleton_p (&new_vr))
10634 return new_vr.min;
10638 return NULL_TREE;
10641 class vrp_dom_walker : public dom_walker
10643 public:
10644 vrp_dom_walker (cdi_direction direction,
10645 class const_and_copies *const_and_copies,
10646 class avail_exprs_stack *avail_exprs_stack)
10647 : dom_walker (direction, true),
10648 m_const_and_copies (const_and_copies),
10649 m_avail_exprs_stack (avail_exprs_stack),
10650 m_dummy_cond (NULL) {}
10652 virtual edge before_dom_children (basic_block);
10653 virtual void after_dom_children (basic_block);
10655 private:
10656 class const_and_copies *m_const_and_copies;
10657 class avail_exprs_stack *m_avail_exprs_stack;
10659 gcond *m_dummy_cond;
10662 /* Called before processing dominator children of BB. We want to look
10663 at ASSERT_EXPRs and record information from them in the appropriate
10664 tables.
10666 We could look at other statements here. It's not seen as likely
10667 to significantly increase the jump threads we discover. */
10669 edge
10670 vrp_dom_walker::before_dom_children (basic_block bb)
10672 gimple_stmt_iterator gsi;
10674 m_avail_exprs_stack->push_marker ();
10675 m_const_and_copies->push_marker ();
10676 for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
10678 gimple *stmt = gsi_stmt (gsi);
10679 if (gimple_assign_single_p (stmt)
10680 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
10682 tree rhs1 = gimple_assign_rhs1 (stmt);
10683 tree cond = TREE_OPERAND (rhs1, 1);
10684 tree inverted = invert_truthvalue (cond);
10685 vec<cond_equivalence> p;
10686 p.create (3);
10687 record_conditions (&p, cond, inverted);
10688 for (unsigned int i = 0; i < p.length (); i++)
10689 m_avail_exprs_stack->record_cond (&p[i]);
10691 tree lhs = gimple_assign_lhs (stmt);
10692 m_const_and_copies->record_const_or_copy (lhs,
10693 TREE_OPERAND (rhs1, 0));
10694 p.release ();
10695 continue;
10697 break;
10699 return NULL;
10702 /* Called after processing dominator children of BB. This is where we
10703 actually call into the threader. */
10704 void
10705 vrp_dom_walker::after_dom_children (basic_block bb)
10707 if (!m_dummy_cond)
10708 m_dummy_cond = gimple_build_cond (NE_EXPR,
10709 integer_zero_node, integer_zero_node,
10710 NULL, NULL);
10712 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
10713 m_avail_exprs_stack,
10714 simplify_stmt_for_jump_threading);
10716 m_avail_exprs_stack->pop_to_marker ();
10717 m_const_and_copies->pop_to_marker ();
10720 /* Blocks which have more than one predecessor and more than
10721 one successor present jump threading opportunities, i.e.,
10722 when the block is reached from a specific predecessor, we
10723 may be able to determine which of the outgoing edges will
10724 be traversed. When this optimization applies, we are able
10725 to avoid conditionals at runtime and we may expose secondary
10726 optimization opportunities.
10728 This routine is effectively a driver for the generic jump
10729 threading code. It basically just presents the generic code
10730 with edges that may be suitable for jump threading.
10732 Unlike DOM, we do not iterate VRP if jump threading was successful.
10733 While iterating may expose new opportunities for VRP, it is expected
10734 those opportunities would be very limited and the compile time cost
10735 to expose those opportunities would be significant.
10737 As jump threading opportunities are discovered, they are registered
10738 for later realization. */
10740 static void
10741 identify_jump_threads (void)
10743 int i;
10744 edge e;
10746 /* Ugh. When substituting values earlier in this pass we can
10747 wipe the dominance information. So rebuild the dominator
10748 information as we need it within the jump threading code. */
10749 calculate_dominance_info (CDI_DOMINATORS);
10751 /* We do not allow VRP information to be used for jump threading
10752 across a back edge in the CFG. Otherwise it becomes too
10753 difficult to avoid eliminating loop exit tests. Of course
10754 EDGE_DFS_BACK is not accurate at this time so we have to
10755 recompute it. */
10756 mark_dfs_back_edges ();
10758 /* Do not thread across edges we are about to remove. Just marking
10759 them as EDGE_IGNORE will do. */
10760 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10761 e->flags |= EDGE_IGNORE;
10763 /* Allocate our unwinder stack to unwind any temporary equivalences
10764 that might be recorded. */
10765 const_and_copies *equiv_stack = new const_and_copies ();
10767 hash_table<expr_elt_hasher> *avail_exprs
10768 = new hash_table<expr_elt_hasher> (1024);
10769 avail_exprs_stack *avail_exprs_stack
10770 = new class avail_exprs_stack (avail_exprs);
10772 vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
10773 walker.walk (cfun->cfg->x_entry_block_ptr);
10775 /* Clear EDGE_IGNORE. */
10776 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10777 e->flags &= ~EDGE_IGNORE;
10779 /* We do not actually update the CFG or SSA graphs at this point as
10780 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10781 handle ASSERT_EXPRs gracefully. */
10782 delete equiv_stack;
10783 delete avail_exprs;
10784 delete avail_exprs_stack;
10787 /* Free VRP lattice. */
10789 static void
10790 vrp_free_lattice ()
10792 /* Free allocated memory. */
10793 free (vr_value);
10794 free (vr_phi_edge_counts);
10795 bitmap_obstack_release (&vrp_equiv_obstack);
10796 vrp_value_range_pool.release ();
10798 /* So that we can distinguish between VRP data being available
10799 and not available. */
10800 vr_value = NULL;
10801 vr_phi_edge_counts = NULL;
10804 /* Traverse all the blocks folding conditionals with known ranges. */
10806 static void
10807 vrp_finalize (bool warn_array_bounds_p)
10809 size_t i;
10811 values_propagated = true;
10813 if (dump_file)
10815 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
10816 dump_all_value_ranges (dump_file);
10817 fprintf (dump_file, "\n");
10820 /* Set value range to non pointer SSA_NAMEs. */
10821 for (i = 0; i < num_vr_values; i++)
10822 if (vr_value[i])
10824 tree name = ssa_name (i);
10826 if (!name
10827 || (vr_value[i]->type == VR_VARYING)
10828 || (vr_value[i]->type == VR_UNDEFINED)
10829 || (TREE_CODE (vr_value[i]->min) != INTEGER_CST)
10830 || (TREE_CODE (vr_value[i]->max) != INTEGER_CST))
10831 continue;
10833 if (POINTER_TYPE_P (TREE_TYPE (name))
10834 && ((vr_value[i]->type == VR_RANGE
10835 && range_includes_zero_p (vr_value[i]->min,
10836 vr_value[i]->max) == 0)
10837 || (vr_value[i]->type == VR_ANTI_RANGE
10838 && range_includes_zero_p (vr_value[i]->min,
10839 vr_value[i]->max) == 1)))
10840 set_ptr_nonnull (name);
10841 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
10842 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
10843 vr_value[i]->max);
10846 substitute_and_fold (op_with_constant_singleton_value_range, vrp_fold_stmt);
10848 if (warn_array_bounds && warn_array_bounds_p)
10849 check_all_array_refs ();
10852 /* evrp_dom_walker visits the basic blocks in the dominance order and set
10853 the Value Ranges (VR) for SSA_NAMEs in the scope. Use this VR to
10854 discover more VRs. */
10856 class evrp_dom_walker : public dom_walker
10858 public:
10859 evrp_dom_walker ()
10860 : dom_walker (CDI_DOMINATORS), stack (10)
10862 need_eh_cleanup = BITMAP_ALLOC (NULL);
10864 ~evrp_dom_walker ()
10866 BITMAP_FREE (need_eh_cleanup);
10868 virtual edge before_dom_children (basic_block);
10869 virtual void after_dom_children (basic_block);
10870 void push_value_range (tree var, value_range *vr);
10871 value_range *pop_value_range (tree var);
10872 value_range *try_find_new_range (tree, tree op, tree_code code, tree limit);
10874 /* Cond_stack holds the old VR. */
10875 auto_vec<std::pair <tree, value_range*> > stack;
10876 bitmap need_eh_cleanup;
10877 auto_vec<gimple *> stmts_to_fixup;
10878 auto_vec<gimple *> stmts_to_remove;
10881 /* Find new range for NAME such that (OP CODE LIMIT) is true. */
10883 value_range *
10884 evrp_dom_walker::try_find_new_range (tree name,
10885 tree op, tree_code code, tree limit)
10887 value_range vr = VR_INITIALIZER;
10888 value_range *old_vr = get_value_range (name);
10890 /* Discover VR when condition is true. */
10891 extract_range_for_var_from_comparison_expr (name, code, op,
10892 limit, &vr);
10893 /* If we found any usable VR, set the VR to ssa_name and create a
10894 PUSH old value in the stack with the old VR. */
10895 if (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE)
10897 if (old_vr->type == vr.type
10898 && vrp_operand_equal_p (old_vr->min, vr.min)
10899 && vrp_operand_equal_p (old_vr->max, vr.max))
10900 return NULL;
10901 value_range *new_vr = vrp_value_range_pool.allocate ();
10902 *new_vr = vr;
10903 return new_vr;
10905 return NULL;
10908 /* See if there is any new scope is entered with new VR and set that VR to
10909 ssa_name before visiting the statements in the scope. */
10911 edge
10912 evrp_dom_walker::before_dom_children (basic_block bb)
10914 tree op0 = NULL_TREE;
10915 edge_iterator ei;
10916 edge e;
10918 if (dump_file && (dump_flags & TDF_DETAILS))
10919 fprintf (dump_file, "Visiting BB%d\n", bb->index);
10921 stack.safe_push (std::make_pair (NULL_TREE, (value_range *)NULL));
10923 edge pred_e = NULL;
10924 FOR_EACH_EDGE (e, ei, bb->preds)
10926 /* Ignore simple backedges from this to allow recording conditions
10927 in loop headers. */
10928 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
10929 continue;
10930 if (! pred_e)
10931 pred_e = e;
10932 else
10934 pred_e = NULL;
10935 break;
10938 if (pred_e)
10940 gimple *stmt = last_stmt (pred_e->src);
10941 if (stmt
10942 && gimple_code (stmt) == GIMPLE_COND
10943 && (op0 = gimple_cond_lhs (stmt))
10944 && TREE_CODE (op0) == SSA_NAME
10945 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))
10946 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))))
10948 if (dump_file && (dump_flags & TDF_DETAILS))
10950 fprintf (dump_file, "Visiting controlling predicate ");
10951 print_gimple_stmt (dump_file, stmt, 0);
10953 /* Entering a new scope. Try to see if we can find a VR
10954 here. */
10955 tree op1 = gimple_cond_rhs (stmt);
10956 if (TREE_OVERFLOW_P (op1))
10957 op1 = drop_tree_overflow (op1);
10958 tree_code code = gimple_cond_code (stmt);
10960 auto_vec<assert_info, 8> asserts;
10961 register_edge_assert_for (op0, pred_e, code, op0, op1, asserts);
10962 if (TREE_CODE (op1) == SSA_NAME)
10963 register_edge_assert_for (op1, pred_e, code, op0, op1, asserts);
10965 auto_vec<std::pair<tree, value_range *>, 8> vrs;
10966 for (unsigned i = 0; i < asserts.length (); ++i)
10968 value_range *vr = try_find_new_range (asserts[i].name,
10969 asserts[i].expr,
10970 asserts[i].comp_code,
10971 asserts[i].val);
10972 if (vr)
10973 vrs.safe_push (std::make_pair (asserts[i].name, vr));
10975 /* Push updated ranges only after finding all of them to avoid
10976 ordering issues that can lead to worse ranges. */
10977 for (unsigned i = 0; i < vrs.length (); ++i)
10978 push_value_range (vrs[i].first, vrs[i].second);
10982 /* Visit PHI stmts and discover any new VRs possible. */
10983 bool has_unvisited_preds = false;
10984 FOR_EACH_EDGE (e, ei, bb->preds)
10985 if (e->flags & EDGE_EXECUTABLE
10986 && !(e->src->flags & BB_VISITED))
10988 has_unvisited_preds = true;
10989 break;
10992 for (gphi_iterator gpi = gsi_start_phis (bb);
10993 !gsi_end_p (gpi); gsi_next (&gpi))
10995 gphi *phi = gpi.phi ();
10996 tree lhs = PHI_RESULT (phi);
10997 if (virtual_operand_p (lhs))
10998 continue;
10999 value_range vr_result = VR_INITIALIZER;
11000 bool interesting = stmt_interesting_for_vrp (phi);
11001 if (interesting && dump_file && (dump_flags & TDF_DETAILS))
11003 fprintf (dump_file, "Visiting PHI node ");
11004 print_gimple_stmt (dump_file, phi, 0);
11006 if (!has_unvisited_preds
11007 && interesting)
11008 extract_range_from_phi_node (phi, &vr_result);
11009 else
11011 set_value_range_to_varying (&vr_result);
11012 /* When we have an unvisited executable predecessor we can't
11013 use PHI arg ranges which may be still UNDEFINED but have
11014 to use VARYING for them. But we can still resort to
11015 SCEV for loop header PHIs. */
11016 struct loop *l;
11017 if (interesting
11018 && (l = loop_containing_stmt (phi))
11019 && l->header == gimple_bb (phi))
11020 adjust_range_with_scev (&vr_result, l, phi, lhs);
11022 update_value_range (lhs, &vr_result);
11024 /* Mark PHIs whose lhs we fully propagate for removal. */
11025 tree val = op_with_constant_singleton_value_range (lhs);
11026 if (val && may_propagate_copy (lhs, val))
11028 stmts_to_remove.safe_push (phi);
11029 continue;
11032 /* Set the SSA with the value range. */
11033 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
11035 if ((vr_result.type == VR_RANGE
11036 || vr_result.type == VR_ANTI_RANGE)
11037 && (TREE_CODE (vr_result.min) == INTEGER_CST)
11038 && (TREE_CODE (vr_result.max) == INTEGER_CST))
11039 set_range_info (lhs,
11040 vr_result.type, vr_result.min, vr_result.max);
11042 else if (POINTER_TYPE_P (TREE_TYPE (lhs))
11043 && ((vr_result.type == VR_RANGE
11044 && range_includes_zero_p (vr_result.min,
11045 vr_result.max) == 0)
11046 || (vr_result.type == VR_ANTI_RANGE
11047 && range_includes_zero_p (vr_result.min,
11048 vr_result.max) == 1)))
11049 set_ptr_nonnull (lhs);
11052 edge taken_edge = NULL;
11054 /* Visit all other stmts and discover any new VRs possible. */
11055 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
11056 !gsi_end_p (gsi); gsi_next (&gsi))
11058 gimple *stmt = gsi_stmt (gsi);
11059 tree output = NULL_TREE;
11060 gimple *old_stmt = stmt;
11061 bool was_noreturn = (is_gimple_call (stmt)
11062 && gimple_call_noreturn_p (stmt));
11064 if (dump_file && (dump_flags & TDF_DETAILS))
11066 fprintf (dump_file, "Visiting stmt ");
11067 print_gimple_stmt (dump_file, stmt, 0);
11070 if (gcond *cond = dyn_cast <gcond *> (stmt))
11072 vrp_visit_cond_stmt (cond, &taken_edge);
11073 if (taken_edge)
11075 if (taken_edge->flags & EDGE_TRUE_VALUE)
11076 gimple_cond_make_true (cond);
11077 else if (taken_edge->flags & EDGE_FALSE_VALUE)
11078 gimple_cond_make_false (cond);
11079 else
11080 gcc_unreachable ();
11081 update_stmt (stmt);
11084 else if (stmt_interesting_for_vrp (stmt))
11086 edge taken_edge;
11087 value_range vr = VR_INITIALIZER;
11088 extract_range_from_stmt (stmt, &taken_edge, &output, &vr);
11089 if (output
11090 && (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE))
11092 update_value_range (output, &vr);
11093 vr = *get_value_range (output);
11095 /* Mark stmts whose output we fully propagate for removal. */
11096 tree val;
11097 if ((val = op_with_constant_singleton_value_range (output))
11098 && may_propagate_copy (output, val)
11099 && !stmt_could_throw_p (stmt)
11100 && !gimple_has_side_effects (stmt))
11102 stmts_to_remove.safe_push (stmt);
11103 continue;
11106 /* Set the SSA with the value range. */
11107 if (INTEGRAL_TYPE_P (TREE_TYPE (output)))
11109 if ((vr.type == VR_RANGE
11110 || vr.type == VR_ANTI_RANGE)
11111 && (TREE_CODE (vr.min) == INTEGER_CST)
11112 && (TREE_CODE (vr.max) == INTEGER_CST))
11113 set_range_info (output, vr.type, vr.min, vr.max);
11115 else if (POINTER_TYPE_P (TREE_TYPE (output))
11116 && ((vr.type == VR_RANGE
11117 && range_includes_zero_p (vr.min,
11118 vr.max) == 0)
11119 || (vr.type == VR_ANTI_RANGE
11120 && range_includes_zero_p (vr.min,
11121 vr.max) == 1)))
11122 set_ptr_nonnull (output);
11124 else
11125 set_defs_to_varying (stmt);
11127 else
11128 set_defs_to_varying (stmt);
11130 /* See if we can derive a range for any of STMT's operands. */
11131 tree op;
11132 ssa_op_iter i;
11133 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
11135 tree value;
11136 enum tree_code comp_code;
11138 /* If OP is used in such a way that we can infer a value
11139 range for it, and we don't find a previous assertion for
11140 it, create a new assertion location node for OP. */
11141 if (infer_value_range (stmt, op, &comp_code, &value))
11143 /* If we are able to infer a nonzero value range for OP,
11144 then walk backwards through the use-def chain to see if OP
11145 was set via a typecast.
11146 If so, then we can also infer a nonzero value range
11147 for the operand of the NOP_EXPR. */
11148 if (comp_code == NE_EXPR && integer_zerop (value))
11150 tree t = op;
11151 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
11152 while (is_gimple_assign (def_stmt)
11153 && CONVERT_EXPR_CODE_P
11154 (gimple_assign_rhs_code (def_stmt))
11155 && TREE_CODE
11156 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
11157 && POINTER_TYPE_P
11158 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
11160 t = gimple_assign_rhs1 (def_stmt);
11161 def_stmt = SSA_NAME_DEF_STMT (t);
11163 /* Add VR when (T COMP_CODE value) condition is
11164 true. */
11165 value_range *op_range
11166 = try_find_new_range (t, t, comp_code, value);
11167 if (op_range)
11168 push_value_range (t, op_range);
11171 /* Add VR when (OP COMP_CODE value) condition is true. */
11172 value_range *op_range = try_find_new_range (op, op,
11173 comp_code, value);
11174 if (op_range)
11175 push_value_range (op, op_range);
11179 /* Try folding stmts with the VR discovered. */
11180 bool did_replace
11181 = replace_uses_in (stmt, op_with_constant_singleton_value_range);
11182 if (fold_stmt (&gsi, follow_single_use_edges)
11183 || did_replace)
11185 stmt = gsi_stmt (gsi);
11186 update_stmt (stmt);
11187 did_replace = true;
11190 if (did_replace)
11192 /* If we cleaned up EH information from the statement,
11193 remove EH edges. */
11194 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
11195 bitmap_set_bit (need_eh_cleanup, bb->index);
11197 /* If we turned a not noreturn call into a noreturn one
11198 schedule it for fixup. */
11199 if (!was_noreturn
11200 && is_gimple_call (stmt)
11201 && gimple_call_noreturn_p (stmt))
11202 stmts_to_fixup.safe_push (stmt);
11204 if (gimple_assign_single_p (stmt))
11206 tree rhs = gimple_assign_rhs1 (stmt);
11207 if (TREE_CODE (rhs) == ADDR_EXPR)
11208 recompute_tree_invariant_for_addr_expr (rhs);
11213 /* Visit BB successor PHI nodes and replace PHI args. */
11214 FOR_EACH_EDGE (e, ei, bb->succs)
11216 for (gphi_iterator gpi = gsi_start_phis (e->dest);
11217 !gsi_end_p (gpi); gsi_next (&gpi))
11219 gphi *phi = gpi.phi ();
11220 use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
11221 tree arg = USE_FROM_PTR (use_p);
11222 if (TREE_CODE (arg) != SSA_NAME
11223 || virtual_operand_p (arg))
11224 continue;
11225 tree val = op_with_constant_singleton_value_range (arg);
11226 if (val && may_propagate_copy (arg, val))
11227 propagate_value (use_p, val);
11231 bb->flags |= BB_VISITED;
11233 return taken_edge;
11236 /* Restore/pop VRs valid only for BB when we leave BB. */
11238 void
11239 evrp_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
11241 gcc_checking_assert (!stack.is_empty ());
11242 while (stack.last ().first != NULL_TREE)
11243 pop_value_range (stack.last ().first);
11244 stack.pop ();
11247 /* Push the Value Range of VAR to the stack and update it with new VR. */
11249 void
11250 evrp_dom_walker::push_value_range (tree var, value_range *vr)
11252 if (SSA_NAME_VERSION (var) >= num_vr_values)
11253 return;
11254 if (dump_file && (dump_flags & TDF_DETAILS))
11256 fprintf (dump_file, "pushing new range for ");
11257 print_generic_expr (dump_file, var);
11258 fprintf (dump_file, ": ");
11259 dump_value_range (dump_file, vr);
11260 fprintf (dump_file, "\n");
11262 stack.safe_push (std::make_pair (var, get_value_range (var)));
11263 vr_value[SSA_NAME_VERSION (var)] = vr;
11266 /* Pop the Value Range from the vrp_stack and update VAR with it. */
11268 value_range *
11269 evrp_dom_walker::pop_value_range (tree var)
11271 value_range *vr = stack.last ().second;
11272 gcc_checking_assert (var == stack.last ().first);
11273 if (dump_file && (dump_flags & TDF_DETAILS))
11275 fprintf (dump_file, "popping range for ");
11276 print_generic_expr (dump_file, var);
11277 fprintf (dump_file, ", restoring ");
11278 dump_value_range (dump_file, vr);
11279 fprintf (dump_file, "\n");
11281 vr_value[SSA_NAME_VERSION (var)] = vr;
11282 stack.pop ();
11283 return vr;
11287 /* Main entry point for the early vrp pass which is a simplified non-iterative
11288 version of vrp where basic blocks are visited in dominance order. Value
11289 ranges discovered in early vrp will also be used by ipa-vrp. */
11291 static unsigned int
11292 execute_early_vrp ()
11294 edge e;
11295 edge_iterator ei;
11296 basic_block bb;
11298 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11299 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11300 scev_initialize ();
11301 calculate_dominance_info (CDI_DOMINATORS);
11302 FOR_EACH_BB_FN (bb, cfun)
11304 bb->flags &= ~BB_VISITED;
11305 FOR_EACH_EDGE (e, ei, bb->preds)
11306 e->flags |= EDGE_EXECUTABLE;
11308 vrp_initialize_lattice ();
11310 /* Walk stmts in dominance order and propagate VRP. */
11311 evrp_dom_walker walker;
11312 walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
11314 if (dump_file)
11316 fprintf (dump_file, "\nValue ranges after Early VRP:\n\n");
11317 dump_all_value_ranges (dump_file);
11318 fprintf (dump_file, "\n");
11321 /* Remove stmts in reverse order to make debug stmt creation possible. */
11322 while (! walker.stmts_to_remove.is_empty ())
11324 gimple *stmt = walker.stmts_to_remove.pop ();
11325 if (dump_file && dump_flags & TDF_DETAILS)
11327 fprintf (dump_file, "Removing dead stmt ");
11328 print_gimple_stmt (dump_file, stmt, 0);
11329 fprintf (dump_file, "\n");
11331 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
11332 if (gimple_code (stmt) == GIMPLE_PHI)
11333 remove_phi_node (&gsi, true);
11334 else
11336 unlink_stmt_vdef (stmt);
11337 gsi_remove (&gsi, true);
11338 release_defs (stmt);
11342 if (!bitmap_empty_p (walker.need_eh_cleanup))
11343 gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
11345 /* Fixup stmts that became noreturn calls. This may require splitting
11346 blocks and thus isn't possible during the dominator walk. Do this
11347 in reverse order so we don't inadvertedly remove a stmt we want to
11348 fixup by visiting a dominating now noreturn call first. */
11349 while (!walker.stmts_to_fixup.is_empty ())
11351 gimple *stmt = walker.stmts_to_fixup.pop ();
11352 fixup_noreturn_call (stmt);
11355 vrp_free_lattice ();
11356 scev_finalize ();
11357 loop_optimizer_finalize ();
11358 return 0;
11362 /* Main entry point to VRP (Value Range Propagation). This pass is
11363 loosely based on J. R. C. Patterson, ``Accurate Static Branch
11364 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
11365 Programming Language Design and Implementation, pp. 67-78, 1995.
11366 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
11368 This is essentially an SSA-CCP pass modified to deal with ranges
11369 instead of constants.
11371 While propagating ranges, we may find that two or more SSA name
11372 have equivalent, though distinct ranges. For instance,
11374 1 x_9 = p_3->a;
11375 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
11376 3 if (p_4 == q_2)
11377 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
11378 5 endif
11379 6 if (q_2)
11381 In the code above, pointer p_5 has range [q_2, q_2], but from the
11382 code we can also determine that p_5 cannot be NULL and, if q_2 had
11383 a non-varying range, p_5's range should also be compatible with it.
11385 These equivalences are created by two expressions: ASSERT_EXPR and
11386 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
11387 result of another assertion, then we can use the fact that p_5 and
11388 p_4 are equivalent when evaluating p_5's range.
11390 Together with value ranges, we also propagate these equivalences
11391 between names so that we can take advantage of information from
11392 multiple ranges when doing final replacement. Note that this
11393 equivalency relation is transitive but not symmetric.
11395 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
11396 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
11397 in contexts where that assertion does not hold (e.g., in line 6).
11399 TODO, the main difference between this pass and Patterson's is that
11400 we do not propagate edge probabilities. We only compute whether
11401 edges can be taken or not. That is, instead of having a spectrum
11402 of jump probabilities between 0 and 1, we only deal with 0, 1 and
11403 DON'T KNOW. In the future, it may be worthwhile to propagate
11404 probabilities to aid branch prediction. */
11406 static unsigned int
11407 execute_vrp (bool warn_array_bounds_p)
11409 int i;
11410 edge e;
11411 switch_update *su;
11413 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11414 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11415 scev_initialize ();
11417 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
11418 Inserting assertions may split edges which will invalidate
11419 EDGE_DFS_BACK. */
11420 insert_range_assertions ();
11422 to_remove_edges.create (10);
11423 to_update_switch_stmts.create (5);
11424 threadedge_initialize_values ();
11426 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
11427 mark_dfs_back_edges ();
11429 vrp_initialize_lattice ();
11430 vrp_initialize ();
11431 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
11432 vrp_finalize (warn_array_bounds_p);
11434 /* We must identify jump threading opportunities before we release
11435 the datastructures built by VRP. */
11436 identify_jump_threads ();
11438 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
11439 was set by a type conversion can often be rewritten to use the
11440 RHS of the type conversion.
11442 However, doing so inhibits jump threading through the comparison.
11443 So that transformation is not performed until after jump threading
11444 is complete. */
11445 basic_block bb;
11446 FOR_EACH_BB_FN (bb, cfun)
11448 gimple *last = last_stmt (bb);
11449 if (last && gimple_code (last) == GIMPLE_COND)
11450 simplify_cond_using_ranges_2 (as_a <gcond *> (last));
11453 vrp_free_lattice ();
11455 free_numbers_of_iterations_estimates (cfun);
11457 /* ASSERT_EXPRs must be removed before finalizing jump threads
11458 as finalizing jump threads calls the CFG cleanup code which
11459 does not properly handle ASSERT_EXPRs. */
11460 remove_range_assertions ();
11462 /* If we exposed any new variables, go ahead and put them into
11463 SSA form now, before we handle jump threading. This simplifies
11464 interactions between rewriting of _DECL nodes into SSA form
11465 and rewriting SSA_NAME nodes into SSA form after block
11466 duplication and CFG manipulation. */
11467 update_ssa (TODO_update_ssa);
11469 /* We identified all the jump threading opportunities earlier, but could
11470 not transform the CFG at that time. This routine transforms the
11471 CFG and arranges for the dominator tree to be rebuilt if necessary.
11473 Note the SSA graph update will occur during the normal TODO
11474 processing by the pass manager. */
11475 thread_through_all_blocks (false);
11477 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
11478 CFG in a broken state and requires a cfg_cleanup run. */
11479 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11480 remove_edge (e);
11481 /* Update SWITCH_EXPR case label vector. */
11482 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
11484 size_t j;
11485 size_t n = TREE_VEC_LENGTH (su->vec);
11486 tree label;
11487 gimple_switch_set_num_labels (su->stmt, n);
11488 for (j = 0; j < n; j++)
11489 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
11490 /* As we may have replaced the default label with a regular one
11491 make sure to make it a real default label again. This ensures
11492 optimal expansion. */
11493 label = gimple_switch_label (su->stmt, 0);
11494 CASE_LOW (label) = NULL_TREE;
11495 CASE_HIGH (label) = NULL_TREE;
11498 if (to_remove_edges.length () > 0)
11500 free_dominance_info (CDI_DOMINATORS);
11501 loops_state_set (LOOPS_NEED_FIXUP);
11504 to_remove_edges.release ();
11505 to_update_switch_stmts.release ();
11506 threadedge_finalize_values ();
11508 scev_finalize ();
11509 loop_optimizer_finalize ();
11510 return 0;
11513 namespace {
11515 const pass_data pass_data_vrp =
11517 GIMPLE_PASS, /* type */
11518 "vrp", /* name */
11519 OPTGROUP_NONE, /* optinfo_flags */
11520 TV_TREE_VRP, /* tv_id */
11521 PROP_ssa, /* properties_required */
11522 0, /* properties_provided */
11523 0, /* properties_destroyed */
11524 0, /* todo_flags_start */
11525 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
11528 class pass_vrp : public gimple_opt_pass
11530 public:
11531 pass_vrp (gcc::context *ctxt)
11532 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
11535 /* opt_pass methods: */
11536 opt_pass * clone () { return new pass_vrp (m_ctxt); }
11537 void set_pass_param (unsigned int n, bool param)
11539 gcc_assert (n == 0);
11540 warn_array_bounds_p = param;
11542 virtual bool gate (function *) { return flag_tree_vrp != 0; }
11543 virtual unsigned int execute (function *)
11544 { return execute_vrp (warn_array_bounds_p); }
11546 private:
11547 bool warn_array_bounds_p;
11548 }; // class pass_vrp
11550 } // anon namespace
11552 gimple_opt_pass *
11553 make_pass_vrp (gcc::context *ctxt)
11555 return new pass_vrp (ctxt);
11558 namespace {
11560 const pass_data pass_data_early_vrp =
11562 GIMPLE_PASS, /* type */
11563 "evrp", /* name */
11564 OPTGROUP_NONE, /* optinfo_flags */
11565 TV_TREE_EARLY_VRP, /* tv_id */
11566 PROP_ssa, /* properties_required */
11567 0, /* properties_provided */
11568 0, /* properties_destroyed */
11569 0, /* todo_flags_start */
11570 ( TODO_cleanup_cfg | TODO_update_ssa | TODO_verify_all ),
11573 class pass_early_vrp : public gimple_opt_pass
11575 public:
11576 pass_early_vrp (gcc::context *ctxt)
11577 : gimple_opt_pass (pass_data_early_vrp, ctxt)
11580 /* opt_pass methods: */
11581 opt_pass * clone () { return new pass_early_vrp (m_ctxt); }
11582 virtual bool gate (function *)
11584 return flag_tree_vrp != 0;
11586 virtual unsigned int execute (function *)
11587 { return execute_early_vrp (); }
11589 }; // class pass_vrp
11590 } // anon namespace
11592 gimple_opt_pass *
11593 make_pass_early_vrp (gcc::context *ctxt)
11595 return new pass_early_vrp (ctxt);