[34/77] Add a SCALAR_INT_TYPE_MODE macro
[official-gcc.git] / gcc / fold-const.c
blobd4d3c444297e3db61dc613c7bc7bd70df202201b
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "params.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
82 #include "stringpool.h"
83 #include "attribs.h"
85 /* Nonzero if we are folding constants inside an initializer; zero
86 otherwise. */
87 int folding_initializer = 0;
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code {
93 COMPCODE_FALSE = 0,
94 COMPCODE_LT = 1,
95 COMPCODE_EQ = 2,
96 COMPCODE_LE = 3,
97 COMPCODE_GT = 4,
98 COMPCODE_LTGT = 5,
99 COMPCODE_GE = 6,
100 COMPCODE_ORD = 7,
101 COMPCODE_UNORD = 8,
102 COMPCODE_UNLT = 9,
103 COMPCODE_UNEQ = 10,
104 COMPCODE_UNLE = 11,
105 COMPCODE_UNGT = 12,
106 COMPCODE_NE = 13,
107 COMPCODE_UNGE = 14,
108 COMPCODE_TRUE = 15
111 static bool negate_expr_p (tree);
112 static tree negate_expr (tree);
113 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
114 static enum comparison_code comparison_to_compcode (enum tree_code);
115 static enum tree_code compcode_to_comparison (enum comparison_code);
116 static int twoval_comparison_p (tree, tree *, tree *, int *);
117 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
118 static tree optimize_bit_field_compare (location_t, enum tree_code,
119 tree, tree, tree);
120 static int simple_operand_p (const_tree);
121 static bool simple_operand_p_2 (tree);
122 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
123 static tree range_predecessor (tree);
124 static tree range_successor (tree);
125 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
126 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
127 static tree unextend (tree, int, int, tree);
128 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
129 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
130 static tree fold_binary_op_with_conditional_arg (location_t,
131 enum tree_code, tree,
132 tree, tree,
133 tree, tree, int);
134 static tree fold_negate_const (tree, tree);
135 static tree fold_not_const (const_tree, tree);
136 static tree fold_relational_const (enum tree_code, tree, tree, tree);
137 static tree fold_convert_const (enum tree_code, tree, tree);
138 static tree fold_view_convert_expr (tree, tree);
139 static bool vec_cst_ctor_to_array (tree, tree *);
140 static tree fold_negate_expr (location_t, tree);
143 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
144 Otherwise, return LOC. */
146 static location_t
147 expr_location_or (tree t, location_t loc)
149 location_t tloc = EXPR_LOCATION (t);
150 return tloc == UNKNOWN_LOCATION ? loc : tloc;
153 /* Similar to protected_set_expr_location, but never modify x in place,
154 if location can and needs to be set, unshare it. */
156 static inline tree
157 protected_set_expr_location_unshare (tree x, location_t loc)
159 if (CAN_HAVE_LOCATION_P (x)
160 && EXPR_LOCATION (x) != loc
161 && !(TREE_CODE (x) == SAVE_EXPR
162 || TREE_CODE (x) == TARGET_EXPR
163 || TREE_CODE (x) == BIND_EXPR))
165 x = copy_node (x);
166 SET_EXPR_LOCATION (x, loc);
168 return x;
171 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
172 division and returns the quotient. Otherwise returns
173 NULL_TREE. */
175 tree
176 div_if_zero_remainder (const_tree arg1, const_tree arg2)
178 widest_int quo;
180 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
181 SIGNED, &quo))
182 return wide_int_to_tree (TREE_TYPE (arg1), quo);
184 return NULL_TREE;
187 /* This is nonzero if we should defer warnings about undefined
188 overflow. This facility exists because these warnings are a
189 special case. The code to estimate loop iterations does not want
190 to issue any warnings, since it works with expressions which do not
191 occur in user code. Various bits of cleanup code call fold(), but
192 only use the result if it has certain characteristics (e.g., is a
193 constant); that code only wants to issue a warning if the result is
194 used. */
196 static int fold_deferring_overflow_warnings;
198 /* If a warning about undefined overflow is deferred, this is the
199 warning. Note that this may cause us to turn two warnings into
200 one, but that is fine since it is sufficient to only give one
201 warning per expression. */
203 static const char* fold_deferred_overflow_warning;
205 /* If a warning about undefined overflow is deferred, this is the
206 level at which the warning should be emitted. */
208 static enum warn_strict_overflow_code fold_deferred_overflow_code;
210 /* Start deferring overflow warnings. We could use a stack here to
211 permit nested calls, but at present it is not necessary. */
213 void
214 fold_defer_overflow_warnings (void)
216 ++fold_deferring_overflow_warnings;
219 /* Stop deferring overflow warnings. If there is a pending warning,
220 and ISSUE is true, then issue the warning if appropriate. STMT is
221 the statement with which the warning should be associated (used for
222 location information); STMT may be NULL. CODE is the level of the
223 warning--a warn_strict_overflow_code value. This function will use
224 the smaller of CODE and the deferred code when deciding whether to
225 issue the warning. CODE may be zero to mean to always use the
226 deferred code. */
228 void
229 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
231 const char *warnmsg;
232 location_t locus;
234 gcc_assert (fold_deferring_overflow_warnings > 0);
235 --fold_deferring_overflow_warnings;
236 if (fold_deferring_overflow_warnings > 0)
238 if (fold_deferred_overflow_warning != NULL
239 && code != 0
240 && code < (int) fold_deferred_overflow_code)
241 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
242 return;
245 warnmsg = fold_deferred_overflow_warning;
246 fold_deferred_overflow_warning = NULL;
248 if (!issue || warnmsg == NULL)
249 return;
251 if (gimple_no_warning_p (stmt))
252 return;
254 /* Use the smallest code level when deciding to issue the
255 warning. */
256 if (code == 0 || code > (int) fold_deferred_overflow_code)
257 code = fold_deferred_overflow_code;
259 if (!issue_strict_overflow_warning (code))
260 return;
262 if (stmt == NULL)
263 locus = input_location;
264 else
265 locus = gimple_location (stmt);
266 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
269 /* Stop deferring overflow warnings, ignoring any deferred
270 warnings. */
272 void
273 fold_undefer_and_ignore_overflow_warnings (void)
275 fold_undefer_overflow_warnings (false, NULL, 0);
278 /* Whether we are deferring overflow warnings. */
280 bool
281 fold_deferring_overflow_warnings_p (void)
283 return fold_deferring_overflow_warnings > 0;
286 /* This is called when we fold something based on the fact that signed
287 overflow is undefined. */
289 void
290 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
292 if (fold_deferring_overflow_warnings > 0)
294 if (fold_deferred_overflow_warning == NULL
295 || wc < fold_deferred_overflow_code)
297 fold_deferred_overflow_warning = gmsgid;
298 fold_deferred_overflow_code = wc;
301 else if (issue_strict_overflow_warning (wc))
302 warning (OPT_Wstrict_overflow, gmsgid);
305 /* Return true if the built-in mathematical function specified by CODE
306 is odd, i.e. -f(x) == f(-x). */
308 bool
309 negate_mathfn_p (combined_fn fn)
311 switch (fn)
313 CASE_CFN_ASIN:
314 CASE_CFN_ASINH:
315 CASE_CFN_ATAN:
316 CASE_CFN_ATANH:
317 CASE_CFN_CASIN:
318 CASE_CFN_CASINH:
319 CASE_CFN_CATAN:
320 CASE_CFN_CATANH:
321 CASE_CFN_CBRT:
322 CASE_CFN_CPROJ:
323 CASE_CFN_CSIN:
324 CASE_CFN_CSINH:
325 CASE_CFN_CTAN:
326 CASE_CFN_CTANH:
327 CASE_CFN_ERF:
328 CASE_CFN_LLROUND:
329 CASE_CFN_LROUND:
330 CASE_CFN_ROUND:
331 CASE_CFN_SIN:
332 CASE_CFN_SINH:
333 CASE_CFN_TAN:
334 CASE_CFN_TANH:
335 CASE_CFN_TRUNC:
336 return true;
338 CASE_CFN_LLRINT:
339 CASE_CFN_LRINT:
340 CASE_CFN_NEARBYINT:
341 CASE_CFN_RINT:
342 return !flag_rounding_math;
344 default:
345 break;
347 return false;
350 /* Check whether we may negate an integer constant T without causing
351 overflow. */
353 bool
354 may_negate_without_overflow_p (const_tree t)
356 tree type;
358 gcc_assert (TREE_CODE (t) == INTEGER_CST);
360 type = TREE_TYPE (t);
361 if (TYPE_UNSIGNED (type))
362 return false;
364 return !wi::only_sign_bit_p (t);
367 /* Determine whether an expression T can be cheaply negated using
368 the function negate_expr without introducing undefined overflow. */
370 static bool
371 negate_expr_p (tree t)
373 tree type;
375 if (t == 0)
376 return false;
378 type = TREE_TYPE (t);
380 STRIP_SIGN_NOPS (t);
381 switch (TREE_CODE (t))
383 case INTEGER_CST:
384 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
385 return true;
387 /* Check that -CST will not overflow type. */
388 return may_negate_without_overflow_p (t);
389 case BIT_NOT_EXPR:
390 return (INTEGRAL_TYPE_P (type)
391 && TYPE_OVERFLOW_WRAPS (type));
393 case FIXED_CST:
394 return true;
396 case NEGATE_EXPR:
397 return !TYPE_OVERFLOW_SANITIZED (type);
399 case REAL_CST:
400 /* We want to canonicalize to positive real constants. Pretend
401 that only negative ones can be easily negated. */
402 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
404 case COMPLEX_CST:
405 return negate_expr_p (TREE_REALPART (t))
406 && negate_expr_p (TREE_IMAGPART (t));
408 case VECTOR_CST:
410 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
411 return true;
413 int count = TYPE_VECTOR_SUBPARTS (type), i;
415 for (i = 0; i < count; i++)
416 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
417 return false;
419 return true;
422 case COMPLEX_EXPR:
423 return negate_expr_p (TREE_OPERAND (t, 0))
424 && negate_expr_p (TREE_OPERAND (t, 1));
426 case CONJ_EXPR:
427 return negate_expr_p (TREE_OPERAND (t, 0));
429 case PLUS_EXPR:
430 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
431 || HONOR_SIGNED_ZEROS (element_mode (type))
432 || (INTEGRAL_TYPE_P (type)
433 && ! TYPE_OVERFLOW_WRAPS (type)))
434 return false;
435 /* -(A + B) -> (-B) - A. */
436 if (negate_expr_p (TREE_OPERAND (t, 1)))
437 return true;
438 /* -(A + B) -> (-A) - B. */
439 return negate_expr_p (TREE_OPERAND (t, 0));
441 case MINUS_EXPR:
442 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
443 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
444 && !HONOR_SIGNED_ZEROS (element_mode (type))
445 && (! INTEGRAL_TYPE_P (type)
446 || TYPE_OVERFLOW_WRAPS (type));
448 case MULT_EXPR:
449 if (TYPE_UNSIGNED (type))
450 break;
451 /* INT_MIN/n * n doesn't overflow while negating one operand it does
452 if n is a (negative) power of two. */
453 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
454 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
455 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
456 && wi::popcount (wi::abs (TREE_OPERAND (t, 0))) != 1)
457 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
458 && wi::popcount (wi::abs (TREE_OPERAND (t, 1))) != 1)))
459 break;
461 /* Fall through. */
463 case RDIV_EXPR:
464 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
465 return negate_expr_p (TREE_OPERAND (t, 1))
466 || negate_expr_p (TREE_OPERAND (t, 0));
467 break;
469 case TRUNC_DIV_EXPR:
470 case ROUND_DIV_EXPR:
471 case EXACT_DIV_EXPR:
472 if (TYPE_UNSIGNED (type))
473 break;
474 if (negate_expr_p (TREE_OPERAND (t, 0)))
475 return true;
476 /* In general we can't negate B in A / B, because if A is INT_MIN and
477 B is 1, we may turn this into INT_MIN / -1 which is undefined
478 and actually traps on some architectures. */
479 if (! INTEGRAL_TYPE_P (TREE_TYPE (t))
480 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
481 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
482 && ! integer_onep (TREE_OPERAND (t, 1))))
483 return negate_expr_p (TREE_OPERAND (t, 1));
484 break;
486 case NOP_EXPR:
487 /* Negate -((double)float) as (double)(-float). */
488 if (TREE_CODE (type) == REAL_TYPE)
490 tree tem = strip_float_extensions (t);
491 if (tem != t)
492 return negate_expr_p (tem);
494 break;
496 case CALL_EXPR:
497 /* Negate -f(x) as f(-x). */
498 if (negate_mathfn_p (get_call_combined_fn (t)))
499 return negate_expr_p (CALL_EXPR_ARG (t, 0));
500 break;
502 case RSHIFT_EXPR:
503 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
504 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
506 tree op1 = TREE_OPERAND (t, 1);
507 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
508 return true;
510 break;
512 default:
513 break;
515 return false;
518 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
519 simplification is possible.
520 If negate_expr_p would return true for T, NULL_TREE will never be
521 returned. */
523 static tree
524 fold_negate_expr_1 (location_t loc, tree t)
526 tree type = TREE_TYPE (t);
527 tree tem;
529 switch (TREE_CODE (t))
531 /* Convert - (~A) to A + 1. */
532 case BIT_NOT_EXPR:
533 if (INTEGRAL_TYPE_P (type))
534 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
535 build_one_cst (type));
536 break;
538 case INTEGER_CST:
539 tem = fold_negate_const (t, type);
540 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
541 || (ANY_INTEGRAL_TYPE_P (type)
542 && !TYPE_OVERFLOW_TRAPS (type)
543 && TYPE_OVERFLOW_WRAPS (type))
544 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
545 return tem;
546 break;
548 case REAL_CST:
549 tem = fold_negate_const (t, type);
550 return tem;
552 case FIXED_CST:
553 tem = fold_negate_const (t, type);
554 return tem;
556 case COMPLEX_CST:
558 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
559 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
560 if (rpart && ipart)
561 return build_complex (type, rpart, ipart);
563 break;
565 case VECTOR_CST:
567 int count = TYPE_VECTOR_SUBPARTS (type), i;
568 tree *elts = XALLOCAVEC (tree, count);
570 for (i = 0; i < count; i++)
572 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
573 if (elts[i] == NULL_TREE)
574 return NULL_TREE;
577 return build_vector (type, elts);
580 case COMPLEX_EXPR:
581 if (negate_expr_p (t))
582 return fold_build2_loc (loc, COMPLEX_EXPR, type,
583 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
584 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
585 break;
587 case CONJ_EXPR:
588 if (negate_expr_p (t))
589 return fold_build1_loc (loc, CONJ_EXPR, type,
590 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
591 break;
593 case NEGATE_EXPR:
594 if (!TYPE_OVERFLOW_SANITIZED (type))
595 return TREE_OPERAND (t, 0);
596 break;
598 case PLUS_EXPR:
599 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
600 && !HONOR_SIGNED_ZEROS (element_mode (type)))
602 /* -(A + B) -> (-B) - A. */
603 if (negate_expr_p (TREE_OPERAND (t, 1)))
605 tem = negate_expr (TREE_OPERAND (t, 1));
606 return fold_build2_loc (loc, MINUS_EXPR, type,
607 tem, TREE_OPERAND (t, 0));
610 /* -(A + B) -> (-A) - B. */
611 if (negate_expr_p (TREE_OPERAND (t, 0)))
613 tem = negate_expr (TREE_OPERAND (t, 0));
614 return fold_build2_loc (loc, MINUS_EXPR, type,
615 tem, TREE_OPERAND (t, 1));
618 break;
620 case MINUS_EXPR:
621 /* - (A - B) -> B - A */
622 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
623 && !HONOR_SIGNED_ZEROS (element_mode (type)))
624 return fold_build2_loc (loc, MINUS_EXPR, type,
625 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
626 break;
628 case MULT_EXPR:
629 if (TYPE_UNSIGNED (type))
630 break;
632 /* Fall through. */
634 case RDIV_EXPR:
635 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
637 tem = TREE_OPERAND (t, 1);
638 if (negate_expr_p (tem))
639 return fold_build2_loc (loc, TREE_CODE (t), type,
640 TREE_OPERAND (t, 0), negate_expr (tem));
641 tem = TREE_OPERAND (t, 0);
642 if (negate_expr_p (tem))
643 return fold_build2_loc (loc, TREE_CODE (t), type,
644 negate_expr (tem), TREE_OPERAND (t, 1));
646 break;
648 case TRUNC_DIV_EXPR:
649 case ROUND_DIV_EXPR:
650 case EXACT_DIV_EXPR:
651 if (TYPE_UNSIGNED (type))
652 break;
653 if (negate_expr_p (TREE_OPERAND (t, 0)))
654 return fold_build2_loc (loc, TREE_CODE (t), type,
655 negate_expr (TREE_OPERAND (t, 0)),
656 TREE_OPERAND (t, 1));
657 /* In general we can't negate B in A / B, because if A is INT_MIN and
658 B is 1, we may turn this into INT_MIN / -1 which is undefined
659 and actually traps on some architectures. */
660 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t))
661 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
662 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
663 && ! integer_onep (TREE_OPERAND (t, 1))))
664 && negate_expr_p (TREE_OPERAND (t, 1)))
665 return fold_build2_loc (loc, TREE_CODE (t), type,
666 TREE_OPERAND (t, 0),
667 negate_expr (TREE_OPERAND (t, 1)));
668 break;
670 case NOP_EXPR:
671 /* Convert -((double)float) into (double)(-float). */
672 if (TREE_CODE (type) == REAL_TYPE)
674 tem = strip_float_extensions (t);
675 if (tem != t && negate_expr_p (tem))
676 return fold_convert_loc (loc, type, negate_expr (tem));
678 break;
680 case CALL_EXPR:
681 /* Negate -f(x) as f(-x). */
682 if (negate_mathfn_p (get_call_combined_fn (t))
683 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
685 tree fndecl, arg;
687 fndecl = get_callee_fndecl (t);
688 arg = negate_expr (CALL_EXPR_ARG (t, 0));
689 return build_call_expr_loc (loc, fndecl, 1, arg);
691 break;
693 case RSHIFT_EXPR:
694 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
695 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
697 tree op1 = TREE_OPERAND (t, 1);
698 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
700 tree ntype = TYPE_UNSIGNED (type)
701 ? signed_type_for (type)
702 : unsigned_type_for (type);
703 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
704 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
705 return fold_convert_loc (loc, type, temp);
708 break;
710 default:
711 break;
714 return NULL_TREE;
717 /* A wrapper for fold_negate_expr_1. */
719 static tree
720 fold_negate_expr (location_t loc, tree t)
722 tree type = TREE_TYPE (t);
723 STRIP_SIGN_NOPS (t);
724 tree tem = fold_negate_expr_1 (loc, t);
725 if (tem == NULL_TREE)
726 return NULL_TREE;
727 return fold_convert_loc (loc, type, tem);
730 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
731 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
732 return NULL_TREE. */
734 static tree
735 negate_expr (tree t)
737 tree type, tem;
738 location_t loc;
740 if (t == NULL_TREE)
741 return NULL_TREE;
743 loc = EXPR_LOCATION (t);
744 type = TREE_TYPE (t);
745 STRIP_SIGN_NOPS (t);
747 tem = fold_negate_expr (loc, t);
748 if (!tem)
749 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
750 return fold_convert_loc (loc, type, tem);
753 /* Split a tree IN into a constant, literal and variable parts that could be
754 combined with CODE to make IN. "constant" means an expression with
755 TREE_CONSTANT but that isn't an actual constant. CODE must be a
756 commutative arithmetic operation. Store the constant part into *CONP,
757 the literal in *LITP and return the variable part. If a part isn't
758 present, set it to null. If the tree does not decompose in this way,
759 return the entire tree as the variable part and the other parts as null.
761 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
762 case, we negate an operand that was subtracted. Except if it is a
763 literal for which we use *MINUS_LITP instead.
765 If NEGATE_P is true, we are negating all of IN, again except a literal
766 for which we use *MINUS_LITP instead. If a variable part is of pointer
767 type, it is negated after converting to TYPE. This prevents us from
768 generating illegal MINUS pointer expression. LOC is the location of
769 the converted variable part.
771 If IN is itself a literal or constant, return it as appropriate.
773 Note that we do not guarantee that any of the three values will be the
774 same type as IN, but they will have the same signedness and mode. */
776 static tree
777 split_tree (tree in, tree type, enum tree_code code,
778 tree *minus_varp, tree *conp, tree *minus_conp,
779 tree *litp, tree *minus_litp, int negate_p)
781 tree var = 0;
782 *minus_varp = 0;
783 *conp = 0;
784 *minus_conp = 0;
785 *litp = 0;
786 *minus_litp = 0;
788 /* Strip any conversions that don't change the machine mode or signedness. */
789 STRIP_SIGN_NOPS (in);
791 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
792 || TREE_CODE (in) == FIXED_CST)
793 *litp = in;
794 else if (TREE_CODE (in) == code
795 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
796 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
797 /* We can associate addition and subtraction together (even
798 though the C standard doesn't say so) for integers because
799 the value is not affected. For reals, the value might be
800 affected, so we can't. */
801 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
802 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
803 || (code == MINUS_EXPR
804 && (TREE_CODE (in) == PLUS_EXPR
805 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
807 tree op0 = TREE_OPERAND (in, 0);
808 tree op1 = TREE_OPERAND (in, 1);
809 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
810 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
812 /* First see if either of the operands is a literal, then a constant. */
813 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
814 || TREE_CODE (op0) == FIXED_CST)
815 *litp = op0, op0 = 0;
816 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
817 || TREE_CODE (op1) == FIXED_CST)
818 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
820 if (op0 != 0 && TREE_CONSTANT (op0))
821 *conp = op0, op0 = 0;
822 else if (op1 != 0 && TREE_CONSTANT (op1))
823 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
825 /* If we haven't dealt with either operand, this is not a case we can
826 decompose. Otherwise, VAR is either of the ones remaining, if any. */
827 if (op0 != 0 && op1 != 0)
828 var = in;
829 else if (op0 != 0)
830 var = op0;
831 else
832 var = op1, neg_var_p = neg1_p;
834 /* Now do any needed negations. */
835 if (neg_litp_p)
836 *minus_litp = *litp, *litp = 0;
837 if (neg_conp_p && *conp)
838 *minus_conp = *conp, *conp = 0;
839 if (neg_var_p && var)
840 *minus_varp = var, var = 0;
842 else if (TREE_CONSTANT (in))
843 *conp = in;
844 else if (TREE_CODE (in) == BIT_NOT_EXPR
845 && code == PLUS_EXPR)
847 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
848 when IN is constant. */
849 *litp = build_minus_one_cst (type);
850 *minus_varp = TREE_OPERAND (in, 0);
852 else
853 var = in;
855 if (negate_p)
857 if (*litp)
858 *minus_litp = *litp, *litp = 0;
859 else if (*minus_litp)
860 *litp = *minus_litp, *minus_litp = 0;
861 if (*conp)
862 *minus_conp = *conp, *conp = 0;
863 else if (*minus_conp)
864 *conp = *minus_conp, *minus_conp = 0;
865 if (var)
866 *minus_varp = var, var = 0;
867 else if (*minus_varp)
868 var = *minus_varp, *minus_varp = 0;
871 if (*litp
872 && TREE_OVERFLOW_P (*litp))
873 *litp = drop_tree_overflow (*litp);
874 if (*minus_litp
875 && TREE_OVERFLOW_P (*minus_litp))
876 *minus_litp = drop_tree_overflow (*minus_litp);
878 return var;
881 /* Re-associate trees split by the above function. T1 and T2 are
882 either expressions to associate or null. Return the new
883 expression, if any. LOC is the location of the new expression. If
884 we build an operation, do it in TYPE and with CODE. */
886 static tree
887 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
889 if (t1 == 0)
891 gcc_assert (t2 == 0 || code != MINUS_EXPR);
892 return t2;
894 else if (t2 == 0)
895 return t1;
897 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
898 try to fold this since we will have infinite recursion. But do
899 deal with any NEGATE_EXPRs. */
900 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
901 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
902 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
904 if (code == PLUS_EXPR)
906 if (TREE_CODE (t1) == NEGATE_EXPR)
907 return build2_loc (loc, MINUS_EXPR, type,
908 fold_convert_loc (loc, type, t2),
909 fold_convert_loc (loc, type,
910 TREE_OPERAND (t1, 0)));
911 else if (TREE_CODE (t2) == NEGATE_EXPR)
912 return build2_loc (loc, MINUS_EXPR, type,
913 fold_convert_loc (loc, type, t1),
914 fold_convert_loc (loc, type,
915 TREE_OPERAND (t2, 0)));
916 else if (integer_zerop (t2))
917 return fold_convert_loc (loc, type, t1);
919 else if (code == MINUS_EXPR)
921 if (integer_zerop (t2))
922 return fold_convert_loc (loc, type, t1);
925 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
926 fold_convert_loc (loc, type, t2));
929 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
930 fold_convert_loc (loc, type, t2));
933 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
934 for use in int_const_binop, size_binop and size_diffop. */
936 static bool
937 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
939 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
940 return false;
941 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
942 return false;
944 switch (code)
946 case LSHIFT_EXPR:
947 case RSHIFT_EXPR:
948 case LROTATE_EXPR:
949 case RROTATE_EXPR:
950 return true;
952 default:
953 break;
956 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
957 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
958 && TYPE_MODE (type1) == TYPE_MODE (type2);
962 /* Combine two integer constants ARG1 and ARG2 under operation CODE
963 to produce a new constant. Return NULL_TREE if we don't know how
964 to evaluate CODE at compile-time. */
966 static tree
967 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
968 int overflowable)
970 wide_int res;
971 tree t;
972 tree type = TREE_TYPE (arg1);
973 signop sign = TYPE_SIGN (type);
974 bool overflow = false;
976 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type));
978 switch (code)
980 case BIT_IOR_EXPR:
981 res = wi::bit_or (arg1, arg2);
982 break;
984 case BIT_XOR_EXPR:
985 res = wi::bit_xor (arg1, arg2);
986 break;
988 case BIT_AND_EXPR:
989 res = wi::bit_and (arg1, arg2);
990 break;
992 case RSHIFT_EXPR:
993 case LSHIFT_EXPR:
994 if (wi::neg_p (arg2))
996 arg2 = -arg2;
997 if (code == RSHIFT_EXPR)
998 code = LSHIFT_EXPR;
999 else
1000 code = RSHIFT_EXPR;
1003 if (code == RSHIFT_EXPR)
1004 /* It's unclear from the C standard whether shifts can overflow.
1005 The following code ignores overflow; perhaps a C standard
1006 interpretation ruling is needed. */
1007 res = wi::rshift (arg1, arg2, sign);
1008 else
1009 res = wi::lshift (arg1, arg2);
1010 break;
1012 case RROTATE_EXPR:
1013 case LROTATE_EXPR:
1014 if (wi::neg_p (arg2))
1016 arg2 = -arg2;
1017 if (code == RROTATE_EXPR)
1018 code = LROTATE_EXPR;
1019 else
1020 code = RROTATE_EXPR;
1023 if (code == RROTATE_EXPR)
1024 res = wi::rrotate (arg1, arg2);
1025 else
1026 res = wi::lrotate (arg1, arg2);
1027 break;
1029 case PLUS_EXPR:
1030 res = wi::add (arg1, arg2, sign, &overflow);
1031 break;
1033 case MINUS_EXPR:
1034 res = wi::sub (arg1, arg2, sign, &overflow);
1035 break;
1037 case MULT_EXPR:
1038 res = wi::mul (arg1, arg2, sign, &overflow);
1039 break;
1041 case MULT_HIGHPART_EXPR:
1042 res = wi::mul_high (arg1, arg2, sign);
1043 break;
1045 case TRUNC_DIV_EXPR:
1046 case EXACT_DIV_EXPR:
1047 if (arg2 == 0)
1048 return NULL_TREE;
1049 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1050 break;
1052 case FLOOR_DIV_EXPR:
1053 if (arg2 == 0)
1054 return NULL_TREE;
1055 res = wi::div_floor (arg1, arg2, sign, &overflow);
1056 break;
1058 case CEIL_DIV_EXPR:
1059 if (arg2 == 0)
1060 return NULL_TREE;
1061 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1062 break;
1064 case ROUND_DIV_EXPR:
1065 if (arg2 == 0)
1066 return NULL_TREE;
1067 res = wi::div_round (arg1, arg2, sign, &overflow);
1068 break;
1070 case TRUNC_MOD_EXPR:
1071 if (arg2 == 0)
1072 return NULL_TREE;
1073 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1074 break;
1076 case FLOOR_MOD_EXPR:
1077 if (arg2 == 0)
1078 return NULL_TREE;
1079 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1080 break;
1082 case CEIL_MOD_EXPR:
1083 if (arg2 == 0)
1084 return NULL_TREE;
1085 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1086 break;
1088 case ROUND_MOD_EXPR:
1089 if (arg2 == 0)
1090 return NULL_TREE;
1091 res = wi::mod_round (arg1, arg2, sign, &overflow);
1092 break;
1094 case MIN_EXPR:
1095 res = wi::min (arg1, arg2, sign);
1096 break;
1098 case MAX_EXPR:
1099 res = wi::max (arg1, arg2, sign);
1100 break;
1102 default:
1103 return NULL_TREE;
1106 t = force_fit_type (type, res, overflowable,
1107 (((sign == SIGNED || overflowable == -1)
1108 && overflow)
1109 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1111 return t;
1114 tree
1115 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1117 return int_const_binop_1 (code, arg1, arg2, 1);
1120 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1121 constant. We assume ARG1 and ARG2 have the same data type, or at least
1122 are the same kind of constant and the same machine mode. Return zero if
1123 combining the constants is not allowed in the current operating mode. */
1125 static tree
1126 const_binop (enum tree_code code, tree arg1, tree arg2)
1128 /* Sanity check for the recursive cases. */
1129 if (!arg1 || !arg2)
1130 return NULL_TREE;
1132 STRIP_NOPS (arg1);
1133 STRIP_NOPS (arg2);
1135 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1137 if (code == POINTER_PLUS_EXPR)
1138 return int_const_binop (PLUS_EXPR,
1139 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1141 return int_const_binop (code, arg1, arg2);
1144 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1146 machine_mode mode;
1147 REAL_VALUE_TYPE d1;
1148 REAL_VALUE_TYPE d2;
1149 REAL_VALUE_TYPE value;
1150 REAL_VALUE_TYPE result;
1151 bool inexact;
1152 tree t, type;
1154 /* The following codes are handled by real_arithmetic. */
1155 switch (code)
1157 case PLUS_EXPR:
1158 case MINUS_EXPR:
1159 case MULT_EXPR:
1160 case RDIV_EXPR:
1161 case MIN_EXPR:
1162 case MAX_EXPR:
1163 break;
1165 default:
1166 return NULL_TREE;
1169 d1 = TREE_REAL_CST (arg1);
1170 d2 = TREE_REAL_CST (arg2);
1172 type = TREE_TYPE (arg1);
1173 mode = TYPE_MODE (type);
1175 /* Don't perform operation if we honor signaling NaNs and
1176 either operand is a signaling NaN. */
1177 if (HONOR_SNANS (mode)
1178 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1179 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1180 return NULL_TREE;
1182 /* Don't perform operation if it would raise a division
1183 by zero exception. */
1184 if (code == RDIV_EXPR
1185 && real_equal (&d2, &dconst0)
1186 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1187 return NULL_TREE;
1189 /* If either operand is a NaN, just return it. Otherwise, set up
1190 for floating-point trap; we return an overflow. */
1191 if (REAL_VALUE_ISNAN (d1))
1193 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1194 is off. */
1195 d1.signalling = 0;
1196 t = build_real (type, d1);
1197 return t;
1199 else if (REAL_VALUE_ISNAN (d2))
1201 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1202 is off. */
1203 d2.signalling = 0;
1204 t = build_real (type, d2);
1205 return t;
1208 inexact = real_arithmetic (&value, code, &d1, &d2);
1209 real_convert (&result, mode, &value);
1211 /* Don't constant fold this floating point operation if
1212 the result has overflowed and flag_trapping_math. */
1213 if (flag_trapping_math
1214 && MODE_HAS_INFINITIES (mode)
1215 && REAL_VALUE_ISINF (result)
1216 && !REAL_VALUE_ISINF (d1)
1217 && !REAL_VALUE_ISINF (d2))
1218 return NULL_TREE;
1220 /* Don't constant fold this floating point operation if the
1221 result may dependent upon the run-time rounding mode and
1222 flag_rounding_math is set, or if GCC's software emulation
1223 is unable to accurately represent the result. */
1224 if ((flag_rounding_math
1225 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1226 && (inexact || !real_identical (&result, &value)))
1227 return NULL_TREE;
1229 t = build_real (type, result);
1231 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1232 return t;
1235 if (TREE_CODE (arg1) == FIXED_CST)
1237 FIXED_VALUE_TYPE f1;
1238 FIXED_VALUE_TYPE f2;
1239 FIXED_VALUE_TYPE result;
1240 tree t, type;
1241 int sat_p;
1242 bool overflow_p;
1244 /* The following codes are handled by fixed_arithmetic. */
1245 switch (code)
1247 case PLUS_EXPR:
1248 case MINUS_EXPR:
1249 case MULT_EXPR:
1250 case TRUNC_DIV_EXPR:
1251 if (TREE_CODE (arg2) != FIXED_CST)
1252 return NULL_TREE;
1253 f2 = TREE_FIXED_CST (arg2);
1254 break;
1256 case LSHIFT_EXPR:
1257 case RSHIFT_EXPR:
1259 if (TREE_CODE (arg2) != INTEGER_CST)
1260 return NULL_TREE;
1261 wide_int w2 = arg2;
1262 f2.data.high = w2.elt (1);
1263 f2.data.low = w2.ulow ();
1264 f2.mode = SImode;
1266 break;
1268 default:
1269 return NULL_TREE;
1272 f1 = TREE_FIXED_CST (arg1);
1273 type = TREE_TYPE (arg1);
1274 sat_p = TYPE_SATURATING (type);
1275 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1276 t = build_fixed (type, result);
1277 /* Propagate overflow flags. */
1278 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1279 TREE_OVERFLOW (t) = 1;
1280 return t;
1283 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1285 tree type = TREE_TYPE (arg1);
1286 tree r1 = TREE_REALPART (arg1);
1287 tree i1 = TREE_IMAGPART (arg1);
1288 tree r2 = TREE_REALPART (arg2);
1289 tree i2 = TREE_IMAGPART (arg2);
1290 tree real, imag;
1292 switch (code)
1294 case PLUS_EXPR:
1295 case MINUS_EXPR:
1296 real = const_binop (code, r1, r2);
1297 imag = const_binop (code, i1, i2);
1298 break;
1300 case MULT_EXPR:
1301 if (COMPLEX_FLOAT_TYPE_P (type))
1302 return do_mpc_arg2 (arg1, arg2, type,
1303 /* do_nonfinite= */ folding_initializer,
1304 mpc_mul);
1306 real = const_binop (MINUS_EXPR,
1307 const_binop (MULT_EXPR, r1, r2),
1308 const_binop (MULT_EXPR, i1, i2));
1309 imag = const_binop (PLUS_EXPR,
1310 const_binop (MULT_EXPR, r1, i2),
1311 const_binop (MULT_EXPR, i1, r2));
1312 break;
1314 case RDIV_EXPR:
1315 if (COMPLEX_FLOAT_TYPE_P (type))
1316 return do_mpc_arg2 (arg1, arg2, type,
1317 /* do_nonfinite= */ folding_initializer,
1318 mpc_div);
1319 /* Fallthru. */
1320 case TRUNC_DIV_EXPR:
1321 case CEIL_DIV_EXPR:
1322 case FLOOR_DIV_EXPR:
1323 case ROUND_DIV_EXPR:
1324 if (flag_complex_method == 0)
1326 /* Keep this algorithm in sync with
1327 tree-complex.c:expand_complex_div_straight().
1329 Expand complex division to scalars, straightforward algorithm.
1330 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1331 t = br*br + bi*bi
1333 tree magsquared
1334 = const_binop (PLUS_EXPR,
1335 const_binop (MULT_EXPR, r2, r2),
1336 const_binop (MULT_EXPR, i2, i2));
1337 tree t1
1338 = const_binop (PLUS_EXPR,
1339 const_binop (MULT_EXPR, r1, r2),
1340 const_binop (MULT_EXPR, i1, i2));
1341 tree t2
1342 = const_binop (MINUS_EXPR,
1343 const_binop (MULT_EXPR, i1, r2),
1344 const_binop (MULT_EXPR, r1, i2));
1346 real = const_binop (code, t1, magsquared);
1347 imag = const_binop (code, t2, magsquared);
1349 else
1351 /* Keep this algorithm in sync with
1352 tree-complex.c:expand_complex_div_wide().
1354 Expand complex division to scalars, modified algorithm to minimize
1355 overflow with wide input ranges. */
1356 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1357 fold_abs_const (r2, TREE_TYPE (type)),
1358 fold_abs_const (i2, TREE_TYPE (type)));
1360 if (integer_nonzerop (compare))
1362 /* In the TRUE branch, we compute
1363 ratio = br/bi;
1364 div = (br * ratio) + bi;
1365 tr = (ar * ratio) + ai;
1366 ti = (ai * ratio) - ar;
1367 tr = tr / div;
1368 ti = ti / div; */
1369 tree ratio = const_binop (code, r2, i2);
1370 tree div = const_binop (PLUS_EXPR, i2,
1371 const_binop (MULT_EXPR, r2, ratio));
1372 real = const_binop (MULT_EXPR, r1, ratio);
1373 real = const_binop (PLUS_EXPR, real, i1);
1374 real = const_binop (code, real, div);
1376 imag = const_binop (MULT_EXPR, i1, ratio);
1377 imag = const_binop (MINUS_EXPR, imag, r1);
1378 imag = const_binop (code, imag, div);
1380 else
1382 /* In the FALSE branch, we compute
1383 ratio = d/c;
1384 divisor = (d * ratio) + c;
1385 tr = (b * ratio) + a;
1386 ti = b - (a * ratio);
1387 tr = tr / div;
1388 ti = ti / div; */
1389 tree ratio = const_binop (code, i2, r2);
1390 tree div = const_binop (PLUS_EXPR, r2,
1391 const_binop (MULT_EXPR, i2, ratio));
1393 real = const_binop (MULT_EXPR, i1, ratio);
1394 real = const_binop (PLUS_EXPR, real, r1);
1395 real = const_binop (code, real, div);
1397 imag = const_binop (MULT_EXPR, r1, ratio);
1398 imag = const_binop (MINUS_EXPR, i1, imag);
1399 imag = const_binop (code, imag, div);
1402 break;
1404 default:
1405 return NULL_TREE;
1408 if (real && imag)
1409 return build_complex (type, real, imag);
1412 if (TREE_CODE (arg1) == VECTOR_CST
1413 && TREE_CODE (arg2) == VECTOR_CST)
1415 tree type = TREE_TYPE (arg1);
1416 int count = TYPE_VECTOR_SUBPARTS (type), i;
1417 tree *elts = XALLOCAVEC (tree, count);
1419 for (i = 0; i < count; i++)
1421 tree elem1 = VECTOR_CST_ELT (arg1, i);
1422 tree elem2 = VECTOR_CST_ELT (arg2, i);
1424 elts[i] = const_binop (code, elem1, elem2);
1426 /* It is possible that const_binop cannot handle the given
1427 code and return NULL_TREE */
1428 if (elts[i] == NULL_TREE)
1429 return NULL_TREE;
1432 return build_vector (type, elts);
1435 /* Shifts allow a scalar offset for a vector. */
1436 if (TREE_CODE (arg1) == VECTOR_CST
1437 && TREE_CODE (arg2) == INTEGER_CST)
1439 tree type = TREE_TYPE (arg1);
1440 int count = TYPE_VECTOR_SUBPARTS (type), i;
1441 tree *elts = XALLOCAVEC (tree, count);
1443 for (i = 0; i < count; i++)
1445 tree elem1 = VECTOR_CST_ELT (arg1, i);
1447 elts[i] = const_binop (code, elem1, arg2);
1449 /* It is possible that const_binop cannot handle the given
1450 code and return NULL_TREE. */
1451 if (elts[i] == NULL_TREE)
1452 return NULL_TREE;
1455 return build_vector (type, elts);
1457 return NULL_TREE;
1460 /* Overload that adds a TYPE parameter to be able to dispatch
1461 to fold_relational_const. */
1463 tree
1464 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1466 if (TREE_CODE_CLASS (code) == tcc_comparison)
1467 return fold_relational_const (code, type, arg1, arg2);
1469 /* ??? Until we make the const_binop worker take the type of the
1470 result as argument put those cases that need it here. */
1471 switch (code)
1473 case COMPLEX_EXPR:
1474 if ((TREE_CODE (arg1) == REAL_CST
1475 && TREE_CODE (arg2) == REAL_CST)
1476 || (TREE_CODE (arg1) == INTEGER_CST
1477 && TREE_CODE (arg2) == INTEGER_CST))
1478 return build_complex (type, arg1, arg2);
1479 return NULL_TREE;
1481 case VEC_PACK_TRUNC_EXPR:
1482 case VEC_PACK_FIX_TRUNC_EXPR:
1484 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1485 tree *elts;
1487 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1488 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1489 if (TREE_CODE (arg1) != VECTOR_CST
1490 || TREE_CODE (arg2) != VECTOR_CST)
1491 return NULL_TREE;
1493 elts = XALLOCAVEC (tree, nelts);
1494 if (!vec_cst_ctor_to_array (arg1, elts)
1495 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1496 return NULL_TREE;
1498 for (i = 0; i < nelts; i++)
1500 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1501 ? NOP_EXPR : FIX_TRUNC_EXPR,
1502 TREE_TYPE (type), elts[i]);
1503 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1504 return NULL_TREE;
1507 return build_vector (type, elts);
1510 case VEC_WIDEN_MULT_LO_EXPR:
1511 case VEC_WIDEN_MULT_HI_EXPR:
1512 case VEC_WIDEN_MULT_EVEN_EXPR:
1513 case VEC_WIDEN_MULT_ODD_EXPR:
1515 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1516 unsigned int out, ofs, scale;
1517 tree *elts;
1519 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1520 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1521 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1522 return NULL_TREE;
1524 elts = XALLOCAVEC (tree, nelts * 4);
1525 if (!vec_cst_ctor_to_array (arg1, elts)
1526 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1527 return NULL_TREE;
1529 if (code == VEC_WIDEN_MULT_LO_EXPR)
1530 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1531 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1532 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1533 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1534 scale = 1, ofs = 0;
1535 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1536 scale = 1, ofs = 1;
1538 for (out = 0; out < nelts; out++)
1540 unsigned int in1 = (out << scale) + ofs;
1541 unsigned int in2 = in1 + nelts * 2;
1542 tree t1, t2;
1544 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1545 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1547 if (t1 == NULL_TREE || t2 == NULL_TREE)
1548 return NULL_TREE;
1549 elts[out] = const_binop (MULT_EXPR, t1, t2);
1550 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1551 return NULL_TREE;
1554 return build_vector (type, elts);
1557 default:;
1560 if (TREE_CODE_CLASS (code) != tcc_binary)
1561 return NULL_TREE;
1563 /* Make sure type and arg0 have the same saturating flag. */
1564 gcc_checking_assert (TYPE_SATURATING (type)
1565 == TYPE_SATURATING (TREE_TYPE (arg1)));
1567 return const_binop (code, arg1, arg2);
1570 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1571 Return zero if computing the constants is not possible. */
1573 tree
1574 const_unop (enum tree_code code, tree type, tree arg0)
1576 /* Don't perform the operation, other than NEGATE and ABS, if
1577 flag_signaling_nans is on and the operand is a signaling NaN. */
1578 if (TREE_CODE (arg0) == REAL_CST
1579 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1580 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1581 && code != NEGATE_EXPR
1582 && code != ABS_EXPR)
1583 return NULL_TREE;
1585 switch (code)
1587 CASE_CONVERT:
1588 case FLOAT_EXPR:
1589 case FIX_TRUNC_EXPR:
1590 case FIXED_CONVERT_EXPR:
1591 return fold_convert_const (code, type, arg0);
1593 case ADDR_SPACE_CONVERT_EXPR:
1594 /* If the source address is 0, and the source address space
1595 cannot have a valid object at 0, fold to dest type null. */
1596 if (integer_zerop (arg0)
1597 && !(targetm.addr_space.zero_address_valid
1598 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1599 return fold_convert_const (code, type, arg0);
1600 break;
1602 case VIEW_CONVERT_EXPR:
1603 return fold_view_convert_expr (type, arg0);
1605 case NEGATE_EXPR:
1607 /* Can't call fold_negate_const directly here as that doesn't
1608 handle all cases and we might not be able to negate some
1609 constants. */
1610 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1611 if (tem && CONSTANT_CLASS_P (tem))
1612 return tem;
1613 break;
1616 case ABS_EXPR:
1617 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1618 return fold_abs_const (arg0, type);
1619 break;
1621 case CONJ_EXPR:
1622 if (TREE_CODE (arg0) == COMPLEX_CST)
1624 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1625 TREE_TYPE (type));
1626 return build_complex (type, TREE_REALPART (arg0), ipart);
1628 break;
1630 case BIT_NOT_EXPR:
1631 if (TREE_CODE (arg0) == INTEGER_CST)
1632 return fold_not_const (arg0, type);
1633 /* Perform BIT_NOT_EXPR on each element individually. */
1634 else if (TREE_CODE (arg0) == VECTOR_CST)
1636 tree *elements;
1637 tree elem;
1638 unsigned count = VECTOR_CST_NELTS (arg0), i;
1640 elements = XALLOCAVEC (tree, count);
1641 for (i = 0; i < count; i++)
1643 elem = VECTOR_CST_ELT (arg0, i);
1644 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1645 if (elem == NULL_TREE)
1646 break;
1647 elements[i] = elem;
1649 if (i == count)
1650 return build_vector (type, elements);
1652 break;
1654 case TRUTH_NOT_EXPR:
1655 if (TREE_CODE (arg0) == INTEGER_CST)
1656 return constant_boolean_node (integer_zerop (arg0), type);
1657 break;
1659 case REALPART_EXPR:
1660 if (TREE_CODE (arg0) == COMPLEX_CST)
1661 return fold_convert (type, TREE_REALPART (arg0));
1662 break;
1664 case IMAGPART_EXPR:
1665 if (TREE_CODE (arg0) == COMPLEX_CST)
1666 return fold_convert (type, TREE_IMAGPART (arg0));
1667 break;
1669 case VEC_UNPACK_LO_EXPR:
1670 case VEC_UNPACK_HI_EXPR:
1671 case VEC_UNPACK_FLOAT_LO_EXPR:
1672 case VEC_UNPACK_FLOAT_HI_EXPR:
1674 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1675 tree *elts;
1676 enum tree_code subcode;
1678 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1679 if (TREE_CODE (arg0) != VECTOR_CST)
1680 return NULL_TREE;
1682 elts = XALLOCAVEC (tree, nelts * 2);
1683 if (!vec_cst_ctor_to_array (arg0, elts))
1684 return NULL_TREE;
1686 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1687 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1688 elts += nelts;
1690 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1691 subcode = NOP_EXPR;
1692 else
1693 subcode = FLOAT_EXPR;
1695 for (i = 0; i < nelts; i++)
1697 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1698 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1699 return NULL_TREE;
1702 return build_vector (type, elts);
1705 case REDUC_MIN_EXPR:
1706 case REDUC_MAX_EXPR:
1707 case REDUC_PLUS_EXPR:
1709 unsigned int nelts, i;
1710 tree *elts;
1711 enum tree_code subcode;
1713 if (TREE_CODE (arg0) != VECTOR_CST)
1714 return NULL_TREE;
1715 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1717 elts = XALLOCAVEC (tree, nelts);
1718 if (!vec_cst_ctor_to_array (arg0, elts))
1719 return NULL_TREE;
1721 switch (code)
1723 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1724 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1725 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1726 default: gcc_unreachable ();
1729 for (i = 1; i < nelts; i++)
1731 elts[0] = const_binop (subcode, elts[0], elts[i]);
1732 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1733 return NULL_TREE;
1736 return elts[0];
1739 default:
1740 break;
1743 return NULL_TREE;
1746 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1747 indicates which particular sizetype to create. */
1749 tree
1750 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1752 return build_int_cst (sizetype_tab[(int) kind], number);
1755 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1756 is a tree code. The type of the result is taken from the operands.
1757 Both must be equivalent integer types, ala int_binop_types_match_p.
1758 If the operands are constant, so is the result. */
1760 tree
1761 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1763 tree type = TREE_TYPE (arg0);
1765 if (arg0 == error_mark_node || arg1 == error_mark_node)
1766 return error_mark_node;
1768 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1769 TREE_TYPE (arg1)));
1771 /* Handle the special case of two integer constants faster. */
1772 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1774 /* And some specific cases even faster than that. */
1775 if (code == PLUS_EXPR)
1777 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1778 return arg1;
1779 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1780 return arg0;
1782 else if (code == MINUS_EXPR)
1784 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1785 return arg0;
1787 else if (code == MULT_EXPR)
1789 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1790 return arg1;
1793 /* Handle general case of two integer constants. For sizetype
1794 constant calculations we always want to know about overflow,
1795 even in the unsigned case. */
1796 return int_const_binop_1 (code, arg0, arg1, -1);
1799 return fold_build2_loc (loc, code, type, arg0, arg1);
1802 /* Given two values, either both of sizetype or both of bitsizetype,
1803 compute the difference between the two values. Return the value
1804 in signed type corresponding to the type of the operands. */
1806 tree
1807 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1809 tree type = TREE_TYPE (arg0);
1810 tree ctype;
1812 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1813 TREE_TYPE (arg1)));
1815 /* If the type is already signed, just do the simple thing. */
1816 if (!TYPE_UNSIGNED (type))
1817 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1819 if (type == sizetype)
1820 ctype = ssizetype;
1821 else if (type == bitsizetype)
1822 ctype = sbitsizetype;
1823 else
1824 ctype = signed_type_for (type);
1826 /* If either operand is not a constant, do the conversions to the signed
1827 type and subtract. The hardware will do the right thing with any
1828 overflow in the subtraction. */
1829 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1830 return size_binop_loc (loc, MINUS_EXPR,
1831 fold_convert_loc (loc, ctype, arg0),
1832 fold_convert_loc (loc, ctype, arg1));
1834 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1835 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1836 overflow) and negate (which can't either). Special-case a result
1837 of zero while we're here. */
1838 if (tree_int_cst_equal (arg0, arg1))
1839 return build_int_cst (ctype, 0);
1840 else if (tree_int_cst_lt (arg1, arg0))
1841 return fold_convert_loc (loc, ctype,
1842 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1843 else
1844 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1845 fold_convert_loc (loc, ctype,
1846 size_binop_loc (loc,
1847 MINUS_EXPR,
1848 arg1, arg0)));
1851 /* A subroutine of fold_convert_const handling conversions of an
1852 INTEGER_CST to another integer type. */
1854 static tree
1855 fold_convert_const_int_from_int (tree type, const_tree arg1)
1857 /* Given an integer constant, make new constant with new type,
1858 appropriately sign-extended or truncated. Use widest_int
1859 so that any extension is done according ARG1's type. */
1860 return force_fit_type (type, wi::to_widest (arg1),
1861 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1862 TREE_OVERFLOW (arg1));
1865 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1866 to an integer type. */
1868 static tree
1869 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1871 bool overflow = false;
1872 tree t;
1874 /* The following code implements the floating point to integer
1875 conversion rules required by the Java Language Specification,
1876 that IEEE NaNs are mapped to zero and values that overflow
1877 the target precision saturate, i.e. values greater than
1878 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1879 are mapped to INT_MIN. These semantics are allowed by the
1880 C and C++ standards that simply state that the behavior of
1881 FP-to-integer conversion is unspecified upon overflow. */
1883 wide_int val;
1884 REAL_VALUE_TYPE r;
1885 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1887 switch (code)
1889 case FIX_TRUNC_EXPR:
1890 real_trunc (&r, VOIDmode, &x);
1891 break;
1893 default:
1894 gcc_unreachable ();
1897 /* If R is NaN, return zero and show we have an overflow. */
1898 if (REAL_VALUE_ISNAN (r))
1900 overflow = true;
1901 val = wi::zero (TYPE_PRECISION (type));
1904 /* See if R is less than the lower bound or greater than the
1905 upper bound. */
1907 if (! overflow)
1909 tree lt = TYPE_MIN_VALUE (type);
1910 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1911 if (real_less (&r, &l))
1913 overflow = true;
1914 val = lt;
1918 if (! overflow)
1920 tree ut = TYPE_MAX_VALUE (type);
1921 if (ut)
1923 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1924 if (real_less (&u, &r))
1926 overflow = true;
1927 val = ut;
1932 if (! overflow)
1933 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1935 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1936 return t;
1939 /* A subroutine of fold_convert_const handling conversions of a
1940 FIXED_CST to an integer type. */
1942 static tree
1943 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1945 tree t;
1946 double_int temp, temp_trunc;
1947 unsigned int mode;
1949 /* Right shift FIXED_CST to temp by fbit. */
1950 temp = TREE_FIXED_CST (arg1).data;
1951 mode = TREE_FIXED_CST (arg1).mode;
1952 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1954 temp = temp.rshift (GET_MODE_FBIT (mode),
1955 HOST_BITS_PER_DOUBLE_INT,
1956 SIGNED_FIXED_POINT_MODE_P (mode));
1958 /* Left shift temp to temp_trunc by fbit. */
1959 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1960 HOST_BITS_PER_DOUBLE_INT,
1961 SIGNED_FIXED_POINT_MODE_P (mode));
1963 else
1965 temp = double_int_zero;
1966 temp_trunc = double_int_zero;
1969 /* If FIXED_CST is negative, we need to round the value toward 0.
1970 By checking if the fractional bits are not zero to add 1 to temp. */
1971 if (SIGNED_FIXED_POINT_MODE_P (mode)
1972 && temp_trunc.is_negative ()
1973 && TREE_FIXED_CST (arg1).data != temp_trunc)
1974 temp += double_int_one;
1976 /* Given a fixed-point constant, make new constant with new type,
1977 appropriately sign-extended or truncated. */
1978 t = force_fit_type (type, temp, -1,
1979 (temp.is_negative ()
1980 && (TYPE_UNSIGNED (type)
1981 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1982 | TREE_OVERFLOW (arg1));
1984 return t;
1987 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1988 to another floating point type. */
1990 static tree
1991 fold_convert_const_real_from_real (tree type, const_tree arg1)
1993 REAL_VALUE_TYPE value;
1994 tree t;
1996 /* Don't perform the operation if flag_signaling_nans is on
1997 and the operand is a signaling NaN. */
1998 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1999 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
2000 return NULL_TREE;
2002 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2003 t = build_real (type, value);
2005 /* If converting an infinity or NAN to a representation that doesn't
2006 have one, set the overflow bit so that we can produce some kind of
2007 error message at the appropriate point if necessary. It's not the
2008 most user-friendly message, but it's better than nothing. */
2009 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2010 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2011 TREE_OVERFLOW (t) = 1;
2012 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2013 && !MODE_HAS_NANS (TYPE_MODE (type)))
2014 TREE_OVERFLOW (t) = 1;
2015 /* Regular overflow, conversion produced an infinity in a mode that
2016 can't represent them. */
2017 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2018 && REAL_VALUE_ISINF (value)
2019 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2020 TREE_OVERFLOW (t) = 1;
2021 else
2022 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2023 return t;
2026 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2027 to a floating point type. */
2029 static tree
2030 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2032 REAL_VALUE_TYPE value;
2033 tree t;
2035 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2036 &TREE_FIXED_CST (arg1));
2037 t = build_real (type, value);
2039 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2040 return t;
2043 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2044 to another fixed-point type. */
2046 static tree
2047 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2049 FIXED_VALUE_TYPE value;
2050 tree t;
2051 bool overflow_p;
2053 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2054 TYPE_SATURATING (type));
2055 t = build_fixed (type, value);
2057 /* Propagate overflow flags. */
2058 if (overflow_p | TREE_OVERFLOW (arg1))
2059 TREE_OVERFLOW (t) = 1;
2060 return t;
2063 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2064 to a fixed-point type. */
2066 static tree
2067 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2069 FIXED_VALUE_TYPE value;
2070 tree t;
2071 bool overflow_p;
2072 double_int di;
2074 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2076 di.low = TREE_INT_CST_ELT (arg1, 0);
2077 if (TREE_INT_CST_NUNITS (arg1) == 1)
2078 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2079 else
2080 di.high = TREE_INT_CST_ELT (arg1, 1);
2082 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2083 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2084 TYPE_SATURATING (type));
2085 t = build_fixed (type, value);
2087 /* Propagate overflow flags. */
2088 if (overflow_p | TREE_OVERFLOW (arg1))
2089 TREE_OVERFLOW (t) = 1;
2090 return t;
2093 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2094 to a fixed-point type. */
2096 static tree
2097 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2099 FIXED_VALUE_TYPE value;
2100 tree t;
2101 bool overflow_p;
2103 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2104 &TREE_REAL_CST (arg1),
2105 TYPE_SATURATING (type));
2106 t = build_fixed (type, value);
2108 /* Propagate overflow flags. */
2109 if (overflow_p | TREE_OVERFLOW (arg1))
2110 TREE_OVERFLOW (t) = 1;
2111 return t;
2114 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2115 type TYPE. If no simplification can be done return NULL_TREE. */
2117 static tree
2118 fold_convert_const (enum tree_code code, tree type, tree arg1)
2120 if (TREE_TYPE (arg1) == type)
2121 return arg1;
2123 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2124 || TREE_CODE (type) == OFFSET_TYPE)
2126 if (TREE_CODE (arg1) == INTEGER_CST)
2127 return fold_convert_const_int_from_int (type, arg1);
2128 else if (TREE_CODE (arg1) == REAL_CST)
2129 return fold_convert_const_int_from_real (code, type, arg1);
2130 else if (TREE_CODE (arg1) == FIXED_CST)
2131 return fold_convert_const_int_from_fixed (type, arg1);
2133 else if (TREE_CODE (type) == REAL_TYPE)
2135 if (TREE_CODE (arg1) == INTEGER_CST)
2136 return build_real_from_int_cst (type, arg1);
2137 else if (TREE_CODE (arg1) == REAL_CST)
2138 return fold_convert_const_real_from_real (type, arg1);
2139 else if (TREE_CODE (arg1) == FIXED_CST)
2140 return fold_convert_const_real_from_fixed (type, arg1);
2142 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2144 if (TREE_CODE (arg1) == FIXED_CST)
2145 return fold_convert_const_fixed_from_fixed (type, arg1);
2146 else if (TREE_CODE (arg1) == INTEGER_CST)
2147 return fold_convert_const_fixed_from_int (type, arg1);
2148 else if (TREE_CODE (arg1) == REAL_CST)
2149 return fold_convert_const_fixed_from_real (type, arg1);
2151 else if (TREE_CODE (type) == VECTOR_TYPE)
2153 if (TREE_CODE (arg1) == VECTOR_CST
2154 && TYPE_VECTOR_SUBPARTS (type) == VECTOR_CST_NELTS (arg1))
2156 int len = TYPE_VECTOR_SUBPARTS (type);
2157 tree elttype = TREE_TYPE (type);
2158 tree *v = XALLOCAVEC (tree, len);
2159 for (int i = 0; i < len; ++i)
2161 tree elt = VECTOR_CST_ELT (arg1, i);
2162 tree cvt = fold_convert_const (code, elttype, elt);
2163 if (cvt == NULL_TREE)
2164 return NULL_TREE;
2165 v[i] = cvt;
2167 return build_vector (type, v);
2170 return NULL_TREE;
2173 /* Construct a vector of zero elements of vector type TYPE. */
2175 static tree
2176 build_zero_vector (tree type)
2178 tree t;
2180 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2181 return build_vector_from_val (type, t);
2184 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2186 bool
2187 fold_convertible_p (const_tree type, const_tree arg)
2189 tree orig = TREE_TYPE (arg);
2191 if (type == orig)
2192 return true;
2194 if (TREE_CODE (arg) == ERROR_MARK
2195 || TREE_CODE (type) == ERROR_MARK
2196 || TREE_CODE (orig) == ERROR_MARK)
2197 return false;
2199 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2200 return true;
2202 switch (TREE_CODE (type))
2204 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2205 case POINTER_TYPE: case REFERENCE_TYPE:
2206 case OFFSET_TYPE:
2207 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2208 || TREE_CODE (orig) == OFFSET_TYPE);
2210 case REAL_TYPE:
2211 case FIXED_POINT_TYPE:
2212 case VECTOR_TYPE:
2213 case VOID_TYPE:
2214 return TREE_CODE (type) == TREE_CODE (orig);
2216 default:
2217 return false;
2221 /* Convert expression ARG to type TYPE. Used by the middle-end for
2222 simple conversions in preference to calling the front-end's convert. */
2224 tree
2225 fold_convert_loc (location_t loc, tree type, tree arg)
2227 tree orig = TREE_TYPE (arg);
2228 tree tem;
2230 if (type == orig)
2231 return arg;
2233 if (TREE_CODE (arg) == ERROR_MARK
2234 || TREE_CODE (type) == ERROR_MARK
2235 || TREE_CODE (orig) == ERROR_MARK)
2236 return error_mark_node;
2238 switch (TREE_CODE (type))
2240 case POINTER_TYPE:
2241 case REFERENCE_TYPE:
2242 /* Handle conversions between pointers to different address spaces. */
2243 if (POINTER_TYPE_P (orig)
2244 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2245 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2246 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2247 /* fall through */
2249 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2250 case OFFSET_TYPE:
2251 if (TREE_CODE (arg) == INTEGER_CST)
2253 tem = fold_convert_const (NOP_EXPR, type, arg);
2254 if (tem != NULL_TREE)
2255 return tem;
2257 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2258 || TREE_CODE (orig) == OFFSET_TYPE)
2259 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2260 if (TREE_CODE (orig) == COMPLEX_TYPE)
2261 return fold_convert_loc (loc, type,
2262 fold_build1_loc (loc, REALPART_EXPR,
2263 TREE_TYPE (orig), arg));
2264 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2265 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2266 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2268 case REAL_TYPE:
2269 if (TREE_CODE (arg) == INTEGER_CST)
2271 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2272 if (tem != NULL_TREE)
2273 return tem;
2275 else if (TREE_CODE (arg) == REAL_CST)
2277 tem = fold_convert_const (NOP_EXPR, type, arg);
2278 if (tem != NULL_TREE)
2279 return tem;
2281 else if (TREE_CODE (arg) == FIXED_CST)
2283 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2284 if (tem != NULL_TREE)
2285 return tem;
2288 switch (TREE_CODE (orig))
2290 case INTEGER_TYPE:
2291 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2292 case POINTER_TYPE: case REFERENCE_TYPE:
2293 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2295 case REAL_TYPE:
2296 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2298 case FIXED_POINT_TYPE:
2299 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2301 case COMPLEX_TYPE:
2302 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2303 return fold_convert_loc (loc, type, tem);
2305 default:
2306 gcc_unreachable ();
2309 case FIXED_POINT_TYPE:
2310 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2311 || TREE_CODE (arg) == REAL_CST)
2313 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2314 if (tem != NULL_TREE)
2315 goto fold_convert_exit;
2318 switch (TREE_CODE (orig))
2320 case FIXED_POINT_TYPE:
2321 case INTEGER_TYPE:
2322 case ENUMERAL_TYPE:
2323 case BOOLEAN_TYPE:
2324 case REAL_TYPE:
2325 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2327 case COMPLEX_TYPE:
2328 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2329 return fold_convert_loc (loc, type, tem);
2331 default:
2332 gcc_unreachable ();
2335 case COMPLEX_TYPE:
2336 switch (TREE_CODE (orig))
2338 case INTEGER_TYPE:
2339 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2340 case POINTER_TYPE: case REFERENCE_TYPE:
2341 case REAL_TYPE:
2342 case FIXED_POINT_TYPE:
2343 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2344 fold_convert_loc (loc, TREE_TYPE (type), arg),
2345 fold_convert_loc (loc, TREE_TYPE (type),
2346 integer_zero_node));
2347 case COMPLEX_TYPE:
2349 tree rpart, ipart;
2351 if (TREE_CODE (arg) == COMPLEX_EXPR)
2353 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2354 TREE_OPERAND (arg, 0));
2355 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2356 TREE_OPERAND (arg, 1));
2357 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2360 arg = save_expr (arg);
2361 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2362 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2363 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2364 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2365 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2368 default:
2369 gcc_unreachable ();
2372 case VECTOR_TYPE:
2373 if (integer_zerop (arg))
2374 return build_zero_vector (type);
2375 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2376 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2377 || TREE_CODE (orig) == VECTOR_TYPE);
2378 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2380 case VOID_TYPE:
2381 tem = fold_ignored_result (arg);
2382 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2384 default:
2385 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2386 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2387 gcc_unreachable ();
2389 fold_convert_exit:
2390 protected_set_expr_location_unshare (tem, loc);
2391 return tem;
2394 /* Return false if expr can be assumed not to be an lvalue, true
2395 otherwise. */
2397 static bool
2398 maybe_lvalue_p (const_tree x)
2400 /* We only need to wrap lvalue tree codes. */
2401 switch (TREE_CODE (x))
2403 case VAR_DECL:
2404 case PARM_DECL:
2405 case RESULT_DECL:
2406 case LABEL_DECL:
2407 case FUNCTION_DECL:
2408 case SSA_NAME:
2410 case COMPONENT_REF:
2411 case MEM_REF:
2412 case INDIRECT_REF:
2413 case ARRAY_REF:
2414 case ARRAY_RANGE_REF:
2415 case BIT_FIELD_REF:
2416 case OBJ_TYPE_REF:
2418 case REALPART_EXPR:
2419 case IMAGPART_EXPR:
2420 case PREINCREMENT_EXPR:
2421 case PREDECREMENT_EXPR:
2422 case SAVE_EXPR:
2423 case TRY_CATCH_EXPR:
2424 case WITH_CLEANUP_EXPR:
2425 case COMPOUND_EXPR:
2426 case MODIFY_EXPR:
2427 case TARGET_EXPR:
2428 case COND_EXPR:
2429 case BIND_EXPR:
2430 break;
2432 default:
2433 /* Assume the worst for front-end tree codes. */
2434 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2435 break;
2436 return false;
2439 return true;
2442 /* Return an expr equal to X but certainly not valid as an lvalue. */
2444 tree
2445 non_lvalue_loc (location_t loc, tree x)
2447 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2448 us. */
2449 if (in_gimple_form)
2450 return x;
2452 if (! maybe_lvalue_p (x))
2453 return x;
2454 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2457 /* When pedantic, return an expr equal to X but certainly not valid as a
2458 pedantic lvalue. Otherwise, return X. */
2460 static tree
2461 pedantic_non_lvalue_loc (location_t loc, tree x)
2463 return protected_set_expr_location_unshare (x, loc);
2466 /* Given a tree comparison code, return the code that is the logical inverse.
2467 It is generally not safe to do this for floating-point comparisons, except
2468 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2469 ERROR_MARK in this case. */
2471 enum tree_code
2472 invert_tree_comparison (enum tree_code code, bool honor_nans)
2474 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2475 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2476 return ERROR_MARK;
2478 switch (code)
2480 case EQ_EXPR:
2481 return NE_EXPR;
2482 case NE_EXPR:
2483 return EQ_EXPR;
2484 case GT_EXPR:
2485 return honor_nans ? UNLE_EXPR : LE_EXPR;
2486 case GE_EXPR:
2487 return honor_nans ? UNLT_EXPR : LT_EXPR;
2488 case LT_EXPR:
2489 return honor_nans ? UNGE_EXPR : GE_EXPR;
2490 case LE_EXPR:
2491 return honor_nans ? UNGT_EXPR : GT_EXPR;
2492 case LTGT_EXPR:
2493 return UNEQ_EXPR;
2494 case UNEQ_EXPR:
2495 return LTGT_EXPR;
2496 case UNGT_EXPR:
2497 return LE_EXPR;
2498 case UNGE_EXPR:
2499 return LT_EXPR;
2500 case UNLT_EXPR:
2501 return GE_EXPR;
2502 case UNLE_EXPR:
2503 return GT_EXPR;
2504 case ORDERED_EXPR:
2505 return UNORDERED_EXPR;
2506 case UNORDERED_EXPR:
2507 return ORDERED_EXPR;
2508 default:
2509 gcc_unreachable ();
2513 /* Similar, but return the comparison that results if the operands are
2514 swapped. This is safe for floating-point. */
2516 enum tree_code
2517 swap_tree_comparison (enum tree_code code)
2519 switch (code)
2521 case EQ_EXPR:
2522 case NE_EXPR:
2523 case ORDERED_EXPR:
2524 case UNORDERED_EXPR:
2525 case LTGT_EXPR:
2526 case UNEQ_EXPR:
2527 return code;
2528 case GT_EXPR:
2529 return LT_EXPR;
2530 case GE_EXPR:
2531 return LE_EXPR;
2532 case LT_EXPR:
2533 return GT_EXPR;
2534 case LE_EXPR:
2535 return GE_EXPR;
2536 case UNGT_EXPR:
2537 return UNLT_EXPR;
2538 case UNGE_EXPR:
2539 return UNLE_EXPR;
2540 case UNLT_EXPR:
2541 return UNGT_EXPR;
2542 case UNLE_EXPR:
2543 return UNGE_EXPR;
2544 default:
2545 gcc_unreachable ();
2550 /* Convert a comparison tree code from an enum tree_code representation
2551 into a compcode bit-based encoding. This function is the inverse of
2552 compcode_to_comparison. */
2554 static enum comparison_code
2555 comparison_to_compcode (enum tree_code code)
2557 switch (code)
2559 case LT_EXPR:
2560 return COMPCODE_LT;
2561 case EQ_EXPR:
2562 return COMPCODE_EQ;
2563 case LE_EXPR:
2564 return COMPCODE_LE;
2565 case GT_EXPR:
2566 return COMPCODE_GT;
2567 case NE_EXPR:
2568 return COMPCODE_NE;
2569 case GE_EXPR:
2570 return COMPCODE_GE;
2571 case ORDERED_EXPR:
2572 return COMPCODE_ORD;
2573 case UNORDERED_EXPR:
2574 return COMPCODE_UNORD;
2575 case UNLT_EXPR:
2576 return COMPCODE_UNLT;
2577 case UNEQ_EXPR:
2578 return COMPCODE_UNEQ;
2579 case UNLE_EXPR:
2580 return COMPCODE_UNLE;
2581 case UNGT_EXPR:
2582 return COMPCODE_UNGT;
2583 case LTGT_EXPR:
2584 return COMPCODE_LTGT;
2585 case UNGE_EXPR:
2586 return COMPCODE_UNGE;
2587 default:
2588 gcc_unreachable ();
2592 /* Convert a compcode bit-based encoding of a comparison operator back
2593 to GCC's enum tree_code representation. This function is the
2594 inverse of comparison_to_compcode. */
2596 static enum tree_code
2597 compcode_to_comparison (enum comparison_code code)
2599 switch (code)
2601 case COMPCODE_LT:
2602 return LT_EXPR;
2603 case COMPCODE_EQ:
2604 return EQ_EXPR;
2605 case COMPCODE_LE:
2606 return LE_EXPR;
2607 case COMPCODE_GT:
2608 return GT_EXPR;
2609 case COMPCODE_NE:
2610 return NE_EXPR;
2611 case COMPCODE_GE:
2612 return GE_EXPR;
2613 case COMPCODE_ORD:
2614 return ORDERED_EXPR;
2615 case COMPCODE_UNORD:
2616 return UNORDERED_EXPR;
2617 case COMPCODE_UNLT:
2618 return UNLT_EXPR;
2619 case COMPCODE_UNEQ:
2620 return UNEQ_EXPR;
2621 case COMPCODE_UNLE:
2622 return UNLE_EXPR;
2623 case COMPCODE_UNGT:
2624 return UNGT_EXPR;
2625 case COMPCODE_LTGT:
2626 return LTGT_EXPR;
2627 case COMPCODE_UNGE:
2628 return UNGE_EXPR;
2629 default:
2630 gcc_unreachable ();
2634 /* Return a tree for the comparison which is the combination of
2635 doing the AND or OR (depending on CODE) of the two operations LCODE
2636 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2637 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2638 if this makes the transformation invalid. */
2640 tree
2641 combine_comparisons (location_t loc,
2642 enum tree_code code, enum tree_code lcode,
2643 enum tree_code rcode, tree truth_type,
2644 tree ll_arg, tree lr_arg)
2646 bool honor_nans = HONOR_NANS (ll_arg);
2647 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2648 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2649 int compcode;
2651 switch (code)
2653 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2654 compcode = lcompcode & rcompcode;
2655 break;
2657 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2658 compcode = lcompcode | rcompcode;
2659 break;
2661 default:
2662 return NULL_TREE;
2665 if (!honor_nans)
2667 /* Eliminate unordered comparisons, as well as LTGT and ORD
2668 which are not used unless the mode has NaNs. */
2669 compcode &= ~COMPCODE_UNORD;
2670 if (compcode == COMPCODE_LTGT)
2671 compcode = COMPCODE_NE;
2672 else if (compcode == COMPCODE_ORD)
2673 compcode = COMPCODE_TRUE;
2675 else if (flag_trapping_math)
2677 /* Check that the original operation and the optimized ones will trap
2678 under the same condition. */
2679 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2680 && (lcompcode != COMPCODE_EQ)
2681 && (lcompcode != COMPCODE_ORD);
2682 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2683 && (rcompcode != COMPCODE_EQ)
2684 && (rcompcode != COMPCODE_ORD);
2685 bool trap = (compcode & COMPCODE_UNORD) == 0
2686 && (compcode != COMPCODE_EQ)
2687 && (compcode != COMPCODE_ORD);
2689 /* In a short-circuited boolean expression the LHS might be
2690 such that the RHS, if evaluated, will never trap. For
2691 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2692 if neither x nor y is NaN. (This is a mixed blessing: for
2693 example, the expression above will never trap, hence
2694 optimizing it to x < y would be invalid). */
2695 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2696 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2697 rtrap = false;
2699 /* If the comparison was short-circuited, and only the RHS
2700 trapped, we may now generate a spurious trap. */
2701 if (rtrap && !ltrap
2702 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2703 return NULL_TREE;
2705 /* If we changed the conditions that cause a trap, we lose. */
2706 if ((ltrap || rtrap) != trap)
2707 return NULL_TREE;
2710 if (compcode == COMPCODE_TRUE)
2711 return constant_boolean_node (true, truth_type);
2712 else if (compcode == COMPCODE_FALSE)
2713 return constant_boolean_node (false, truth_type);
2714 else
2716 enum tree_code tcode;
2718 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2719 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2723 /* Return nonzero if two operands (typically of the same tree node)
2724 are necessarily equal. FLAGS modifies behavior as follows:
2726 If OEP_ONLY_CONST is set, only return nonzero for constants.
2727 This function tests whether the operands are indistinguishable;
2728 it does not test whether they are equal using C's == operation.
2729 The distinction is important for IEEE floating point, because
2730 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2731 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2733 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2734 even though it may hold multiple values during a function.
2735 This is because a GCC tree node guarantees that nothing else is
2736 executed between the evaluation of its "operands" (which may often
2737 be evaluated in arbitrary order). Hence if the operands themselves
2738 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2739 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2740 unset means assuming isochronic (or instantaneous) tree equivalence.
2741 Unless comparing arbitrary expression trees, such as from different
2742 statements, this flag can usually be left unset.
2744 If OEP_PURE_SAME is set, then pure functions with identical arguments
2745 are considered the same. It is used when the caller has other ways
2746 to ensure that global memory is unchanged in between.
2748 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2749 not values of expressions.
2751 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2752 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2754 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2755 any operand with side effect. This is unnecesarily conservative in the
2756 case we know that arg0 and arg1 are in disjoint code paths (such as in
2757 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2758 addresses with TREE_CONSTANT flag set so we know that &var == &var
2759 even if var is volatile. */
2762 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2764 /* When checking, verify at the outermost operand_equal_p call that
2765 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2766 hash value. */
2767 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2769 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2771 if (arg0 != arg1)
2773 inchash::hash hstate0 (0), hstate1 (0);
2774 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2775 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2776 hashval_t h0 = hstate0.end ();
2777 hashval_t h1 = hstate1.end ();
2778 gcc_assert (h0 == h1);
2780 return 1;
2782 else
2783 return 0;
2786 /* If either is ERROR_MARK, they aren't equal. */
2787 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2788 || TREE_TYPE (arg0) == error_mark_node
2789 || TREE_TYPE (arg1) == error_mark_node)
2790 return 0;
2792 /* Similar, if either does not have a type (like a released SSA name),
2793 they aren't equal. */
2794 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2795 return 0;
2797 /* We cannot consider pointers to different address space equal. */
2798 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2799 && POINTER_TYPE_P (TREE_TYPE (arg1))
2800 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2801 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2802 return 0;
2804 /* Check equality of integer constants before bailing out due to
2805 precision differences. */
2806 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2808 /* Address of INTEGER_CST is not defined; check that we did not forget
2809 to drop the OEP_ADDRESS_OF flags. */
2810 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2811 return tree_int_cst_equal (arg0, arg1);
2814 if (!(flags & OEP_ADDRESS_OF))
2816 /* If both types don't have the same signedness, then we can't consider
2817 them equal. We must check this before the STRIP_NOPS calls
2818 because they may change the signedness of the arguments. As pointers
2819 strictly don't have a signedness, require either two pointers or
2820 two non-pointers as well. */
2821 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2822 || POINTER_TYPE_P (TREE_TYPE (arg0))
2823 != POINTER_TYPE_P (TREE_TYPE (arg1)))
2824 return 0;
2826 /* If both types don't have the same precision, then it is not safe
2827 to strip NOPs. */
2828 if (element_precision (TREE_TYPE (arg0))
2829 != element_precision (TREE_TYPE (arg1)))
2830 return 0;
2832 STRIP_NOPS (arg0);
2833 STRIP_NOPS (arg1);
2835 #if 0
2836 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2837 sanity check once the issue is solved. */
2838 else
2839 /* Addresses of conversions and SSA_NAMEs (and many other things)
2840 are not defined. Check that we did not forget to drop the
2841 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2842 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
2843 && TREE_CODE (arg0) != SSA_NAME);
2844 #endif
2846 /* In case both args are comparisons but with different comparison
2847 code, try to swap the comparison operands of one arg to produce
2848 a match and compare that variant. */
2849 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2850 && COMPARISON_CLASS_P (arg0)
2851 && COMPARISON_CLASS_P (arg1))
2853 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2855 if (TREE_CODE (arg0) == swap_code)
2856 return operand_equal_p (TREE_OPERAND (arg0, 0),
2857 TREE_OPERAND (arg1, 1), flags)
2858 && operand_equal_p (TREE_OPERAND (arg0, 1),
2859 TREE_OPERAND (arg1, 0), flags);
2862 if (TREE_CODE (arg0) != TREE_CODE (arg1))
2864 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2865 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
2867 else if (flags & OEP_ADDRESS_OF)
2869 /* If we are interested in comparing addresses ignore
2870 MEM_REF wrappings of the base that can appear just for
2871 TBAA reasons. */
2872 if (TREE_CODE (arg0) == MEM_REF
2873 && DECL_P (arg1)
2874 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
2875 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
2876 && integer_zerop (TREE_OPERAND (arg0, 1)))
2877 return 1;
2878 else if (TREE_CODE (arg1) == MEM_REF
2879 && DECL_P (arg0)
2880 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
2881 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
2882 && integer_zerop (TREE_OPERAND (arg1, 1)))
2883 return 1;
2884 return 0;
2886 else
2887 return 0;
2890 /* When not checking adddresses, this is needed for conversions and for
2891 COMPONENT_REF. Might as well play it safe and always test this. */
2892 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2893 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2894 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
2895 && !(flags & OEP_ADDRESS_OF)))
2896 return 0;
2898 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2899 We don't care about side effects in that case because the SAVE_EXPR
2900 takes care of that for us. In all other cases, two expressions are
2901 equal if they have no side effects. If we have two identical
2902 expressions with side effects that should be treated the same due
2903 to the only side effects being identical SAVE_EXPR's, that will
2904 be detected in the recursive calls below.
2905 If we are taking an invariant address of two identical objects
2906 they are necessarily equal as well. */
2907 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2908 && (TREE_CODE (arg0) == SAVE_EXPR
2909 || (flags & OEP_MATCH_SIDE_EFFECTS)
2910 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2911 return 1;
2913 /* Next handle constant cases, those for which we can return 1 even
2914 if ONLY_CONST is set. */
2915 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2916 switch (TREE_CODE (arg0))
2918 case INTEGER_CST:
2919 return tree_int_cst_equal (arg0, arg1);
2921 case FIXED_CST:
2922 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2923 TREE_FIXED_CST (arg1));
2925 case REAL_CST:
2926 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
2927 return 1;
2930 if (!HONOR_SIGNED_ZEROS (arg0))
2932 /* If we do not distinguish between signed and unsigned zero,
2933 consider them equal. */
2934 if (real_zerop (arg0) && real_zerop (arg1))
2935 return 1;
2937 return 0;
2939 case VECTOR_CST:
2941 unsigned i;
2943 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2944 return 0;
2946 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2948 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2949 VECTOR_CST_ELT (arg1, i), flags))
2950 return 0;
2952 return 1;
2955 case COMPLEX_CST:
2956 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2957 flags)
2958 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2959 flags));
2961 case STRING_CST:
2962 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2963 && ! memcmp (TREE_STRING_POINTER (arg0),
2964 TREE_STRING_POINTER (arg1),
2965 TREE_STRING_LENGTH (arg0)));
2967 case ADDR_EXPR:
2968 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2969 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2970 flags | OEP_ADDRESS_OF
2971 | OEP_MATCH_SIDE_EFFECTS);
2972 case CONSTRUCTOR:
2973 /* In GIMPLE empty constructors are allowed in initializers of
2974 aggregates. */
2975 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
2976 default:
2977 break;
2980 if (flags & OEP_ONLY_CONST)
2981 return 0;
2983 /* Define macros to test an operand from arg0 and arg1 for equality and a
2984 variant that allows null and views null as being different from any
2985 non-null value. In the latter case, if either is null, the both
2986 must be; otherwise, do the normal comparison. */
2987 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2988 TREE_OPERAND (arg1, N), flags)
2990 #define OP_SAME_WITH_NULL(N) \
2991 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2992 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2994 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2996 case tcc_unary:
2997 /* Two conversions are equal only if signedness and modes match. */
2998 switch (TREE_CODE (arg0))
3000 CASE_CONVERT:
3001 case FIX_TRUNC_EXPR:
3002 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3003 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3004 return 0;
3005 break;
3006 default:
3007 break;
3010 return OP_SAME (0);
3013 case tcc_comparison:
3014 case tcc_binary:
3015 if (OP_SAME (0) && OP_SAME (1))
3016 return 1;
3018 /* For commutative ops, allow the other order. */
3019 return (commutative_tree_code (TREE_CODE (arg0))
3020 && operand_equal_p (TREE_OPERAND (arg0, 0),
3021 TREE_OPERAND (arg1, 1), flags)
3022 && operand_equal_p (TREE_OPERAND (arg0, 1),
3023 TREE_OPERAND (arg1, 0), flags));
3025 case tcc_reference:
3026 /* If either of the pointer (or reference) expressions we are
3027 dereferencing contain a side effect, these cannot be equal,
3028 but their addresses can be. */
3029 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3030 && (TREE_SIDE_EFFECTS (arg0)
3031 || TREE_SIDE_EFFECTS (arg1)))
3032 return 0;
3034 switch (TREE_CODE (arg0))
3036 case INDIRECT_REF:
3037 if (!(flags & OEP_ADDRESS_OF)
3038 && (TYPE_ALIGN (TREE_TYPE (arg0))
3039 != TYPE_ALIGN (TREE_TYPE (arg1))))
3040 return 0;
3041 flags &= ~OEP_ADDRESS_OF;
3042 return OP_SAME (0);
3044 case IMAGPART_EXPR:
3045 /* Require the same offset. */
3046 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3047 TYPE_SIZE (TREE_TYPE (arg1)),
3048 flags & ~OEP_ADDRESS_OF))
3049 return 0;
3051 /* Fallthru. */
3052 case REALPART_EXPR:
3053 case VIEW_CONVERT_EXPR:
3054 return OP_SAME (0);
3056 case TARGET_MEM_REF:
3057 case MEM_REF:
3058 if (!(flags & OEP_ADDRESS_OF))
3060 /* Require equal access sizes */
3061 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3062 && (!TYPE_SIZE (TREE_TYPE (arg0))
3063 || !TYPE_SIZE (TREE_TYPE (arg1))
3064 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3065 TYPE_SIZE (TREE_TYPE (arg1)),
3066 flags)))
3067 return 0;
3068 /* Verify that access happens in similar types. */
3069 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3070 return 0;
3071 /* Verify that accesses are TBAA compatible. */
3072 if (!alias_ptr_types_compatible_p
3073 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3074 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3075 || (MR_DEPENDENCE_CLIQUE (arg0)
3076 != MR_DEPENDENCE_CLIQUE (arg1))
3077 || (MR_DEPENDENCE_BASE (arg0)
3078 != MR_DEPENDENCE_BASE (arg1)))
3079 return 0;
3080 /* Verify that alignment is compatible. */
3081 if (TYPE_ALIGN (TREE_TYPE (arg0))
3082 != TYPE_ALIGN (TREE_TYPE (arg1)))
3083 return 0;
3085 flags &= ~OEP_ADDRESS_OF;
3086 return (OP_SAME (0) && OP_SAME (1)
3087 /* TARGET_MEM_REF require equal extra operands. */
3088 && (TREE_CODE (arg0) != TARGET_MEM_REF
3089 || (OP_SAME_WITH_NULL (2)
3090 && OP_SAME_WITH_NULL (3)
3091 && OP_SAME_WITH_NULL (4))));
3093 case ARRAY_REF:
3094 case ARRAY_RANGE_REF:
3095 if (!OP_SAME (0))
3096 return 0;
3097 flags &= ~OEP_ADDRESS_OF;
3098 /* Compare the array index by value if it is constant first as we
3099 may have different types but same value here. */
3100 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3101 TREE_OPERAND (arg1, 1))
3102 || OP_SAME (1))
3103 && OP_SAME_WITH_NULL (2)
3104 && OP_SAME_WITH_NULL (3)
3105 /* Compare low bound and element size as with OEP_ADDRESS_OF
3106 we have to account for the offset of the ref. */
3107 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3108 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3109 || (operand_equal_p (array_ref_low_bound
3110 (CONST_CAST_TREE (arg0)),
3111 array_ref_low_bound
3112 (CONST_CAST_TREE (arg1)), flags)
3113 && operand_equal_p (array_ref_element_size
3114 (CONST_CAST_TREE (arg0)),
3115 array_ref_element_size
3116 (CONST_CAST_TREE (arg1)),
3117 flags))));
3119 case COMPONENT_REF:
3120 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3121 may be NULL when we're called to compare MEM_EXPRs. */
3122 if (!OP_SAME_WITH_NULL (0)
3123 || !OP_SAME (1))
3124 return 0;
3125 flags &= ~OEP_ADDRESS_OF;
3126 return OP_SAME_WITH_NULL (2);
3128 case BIT_FIELD_REF:
3129 if (!OP_SAME (0))
3130 return 0;
3131 flags &= ~OEP_ADDRESS_OF;
3132 return OP_SAME (1) && OP_SAME (2);
3134 default:
3135 return 0;
3138 case tcc_expression:
3139 switch (TREE_CODE (arg0))
3141 case ADDR_EXPR:
3142 /* Be sure we pass right ADDRESS_OF flag. */
3143 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3144 return operand_equal_p (TREE_OPERAND (arg0, 0),
3145 TREE_OPERAND (arg1, 0),
3146 flags | OEP_ADDRESS_OF);
3148 case TRUTH_NOT_EXPR:
3149 return OP_SAME (0);
3151 case TRUTH_ANDIF_EXPR:
3152 case TRUTH_ORIF_EXPR:
3153 return OP_SAME (0) && OP_SAME (1);
3155 case FMA_EXPR:
3156 case WIDEN_MULT_PLUS_EXPR:
3157 case WIDEN_MULT_MINUS_EXPR:
3158 if (!OP_SAME (2))
3159 return 0;
3160 /* The multiplcation operands are commutative. */
3161 /* FALLTHRU */
3163 case TRUTH_AND_EXPR:
3164 case TRUTH_OR_EXPR:
3165 case TRUTH_XOR_EXPR:
3166 if (OP_SAME (0) && OP_SAME (1))
3167 return 1;
3169 /* Otherwise take into account this is a commutative operation. */
3170 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3171 TREE_OPERAND (arg1, 1), flags)
3172 && operand_equal_p (TREE_OPERAND (arg0, 1),
3173 TREE_OPERAND (arg1, 0), flags));
3175 case COND_EXPR:
3176 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3177 return 0;
3178 flags &= ~OEP_ADDRESS_OF;
3179 return OP_SAME (0);
3181 case BIT_INSERT_EXPR:
3182 /* BIT_INSERT_EXPR has an implict operand as the type precision
3183 of op1. Need to check to make sure they are the same. */
3184 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3185 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3186 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3187 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3188 return false;
3189 /* FALLTHRU */
3191 case VEC_COND_EXPR:
3192 case DOT_PROD_EXPR:
3193 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3195 case MODIFY_EXPR:
3196 case INIT_EXPR:
3197 case COMPOUND_EXPR:
3198 case PREDECREMENT_EXPR:
3199 case PREINCREMENT_EXPR:
3200 case POSTDECREMENT_EXPR:
3201 case POSTINCREMENT_EXPR:
3202 if (flags & OEP_LEXICOGRAPHIC)
3203 return OP_SAME (0) && OP_SAME (1);
3204 return 0;
3206 case CLEANUP_POINT_EXPR:
3207 case EXPR_STMT:
3208 if (flags & OEP_LEXICOGRAPHIC)
3209 return OP_SAME (0);
3210 return 0;
3212 default:
3213 return 0;
3216 case tcc_vl_exp:
3217 switch (TREE_CODE (arg0))
3219 case CALL_EXPR:
3220 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3221 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3222 /* If not both CALL_EXPRs are either internal or normal function
3223 functions, then they are not equal. */
3224 return 0;
3225 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3227 /* If the CALL_EXPRs call different internal functions, then they
3228 are not equal. */
3229 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3230 return 0;
3232 else
3234 /* If the CALL_EXPRs call different functions, then they are not
3235 equal. */
3236 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3237 flags))
3238 return 0;
3241 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3243 unsigned int cef = call_expr_flags (arg0);
3244 if (flags & OEP_PURE_SAME)
3245 cef &= ECF_CONST | ECF_PURE;
3246 else
3247 cef &= ECF_CONST;
3248 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3249 return 0;
3252 /* Now see if all the arguments are the same. */
3254 const_call_expr_arg_iterator iter0, iter1;
3255 const_tree a0, a1;
3256 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3257 a1 = first_const_call_expr_arg (arg1, &iter1);
3258 a0 && a1;
3259 a0 = next_const_call_expr_arg (&iter0),
3260 a1 = next_const_call_expr_arg (&iter1))
3261 if (! operand_equal_p (a0, a1, flags))
3262 return 0;
3264 /* If we get here and both argument lists are exhausted
3265 then the CALL_EXPRs are equal. */
3266 return ! (a0 || a1);
3268 default:
3269 return 0;
3272 case tcc_declaration:
3273 /* Consider __builtin_sqrt equal to sqrt. */
3274 return (TREE_CODE (arg0) == FUNCTION_DECL
3275 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3276 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3277 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3279 case tcc_exceptional:
3280 if (TREE_CODE (arg0) == CONSTRUCTOR)
3282 /* In GIMPLE constructors are used only to build vectors from
3283 elements. Individual elements in the constructor must be
3284 indexed in increasing order and form an initial sequence.
3286 We make no effort to compare constructors in generic.
3287 (see sem_variable::equals in ipa-icf which can do so for
3288 constants). */
3289 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3290 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3291 return 0;
3293 /* Be sure that vectors constructed have the same representation.
3294 We only tested element precision and modes to match.
3295 Vectors may be BLKmode and thus also check that the number of
3296 parts match. */
3297 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))
3298 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))
3299 return 0;
3301 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3302 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3303 unsigned int len = vec_safe_length (v0);
3305 if (len != vec_safe_length (v1))
3306 return 0;
3308 for (unsigned int i = 0; i < len; i++)
3310 constructor_elt *c0 = &(*v0)[i];
3311 constructor_elt *c1 = &(*v1)[i];
3313 if (!operand_equal_p (c0->value, c1->value, flags)
3314 /* In GIMPLE the indexes can be either NULL or matching i.
3315 Double check this so we won't get false
3316 positives for GENERIC. */
3317 || (c0->index
3318 && (TREE_CODE (c0->index) != INTEGER_CST
3319 || !compare_tree_int (c0->index, i)))
3320 || (c1->index
3321 && (TREE_CODE (c1->index) != INTEGER_CST
3322 || !compare_tree_int (c1->index, i))))
3323 return 0;
3325 return 1;
3327 else if (TREE_CODE (arg0) == STATEMENT_LIST
3328 && (flags & OEP_LEXICOGRAPHIC))
3330 /* Compare the STATEMENT_LISTs. */
3331 tree_stmt_iterator tsi1, tsi2;
3332 tree body1 = CONST_CAST_TREE (arg0);
3333 tree body2 = CONST_CAST_TREE (arg1);
3334 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3335 tsi_next (&tsi1), tsi_next (&tsi2))
3337 /* The lists don't have the same number of statements. */
3338 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3339 return 0;
3340 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3341 return 1;
3342 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3343 OEP_LEXICOGRAPHIC))
3344 return 0;
3347 return 0;
3349 case tcc_statement:
3350 switch (TREE_CODE (arg0))
3352 case RETURN_EXPR:
3353 if (flags & OEP_LEXICOGRAPHIC)
3354 return OP_SAME_WITH_NULL (0);
3355 return 0;
3356 default:
3357 return 0;
3360 default:
3361 return 0;
3364 #undef OP_SAME
3365 #undef OP_SAME_WITH_NULL
3368 /* Similar to operand_equal_p, but strip nops first. */
3370 static bool
3371 operand_equal_for_comparison_p (tree arg0, tree arg1)
3373 if (operand_equal_p (arg0, arg1, 0))
3374 return true;
3376 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3377 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3378 return false;
3380 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3381 and see if the inner values are the same. This removes any
3382 signedness comparison, which doesn't matter here. */
3383 STRIP_NOPS (arg0);
3384 STRIP_NOPS (arg1);
3385 if (operand_equal_p (arg0, arg1, 0))
3386 return true;
3388 return false;
3391 /* See if ARG is an expression that is either a comparison or is performing
3392 arithmetic on comparisons. The comparisons must only be comparing
3393 two different values, which will be stored in *CVAL1 and *CVAL2; if
3394 they are nonzero it means that some operands have already been found.
3395 No variables may be used anywhere else in the expression except in the
3396 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3397 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3399 If this is true, return 1. Otherwise, return zero. */
3401 static int
3402 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3404 enum tree_code code = TREE_CODE (arg);
3405 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3407 /* We can handle some of the tcc_expression cases here. */
3408 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3409 tclass = tcc_unary;
3410 else if (tclass == tcc_expression
3411 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3412 || code == COMPOUND_EXPR))
3413 tclass = tcc_binary;
3415 else if (tclass == tcc_expression && code == SAVE_EXPR
3416 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3418 /* If we've already found a CVAL1 or CVAL2, this expression is
3419 two complex to handle. */
3420 if (*cval1 || *cval2)
3421 return 0;
3423 tclass = tcc_unary;
3424 *save_p = 1;
3427 switch (tclass)
3429 case tcc_unary:
3430 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3432 case tcc_binary:
3433 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3434 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3435 cval1, cval2, save_p));
3437 case tcc_constant:
3438 return 1;
3440 case tcc_expression:
3441 if (code == COND_EXPR)
3442 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3443 cval1, cval2, save_p)
3444 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3445 cval1, cval2, save_p)
3446 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3447 cval1, cval2, save_p));
3448 return 0;
3450 case tcc_comparison:
3451 /* First see if we can handle the first operand, then the second. For
3452 the second operand, we know *CVAL1 can't be zero. It must be that
3453 one side of the comparison is each of the values; test for the
3454 case where this isn't true by failing if the two operands
3455 are the same. */
3457 if (operand_equal_p (TREE_OPERAND (arg, 0),
3458 TREE_OPERAND (arg, 1), 0))
3459 return 0;
3461 if (*cval1 == 0)
3462 *cval1 = TREE_OPERAND (arg, 0);
3463 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3465 else if (*cval2 == 0)
3466 *cval2 = TREE_OPERAND (arg, 0);
3467 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3469 else
3470 return 0;
3472 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3474 else if (*cval2 == 0)
3475 *cval2 = TREE_OPERAND (arg, 1);
3476 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3478 else
3479 return 0;
3481 return 1;
3483 default:
3484 return 0;
3488 /* ARG is a tree that is known to contain just arithmetic operations and
3489 comparisons. Evaluate the operations in the tree substituting NEW0 for
3490 any occurrence of OLD0 as an operand of a comparison and likewise for
3491 NEW1 and OLD1. */
3493 static tree
3494 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3495 tree old1, tree new1)
3497 tree type = TREE_TYPE (arg);
3498 enum tree_code code = TREE_CODE (arg);
3499 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3501 /* We can handle some of the tcc_expression cases here. */
3502 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3503 tclass = tcc_unary;
3504 else if (tclass == tcc_expression
3505 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3506 tclass = tcc_binary;
3508 switch (tclass)
3510 case tcc_unary:
3511 return fold_build1_loc (loc, code, type,
3512 eval_subst (loc, TREE_OPERAND (arg, 0),
3513 old0, new0, old1, new1));
3515 case tcc_binary:
3516 return fold_build2_loc (loc, code, type,
3517 eval_subst (loc, TREE_OPERAND (arg, 0),
3518 old0, new0, old1, new1),
3519 eval_subst (loc, TREE_OPERAND (arg, 1),
3520 old0, new0, old1, new1));
3522 case tcc_expression:
3523 switch (code)
3525 case SAVE_EXPR:
3526 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3527 old1, new1);
3529 case COMPOUND_EXPR:
3530 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3531 old1, new1);
3533 case COND_EXPR:
3534 return fold_build3_loc (loc, code, type,
3535 eval_subst (loc, TREE_OPERAND (arg, 0),
3536 old0, new0, old1, new1),
3537 eval_subst (loc, TREE_OPERAND (arg, 1),
3538 old0, new0, old1, new1),
3539 eval_subst (loc, TREE_OPERAND (arg, 2),
3540 old0, new0, old1, new1));
3541 default:
3542 break;
3544 /* Fall through - ??? */
3546 case tcc_comparison:
3548 tree arg0 = TREE_OPERAND (arg, 0);
3549 tree arg1 = TREE_OPERAND (arg, 1);
3551 /* We need to check both for exact equality and tree equality. The
3552 former will be true if the operand has a side-effect. In that
3553 case, we know the operand occurred exactly once. */
3555 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3556 arg0 = new0;
3557 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3558 arg0 = new1;
3560 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3561 arg1 = new0;
3562 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3563 arg1 = new1;
3565 return fold_build2_loc (loc, code, type, arg0, arg1);
3568 default:
3569 return arg;
3573 /* Return a tree for the case when the result of an expression is RESULT
3574 converted to TYPE and OMITTED was previously an operand of the expression
3575 but is now not needed (e.g., we folded OMITTED * 0).
3577 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3578 the conversion of RESULT to TYPE. */
3580 tree
3581 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3583 tree t = fold_convert_loc (loc, type, result);
3585 /* If the resulting operand is an empty statement, just return the omitted
3586 statement casted to void. */
3587 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3588 return build1_loc (loc, NOP_EXPR, void_type_node,
3589 fold_ignored_result (omitted));
3591 if (TREE_SIDE_EFFECTS (omitted))
3592 return build2_loc (loc, COMPOUND_EXPR, type,
3593 fold_ignored_result (omitted), t);
3595 return non_lvalue_loc (loc, t);
3598 /* Return a tree for the case when the result of an expression is RESULT
3599 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3600 of the expression but are now not needed.
3602 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3603 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3604 evaluated before OMITTED2. Otherwise, if neither has side effects,
3605 just do the conversion of RESULT to TYPE. */
3607 tree
3608 omit_two_operands_loc (location_t loc, tree type, tree result,
3609 tree omitted1, tree omitted2)
3611 tree t = fold_convert_loc (loc, type, result);
3613 if (TREE_SIDE_EFFECTS (omitted2))
3614 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3615 if (TREE_SIDE_EFFECTS (omitted1))
3616 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3618 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3622 /* Return a simplified tree node for the truth-negation of ARG. This
3623 never alters ARG itself. We assume that ARG is an operation that
3624 returns a truth value (0 or 1).
3626 FIXME: one would think we would fold the result, but it causes
3627 problems with the dominator optimizer. */
3629 static tree
3630 fold_truth_not_expr (location_t loc, tree arg)
3632 tree type = TREE_TYPE (arg);
3633 enum tree_code code = TREE_CODE (arg);
3634 location_t loc1, loc2;
3636 /* If this is a comparison, we can simply invert it, except for
3637 floating-point non-equality comparisons, in which case we just
3638 enclose a TRUTH_NOT_EXPR around what we have. */
3640 if (TREE_CODE_CLASS (code) == tcc_comparison)
3642 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3643 if (FLOAT_TYPE_P (op_type)
3644 && flag_trapping_math
3645 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3646 && code != NE_EXPR && code != EQ_EXPR)
3647 return NULL_TREE;
3649 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3650 if (code == ERROR_MARK)
3651 return NULL_TREE;
3653 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3654 TREE_OPERAND (arg, 1));
3655 if (TREE_NO_WARNING (arg))
3656 TREE_NO_WARNING (ret) = 1;
3657 return ret;
3660 switch (code)
3662 case INTEGER_CST:
3663 return constant_boolean_node (integer_zerop (arg), type);
3665 case TRUTH_AND_EXPR:
3666 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3667 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3668 return build2_loc (loc, TRUTH_OR_EXPR, type,
3669 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3670 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3672 case TRUTH_OR_EXPR:
3673 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3674 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3675 return build2_loc (loc, TRUTH_AND_EXPR, type,
3676 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3677 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3679 case TRUTH_XOR_EXPR:
3680 /* Here we can invert either operand. We invert the first operand
3681 unless the second operand is a TRUTH_NOT_EXPR in which case our
3682 result is the XOR of the first operand with the inside of the
3683 negation of the second operand. */
3685 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3686 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3687 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3688 else
3689 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3690 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3691 TREE_OPERAND (arg, 1));
3693 case TRUTH_ANDIF_EXPR:
3694 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3695 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3696 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3697 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3698 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3700 case TRUTH_ORIF_EXPR:
3701 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3702 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3703 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3704 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3705 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3707 case TRUTH_NOT_EXPR:
3708 return TREE_OPERAND (arg, 0);
3710 case COND_EXPR:
3712 tree arg1 = TREE_OPERAND (arg, 1);
3713 tree arg2 = TREE_OPERAND (arg, 2);
3715 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3716 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3718 /* A COND_EXPR may have a throw as one operand, which
3719 then has void type. Just leave void operands
3720 as they are. */
3721 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3722 VOID_TYPE_P (TREE_TYPE (arg1))
3723 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3724 VOID_TYPE_P (TREE_TYPE (arg2))
3725 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3728 case COMPOUND_EXPR:
3729 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3730 return build2_loc (loc, COMPOUND_EXPR, type,
3731 TREE_OPERAND (arg, 0),
3732 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3734 case NON_LVALUE_EXPR:
3735 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3736 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3738 CASE_CONVERT:
3739 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3740 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3742 /* fall through */
3744 case FLOAT_EXPR:
3745 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3746 return build1_loc (loc, TREE_CODE (arg), type,
3747 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3749 case BIT_AND_EXPR:
3750 if (!integer_onep (TREE_OPERAND (arg, 1)))
3751 return NULL_TREE;
3752 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3754 case SAVE_EXPR:
3755 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3757 case CLEANUP_POINT_EXPR:
3758 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3759 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3760 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3762 default:
3763 return NULL_TREE;
3767 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3768 assume that ARG is an operation that returns a truth value (0 or 1
3769 for scalars, 0 or -1 for vectors). Return the folded expression if
3770 folding is successful. Otherwise, return NULL_TREE. */
3772 static tree
3773 fold_invert_truthvalue (location_t loc, tree arg)
3775 tree type = TREE_TYPE (arg);
3776 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3777 ? BIT_NOT_EXPR
3778 : TRUTH_NOT_EXPR,
3779 type, arg);
3782 /* Return a simplified tree node for the truth-negation of ARG. This
3783 never alters ARG itself. We assume that ARG is an operation that
3784 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3786 tree
3787 invert_truthvalue_loc (location_t loc, tree arg)
3789 if (TREE_CODE (arg) == ERROR_MARK)
3790 return arg;
3792 tree type = TREE_TYPE (arg);
3793 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3794 ? BIT_NOT_EXPR
3795 : TRUTH_NOT_EXPR,
3796 type, arg);
3799 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3800 with code CODE. This optimization is unsafe. */
3801 static tree
3802 distribute_real_division (location_t loc, enum tree_code code, tree type,
3803 tree arg0, tree arg1)
3805 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3806 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3808 /* (A / C) +- (B / C) -> (A +- B) / C. */
3809 if (mul0 == mul1
3810 && operand_equal_p (TREE_OPERAND (arg0, 1),
3811 TREE_OPERAND (arg1, 1), 0))
3812 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3813 fold_build2_loc (loc, code, type,
3814 TREE_OPERAND (arg0, 0),
3815 TREE_OPERAND (arg1, 0)),
3816 TREE_OPERAND (arg0, 1));
3818 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3819 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3820 TREE_OPERAND (arg1, 0), 0)
3821 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3822 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3824 REAL_VALUE_TYPE r0, r1;
3825 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3826 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3827 if (!mul0)
3828 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3829 if (!mul1)
3830 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3831 real_arithmetic (&r0, code, &r0, &r1);
3832 return fold_build2_loc (loc, MULT_EXPR, type,
3833 TREE_OPERAND (arg0, 0),
3834 build_real (type, r0));
3837 return NULL_TREE;
3840 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3841 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3842 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3843 is the original memory reference used to preserve the alias set of
3844 the access. */
3846 static tree
3847 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3848 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3849 int unsignedp, int reversep)
3851 tree result, bftype;
3853 /* Attempt not to lose the access path if possible. */
3854 if (TREE_CODE (orig_inner) == COMPONENT_REF)
3856 tree ninner = TREE_OPERAND (orig_inner, 0);
3857 machine_mode nmode;
3858 HOST_WIDE_INT nbitsize, nbitpos;
3859 tree noffset;
3860 int nunsignedp, nreversep, nvolatilep = 0;
3861 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
3862 &noffset, &nmode, &nunsignedp,
3863 &nreversep, &nvolatilep);
3864 if (base == inner
3865 && noffset == NULL_TREE
3866 && nbitsize >= bitsize
3867 && nbitpos <= bitpos
3868 && bitpos + bitsize <= nbitpos + nbitsize
3869 && !reversep
3870 && !nreversep
3871 && !nvolatilep)
3873 inner = ninner;
3874 bitpos -= nbitpos;
3878 alias_set_type iset = get_alias_set (orig_inner);
3879 if (iset == 0 && get_alias_set (inner) != iset)
3880 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
3881 build_fold_addr_expr (inner),
3882 build_int_cst (ptr_type_node, 0));
3884 if (bitpos == 0 && !reversep)
3886 tree size = TYPE_SIZE (TREE_TYPE (inner));
3887 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3888 || POINTER_TYPE_P (TREE_TYPE (inner)))
3889 && tree_fits_shwi_p (size)
3890 && tree_to_shwi (size) == bitsize)
3891 return fold_convert_loc (loc, type, inner);
3894 bftype = type;
3895 if (TYPE_PRECISION (bftype) != bitsize
3896 || TYPE_UNSIGNED (bftype) == !unsignedp)
3897 bftype = build_nonstandard_integer_type (bitsize, 0);
3899 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3900 bitsize_int (bitsize), bitsize_int (bitpos));
3901 REF_REVERSE_STORAGE_ORDER (result) = reversep;
3903 if (bftype != type)
3904 result = fold_convert_loc (loc, type, result);
3906 return result;
3909 /* Optimize a bit-field compare.
3911 There are two cases: First is a compare against a constant and the
3912 second is a comparison of two items where the fields are at the same
3913 bit position relative to the start of a chunk (byte, halfword, word)
3914 large enough to contain it. In these cases we can avoid the shift
3915 implicit in bitfield extractions.
3917 For constants, we emit a compare of the shifted constant with the
3918 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3919 compared. For two fields at the same position, we do the ANDs with the
3920 similar mask and compare the result of the ANDs.
3922 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3923 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3924 are the left and right operands of the comparison, respectively.
3926 If the optimization described above can be done, we return the resulting
3927 tree. Otherwise we return zero. */
3929 static tree
3930 optimize_bit_field_compare (location_t loc, enum tree_code code,
3931 tree compare_type, tree lhs, tree rhs)
3933 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3934 tree type = TREE_TYPE (lhs);
3935 tree unsigned_type;
3936 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3937 machine_mode lmode, rmode, nmode;
3938 int lunsignedp, runsignedp;
3939 int lreversep, rreversep;
3940 int lvolatilep = 0, rvolatilep = 0;
3941 tree linner, rinner = NULL_TREE;
3942 tree mask;
3943 tree offset;
3945 /* Get all the information about the extractions being done. If the bit size
3946 if the same as the size of the underlying object, we aren't doing an
3947 extraction at all and so can do nothing. We also don't want to
3948 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3949 then will no longer be able to replace it. */
3950 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3951 &lunsignedp, &lreversep, &lvolatilep);
3952 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3953 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3954 return 0;
3956 if (const_p)
3957 rreversep = lreversep;
3958 else
3960 /* If this is not a constant, we can only do something if bit positions,
3961 sizes, signedness and storage order are the same. */
3962 rinner
3963 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3964 &runsignedp, &rreversep, &rvolatilep);
3966 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3967 || lunsignedp != runsignedp || lreversep != rreversep || offset != 0
3968 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3969 return 0;
3972 /* Honor the C++ memory model and mimic what RTL expansion does. */
3973 unsigned HOST_WIDE_INT bitstart = 0;
3974 unsigned HOST_WIDE_INT bitend = 0;
3975 if (TREE_CODE (lhs) == COMPONENT_REF)
3977 get_bit_range (&bitstart, &bitend, lhs, &lbitpos, &offset);
3978 if (offset != NULL_TREE)
3979 return 0;
3982 /* See if we can find a mode to refer to this field. We should be able to,
3983 but fail if we can't. */
3984 nmode = get_best_mode (lbitsize, lbitpos, bitstart, bitend,
3985 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3986 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3987 TYPE_ALIGN (TREE_TYPE (rinner))),
3988 word_mode, false);
3989 if (nmode == VOIDmode)
3990 return 0;
3992 /* Set signed and unsigned types of the precision of this mode for the
3993 shifts below. */
3994 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3996 /* Compute the bit position and size for the new reference and our offset
3997 within it. If the new reference is the same size as the original, we
3998 won't optimize anything, so return zero. */
3999 nbitsize = GET_MODE_BITSIZE (nmode);
4000 nbitpos = lbitpos & ~ (nbitsize - 1);
4001 lbitpos -= nbitpos;
4002 if (nbitsize == lbitsize)
4003 return 0;
4005 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4006 lbitpos = nbitsize - lbitsize - lbitpos;
4008 /* Make the mask to be used against the extracted field. */
4009 mask = build_int_cst_type (unsigned_type, -1);
4010 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
4011 mask = const_binop (RSHIFT_EXPR, mask,
4012 size_int (nbitsize - lbitsize - lbitpos));
4014 if (! const_p)
4015 /* If not comparing with constant, just rework the comparison
4016 and return. */
4017 return fold_build2_loc (loc, code, compare_type,
4018 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4019 make_bit_field_ref (loc, linner, lhs,
4020 unsigned_type,
4021 nbitsize, nbitpos,
4022 1, lreversep),
4023 mask),
4024 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4025 make_bit_field_ref (loc, rinner, rhs,
4026 unsigned_type,
4027 nbitsize, nbitpos,
4028 1, rreversep),
4029 mask));
4031 /* Otherwise, we are handling the constant case. See if the constant is too
4032 big for the field. Warn and return a tree for 0 (false) if so. We do
4033 this not only for its own sake, but to avoid having to test for this
4034 error case below. If we didn't, we might generate wrong code.
4036 For unsigned fields, the constant shifted right by the field length should
4037 be all zero. For signed fields, the high-order bits should agree with
4038 the sign bit. */
4040 if (lunsignedp)
4042 if (wi::lrshift (rhs, lbitsize) != 0)
4044 warning (0, "comparison is always %d due to width of bit-field",
4045 code == NE_EXPR);
4046 return constant_boolean_node (code == NE_EXPR, compare_type);
4049 else
4051 wide_int tem = wi::arshift (rhs, lbitsize - 1);
4052 if (tem != 0 && tem != -1)
4054 warning (0, "comparison is always %d due to width of bit-field",
4055 code == NE_EXPR);
4056 return constant_boolean_node (code == NE_EXPR, compare_type);
4060 /* Single-bit compares should always be against zero. */
4061 if (lbitsize == 1 && ! integer_zerop (rhs))
4063 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4064 rhs = build_int_cst (type, 0);
4067 /* Make a new bitfield reference, shift the constant over the
4068 appropriate number of bits and mask it with the computed mask
4069 (in case this was a signed field). If we changed it, make a new one. */
4070 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4071 nbitsize, nbitpos, 1, lreversep);
4073 rhs = const_binop (BIT_AND_EXPR,
4074 const_binop (LSHIFT_EXPR,
4075 fold_convert_loc (loc, unsigned_type, rhs),
4076 size_int (lbitpos)),
4077 mask);
4079 lhs = build2_loc (loc, code, compare_type,
4080 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4081 return lhs;
4084 /* Subroutine for fold_truth_andor_1: decode a field reference.
4086 If EXP is a comparison reference, we return the innermost reference.
4088 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4089 set to the starting bit number.
4091 If the innermost field can be completely contained in a mode-sized
4092 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4094 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4095 otherwise it is not changed.
4097 *PUNSIGNEDP is set to the signedness of the field.
4099 *PREVERSEP is set to the storage order of the field.
4101 *PMASK is set to the mask used. This is either contained in a
4102 BIT_AND_EXPR or derived from the width of the field.
4104 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4106 Return 0 if this is not a component reference or is one that we can't
4107 do anything with. */
4109 static tree
4110 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4111 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4112 int *punsignedp, int *preversep, int *pvolatilep,
4113 tree *pmask, tree *pand_mask)
4115 tree exp = *exp_;
4116 tree outer_type = 0;
4117 tree and_mask = 0;
4118 tree mask, inner, offset;
4119 tree unsigned_type;
4120 unsigned int precision;
4122 /* All the optimizations using this function assume integer fields.
4123 There are problems with FP fields since the type_for_size call
4124 below can fail for, e.g., XFmode. */
4125 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4126 return 0;
4128 /* We are interested in the bare arrangement of bits, so strip everything
4129 that doesn't affect the machine mode. However, record the type of the
4130 outermost expression if it may matter below. */
4131 if (CONVERT_EXPR_P (exp)
4132 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4133 outer_type = TREE_TYPE (exp);
4134 STRIP_NOPS (exp);
4136 if (TREE_CODE (exp) == BIT_AND_EXPR)
4138 and_mask = TREE_OPERAND (exp, 1);
4139 exp = TREE_OPERAND (exp, 0);
4140 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4141 if (TREE_CODE (and_mask) != INTEGER_CST)
4142 return 0;
4145 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4146 punsignedp, preversep, pvolatilep);
4147 if ((inner == exp && and_mask == 0)
4148 || *pbitsize < 0 || offset != 0
4149 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4150 /* Reject out-of-bound accesses (PR79731). */
4151 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4152 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4153 *pbitpos + *pbitsize) < 0))
4154 return 0;
4156 *exp_ = exp;
4158 /* If the number of bits in the reference is the same as the bitsize of
4159 the outer type, then the outer type gives the signedness. Otherwise
4160 (in case of a small bitfield) the signedness is unchanged. */
4161 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4162 *punsignedp = TYPE_UNSIGNED (outer_type);
4164 /* Compute the mask to access the bitfield. */
4165 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4166 precision = TYPE_PRECISION (unsigned_type);
4168 mask = build_int_cst_type (unsigned_type, -1);
4170 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4171 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4173 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4174 if (and_mask != 0)
4175 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4176 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4178 *pmask = mask;
4179 *pand_mask = and_mask;
4180 return inner;
4183 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4184 bit positions and MASK is SIGNED. */
4186 static int
4187 all_ones_mask_p (const_tree mask, unsigned int size)
4189 tree type = TREE_TYPE (mask);
4190 unsigned int precision = TYPE_PRECISION (type);
4192 /* If this function returns true when the type of the mask is
4193 UNSIGNED, then there will be errors. In particular see
4194 gcc.c-torture/execute/990326-1.c. There does not appear to be
4195 any documentation paper trail as to why this is so. But the pre
4196 wide-int worked with that restriction and it has been preserved
4197 here. */
4198 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4199 return false;
4201 return wi::mask (size, false, precision) == mask;
4204 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4205 represents the sign bit of EXP's type. If EXP represents a sign
4206 or zero extension, also test VAL against the unextended type.
4207 The return value is the (sub)expression whose sign bit is VAL,
4208 or NULL_TREE otherwise. */
4210 tree
4211 sign_bit_p (tree exp, const_tree val)
4213 int width;
4214 tree t;
4216 /* Tree EXP must have an integral type. */
4217 t = TREE_TYPE (exp);
4218 if (! INTEGRAL_TYPE_P (t))
4219 return NULL_TREE;
4221 /* Tree VAL must be an integer constant. */
4222 if (TREE_CODE (val) != INTEGER_CST
4223 || TREE_OVERFLOW (val))
4224 return NULL_TREE;
4226 width = TYPE_PRECISION (t);
4227 if (wi::only_sign_bit_p (val, width))
4228 return exp;
4230 /* Handle extension from a narrower type. */
4231 if (TREE_CODE (exp) == NOP_EXPR
4232 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4233 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4235 return NULL_TREE;
4238 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4239 to be evaluated unconditionally. */
4241 static int
4242 simple_operand_p (const_tree exp)
4244 /* Strip any conversions that don't change the machine mode. */
4245 STRIP_NOPS (exp);
4247 return (CONSTANT_CLASS_P (exp)
4248 || TREE_CODE (exp) == SSA_NAME
4249 || (DECL_P (exp)
4250 && ! TREE_ADDRESSABLE (exp)
4251 && ! TREE_THIS_VOLATILE (exp)
4252 && ! DECL_NONLOCAL (exp)
4253 /* Don't regard global variables as simple. They may be
4254 allocated in ways unknown to the compiler (shared memory,
4255 #pragma weak, etc). */
4256 && ! TREE_PUBLIC (exp)
4257 && ! DECL_EXTERNAL (exp)
4258 /* Weakrefs are not safe to be read, since they can be NULL.
4259 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4260 have DECL_WEAK flag set. */
4261 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4262 /* Loading a static variable is unduly expensive, but global
4263 registers aren't expensive. */
4264 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4267 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4268 to be evaluated unconditionally.
4269 I addition to simple_operand_p, we assume that comparisons, conversions,
4270 and logic-not operations are simple, if their operands are simple, too. */
4272 static bool
4273 simple_operand_p_2 (tree exp)
4275 enum tree_code code;
4277 if (TREE_SIDE_EFFECTS (exp)
4278 || tree_could_trap_p (exp))
4279 return false;
4281 while (CONVERT_EXPR_P (exp))
4282 exp = TREE_OPERAND (exp, 0);
4284 code = TREE_CODE (exp);
4286 if (TREE_CODE_CLASS (code) == tcc_comparison)
4287 return (simple_operand_p (TREE_OPERAND (exp, 0))
4288 && simple_operand_p (TREE_OPERAND (exp, 1)));
4290 if (code == TRUTH_NOT_EXPR)
4291 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4293 return simple_operand_p (exp);
4297 /* The following functions are subroutines to fold_range_test and allow it to
4298 try to change a logical combination of comparisons into a range test.
4300 For example, both
4301 X == 2 || X == 3 || X == 4 || X == 5
4303 X >= 2 && X <= 5
4304 are converted to
4305 (unsigned) (X - 2) <= 3
4307 We describe each set of comparisons as being either inside or outside
4308 a range, using a variable named like IN_P, and then describe the
4309 range with a lower and upper bound. If one of the bounds is omitted,
4310 it represents either the highest or lowest value of the type.
4312 In the comments below, we represent a range by two numbers in brackets
4313 preceded by a "+" to designate being inside that range, or a "-" to
4314 designate being outside that range, so the condition can be inverted by
4315 flipping the prefix. An omitted bound is represented by a "-". For
4316 example, "- [-, 10]" means being outside the range starting at the lowest
4317 possible value and ending at 10, in other words, being greater than 10.
4318 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4319 always false.
4321 We set up things so that the missing bounds are handled in a consistent
4322 manner so neither a missing bound nor "true" and "false" need to be
4323 handled using a special case. */
4325 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4326 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4327 and UPPER1_P are nonzero if the respective argument is an upper bound
4328 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4329 must be specified for a comparison. ARG1 will be converted to ARG0's
4330 type if both are specified. */
4332 static tree
4333 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4334 tree arg1, int upper1_p)
4336 tree tem;
4337 int result;
4338 int sgn0, sgn1;
4340 /* If neither arg represents infinity, do the normal operation.
4341 Else, if not a comparison, return infinity. Else handle the special
4342 comparison rules. Note that most of the cases below won't occur, but
4343 are handled for consistency. */
4345 if (arg0 != 0 && arg1 != 0)
4347 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4348 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4349 STRIP_NOPS (tem);
4350 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4353 if (TREE_CODE_CLASS (code) != tcc_comparison)
4354 return 0;
4356 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4357 for neither. In real maths, we cannot assume open ended ranges are
4358 the same. But, this is computer arithmetic, where numbers are finite.
4359 We can therefore make the transformation of any unbounded range with
4360 the value Z, Z being greater than any representable number. This permits
4361 us to treat unbounded ranges as equal. */
4362 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4363 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4364 switch (code)
4366 case EQ_EXPR:
4367 result = sgn0 == sgn1;
4368 break;
4369 case NE_EXPR:
4370 result = sgn0 != sgn1;
4371 break;
4372 case LT_EXPR:
4373 result = sgn0 < sgn1;
4374 break;
4375 case LE_EXPR:
4376 result = sgn0 <= sgn1;
4377 break;
4378 case GT_EXPR:
4379 result = sgn0 > sgn1;
4380 break;
4381 case GE_EXPR:
4382 result = sgn0 >= sgn1;
4383 break;
4384 default:
4385 gcc_unreachable ();
4388 return constant_boolean_node (result, type);
4391 /* Helper routine for make_range. Perform one step for it, return
4392 new expression if the loop should continue or NULL_TREE if it should
4393 stop. */
4395 tree
4396 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4397 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4398 bool *strict_overflow_p)
4400 tree arg0_type = TREE_TYPE (arg0);
4401 tree n_low, n_high, low = *p_low, high = *p_high;
4402 int in_p = *p_in_p, n_in_p;
4404 switch (code)
4406 case TRUTH_NOT_EXPR:
4407 /* We can only do something if the range is testing for zero. */
4408 if (low == NULL_TREE || high == NULL_TREE
4409 || ! integer_zerop (low) || ! integer_zerop (high))
4410 return NULL_TREE;
4411 *p_in_p = ! in_p;
4412 return arg0;
4414 case EQ_EXPR: case NE_EXPR:
4415 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4416 /* We can only do something if the range is testing for zero
4417 and if the second operand is an integer constant. Note that
4418 saying something is "in" the range we make is done by
4419 complementing IN_P since it will set in the initial case of
4420 being not equal to zero; "out" is leaving it alone. */
4421 if (low == NULL_TREE || high == NULL_TREE
4422 || ! integer_zerop (low) || ! integer_zerop (high)
4423 || TREE_CODE (arg1) != INTEGER_CST)
4424 return NULL_TREE;
4426 switch (code)
4428 case NE_EXPR: /* - [c, c] */
4429 low = high = arg1;
4430 break;
4431 case EQ_EXPR: /* + [c, c] */
4432 in_p = ! in_p, low = high = arg1;
4433 break;
4434 case GT_EXPR: /* - [-, c] */
4435 low = 0, high = arg1;
4436 break;
4437 case GE_EXPR: /* + [c, -] */
4438 in_p = ! in_p, low = arg1, high = 0;
4439 break;
4440 case LT_EXPR: /* - [c, -] */
4441 low = arg1, high = 0;
4442 break;
4443 case LE_EXPR: /* + [-, c] */
4444 in_p = ! in_p, low = 0, high = arg1;
4445 break;
4446 default:
4447 gcc_unreachable ();
4450 /* If this is an unsigned comparison, we also know that EXP is
4451 greater than or equal to zero. We base the range tests we make
4452 on that fact, so we record it here so we can parse existing
4453 range tests. We test arg0_type since often the return type
4454 of, e.g. EQ_EXPR, is boolean. */
4455 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4457 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4458 in_p, low, high, 1,
4459 build_int_cst (arg0_type, 0),
4460 NULL_TREE))
4461 return NULL_TREE;
4463 in_p = n_in_p, low = n_low, high = n_high;
4465 /* If the high bound is missing, but we have a nonzero low
4466 bound, reverse the range so it goes from zero to the low bound
4467 minus 1. */
4468 if (high == 0 && low && ! integer_zerop (low))
4470 in_p = ! in_p;
4471 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4472 build_int_cst (TREE_TYPE (low), 1), 0);
4473 low = build_int_cst (arg0_type, 0);
4477 *p_low = low;
4478 *p_high = high;
4479 *p_in_p = in_p;
4480 return arg0;
4482 case NEGATE_EXPR:
4483 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4484 low and high are non-NULL, then normalize will DTRT. */
4485 if (!TYPE_UNSIGNED (arg0_type)
4486 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4488 if (low == NULL_TREE)
4489 low = TYPE_MIN_VALUE (arg0_type);
4490 if (high == NULL_TREE)
4491 high = TYPE_MAX_VALUE (arg0_type);
4494 /* (-x) IN [a,b] -> x in [-b, -a] */
4495 n_low = range_binop (MINUS_EXPR, exp_type,
4496 build_int_cst (exp_type, 0),
4497 0, high, 1);
4498 n_high = range_binop (MINUS_EXPR, exp_type,
4499 build_int_cst (exp_type, 0),
4500 0, low, 0);
4501 if (n_high != 0 && TREE_OVERFLOW (n_high))
4502 return NULL_TREE;
4503 goto normalize;
4505 case BIT_NOT_EXPR:
4506 /* ~ X -> -X - 1 */
4507 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4508 build_int_cst (exp_type, 1));
4510 case PLUS_EXPR:
4511 case MINUS_EXPR:
4512 if (TREE_CODE (arg1) != INTEGER_CST)
4513 return NULL_TREE;
4515 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4516 move a constant to the other side. */
4517 if (!TYPE_UNSIGNED (arg0_type)
4518 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4519 return NULL_TREE;
4521 /* If EXP is signed, any overflow in the computation is undefined,
4522 so we don't worry about it so long as our computations on
4523 the bounds don't overflow. For unsigned, overflow is defined
4524 and this is exactly the right thing. */
4525 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4526 arg0_type, low, 0, arg1, 0);
4527 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4528 arg0_type, high, 1, arg1, 0);
4529 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4530 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4531 return NULL_TREE;
4533 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4534 *strict_overflow_p = true;
4536 normalize:
4537 /* Check for an unsigned range which has wrapped around the maximum
4538 value thus making n_high < n_low, and normalize it. */
4539 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4541 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4542 build_int_cst (TREE_TYPE (n_high), 1), 0);
4543 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4544 build_int_cst (TREE_TYPE (n_low), 1), 0);
4546 /* If the range is of the form +/- [ x+1, x ], we won't
4547 be able to normalize it. But then, it represents the
4548 whole range or the empty set, so make it
4549 +/- [ -, - ]. */
4550 if (tree_int_cst_equal (n_low, low)
4551 && tree_int_cst_equal (n_high, high))
4552 low = high = 0;
4553 else
4554 in_p = ! in_p;
4556 else
4557 low = n_low, high = n_high;
4559 *p_low = low;
4560 *p_high = high;
4561 *p_in_p = in_p;
4562 return arg0;
4564 CASE_CONVERT:
4565 case NON_LVALUE_EXPR:
4566 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4567 return NULL_TREE;
4569 if (! INTEGRAL_TYPE_P (arg0_type)
4570 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4571 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4572 return NULL_TREE;
4574 n_low = low, n_high = high;
4576 if (n_low != 0)
4577 n_low = fold_convert_loc (loc, arg0_type, n_low);
4579 if (n_high != 0)
4580 n_high = fold_convert_loc (loc, arg0_type, n_high);
4582 /* If we're converting arg0 from an unsigned type, to exp,
4583 a signed type, we will be doing the comparison as unsigned.
4584 The tests above have already verified that LOW and HIGH
4585 are both positive.
4587 So we have to ensure that we will handle large unsigned
4588 values the same way that the current signed bounds treat
4589 negative values. */
4591 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4593 tree high_positive;
4594 tree equiv_type;
4595 /* For fixed-point modes, we need to pass the saturating flag
4596 as the 2nd parameter. */
4597 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4598 equiv_type
4599 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4600 TYPE_SATURATING (arg0_type));
4601 else
4602 equiv_type
4603 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4605 /* A range without an upper bound is, naturally, unbounded.
4606 Since convert would have cropped a very large value, use
4607 the max value for the destination type. */
4608 high_positive
4609 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4610 : TYPE_MAX_VALUE (arg0_type);
4612 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4613 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4614 fold_convert_loc (loc, arg0_type,
4615 high_positive),
4616 build_int_cst (arg0_type, 1));
4618 /* If the low bound is specified, "and" the range with the
4619 range for which the original unsigned value will be
4620 positive. */
4621 if (low != 0)
4623 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4624 1, fold_convert_loc (loc, arg0_type,
4625 integer_zero_node),
4626 high_positive))
4627 return NULL_TREE;
4629 in_p = (n_in_p == in_p);
4631 else
4633 /* Otherwise, "or" the range with the range of the input
4634 that will be interpreted as negative. */
4635 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4636 1, fold_convert_loc (loc, arg0_type,
4637 integer_zero_node),
4638 high_positive))
4639 return NULL_TREE;
4641 in_p = (in_p != n_in_p);
4645 *p_low = n_low;
4646 *p_high = n_high;
4647 *p_in_p = in_p;
4648 return arg0;
4650 default:
4651 return NULL_TREE;
4655 /* Given EXP, a logical expression, set the range it is testing into
4656 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4657 actually being tested. *PLOW and *PHIGH will be made of the same
4658 type as the returned expression. If EXP is not a comparison, we
4659 will most likely not be returning a useful value and range. Set
4660 *STRICT_OVERFLOW_P to true if the return value is only valid
4661 because signed overflow is undefined; otherwise, do not change
4662 *STRICT_OVERFLOW_P. */
4664 tree
4665 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4666 bool *strict_overflow_p)
4668 enum tree_code code;
4669 tree arg0, arg1 = NULL_TREE;
4670 tree exp_type, nexp;
4671 int in_p;
4672 tree low, high;
4673 location_t loc = EXPR_LOCATION (exp);
4675 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4676 and see if we can refine the range. Some of the cases below may not
4677 happen, but it doesn't seem worth worrying about this. We "continue"
4678 the outer loop when we've changed something; otherwise we "break"
4679 the switch, which will "break" the while. */
4681 in_p = 0;
4682 low = high = build_int_cst (TREE_TYPE (exp), 0);
4684 while (1)
4686 code = TREE_CODE (exp);
4687 exp_type = TREE_TYPE (exp);
4688 arg0 = NULL_TREE;
4690 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4692 if (TREE_OPERAND_LENGTH (exp) > 0)
4693 arg0 = TREE_OPERAND (exp, 0);
4694 if (TREE_CODE_CLASS (code) == tcc_binary
4695 || TREE_CODE_CLASS (code) == tcc_comparison
4696 || (TREE_CODE_CLASS (code) == tcc_expression
4697 && TREE_OPERAND_LENGTH (exp) > 1))
4698 arg1 = TREE_OPERAND (exp, 1);
4700 if (arg0 == NULL_TREE)
4701 break;
4703 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4704 &high, &in_p, strict_overflow_p);
4705 if (nexp == NULL_TREE)
4706 break;
4707 exp = nexp;
4710 /* If EXP is a constant, we can evaluate whether this is true or false. */
4711 if (TREE_CODE (exp) == INTEGER_CST)
4713 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4714 exp, 0, low, 0))
4715 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4716 exp, 1, high, 1)));
4717 low = high = 0;
4718 exp = 0;
4721 *pin_p = in_p, *plow = low, *phigh = high;
4722 return exp;
4725 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4726 a bitwise check i.e. when
4727 LOW == 0xXX...X00...0
4728 HIGH == 0xXX...X11...1
4729 Return corresponding mask in MASK and stem in VALUE. */
4731 static bool
4732 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
4733 tree *value)
4735 if (TREE_CODE (low) != INTEGER_CST
4736 || TREE_CODE (high) != INTEGER_CST)
4737 return false;
4739 unsigned prec = TYPE_PRECISION (type);
4740 wide_int lo = wi::to_wide (low, prec);
4741 wide_int hi = wi::to_wide (high, prec);
4743 wide_int end_mask = lo ^ hi;
4744 if ((end_mask & (end_mask + 1)) != 0
4745 || (lo & end_mask) != 0)
4746 return false;
4748 wide_int stem_mask = ~end_mask;
4749 wide_int stem = lo & stem_mask;
4750 if (stem != (hi & stem_mask))
4751 return false;
4753 *mask = wide_int_to_tree (type, stem_mask);
4754 *value = wide_int_to_tree (type, stem);
4756 return true;
4759 /* Helper routine for build_range_check and match.pd. Return the type to
4760 perform the check or NULL if it shouldn't be optimized. */
4762 tree
4763 range_check_type (tree etype)
4765 /* First make sure that arithmetics in this type is valid, then make sure
4766 that it wraps around. */
4767 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4768 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4769 TYPE_UNSIGNED (etype));
4771 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4773 tree utype, minv, maxv;
4775 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4776 for the type in question, as we rely on this here. */
4777 utype = unsigned_type_for (etype);
4778 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4779 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4780 build_int_cst (TREE_TYPE (maxv), 1), 1);
4781 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4783 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4784 minv, 1, maxv, 1)))
4785 etype = utype;
4786 else
4787 return NULL_TREE;
4789 return etype;
4792 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4793 type, TYPE, return an expression to test if EXP is in (or out of, depending
4794 on IN_P) the range. Return 0 if the test couldn't be created. */
4796 tree
4797 build_range_check (location_t loc, tree type, tree exp, int in_p,
4798 tree low, tree high)
4800 tree etype = TREE_TYPE (exp), mask, value;
4802 /* Disable this optimization for function pointer expressions
4803 on targets that require function pointer canonicalization. */
4804 if (targetm.have_canonicalize_funcptr_for_compare ()
4805 && TREE_CODE (etype) == POINTER_TYPE
4806 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4807 return NULL_TREE;
4809 if (! in_p)
4811 value = build_range_check (loc, type, exp, 1, low, high);
4812 if (value != 0)
4813 return invert_truthvalue_loc (loc, value);
4815 return 0;
4818 if (low == 0 && high == 0)
4819 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4821 if (low == 0)
4822 return fold_build2_loc (loc, LE_EXPR, type, exp,
4823 fold_convert_loc (loc, etype, high));
4825 if (high == 0)
4826 return fold_build2_loc (loc, GE_EXPR, type, exp,
4827 fold_convert_loc (loc, etype, low));
4829 if (operand_equal_p (low, high, 0))
4830 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4831 fold_convert_loc (loc, etype, low));
4833 if (TREE_CODE (exp) == BIT_AND_EXPR
4834 && maskable_range_p (low, high, etype, &mask, &value))
4835 return fold_build2_loc (loc, EQ_EXPR, type,
4836 fold_build2_loc (loc, BIT_AND_EXPR, etype,
4837 exp, mask),
4838 value);
4840 if (integer_zerop (low))
4842 if (! TYPE_UNSIGNED (etype))
4844 etype = unsigned_type_for (etype);
4845 high = fold_convert_loc (loc, etype, high);
4846 exp = fold_convert_loc (loc, etype, exp);
4848 return build_range_check (loc, type, exp, 1, 0, high);
4851 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4852 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4854 int prec = TYPE_PRECISION (etype);
4856 if (wi::mask (prec - 1, false, prec) == high)
4858 if (TYPE_UNSIGNED (etype))
4860 tree signed_etype = signed_type_for (etype);
4861 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4862 etype
4863 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4864 else
4865 etype = signed_etype;
4866 exp = fold_convert_loc (loc, etype, exp);
4868 return fold_build2_loc (loc, GT_EXPR, type, exp,
4869 build_int_cst (etype, 0));
4873 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4874 This requires wrap-around arithmetics for the type of the expression. */
4875 etype = range_check_type (etype);
4876 if (etype == NULL_TREE)
4877 return NULL_TREE;
4879 if (POINTER_TYPE_P (etype))
4880 etype = unsigned_type_for (etype);
4882 high = fold_convert_loc (loc, etype, high);
4883 low = fold_convert_loc (loc, etype, low);
4884 exp = fold_convert_loc (loc, etype, exp);
4886 value = const_binop (MINUS_EXPR, high, low);
4888 if (value != 0 && !TREE_OVERFLOW (value))
4889 return build_range_check (loc, type,
4890 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4891 1, build_int_cst (etype, 0), value);
4893 return 0;
4896 /* Return the predecessor of VAL in its type, handling the infinite case. */
4898 static tree
4899 range_predecessor (tree val)
4901 tree type = TREE_TYPE (val);
4903 if (INTEGRAL_TYPE_P (type)
4904 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4905 return 0;
4906 else
4907 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4908 build_int_cst (TREE_TYPE (val), 1), 0);
4911 /* Return the successor of VAL in its type, handling the infinite case. */
4913 static tree
4914 range_successor (tree val)
4916 tree type = TREE_TYPE (val);
4918 if (INTEGRAL_TYPE_P (type)
4919 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4920 return 0;
4921 else
4922 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4923 build_int_cst (TREE_TYPE (val), 1), 0);
4926 /* Given two ranges, see if we can merge them into one. Return 1 if we
4927 can, 0 if we can't. Set the output range into the specified parameters. */
4929 bool
4930 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4931 tree high0, int in1_p, tree low1, tree high1)
4933 int no_overlap;
4934 int subset;
4935 int temp;
4936 tree tem;
4937 int in_p;
4938 tree low, high;
4939 int lowequal = ((low0 == 0 && low1 == 0)
4940 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4941 low0, 0, low1, 0)));
4942 int highequal = ((high0 == 0 && high1 == 0)
4943 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4944 high0, 1, high1, 1)));
4946 /* Make range 0 be the range that starts first, or ends last if they
4947 start at the same value. Swap them if it isn't. */
4948 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4949 low0, 0, low1, 0))
4950 || (lowequal
4951 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4952 high1, 1, high0, 1))))
4954 temp = in0_p, in0_p = in1_p, in1_p = temp;
4955 tem = low0, low0 = low1, low1 = tem;
4956 tem = high0, high0 = high1, high1 = tem;
4959 /* Now flag two cases, whether the ranges are disjoint or whether the
4960 second range is totally subsumed in the first. Note that the tests
4961 below are simplified by the ones above. */
4962 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4963 high0, 1, low1, 0));
4964 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4965 high1, 1, high0, 1));
4967 /* We now have four cases, depending on whether we are including or
4968 excluding the two ranges. */
4969 if (in0_p && in1_p)
4971 /* If they don't overlap, the result is false. If the second range
4972 is a subset it is the result. Otherwise, the range is from the start
4973 of the second to the end of the first. */
4974 if (no_overlap)
4975 in_p = 0, low = high = 0;
4976 else if (subset)
4977 in_p = 1, low = low1, high = high1;
4978 else
4979 in_p = 1, low = low1, high = high0;
4982 else if (in0_p && ! in1_p)
4984 /* If they don't overlap, the result is the first range. If they are
4985 equal, the result is false. If the second range is a subset of the
4986 first, and the ranges begin at the same place, we go from just after
4987 the end of the second range to the end of the first. If the second
4988 range is not a subset of the first, or if it is a subset and both
4989 ranges end at the same place, the range starts at the start of the
4990 first range and ends just before the second range.
4991 Otherwise, we can't describe this as a single range. */
4992 if (no_overlap)
4993 in_p = 1, low = low0, high = high0;
4994 else if (lowequal && highequal)
4995 in_p = 0, low = high = 0;
4996 else if (subset && lowequal)
4998 low = range_successor (high1);
4999 high = high0;
5000 in_p = 1;
5001 if (low == 0)
5003 /* We are in the weird situation where high0 > high1 but
5004 high1 has no successor. Punt. */
5005 return 0;
5008 else if (! subset || highequal)
5010 low = low0;
5011 high = range_predecessor (low1);
5012 in_p = 1;
5013 if (high == 0)
5015 /* low0 < low1 but low1 has no predecessor. Punt. */
5016 return 0;
5019 else
5020 return 0;
5023 else if (! in0_p && in1_p)
5025 /* If they don't overlap, the result is the second range. If the second
5026 is a subset of the first, the result is false. Otherwise,
5027 the range starts just after the first range and ends at the
5028 end of the second. */
5029 if (no_overlap)
5030 in_p = 1, low = low1, high = high1;
5031 else if (subset || highequal)
5032 in_p = 0, low = high = 0;
5033 else
5035 low = range_successor (high0);
5036 high = high1;
5037 in_p = 1;
5038 if (low == 0)
5040 /* high1 > high0 but high0 has no successor. Punt. */
5041 return 0;
5046 else
5048 /* The case where we are excluding both ranges. Here the complex case
5049 is if they don't overlap. In that case, the only time we have a
5050 range is if they are adjacent. If the second is a subset of the
5051 first, the result is the first. Otherwise, the range to exclude
5052 starts at the beginning of the first range and ends at the end of the
5053 second. */
5054 if (no_overlap)
5056 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5057 range_successor (high0),
5058 1, low1, 0)))
5059 in_p = 0, low = low0, high = high1;
5060 else
5062 /* Canonicalize - [min, x] into - [-, x]. */
5063 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5064 switch (TREE_CODE (TREE_TYPE (low0)))
5066 case ENUMERAL_TYPE:
5067 if (TYPE_PRECISION (TREE_TYPE (low0))
5068 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
5069 break;
5070 /* FALLTHROUGH */
5071 case INTEGER_TYPE:
5072 if (tree_int_cst_equal (low0,
5073 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5074 low0 = 0;
5075 break;
5076 case POINTER_TYPE:
5077 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5078 && integer_zerop (low0))
5079 low0 = 0;
5080 break;
5081 default:
5082 break;
5085 /* Canonicalize - [x, max] into - [x, -]. */
5086 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5087 switch (TREE_CODE (TREE_TYPE (high1)))
5089 case ENUMERAL_TYPE:
5090 if (TYPE_PRECISION (TREE_TYPE (high1))
5091 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
5092 break;
5093 /* FALLTHROUGH */
5094 case INTEGER_TYPE:
5095 if (tree_int_cst_equal (high1,
5096 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5097 high1 = 0;
5098 break;
5099 case POINTER_TYPE:
5100 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5101 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5102 high1, 1,
5103 build_int_cst (TREE_TYPE (high1), 1),
5104 1)))
5105 high1 = 0;
5106 break;
5107 default:
5108 break;
5111 /* The ranges might be also adjacent between the maximum and
5112 minimum values of the given type. For
5113 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5114 return + [x + 1, y - 1]. */
5115 if (low0 == 0 && high1 == 0)
5117 low = range_successor (high0);
5118 high = range_predecessor (low1);
5119 if (low == 0 || high == 0)
5120 return 0;
5122 in_p = 1;
5124 else
5125 return 0;
5128 else if (subset)
5129 in_p = 0, low = low0, high = high0;
5130 else
5131 in_p = 0, low = low0, high = high1;
5134 *pin_p = in_p, *plow = low, *phigh = high;
5135 return 1;
5139 /* Subroutine of fold, looking inside expressions of the form
5140 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5141 of the COND_EXPR. This function is being used also to optimize
5142 A op B ? C : A, by reversing the comparison first.
5144 Return a folded expression whose code is not a COND_EXPR
5145 anymore, or NULL_TREE if no folding opportunity is found. */
5147 static tree
5148 fold_cond_expr_with_comparison (location_t loc, tree type,
5149 tree arg0, tree arg1, tree arg2)
5151 enum tree_code comp_code = TREE_CODE (arg0);
5152 tree arg00 = TREE_OPERAND (arg0, 0);
5153 tree arg01 = TREE_OPERAND (arg0, 1);
5154 tree arg1_type = TREE_TYPE (arg1);
5155 tree tem;
5157 STRIP_NOPS (arg1);
5158 STRIP_NOPS (arg2);
5160 /* If we have A op 0 ? A : -A, consider applying the following
5161 transformations:
5163 A == 0? A : -A same as -A
5164 A != 0? A : -A same as A
5165 A >= 0? A : -A same as abs (A)
5166 A > 0? A : -A same as abs (A)
5167 A <= 0? A : -A same as -abs (A)
5168 A < 0? A : -A same as -abs (A)
5170 None of these transformations work for modes with signed
5171 zeros. If A is +/-0, the first two transformations will
5172 change the sign of the result (from +0 to -0, or vice
5173 versa). The last four will fix the sign of the result,
5174 even though the original expressions could be positive or
5175 negative, depending on the sign of A.
5177 Note that all these transformations are correct if A is
5178 NaN, since the two alternatives (A and -A) are also NaNs. */
5179 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5180 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5181 ? real_zerop (arg01)
5182 : integer_zerop (arg01))
5183 && ((TREE_CODE (arg2) == NEGATE_EXPR
5184 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5185 /* In the case that A is of the form X-Y, '-A' (arg2) may
5186 have already been folded to Y-X, check for that. */
5187 || (TREE_CODE (arg1) == MINUS_EXPR
5188 && TREE_CODE (arg2) == MINUS_EXPR
5189 && operand_equal_p (TREE_OPERAND (arg1, 0),
5190 TREE_OPERAND (arg2, 1), 0)
5191 && operand_equal_p (TREE_OPERAND (arg1, 1),
5192 TREE_OPERAND (arg2, 0), 0))))
5193 switch (comp_code)
5195 case EQ_EXPR:
5196 case UNEQ_EXPR:
5197 tem = fold_convert_loc (loc, arg1_type, arg1);
5198 return fold_convert_loc (loc, type, negate_expr (tem));
5199 case NE_EXPR:
5200 case LTGT_EXPR:
5201 return fold_convert_loc (loc, type, arg1);
5202 case UNGE_EXPR:
5203 case UNGT_EXPR:
5204 if (flag_trapping_math)
5205 break;
5206 /* Fall through. */
5207 case GE_EXPR:
5208 case GT_EXPR:
5209 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5210 break;
5211 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5212 return fold_convert_loc (loc, type, tem);
5213 case UNLE_EXPR:
5214 case UNLT_EXPR:
5215 if (flag_trapping_math)
5216 break;
5217 /* FALLTHRU */
5218 case LE_EXPR:
5219 case LT_EXPR:
5220 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5221 break;
5222 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5223 return negate_expr (fold_convert_loc (loc, type, tem));
5224 default:
5225 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5226 break;
5229 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5230 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5231 both transformations are correct when A is NaN: A != 0
5232 is then true, and A == 0 is false. */
5234 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5235 && integer_zerop (arg01) && integer_zerop (arg2))
5237 if (comp_code == NE_EXPR)
5238 return fold_convert_loc (loc, type, arg1);
5239 else if (comp_code == EQ_EXPR)
5240 return build_zero_cst (type);
5243 /* Try some transformations of A op B ? A : B.
5245 A == B? A : B same as B
5246 A != B? A : B same as A
5247 A >= B? A : B same as max (A, B)
5248 A > B? A : B same as max (B, A)
5249 A <= B? A : B same as min (A, B)
5250 A < B? A : B same as min (B, A)
5252 As above, these transformations don't work in the presence
5253 of signed zeros. For example, if A and B are zeros of
5254 opposite sign, the first two transformations will change
5255 the sign of the result. In the last four, the original
5256 expressions give different results for (A=+0, B=-0) and
5257 (A=-0, B=+0), but the transformed expressions do not.
5259 The first two transformations are correct if either A or B
5260 is a NaN. In the first transformation, the condition will
5261 be false, and B will indeed be chosen. In the case of the
5262 second transformation, the condition A != B will be true,
5263 and A will be chosen.
5265 The conversions to max() and min() are not correct if B is
5266 a number and A is not. The conditions in the original
5267 expressions will be false, so all four give B. The min()
5268 and max() versions would give a NaN instead. */
5269 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5270 && operand_equal_for_comparison_p (arg01, arg2)
5271 /* Avoid these transformations if the COND_EXPR may be used
5272 as an lvalue in the C++ front-end. PR c++/19199. */
5273 && (in_gimple_form
5274 || VECTOR_TYPE_P (type)
5275 || (! lang_GNU_CXX ()
5276 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5277 || ! maybe_lvalue_p (arg1)
5278 || ! maybe_lvalue_p (arg2)))
5280 tree comp_op0 = arg00;
5281 tree comp_op1 = arg01;
5282 tree comp_type = TREE_TYPE (comp_op0);
5284 switch (comp_code)
5286 case EQ_EXPR:
5287 return fold_convert_loc (loc, type, arg2);
5288 case NE_EXPR:
5289 return fold_convert_loc (loc, type, arg1);
5290 case LE_EXPR:
5291 case LT_EXPR:
5292 case UNLE_EXPR:
5293 case UNLT_EXPR:
5294 /* In C++ a ?: expression can be an lvalue, so put the
5295 operand which will be used if they are equal first
5296 so that we can convert this back to the
5297 corresponding COND_EXPR. */
5298 if (!HONOR_NANS (arg1))
5300 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5301 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5302 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5303 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5304 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5305 comp_op1, comp_op0);
5306 return fold_convert_loc (loc, type, tem);
5308 break;
5309 case GE_EXPR:
5310 case GT_EXPR:
5311 case UNGE_EXPR:
5312 case UNGT_EXPR:
5313 if (!HONOR_NANS (arg1))
5315 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5316 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5317 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5318 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5319 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5320 comp_op1, comp_op0);
5321 return fold_convert_loc (loc, type, tem);
5323 break;
5324 case UNEQ_EXPR:
5325 if (!HONOR_NANS (arg1))
5326 return fold_convert_loc (loc, type, arg2);
5327 break;
5328 case LTGT_EXPR:
5329 if (!HONOR_NANS (arg1))
5330 return fold_convert_loc (loc, type, arg1);
5331 break;
5332 default:
5333 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5334 break;
5338 return NULL_TREE;
5343 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5344 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5345 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5346 false) >= 2)
5347 #endif
5349 /* EXP is some logical combination of boolean tests. See if we can
5350 merge it into some range test. Return the new tree if so. */
5352 static tree
5353 fold_range_test (location_t loc, enum tree_code code, tree type,
5354 tree op0, tree op1)
5356 int or_op = (code == TRUTH_ORIF_EXPR
5357 || code == TRUTH_OR_EXPR);
5358 int in0_p, in1_p, in_p;
5359 tree low0, low1, low, high0, high1, high;
5360 bool strict_overflow_p = false;
5361 tree tem, lhs, rhs;
5362 const char * const warnmsg = G_("assuming signed overflow does not occur "
5363 "when simplifying range test");
5365 if (!INTEGRAL_TYPE_P (type))
5366 return 0;
5368 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5369 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5371 /* If this is an OR operation, invert both sides; we will invert
5372 again at the end. */
5373 if (or_op)
5374 in0_p = ! in0_p, in1_p = ! in1_p;
5376 /* If both expressions are the same, if we can merge the ranges, and we
5377 can build the range test, return it or it inverted. If one of the
5378 ranges is always true or always false, consider it to be the same
5379 expression as the other. */
5380 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5381 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5382 in1_p, low1, high1)
5383 && 0 != (tem = (build_range_check (loc, type,
5384 lhs != 0 ? lhs
5385 : rhs != 0 ? rhs : integer_zero_node,
5386 in_p, low, high))))
5388 if (strict_overflow_p)
5389 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5390 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5393 /* On machines where the branch cost is expensive, if this is a
5394 short-circuited branch and the underlying object on both sides
5395 is the same, make a non-short-circuit operation. */
5396 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5397 && lhs != 0 && rhs != 0
5398 && (code == TRUTH_ANDIF_EXPR
5399 || code == TRUTH_ORIF_EXPR)
5400 && operand_equal_p (lhs, rhs, 0))
5402 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5403 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5404 which cases we can't do this. */
5405 if (simple_operand_p (lhs))
5406 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5407 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5408 type, op0, op1);
5410 else if (!lang_hooks.decls.global_bindings_p ()
5411 && !CONTAINS_PLACEHOLDER_P (lhs))
5413 tree common = save_expr (lhs);
5415 if (0 != (lhs = build_range_check (loc, type, common,
5416 or_op ? ! in0_p : in0_p,
5417 low0, high0))
5418 && (0 != (rhs = build_range_check (loc, type, common,
5419 or_op ? ! in1_p : in1_p,
5420 low1, high1))))
5422 if (strict_overflow_p)
5423 fold_overflow_warning (warnmsg,
5424 WARN_STRICT_OVERFLOW_COMPARISON);
5425 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5426 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5427 type, lhs, rhs);
5432 return 0;
5435 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5436 bit value. Arrange things so the extra bits will be set to zero if and
5437 only if C is signed-extended to its full width. If MASK is nonzero,
5438 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5440 static tree
5441 unextend (tree c, int p, int unsignedp, tree mask)
5443 tree type = TREE_TYPE (c);
5444 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
5445 tree temp;
5447 if (p == modesize || unsignedp)
5448 return c;
5450 /* We work by getting just the sign bit into the low-order bit, then
5451 into the high-order bit, then sign-extend. We then XOR that value
5452 with C. */
5453 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5455 /* We must use a signed type in order to get an arithmetic right shift.
5456 However, we must also avoid introducing accidental overflows, so that
5457 a subsequent call to integer_zerop will work. Hence we must
5458 do the type conversion here. At this point, the constant is either
5459 zero or one, and the conversion to a signed type can never overflow.
5460 We could get an overflow if this conversion is done anywhere else. */
5461 if (TYPE_UNSIGNED (type))
5462 temp = fold_convert (signed_type_for (type), temp);
5464 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5465 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5466 if (mask != 0)
5467 temp = const_binop (BIT_AND_EXPR, temp,
5468 fold_convert (TREE_TYPE (c), mask));
5469 /* If necessary, convert the type back to match the type of C. */
5470 if (TYPE_UNSIGNED (type))
5471 temp = fold_convert (type, temp);
5473 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5476 /* For an expression that has the form
5477 (A && B) || ~B
5479 (A || B) && ~B,
5480 we can drop one of the inner expressions and simplify to
5481 A || ~B
5483 A && ~B
5484 LOC is the location of the resulting expression. OP is the inner
5485 logical operation; the left-hand side in the examples above, while CMPOP
5486 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5487 removing a condition that guards another, as in
5488 (A != NULL && A->...) || A == NULL
5489 which we must not transform. If RHS_ONLY is true, only eliminate the
5490 right-most operand of the inner logical operation. */
5492 static tree
5493 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5494 bool rhs_only)
5496 tree type = TREE_TYPE (cmpop);
5497 enum tree_code code = TREE_CODE (cmpop);
5498 enum tree_code truthop_code = TREE_CODE (op);
5499 tree lhs = TREE_OPERAND (op, 0);
5500 tree rhs = TREE_OPERAND (op, 1);
5501 tree orig_lhs = lhs, orig_rhs = rhs;
5502 enum tree_code rhs_code = TREE_CODE (rhs);
5503 enum tree_code lhs_code = TREE_CODE (lhs);
5504 enum tree_code inv_code;
5506 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5507 return NULL_TREE;
5509 if (TREE_CODE_CLASS (code) != tcc_comparison)
5510 return NULL_TREE;
5512 if (rhs_code == truthop_code)
5514 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5515 if (newrhs != NULL_TREE)
5517 rhs = newrhs;
5518 rhs_code = TREE_CODE (rhs);
5521 if (lhs_code == truthop_code && !rhs_only)
5523 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5524 if (newlhs != NULL_TREE)
5526 lhs = newlhs;
5527 lhs_code = TREE_CODE (lhs);
5531 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5532 if (inv_code == rhs_code
5533 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5534 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5535 return lhs;
5536 if (!rhs_only && inv_code == lhs_code
5537 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5538 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5539 return rhs;
5540 if (rhs != orig_rhs || lhs != orig_lhs)
5541 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5542 lhs, rhs);
5543 return NULL_TREE;
5546 /* Find ways of folding logical expressions of LHS and RHS:
5547 Try to merge two comparisons to the same innermost item.
5548 Look for range tests like "ch >= '0' && ch <= '9'".
5549 Look for combinations of simple terms on machines with expensive branches
5550 and evaluate the RHS unconditionally.
5552 For example, if we have p->a == 2 && p->b == 4 and we can make an
5553 object large enough to span both A and B, we can do this with a comparison
5554 against the object ANDed with the a mask.
5556 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5557 operations to do this with one comparison.
5559 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5560 function and the one above.
5562 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5563 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5565 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5566 two operands.
5568 We return the simplified tree or 0 if no optimization is possible. */
5570 static tree
5571 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5572 tree lhs, tree rhs)
5574 /* If this is the "or" of two comparisons, we can do something if
5575 the comparisons are NE_EXPR. If this is the "and", we can do something
5576 if the comparisons are EQ_EXPR. I.e.,
5577 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5579 WANTED_CODE is this operation code. For single bit fields, we can
5580 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5581 comparison for one-bit fields. */
5583 enum tree_code wanted_code;
5584 enum tree_code lcode, rcode;
5585 tree ll_arg, lr_arg, rl_arg, rr_arg;
5586 tree ll_inner, lr_inner, rl_inner, rr_inner;
5587 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5588 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5589 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5590 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5591 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5592 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5593 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5594 machine_mode lnmode, rnmode;
5595 tree ll_mask, lr_mask, rl_mask, rr_mask;
5596 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5597 tree l_const, r_const;
5598 tree lntype, rntype, result;
5599 HOST_WIDE_INT first_bit, end_bit;
5600 int volatilep;
5602 /* Start by getting the comparison codes. Fail if anything is volatile.
5603 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5604 it were surrounded with a NE_EXPR. */
5606 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5607 return 0;
5609 lcode = TREE_CODE (lhs);
5610 rcode = TREE_CODE (rhs);
5612 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5614 lhs = build2 (NE_EXPR, truth_type, lhs,
5615 build_int_cst (TREE_TYPE (lhs), 0));
5616 lcode = NE_EXPR;
5619 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5621 rhs = build2 (NE_EXPR, truth_type, rhs,
5622 build_int_cst (TREE_TYPE (rhs), 0));
5623 rcode = NE_EXPR;
5626 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5627 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5628 return 0;
5630 ll_arg = TREE_OPERAND (lhs, 0);
5631 lr_arg = TREE_OPERAND (lhs, 1);
5632 rl_arg = TREE_OPERAND (rhs, 0);
5633 rr_arg = TREE_OPERAND (rhs, 1);
5635 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5636 if (simple_operand_p (ll_arg)
5637 && simple_operand_p (lr_arg))
5639 if (operand_equal_p (ll_arg, rl_arg, 0)
5640 && operand_equal_p (lr_arg, rr_arg, 0))
5642 result = combine_comparisons (loc, code, lcode, rcode,
5643 truth_type, ll_arg, lr_arg);
5644 if (result)
5645 return result;
5647 else if (operand_equal_p (ll_arg, rr_arg, 0)
5648 && operand_equal_p (lr_arg, rl_arg, 0))
5650 result = combine_comparisons (loc, code, lcode,
5651 swap_tree_comparison (rcode),
5652 truth_type, ll_arg, lr_arg);
5653 if (result)
5654 return result;
5658 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5659 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5661 /* If the RHS can be evaluated unconditionally and its operands are
5662 simple, it wins to evaluate the RHS unconditionally on machines
5663 with expensive branches. In this case, this isn't a comparison
5664 that can be merged. */
5666 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5667 false) >= 2
5668 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5669 && simple_operand_p (rl_arg)
5670 && simple_operand_p (rr_arg))
5672 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5673 if (code == TRUTH_OR_EXPR
5674 && lcode == NE_EXPR && integer_zerop (lr_arg)
5675 && rcode == NE_EXPR && integer_zerop (rr_arg)
5676 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5677 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5678 return build2_loc (loc, NE_EXPR, truth_type,
5679 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5680 ll_arg, rl_arg),
5681 build_int_cst (TREE_TYPE (ll_arg), 0));
5683 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5684 if (code == TRUTH_AND_EXPR
5685 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5686 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5687 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5688 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5689 return build2_loc (loc, EQ_EXPR, truth_type,
5690 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5691 ll_arg, rl_arg),
5692 build_int_cst (TREE_TYPE (ll_arg), 0));
5695 /* See if the comparisons can be merged. Then get all the parameters for
5696 each side. */
5698 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5699 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5700 return 0;
5702 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5703 volatilep = 0;
5704 ll_inner = decode_field_reference (loc, &ll_arg,
5705 &ll_bitsize, &ll_bitpos, &ll_mode,
5706 &ll_unsignedp, &ll_reversep, &volatilep,
5707 &ll_mask, &ll_and_mask);
5708 lr_inner = decode_field_reference (loc, &lr_arg,
5709 &lr_bitsize, &lr_bitpos, &lr_mode,
5710 &lr_unsignedp, &lr_reversep, &volatilep,
5711 &lr_mask, &lr_and_mask);
5712 rl_inner = decode_field_reference (loc, &rl_arg,
5713 &rl_bitsize, &rl_bitpos, &rl_mode,
5714 &rl_unsignedp, &rl_reversep, &volatilep,
5715 &rl_mask, &rl_and_mask);
5716 rr_inner = decode_field_reference (loc, &rr_arg,
5717 &rr_bitsize, &rr_bitpos, &rr_mode,
5718 &rr_unsignedp, &rr_reversep, &volatilep,
5719 &rr_mask, &rr_and_mask);
5721 /* It must be true that the inner operation on the lhs of each
5722 comparison must be the same if we are to be able to do anything.
5723 Then see if we have constants. If not, the same must be true for
5724 the rhs's. */
5725 if (volatilep
5726 || ll_reversep != rl_reversep
5727 || ll_inner == 0 || rl_inner == 0
5728 || ! operand_equal_p (ll_inner, rl_inner, 0))
5729 return 0;
5731 if (TREE_CODE (lr_arg) == INTEGER_CST
5732 && TREE_CODE (rr_arg) == INTEGER_CST)
5734 l_const = lr_arg, r_const = rr_arg;
5735 lr_reversep = ll_reversep;
5737 else if (lr_reversep != rr_reversep
5738 || lr_inner == 0 || rr_inner == 0
5739 || ! operand_equal_p (lr_inner, rr_inner, 0))
5740 return 0;
5741 else
5742 l_const = r_const = 0;
5744 /* If either comparison code is not correct for our logical operation,
5745 fail. However, we can convert a one-bit comparison against zero into
5746 the opposite comparison against that bit being set in the field. */
5748 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5749 if (lcode != wanted_code)
5751 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5753 /* Make the left operand unsigned, since we are only interested
5754 in the value of one bit. Otherwise we are doing the wrong
5755 thing below. */
5756 ll_unsignedp = 1;
5757 l_const = ll_mask;
5759 else
5760 return 0;
5763 /* This is analogous to the code for l_const above. */
5764 if (rcode != wanted_code)
5766 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5768 rl_unsignedp = 1;
5769 r_const = rl_mask;
5771 else
5772 return 0;
5775 /* See if we can find a mode that contains both fields being compared on
5776 the left. If we can't, fail. Otherwise, update all constants and masks
5777 to be relative to a field of that size. */
5778 first_bit = MIN (ll_bitpos, rl_bitpos);
5779 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5780 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5781 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5782 volatilep);
5783 if (lnmode == VOIDmode)
5784 return 0;
5786 lnbitsize = GET_MODE_BITSIZE (lnmode);
5787 lnbitpos = first_bit & ~ (lnbitsize - 1);
5788 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5789 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5791 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5793 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5794 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5797 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5798 size_int (xll_bitpos));
5799 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5800 size_int (xrl_bitpos));
5802 if (l_const)
5804 l_const = fold_convert_loc (loc, lntype, l_const);
5805 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5806 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5807 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5808 fold_build1_loc (loc, BIT_NOT_EXPR,
5809 lntype, ll_mask))))
5811 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5813 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5816 if (r_const)
5818 r_const = fold_convert_loc (loc, lntype, r_const);
5819 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5820 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5821 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5822 fold_build1_loc (loc, BIT_NOT_EXPR,
5823 lntype, rl_mask))))
5825 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5827 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5831 /* If the right sides are not constant, do the same for it. Also,
5832 disallow this optimization if a size or signedness mismatch occurs
5833 between the left and right sides. */
5834 if (l_const == 0)
5836 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5837 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5838 /* Make sure the two fields on the right
5839 correspond to the left without being swapped. */
5840 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5841 return 0;
5843 first_bit = MIN (lr_bitpos, rr_bitpos);
5844 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5845 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5846 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5847 volatilep);
5848 if (rnmode == VOIDmode)
5849 return 0;
5851 rnbitsize = GET_MODE_BITSIZE (rnmode);
5852 rnbitpos = first_bit & ~ (rnbitsize - 1);
5853 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5854 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5856 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5858 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5859 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5862 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5863 rntype, lr_mask),
5864 size_int (xlr_bitpos));
5865 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5866 rntype, rr_mask),
5867 size_int (xrr_bitpos));
5869 /* Make a mask that corresponds to both fields being compared.
5870 Do this for both items being compared. If the operands are the
5871 same size and the bits being compared are in the same position
5872 then we can do this by masking both and comparing the masked
5873 results. */
5874 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5875 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5876 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5878 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
5879 lntype, lnbitsize, lnbitpos,
5880 ll_unsignedp || rl_unsignedp, ll_reversep);
5881 if (! all_ones_mask_p (ll_mask, lnbitsize))
5882 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5884 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
5885 rntype, rnbitsize, rnbitpos,
5886 lr_unsignedp || rr_unsignedp, lr_reversep);
5887 if (! all_ones_mask_p (lr_mask, rnbitsize))
5888 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5890 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5893 /* There is still another way we can do something: If both pairs of
5894 fields being compared are adjacent, we may be able to make a wider
5895 field containing them both.
5897 Note that we still must mask the lhs/rhs expressions. Furthermore,
5898 the mask must be shifted to account for the shift done by
5899 make_bit_field_ref. */
5900 if ((ll_bitsize + ll_bitpos == rl_bitpos
5901 && lr_bitsize + lr_bitpos == rr_bitpos)
5902 || (ll_bitpos == rl_bitpos + rl_bitsize
5903 && lr_bitpos == rr_bitpos + rr_bitsize))
5905 tree type;
5907 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
5908 ll_bitsize + rl_bitsize,
5909 MIN (ll_bitpos, rl_bitpos),
5910 ll_unsignedp, ll_reversep);
5911 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
5912 lr_bitsize + rr_bitsize,
5913 MIN (lr_bitpos, rr_bitpos),
5914 lr_unsignedp, lr_reversep);
5916 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5917 size_int (MIN (xll_bitpos, xrl_bitpos)));
5918 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5919 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5921 /* Convert to the smaller type before masking out unwanted bits. */
5922 type = lntype;
5923 if (lntype != rntype)
5925 if (lnbitsize > rnbitsize)
5927 lhs = fold_convert_loc (loc, rntype, lhs);
5928 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5929 type = rntype;
5931 else if (lnbitsize < rnbitsize)
5933 rhs = fold_convert_loc (loc, lntype, rhs);
5934 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5935 type = lntype;
5939 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5940 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5942 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5943 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5945 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5948 return 0;
5951 /* Handle the case of comparisons with constants. If there is something in
5952 common between the masks, those bits of the constants must be the same.
5953 If not, the condition is always false. Test for this to avoid generating
5954 incorrect code below. */
5955 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5956 if (! integer_zerop (result)
5957 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5958 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5960 if (wanted_code == NE_EXPR)
5962 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5963 return constant_boolean_node (true, truth_type);
5965 else
5967 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5968 return constant_boolean_node (false, truth_type);
5972 /* Construct the expression we will return. First get the component
5973 reference we will make. Unless the mask is all ones the width of
5974 that field, perform the mask operation. Then compare with the
5975 merged constant. */
5976 result = make_bit_field_ref (loc, ll_inner, ll_arg,
5977 lntype, lnbitsize, lnbitpos,
5978 ll_unsignedp || rl_unsignedp, ll_reversep);
5980 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5981 if (! all_ones_mask_p (ll_mask, lnbitsize))
5982 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5984 return build2_loc (loc, wanted_code, truth_type, result,
5985 const_binop (BIT_IOR_EXPR, l_const, r_const));
5988 /* T is an integer expression that is being multiplied, divided, or taken a
5989 modulus (CODE says which and what kind of divide or modulus) by a
5990 constant C. See if we can eliminate that operation by folding it with
5991 other operations already in T. WIDE_TYPE, if non-null, is a type that
5992 should be used for the computation if wider than our type.
5994 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5995 (X * 2) + (Y * 4). We must, however, be assured that either the original
5996 expression would not overflow or that overflow is undefined for the type
5997 in the language in question.
5999 If we return a non-null expression, it is an equivalent form of the
6000 original computation, but need not be in the original type.
6002 We set *STRICT_OVERFLOW_P to true if the return values depends on
6003 signed overflow being undefined. Otherwise we do not change
6004 *STRICT_OVERFLOW_P. */
6006 static tree
6007 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6008 bool *strict_overflow_p)
6010 /* To avoid exponential search depth, refuse to allow recursion past
6011 three levels. Beyond that (1) it's highly unlikely that we'll find
6012 something interesting and (2) we've probably processed it before
6013 when we built the inner expression. */
6015 static int depth;
6016 tree ret;
6018 if (depth > 3)
6019 return NULL;
6021 depth++;
6022 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6023 depth--;
6025 return ret;
6028 static tree
6029 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6030 bool *strict_overflow_p)
6032 tree type = TREE_TYPE (t);
6033 enum tree_code tcode = TREE_CODE (t);
6034 tree ctype = (wide_type != 0
6035 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6036 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6037 ? wide_type : type);
6038 tree t1, t2;
6039 int same_p = tcode == code;
6040 tree op0 = NULL_TREE, op1 = NULL_TREE;
6041 bool sub_strict_overflow_p;
6043 /* Don't deal with constants of zero here; they confuse the code below. */
6044 if (integer_zerop (c))
6045 return NULL_TREE;
6047 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6048 op0 = TREE_OPERAND (t, 0);
6050 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6051 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6053 /* Note that we need not handle conditional operations here since fold
6054 already handles those cases. So just do arithmetic here. */
6055 switch (tcode)
6057 case INTEGER_CST:
6058 /* For a constant, we can always simplify if we are a multiply
6059 or (for divide and modulus) if it is a multiple of our constant. */
6060 if (code == MULT_EXPR
6061 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
6063 tree tem = const_binop (code, fold_convert (ctype, t),
6064 fold_convert (ctype, c));
6065 /* If the multiplication overflowed, we lost information on it.
6066 See PR68142 and PR69845. */
6067 if (TREE_OVERFLOW (tem))
6068 return NULL_TREE;
6069 return tem;
6071 break;
6073 CASE_CONVERT: case NON_LVALUE_EXPR:
6074 /* If op0 is an expression ... */
6075 if ((COMPARISON_CLASS_P (op0)
6076 || UNARY_CLASS_P (op0)
6077 || BINARY_CLASS_P (op0)
6078 || VL_EXP_CLASS_P (op0)
6079 || EXPRESSION_CLASS_P (op0))
6080 /* ... and has wrapping overflow, and its type is smaller
6081 than ctype, then we cannot pass through as widening. */
6082 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6083 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6084 && (TYPE_PRECISION (ctype)
6085 > TYPE_PRECISION (TREE_TYPE (op0))))
6086 /* ... or this is a truncation (t is narrower than op0),
6087 then we cannot pass through this narrowing. */
6088 || (TYPE_PRECISION (type)
6089 < TYPE_PRECISION (TREE_TYPE (op0)))
6090 /* ... or signedness changes for division or modulus,
6091 then we cannot pass through this conversion. */
6092 || (code != MULT_EXPR
6093 && (TYPE_UNSIGNED (ctype)
6094 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6095 /* ... or has undefined overflow while the converted to
6096 type has not, we cannot do the operation in the inner type
6097 as that would introduce undefined overflow. */
6098 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6099 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6100 && !TYPE_OVERFLOW_UNDEFINED (type))))
6101 break;
6103 /* Pass the constant down and see if we can make a simplification. If
6104 we can, replace this expression with the inner simplification for
6105 possible later conversion to our or some other type. */
6106 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6107 && TREE_CODE (t2) == INTEGER_CST
6108 && !TREE_OVERFLOW (t2)
6109 && (0 != (t1 = extract_muldiv (op0, t2, code,
6110 code == MULT_EXPR
6111 ? ctype : NULL_TREE,
6112 strict_overflow_p))))
6113 return t1;
6114 break;
6116 case ABS_EXPR:
6117 /* If widening the type changes it from signed to unsigned, then we
6118 must avoid building ABS_EXPR itself as unsigned. */
6119 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6121 tree cstype = (*signed_type_for) (ctype);
6122 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6123 != 0)
6125 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6126 return fold_convert (ctype, t1);
6128 break;
6130 /* If the constant is negative, we cannot simplify this. */
6131 if (tree_int_cst_sgn (c) == -1)
6132 break;
6133 /* FALLTHROUGH */
6134 case NEGATE_EXPR:
6135 /* For division and modulus, type can't be unsigned, as e.g.
6136 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6137 For signed types, even with wrapping overflow, this is fine. */
6138 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6139 break;
6140 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6141 != 0)
6142 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6143 break;
6145 case MIN_EXPR: case MAX_EXPR:
6146 /* If widening the type changes the signedness, then we can't perform
6147 this optimization as that changes the result. */
6148 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6149 break;
6151 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6152 sub_strict_overflow_p = false;
6153 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6154 &sub_strict_overflow_p)) != 0
6155 && (t2 = extract_muldiv (op1, c, code, wide_type,
6156 &sub_strict_overflow_p)) != 0)
6158 if (tree_int_cst_sgn (c) < 0)
6159 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6160 if (sub_strict_overflow_p)
6161 *strict_overflow_p = true;
6162 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6163 fold_convert (ctype, t2));
6165 break;
6167 case LSHIFT_EXPR: case RSHIFT_EXPR:
6168 /* If the second operand is constant, this is a multiplication
6169 or floor division, by a power of two, so we can treat it that
6170 way unless the multiplier or divisor overflows. Signed
6171 left-shift overflow is implementation-defined rather than
6172 undefined in C90, so do not convert signed left shift into
6173 multiplication. */
6174 if (TREE_CODE (op1) == INTEGER_CST
6175 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6176 /* const_binop may not detect overflow correctly,
6177 so check for it explicitly here. */
6178 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6179 && 0 != (t1 = fold_convert (ctype,
6180 const_binop (LSHIFT_EXPR,
6181 size_one_node,
6182 op1)))
6183 && !TREE_OVERFLOW (t1))
6184 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6185 ? MULT_EXPR : FLOOR_DIV_EXPR,
6186 ctype,
6187 fold_convert (ctype, op0),
6188 t1),
6189 c, code, wide_type, strict_overflow_p);
6190 break;
6192 case PLUS_EXPR: case MINUS_EXPR:
6193 /* See if we can eliminate the operation on both sides. If we can, we
6194 can return a new PLUS or MINUS. If we can't, the only remaining
6195 cases where we can do anything are if the second operand is a
6196 constant. */
6197 sub_strict_overflow_p = false;
6198 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6199 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6200 if (t1 != 0 && t2 != 0
6201 && TYPE_OVERFLOW_WRAPS (ctype)
6202 && (code == MULT_EXPR
6203 /* If not multiplication, we can only do this if both operands
6204 are divisible by c. */
6205 || (multiple_of_p (ctype, op0, c)
6206 && multiple_of_p (ctype, op1, c))))
6208 if (sub_strict_overflow_p)
6209 *strict_overflow_p = true;
6210 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6211 fold_convert (ctype, t2));
6214 /* If this was a subtraction, negate OP1 and set it to be an addition.
6215 This simplifies the logic below. */
6216 if (tcode == MINUS_EXPR)
6218 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6219 /* If OP1 was not easily negatable, the constant may be OP0. */
6220 if (TREE_CODE (op0) == INTEGER_CST)
6222 std::swap (op0, op1);
6223 std::swap (t1, t2);
6227 if (TREE_CODE (op1) != INTEGER_CST)
6228 break;
6230 /* If either OP1 or C are negative, this optimization is not safe for
6231 some of the division and remainder types while for others we need
6232 to change the code. */
6233 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6235 if (code == CEIL_DIV_EXPR)
6236 code = FLOOR_DIV_EXPR;
6237 else if (code == FLOOR_DIV_EXPR)
6238 code = CEIL_DIV_EXPR;
6239 else if (code != MULT_EXPR
6240 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6241 break;
6244 /* If it's a multiply or a division/modulus operation of a multiple
6245 of our constant, do the operation and verify it doesn't overflow. */
6246 if (code == MULT_EXPR
6247 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6249 op1 = const_binop (code, fold_convert (ctype, op1),
6250 fold_convert (ctype, c));
6251 /* We allow the constant to overflow with wrapping semantics. */
6252 if (op1 == 0
6253 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6254 break;
6256 else
6257 break;
6259 /* If we have an unsigned type, we cannot widen the operation since it
6260 will change the result if the original computation overflowed. */
6261 if (TYPE_UNSIGNED (ctype) && ctype != type)
6262 break;
6264 /* The last case is if we are a multiply. In that case, we can
6265 apply the distributive law to commute the multiply and addition
6266 if the multiplication of the constants doesn't overflow
6267 and overflow is defined. With undefined overflow
6268 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6269 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6270 return fold_build2 (tcode, ctype,
6271 fold_build2 (code, ctype,
6272 fold_convert (ctype, op0),
6273 fold_convert (ctype, c)),
6274 op1);
6276 break;
6278 case MULT_EXPR:
6279 /* We have a special case here if we are doing something like
6280 (C * 8) % 4 since we know that's zero. */
6281 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6282 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6283 /* If the multiplication can overflow we cannot optimize this. */
6284 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6285 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6286 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6288 *strict_overflow_p = true;
6289 return omit_one_operand (type, integer_zero_node, op0);
6292 /* ... fall through ... */
6294 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6295 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6296 /* If we can extract our operation from the LHS, do so and return a
6297 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6298 do something only if the second operand is a constant. */
6299 if (same_p
6300 && TYPE_OVERFLOW_WRAPS (ctype)
6301 && (t1 = extract_muldiv (op0, c, code, wide_type,
6302 strict_overflow_p)) != 0)
6303 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6304 fold_convert (ctype, op1));
6305 else if (tcode == MULT_EXPR && code == MULT_EXPR
6306 && TYPE_OVERFLOW_WRAPS (ctype)
6307 && (t1 = extract_muldiv (op1, c, code, wide_type,
6308 strict_overflow_p)) != 0)
6309 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6310 fold_convert (ctype, t1));
6311 else if (TREE_CODE (op1) != INTEGER_CST)
6312 return 0;
6314 /* If these are the same operation types, we can associate them
6315 assuming no overflow. */
6316 if (tcode == code)
6318 bool overflow_p = false;
6319 bool overflow_mul_p;
6320 signop sign = TYPE_SIGN (ctype);
6321 unsigned prec = TYPE_PRECISION (ctype);
6322 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6323 wi::to_wide (c, prec),
6324 sign, &overflow_mul_p);
6325 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6326 if (overflow_mul_p
6327 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6328 overflow_p = true;
6329 if (!overflow_p)
6330 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6331 wide_int_to_tree (ctype, mul));
6334 /* If these operations "cancel" each other, we have the main
6335 optimizations of this pass, which occur when either constant is a
6336 multiple of the other, in which case we replace this with either an
6337 operation or CODE or TCODE.
6339 If we have an unsigned type, we cannot do this since it will change
6340 the result if the original computation overflowed. */
6341 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6342 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6343 || (tcode == MULT_EXPR
6344 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6345 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6346 && code != MULT_EXPR)))
6348 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6350 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6351 *strict_overflow_p = true;
6352 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6353 fold_convert (ctype,
6354 const_binop (TRUNC_DIV_EXPR,
6355 op1, c)));
6357 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6359 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6360 *strict_overflow_p = true;
6361 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6362 fold_convert (ctype,
6363 const_binop (TRUNC_DIV_EXPR,
6364 c, op1)));
6367 break;
6369 default:
6370 break;
6373 return 0;
6376 /* Return a node which has the indicated constant VALUE (either 0 or
6377 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6378 and is of the indicated TYPE. */
6380 tree
6381 constant_boolean_node (bool value, tree type)
6383 if (type == integer_type_node)
6384 return value ? integer_one_node : integer_zero_node;
6385 else if (type == boolean_type_node)
6386 return value ? boolean_true_node : boolean_false_node;
6387 else if (TREE_CODE (type) == VECTOR_TYPE)
6388 return build_vector_from_val (type,
6389 build_int_cst (TREE_TYPE (type),
6390 value ? -1 : 0));
6391 else
6392 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6396 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6397 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6398 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6399 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6400 COND is the first argument to CODE; otherwise (as in the example
6401 given here), it is the second argument. TYPE is the type of the
6402 original expression. Return NULL_TREE if no simplification is
6403 possible. */
6405 static tree
6406 fold_binary_op_with_conditional_arg (location_t loc,
6407 enum tree_code code,
6408 tree type, tree op0, tree op1,
6409 tree cond, tree arg, int cond_first_p)
6411 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6412 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6413 tree test, true_value, false_value;
6414 tree lhs = NULL_TREE;
6415 tree rhs = NULL_TREE;
6416 enum tree_code cond_code = COND_EXPR;
6418 if (TREE_CODE (cond) == COND_EXPR
6419 || TREE_CODE (cond) == VEC_COND_EXPR)
6421 test = TREE_OPERAND (cond, 0);
6422 true_value = TREE_OPERAND (cond, 1);
6423 false_value = TREE_OPERAND (cond, 2);
6424 /* If this operand throws an expression, then it does not make
6425 sense to try to perform a logical or arithmetic operation
6426 involving it. */
6427 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6428 lhs = true_value;
6429 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6430 rhs = false_value;
6432 else if (!(TREE_CODE (type) != VECTOR_TYPE
6433 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6435 tree testtype = TREE_TYPE (cond);
6436 test = cond;
6437 true_value = constant_boolean_node (true, testtype);
6438 false_value = constant_boolean_node (false, testtype);
6440 else
6441 /* Detect the case of mixing vector and scalar types - bail out. */
6442 return NULL_TREE;
6444 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6445 cond_code = VEC_COND_EXPR;
6447 /* This transformation is only worthwhile if we don't have to wrap ARG
6448 in a SAVE_EXPR and the operation can be simplified without recursing
6449 on at least one of the branches once its pushed inside the COND_EXPR. */
6450 if (!TREE_CONSTANT (arg)
6451 && (TREE_SIDE_EFFECTS (arg)
6452 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6453 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6454 return NULL_TREE;
6456 arg = fold_convert_loc (loc, arg_type, arg);
6457 if (lhs == 0)
6459 true_value = fold_convert_loc (loc, cond_type, true_value);
6460 if (cond_first_p)
6461 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6462 else
6463 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6465 if (rhs == 0)
6467 false_value = fold_convert_loc (loc, cond_type, false_value);
6468 if (cond_first_p)
6469 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6470 else
6471 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6474 /* Check that we have simplified at least one of the branches. */
6475 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6476 return NULL_TREE;
6478 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6482 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6484 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6485 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6486 ADDEND is the same as X.
6488 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6489 and finite. The problematic cases are when X is zero, and its mode
6490 has signed zeros. In the case of rounding towards -infinity,
6491 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6492 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6494 bool
6495 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6497 if (!real_zerop (addend))
6498 return false;
6500 /* Don't allow the fold with -fsignaling-nans. */
6501 if (HONOR_SNANS (element_mode (type)))
6502 return false;
6504 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6505 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6506 return true;
6508 /* In a vector or complex, we would need to check the sign of all zeros. */
6509 if (TREE_CODE (addend) != REAL_CST)
6510 return false;
6512 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6513 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6514 negate = !negate;
6516 /* The mode has signed zeros, and we have to honor their sign.
6517 In this situation, there is only one case we can return true for.
6518 X - 0 is the same as X unless rounding towards -infinity is
6519 supported. */
6520 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6523 /* Subroutine of match.pd that optimizes comparisons of a division by
6524 a nonzero integer constant against an integer constant, i.e.
6525 X/C1 op C2.
6527 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6528 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6530 enum tree_code
6531 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
6532 tree *hi, bool *neg_overflow)
6534 tree prod, tmp, type = TREE_TYPE (c1);
6535 signop sign = TYPE_SIGN (type);
6536 bool overflow;
6538 /* We have to do this the hard way to detect unsigned overflow.
6539 prod = int_const_binop (MULT_EXPR, c1, c2); */
6540 wide_int val = wi::mul (c1, c2, sign, &overflow);
6541 prod = force_fit_type (type, val, -1, overflow);
6542 *neg_overflow = false;
6544 if (sign == UNSIGNED)
6546 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6547 *lo = prod;
6549 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6550 val = wi::add (prod, tmp, sign, &overflow);
6551 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
6553 else if (tree_int_cst_sgn (c1) >= 0)
6555 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6556 switch (tree_int_cst_sgn (c2))
6558 case -1:
6559 *neg_overflow = true;
6560 *lo = int_const_binop (MINUS_EXPR, prod, tmp);
6561 *hi = prod;
6562 break;
6564 case 0:
6565 *lo = fold_negate_const (tmp, type);
6566 *hi = tmp;
6567 break;
6569 case 1:
6570 *hi = int_const_binop (PLUS_EXPR, prod, tmp);
6571 *lo = prod;
6572 break;
6574 default:
6575 gcc_unreachable ();
6578 else
6580 /* A negative divisor reverses the relational operators. */
6581 code = swap_tree_comparison (code);
6583 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1));
6584 switch (tree_int_cst_sgn (c2))
6586 case -1:
6587 *hi = int_const_binop (MINUS_EXPR, prod, tmp);
6588 *lo = prod;
6589 break;
6591 case 0:
6592 *hi = fold_negate_const (tmp, type);
6593 *lo = tmp;
6594 break;
6596 case 1:
6597 *neg_overflow = true;
6598 *lo = int_const_binop (PLUS_EXPR, prod, tmp);
6599 *hi = prod;
6600 break;
6602 default:
6603 gcc_unreachable ();
6607 if (code != EQ_EXPR && code != NE_EXPR)
6608 return code;
6610 if (TREE_OVERFLOW (*lo)
6611 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0))
6612 *lo = NULL_TREE;
6613 if (TREE_OVERFLOW (*hi)
6614 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0))
6615 *hi = NULL_TREE;
6617 return code;
6621 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6622 equality/inequality test, then return a simplified form of the test
6623 using a sign testing. Otherwise return NULL. TYPE is the desired
6624 result type. */
6626 static tree
6627 fold_single_bit_test_into_sign_test (location_t loc,
6628 enum tree_code code, tree arg0, tree arg1,
6629 tree result_type)
6631 /* If this is testing a single bit, we can optimize the test. */
6632 if ((code == NE_EXPR || code == EQ_EXPR)
6633 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6634 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6636 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6637 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6638 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6640 if (arg00 != NULL_TREE
6641 /* This is only a win if casting to a signed type is cheap,
6642 i.e. when arg00's type is not a partial mode. */
6643 && type_has_mode_precision_p (TREE_TYPE (arg00)))
6645 tree stype = signed_type_for (TREE_TYPE (arg00));
6646 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6647 result_type,
6648 fold_convert_loc (loc, stype, arg00),
6649 build_int_cst (stype, 0));
6653 return NULL_TREE;
6656 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6657 equality/inequality test, then return a simplified form of
6658 the test using shifts and logical operations. Otherwise return
6659 NULL. TYPE is the desired result type. */
6661 tree
6662 fold_single_bit_test (location_t loc, enum tree_code code,
6663 tree arg0, tree arg1, tree result_type)
6665 /* If this is testing a single bit, we can optimize the test. */
6666 if ((code == NE_EXPR || code == EQ_EXPR)
6667 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6668 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6670 tree inner = TREE_OPERAND (arg0, 0);
6671 tree type = TREE_TYPE (arg0);
6672 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6673 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
6674 int ops_unsigned;
6675 tree signed_type, unsigned_type, intermediate_type;
6676 tree tem, one;
6678 /* First, see if we can fold the single bit test into a sign-bit
6679 test. */
6680 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6681 result_type);
6682 if (tem)
6683 return tem;
6685 /* Otherwise we have (A & C) != 0 where C is a single bit,
6686 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6687 Similarly for (A & C) == 0. */
6689 /* If INNER is a right shift of a constant and it plus BITNUM does
6690 not overflow, adjust BITNUM and INNER. */
6691 if (TREE_CODE (inner) == RSHIFT_EXPR
6692 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6693 && bitnum < TYPE_PRECISION (type)
6694 && wi::ltu_p (TREE_OPERAND (inner, 1),
6695 TYPE_PRECISION (type) - bitnum))
6697 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6698 inner = TREE_OPERAND (inner, 0);
6701 /* If we are going to be able to omit the AND below, we must do our
6702 operations as unsigned. If we must use the AND, we have a choice.
6703 Normally unsigned is faster, but for some machines signed is. */
6704 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
6705 && !flag_syntax_only) ? 0 : 1;
6707 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6708 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6709 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6710 inner = fold_convert_loc (loc, intermediate_type, inner);
6712 if (bitnum != 0)
6713 inner = build2 (RSHIFT_EXPR, intermediate_type,
6714 inner, size_int (bitnum));
6716 one = build_int_cst (intermediate_type, 1);
6718 if (code == EQ_EXPR)
6719 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6721 /* Put the AND last so it can combine with more things. */
6722 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6724 /* Make sure to return the proper type. */
6725 inner = fold_convert_loc (loc, result_type, inner);
6727 return inner;
6729 return NULL_TREE;
6732 /* Test whether it is preferable two swap two operands, ARG0 and
6733 ARG1, for example because ARG0 is an integer constant and ARG1
6734 isn't. */
6736 bool
6737 tree_swap_operands_p (const_tree arg0, const_tree arg1)
6739 if (CONSTANT_CLASS_P (arg1))
6740 return 0;
6741 if (CONSTANT_CLASS_P (arg0))
6742 return 1;
6744 STRIP_NOPS (arg0);
6745 STRIP_NOPS (arg1);
6747 if (TREE_CONSTANT (arg1))
6748 return 0;
6749 if (TREE_CONSTANT (arg0))
6750 return 1;
6752 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6753 for commutative and comparison operators. Ensuring a canonical
6754 form allows the optimizers to find additional redundancies without
6755 having to explicitly check for both orderings. */
6756 if (TREE_CODE (arg0) == SSA_NAME
6757 && TREE_CODE (arg1) == SSA_NAME
6758 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6759 return 1;
6761 /* Put SSA_NAMEs last. */
6762 if (TREE_CODE (arg1) == SSA_NAME)
6763 return 0;
6764 if (TREE_CODE (arg0) == SSA_NAME)
6765 return 1;
6767 /* Put variables last. */
6768 if (DECL_P (arg1))
6769 return 0;
6770 if (DECL_P (arg0))
6771 return 1;
6773 return 0;
6777 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6778 means A >= Y && A != MAX, but in this case we know that
6779 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6781 static tree
6782 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6784 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6786 if (TREE_CODE (bound) == LT_EXPR)
6787 a = TREE_OPERAND (bound, 0);
6788 else if (TREE_CODE (bound) == GT_EXPR)
6789 a = TREE_OPERAND (bound, 1);
6790 else
6791 return NULL_TREE;
6793 typea = TREE_TYPE (a);
6794 if (!INTEGRAL_TYPE_P (typea)
6795 && !POINTER_TYPE_P (typea))
6796 return NULL_TREE;
6798 if (TREE_CODE (ineq) == LT_EXPR)
6800 a1 = TREE_OPERAND (ineq, 1);
6801 y = TREE_OPERAND (ineq, 0);
6803 else if (TREE_CODE (ineq) == GT_EXPR)
6805 a1 = TREE_OPERAND (ineq, 0);
6806 y = TREE_OPERAND (ineq, 1);
6808 else
6809 return NULL_TREE;
6811 if (TREE_TYPE (a1) != typea)
6812 return NULL_TREE;
6814 if (POINTER_TYPE_P (typea))
6816 /* Convert the pointer types into integer before taking the difference. */
6817 tree ta = fold_convert_loc (loc, ssizetype, a);
6818 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6819 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6821 else
6822 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6824 if (!diff || !integer_onep (diff))
6825 return NULL_TREE;
6827 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6830 /* Fold a sum or difference of at least one multiplication.
6831 Returns the folded tree or NULL if no simplification could be made. */
6833 static tree
6834 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6835 tree arg0, tree arg1)
6837 tree arg00, arg01, arg10, arg11;
6838 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6840 /* (A * C) +- (B * C) -> (A+-B) * C.
6841 (A * C) +- A -> A * (C+-1).
6842 We are most concerned about the case where C is a constant,
6843 but other combinations show up during loop reduction. Since
6844 it is not difficult, try all four possibilities. */
6846 if (TREE_CODE (arg0) == MULT_EXPR)
6848 arg00 = TREE_OPERAND (arg0, 0);
6849 arg01 = TREE_OPERAND (arg0, 1);
6851 else if (TREE_CODE (arg0) == INTEGER_CST)
6853 arg00 = build_one_cst (type);
6854 arg01 = arg0;
6856 else
6858 /* We cannot generate constant 1 for fract. */
6859 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6860 return NULL_TREE;
6861 arg00 = arg0;
6862 arg01 = build_one_cst (type);
6864 if (TREE_CODE (arg1) == MULT_EXPR)
6866 arg10 = TREE_OPERAND (arg1, 0);
6867 arg11 = TREE_OPERAND (arg1, 1);
6869 else if (TREE_CODE (arg1) == INTEGER_CST)
6871 arg10 = build_one_cst (type);
6872 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6873 the purpose of this canonicalization. */
6874 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6875 && negate_expr_p (arg1)
6876 && code == PLUS_EXPR)
6878 arg11 = negate_expr (arg1);
6879 code = MINUS_EXPR;
6881 else
6882 arg11 = arg1;
6884 else
6886 /* We cannot generate constant 1 for fract. */
6887 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6888 return NULL_TREE;
6889 arg10 = arg1;
6890 arg11 = build_one_cst (type);
6892 same = NULL_TREE;
6894 /* Prefer factoring a common non-constant. */
6895 if (operand_equal_p (arg00, arg10, 0))
6896 same = arg00, alt0 = arg01, alt1 = arg11;
6897 else if (operand_equal_p (arg01, arg11, 0))
6898 same = arg01, alt0 = arg00, alt1 = arg10;
6899 else if (operand_equal_p (arg00, arg11, 0))
6900 same = arg00, alt0 = arg01, alt1 = arg10;
6901 else if (operand_equal_p (arg01, arg10, 0))
6902 same = arg01, alt0 = arg00, alt1 = arg11;
6904 /* No identical multiplicands; see if we can find a common
6905 power-of-two factor in non-power-of-two multiplies. This
6906 can help in multi-dimensional array access. */
6907 else if (tree_fits_shwi_p (arg01)
6908 && tree_fits_shwi_p (arg11))
6910 HOST_WIDE_INT int01, int11, tmp;
6911 bool swap = false;
6912 tree maybe_same;
6913 int01 = tree_to_shwi (arg01);
6914 int11 = tree_to_shwi (arg11);
6916 /* Move min of absolute values to int11. */
6917 if (absu_hwi (int01) < absu_hwi (int11))
6919 tmp = int01, int01 = int11, int11 = tmp;
6920 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6921 maybe_same = arg01;
6922 swap = true;
6924 else
6925 maybe_same = arg11;
6927 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6928 /* The remainder should not be a constant, otherwise we
6929 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6930 increased the number of multiplications necessary. */
6931 && TREE_CODE (arg10) != INTEGER_CST)
6933 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6934 build_int_cst (TREE_TYPE (arg00),
6935 int01 / int11));
6936 alt1 = arg10;
6937 same = maybe_same;
6938 if (swap)
6939 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6943 if (!same)
6944 return NULL_TREE;
6946 if (! INTEGRAL_TYPE_P (type)
6947 || TYPE_OVERFLOW_WRAPS (type)
6948 /* We are neither factoring zero nor minus one. */
6949 || TREE_CODE (same) == INTEGER_CST)
6950 return fold_build2_loc (loc, MULT_EXPR, type,
6951 fold_build2_loc (loc, code, type,
6952 fold_convert_loc (loc, type, alt0),
6953 fold_convert_loc (loc, type, alt1)),
6954 fold_convert_loc (loc, type, same));
6956 /* Same may be zero and thus the operation 'code' may overflow. Likewise
6957 same may be minus one and thus the multiplication may overflow. Perform
6958 the operations in an unsigned type. */
6959 tree utype = unsigned_type_for (type);
6960 tree tem = fold_build2_loc (loc, code, utype,
6961 fold_convert_loc (loc, utype, alt0),
6962 fold_convert_loc (loc, utype, alt1));
6963 /* If the sum evaluated to a constant that is not -INF the multiplication
6964 cannot overflow. */
6965 if (TREE_CODE (tem) == INTEGER_CST
6966 && ! wi::eq_p (tem, wi::min_value (TYPE_PRECISION (utype), SIGNED)))
6967 return fold_build2_loc (loc, MULT_EXPR, type,
6968 fold_convert (type, tem), same);
6970 return fold_convert_loc (loc, type,
6971 fold_build2_loc (loc, MULT_EXPR, utype, tem,
6972 fold_convert_loc (loc, utype, same)));
6975 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6976 specified by EXPR into the buffer PTR of length LEN bytes.
6977 Return the number of bytes placed in the buffer, or zero
6978 upon failure. */
6980 static int
6981 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
6983 tree type = TREE_TYPE (expr);
6984 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
6985 int byte, offset, word, words;
6986 unsigned char value;
6988 if ((off == -1 && total_bytes > len)
6989 || off >= total_bytes)
6990 return 0;
6991 if (off == -1)
6992 off = 0;
6993 words = total_bytes / UNITS_PER_WORD;
6995 for (byte = 0; byte < total_bytes; byte++)
6997 int bitpos = byte * BITS_PER_UNIT;
6998 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6999 number of bytes. */
7000 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7002 if (total_bytes > UNITS_PER_WORD)
7004 word = byte / UNITS_PER_WORD;
7005 if (WORDS_BIG_ENDIAN)
7006 word = (words - 1) - word;
7007 offset = word * UNITS_PER_WORD;
7008 if (BYTES_BIG_ENDIAN)
7009 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7010 else
7011 offset += byte % UNITS_PER_WORD;
7013 else
7014 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7015 if (offset >= off
7016 && offset - off < len)
7017 ptr[offset - off] = value;
7019 return MIN (len, total_bytes - off);
7023 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7024 specified by EXPR into the buffer PTR of length LEN bytes.
7025 Return the number of bytes placed in the buffer, or zero
7026 upon failure. */
7028 static int
7029 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7031 tree type = TREE_TYPE (expr);
7032 machine_mode mode = TYPE_MODE (type);
7033 int total_bytes = GET_MODE_SIZE (mode);
7034 FIXED_VALUE_TYPE value;
7035 tree i_value, i_type;
7037 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7038 return 0;
7040 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7042 if (NULL_TREE == i_type
7043 || TYPE_PRECISION (i_type) != total_bytes)
7044 return 0;
7046 value = TREE_FIXED_CST (expr);
7047 i_value = double_int_to_tree (i_type, value.data);
7049 return native_encode_int (i_value, ptr, len, off);
7053 /* Subroutine of native_encode_expr. Encode the REAL_CST
7054 specified by EXPR into the buffer PTR of length LEN bytes.
7055 Return the number of bytes placed in the buffer, or zero
7056 upon failure. */
7058 static int
7059 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7061 tree type = TREE_TYPE (expr);
7062 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7063 int byte, offset, word, words, bitpos;
7064 unsigned char value;
7066 /* There are always 32 bits in each long, no matter the size of
7067 the hosts long. We handle floating point representations with
7068 up to 192 bits. */
7069 long tmp[6];
7071 if ((off == -1 && total_bytes > len)
7072 || off >= total_bytes)
7073 return 0;
7074 if (off == -1)
7075 off = 0;
7076 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7078 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7080 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7081 bitpos += BITS_PER_UNIT)
7083 byte = (bitpos / BITS_PER_UNIT) & 3;
7084 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7086 if (UNITS_PER_WORD < 4)
7088 word = byte / UNITS_PER_WORD;
7089 if (WORDS_BIG_ENDIAN)
7090 word = (words - 1) - word;
7091 offset = word * UNITS_PER_WORD;
7092 if (BYTES_BIG_ENDIAN)
7093 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7094 else
7095 offset += byte % UNITS_PER_WORD;
7097 else
7099 offset = byte;
7100 if (BYTES_BIG_ENDIAN)
7102 /* Reverse bytes within each long, or within the entire float
7103 if it's smaller than a long (for HFmode). */
7104 offset = MIN (3, total_bytes - 1) - offset;
7105 gcc_assert (offset >= 0);
7108 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7109 if (offset >= off
7110 && offset - off < len)
7111 ptr[offset - off] = value;
7113 return MIN (len, total_bytes - off);
7116 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7117 specified by EXPR into the buffer PTR of length LEN bytes.
7118 Return the number of bytes placed in the buffer, or zero
7119 upon failure. */
7121 static int
7122 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7124 int rsize, isize;
7125 tree part;
7127 part = TREE_REALPART (expr);
7128 rsize = native_encode_expr (part, ptr, len, off);
7129 if (off == -1
7130 && rsize == 0)
7131 return 0;
7132 part = TREE_IMAGPART (expr);
7133 if (off != -1)
7134 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7135 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7136 if (off == -1
7137 && isize != rsize)
7138 return 0;
7139 return rsize + isize;
7143 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7144 specified by EXPR into the buffer PTR of length LEN bytes.
7145 Return the number of bytes placed in the buffer, or zero
7146 upon failure. */
7148 static int
7149 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7151 unsigned i, count;
7152 int size, offset;
7153 tree itype, elem;
7155 offset = 0;
7156 count = VECTOR_CST_NELTS (expr);
7157 itype = TREE_TYPE (TREE_TYPE (expr));
7158 size = GET_MODE_SIZE (TYPE_MODE (itype));
7159 for (i = 0; i < count; i++)
7161 if (off >= size)
7163 off -= size;
7164 continue;
7166 elem = VECTOR_CST_ELT (expr, i);
7167 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7168 if ((off == -1 && res != size)
7169 || res == 0)
7170 return 0;
7171 offset += res;
7172 if (offset >= len)
7173 return offset;
7174 if (off != -1)
7175 off = 0;
7177 return offset;
7181 /* Subroutine of native_encode_expr. Encode the STRING_CST
7182 specified by EXPR into the buffer PTR of length LEN bytes.
7183 Return the number of bytes placed in the buffer, or zero
7184 upon failure. */
7186 static int
7187 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7189 tree type = TREE_TYPE (expr);
7190 HOST_WIDE_INT total_bytes;
7192 if (TREE_CODE (type) != ARRAY_TYPE
7193 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7194 || (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (type)))
7195 != BITS_PER_UNIT)
7196 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7197 return 0;
7198 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7199 if ((off == -1 && total_bytes > len)
7200 || off >= total_bytes)
7201 return 0;
7202 if (off == -1)
7203 off = 0;
7204 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7206 int written = 0;
7207 if (off < TREE_STRING_LENGTH (expr))
7209 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7210 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7212 memset (ptr + written, 0,
7213 MIN (total_bytes - written, len - written));
7215 else
7216 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7217 return MIN (total_bytes - off, len);
7221 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7222 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7223 buffer PTR of length LEN bytes. If OFF is not -1 then start
7224 the encoding at byte offset OFF and encode at most LEN bytes.
7225 Return the number of bytes placed in the buffer, or zero upon failure. */
7228 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7230 /* We don't support starting at negative offset and -1 is special. */
7231 if (off < -1)
7232 return 0;
7234 switch (TREE_CODE (expr))
7236 case INTEGER_CST:
7237 return native_encode_int (expr, ptr, len, off);
7239 case REAL_CST:
7240 return native_encode_real (expr, ptr, len, off);
7242 case FIXED_CST:
7243 return native_encode_fixed (expr, ptr, len, off);
7245 case COMPLEX_CST:
7246 return native_encode_complex (expr, ptr, len, off);
7248 case VECTOR_CST:
7249 return native_encode_vector (expr, ptr, len, off);
7251 case STRING_CST:
7252 return native_encode_string (expr, ptr, len, off);
7254 default:
7255 return 0;
7260 /* Subroutine of native_interpret_expr. Interpret the contents of
7261 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7262 If the buffer cannot be interpreted, return NULL_TREE. */
7264 static tree
7265 native_interpret_int (tree type, const unsigned char *ptr, int len)
7267 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7269 if (total_bytes > len
7270 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7271 return NULL_TREE;
7273 wide_int result = wi::from_buffer (ptr, total_bytes);
7275 return wide_int_to_tree (type, result);
7279 /* Subroutine of native_interpret_expr. Interpret the contents of
7280 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7281 If the buffer cannot be interpreted, return NULL_TREE. */
7283 static tree
7284 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7286 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7287 double_int result;
7288 FIXED_VALUE_TYPE fixed_value;
7290 if (total_bytes > len
7291 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7292 return NULL_TREE;
7294 result = double_int::from_buffer (ptr, total_bytes);
7295 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7297 return build_fixed (type, fixed_value);
7301 /* Subroutine of native_interpret_expr. Interpret the contents of
7302 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7303 If the buffer cannot be interpreted, return NULL_TREE. */
7305 static tree
7306 native_interpret_real (tree type, const unsigned char *ptr, int len)
7308 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
7309 int total_bytes = GET_MODE_SIZE (mode);
7310 unsigned char value;
7311 /* There are always 32 bits in each long, no matter the size of
7312 the hosts long. We handle floating point representations with
7313 up to 192 bits. */
7314 REAL_VALUE_TYPE r;
7315 long tmp[6];
7317 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7318 if (total_bytes > len || total_bytes > 24)
7319 return NULL_TREE;
7320 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7322 memset (tmp, 0, sizeof (tmp));
7323 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7324 bitpos += BITS_PER_UNIT)
7326 /* Both OFFSET and BYTE index within a long;
7327 bitpos indexes the whole float. */
7328 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7329 if (UNITS_PER_WORD < 4)
7331 int word = byte / UNITS_PER_WORD;
7332 if (WORDS_BIG_ENDIAN)
7333 word = (words - 1) - word;
7334 offset = word * UNITS_PER_WORD;
7335 if (BYTES_BIG_ENDIAN)
7336 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7337 else
7338 offset += byte % UNITS_PER_WORD;
7340 else
7342 offset = byte;
7343 if (BYTES_BIG_ENDIAN)
7345 /* Reverse bytes within each long, or within the entire float
7346 if it's smaller than a long (for HFmode). */
7347 offset = MIN (3, total_bytes - 1) - offset;
7348 gcc_assert (offset >= 0);
7351 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7353 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7356 real_from_target (&r, tmp, mode);
7357 return build_real (type, r);
7361 /* Subroutine of native_interpret_expr. Interpret the contents of
7362 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7363 If the buffer cannot be interpreted, return NULL_TREE. */
7365 static tree
7366 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7368 tree etype, rpart, ipart;
7369 int size;
7371 etype = TREE_TYPE (type);
7372 size = GET_MODE_SIZE (TYPE_MODE (etype));
7373 if (size * 2 > len)
7374 return NULL_TREE;
7375 rpart = native_interpret_expr (etype, ptr, size);
7376 if (!rpart)
7377 return NULL_TREE;
7378 ipart = native_interpret_expr (etype, ptr+size, size);
7379 if (!ipart)
7380 return NULL_TREE;
7381 return build_complex (type, rpart, ipart);
7385 /* Subroutine of native_interpret_expr. Interpret the contents of
7386 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7387 If the buffer cannot be interpreted, return NULL_TREE. */
7389 static tree
7390 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7392 tree etype, elem;
7393 int i, size, count;
7394 tree *elements;
7396 etype = TREE_TYPE (type);
7397 size = GET_MODE_SIZE (TYPE_MODE (etype));
7398 count = TYPE_VECTOR_SUBPARTS (type);
7399 if (size * count > len)
7400 return NULL_TREE;
7402 elements = XALLOCAVEC (tree, count);
7403 for (i = count - 1; i >= 0; i--)
7405 elem = native_interpret_expr (etype, ptr+(i*size), size);
7406 if (!elem)
7407 return NULL_TREE;
7408 elements[i] = elem;
7410 return build_vector (type, elements);
7414 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7415 the buffer PTR of length LEN as a constant of type TYPE. For
7416 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7417 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7418 return NULL_TREE. */
7420 tree
7421 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7423 switch (TREE_CODE (type))
7425 case INTEGER_TYPE:
7426 case ENUMERAL_TYPE:
7427 case BOOLEAN_TYPE:
7428 case POINTER_TYPE:
7429 case REFERENCE_TYPE:
7430 return native_interpret_int (type, ptr, len);
7432 case REAL_TYPE:
7433 return native_interpret_real (type, ptr, len);
7435 case FIXED_POINT_TYPE:
7436 return native_interpret_fixed (type, ptr, len);
7438 case COMPLEX_TYPE:
7439 return native_interpret_complex (type, ptr, len);
7441 case VECTOR_TYPE:
7442 return native_interpret_vector (type, ptr, len);
7444 default:
7445 return NULL_TREE;
7449 /* Returns true if we can interpret the contents of a native encoding
7450 as TYPE. */
7452 static bool
7453 can_native_interpret_type_p (tree type)
7455 switch (TREE_CODE (type))
7457 case INTEGER_TYPE:
7458 case ENUMERAL_TYPE:
7459 case BOOLEAN_TYPE:
7460 case POINTER_TYPE:
7461 case REFERENCE_TYPE:
7462 case FIXED_POINT_TYPE:
7463 case REAL_TYPE:
7464 case COMPLEX_TYPE:
7465 case VECTOR_TYPE:
7466 return true;
7467 default:
7468 return false;
7472 /* Return true iff a constant of type TYPE is accepted by
7473 native_encode_expr. */
7475 bool
7476 can_native_encode_type_p (tree type)
7478 switch (TREE_CODE (type))
7480 case INTEGER_TYPE:
7481 case REAL_TYPE:
7482 case FIXED_POINT_TYPE:
7483 case COMPLEX_TYPE:
7484 case VECTOR_TYPE:
7485 case POINTER_TYPE:
7486 return true;
7487 default:
7488 return false;
7492 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7493 TYPE at compile-time. If we're unable to perform the conversion
7494 return NULL_TREE. */
7496 static tree
7497 fold_view_convert_expr (tree type, tree expr)
7499 /* We support up to 512-bit values (for V8DFmode). */
7500 unsigned char buffer[64];
7501 int len;
7503 /* Check that the host and target are sane. */
7504 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7505 return NULL_TREE;
7507 len = native_encode_expr (expr, buffer, sizeof (buffer));
7508 if (len == 0)
7509 return NULL_TREE;
7511 return native_interpret_expr (type, buffer, len);
7514 /* Build an expression for the address of T. Folds away INDIRECT_REF
7515 to avoid confusing the gimplify process. */
7517 tree
7518 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7520 /* The size of the object is not relevant when talking about its address. */
7521 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7522 t = TREE_OPERAND (t, 0);
7524 if (TREE_CODE (t) == INDIRECT_REF)
7526 t = TREE_OPERAND (t, 0);
7528 if (TREE_TYPE (t) != ptrtype)
7529 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7531 else if (TREE_CODE (t) == MEM_REF
7532 && integer_zerop (TREE_OPERAND (t, 1)))
7533 return TREE_OPERAND (t, 0);
7534 else if (TREE_CODE (t) == MEM_REF
7535 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7536 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7537 TREE_OPERAND (t, 0),
7538 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7539 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7541 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7543 if (TREE_TYPE (t) != ptrtype)
7544 t = fold_convert_loc (loc, ptrtype, t);
7546 else
7547 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7549 return t;
7552 /* Build an expression for the address of T. */
7554 tree
7555 build_fold_addr_expr_loc (location_t loc, tree t)
7557 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7559 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7562 /* Fold a unary expression of code CODE and type TYPE with operand
7563 OP0. Return the folded expression if folding is successful.
7564 Otherwise, return NULL_TREE. */
7566 tree
7567 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7569 tree tem;
7570 tree arg0;
7571 enum tree_code_class kind = TREE_CODE_CLASS (code);
7573 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7574 && TREE_CODE_LENGTH (code) == 1);
7576 arg0 = op0;
7577 if (arg0)
7579 if (CONVERT_EXPR_CODE_P (code)
7580 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7582 /* Don't use STRIP_NOPS, because signedness of argument type
7583 matters. */
7584 STRIP_SIGN_NOPS (arg0);
7586 else
7588 /* Strip any conversions that don't change the mode. This
7589 is safe for every expression, except for a comparison
7590 expression because its signedness is derived from its
7591 operands.
7593 Note that this is done as an internal manipulation within
7594 the constant folder, in order to find the simplest
7595 representation of the arguments so that their form can be
7596 studied. In any cases, the appropriate type conversions
7597 should be put back in the tree that will get out of the
7598 constant folder. */
7599 STRIP_NOPS (arg0);
7602 if (CONSTANT_CLASS_P (arg0))
7604 tree tem = const_unop (code, type, arg0);
7605 if (tem)
7607 if (TREE_TYPE (tem) != type)
7608 tem = fold_convert_loc (loc, type, tem);
7609 return tem;
7614 tem = generic_simplify (loc, code, type, op0);
7615 if (tem)
7616 return tem;
7618 if (TREE_CODE_CLASS (code) == tcc_unary)
7620 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7621 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7622 fold_build1_loc (loc, code, type,
7623 fold_convert_loc (loc, TREE_TYPE (op0),
7624 TREE_OPERAND (arg0, 1))));
7625 else if (TREE_CODE (arg0) == COND_EXPR)
7627 tree arg01 = TREE_OPERAND (arg0, 1);
7628 tree arg02 = TREE_OPERAND (arg0, 2);
7629 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7630 arg01 = fold_build1_loc (loc, code, type,
7631 fold_convert_loc (loc,
7632 TREE_TYPE (op0), arg01));
7633 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7634 arg02 = fold_build1_loc (loc, code, type,
7635 fold_convert_loc (loc,
7636 TREE_TYPE (op0), arg02));
7637 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7638 arg01, arg02);
7640 /* If this was a conversion, and all we did was to move into
7641 inside the COND_EXPR, bring it back out. But leave it if
7642 it is a conversion from integer to integer and the
7643 result precision is no wider than a word since such a
7644 conversion is cheap and may be optimized away by combine,
7645 while it couldn't if it were outside the COND_EXPR. Then return
7646 so we don't get into an infinite recursion loop taking the
7647 conversion out and then back in. */
7649 if ((CONVERT_EXPR_CODE_P (code)
7650 || code == NON_LVALUE_EXPR)
7651 && TREE_CODE (tem) == COND_EXPR
7652 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7653 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7654 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7655 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7656 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7657 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7658 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7659 && (INTEGRAL_TYPE_P
7660 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7661 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7662 || flag_syntax_only))
7663 tem = build1_loc (loc, code, type,
7664 build3 (COND_EXPR,
7665 TREE_TYPE (TREE_OPERAND
7666 (TREE_OPERAND (tem, 1), 0)),
7667 TREE_OPERAND (tem, 0),
7668 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7669 TREE_OPERAND (TREE_OPERAND (tem, 2),
7670 0)));
7671 return tem;
7675 switch (code)
7677 case NON_LVALUE_EXPR:
7678 if (!maybe_lvalue_p (op0))
7679 return fold_convert_loc (loc, type, op0);
7680 return NULL_TREE;
7682 CASE_CONVERT:
7683 case FLOAT_EXPR:
7684 case FIX_TRUNC_EXPR:
7685 if (COMPARISON_CLASS_P (op0))
7687 /* If we have (type) (a CMP b) and type is an integral type, return
7688 new expression involving the new type. Canonicalize
7689 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7690 non-integral type.
7691 Do not fold the result as that would not simplify further, also
7692 folding again results in recursions. */
7693 if (TREE_CODE (type) == BOOLEAN_TYPE)
7694 return build2_loc (loc, TREE_CODE (op0), type,
7695 TREE_OPERAND (op0, 0),
7696 TREE_OPERAND (op0, 1));
7697 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7698 && TREE_CODE (type) != VECTOR_TYPE)
7699 return build3_loc (loc, COND_EXPR, type, op0,
7700 constant_boolean_node (true, type),
7701 constant_boolean_node (false, type));
7704 /* Handle (T *)&A.B.C for A being of type T and B and C
7705 living at offset zero. This occurs frequently in
7706 C++ upcasting and then accessing the base. */
7707 if (TREE_CODE (op0) == ADDR_EXPR
7708 && POINTER_TYPE_P (type)
7709 && handled_component_p (TREE_OPERAND (op0, 0)))
7711 HOST_WIDE_INT bitsize, bitpos;
7712 tree offset;
7713 machine_mode mode;
7714 int unsignedp, reversep, volatilep;
7715 tree base
7716 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7717 &offset, &mode, &unsignedp, &reversep,
7718 &volatilep);
7719 /* If the reference was to a (constant) zero offset, we can use
7720 the address of the base if it has the same base type
7721 as the result type and the pointer type is unqualified. */
7722 if (! offset && bitpos == 0
7723 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7724 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7725 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7726 return fold_convert_loc (loc, type,
7727 build_fold_addr_expr_loc (loc, base));
7730 if (TREE_CODE (op0) == MODIFY_EXPR
7731 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7732 /* Detect assigning a bitfield. */
7733 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7734 && DECL_BIT_FIELD
7735 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7737 /* Don't leave an assignment inside a conversion
7738 unless assigning a bitfield. */
7739 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7740 /* First do the assignment, then return converted constant. */
7741 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7742 TREE_NO_WARNING (tem) = 1;
7743 TREE_USED (tem) = 1;
7744 return tem;
7747 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7748 constants (if x has signed type, the sign bit cannot be set
7749 in c). This folds extension into the BIT_AND_EXPR.
7750 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7751 very likely don't have maximal range for their precision and this
7752 transformation effectively doesn't preserve non-maximal ranges. */
7753 if (TREE_CODE (type) == INTEGER_TYPE
7754 && TREE_CODE (op0) == BIT_AND_EXPR
7755 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7757 tree and_expr = op0;
7758 tree and0 = TREE_OPERAND (and_expr, 0);
7759 tree and1 = TREE_OPERAND (and_expr, 1);
7760 int change = 0;
7762 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7763 || (TYPE_PRECISION (type)
7764 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7765 change = 1;
7766 else if (TYPE_PRECISION (TREE_TYPE (and1))
7767 <= HOST_BITS_PER_WIDE_INT
7768 && tree_fits_uhwi_p (and1))
7770 unsigned HOST_WIDE_INT cst;
7772 cst = tree_to_uhwi (and1);
7773 cst &= HOST_WIDE_INT_M1U
7774 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7775 change = (cst == 0);
7776 if (change
7777 && !flag_syntax_only
7778 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
7779 == ZERO_EXTEND))
7781 tree uns = unsigned_type_for (TREE_TYPE (and0));
7782 and0 = fold_convert_loc (loc, uns, and0);
7783 and1 = fold_convert_loc (loc, uns, and1);
7786 if (change)
7788 tem = force_fit_type (type, wi::to_widest (and1), 0,
7789 TREE_OVERFLOW (and1));
7790 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7791 fold_convert_loc (loc, type, and0), tem);
7795 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7796 cast (T1)X will fold away. We assume that this happens when X itself
7797 is a cast. */
7798 if (POINTER_TYPE_P (type)
7799 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7800 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7802 tree arg00 = TREE_OPERAND (arg0, 0);
7803 tree arg01 = TREE_OPERAND (arg0, 1);
7805 return fold_build_pointer_plus_loc
7806 (loc, fold_convert_loc (loc, type, arg00), arg01);
7809 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7810 of the same precision, and X is an integer type not narrower than
7811 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7812 if (INTEGRAL_TYPE_P (type)
7813 && TREE_CODE (op0) == BIT_NOT_EXPR
7814 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7815 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7816 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7818 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7819 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7820 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7821 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7822 fold_convert_loc (loc, type, tem));
7825 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7826 type of X and Y (integer types only). */
7827 if (INTEGRAL_TYPE_P (type)
7828 && TREE_CODE (op0) == MULT_EXPR
7829 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7830 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7832 /* Be careful not to introduce new overflows. */
7833 tree mult_type;
7834 if (TYPE_OVERFLOW_WRAPS (type))
7835 mult_type = type;
7836 else
7837 mult_type = unsigned_type_for (type);
7839 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7841 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7842 fold_convert_loc (loc, mult_type,
7843 TREE_OPERAND (op0, 0)),
7844 fold_convert_loc (loc, mult_type,
7845 TREE_OPERAND (op0, 1)));
7846 return fold_convert_loc (loc, type, tem);
7850 return NULL_TREE;
7852 case VIEW_CONVERT_EXPR:
7853 if (TREE_CODE (op0) == MEM_REF)
7855 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
7856 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
7857 tem = fold_build2_loc (loc, MEM_REF, type,
7858 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7859 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
7860 return tem;
7863 return NULL_TREE;
7865 case NEGATE_EXPR:
7866 tem = fold_negate_expr (loc, arg0);
7867 if (tem)
7868 return fold_convert_loc (loc, type, tem);
7869 return NULL_TREE;
7871 case ABS_EXPR:
7872 /* Convert fabs((double)float) into (double)fabsf(float). */
7873 if (TREE_CODE (arg0) == NOP_EXPR
7874 && TREE_CODE (type) == REAL_TYPE)
7876 tree targ0 = strip_float_extensions (arg0);
7877 if (targ0 != arg0)
7878 return fold_convert_loc (loc, type,
7879 fold_build1_loc (loc, ABS_EXPR,
7880 TREE_TYPE (targ0),
7881 targ0));
7883 return NULL_TREE;
7885 case BIT_NOT_EXPR:
7886 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7887 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7888 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7889 fold_convert_loc (loc, type,
7890 TREE_OPERAND (arg0, 0)))))
7891 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7892 fold_convert_loc (loc, type,
7893 TREE_OPERAND (arg0, 1)));
7894 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7895 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7896 fold_convert_loc (loc, type,
7897 TREE_OPERAND (arg0, 1)))))
7898 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7899 fold_convert_loc (loc, type,
7900 TREE_OPERAND (arg0, 0)), tem);
7902 return NULL_TREE;
7904 case TRUTH_NOT_EXPR:
7905 /* Note that the operand of this must be an int
7906 and its values must be 0 or 1.
7907 ("true" is a fixed value perhaps depending on the language,
7908 but we don't handle values other than 1 correctly yet.) */
7909 tem = fold_truth_not_expr (loc, arg0);
7910 if (!tem)
7911 return NULL_TREE;
7912 return fold_convert_loc (loc, type, tem);
7914 case INDIRECT_REF:
7915 /* Fold *&X to X if X is an lvalue. */
7916 if (TREE_CODE (op0) == ADDR_EXPR)
7918 tree op00 = TREE_OPERAND (op0, 0);
7919 if ((VAR_P (op00)
7920 || TREE_CODE (op00) == PARM_DECL
7921 || TREE_CODE (op00) == RESULT_DECL)
7922 && !TREE_READONLY (op00))
7923 return op00;
7925 return NULL_TREE;
7927 default:
7928 return NULL_TREE;
7929 } /* switch (code) */
7933 /* If the operation was a conversion do _not_ mark a resulting constant
7934 with TREE_OVERFLOW if the original constant was not. These conversions
7935 have implementation defined behavior and retaining the TREE_OVERFLOW
7936 flag here would confuse later passes such as VRP. */
7937 tree
7938 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7939 tree type, tree op0)
7941 tree res = fold_unary_loc (loc, code, type, op0);
7942 if (res
7943 && TREE_CODE (res) == INTEGER_CST
7944 && TREE_CODE (op0) == INTEGER_CST
7945 && CONVERT_EXPR_CODE_P (code))
7946 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7948 return res;
7951 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7952 operands OP0 and OP1. LOC is the location of the resulting expression.
7953 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7954 Return the folded expression if folding is successful. Otherwise,
7955 return NULL_TREE. */
7956 static tree
7957 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7958 tree arg0, tree arg1, tree op0, tree op1)
7960 tree tem;
7962 /* We only do these simplifications if we are optimizing. */
7963 if (!optimize)
7964 return NULL_TREE;
7966 /* Check for things like (A || B) && (A || C). We can convert this
7967 to A || (B && C). Note that either operator can be any of the four
7968 truth and/or operations and the transformation will still be
7969 valid. Also note that we only care about order for the
7970 ANDIF and ORIF operators. If B contains side effects, this
7971 might change the truth-value of A. */
7972 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7973 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7974 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7975 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7976 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7977 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7979 tree a00 = TREE_OPERAND (arg0, 0);
7980 tree a01 = TREE_OPERAND (arg0, 1);
7981 tree a10 = TREE_OPERAND (arg1, 0);
7982 tree a11 = TREE_OPERAND (arg1, 1);
7983 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7984 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7985 && (code == TRUTH_AND_EXPR
7986 || code == TRUTH_OR_EXPR));
7988 if (operand_equal_p (a00, a10, 0))
7989 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7990 fold_build2_loc (loc, code, type, a01, a11));
7991 else if (commutative && operand_equal_p (a00, a11, 0))
7992 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7993 fold_build2_loc (loc, code, type, a01, a10));
7994 else if (commutative && operand_equal_p (a01, a10, 0))
7995 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
7996 fold_build2_loc (loc, code, type, a00, a11));
7998 /* This case if tricky because we must either have commutative
7999 operators or else A10 must not have side-effects. */
8001 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8002 && operand_equal_p (a01, a11, 0))
8003 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8004 fold_build2_loc (loc, code, type, a00, a10),
8005 a01);
8008 /* See if we can build a range comparison. */
8009 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8010 return tem;
8012 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8013 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8015 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8016 if (tem)
8017 return fold_build2_loc (loc, code, type, tem, arg1);
8020 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8021 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8023 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8024 if (tem)
8025 return fold_build2_loc (loc, code, type, arg0, tem);
8028 /* Check for the possibility of merging component references. If our
8029 lhs is another similar operation, try to merge its rhs with our
8030 rhs. Then try to merge our lhs and rhs. */
8031 if (TREE_CODE (arg0) == code
8032 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8033 TREE_OPERAND (arg0, 1), arg1)))
8034 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8036 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8037 return tem;
8039 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8040 && (code == TRUTH_AND_EXPR
8041 || code == TRUTH_ANDIF_EXPR
8042 || code == TRUTH_OR_EXPR
8043 || code == TRUTH_ORIF_EXPR))
8045 enum tree_code ncode, icode;
8047 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8048 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8049 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8051 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8052 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8053 We don't want to pack more than two leafs to a non-IF AND/OR
8054 expression.
8055 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8056 equal to IF-CODE, then we don't want to add right-hand operand.
8057 If the inner right-hand side of left-hand operand has
8058 side-effects, or isn't simple, then we can't add to it,
8059 as otherwise we might destroy if-sequence. */
8060 if (TREE_CODE (arg0) == icode
8061 && simple_operand_p_2 (arg1)
8062 /* Needed for sequence points to handle trappings, and
8063 side-effects. */
8064 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8066 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8067 arg1);
8068 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8069 tem);
8071 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8072 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8073 else if (TREE_CODE (arg1) == icode
8074 && simple_operand_p_2 (arg0)
8075 /* Needed for sequence points to handle trappings, and
8076 side-effects. */
8077 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8079 tem = fold_build2_loc (loc, ncode, type,
8080 arg0, TREE_OPERAND (arg1, 0));
8081 return fold_build2_loc (loc, icode, type, tem,
8082 TREE_OPERAND (arg1, 1));
8084 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8085 into (A OR B).
8086 For sequence point consistancy, we need to check for trapping,
8087 and side-effects. */
8088 else if (code == icode && simple_operand_p_2 (arg0)
8089 && simple_operand_p_2 (arg1))
8090 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8093 return NULL_TREE;
8096 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8097 by changing CODE to reduce the magnitude of constants involved in
8098 ARG0 of the comparison.
8099 Returns a canonicalized comparison tree if a simplification was
8100 possible, otherwise returns NULL_TREE.
8101 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8102 valid if signed overflow is undefined. */
8104 static tree
8105 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8106 tree arg0, tree arg1,
8107 bool *strict_overflow_p)
8109 enum tree_code code0 = TREE_CODE (arg0);
8110 tree t, cst0 = NULL_TREE;
8111 int sgn0;
8113 /* Match A +- CST code arg1. We can change this only if overflow
8114 is undefined. */
8115 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8116 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8117 /* In principle pointers also have undefined overflow behavior,
8118 but that causes problems elsewhere. */
8119 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8120 && (code0 == MINUS_EXPR
8121 || code0 == PLUS_EXPR)
8122 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8123 return NULL_TREE;
8125 /* Identify the constant in arg0 and its sign. */
8126 cst0 = TREE_OPERAND (arg0, 1);
8127 sgn0 = tree_int_cst_sgn (cst0);
8129 /* Overflowed constants and zero will cause problems. */
8130 if (integer_zerop (cst0)
8131 || TREE_OVERFLOW (cst0))
8132 return NULL_TREE;
8134 /* See if we can reduce the magnitude of the constant in
8135 arg0 by changing the comparison code. */
8136 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8137 if (code == LT_EXPR
8138 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8139 code = LE_EXPR;
8140 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8141 else if (code == GT_EXPR
8142 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8143 code = GE_EXPR;
8144 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8145 else if (code == LE_EXPR
8146 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8147 code = LT_EXPR;
8148 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8149 else if (code == GE_EXPR
8150 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8151 code = GT_EXPR;
8152 else
8153 return NULL_TREE;
8154 *strict_overflow_p = true;
8156 /* Now build the constant reduced in magnitude. But not if that
8157 would produce one outside of its types range. */
8158 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8159 && ((sgn0 == 1
8160 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8161 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8162 || (sgn0 == -1
8163 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8164 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8165 return NULL_TREE;
8167 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8168 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8169 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8170 t = fold_convert (TREE_TYPE (arg1), t);
8172 return fold_build2_loc (loc, code, type, t, arg1);
8175 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8176 overflow further. Try to decrease the magnitude of constants involved
8177 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8178 and put sole constants at the second argument position.
8179 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8181 static tree
8182 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8183 tree arg0, tree arg1)
8185 tree t;
8186 bool strict_overflow_p;
8187 const char * const warnmsg = G_("assuming signed overflow does not occur "
8188 "when reducing constant in comparison");
8190 /* Try canonicalization by simplifying arg0. */
8191 strict_overflow_p = false;
8192 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8193 &strict_overflow_p);
8194 if (t)
8196 if (strict_overflow_p)
8197 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8198 return t;
8201 /* Try canonicalization by simplifying arg1 using the swapped
8202 comparison. */
8203 code = swap_tree_comparison (code);
8204 strict_overflow_p = false;
8205 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8206 &strict_overflow_p);
8207 if (t && strict_overflow_p)
8208 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8209 return t;
8212 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8213 space. This is used to avoid issuing overflow warnings for
8214 expressions like &p->x which can not wrap. */
8216 static bool
8217 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8219 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8220 return true;
8222 if (bitpos < 0)
8223 return true;
8225 wide_int wi_offset;
8226 int precision = TYPE_PRECISION (TREE_TYPE (base));
8227 if (offset == NULL_TREE)
8228 wi_offset = wi::zero (precision);
8229 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8230 return true;
8231 else
8232 wi_offset = offset;
8234 bool overflow;
8235 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8236 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8237 if (overflow)
8238 return true;
8240 if (!wi::fits_uhwi_p (total))
8241 return true;
8243 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8244 if (size <= 0)
8245 return true;
8247 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8248 array. */
8249 if (TREE_CODE (base) == ADDR_EXPR)
8251 HOST_WIDE_INT base_size;
8253 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8254 if (base_size > 0 && size < base_size)
8255 size = base_size;
8258 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8261 /* Return a positive integer when the symbol DECL is known to have
8262 a nonzero address, zero when it's known not to (e.g., it's a weak
8263 symbol), and a negative integer when the symbol is not yet in the
8264 symbol table and so whether or not its address is zero is unknown.
8265 For function local objects always return positive integer. */
8266 static int
8267 maybe_nonzero_address (tree decl)
8269 if (DECL_P (decl) && decl_in_symtab_p (decl))
8270 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8271 return symbol->nonzero_address ();
8273 /* Function local objects are never NULL. */
8274 if (DECL_P (decl)
8275 && (DECL_CONTEXT (decl)
8276 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
8277 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
8278 return 1;
8280 return -1;
8283 /* Subroutine of fold_binary. This routine performs all of the
8284 transformations that are common to the equality/inequality
8285 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8286 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8287 fold_binary should call fold_binary. Fold a comparison with
8288 tree code CODE and type TYPE with operands OP0 and OP1. Return
8289 the folded comparison or NULL_TREE. */
8291 static tree
8292 fold_comparison (location_t loc, enum tree_code code, tree type,
8293 tree op0, tree op1)
8295 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8296 tree arg0, arg1, tem;
8298 arg0 = op0;
8299 arg1 = op1;
8301 STRIP_SIGN_NOPS (arg0);
8302 STRIP_SIGN_NOPS (arg1);
8304 /* For comparisons of pointers we can decompose it to a compile time
8305 comparison of the base objects and the offsets into the object.
8306 This requires at least one operand being an ADDR_EXPR or a
8307 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8308 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8309 && (TREE_CODE (arg0) == ADDR_EXPR
8310 || TREE_CODE (arg1) == ADDR_EXPR
8311 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8312 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8314 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8315 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8316 machine_mode mode;
8317 int volatilep, reversep, unsignedp;
8318 bool indirect_base0 = false, indirect_base1 = false;
8320 /* Get base and offset for the access. Strip ADDR_EXPR for
8321 get_inner_reference, but put it back by stripping INDIRECT_REF
8322 off the base object if possible. indirect_baseN will be true
8323 if baseN is not an address but refers to the object itself. */
8324 base0 = arg0;
8325 if (TREE_CODE (arg0) == ADDR_EXPR)
8327 base0
8328 = get_inner_reference (TREE_OPERAND (arg0, 0),
8329 &bitsize, &bitpos0, &offset0, &mode,
8330 &unsignedp, &reversep, &volatilep);
8331 if (TREE_CODE (base0) == INDIRECT_REF)
8332 base0 = TREE_OPERAND (base0, 0);
8333 else
8334 indirect_base0 = true;
8336 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8338 base0 = TREE_OPERAND (arg0, 0);
8339 STRIP_SIGN_NOPS (base0);
8340 if (TREE_CODE (base0) == ADDR_EXPR)
8342 base0
8343 = get_inner_reference (TREE_OPERAND (base0, 0),
8344 &bitsize, &bitpos0, &offset0, &mode,
8345 &unsignedp, &reversep, &volatilep);
8346 if (TREE_CODE (base0) == INDIRECT_REF)
8347 base0 = TREE_OPERAND (base0, 0);
8348 else
8349 indirect_base0 = true;
8351 if (offset0 == NULL_TREE || integer_zerop (offset0))
8352 offset0 = TREE_OPERAND (arg0, 1);
8353 else
8354 offset0 = size_binop (PLUS_EXPR, offset0,
8355 TREE_OPERAND (arg0, 1));
8356 if (TREE_CODE (offset0) == INTEGER_CST)
8358 offset_int tem = wi::sext (wi::to_offset (offset0),
8359 TYPE_PRECISION (sizetype));
8360 tem <<= LOG2_BITS_PER_UNIT;
8361 tem += bitpos0;
8362 if (wi::fits_shwi_p (tem))
8364 bitpos0 = tem.to_shwi ();
8365 offset0 = NULL_TREE;
8370 base1 = arg1;
8371 if (TREE_CODE (arg1) == ADDR_EXPR)
8373 base1
8374 = get_inner_reference (TREE_OPERAND (arg1, 0),
8375 &bitsize, &bitpos1, &offset1, &mode,
8376 &unsignedp, &reversep, &volatilep);
8377 if (TREE_CODE (base1) == INDIRECT_REF)
8378 base1 = TREE_OPERAND (base1, 0);
8379 else
8380 indirect_base1 = true;
8382 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8384 base1 = TREE_OPERAND (arg1, 0);
8385 STRIP_SIGN_NOPS (base1);
8386 if (TREE_CODE (base1) == ADDR_EXPR)
8388 base1
8389 = get_inner_reference (TREE_OPERAND (base1, 0),
8390 &bitsize, &bitpos1, &offset1, &mode,
8391 &unsignedp, &reversep, &volatilep);
8392 if (TREE_CODE (base1) == INDIRECT_REF)
8393 base1 = TREE_OPERAND (base1, 0);
8394 else
8395 indirect_base1 = true;
8397 if (offset1 == NULL_TREE || integer_zerop (offset1))
8398 offset1 = TREE_OPERAND (arg1, 1);
8399 else
8400 offset1 = size_binop (PLUS_EXPR, offset1,
8401 TREE_OPERAND (arg1, 1));
8402 if (TREE_CODE (offset1) == INTEGER_CST)
8404 offset_int tem = wi::sext (wi::to_offset (offset1),
8405 TYPE_PRECISION (sizetype));
8406 tem <<= LOG2_BITS_PER_UNIT;
8407 tem += bitpos1;
8408 if (wi::fits_shwi_p (tem))
8410 bitpos1 = tem.to_shwi ();
8411 offset1 = NULL_TREE;
8416 /* If we have equivalent bases we might be able to simplify. */
8417 if (indirect_base0 == indirect_base1
8418 && operand_equal_p (base0, base1,
8419 indirect_base0 ? OEP_ADDRESS_OF : 0))
8421 /* We can fold this expression to a constant if the non-constant
8422 offset parts are equal. */
8423 if (offset0 == offset1
8424 || (offset0 && offset1
8425 && operand_equal_p (offset0, offset1, 0)))
8427 if (!equality_code
8428 && bitpos0 != bitpos1
8429 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8430 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8431 fold_overflow_warning (("assuming pointer wraparound does not "
8432 "occur when comparing P +- C1 with "
8433 "P +- C2"),
8434 WARN_STRICT_OVERFLOW_CONDITIONAL);
8436 switch (code)
8438 case EQ_EXPR:
8439 return constant_boolean_node (bitpos0 == bitpos1, type);
8440 case NE_EXPR:
8441 return constant_boolean_node (bitpos0 != bitpos1, type);
8442 case LT_EXPR:
8443 return constant_boolean_node (bitpos0 < bitpos1, type);
8444 case LE_EXPR:
8445 return constant_boolean_node (bitpos0 <= bitpos1, type);
8446 case GE_EXPR:
8447 return constant_boolean_node (bitpos0 >= bitpos1, type);
8448 case GT_EXPR:
8449 return constant_boolean_node (bitpos0 > bitpos1, type);
8450 default:;
8453 /* We can simplify the comparison to a comparison of the variable
8454 offset parts if the constant offset parts are equal.
8455 Be careful to use signed sizetype here because otherwise we
8456 mess with array offsets in the wrong way. This is possible
8457 because pointer arithmetic is restricted to retain within an
8458 object and overflow on pointer differences is undefined as of
8459 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8460 else if (bitpos0 == bitpos1)
8462 /* By converting to signed sizetype we cover middle-end pointer
8463 arithmetic which operates on unsigned pointer types of size
8464 type size and ARRAY_REF offsets which are properly sign or
8465 zero extended from their type in case it is narrower than
8466 sizetype. */
8467 if (offset0 == NULL_TREE)
8468 offset0 = build_int_cst (ssizetype, 0);
8469 else
8470 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8471 if (offset1 == NULL_TREE)
8472 offset1 = build_int_cst (ssizetype, 0);
8473 else
8474 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8476 if (!equality_code
8477 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8478 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8479 fold_overflow_warning (("assuming pointer wraparound does not "
8480 "occur when comparing P +- C1 with "
8481 "P +- C2"),
8482 WARN_STRICT_OVERFLOW_COMPARISON);
8484 return fold_build2_loc (loc, code, type, offset0, offset1);
8487 /* For equal offsets we can simplify to a comparison of the
8488 base addresses. */
8489 else if (bitpos0 == bitpos1
8490 && (indirect_base0
8491 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8492 && (indirect_base1
8493 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8494 && ((offset0 == offset1)
8495 || (offset0 && offset1
8496 && operand_equal_p (offset0, offset1, 0))))
8498 if (indirect_base0)
8499 base0 = build_fold_addr_expr_loc (loc, base0);
8500 if (indirect_base1)
8501 base1 = build_fold_addr_expr_loc (loc, base1);
8502 return fold_build2_loc (loc, code, type, base0, base1);
8504 /* Comparison between an ordinary (non-weak) symbol and a null
8505 pointer can be eliminated since such symbols must have a non
8506 null address. In C, relational expressions between pointers
8507 to objects and null pointers are undefined. The results
8508 below follow the C++ rules with the additional property that
8509 every object pointer compares greater than a null pointer.
8511 else if (((DECL_P (base0)
8512 && maybe_nonzero_address (base0) > 0
8513 /* Avoid folding references to struct members at offset 0 to
8514 prevent tests like '&ptr->firstmember == 0' from getting
8515 eliminated. When ptr is null, although the -> expression
8516 is strictly speaking invalid, GCC retains it as a matter
8517 of QoI. See PR c/44555. */
8518 && (offset0 == NULL_TREE && bitpos0 != 0))
8519 || CONSTANT_CLASS_P (base0))
8520 && indirect_base0
8521 /* The caller guarantees that when one of the arguments is
8522 constant (i.e., null in this case) it is second. */
8523 && integer_zerop (arg1))
8525 switch (code)
8527 case EQ_EXPR:
8528 case LE_EXPR:
8529 case LT_EXPR:
8530 return constant_boolean_node (false, type);
8531 case GE_EXPR:
8532 case GT_EXPR:
8533 case NE_EXPR:
8534 return constant_boolean_node (true, type);
8535 default:
8536 gcc_unreachable ();
8541 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8542 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8543 the resulting offset is smaller in absolute value than the
8544 original one and has the same sign. */
8545 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8546 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8547 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8548 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8549 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8550 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8551 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8552 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8554 tree const1 = TREE_OPERAND (arg0, 1);
8555 tree const2 = TREE_OPERAND (arg1, 1);
8556 tree variable1 = TREE_OPERAND (arg0, 0);
8557 tree variable2 = TREE_OPERAND (arg1, 0);
8558 tree cst;
8559 const char * const warnmsg = G_("assuming signed overflow does not "
8560 "occur when combining constants around "
8561 "a comparison");
8563 /* Put the constant on the side where it doesn't overflow and is
8564 of lower absolute value and of same sign than before. */
8565 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8566 ? MINUS_EXPR : PLUS_EXPR,
8567 const2, const1);
8568 if (!TREE_OVERFLOW (cst)
8569 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8570 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8572 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8573 return fold_build2_loc (loc, code, type,
8574 variable1,
8575 fold_build2_loc (loc, TREE_CODE (arg1),
8576 TREE_TYPE (arg1),
8577 variable2, cst));
8580 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8581 ? MINUS_EXPR : PLUS_EXPR,
8582 const1, const2);
8583 if (!TREE_OVERFLOW (cst)
8584 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8585 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8587 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8588 return fold_build2_loc (loc, code, type,
8589 fold_build2_loc (loc, TREE_CODE (arg0),
8590 TREE_TYPE (arg0),
8591 variable1, cst),
8592 variable2);
8596 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8597 if (tem)
8598 return tem;
8600 /* If we are comparing an expression that just has comparisons
8601 of two integer values, arithmetic expressions of those comparisons,
8602 and constants, we can simplify it. There are only three cases
8603 to check: the two values can either be equal, the first can be
8604 greater, or the second can be greater. Fold the expression for
8605 those three values. Since each value must be 0 or 1, we have
8606 eight possibilities, each of which corresponds to the constant 0
8607 or 1 or one of the six possible comparisons.
8609 This handles common cases like (a > b) == 0 but also handles
8610 expressions like ((x > y) - (y > x)) > 0, which supposedly
8611 occur in macroized code. */
8613 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8615 tree cval1 = 0, cval2 = 0;
8616 int save_p = 0;
8618 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8619 /* Don't handle degenerate cases here; they should already
8620 have been handled anyway. */
8621 && cval1 != 0 && cval2 != 0
8622 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8623 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8624 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8625 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8626 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8627 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8628 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8630 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8631 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8633 /* We can't just pass T to eval_subst in case cval1 or cval2
8634 was the same as ARG1. */
8636 tree high_result
8637 = fold_build2_loc (loc, code, type,
8638 eval_subst (loc, arg0, cval1, maxval,
8639 cval2, minval),
8640 arg1);
8641 tree equal_result
8642 = fold_build2_loc (loc, code, type,
8643 eval_subst (loc, arg0, cval1, maxval,
8644 cval2, maxval),
8645 arg1);
8646 tree low_result
8647 = fold_build2_loc (loc, code, type,
8648 eval_subst (loc, arg0, cval1, minval,
8649 cval2, maxval),
8650 arg1);
8652 /* All three of these results should be 0 or 1. Confirm they are.
8653 Then use those values to select the proper code to use. */
8655 if (TREE_CODE (high_result) == INTEGER_CST
8656 && TREE_CODE (equal_result) == INTEGER_CST
8657 && TREE_CODE (low_result) == INTEGER_CST)
8659 /* Make a 3-bit mask with the high-order bit being the
8660 value for `>', the next for '=', and the low for '<'. */
8661 switch ((integer_onep (high_result) * 4)
8662 + (integer_onep (equal_result) * 2)
8663 + integer_onep (low_result))
8665 case 0:
8666 /* Always false. */
8667 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8668 case 1:
8669 code = LT_EXPR;
8670 break;
8671 case 2:
8672 code = EQ_EXPR;
8673 break;
8674 case 3:
8675 code = LE_EXPR;
8676 break;
8677 case 4:
8678 code = GT_EXPR;
8679 break;
8680 case 5:
8681 code = NE_EXPR;
8682 break;
8683 case 6:
8684 code = GE_EXPR;
8685 break;
8686 case 7:
8687 /* Always true. */
8688 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8691 if (save_p)
8693 tem = save_expr (build2 (code, type, cval1, cval2));
8694 protected_set_expr_location (tem, loc);
8695 return tem;
8697 return fold_build2_loc (loc, code, type, cval1, cval2);
8702 return NULL_TREE;
8706 /* Subroutine of fold_binary. Optimize complex multiplications of the
8707 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8708 argument EXPR represents the expression "z" of type TYPE. */
8710 static tree
8711 fold_mult_zconjz (location_t loc, tree type, tree expr)
8713 tree itype = TREE_TYPE (type);
8714 tree rpart, ipart, tem;
8716 if (TREE_CODE (expr) == COMPLEX_EXPR)
8718 rpart = TREE_OPERAND (expr, 0);
8719 ipart = TREE_OPERAND (expr, 1);
8721 else if (TREE_CODE (expr) == COMPLEX_CST)
8723 rpart = TREE_REALPART (expr);
8724 ipart = TREE_IMAGPART (expr);
8726 else
8728 expr = save_expr (expr);
8729 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8730 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8733 rpart = save_expr (rpart);
8734 ipart = save_expr (ipart);
8735 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8736 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8737 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8738 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8739 build_zero_cst (itype));
8743 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8744 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8746 static bool
8747 vec_cst_ctor_to_array (tree arg, tree *elts)
8749 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8751 if (TREE_CODE (arg) == VECTOR_CST)
8753 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8754 elts[i] = VECTOR_CST_ELT (arg, i);
8756 else if (TREE_CODE (arg) == CONSTRUCTOR)
8758 constructor_elt *elt;
8760 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8761 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8762 return false;
8763 else
8764 elts[i] = elt->value;
8766 else
8767 return false;
8768 for (; i < nelts; i++)
8769 elts[i]
8770 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8771 return true;
8774 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8775 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8776 NULL_TREE otherwise. */
8778 static tree
8779 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8781 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8782 tree *elts;
8783 bool need_ctor = false;
8785 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8786 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8787 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8788 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8789 return NULL_TREE;
8791 elts = XALLOCAVEC (tree, nelts * 3);
8792 if (!vec_cst_ctor_to_array (arg0, elts)
8793 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8794 return NULL_TREE;
8796 for (i = 0; i < nelts; i++)
8798 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8799 need_ctor = true;
8800 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8803 if (need_ctor)
8805 vec<constructor_elt, va_gc> *v;
8806 vec_alloc (v, nelts);
8807 for (i = 0; i < nelts; i++)
8808 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8809 return build_constructor (type, v);
8811 else
8812 return build_vector (type, &elts[2 * nelts]);
8815 /* Try to fold a pointer difference of type TYPE two address expressions of
8816 array references AREF0 and AREF1 using location LOC. Return a
8817 simplified expression for the difference or NULL_TREE. */
8819 static tree
8820 fold_addr_of_array_ref_difference (location_t loc, tree type,
8821 tree aref0, tree aref1)
8823 tree base0 = TREE_OPERAND (aref0, 0);
8824 tree base1 = TREE_OPERAND (aref1, 0);
8825 tree base_offset = build_int_cst (type, 0);
8827 /* If the bases are array references as well, recurse. If the bases
8828 are pointer indirections compute the difference of the pointers.
8829 If the bases are equal, we are set. */
8830 if ((TREE_CODE (base0) == ARRAY_REF
8831 && TREE_CODE (base1) == ARRAY_REF
8832 && (base_offset
8833 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8834 || (INDIRECT_REF_P (base0)
8835 && INDIRECT_REF_P (base1)
8836 && (base_offset
8837 = fold_binary_loc (loc, MINUS_EXPR, type,
8838 fold_convert (type, TREE_OPERAND (base0, 0)),
8839 fold_convert (type,
8840 TREE_OPERAND (base1, 0)))))
8841 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
8843 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8844 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8845 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8846 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
8847 return fold_build2_loc (loc, PLUS_EXPR, type,
8848 base_offset,
8849 fold_build2_loc (loc, MULT_EXPR, type,
8850 diff, esz));
8852 return NULL_TREE;
8855 /* If the real or vector real constant CST of type TYPE has an exact
8856 inverse, return it, else return NULL. */
8858 tree
8859 exact_inverse (tree type, tree cst)
8861 REAL_VALUE_TYPE r;
8862 tree unit_type, *elts;
8863 machine_mode mode;
8864 unsigned vec_nelts, i;
8866 switch (TREE_CODE (cst))
8868 case REAL_CST:
8869 r = TREE_REAL_CST (cst);
8871 if (exact_real_inverse (TYPE_MODE (type), &r))
8872 return build_real (type, r);
8874 return NULL_TREE;
8876 case VECTOR_CST:
8877 vec_nelts = VECTOR_CST_NELTS (cst);
8878 elts = XALLOCAVEC (tree, vec_nelts);
8879 unit_type = TREE_TYPE (type);
8880 mode = TYPE_MODE (unit_type);
8882 for (i = 0; i < vec_nelts; i++)
8884 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8885 if (!exact_real_inverse (mode, &r))
8886 return NULL_TREE;
8887 elts[i] = build_real (unit_type, r);
8890 return build_vector (type, elts);
8892 default:
8893 return NULL_TREE;
8897 /* Mask out the tz least significant bits of X of type TYPE where
8898 tz is the number of trailing zeroes in Y. */
8899 static wide_int
8900 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8902 int tz = wi::ctz (y);
8903 if (tz > 0)
8904 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8905 return x;
8908 /* Return true when T is an address and is known to be nonzero.
8909 For floating point we further ensure that T is not denormal.
8910 Similar logic is present in nonzero_address in rtlanal.h.
8912 If the return value is based on the assumption that signed overflow
8913 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8914 change *STRICT_OVERFLOW_P. */
8916 static bool
8917 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8919 tree type = TREE_TYPE (t);
8920 enum tree_code code;
8922 /* Doing something useful for floating point would need more work. */
8923 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8924 return false;
8926 code = TREE_CODE (t);
8927 switch (TREE_CODE_CLASS (code))
8929 case tcc_unary:
8930 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8931 strict_overflow_p);
8932 case tcc_binary:
8933 case tcc_comparison:
8934 return tree_binary_nonzero_warnv_p (code, type,
8935 TREE_OPERAND (t, 0),
8936 TREE_OPERAND (t, 1),
8937 strict_overflow_p);
8938 case tcc_constant:
8939 case tcc_declaration:
8940 case tcc_reference:
8941 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8943 default:
8944 break;
8947 switch (code)
8949 case TRUTH_NOT_EXPR:
8950 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8951 strict_overflow_p);
8953 case TRUTH_AND_EXPR:
8954 case TRUTH_OR_EXPR:
8955 case TRUTH_XOR_EXPR:
8956 return tree_binary_nonzero_warnv_p (code, type,
8957 TREE_OPERAND (t, 0),
8958 TREE_OPERAND (t, 1),
8959 strict_overflow_p);
8961 case COND_EXPR:
8962 case CONSTRUCTOR:
8963 case OBJ_TYPE_REF:
8964 case ASSERT_EXPR:
8965 case ADDR_EXPR:
8966 case WITH_SIZE_EXPR:
8967 case SSA_NAME:
8968 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8970 case COMPOUND_EXPR:
8971 case MODIFY_EXPR:
8972 case BIND_EXPR:
8973 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
8974 strict_overflow_p);
8976 case SAVE_EXPR:
8977 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
8978 strict_overflow_p);
8980 case CALL_EXPR:
8982 tree fndecl = get_callee_fndecl (t);
8983 if (!fndecl) return false;
8984 if (flag_delete_null_pointer_checks && !flag_check_new
8985 && DECL_IS_OPERATOR_NEW (fndecl)
8986 && !TREE_NOTHROW (fndecl))
8987 return true;
8988 if (flag_delete_null_pointer_checks
8989 && lookup_attribute ("returns_nonnull",
8990 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
8991 return true;
8992 return alloca_call_p (t);
8995 default:
8996 break;
8998 return false;
9001 /* Return true when T is an address and is known to be nonzero.
9002 Handle warnings about undefined signed overflow. */
9004 bool
9005 tree_expr_nonzero_p (tree t)
9007 bool ret, strict_overflow_p;
9009 strict_overflow_p = false;
9010 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9011 if (strict_overflow_p)
9012 fold_overflow_warning (("assuming signed overflow does not occur when "
9013 "determining that expression is always "
9014 "non-zero"),
9015 WARN_STRICT_OVERFLOW_MISC);
9016 return ret;
9019 /* Return true if T is known not to be equal to an integer W. */
9021 bool
9022 expr_not_equal_to (tree t, const wide_int &w)
9024 wide_int min, max, nz;
9025 value_range_type rtype;
9026 switch (TREE_CODE (t))
9028 case INTEGER_CST:
9029 return wi::ne_p (t, w);
9031 case SSA_NAME:
9032 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9033 return false;
9034 rtype = get_range_info (t, &min, &max);
9035 if (rtype == VR_RANGE)
9037 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9038 return true;
9039 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9040 return true;
9042 else if (rtype == VR_ANTI_RANGE
9043 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9044 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9045 return true;
9046 /* If T has some known zero bits and W has any of those bits set,
9047 then T is known not to be equal to W. */
9048 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9049 TYPE_PRECISION (TREE_TYPE (t))), 0))
9050 return true;
9051 return false;
9053 default:
9054 return false;
9058 /* Fold a binary expression of code CODE and type TYPE with operands
9059 OP0 and OP1. LOC is the location of the resulting expression.
9060 Return the folded expression if folding is successful. Otherwise,
9061 return NULL_TREE. */
9063 tree
9064 fold_binary_loc (location_t loc,
9065 enum tree_code code, tree type, tree op0, tree op1)
9067 enum tree_code_class kind = TREE_CODE_CLASS (code);
9068 tree arg0, arg1, tem;
9069 tree t1 = NULL_TREE;
9070 bool strict_overflow_p;
9071 unsigned int prec;
9073 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9074 && TREE_CODE_LENGTH (code) == 2
9075 && op0 != NULL_TREE
9076 && op1 != NULL_TREE);
9078 arg0 = op0;
9079 arg1 = op1;
9081 /* Strip any conversions that don't change the mode. This is
9082 safe for every expression, except for a comparison expression
9083 because its signedness is derived from its operands. So, in
9084 the latter case, only strip conversions that don't change the
9085 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9086 preserved.
9088 Note that this is done as an internal manipulation within the
9089 constant folder, in order to find the simplest representation
9090 of the arguments so that their form can be studied. In any
9091 cases, the appropriate type conversions should be put back in
9092 the tree that will get out of the constant folder. */
9094 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9096 STRIP_SIGN_NOPS (arg0);
9097 STRIP_SIGN_NOPS (arg1);
9099 else
9101 STRIP_NOPS (arg0);
9102 STRIP_NOPS (arg1);
9105 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9106 constant but we can't do arithmetic on them. */
9107 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9109 tem = const_binop (code, type, arg0, arg1);
9110 if (tem != NULL_TREE)
9112 if (TREE_TYPE (tem) != type)
9113 tem = fold_convert_loc (loc, type, tem);
9114 return tem;
9118 /* If this is a commutative operation, and ARG0 is a constant, move it
9119 to ARG1 to reduce the number of tests below. */
9120 if (commutative_tree_code (code)
9121 && tree_swap_operands_p (arg0, arg1))
9122 return fold_build2_loc (loc, code, type, op1, op0);
9124 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9125 to ARG1 to reduce the number of tests below. */
9126 if (kind == tcc_comparison
9127 && tree_swap_operands_p (arg0, arg1))
9128 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9130 tem = generic_simplify (loc, code, type, op0, op1);
9131 if (tem)
9132 return tem;
9134 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9136 First check for cases where an arithmetic operation is applied to a
9137 compound, conditional, or comparison operation. Push the arithmetic
9138 operation inside the compound or conditional to see if any folding
9139 can then be done. Convert comparison to conditional for this purpose.
9140 The also optimizes non-constant cases that used to be done in
9141 expand_expr.
9143 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9144 one of the operands is a comparison and the other is a comparison, a
9145 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9146 code below would make the expression more complex. Change it to a
9147 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9148 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9150 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9151 || code == EQ_EXPR || code == NE_EXPR)
9152 && TREE_CODE (type) != VECTOR_TYPE
9153 && ((truth_value_p (TREE_CODE (arg0))
9154 && (truth_value_p (TREE_CODE (arg1))
9155 || (TREE_CODE (arg1) == BIT_AND_EXPR
9156 && integer_onep (TREE_OPERAND (arg1, 1)))))
9157 || (truth_value_p (TREE_CODE (arg1))
9158 && (truth_value_p (TREE_CODE (arg0))
9159 || (TREE_CODE (arg0) == BIT_AND_EXPR
9160 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9162 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9163 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9164 : TRUTH_XOR_EXPR,
9165 boolean_type_node,
9166 fold_convert_loc (loc, boolean_type_node, arg0),
9167 fold_convert_loc (loc, boolean_type_node, arg1));
9169 if (code == EQ_EXPR)
9170 tem = invert_truthvalue_loc (loc, tem);
9172 return fold_convert_loc (loc, type, tem);
9175 if (TREE_CODE_CLASS (code) == tcc_binary
9176 || TREE_CODE_CLASS (code) == tcc_comparison)
9178 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9180 tem = fold_build2_loc (loc, code, type,
9181 fold_convert_loc (loc, TREE_TYPE (op0),
9182 TREE_OPERAND (arg0, 1)), op1);
9183 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9184 tem);
9186 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9188 tem = fold_build2_loc (loc, code, type, op0,
9189 fold_convert_loc (loc, TREE_TYPE (op1),
9190 TREE_OPERAND (arg1, 1)));
9191 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9192 tem);
9195 if (TREE_CODE (arg0) == COND_EXPR
9196 || TREE_CODE (arg0) == VEC_COND_EXPR
9197 || COMPARISON_CLASS_P (arg0))
9199 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9200 arg0, arg1,
9201 /*cond_first_p=*/1);
9202 if (tem != NULL_TREE)
9203 return tem;
9206 if (TREE_CODE (arg1) == COND_EXPR
9207 || TREE_CODE (arg1) == VEC_COND_EXPR
9208 || COMPARISON_CLASS_P (arg1))
9210 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9211 arg1, arg0,
9212 /*cond_first_p=*/0);
9213 if (tem != NULL_TREE)
9214 return tem;
9218 switch (code)
9220 case MEM_REF:
9221 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9222 if (TREE_CODE (arg0) == ADDR_EXPR
9223 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9225 tree iref = TREE_OPERAND (arg0, 0);
9226 return fold_build2 (MEM_REF, type,
9227 TREE_OPERAND (iref, 0),
9228 int_const_binop (PLUS_EXPR, arg1,
9229 TREE_OPERAND (iref, 1)));
9232 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9233 if (TREE_CODE (arg0) == ADDR_EXPR
9234 && handled_component_p (TREE_OPERAND (arg0, 0)))
9236 tree base;
9237 HOST_WIDE_INT coffset;
9238 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9239 &coffset);
9240 if (!base)
9241 return NULL_TREE;
9242 return fold_build2 (MEM_REF, type,
9243 build_fold_addr_expr (base),
9244 int_const_binop (PLUS_EXPR, arg1,
9245 size_int (coffset)));
9248 return NULL_TREE;
9250 case POINTER_PLUS_EXPR:
9251 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9252 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9253 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9254 return fold_convert_loc (loc, type,
9255 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9256 fold_convert_loc (loc, sizetype,
9257 arg1),
9258 fold_convert_loc (loc, sizetype,
9259 arg0)));
9261 return NULL_TREE;
9263 case PLUS_EXPR:
9264 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9266 /* X + (X / CST) * -CST is X % CST. */
9267 if (TREE_CODE (arg1) == MULT_EXPR
9268 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9269 && operand_equal_p (arg0,
9270 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9272 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9273 tree cst1 = TREE_OPERAND (arg1, 1);
9274 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9275 cst1, cst0);
9276 if (sum && integer_zerop (sum))
9277 return fold_convert_loc (loc, type,
9278 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9279 TREE_TYPE (arg0), arg0,
9280 cst0));
9284 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9285 one. Make sure the type is not saturating and has the signedness of
9286 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9287 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9288 if ((TREE_CODE (arg0) == MULT_EXPR
9289 || TREE_CODE (arg1) == MULT_EXPR)
9290 && !TYPE_SATURATING (type)
9291 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9292 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9293 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9295 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9296 if (tem)
9297 return tem;
9300 if (! FLOAT_TYPE_P (type))
9302 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9303 (plus (plus (mult) (mult)) (foo)) so that we can
9304 take advantage of the factoring cases below. */
9305 if (ANY_INTEGRAL_TYPE_P (type)
9306 && TYPE_OVERFLOW_WRAPS (type)
9307 && (((TREE_CODE (arg0) == PLUS_EXPR
9308 || TREE_CODE (arg0) == MINUS_EXPR)
9309 && TREE_CODE (arg1) == MULT_EXPR)
9310 || ((TREE_CODE (arg1) == PLUS_EXPR
9311 || TREE_CODE (arg1) == MINUS_EXPR)
9312 && TREE_CODE (arg0) == MULT_EXPR)))
9314 tree parg0, parg1, parg, marg;
9315 enum tree_code pcode;
9317 if (TREE_CODE (arg1) == MULT_EXPR)
9318 parg = arg0, marg = arg1;
9319 else
9320 parg = arg1, marg = arg0;
9321 pcode = TREE_CODE (parg);
9322 parg0 = TREE_OPERAND (parg, 0);
9323 parg1 = TREE_OPERAND (parg, 1);
9324 STRIP_NOPS (parg0);
9325 STRIP_NOPS (parg1);
9327 if (TREE_CODE (parg0) == MULT_EXPR
9328 && TREE_CODE (parg1) != MULT_EXPR)
9329 return fold_build2_loc (loc, pcode, type,
9330 fold_build2_loc (loc, PLUS_EXPR, type,
9331 fold_convert_loc (loc, type,
9332 parg0),
9333 fold_convert_loc (loc, type,
9334 marg)),
9335 fold_convert_loc (loc, type, parg1));
9336 if (TREE_CODE (parg0) != MULT_EXPR
9337 && TREE_CODE (parg1) == MULT_EXPR)
9338 return
9339 fold_build2_loc (loc, PLUS_EXPR, type,
9340 fold_convert_loc (loc, type, parg0),
9341 fold_build2_loc (loc, pcode, type,
9342 fold_convert_loc (loc, type, marg),
9343 fold_convert_loc (loc, type,
9344 parg1)));
9347 else
9349 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9350 to __complex__ ( x, y ). This is not the same for SNaNs or
9351 if signed zeros are involved. */
9352 if (!HONOR_SNANS (element_mode (arg0))
9353 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9354 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9356 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9357 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9358 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9359 bool arg0rz = false, arg0iz = false;
9360 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9361 || (arg0i && (arg0iz = real_zerop (arg0i))))
9363 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9364 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9365 if (arg0rz && arg1i && real_zerop (arg1i))
9367 tree rp = arg1r ? arg1r
9368 : build1 (REALPART_EXPR, rtype, arg1);
9369 tree ip = arg0i ? arg0i
9370 : build1 (IMAGPART_EXPR, rtype, arg0);
9371 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9373 else if (arg0iz && arg1r && real_zerop (arg1r))
9375 tree rp = arg0r ? arg0r
9376 : build1 (REALPART_EXPR, rtype, arg0);
9377 tree ip = arg1i ? arg1i
9378 : build1 (IMAGPART_EXPR, rtype, arg1);
9379 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9384 if (flag_unsafe_math_optimizations
9385 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9386 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9387 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9388 return tem;
9390 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9391 We associate floats only if the user has specified
9392 -fassociative-math. */
9393 if (flag_associative_math
9394 && TREE_CODE (arg1) == PLUS_EXPR
9395 && TREE_CODE (arg0) != MULT_EXPR)
9397 tree tree10 = TREE_OPERAND (arg1, 0);
9398 tree tree11 = TREE_OPERAND (arg1, 1);
9399 if (TREE_CODE (tree11) == MULT_EXPR
9400 && TREE_CODE (tree10) == MULT_EXPR)
9402 tree tree0;
9403 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9404 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9407 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9408 We associate floats only if the user has specified
9409 -fassociative-math. */
9410 if (flag_associative_math
9411 && TREE_CODE (arg0) == PLUS_EXPR
9412 && TREE_CODE (arg1) != MULT_EXPR)
9414 tree tree00 = TREE_OPERAND (arg0, 0);
9415 tree tree01 = TREE_OPERAND (arg0, 1);
9416 if (TREE_CODE (tree01) == MULT_EXPR
9417 && TREE_CODE (tree00) == MULT_EXPR)
9419 tree tree0;
9420 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9421 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9426 bit_rotate:
9427 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9428 is a rotate of A by C1 bits. */
9429 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9430 is a rotate of A by B bits. */
9432 enum tree_code code0, code1;
9433 tree rtype;
9434 code0 = TREE_CODE (arg0);
9435 code1 = TREE_CODE (arg1);
9436 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9437 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9438 && operand_equal_p (TREE_OPERAND (arg0, 0),
9439 TREE_OPERAND (arg1, 0), 0)
9440 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9441 TYPE_UNSIGNED (rtype))
9442 /* Only create rotates in complete modes. Other cases are not
9443 expanded properly. */
9444 && (element_precision (rtype)
9445 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9447 tree tree01, tree11;
9448 enum tree_code code01, code11;
9450 tree01 = TREE_OPERAND (arg0, 1);
9451 tree11 = TREE_OPERAND (arg1, 1);
9452 STRIP_NOPS (tree01);
9453 STRIP_NOPS (tree11);
9454 code01 = TREE_CODE (tree01);
9455 code11 = TREE_CODE (tree11);
9456 if (code01 == INTEGER_CST
9457 && code11 == INTEGER_CST
9458 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9459 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9461 tem = build2_loc (loc, LROTATE_EXPR,
9462 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9463 TREE_OPERAND (arg0, 0),
9464 code0 == LSHIFT_EXPR
9465 ? TREE_OPERAND (arg0, 1)
9466 : TREE_OPERAND (arg1, 1));
9467 return fold_convert_loc (loc, type, tem);
9469 else if (code11 == MINUS_EXPR)
9471 tree tree110, tree111;
9472 tree110 = TREE_OPERAND (tree11, 0);
9473 tree111 = TREE_OPERAND (tree11, 1);
9474 STRIP_NOPS (tree110);
9475 STRIP_NOPS (tree111);
9476 if (TREE_CODE (tree110) == INTEGER_CST
9477 && 0 == compare_tree_int (tree110,
9478 element_precision
9479 (TREE_TYPE (TREE_OPERAND
9480 (arg0, 0))))
9481 && operand_equal_p (tree01, tree111, 0))
9482 return
9483 fold_convert_loc (loc, type,
9484 build2 ((code0 == LSHIFT_EXPR
9485 ? LROTATE_EXPR
9486 : RROTATE_EXPR),
9487 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9488 TREE_OPERAND (arg0, 0),
9489 TREE_OPERAND (arg0, 1)));
9491 else if (code01 == MINUS_EXPR)
9493 tree tree010, tree011;
9494 tree010 = TREE_OPERAND (tree01, 0);
9495 tree011 = TREE_OPERAND (tree01, 1);
9496 STRIP_NOPS (tree010);
9497 STRIP_NOPS (tree011);
9498 if (TREE_CODE (tree010) == INTEGER_CST
9499 && 0 == compare_tree_int (tree010,
9500 element_precision
9501 (TREE_TYPE (TREE_OPERAND
9502 (arg0, 0))))
9503 && operand_equal_p (tree11, tree011, 0))
9504 return fold_convert_loc
9505 (loc, type,
9506 build2 ((code0 != LSHIFT_EXPR
9507 ? LROTATE_EXPR
9508 : RROTATE_EXPR),
9509 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9510 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9515 associate:
9516 /* In most languages, can't associate operations on floats through
9517 parentheses. Rather than remember where the parentheses were, we
9518 don't associate floats at all, unless the user has specified
9519 -fassociative-math.
9520 And, we need to make sure type is not saturating. */
9522 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9523 && !TYPE_SATURATING (type))
9525 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
9526 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
9527 tree atype = type;
9528 bool ok = true;
9530 /* Split both trees into variables, constants, and literals. Then
9531 associate each group together, the constants with literals,
9532 then the result with variables. This increases the chances of
9533 literals being recombined later and of generating relocatable
9534 expressions for the sum of a constant and literal. */
9535 var0 = split_tree (arg0, type, code,
9536 &minus_var0, &con0, &minus_con0,
9537 &lit0, &minus_lit0, 0);
9538 var1 = split_tree (arg1, type, code,
9539 &minus_var1, &con1, &minus_con1,
9540 &lit1, &minus_lit1, code == MINUS_EXPR);
9542 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9543 if (code == MINUS_EXPR)
9544 code = PLUS_EXPR;
9546 /* With undefined overflow prefer doing association in a type
9547 which wraps on overflow, if that is one of the operand types. */
9548 if (POINTER_TYPE_P (type)
9549 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9551 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9552 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9553 atype = TREE_TYPE (arg0);
9554 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9555 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9556 atype = TREE_TYPE (arg1);
9557 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9560 /* With undefined overflow we can only associate constants with one
9561 variable, and constants whose association doesn't overflow. */
9562 if (POINTER_TYPE_P (atype)
9563 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9565 if ((var0 && var1) || (minus_var0 && minus_var1))
9567 /* ??? If split_tree would handle NEGATE_EXPR we could
9568 simply reject these cases and the allowed cases would
9569 be the var0/minus_var1 ones. */
9570 tree tmp0 = var0 ? var0 : minus_var0;
9571 tree tmp1 = var1 ? var1 : minus_var1;
9572 bool one_neg = false;
9574 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9576 tmp0 = TREE_OPERAND (tmp0, 0);
9577 one_neg = !one_neg;
9579 if (CONVERT_EXPR_P (tmp0)
9580 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9581 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9582 <= TYPE_PRECISION (atype)))
9583 tmp0 = TREE_OPERAND (tmp0, 0);
9584 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9586 tmp1 = TREE_OPERAND (tmp1, 0);
9587 one_neg = !one_neg;
9589 if (CONVERT_EXPR_P (tmp1)
9590 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9591 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9592 <= TYPE_PRECISION (atype)))
9593 tmp1 = TREE_OPERAND (tmp1, 0);
9594 /* The only case we can still associate with two variables
9595 is if they cancel out. */
9596 if (!one_neg
9597 || !operand_equal_p (tmp0, tmp1, 0))
9598 ok = false;
9600 else if ((var0 && minus_var1
9601 && ! operand_equal_p (var0, minus_var1, 0))
9602 || (minus_var0 && var1
9603 && ! operand_equal_p (minus_var0, var1, 0)))
9604 ok = false;
9607 /* Only do something if we found more than two objects. Otherwise,
9608 nothing has changed and we risk infinite recursion. */
9609 if (ok
9610 && (2 < ((var0 != 0) + (var1 != 0)
9611 + (minus_var0 != 0) + (minus_var1 != 0)
9612 + (con0 != 0) + (con1 != 0)
9613 + (minus_con0 != 0) + (minus_con1 != 0)
9614 + (lit0 != 0) + (lit1 != 0)
9615 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9617 var0 = associate_trees (loc, var0, var1, code, atype);
9618 minus_var0 = associate_trees (loc, minus_var0, minus_var1,
9619 code, atype);
9620 con0 = associate_trees (loc, con0, con1, code, atype);
9621 minus_con0 = associate_trees (loc, minus_con0, minus_con1,
9622 code, atype);
9623 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9624 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9625 code, atype);
9627 if (minus_var0 && var0)
9629 var0 = associate_trees (loc, var0, minus_var0,
9630 MINUS_EXPR, atype);
9631 minus_var0 = 0;
9633 if (minus_con0 && con0)
9635 con0 = associate_trees (loc, con0, minus_con0,
9636 MINUS_EXPR, atype);
9637 minus_con0 = 0;
9640 /* Preserve the MINUS_EXPR if the negative part of the literal is
9641 greater than the positive part. Otherwise, the multiplicative
9642 folding code (i.e extract_muldiv) may be fooled in case
9643 unsigned constants are subtracted, like in the following
9644 example: ((X*2 + 4) - 8U)/2. */
9645 if (minus_lit0 && lit0)
9647 if (TREE_CODE (lit0) == INTEGER_CST
9648 && TREE_CODE (minus_lit0) == INTEGER_CST
9649 && tree_int_cst_lt (lit0, minus_lit0)
9650 /* But avoid ending up with only negated parts. */
9651 && (var0 || con0))
9653 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9654 MINUS_EXPR, atype);
9655 lit0 = 0;
9657 else
9659 lit0 = associate_trees (loc, lit0, minus_lit0,
9660 MINUS_EXPR, atype);
9661 minus_lit0 = 0;
9665 /* Don't introduce overflows through reassociation. */
9666 if ((lit0 && TREE_OVERFLOW_P (lit0))
9667 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
9668 return NULL_TREE;
9670 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9671 con0 = associate_trees (loc, con0, lit0, code, atype);
9672 lit0 = 0;
9673 minus_con0 = associate_trees (loc, minus_con0, minus_lit0,
9674 code, atype);
9675 minus_lit0 = 0;
9677 /* Eliminate minus_con0. */
9678 if (minus_con0)
9680 if (con0)
9681 con0 = associate_trees (loc, con0, minus_con0,
9682 MINUS_EXPR, atype);
9683 else if (var0)
9684 var0 = associate_trees (loc, var0, minus_con0,
9685 MINUS_EXPR, atype);
9686 else
9687 gcc_unreachable ();
9688 minus_con0 = 0;
9691 /* Eliminate minus_var0. */
9692 if (minus_var0)
9694 if (con0)
9695 con0 = associate_trees (loc, con0, minus_var0,
9696 MINUS_EXPR, atype);
9697 else
9698 gcc_unreachable ();
9699 minus_var0 = 0;
9702 return
9703 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9704 code, atype));
9708 return NULL_TREE;
9710 case MINUS_EXPR:
9711 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9712 if (TREE_CODE (arg0) == NEGATE_EXPR
9713 && negate_expr_p (op1))
9714 return fold_build2_loc (loc, MINUS_EXPR, type,
9715 negate_expr (op1),
9716 fold_convert_loc (loc, type,
9717 TREE_OPERAND (arg0, 0)));
9719 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9720 __complex__ ( x, -y ). This is not the same for SNaNs or if
9721 signed zeros are involved. */
9722 if (!HONOR_SNANS (element_mode (arg0))
9723 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9724 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9726 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9727 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9728 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9729 bool arg0rz = false, arg0iz = false;
9730 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9731 || (arg0i && (arg0iz = real_zerop (arg0i))))
9733 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9734 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9735 if (arg0rz && arg1i && real_zerop (arg1i))
9737 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9738 arg1r ? arg1r
9739 : build1 (REALPART_EXPR, rtype, arg1));
9740 tree ip = arg0i ? arg0i
9741 : build1 (IMAGPART_EXPR, rtype, arg0);
9742 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9744 else if (arg0iz && arg1r && real_zerop (arg1r))
9746 tree rp = arg0r ? arg0r
9747 : build1 (REALPART_EXPR, rtype, arg0);
9748 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9749 arg1i ? arg1i
9750 : build1 (IMAGPART_EXPR, rtype, arg1));
9751 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9756 /* A - B -> A + (-B) if B is easily negatable. */
9757 if (negate_expr_p (op1)
9758 && ! TYPE_OVERFLOW_SANITIZED (type)
9759 && ((FLOAT_TYPE_P (type)
9760 /* Avoid this transformation if B is a positive REAL_CST. */
9761 && (TREE_CODE (op1) != REAL_CST
9762 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
9763 || INTEGRAL_TYPE_P (type)))
9764 return fold_build2_loc (loc, PLUS_EXPR, type,
9765 fold_convert_loc (loc, type, arg0),
9766 negate_expr (op1));
9768 /* Fold &a[i] - &a[j] to i-j. */
9769 if (TREE_CODE (arg0) == ADDR_EXPR
9770 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9771 && TREE_CODE (arg1) == ADDR_EXPR
9772 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9774 tree tem = fold_addr_of_array_ref_difference (loc, type,
9775 TREE_OPERAND (arg0, 0),
9776 TREE_OPERAND (arg1, 0));
9777 if (tem)
9778 return tem;
9781 if (FLOAT_TYPE_P (type)
9782 && flag_unsafe_math_optimizations
9783 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9784 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9785 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9786 return tem;
9788 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9789 one. Make sure the type is not saturating and has the signedness of
9790 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9791 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9792 if ((TREE_CODE (arg0) == MULT_EXPR
9793 || TREE_CODE (arg1) == MULT_EXPR)
9794 && !TYPE_SATURATING (type)
9795 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9796 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9797 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9799 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9800 if (tem)
9801 return tem;
9804 goto associate;
9806 case MULT_EXPR:
9807 if (! FLOAT_TYPE_P (type))
9809 /* Transform x * -C into -x * C if x is easily negatable. */
9810 if (TREE_CODE (op1) == INTEGER_CST
9811 && tree_int_cst_sgn (op1) == -1
9812 && negate_expr_p (op0)
9813 && negate_expr_p (op1)
9814 && (tem = negate_expr (op1)) != op1
9815 && ! TREE_OVERFLOW (tem))
9816 return fold_build2_loc (loc, MULT_EXPR, type,
9817 fold_convert_loc (loc, type,
9818 negate_expr (op0)), tem);
9820 strict_overflow_p = false;
9821 if (TREE_CODE (arg1) == INTEGER_CST
9822 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9823 &strict_overflow_p)))
9825 if (strict_overflow_p)
9826 fold_overflow_warning (("assuming signed overflow does not "
9827 "occur when simplifying "
9828 "multiplication"),
9829 WARN_STRICT_OVERFLOW_MISC);
9830 return fold_convert_loc (loc, type, tem);
9833 /* Optimize z * conj(z) for integer complex numbers. */
9834 if (TREE_CODE (arg0) == CONJ_EXPR
9835 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9836 return fold_mult_zconjz (loc, type, arg1);
9837 if (TREE_CODE (arg1) == CONJ_EXPR
9838 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9839 return fold_mult_zconjz (loc, type, arg0);
9841 else
9843 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9844 This is not the same for NaNs or if signed zeros are
9845 involved. */
9846 if (!HONOR_NANS (arg0)
9847 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9848 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9849 && TREE_CODE (arg1) == COMPLEX_CST
9850 && real_zerop (TREE_REALPART (arg1)))
9852 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9853 if (real_onep (TREE_IMAGPART (arg1)))
9854 return
9855 fold_build2_loc (loc, COMPLEX_EXPR, type,
9856 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9857 rtype, arg0)),
9858 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9859 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9860 return
9861 fold_build2_loc (loc, COMPLEX_EXPR, type,
9862 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9863 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9864 rtype, arg0)));
9867 /* Optimize z * conj(z) for floating point complex numbers.
9868 Guarded by flag_unsafe_math_optimizations as non-finite
9869 imaginary components don't produce scalar results. */
9870 if (flag_unsafe_math_optimizations
9871 && TREE_CODE (arg0) == CONJ_EXPR
9872 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9873 return fold_mult_zconjz (loc, type, arg1);
9874 if (flag_unsafe_math_optimizations
9875 && TREE_CODE (arg1) == CONJ_EXPR
9876 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9877 return fold_mult_zconjz (loc, type, arg0);
9879 goto associate;
9881 case BIT_IOR_EXPR:
9882 /* Canonicalize (X & C1) | C2. */
9883 if (TREE_CODE (arg0) == BIT_AND_EXPR
9884 && TREE_CODE (arg1) == INTEGER_CST
9885 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9887 int width = TYPE_PRECISION (type), w;
9888 wide_int c1 = TREE_OPERAND (arg0, 1);
9889 wide_int c2 = arg1;
9891 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9892 if ((c1 & c2) == c1)
9893 return omit_one_operand_loc (loc, type, arg1,
9894 TREE_OPERAND (arg0, 0));
9896 wide_int msk = wi::mask (width, false,
9897 TYPE_PRECISION (TREE_TYPE (arg1)));
9899 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9900 if (msk.and_not (c1 | c2) == 0)
9902 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9903 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
9906 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9907 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9908 mode which allows further optimizations. */
9909 c1 &= msk;
9910 c2 &= msk;
9911 wide_int c3 = c1.and_not (c2);
9912 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9914 wide_int mask = wi::mask (w, false,
9915 TYPE_PRECISION (type));
9916 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
9918 c3 = mask;
9919 break;
9923 if (c3 != c1)
9925 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9926 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
9927 wide_int_to_tree (type, c3));
9928 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
9932 /* See if this can be simplified into a rotate first. If that
9933 is unsuccessful continue in the association code. */
9934 goto bit_rotate;
9936 case BIT_XOR_EXPR:
9937 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9938 if (TREE_CODE (arg0) == BIT_AND_EXPR
9939 && INTEGRAL_TYPE_P (type)
9940 && integer_onep (TREE_OPERAND (arg0, 1))
9941 && integer_onep (arg1))
9942 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
9943 build_zero_cst (TREE_TYPE (arg0)));
9945 /* See if this can be simplified into a rotate first. If that
9946 is unsuccessful continue in the association code. */
9947 goto bit_rotate;
9949 case BIT_AND_EXPR:
9950 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9951 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9952 && INTEGRAL_TYPE_P (type)
9953 && integer_onep (TREE_OPERAND (arg0, 1))
9954 && integer_onep (arg1))
9956 tree tem2;
9957 tem = TREE_OPERAND (arg0, 0);
9958 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9959 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9960 tem, tem2);
9961 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9962 build_zero_cst (TREE_TYPE (tem)));
9964 /* Fold ~X & 1 as (X & 1) == 0. */
9965 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9966 && INTEGRAL_TYPE_P (type)
9967 && integer_onep (arg1))
9969 tree tem2;
9970 tem = TREE_OPERAND (arg0, 0);
9971 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9972 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9973 tem, tem2);
9974 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9975 build_zero_cst (TREE_TYPE (tem)));
9977 /* Fold !X & 1 as X == 0. */
9978 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
9979 && integer_onep (arg1))
9981 tem = TREE_OPERAND (arg0, 0);
9982 return fold_build2_loc (loc, EQ_EXPR, type, tem,
9983 build_zero_cst (TREE_TYPE (tem)));
9986 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9987 multiple of 1 << CST. */
9988 if (TREE_CODE (arg1) == INTEGER_CST)
9990 wide_int cst1 = arg1;
9991 wide_int ncst1 = -cst1;
9992 if ((cst1 & ncst1) == ncst1
9993 && multiple_of_p (type, arg0,
9994 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
9995 return fold_convert_loc (loc, type, arg0);
9998 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
9999 bits from CST2. */
10000 if (TREE_CODE (arg1) == INTEGER_CST
10001 && TREE_CODE (arg0) == MULT_EXPR
10002 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10004 wide_int warg1 = arg1;
10005 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10007 if (masked == 0)
10008 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10009 arg0, arg1);
10010 else if (masked != warg1)
10012 /* Avoid the transform if arg1 is a mask of some
10013 mode which allows further optimizations. */
10014 int pop = wi::popcount (warg1);
10015 if (!(pop >= BITS_PER_UNIT
10016 && pow2p_hwi (pop)
10017 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10018 return fold_build2_loc (loc, code, type, op0,
10019 wide_int_to_tree (type, masked));
10023 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10024 ((A & N) + B) & M -> (A + B) & M
10025 Similarly if (N & M) == 0,
10026 ((A | N) + B) & M -> (A + B) & M
10027 and for - instead of + (or unary - instead of +)
10028 and/or ^ instead of |.
10029 If B is constant and (B & M) == 0, fold into A & M. */
10030 if (TREE_CODE (arg1) == INTEGER_CST)
10032 wide_int cst1 = arg1;
10033 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10034 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10035 && (TREE_CODE (arg0) == PLUS_EXPR
10036 || TREE_CODE (arg0) == MINUS_EXPR
10037 || TREE_CODE (arg0) == NEGATE_EXPR)
10038 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10039 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10041 tree pmop[2];
10042 int which = 0;
10043 wide_int cst0;
10045 /* Now we know that arg0 is (C + D) or (C - D) or
10046 -C and arg1 (M) is == (1LL << cst) - 1.
10047 Store C into PMOP[0] and D into PMOP[1]. */
10048 pmop[0] = TREE_OPERAND (arg0, 0);
10049 pmop[1] = NULL;
10050 if (TREE_CODE (arg0) != NEGATE_EXPR)
10052 pmop[1] = TREE_OPERAND (arg0, 1);
10053 which = 1;
10056 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10057 which = -1;
10059 for (; which >= 0; which--)
10060 switch (TREE_CODE (pmop[which]))
10062 case BIT_AND_EXPR:
10063 case BIT_IOR_EXPR:
10064 case BIT_XOR_EXPR:
10065 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10066 != INTEGER_CST)
10067 break;
10068 cst0 = TREE_OPERAND (pmop[which], 1);
10069 cst0 &= cst1;
10070 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10072 if (cst0 != cst1)
10073 break;
10075 else if (cst0 != 0)
10076 break;
10077 /* If C or D is of the form (A & N) where
10078 (N & M) == M, or of the form (A | N) or
10079 (A ^ N) where (N & M) == 0, replace it with A. */
10080 pmop[which] = TREE_OPERAND (pmop[which], 0);
10081 break;
10082 case INTEGER_CST:
10083 /* If C or D is a N where (N & M) == 0, it can be
10084 omitted (assumed 0). */
10085 if ((TREE_CODE (arg0) == PLUS_EXPR
10086 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10087 && (cst1 & pmop[which]) == 0)
10088 pmop[which] = NULL;
10089 break;
10090 default:
10091 break;
10094 /* Only build anything new if we optimized one or both arguments
10095 above. */
10096 if (pmop[0] != TREE_OPERAND (arg0, 0)
10097 || (TREE_CODE (arg0) != NEGATE_EXPR
10098 && pmop[1] != TREE_OPERAND (arg0, 1)))
10100 tree utype = TREE_TYPE (arg0);
10101 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10103 /* Perform the operations in a type that has defined
10104 overflow behavior. */
10105 utype = unsigned_type_for (TREE_TYPE (arg0));
10106 if (pmop[0] != NULL)
10107 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10108 if (pmop[1] != NULL)
10109 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10112 if (TREE_CODE (arg0) == NEGATE_EXPR)
10113 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10114 else if (TREE_CODE (arg0) == PLUS_EXPR)
10116 if (pmop[0] != NULL && pmop[1] != NULL)
10117 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10118 pmop[0], pmop[1]);
10119 else if (pmop[0] != NULL)
10120 tem = pmop[0];
10121 else if (pmop[1] != NULL)
10122 tem = pmop[1];
10123 else
10124 return build_int_cst (type, 0);
10126 else if (pmop[0] == NULL)
10127 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10128 else
10129 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10130 pmop[0], pmop[1]);
10131 /* TEM is now the new binary +, - or unary - replacement. */
10132 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10133 fold_convert_loc (loc, utype, arg1));
10134 return fold_convert_loc (loc, type, tem);
10139 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10140 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10141 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10143 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10145 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10146 if (mask == -1)
10147 return
10148 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10151 goto associate;
10153 case RDIV_EXPR:
10154 /* Don't touch a floating-point divide by zero unless the mode
10155 of the constant can represent infinity. */
10156 if (TREE_CODE (arg1) == REAL_CST
10157 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10158 && real_zerop (arg1))
10159 return NULL_TREE;
10161 /* (-A) / (-B) -> A / B */
10162 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10163 return fold_build2_loc (loc, RDIV_EXPR, type,
10164 TREE_OPERAND (arg0, 0),
10165 negate_expr (arg1));
10166 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10167 return fold_build2_loc (loc, RDIV_EXPR, type,
10168 negate_expr (arg0),
10169 TREE_OPERAND (arg1, 0));
10170 return NULL_TREE;
10172 case TRUNC_DIV_EXPR:
10173 /* Fall through */
10175 case FLOOR_DIV_EXPR:
10176 /* Simplify A / (B << N) where A and B are positive and B is
10177 a power of 2, to A >> (N + log2(B)). */
10178 strict_overflow_p = false;
10179 if (TREE_CODE (arg1) == LSHIFT_EXPR
10180 && (TYPE_UNSIGNED (type)
10181 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10183 tree sval = TREE_OPERAND (arg1, 0);
10184 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10186 tree sh_cnt = TREE_OPERAND (arg1, 1);
10187 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10188 wi::exact_log2 (sval));
10190 if (strict_overflow_p)
10191 fold_overflow_warning (("assuming signed overflow does not "
10192 "occur when simplifying A / (B << N)"),
10193 WARN_STRICT_OVERFLOW_MISC);
10195 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10196 sh_cnt, pow2);
10197 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10198 fold_convert_loc (loc, type, arg0), sh_cnt);
10202 /* Fall through */
10204 case ROUND_DIV_EXPR:
10205 case CEIL_DIV_EXPR:
10206 case EXACT_DIV_EXPR:
10207 if (integer_zerop (arg1))
10208 return NULL_TREE;
10210 /* Convert -A / -B to A / B when the type is signed and overflow is
10211 undefined. */
10212 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10213 && TREE_CODE (op0) == NEGATE_EXPR
10214 && negate_expr_p (op1))
10216 if (INTEGRAL_TYPE_P (type))
10217 fold_overflow_warning (("assuming signed overflow does not occur "
10218 "when distributing negation across "
10219 "division"),
10220 WARN_STRICT_OVERFLOW_MISC);
10221 return fold_build2_loc (loc, code, type,
10222 fold_convert_loc (loc, type,
10223 TREE_OPERAND (arg0, 0)),
10224 negate_expr (op1));
10226 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10227 && TREE_CODE (arg1) == NEGATE_EXPR
10228 && negate_expr_p (op0))
10230 if (INTEGRAL_TYPE_P (type))
10231 fold_overflow_warning (("assuming signed overflow does not occur "
10232 "when distributing negation across "
10233 "division"),
10234 WARN_STRICT_OVERFLOW_MISC);
10235 return fold_build2_loc (loc, code, type,
10236 negate_expr (op0),
10237 fold_convert_loc (loc, type,
10238 TREE_OPERAND (arg1, 0)));
10241 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10242 operation, EXACT_DIV_EXPR.
10244 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10245 At one time others generated faster code, it's not clear if they do
10246 after the last round to changes to the DIV code in expmed.c. */
10247 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10248 && multiple_of_p (type, arg0, arg1))
10249 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10250 fold_convert (type, arg0),
10251 fold_convert (type, arg1));
10253 strict_overflow_p = false;
10254 if (TREE_CODE (arg1) == INTEGER_CST
10255 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10256 &strict_overflow_p)))
10258 if (strict_overflow_p)
10259 fold_overflow_warning (("assuming signed overflow does not occur "
10260 "when simplifying division"),
10261 WARN_STRICT_OVERFLOW_MISC);
10262 return fold_convert_loc (loc, type, tem);
10265 return NULL_TREE;
10267 case CEIL_MOD_EXPR:
10268 case FLOOR_MOD_EXPR:
10269 case ROUND_MOD_EXPR:
10270 case TRUNC_MOD_EXPR:
10271 strict_overflow_p = false;
10272 if (TREE_CODE (arg1) == INTEGER_CST
10273 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10274 &strict_overflow_p)))
10276 if (strict_overflow_p)
10277 fold_overflow_warning (("assuming signed overflow does not occur "
10278 "when simplifying modulus"),
10279 WARN_STRICT_OVERFLOW_MISC);
10280 return fold_convert_loc (loc, type, tem);
10283 return NULL_TREE;
10285 case LROTATE_EXPR:
10286 case RROTATE_EXPR:
10287 case RSHIFT_EXPR:
10288 case LSHIFT_EXPR:
10289 /* Since negative shift count is not well-defined,
10290 don't try to compute it in the compiler. */
10291 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10292 return NULL_TREE;
10294 prec = element_precision (type);
10296 /* If we have a rotate of a bit operation with the rotate count and
10297 the second operand of the bit operation both constant,
10298 permute the two operations. */
10299 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10300 && (TREE_CODE (arg0) == BIT_AND_EXPR
10301 || TREE_CODE (arg0) == BIT_IOR_EXPR
10302 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10303 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10305 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10306 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10307 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10308 fold_build2_loc (loc, code, type,
10309 arg00, arg1),
10310 fold_build2_loc (loc, code, type,
10311 arg01, arg1));
10314 /* Two consecutive rotates adding up to the some integer
10315 multiple of the precision of the type can be ignored. */
10316 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10317 && TREE_CODE (arg0) == RROTATE_EXPR
10318 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10319 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10320 prec) == 0)
10321 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10323 return NULL_TREE;
10325 case MIN_EXPR:
10326 case MAX_EXPR:
10327 goto associate;
10329 case TRUTH_ANDIF_EXPR:
10330 /* Note that the operands of this must be ints
10331 and their values must be 0 or 1.
10332 ("true" is a fixed value perhaps depending on the language.) */
10333 /* If first arg is constant zero, return it. */
10334 if (integer_zerop (arg0))
10335 return fold_convert_loc (loc, type, arg0);
10336 /* FALLTHRU */
10337 case TRUTH_AND_EXPR:
10338 /* If either arg is constant true, drop it. */
10339 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10340 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10341 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10342 /* Preserve sequence points. */
10343 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10344 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10345 /* If second arg is constant zero, result is zero, but first arg
10346 must be evaluated. */
10347 if (integer_zerop (arg1))
10348 return omit_one_operand_loc (loc, type, arg1, arg0);
10349 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10350 case will be handled here. */
10351 if (integer_zerop (arg0))
10352 return omit_one_operand_loc (loc, type, arg0, arg1);
10354 /* !X && X is always false. */
10355 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10356 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10357 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10358 /* X && !X is always false. */
10359 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10360 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10361 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10363 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10364 means A >= Y && A != MAX, but in this case we know that
10365 A < X <= MAX. */
10367 if (!TREE_SIDE_EFFECTS (arg0)
10368 && !TREE_SIDE_EFFECTS (arg1))
10370 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10371 if (tem && !operand_equal_p (tem, arg0, 0))
10372 return fold_build2_loc (loc, code, type, tem, arg1);
10374 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10375 if (tem && !operand_equal_p (tem, arg1, 0))
10376 return fold_build2_loc (loc, code, type, arg0, tem);
10379 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10380 != NULL_TREE)
10381 return tem;
10383 return NULL_TREE;
10385 case TRUTH_ORIF_EXPR:
10386 /* Note that the operands of this must be ints
10387 and their values must be 0 or true.
10388 ("true" is a fixed value perhaps depending on the language.) */
10389 /* If first arg is constant true, return it. */
10390 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10391 return fold_convert_loc (loc, type, arg0);
10392 /* FALLTHRU */
10393 case TRUTH_OR_EXPR:
10394 /* If either arg is constant zero, drop it. */
10395 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10396 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10397 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10398 /* Preserve sequence points. */
10399 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10400 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10401 /* If second arg is constant true, result is true, but we must
10402 evaluate first arg. */
10403 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10404 return omit_one_operand_loc (loc, type, arg1, arg0);
10405 /* Likewise for first arg, but note this only occurs here for
10406 TRUTH_OR_EXPR. */
10407 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10408 return omit_one_operand_loc (loc, type, arg0, arg1);
10410 /* !X || X is always true. */
10411 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10412 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10413 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10414 /* X || !X is always true. */
10415 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10416 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10417 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10419 /* (X && !Y) || (!X && Y) is X ^ Y */
10420 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10421 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10423 tree a0, a1, l0, l1, n0, n1;
10425 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10426 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10428 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10429 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10431 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10432 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10434 if ((operand_equal_p (n0, a0, 0)
10435 && operand_equal_p (n1, a1, 0))
10436 || (operand_equal_p (n0, a1, 0)
10437 && operand_equal_p (n1, a0, 0)))
10438 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10441 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10442 != NULL_TREE)
10443 return tem;
10445 return NULL_TREE;
10447 case TRUTH_XOR_EXPR:
10448 /* If the second arg is constant zero, drop it. */
10449 if (integer_zerop (arg1))
10450 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10451 /* If the second arg is constant true, this is a logical inversion. */
10452 if (integer_onep (arg1))
10454 tem = invert_truthvalue_loc (loc, arg0);
10455 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10457 /* Identical arguments cancel to zero. */
10458 if (operand_equal_p (arg0, arg1, 0))
10459 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10461 /* !X ^ X is always true. */
10462 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10463 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10464 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10466 /* X ^ !X is always true. */
10467 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10468 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10469 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10471 return NULL_TREE;
10473 case EQ_EXPR:
10474 case NE_EXPR:
10475 STRIP_NOPS (arg0);
10476 STRIP_NOPS (arg1);
10478 tem = fold_comparison (loc, code, type, op0, op1);
10479 if (tem != NULL_TREE)
10480 return tem;
10482 /* bool_var != 1 becomes !bool_var. */
10483 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10484 && code == NE_EXPR)
10485 return fold_convert_loc (loc, type,
10486 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10487 TREE_TYPE (arg0), arg0));
10489 /* bool_var == 0 becomes !bool_var. */
10490 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10491 && code == EQ_EXPR)
10492 return fold_convert_loc (loc, type,
10493 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10494 TREE_TYPE (arg0), arg0));
10496 /* !exp != 0 becomes !exp */
10497 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10498 && code == NE_EXPR)
10499 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10501 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10502 if ((TREE_CODE (arg0) == PLUS_EXPR
10503 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10504 || TREE_CODE (arg0) == MINUS_EXPR)
10505 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10506 0)),
10507 arg1, 0)
10508 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10509 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10511 tree val = TREE_OPERAND (arg0, 1);
10512 val = fold_build2_loc (loc, code, type, val,
10513 build_int_cst (TREE_TYPE (val), 0));
10514 return omit_two_operands_loc (loc, type, val,
10515 TREE_OPERAND (arg0, 0), arg1);
10518 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10519 if ((TREE_CODE (arg1) == PLUS_EXPR
10520 || TREE_CODE (arg1) == POINTER_PLUS_EXPR
10521 || TREE_CODE (arg1) == MINUS_EXPR)
10522 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10523 0)),
10524 arg0, 0)
10525 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10526 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10528 tree val = TREE_OPERAND (arg1, 1);
10529 val = fold_build2_loc (loc, code, type, val,
10530 build_int_cst (TREE_TYPE (val), 0));
10531 return omit_two_operands_loc (loc, type, val,
10532 TREE_OPERAND (arg1, 0), arg0);
10535 /* If this is an EQ or NE comparison with zero and ARG0 is
10536 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10537 two operations, but the latter can be done in one less insn
10538 on machines that have only two-operand insns or on which a
10539 constant cannot be the first operand. */
10540 if (TREE_CODE (arg0) == BIT_AND_EXPR
10541 && integer_zerop (arg1))
10543 tree arg00 = TREE_OPERAND (arg0, 0);
10544 tree arg01 = TREE_OPERAND (arg0, 1);
10545 if (TREE_CODE (arg00) == LSHIFT_EXPR
10546 && integer_onep (TREE_OPERAND (arg00, 0)))
10548 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10549 arg01, TREE_OPERAND (arg00, 1));
10550 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10551 build_int_cst (TREE_TYPE (arg0), 1));
10552 return fold_build2_loc (loc, code, type,
10553 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10554 arg1);
10556 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10557 && integer_onep (TREE_OPERAND (arg01, 0)))
10559 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10560 arg00, TREE_OPERAND (arg01, 1));
10561 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10562 build_int_cst (TREE_TYPE (arg0), 1));
10563 return fold_build2_loc (loc, code, type,
10564 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10565 arg1);
10569 /* If this is an NE or EQ comparison of zero against the result of a
10570 signed MOD operation whose second operand is a power of 2, make
10571 the MOD operation unsigned since it is simpler and equivalent. */
10572 if (integer_zerop (arg1)
10573 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10574 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10575 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10576 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10577 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10578 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10580 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10581 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10582 fold_convert_loc (loc, newtype,
10583 TREE_OPERAND (arg0, 0)),
10584 fold_convert_loc (loc, newtype,
10585 TREE_OPERAND (arg0, 1)));
10587 return fold_build2_loc (loc, code, type, newmod,
10588 fold_convert_loc (loc, newtype, arg1));
10591 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10592 C1 is a valid shift constant, and C2 is a power of two, i.e.
10593 a single bit. */
10594 if (TREE_CODE (arg0) == BIT_AND_EXPR
10595 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10596 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10597 == INTEGER_CST
10598 && integer_pow2p (TREE_OPERAND (arg0, 1))
10599 && integer_zerop (arg1))
10601 tree itype = TREE_TYPE (arg0);
10602 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10603 prec = TYPE_PRECISION (itype);
10605 /* Check for a valid shift count. */
10606 if (wi::ltu_p (arg001, prec))
10608 tree arg01 = TREE_OPERAND (arg0, 1);
10609 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10610 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10611 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10612 can be rewritten as (X & (C2 << C1)) != 0. */
10613 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10615 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10616 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10617 return fold_build2_loc (loc, code, type, tem,
10618 fold_convert_loc (loc, itype, arg1));
10620 /* Otherwise, for signed (arithmetic) shifts,
10621 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10622 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10623 else if (!TYPE_UNSIGNED (itype))
10624 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10625 arg000, build_int_cst (itype, 0));
10626 /* Otherwise, of unsigned (logical) shifts,
10627 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10628 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10629 else
10630 return omit_one_operand_loc (loc, type,
10631 code == EQ_EXPR ? integer_one_node
10632 : integer_zero_node,
10633 arg000);
10637 /* If this is a comparison of a field, we may be able to simplify it. */
10638 if ((TREE_CODE (arg0) == COMPONENT_REF
10639 || TREE_CODE (arg0) == BIT_FIELD_REF)
10640 /* Handle the constant case even without -O
10641 to make sure the warnings are given. */
10642 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10644 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10645 if (t1)
10646 return t1;
10649 /* Optimize comparisons of strlen vs zero to a compare of the
10650 first character of the string vs zero. To wit,
10651 strlen(ptr) == 0 => *ptr == 0
10652 strlen(ptr) != 0 => *ptr != 0
10653 Other cases should reduce to one of these two (or a constant)
10654 due to the return value of strlen being unsigned. */
10655 if (TREE_CODE (arg0) == CALL_EXPR
10656 && integer_zerop (arg1))
10658 tree fndecl = get_callee_fndecl (arg0);
10660 if (fndecl
10661 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10662 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10663 && call_expr_nargs (arg0) == 1
10664 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10666 tree iref = build_fold_indirect_ref_loc (loc,
10667 CALL_EXPR_ARG (arg0, 0));
10668 return fold_build2_loc (loc, code, type, iref,
10669 build_int_cst (TREE_TYPE (iref), 0));
10673 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10674 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10675 if (TREE_CODE (arg0) == RSHIFT_EXPR
10676 && integer_zerop (arg1)
10677 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10679 tree arg00 = TREE_OPERAND (arg0, 0);
10680 tree arg01 = TREE_OPERAND (arg0, 1);
10681 tree itype = TREE_TYPE (arg00);
10682 if (wi::eq_p (arg01, element_precision (itype) - 1))
10684 if (TYPE_UNSIGNED (itype))
10686 itype = signed_type_for (itype);
10687 arg00 = fold_convert_loc (loc, itype, arg00);
10689 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10690 type, arg00, build_zero_cst (itype));
10694 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10695 (X & C) == 0 when C is a single bit. */
10696 if (TREE_CODE (arg0) == BIT_AND_EXPR
10697 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10698 && integer_zerop (arg1)
10699 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10701 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10702 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10703 TREE_OPERAND (arg0, 1));
10704 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10705 type, tem,
10706 fold_convert_loc (loc, TREE_TYPE (arg0),
10707 arg1));
10710 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10711 constant C is a power of two, i.e. a single bit. */
10712 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10713 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10714 && integer_zerop (arg1)
10715 && integer_pow2p (TREE_OPERAND (arg0, 1))
10716 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10717 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10719 tree arg00 = TREE_OPERAND (arg0, 0);
10720 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10721 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10724 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10725 when is C is a power of two, i.e. a single bit. */
10726 if (TREE_CODE (arg0) == BIT_AND_EXPR
10727 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10728 && integer_zerop (arg1)
10729 && integer_pow2p (TREE_OPERAND (arg0, 1))
10730 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10731 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10733 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10734 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10735 arg000, TREE_OPERAND (arg0, 1));
10736 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10737 tem, build_int_cst (TREE_TYPE (tem), 0));
10740 if (integer_zerop (arg1)
10741 && tree_expr_nonzero_p (arg0))
10743 tree res = constant_boolean_node (code==NE_EXPR, type);
10744 return omit_one_operand_loc (loc, type, res, arg0);
10747 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10748 if (TREE_CODE (arg0) == BIT_AND_EXPR
10749 && TREE_CODE (arg1) == BIT_AND_EXPR)
10751 tree arg00 = TREE_OPERAND (arg0, 0);
10752 tree arg01 = TREE_OPERAND (arg0, 1);
10753 tree arg10 = TREE_OPERAND (arg1, 0);
10754 tree arg11 = TREE_OPERAND (arg1, 1);
10755 tree itype = TREE_TYPE (arg0);
10757 if (operand_equal_p (arg01, arg11, 0))
10759 tem = fold_convert_loc (loc, itype, arg10);
10760 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10761 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10762 return fold_build2_loc (loc, code, type, tem,
10763 build_zero_cst (itype));
10765 if (operand_equal_p (arg01, arg10, 0))
10767 tem = fold_convert_loc (loc, itype, arg11);
10768 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10769 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10770 return fold_build2_loc (loc, code, type, tem,
10771 build_zero_cst (itype));
10773 if (operand_equal_p (arg00, arg11, 0))
10775 tem = fold_convert_loc (loc, itype, arg10);
10776 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10777 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10778 return fold_build2_loc (loc, code, type, tem,
10779 build_zero_cst (itype));
10781 if (operand_equal_p (arg00, arg10, 0))
10783 tem = fold_convert_loc (loc, itype, arg11);
10784 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10785 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10786 return fold_build2_loc (loc, code, type, tem,
10787 build_zero_cst (itype));
10791 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10792 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10794 tree arg00 = TREE_OPERAND (arg0, 0);
10795 tree arg01 = TREE_OPERAND (arg0, 1);
10796 tree arg10 = TREE_OPERAND (arg1, 0);
10797 tree arg11 = TREE_OPERAND (arg1, 1);
10798 tree itype = TREE_TYPE (arg0);
10800 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10801 operand_equal_p guarantees no side-effects so we don't need
10802 to use omit_one_operand on Z. */
10803 if (operand_equal_p (arg01, arg11, 0))
10804 return fold_build2_loc (loc, code, type, arg00,
10805 fold_convert_loc (loc, TREE_TYPE (arg00),
10806 arg10));
10807 if (operand_equal_p (arg01, arg10, 0))
10808 return fold_build2_loc (loc, code, type, arg00,
10809 fold_convert_loc (loc, TREE_TYPE (arg00),
10810 arg11));
10811 if (operand_equal_p (arg00, arg11, 0))
10812 return fold_build2_loc (loc, code, type, arg01,
10813 fold_convert_loc (loc, TREE_TYPE (arg01),
10814 arg10));
10815 if (operand_equal_p (arg00, arg10, 0))
10816 return fold_build2_loc (loc, code, type, arg01,
10817 fold_convert_loc (loc, TREE_TYPE (arg01),
10818 arg11));
10820 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10821 if (TREE_CODE (arg01) == INTEGER_CST
10822 && TREE_CODE (arg11) == INTEGER_CST)
10824 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10825 fold_convert_loc (loc, itype, arg11));
10826 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10827 return fold_build2_loc (loc, code, type, tem,
10828 fold_convert_loc (loc, itype, arg10));
10832 /* Attempt to simplify equality/inequality comparisons of complex
10833 values. Only lower the comparison if the result is known or
10834 can be simplified to a single scalar comparison. */
10835 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10836 || TREE_CODE (arg0) == COMPLEX_CST)
10837 && (TREE_CODE (arg1) == COMPLEX_EXPR
10838 || TREE_CODE (arg1) == COMPLEX_CST))
10840 tree real0, imag0, real1, imag1;
10841 tree rcond, icond;
10843 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10845 real0 = TREE_OPERAND (arg0, 0);
10846 imag0 = TREE_OPERAND (arg0, 1);
10848 else
10850 real0 = TREE_REALPART (arg0);
10851 imag0 = TREE_IMAGPART (arg0);
10854 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10856 real1 = TREE_OPERAND (arg1, 0);
10857 imag1 = TREE_OPERAND (arg1, 1);
10859 else
10861 real1 = TREE_REALPART (arg1);
10862 imag1 = TREE_IMAGPART (arg1);
10865 rcond = fold_binary_loc (loc, code, type, real0, real1);
10866 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10868 if (integer_zerop (rcond))
10870 if (code == EQ_EXPR)
10871 return omit_two_operands_loc (loc, type, boolean_false_node,
10872 imag0, imag1);
10873 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10875 else
10877 if (code == NE_EXPR)
10878 return omit_two_operands_loc (loc, type, boolean_true_node,
10879 imag0, imag1);
10880 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10884 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10885 if (icond && TREE_CODE (icond) == INTEGER_CST)
10887 if (integer_zerop (icond))
10889 if (code == EQ_EXPR)
10890 return omit_two_operands_loc (loc, type, boolean_false_node,
10891 real0, real1);
10892 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
10894 else
10896 if (code == NE_EXPR)
10897 return omit_two_operands_loc (loc, type, boolean_true_node,
10898 real0, real1);
10899 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
10904 return NULL_TREE;
10906 case LT_EXPR:
10907 case GT_EXPR:
10908 case LE_EXPR:
10909 case GE_EXPR:
10910 tem = fold_comparison (loc, code, type, op0, op1);
10911 if (tem != NULL_TREE)
10912 return tem;
10914 /* Transform comparisons of the form X +- C CMP X. */
10915 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10916 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10917 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10918 && !HONOR_SNANS (arg0))
10919 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10920 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
10922 tree arg01 = TREE_OPERAND (arg0, 1);
10923 enum tree_code code0 = TREE_CODE (arg0);
10924 int is_positive;
10926 if (TREE_CODE (arg01) == REAL_CST)
10927 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10928 else
10929 is_positive = tree_int_cst_sgn (arg01);
10931 /* (X - c) > X becomes false. */
10932 if (code == GT_EXPR
10933 && ((code0 == MINUS_EXPR && is_positive >= 0)
10934 || (code0 == PLUS_EXPR && is_positive <= 0)))
10936 if (TREE_CODE (arg01) == INTEGER_CST
10937 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10938 fold_overflow_warning (("assuming signed overflow does not "
10939 "occur when assuming that (X - c) > X "
10940 "is always false"),
10941 WARN_STRICT_OVERFLOW_ALL);
10942 return constant_boolean_node (0, type);
10945 /* Likewise (X + c) < X becomes false. */
10946 if (code == LT_EXPR
10947 && ((code0 == PLUS_EXPR && is_positive >= 0)
10948 || (code0 == MINUS_EXPR && is_positive <= 0)))
10950 if (TREE_CODE (arg01) == INTEGER_CST
10951 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10952 fold_overflow_warning (("assuming signed overflow does not "
10953 "occur when assuming that "
10954 "(X + c) < X is always false"),
10955 WARN_STRICT_OVERFLOW_ALL);
10956 return constant_boolean_node (0, type);
10959 /* Convert (X - c) <= X to true. */
10960 if (!HONOR_NANS (arg1)
10961 && code == LE_EXPR
10962 && ((code0 == MINUS_EXPR && is_positive >= 0)
10963 || (code0 == PLUS_EXPR && is_positive <= 0)))
10965 if (TREE_CODE (arg01) == INTEGER_CST
10966 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10967 fold_overflow_warning (("assuming signed overflow does not "
10968 "occur when assuming that "
10969 "(X - c) <= X is always true"),
10970 WARN_STRICT_OVERFLOW_ALL);
10971 return constant_boolean_node (1, type);
10974 /* Convert (X + c) >= X to true. */
10975 if (!HONOR_NANS (arg1)
10976 && code == GE_EXPR
10977 && ((code0 == PLUS_EXPR && is_positive >= 0)
10978 || (code0 == MINUS_EXPR && is_positive <= 0)))
10980 if (TREE_CODE (arg01) == INTEGER_CST
10981 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10982 fold_overflow_warning (("assuming signed overflow does not "
10983 "occur when assuming that "
10984 "(X + c) >= X is always true"),
10985 WARN_STRICT_OVERFLOW_ALL);
10986 return constant_boolean_node (1, type);
10989 if (TREE_CODE (arg01) == INTEGER_CST)
10991 /* Convert X + c > X and X - c < X to true for integers. */
10992 if (code == GT_EXPR
10993 && ((code0 == PLUS_EXPR && is_positive > 0)
10994 || (code0 == MINUS_EXPR && is_positive < 0)))
10996 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10997 fold_overflow_warning (("assuming signed overflow does "
10998 "not occur when assuming that "
10999 "(X + c) > X is always true"),
11000 WARN_STRICT_OVERFLOW_ALL);
11001 return constant_boolean_node (1, type);
11004 if (code == LT_EXPR
11005 && ((code0 == MINUS_EXPR && is_positive > 0)
11006 || (code0 == PLUS_EXPR && is_positive < 0)))
11008 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11009 fold_overflow_warning (("assuming signed overflow does "
11010 "not occur when assuming that "
11011 "(X - c) < X is always true"),
11012 WARN_STRICT_OVERFLOW_ALL);
11013 return constant_boolean_node (1, type);
11016 /* Convert X + c <= X and X - c >= X to false for integers. */
11017 if (code == LE_EXPR
11018 && ((code0 == PLUS_EXPR && is_positive > 0)
11019 || (code0 == MINUS_EXPR && is_positive < 0)))
11021 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11022 fold_overflow_warning (("assuming signed overflow does "
11023 "not occur when assuming that "
11024 "(X + c) <= X is always false"),
11025 WARN_STRICT_OVERFLOW_ALL);
11026 return constant_boolean_node (0, type);
11029 if (code == GE_EXPR
11030 && ((code0 == MINUS_EXPR && is_positive > 0)
11031 || (code0 == PLUS_EXPR && is_positive < 0)))
11033 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11034 fold_overflow_warning (("assuming signed overflow does "
11035 "not occur when assuming that "
11036 "(X - c) >= X is always false"),
11037 WARN_STRICT_OVERFLOW_ALL);
11038 return constant_boolean_node (0, type);
11043 /* If we are comparing an ABS_EXPR with a constant, we can
11044 convert all the cases into explicit comparisons, but they may
11045 well not be faster than doing the ABS and one comparison.
11046 But ABS (X) <= C is a range comparison, which becomes a subtraction
11047 and a comparison, and is probably faster. */
11048 if (code == LE_EXPR
11049 && TREE_CODE (arg1) == INTEGER_CST
11050 && TREE_CODE (arg0) == ABS_EXPR
11051 && ! TREE_SIDE_EFFECTS (arg0)
11052 && (0 != (tem = negate_expr (arg1)))
11053 && TREE_CODE (tem) == INTEGER_CST
11054 && !TREE_OVERFLOW (tem))
11055 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11056 build2 (GE_EXPR, type,
11057 TREE_OPERAND (arg0, 0), tem),
11058 build2 (LE_EXPR, type,
11059 TREE_OPERAND (arg0, 0), arg1));
11061 /* Convert ABS_EXPR<x> >= 0 to true. */
11062 strict_overflow_p = false;
11063 if (code == GE_EXPR
11064 && (integer_zerop (arg1)
11065 || (! HONOR_NANS (arg0)
11066 && real_zerop (arg1)))
11067 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11069 if (strict_overflow_p)
11070 fold_overflow_warning (("assuming signed overflow does not occur "
11071 "when simplifying comparison of "
11072 "absolute value and zero"),
11073 WARN_STRICT_OVERFLOW_CONDITIONAL);
11074 return omit_one_operand_loc (loc, type,
11075 constant_boolean_node (true, type),
11076 arg0);
11079 /* Convert ABS_EXPR<x> < 0 to false. */
11080 strict_overflow_p = false;
11081 if (code == LT_EXPR
11082 && (integer_zerop (arg1) || real_zerop (arg1))
11083 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11085 if (strict_overflow_p)
11086 fold_overflow_warning (("assuming signed overflow does not occur "
11087 "when simplifying comparison of "
11088 "absolute value and zero"),
11089 WARN_STRICT_OVERFLOW_CONDITIONAL);
11090 return omit_one_operand_loc (loc, type,
11091 constant_boolean_node (false, type),
11092 arg0);
11095 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11096 and similarly for >= into !=. */
11097 if ((code == LT_EXPR || code == GE_EXPR)
11098 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11099 && TREE_CODE (arg1) == LSHIFT_EXPR
11100 && integer_onep (TREE_OPERAND (arg1, 0)))
11101 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11102 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11103 TREE_OPERAND (arg1, 1)),
11104 build_zero_cst (TREE_TYPE (arg0)));
11106 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11107 otherwise Y might be >= # of bits in X's type and thus e.g.
11108 (unsigned char) (1 << Y) for Y 15 might be 0.
11109 If the cast is widening, then 1 << Y should have unsigned type,
11110 otherwise if Y is number of bits in the signed shift type minus 1,
11111 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11112 31 might be 0xffffffff80000000. */
11113 if ((code == LT_EXPR || code == GE_EXPR)
11114 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11115 && CONVERT_EXPR_P (arg1)
11116 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11117 && (element_precision (TREE_TYPE (arg1))
11118 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11119 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11120 || (element_precision (TREE_TYPE (arg1))
11121 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11122 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11124 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11125 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11126 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11127 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11128 build_zero_cst (TREE_TYPE (arg0)));
11131 return NULL_TREE;
11133 case UNORDERED_EXPR:
11134 case ORDERED_EXPR:
11135 case UNLT_EXPR:
11136 case UNLE_EXPR:
11137 case UNGT_EXPR:
11138 case UNGE_EXPR:
11139 case UNEQ_EXPR:
11140 case LTGT_EXPR:
11141 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11143 tree targ0 = strip_float_extensions (arg0);
11144 tree targ1 = strip_float_extensions (arg1);
11145 tree newtype = TREE_TYPE (targ0);
11147 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11148 newtype = TREE_TYPE (targ1);
11150 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11151 return fold_build2_loc (loc, code, type,
11152 fold_convert_loc (loc, newtype, targ0),
11153 fold_convert_loc (loc, newtype, targ1));
11156 return NULL_TREE;
11158 case COMPOUND_EXPR:
11159 /* When pedantic, a compound expression can be neither an lvalue
11160 nor an integer constant expression. */
11161 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11162 return NULL_TREE;
11163 /* Don't let (0, 0) be null pointer constant. */
11164 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11165 : fold_convert_loc (loc, type, arg1);
11166 return pedantic_non_lvalue_loc (loc, tem);
11168 case ASSERT_EXPR:
11169 /* An ASSERT_EXPR should never be passed to fold_binary. */
11170 gcc_unreachable ();
11172 default:
11173 return NULL_TREE;
11174 } /* switch (code) */
11177 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11178 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11179 of GOTO_EXPR. */
11181 static tree
11182 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11184 switch (TREE_CODE (*tp))
11186 case LABEL_EXPR:
11187 return *tp;
11189 case GOTO_EXPR:
11190 *walk_subtrees = 0;
11192 /* fall through */
11194 default:
11195 return NULL_TREE;
11199 /* Return whether the sub-tree ST contains a label which is accessible from
11200 outside the sub-tree. */
11202 static bool
11203 contains_label_p (tree st)
11205 return
11206 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11209 /* Fold a ternary expression of code CODE and type TYPE with operands
11210 OP0, OP1, and OP2. Return the folded expression if folding is
11211 successful. Otherwise, return NULL_TREE. */
11213 tree
11214 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11215 tree op0, tree op1, tree op2)
11217 tree tem;
11218 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11219 enum tree_code_class kind = TREE_CODE_CLASS (code);
11221 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11222 && TREE_CODE_LENGTH (code) == 3);
11224 /* If this is a commutative operation, and OP0 is a constant, move it
11225 to OP1 to reduce the number of tests below. */
11226 if (commutative_ternary_tree_code (code)
11227 && tree_swap_operands_p (op0, op1))
11228 return fold_build3_loc (loc, code, type, op1, op0, op2);
11230 tem = generic_simplify (loc, code, type, op0, op1, op2);
11231 if (tem)
11232 return tem;
11234 /* Strip any conversions that don't change the mode. This is safe
11235 for every expression, except for a comparison expression because
11236 its signedness is derived from its operands. So, in the latter
11237 case, only strip conversions that don't change the signedness.
11239 Note that this is done as an internal manipulation within the
11240 constant folder, in order to find the simplest representation of
11241 the arguments so that their form can be studied. In any cases,
11242 the appropriate type conversions should be put back in the tree
11243 that will get out of the constant folder. */
11244 if (op0)
11246 arg0 = op0;
11247 STRIP_NOPS (arg0);
11250 if (op1)
11252 arg1 = op1;
11253 STRIP_NOPS (arg1);
11256 if (op2)
11258 arg2 = op2;
11259 STRIP_NOPS (arg2);
11262 switch (code)
11264 case COMPONENT_REF:
11265 if (TREE_CODE (arg0) == CONSTRUCTOR
11266 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11268 unsigned HOST_WIDE_INT idx;
11269 tree field, value;
11270 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11271 if (field == arg1)
11272 return value;
11274 return NULL_TREE;
11276 case COND_EXPR:
11277 case VEC_COND_EXPR:
11278 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11279 so all simple results must be passed through pedantic_non_lvalue. */
11280 if (TREE_CODE (arg0) == INTEGER_CST)
11282 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11283 tem = integer_zerop (arg0) ? op2 : op1;
11284 /* Only optimize constant conditions when the selected branch
11285 has the same type as the COND_EXPR. This avoids optimizing
11286 away "c ? x : throw", where the throw has a void type.
11287 Avoid throwing away that operand which contains label. */
11288 if ((!TREE_SIDE_EFFECTS (unused_op)
11289 || !contains_label_p (unused_op))
11290 && (! VOID_TYPE_P (TREE_TYPE (tem))
11291 || VOID_TYPE_P (type)))
11292 return pedantic_non_lvalue_loc (loc, tem);
11293 return NULL_TREE;
11295 else if (TREE_CODE (arg0) == VECTOR_CST)
11297 if ((TREE_CODE (arg1) == VECTOR_CST
11298 || TREE_CODE (arg1) == CONSTRUCTOR)
11299 && (TREE_CODE (arg2) == VECTOR_CST
11300 || TREE_CODE (arg2) == CONSTRUCTOR))
11302 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
11303 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
11304 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
11305 for (i = 0; i < nelts; i++)
11307 tree val = VECTOR_CST_ELT (arg0, i);
11308 if (integer_all_onesp (val))
11309 sel[i] = i;
11310 else if (integer_zerop (val))
11311 sel[i] = nelts + i;
11312 else /* Currently unreachable. */
11313 return NULL_TREE;
11315 tree t = fold_vec_perm (type, arg1, arg2, sel);
11316 if (t != NULL_TREE)
11317 return t;
11321 /* If we have A op B ? A : C, we may be able to convert this to a
11322 simpler expression, depending on the operation and the values
11323 of B and C. Signed zeros prevent all of these transformations,
11324 for reasons given above each one.
11326 Also try swapping the arguments and inverting the conditional. */
11327 if (COMPARISON_CLASS_P (arg0)
11328 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), arg1)
11329 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11331 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11332 if (tem)
11333 return tem;
11336 if (COMPARISON_CLASS_P (arg0)
11337 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2)
11338 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11340 location_t loc0 = expr_location_or (arg0, loc);
11341 tem = fold_invert_truthvalue (loc0, arg0);
11342 if (tem && COMPARISON_CLASS_P (tem))
11344 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11345 if (tem)
11346 return tem;
11350 /* If the second operand is simpler than the third, swap them
11351 since that produces better jump optimization results. */
11352 if (truth_value_p (TREE_CODE (arg0))
11353 && tree_swap_operands_p (op1, op2))
11355 location_t loc0 = expr_location_or (arg0, loc);
11356 /* See if this can be inverted. If it can't, possibly because
11357 it was a floating-point inequality comparison, don't do
11358 anything. */
11359 tem = fold_invert_truthvalue (loc0, arg0);
11360 if (tem)
11361 return fold_build3_loc (loc, code, type, tem, op2, op1);
11364 /* Convert A ? 1 : 0 to simply A. */
11365 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11366 : (integer_onep (op1)
11367 && !VECTOR_TYPE_P (type)))
11368 && integer_zerop (op2)
11369 /* If we try to convert OP0 to our type, the
11370 call to fold will try to move the conversion inside
11371 a COND, which will recurse. In that case, the COND_EXPR
11372 is probably the best choice, so leave it alone. */
11373 && type == TREE_TYPE (arg0))
11374 return pedantic_non_lvalue_loc (loc, arg0);
11376 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11377 over COND_EXPR in cases such as floating point comparisons. */
11378 if (integer_zerop (op1)
11379 && code == COND_EXPR
11380 && integer_onep (op2)
11381 && !VECTOR_TYPE_P (type)
11382 && truth_value_p (TREE_CODE (arg0)))
11383 return pedantic_non_lvalue_loc (loc,
11384 fold_convert_loc (loc, type,
11385 invert_truthvalue_loc (loc,
11386 arg0)));
11388 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11389 if (TREE_CODE (arg0) == LT_EXPR
11390 && integer_zerop (TREE_OPERAND (arg0, 1))
11391 && integer_zerop (op2)
11392 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11394 /* sign_bit_p looks through both zero and sign extensions,
11395 but for this optimization only sign extensions are
11396 usable. */
11397 tree tem2 = TREE_OPERAND (arg0, 0);
11398 while (tem != tem2)
11400 if (TREE_CODE (tem2) != NOP_EXPR
11401 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11403 tem = NULL_TREE;
11404 break;
11406 tem2 = TREE_OPERAND (tem2, 0);
11408 /* sign_bit_p only checks ARG1 bits within A's precision.
11409 If <sign bit of A> has wider type than A, bits outside
11410 of A's precision in <sign bit of A> need to be checked.
11411 If they are all 0, this optimization needs to be done
11412 in unsigned A's type, if they are all 1 in signed A's type,
11413 otherwise this can't be done. */
11414 if (tem
11415 && TYPE_PRECISION (TREE_TYPE (tem))
11416 < TYPE_PRECISION (TREE_TYPE (arg1))
11417 && TYPE_PRECISION (TREE_TYPE (tem))
11418 < TYPE_PRECISION (type))
11420 int inner_width, outer_width;
11421 tree tem_type;
11423 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11424 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11425 if (outer_width > TYPE_PRECISION (type))
11426 outer_width = TYPE_PRECISION (type);
11428 wide_int mask = wi::shifted_mask
11429 (inner_width, outer_width - inner_width, false,
11430 TYPE_PRECISION (TREE_TYPE (arg1)));
11432 wide_int common = mask & arg1;
11433 if (common == mask)
11435 tem_type = signed_type_for (TREE_TYPE (tem));
11436 tem = fold_convert_loc (loc, tem_type, tem);
11438 else if (common == 0)
11440 tem_type = unsigned_type_for (TREE_TYPE (tem));
11441 tem = fold_convert_loc (loc, tem_type, tem);
11443 else
11444 tem = NULL;
11447 if (tem)
11448 return
11449 fold_convert_loc (loc, type,
11450 fold_build2_loc (loc, BIT_AND_EXPR,
11451 TREE_TYPE (tem), tem,
11452 fold_convert_loc (loc,
11453 TREE_TYPE (tem),
11454 arg1)));
11457 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11458 already handled above. */
11459 if (TREE_CODE (arg0) == BIT_AND_EXPR
11460 && integer_onep (TREE_OPERAND (arg0, 1))
11461 && integer_zerop (op2)
11462 && integer_pow2p (arg1))
11464 tree tem = TREE_OPERAND (arg0, 0);
11465 STRIP_NOPS (tem);
11466 if (TREE_CODE (tem) == RSHIFT_EXPR
11467 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11468 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
11469 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
11470 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11471 fold_convert_loc (loc, type,
11472 TREE_OPERAND (tem, 0)),
11473 op1);
11476 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11477 is probably obsolete because the first operand should be a
11478 truth value (that's why we have the two cases above), but let's
11479 leave it in until we can confirm this for all front-ends. */
11480 if (integer_zerop (op2)
11481 && TREE_CODE (arg0) == NE_EXPR
11482 && integer_zerop (TREE_OPERAND (arg0, 1))
11483 && integer_pow2p (arg1)
11484 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11485 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11486 arg1, OEP_ONLY_CONST))
11487 return pedantic_non_lvalue_loc (loc,
11488 fold_convert_loc (loc, type,
11489 TREE_OPERAND (arg0, 0)));
11491 /* Disable the transformations below for vectors, since
11492 fold_binary_op_with_conditional_arg may undo them immediately,
11493 yielding an infinite loop. */
11494 if (code == VEC_COND_EXPR)
11495 return NULL_TREE;
11497 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11498 if (integer_zerop (op2)
11499 && truth_value_p (TREE_CODE (arg0))
11500 && truth_value_p (TREE_CODE (arg1))
11501 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11502 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11503 : TRUTH_ANDIF_EXPR,
11504 type, fold_convert_loc (loc, type, arg0), op1);
11506 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11507 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11508 && truth_value_p (TREE_CODE (arg0))
11509 && truth_value_p (TREE_CODE (arg1))
11510 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11512 location_t loc0 = expr_location_or (arg0, loc);
11513 /* Only perform transformation if ARG0 is easily inverted. */
11514 tem = fold_invert_truthvalue (loc0, arg0);
11515 if (tem)
11516 return fold_build2_loc (loc, code == VEC_COND_EXPR
11517 ? BIT_IOR_EXPR
11518 : TRUTH_ORIF_EXPR,
11519 type, fold_convert_loc (loc, type, tem),
11520 op1);
11523 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11524 if (integer_zerop (arg1)
11525 && truth_value_p (TREE_CODE (arg0))
11526 && truth_value_p (TREE_CODE (op2))
11527 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11529 location_t loc0 = expr_location_or (arg0, loc);
11530 /* Only perform transformation if ARG0 is easily inverted. */
11531 tem = fold_invert_truthvalue (loc0, arg0);
11532 if (tem)
11533 return fold_build2_loc (loc, code == VEC_COND_EXPR
11534 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11535 type, fold_convert_loc (loc, type, tem),
11536 op2);
11539 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11540 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11541 && truth_value_p (TREE_CODE (arg0))
11542 && truth_value_p (TREE_CODE (op2))
11543 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11544 return fold_build2_loc (loc, code == VEC_COND_EXPR
11545 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11546 type, fold_convert_loc (loc, type, arg0), op2);
11548 return NULL_TREE;
11550 case CALL_EXPR:
11551 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11552 of fold_ternary on them. */
11553 gcc_unreachable ();
11555 case BIT_FIELD_REF:
11556 if (TREE_CODE (arg0) == VECTOR_CST
11557 && (type == TREE_TYPE (TREE_TYPE (arg0))
11558 || (TREE_CODE (type) == VECTOR_TYPE
11559 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11561 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11562 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11563 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11564 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11566 if (n != 0
11567 && (idx % width) == 0
11568 && (n % width) == 0
11569 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11571 idx = idx / width;
11572 n = n / width;
11574 if (TREE_CODE (arg0) == VECTOR_CST)
11576 if (n == 1)
11577 return VECTOR_CST_ELT (arg0, idx);
11579 tree *vals = XALLOCAVEC (tree, n);
11580 for (unsigned i = 0; i < n; ++i)
11581 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
11582 return build_vector (type, vals);
11587 /* On constants we can use native encode/interpret to constant
11588 fold (nearly) all BIT_FIELD_REFs. */
11589 if (CONSTANT_CLASS_P (arg0)
11590 && can_native_interpret_type_p (type)
11591 && BITS_PER_UNIT == 8)
11593 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11594 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11595 /* Limit us to a reasonable amount of work. To relax the
11596 other limitations we need bit-shifting of the buffer
11597 and rounding up the size. */
11598 if (bitpos % BITS_PER_UNIT == 0
11599 && bitsize % BITS_PER_UNIT == 0
11600 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11602 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11603 unsigned HOST_WIDE_INT len
11604 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11605 bitpos / BITS_PER_UNIT);
11606 if (len > 0
11607 && len * BITS_PER_UNIT >= bitsize)
11609 tree v = native_interpret_expr (type, b,
11610 bitsize / BITS_PER_UNIT);
11611 if (v)
11612 return v;
11617 return NULL_TREE;
11619 case FMA_EXPR:
11620 /* For integers we can decompose the FMA if possible. */
11621 if (TREE_CODE (arg0) == INTEGER_CST
11622 && TREE_CODE (arg1) == INTEGER_CST)
11623 return fold_build2_loc (loc, PLUS_EXPR, type,
11624 const_binop (MULT_EXPR, arg0, arg1), arg2);
11625 if (integer_zerop (arg2))
11626 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11628 return fold_fma (loc, type, arg0, arg1, arg2);
11630 case VEC_PERM_EXPR:
11631 if (TREE_CODE (arg2) == VECTOR_CST)
11633 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
11634 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
11635 unsigned char *sel2 = sel + nelts;
11636 bool need_mask_canon = false;
11637 bool need_mask_canon2 = false;
11638 bool all_in_vec0 = true;
11639 bool all_in_vec1 = true;
11640 bool maybe_identity = true;
11641 bool single_arg = (op0 == op1);
11642 bool changed = false;
11644 mask2 = 2 * nelts - 1;
11645 mask = single_arg ? (nelts - 1) : mask2;
11646 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
11647 for (i = 0; i < nelts; i++)
11649 tree val = VECTOR_CST_ELT (arg2, i);
11650 if (TREE_CODE (val) != INTEGER_CST)
11651 return NULL_TREE;
11653 /* Make sure that the perm value is in an acceptable
11654 range. */
11655 wide_int t = val;
11656 need_mask_canon |= wi::gtu_p (t, mask);
11657 need_mask_canon2 |= wi::gtu_p (t, mask2);
11658 sel[i] = t.to_uhwi () & mask;
11659 sel2[i] = t.to_uhwi () & mask2;
11661 if (sel[i] < nelts)
11662 all_in_vec1 = false;
11663 else
11664 all_in_vec0 = false;
11666 if ((sel[i] & (nelts-1)) != i)
11667 maybe_identity = false;
11670 if (maybe_identity)
11672 if (all_in_vec0)
11673 return op0;
11674 if (all_in_vec1)
11675 return op1;
11678 if (all_in_vec0)
11679 op1 = op0;
11680 else if (all_in_vec1)
11682 op0 = op1;
11683 for (i = 0; i < nelts; i++)
11684 sel[i] -= nelts;
11685 need_mask_canon = true;
11688 if ((TREE_CODE (op0) == VECTOR_CST
11689 || TREE_CODE (op0) == CONSTRUCTOR)
11690 && (TREE_CODE (op1) == VECTOR_CST
11691 || TREE_CODE (op1) == CONSTRUCTOR))
11693 tree t = fold_vec_perm (type, op0, op1, sel);
11694 if (t != NULL_TREE)
11695 return t;
11698 if (op0 == op1 && !single_arg)
11699 changed = true;
11701 /* Some targets are deficient and fail to expand a single
11702 argument permutation while still allowing an equivalent
11703 2-argument version. */
11704 if (need_mask_canon && arg2 == op2
11705 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
11706 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
11708 need_mask_canon = need_mask_canon2;
11709 sel = sel2;
11712 if (need_mask_canon && arg2 == op2)
11714 tree *tsel = XALLOCAVEC (tree, nelts);
11715 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11716 for (i = 0; i < nelts; i++)
11717 tsel[i] = build_int_cst (eltype, sel[i]);
11718 op2 = build_vector (TREE_TYPE (arg2), tsel);
11719 changed = true;
11722 if (changed)
11723 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11725 return NULL_TREE;
11727 case BIT_INSERT_EXPR:
11728 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11729 if (TREE_CODE (arg0) == INTEGER_CST
11730 && TREE_CODE (arg1) == INTEGER_CST)
11732 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11733 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11734 wide_int tem = wi::bit_and (arg0,
11735 wi::shifted_mask (bitpos, bitsize, true,
11736 TYPE_PRECISION (type)));
11737 wide_int tem2
11738 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11739 bitsize), bitpos);
11740 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11742 else if (TREE_CODE (arg0) == VECTOR_CST
11743 && CONSTANT_CLASS_P (arg1)
11744 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11745 TREE_TYPE (arg1)))
11747 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11748 unsigned HOST_WIDE_INT elsize
11749 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11750 if (bitpos % elsize == 0)
11752 unsigned k = bitpos / elsize;
11753 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11754 return arg0;
11755 else
11757 tree *elts = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
11758 memcpy (elts, VECTOR_CST_ELTS (arg0),
11759 sizeof (tree) * TYPE_VECTOR_SUBPARTS (type));
11760 elts[k] = arg1;
11761 return build_vector (type, elts);
11765 return NULL_TREE;
11767 default:
11768 return NULL_TREE;
11769 } /* switch (code) */
11772 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11773 of an array (or vector). */
11775 tree
11776 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11778 tree index_type = NULL_TREE;
11779 offset_int low_bound = 0;
11781 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11783 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11784 if (domain_type && TYPE_MIN_VALUE (domain_type))
11786 /* Static constructors for variably sized objects makes no sense. */
11787 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11788 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11789 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11793 if (index_type)
11794 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11795 TYPE_SIGN (index_type));
11797 offset_int index = low_bound - 1;
11798 if (index_type)
11799 index = wi::ext (index, TYPE_PRECISION (index_type),
11800 TYPE_SIGN (index_type));
11802 offset_int max_index;
11803 unsigned HOST_WIDE_INT cnt;
11804 tree cfield, cval;
11806 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11808 /* Array constructor might explicitly set index, or specify a range,
11809 or leave index NULL meaning that it is next index after previous
11810 one. */
11811 if (cfield)
11813 if (TREE_CODE (cfield) == INTEGER_CST)
11814 max_index = index = wi::to_offset (cfield);
11815 else
11817 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11818 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11819 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11822 else
11824 index += 1;
11825 if (index_type)
11826 index = wi::ext (index, TYPE_PRECISION (index_type),
11827 TYPE_SIGN (index_type));
11828 max_index = index;
11831 /* Do we have match? */
11832 if (wi::cmpu (access_index, index) >= 0
11833 && wi::cmpu (access_index, max_index) <= 0)
11834 return cval;
11836 return NULL_TREE;
11839 /* Perform constant folding and related simplification of EXPR.
11840 The related simplifications include x*1 => x, x*0 => 0, etc.,
11841 and application of the associative law.
11842 NOP_EXPR conversions may be removed freely (as long as we
11843 are careful not to change the type of the overall expression).
11844 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11845 but we can constant-fold them if they have constant operands. */
11847 #ifdef ENABLE_FOLD_CHECKING
11848 # define fold(x) fold_1 (x)
11849 static tree fold_1 (tree);
11850 static
11851 #endif
11852 tree
11853 fold (tree expr)
11855 const tree t = expr;
11856 enum tree_code code = TREE_CODE (t);
11857 enum tree_code_class kind = TREE_CODE_CLASS (code);
11858 tree tem;
11859 location_t loc = EXPR_LOCATION (expr);
11861 /* Return right away if a constant. */
11862 if (kind == tcc_constant)
11863 return t;
11865 /* CALL_EXPR-like objects with variable numbers of operands are
11866 treated specially. */
11867 if (kind == tcc_vl_exp)
11869 if (code == CALL_EXPR)
11871 tem = fold_call_expr (loc, expr, false);
11872 return tem ? tem : expr;
11874 return expr;
11877 if (IS_EXPR_CODE_CLASS (kind))
11879 tree type = TREE_TYPE (t);
11880 tree op0, op1, op2;
11882 switch (TREE_CODE_LENGTH (code))
11884 case 1:
11885 op0 = TREE_OPERAND (t, 0);
11886 tem = fold_unary_loc (loc, code, type, op0);
11887 return tem ? tem : expr;
11888 case 2:
11889 op0 = TREE_OPERAND (t, 0);
11890 op1 = TREE_OPERAND (t, 1);
11891 tem = fold_binary_loc (loc, code, type, op0, op1);
11892 return tem ? tem : expr;
11893 case 3:
11894 op0 = TREE_OPERAND (t, 0);
11895 op1 = TREE_OPERAND (t, 1);
11896 op2 = TREE_OPERAND (t, 2);
11897 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11898 return tem ? tem : expr;
11899 default:
11900 break;
11904 switch (code)
11906 case ARRAY_REF:
11908 tree op0 = TREE_OPERAND (t, 0);
11909 tree op1 = TREE_OPERAND (t, 1);
11911 if (TREE_CODE (op1) == INTEGER_CST
11912 && TREE_CODE (op0) == CONSTRUCTOR
11913 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
11915 tree val = get_array_ctor_element_at_index (op0,
11916 wi::to_offset (op1));
11917 if (val)
11918 return val;
11921 return t;
11924 /* Return a VECTOR_CST if possible. */
11925 case CONSTRUCTOR:
11927 tree type = TREE_TYPE (t);
11928 if (TREE_CODE (type) != VECTOR_TYPE)
11929 return t;
11931 unsigned i;
11932 tree val;
11933 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
11934 if (! CONSTANT_CLASS_P (val))
11935 return t;
11937 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
11940 case CONST_DECL:
11941 return fold (DECL_INITIAL (t));
11943 default:
11944 return t;
11945 } /* switch (code) */
11948 #ifdef ENABLE_FOLD_CHECKING
11949 #undef fold
11951 static void fold_checksum_tree (const_tree, struct md5_ctx *,
11952 hash_table<nofree_ptr_hash<const tree_node> > *);
11953 static void fold_check_failed (const_tree, const_tree);
11954 void print_fold_checksum (const_tree);
11956 /* When --enable-checking=fold, compute a digest of expr before
11957 and after actual fold call to see if fold did not accidentally
11958 change original expr. */
11960 tree
11961 fold (tree expr)
11963 tree ret;
11964 struct md5_ctx ctx;
11965 unsigned char checksum_before[16], checksum_after[16];
11966 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11968 md5_init_ctx (&ctx);
11969 fold_checksum_tree (expr, &ctx, &ht);
11970 md5_finish_ctx (&ctx, checksum_before);
11971 ht.empty ();
11973 ret = fold_1 (expr);
11975 md5_init_ctx (&ctx);
11976 fold_checksum_tree (expr, &ctx, &ht);
11977 md5_finish_ctx (&ctx, checksum_after);
11979 if (memcmp (checksum_before, checksum_after, 16))
11980 fold_check_failed (expr, ret);
11982 return ret;
11985 void
11986 print_fold_checksum (const_tree expr)
11988 struct md5_ctx ctx;
11989 unsigned char checksum[16], cnt;
11990 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11992 md5_init_ctx (&ctx);
11993 fold_checksum_tree (expr, &ctx, &ht);
11994 md5_finish_ctx (&ctx, checksum);
11995 for (cnt = 0; cnt < 16; ++cnt)
11996 fprintf (stderr, "%02x", checksum[cnt]);
11997 putc ('\n', stderr);
12000 static void
12001 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12003 internal_error ("fold check: original tree changed by fold");
12006 static void
12007 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12008 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12010 const tree_node **slot;
12011 enum tree_code code;
12012 union tree_node buf;
12013 int i, len;
12015 recursive_label:
12016 if (expr == NULL)
12017 return;
12018 slot = ht->find_slot (expr, INSERT);
12019 if (*slot != NULL)
12020 return;
12021 *slot = expr;
12022 code = TREE_CODE (expr);
12023 if (TREE_CODE_CLASS (code) == tcc_declaration
12024 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12026 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12027 memcpy ((char *) &buf, expr, tree_size (expr));
12028 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12029 buf.decl_with_vis.symtab_node = NULL;
12030 expr = (tree) &buf;
12032 else if (TREE_CODE_CLASS (code) == tcc_type
12033 && (TYPE_POINTER_TO (expr)
12034 || TYPE_REFERENCE_TO (expr)
12035 || TYPE_CACHED_VALUES_P (expr)
12036 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12037 || TYPE_NEXT_VARIANT (expr)
12038 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12040 /* Allow these fields to be modified. */
12041 tree tmp;
12042 memcpy ((char *) &buf, expr, tree_size (expr));
12043 expr = tmp = (tree) &buf;
12044 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12045 TYPE_POINTER_TO (tmp) = NULL;
12046 TYPE_REFERENCE_TO (tmp) = NULL;
12047 TYPE_NEXT_VARIANT (tmp) = NULL;
12048 TYPE_ALIAS_SET (tmp) = -1;
12049 if (TYPE_CACHED_VALUES_P (tmp))
12051 TYPE_CACHED_VALUES_P (tmp) = 0;
12052 TYPE_CACHED_VALUES (tmp) = NULL;
12055 md5_process_bytes (expr, tree_size (expr), ctx);
12056 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12057 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12058 if (TREE_CODE_CLASS (code) != tcc_type
12059 && TREE_CODE_CLASS (code) != tcc_declaration
12060 && code != TREE_LIST
12061 && code != SSA_NAME
12062 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12063 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12064 switch (TREE_CODE_CLASS (code))
12066 case tcc_constant:
12067 switch (code)
12069 case STRING_CST:
12070 md5_process_bytes (TREE_STRING_POINTER (expr),
12071 TREE_STRING_LENGTH (expr), ctx);
12072 break;
12073 case COMPLEX_CST:
12074 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12075 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12076 break;
12077 case VECTOR_CST:
12078 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12079 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12080 break;
12081 default:
12082 break;
12084 break;
12085 case tcc_exceptional:
12086 switch (code)
12088 case TREE_LIST:
12089 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12090 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12091 expr = TREE_CHAIN (expr);
12092 goto recursive_label;
12093 break;
12094 case TREE_VEC:
12095 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12096 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12097 break;
12098 default:
12099 break;
12101 break;
12102 case tcc_expression:
12103 case tcc_reference:
12104 case tcc_comparison:
12105 case tcc_unary:
12106 case tcc_binary:
12107 case tcc_statement:
12108 case tcc_vl_exp:
12109 len = TREE_OPERAND_LENGTH (expr);
12110 for (i = 0; i < len; ++i)
12111 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12112 break;
12113 case tcc_declaration:
12114 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12115 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12116 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12118 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12119 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12120 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12121 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12122 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12125 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12127 if (TREE_CODE (expr) == FUNCTION_DECL)
12129 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12130 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12132 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12134 break;
12135 case tcc_type:
12136 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12137 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12138 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12139 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12140 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12141 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12142 if (INTEGRAL_TYPE_P (expr)
12143 || SCALAR_FLOAT_TYPE_P (expr))
12145 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12146 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12148 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12149 if (TREE_CODE (expr) == RECORD_TYPE
12150 || TREE_CODE (expr) == UNION_TYPE
12151 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12152 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12153 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12154 break;
12155 default:
12156 break;
12160 /* Helper function for outputting the checksum of a tree T. When
12161 debugging with gdb, you can "define mynext" to be "next" followed
12162 by "call debug_fold_checksum (op0)", then just trace down till the
12163 outputs differ. */
12165 DEBUG_FUNCTION void
12166 debug_fold_checksum (const_tree t)
12168 int i;
12169 unsigned char checksum[16];
12170 struct md5_ctx ctx;
12171 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12173 md5_init_ctx (&ctx);
12174 fold_checksum_tree (t, &ctx, &ht);
12175 md5_finish_ctx (&ctx, checksum);
12176 ht.empty ();
12178 for (i = 0; i < 16; i++)
12179 fprintf (stderr, "%d ", checksum[i]);
12181 fprintf (stderr, "\n");
12184 #endif
12186 /* Fold a unary tree expression with code CODE of type TYPE with an
12187 operand OP0. LOC is the location of the resulting expression.
12188 Return a folded expression if successful. Otherwise, return a tree
12189 expression with code CODE of type TYPE with an operand OP0. */
12191 tree
12192 fold_build1_loc (location_t loc,
12193 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12195 tree tem;
12196 #ifdef ENABLE_FOLD_CHECKING
12197 unsigned char checksum_before[16], checksum_after[16];
12198 struct md5_ctx ctx;
12199 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12201 md5_init_ctx (&ctx);
12202 fold_checksum_tree (op0, &ctx, &ht);
12203 md5_finish_ctx (&ctx, checksum_before);
12204 ht.empty ();
12205 #endif
12207 tem = fold_unary_loc (loc, code, type, op0);
12208 if (!tem)
12209 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT);
12211 #ifdef ENABLE_FOLD_CHECKING
12212 md5_init_ctx (&ctx);
12213 fold_checksum_tree (op0, &ctx, &ht);
12214 md5_finish_ctx (&ctx, checksum_after);
12216 if (memcmp (checksum_before, checksum_after, 16))
12217 fold_check_failed (op0, tem);
12218 #endif
12219 return tem;
12222 /* Fold a binary tree expression with code CODE of type TYPE with
12223 operands OP0 and OP1. LOC is the location of the resulting
12224 expression. Return a folded expression if successful. Otherwise,
12225 return a tree expression with code CODE of type TYPE with operands
12226 OP0 and OP1. */
12228 tree
12229 fold_build2_loc (location_t loc,
12230 enum tree_code code, tree type, tree op0, tree op1
12231 MEM_STAT_DECL)
12233 tree tem;
12234 #ifdef ENABLE_FOLD_CHECKING
12235 unsigned char checksum_before_op0[16],
12236 checksum_before_op1[16],
12237 checksum_after_op0[16],
12238 checksum_after_op1[16];
12239 struct md5_ctx ctx;
12240 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12242 md5_init_ctx (&ctx);
12243 fold_checksum_tree (op0, &ctx, &ht);
12244 md5_finish_ctx (&ctx, checksum_before_op0);
12245 ht.empty ();
12247 md5_init_ctx (&ctx);
12248 fold_checksum_tree (op1, &ctx, &ht);
12249 md5_finish_ctx (&ctx, checksum_before_op1);
12250 ht.empty ();
12251 #endif
12253 tem = fold_binary_loc (loc, code, type, op0, op1);
12254 if (!tem)
12255 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12257 #ifdef ENABLE_FOLD_CHECKING
12258 md5_init_ctx (&ctx);
12259 fold_checksum_tree (op0, &ctx, &ht);
12260 md5_finish_ctx (&ctx, checksum_after_op0);
12261 ht.empty ();
12263 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12264 fold_check_failed (op0, tem);
12266 md5_init_ctx (&ctx);
12267 fold_checksum_tree (op1, &ctx, &ht);
12268 md5_finish_ctx (&ctx, checksum_after_op1);
12270 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12271 fold_check_failed (op1, tem);
12272 #endif
12273 return tem;
12276 /* Fold a ternary tree expression with code CODE of type TYPE with
12277 operands OP0, OP1, and OP2. Return a folded expression if
12278 successful. Otherwise, return a tree expression with code CODE of
12279 type TYPE with operands OP0, OP1, and OP2. */
12281 tree
12282 fold_build3_loc (location_t loc, enum tree_code code, tree type,
12283 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12285 tree tem;
12286 #ifdef ENABLE_FOLD_CHECKING
12287 unsigned char checksum_before_op0[16],
12288 checksum_before_op1[16],
12289 checksum_before_op2[16],
12290 checksum_after_op0[16],
12291 checksum_after_op1[16],
12292 checksum_after_op2[16];
12293 struct md5_ctx ctx;
12294 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12296 md5_init_ctx (&ctx);
12297 fold_checksum_tree (op0, &ctx, &ht);
12298 md5_finish_ctx (&ctx, checksum_before_op0);
12299 ht.empty ();
12301 md5_init_ctx (&ctx);
12302 fold_checksum_tree (op1, &ctx, &ht);
12303 md5_finish_ctx (&ctx, checksum_before_op1);
12304 ht.empty ();
12306 md5_init_ctx (&ctx);
12307 fold_checksum_tree (op2, &ctx, &ht);
12308 md5_finish_ctx (&ctx, checksum_before_op2);
12309 ht.empty ();
12310 #endif
12312 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12313 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12314 if (!tem)
12315 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12317 #ifdef ENABLE_FOLD_CHECKING
12318 md5_init_ctx (&ctx);
12319 fold_checksum_tree (op0, &ctx, &ht);
12320 md5_finish_ctx (&ctx, checksum_after_op0);
12321 ht.empty ();
12323 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12324 fold_check_failed (op0, tem);
12326 md5_init_ctx (&ctx);
12327 fold_checksum_tree (op1, &ctx, &ht);
12328 md5_finish_ctx (&ctx, checksum_after_op1);
12329 ht.empty ();
12331 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12332 fold_check_failed (op1, tem);
12334 md5_init_ctx (&ctx);
12335 fold_checksum_tree (op2, &ctx, &ht);
12336 md5_finish_ctx (&ctx, checksum_after_op2);
12338 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12339 fold_check_failed (op2, tem);
12340 #endif
12341 return tem;
12344 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12345 arguments in ARGARRAY, and a null static chain.
12346 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12347 of type TYPE from the given operands as constructed by build_call_array. */
12349 tree
12350 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12351 int nargs, tree *argarray)
12353 tree tem;
12354 #ifdef ENABLE_FOLD_CHECKING
12355 unsigned char checksum_before_fn[16],
12356 checksum_before_arglist[16],
12357 checksum_after_fn[16],
12358 checksum_after_arglist[16];
12359 struct md5_ctx ctx;
12360 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12361 int i;
12363 md5_init_ctx (&ctx);
12364 fold_checksum_tree (fn, &ctx, &ht);
12365 md5_finish_ctx (&ctx, checksum_before_fn);
12366 ht.empty ();
12368 md5_init_ctx (&ctx);
12369 for (i = 0; i < nargs; i++)
12370 fold_checksum_tree (argarray[i], &ctx, &ht);
12371 md5_finish_ctx (&ctx, checksum_before_arglist);
12372 ht.empty ();
12373 #endif
12375 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12376 if (!tem)
12377 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12379 #ifdef ENABLE_FOLD_CHECKING
12380 md5_init_ctx (&ctx);
12381 fold_checksum_tree (fn, &ctx, &ht);
12382 md5_finish_ctx (&ctx, checksum_after_fn);
12383 ht.empty ();
12385 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12386 fold_check_failed (fn, tem);
12388 md5_init_ctx (&ctx);
12389 for (i = 0; i < nargs; i++)
12390 fold_checksum_tree (argarray[i], &ctx, &ht);
12391 md5_finish_ctx (&ctx, checksum_after_arglist);
12393 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12394 fold_check_failed (NULL_TREE, tem);
12395 #endif
12396 return tem;
12399 /* Perform constant folding and related simplification of initializer
12400 expression EXPR. These behave identically to "fold_buildN" but ignore
12401 potential run-time traps and exceptions that fold must preserve. */
12403 #define START_FOLD_INIT \
12404 int saved_signaling_nans = flag_signaling_nans;\
12405 int saved_trapping_math = flag_trapping_math;\
12406 int saved_rounding_math = flag_rounding_math;\
12407 int saved_trapv = flag_trapv;\
12408 int saved_folding_initializer = folding_initializer;\
12409 flag_signaling_nans = 0;\
12410 flag_trapping_math = 0;\
12411 flag_rounding_math = 0;\
12412 flag_trapv = 0;\
12413 folding_initializer = 1;
12415 #define END_FOLD_INIT \
12416 flag_signaling_nans = saved_signaling_nans;\
12417 flag_trapping_math = saved_trapping_math;\
12418 flag_rounding_math = saved_rounding_math;\
12419 flag_trapv = saved_trapv;\
12420 folding_initializer = saved_folding_initializer;
12422 tree
12423 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12424 tree type, tree op)
12426 tree result;
12427 START_FOLD_INIT;
12429 result = fold_build1_loc (loc, code, type, op);
12431 END_FOLD_INIT;
12432 return result;
12435 tree
12436 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12437 tree type, tree op0, tree op1)
12439 tree result;
12440 START_FOLD_INIT;
12442 result = fold_build2_loc (loc, code, type, op0, op1);
12444 END_FOLD_INIT;
12445 return result;
12448 tree
12449 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12450 int nargs, tree *argarray)
12452 tree result;
12453 START_FOLD_INIT;
12455 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12457 END_FOLD_INIT;
12458 return result;
12461 #undef START_FOLD_INIT
12462 #undef END_FOLD_INIT
12464 /* Determine if first argument is a multiple of second argument. Return 0 if
12465 it is not, or we cannot easily determined it to be.
12467 An example of the sort of thing we care about (at this point; this routine
12468 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12469 fold cases do now) is discovering that
12471 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12473 is a multiple of
12475 SAVE_EXPR (J * 8)
12477 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12479 This code also handles discovering that
12481 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12483 is a multiple of 8 so we don't have to worry about dealing with a
12484 possible remainder.
12486 Note that we *look* inside a SAVE_EXPR only to determine how it was
12487 calculated; it is not safe for fold to do much of anything else with the
12488 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12489 at run time. For example, the latter example above *cannot* be implemented
12490 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12491 evaluation time of the original SAVE_EXPR is not necessarily the same at
12492 the time the new expression is evaluated. The only optimization of this
12493 sort that would be valid is changing
12495 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12497 divided by 8 to
12499 SAVE_EXPR (I) * SAVE_EXPR (J)
12501 (where the same SAVE_EXPR (J) is used in the original and the
12502 transformed version). */
12505 multiple_of_p (tree type, const_tree top, const_tree bottom)
12507 gimple *stmt;
12508 tree t1, op1, op2;
12510 if (operand_equal_p (top, bottom, 0))
12511 return 1;
12513 if (TREE_CODE (type) != INTEGER_TYPE)
12514 return 0;
12516 switch (TREE_CODE (top))
12518 case BIT_AND_EXPR:
12519 /* Bitwise and provides a power of two multiple. If the mask is
12520 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12521 if (!integer_pow2p (bottom))
12522 return 0;
12523 /* FALLTHRU */
12525 case MULT_EXPR:
12526 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12527 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12529 case MINUS_EXPR:
12530 /* It is impossible to prove if op0 - op1 is multiple of bottom
12531 precisely, so be conservative here checking if both op0 and op1
12532 are multiple of bottom. Note we check the second operand first
12533 since it's usually simpler. */
12534 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12535 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12537 case PLUS_EXPR:
12538 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12539 as op0 - 3 if the expression has unsigned type. For example,
12540 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12541 op1 = TREE_OPERAND (top, 1);
12542 if (TYPE_UNSIGNED (type)
12543 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12544 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12545 return (multiple_of_p (type, op1, bottom)
12546 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12548 case LSHIFT_EXPR:
12549 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12551 op1 = TREE_OPERAND (top, 1);
12552 /* const_binop may not detect overflow correctly,
12553 so check for it explicitly here. */
12554 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12555 && 0 != (t1 = fold_convert (type,
12556 const_binop (LSHIFT_EXPR,
12557 size_one_node,
12558 op1)))
12559 && !TREE_OVERFLOW (t1))
12560 return multiple_of_p (type, t1, bottom);
12562 return 0;
12564 case NOP_EXPR:
12565 /* Can't handle conversions from non-integral or wider integral type. */
12566 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12567 || (TYPE_PRECISION (type)
12568 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12569 return 0;
12571 /* fall through */
12573 case SAVE_EXPR:
12574 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12576 case COND_EXPR:
12577 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12578 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12580 case INTEGER_CST:
12581 if (TREE_CODE (bottom) != INTEGER_CST
12582 || integer_zerop (bottom)
12583 || (TYPE_UNSIGNED (type)
12584 && (tree_int_cst_sgn (top) < 0
12585 || tree_int_cst_sgn (bottom) < 0)))
12586 return 0;
12587 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12588 SIGNED);
12590 case SSA_NAME:
12591 if (TREE_CODE (bottom) == INTEGER_CST
12592 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12593 && gimple_code (stmt) == GIMPLE_ASSIGN)
12595 enum tree_code code = gimple_assign_rhs_code (stmt);
12597 /* Check for special cases to see if top is defined as multiple
12598 of bottom:
12600 top = (X & ~(bottom - 1) ; bottom is power of 2
12604 Y = X % bottom
12605 top = X - Y. */
12606 if (code == BIT_AND_EXPR
12607 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12608 && TREE_CODE (op2) == INTEGER_CST
12609 && integer_pow2p (bottom)
12610 && wi::multiple_of_p (wi::to_widest (op2),
12611 wi::to_widest (bottom), UNSIGNED))
12612 return 1;
12614 op1 = gimple_assign_rhs1 (stmt);
12615 if (code == MINUS_EXPR
12616 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12617 && TREE_CODE (op2) == SSA_NAME
12618 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12619 && gimple_code (stmt) == GIMPLE_ASSIGN
12620 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12621 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12622 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12623 return 1;
12626 /* fall through */
12628 default:
12629 return 0;
12633 #define tree_expr_nonnegative_warnv_p(X, Y) \
12634 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12636 #define RECURSE(X) \
12637 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12639 /* Return true if CODE or TYPE is known to be non-negative. */
12641 static bool
12642 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12644 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12645 && truth_value_p (code))
12646 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12647 have a signed:1 type (where the value is -1 and 0). */
12648 return true;
12649 return false;
12652 /* Return true if (CODE OP0) is known to be non-negative. If the return
12653 value is based on the assumption that signed overflow is undefined,
12654 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12655 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12657 bool
12658 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12659 bool *strict_overflow_p, int depth)
12661 if (TYPE_UNSIGNED (type))
12662 return true;
12664 switch (code)
12666 case ABS_EXPR:
12667 /* We can't return 1 if flag_wrapv is set because
12668 ABS_EXPR<INT_MIN> = INT_MIN. */
12669 if (!ANY_INTEGRAL_TYPE_P (type))
12670 return true;
12671 if (TYPE_OVERFLOW_UNDEFINED (type))
12673 *strict_overflow_p = true;
12674 return true;
12676 break;
12678 case NON_LVALUE_EXPR:
12679 case FLOAT_EXPR:
12680 case FIX_TRUNC_EXPR:
12681 return RECURSE (op0);
12683 CASE_CONVERT:
12685 tree inner_type = TREE_TYPE (op0);
12686 tree outer_type = type;
12688 if (TREE_CODE (outer_type) == REAL_TYPE)
12690 if (TREE_CODE (inner_type) == REAL_TYPE)
12691 return RECURSE (op0);
12692 if (INTEGRAL_TYPE_P (inner_type))
12694 if (TYPE_UNSIGNED (inner_type))
12695 return true;
12696 return RECURSE (op0);
12699 else if (INTEGRAL_TYPE_P (outer_type))
12701 if (TREE_CODE (inner_type) == REAL_TYPE)
12702 return RECURSE (op0);
12703 if (INTEGRAL_TYPE_P (inner_type))
12704 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12705 && TYPE_UNSIGNED (inner_type);
12708 break;
12710 default:
12711 return tree_simple_nonnegative_warnv_p (code, type);
12714 /* We don't know sign of `t', so be conservative and return false. */
12715 return false;
12718 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12719 value is based on the assumption that signed overflow is undefined,
12720 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12721 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12723 bool
12724 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12725 tree op1, bool *strict_overflow_p,
12726 int depth)
12728 if (TYPE_UNSIGNED (type))
12729 return true;
12731 switch (code)
12733 case POINTER_PLUS_EXPR:
12734 case PLUS_EXPR:
12735 if (FLOAT_TYPE_P (type))
12736 return RECURSE (op0) && RECURSE (op1);
12738 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12739 both unsigned and at least 2 bits shorter than the result. */
12740 if (TREE_CODE (type) == INTEGER_TYPE
12741 && TREE_CODE (op0) == NOP_EXPR
12742 && TREE_CODE (op1) == NOP_EXPR)
12744 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12745 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12746 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12747 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12749 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12750 TYPE_PRECISION (inner2)) + 1;
12751 return prec < TYPE_PRECISION (type);
12754 break;
12756 case MULT_EXPR:
12757 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12759 /* x * x is always non-negative for floating point x
12760 or without overflow. */
12761 if (operand_equal_p (op0, op1, 0)
12762 || (RECURSE (op0) && RECURSE (op1)))
12764 if (ANY_INTEGRAL_TYPE_P (type)
12765 && TYPE_OVERFLOW_UNDEFINED (type))
12766 *strict_overflow_p = true;
12767 return true;
12771 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12772 both unsigned and their total bits is shorter than the result. */
12773 if (TREE_CODE (type) == INTEGER_TYPE
12774 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12775 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12777 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12778 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12779 : TREE_TYPE (op0);
12780 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12781 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12782 : TREE_TYPE (op1);
12784 bool unsigned0 = TYPE_UNSIGNED (inner0);
12785 bool unsigned1 = TYPE_UNSIGNED (inner1);
12787 if (TREE_CODE (op0) == INTEGER_CST)
12788 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12790 if (TREE_CODE (op1) == INTEGER_CST)
12791 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12793 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12794 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12796 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12797 ? tree_int_cst_min_precision (op0, UNSIGNED)
12798 : TYPE_PRECISION (inner0);
12800 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12801 ? tree_int_cst_min_precision (op1, UNSIGNED)
12802 : TYPE_PRECISION (inner1);
12804 return precision0 + precision1 < TYPE_PRECISION (type);
12807 return false;
12809 case BIT_AND_EXPR:
12810 case MAX_EXPR:
12811 return RECURSE (op0) || RECURSE (op1);
12813 case BIT_IOR_EXPR:
12814 case BIT_XOR_EXPR:
12815 case MIN_EXPR:
12816 case RDIV_EXPR:
12817 case TRUNC_DIV_EXPR:
12818 case CEIL_DIV_EXPR:
12819 case FLOOR_DIV_EXPR:
12820 case ROUND_DIV_EXPR:
12821 return RECURSE (op0) && RECURSE (op1);
12823 case TRUNC_MOD_EXPR:
12824 return RECURSE (op0);
12826 case FLOOR_MOD_EXPR:
12827 return RECURSE (op1);
12829 case CEIL_MOD_EXPR:
12830 case ROUND_MOD_EXPR:
12831 default:
12832 return tree_simple_nonnegative_warnv_p (code, type);
12835 /* We don't know sign of `t', so be conservative and return false. */
12836 return false;
12839 /* Return true if T is known to be non-negative. If the return
12840 value is based on the assumption that signed overflow is undefined,
12841 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12842 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12844 bool
12845 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12847 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12848 return true;
12850 switch (TREE_CODE (t))
12852 case INTEGER_CST:
12853 return tree_int_cst_sgn (t) >= 0;
12855 case REAL_CST:
12856 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12858 case FIXED_CST:
12859 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12861 case COND_EXPR:
12862 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12864 case SSA_NAME:
12865 /* Limit the depth of recursion to avoid quadratic behavior.
12866 This is expected to catch almost all occurrences in practice.
12867 If this code misses important cases that unbounded recursion
12868 would not, passes that need this information could be revised
12869 to provide it through dataflow propagation. */
12870 return (!name_registered_for_update_p (t)
12871 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12872 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12873 strict_overflow_p, depth));
12875 default:
12876 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12880 /* Return true if T is known to be non-negative. If the return
12881 value is based on the assumption that signed overflow is undefined,
12882 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12883 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12885 bool
12886 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
12887 bool *strict_overflow_p, int depth)
12889 switch (fn)
12891 CASE_CFN_ACOS:
12892 CASE_CFN_ACOSH:
12893 CASE_CFN_CABS:
12894 CASE_CFN_COSH:
12895 CASE_CFN_ERFC:
12896 CASE_CFN_EXP:
12897 CASE_CFN_EXP10:
12898 CASE_CFN_EXP2:
12899 CASE_CFN_FABS:
12900 CASE_CFN_FDIM:
12901 CASE_CFN_HYPOT:
12902 CASE_CFN_POW10:
12903 CASE_CFN_FFS:
12904 CASE_CFN_PARITY:
12905 CASE_CFN_POPCOUNT:
12906 CASE_CFN_CLZ:
12907 CASE_CFN_CLRSB:
12908 case CFN_BUILT_IN_BSWAP32:
12909 case CFN_BUILT_IN_BSWAP64:
12910 /* Always true. */
12911 return true;
12913 CASE_CFN_SQRT:
12914 /* sqrt(-0.0) is -0.0. */
12915 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
12916 return true;
12917 return RECURSE (arg0);
12919 CASE_CFN_ASINH:
12920 CASE_CFN_ATAN:
12921 CASE_CFN_ATANH:
12922 CASE_CFN_CBRT:
12923 CASE_CFN_CEIL:
12924 CASE_CFN_ERF:
12925 CASE_CFN_EXPM1:
12926 CASE_CFN_FLOOR:
12927 CASE_CFN_FMOD:
12928 CASE_CFN_FREXP:
12929 CASE_CFN_ICEIL:
12930 CASE_CFN_IFLOOR:
12931 CASE_CFN_IRINT:
12932 CASE_CFN_IROUND:
12933 CASE_CFN_LCEIL:
12934 CASE_CFN_LDEXP:
12935 CASE_CFN_LFLOOR:
12936 CASE_CFN_LLCEIL:
12937 CASE_CFN_LLFLOOR:
12938 CASE_CFN_LLRINT:
12939 CASE_CFN_LLROUND:
12940 CASE_CFN_LRINT:
12941 CASE_CFN_LROUND:
12942 CASE_CFN_MODF:
12943 CASE_CFN_NEARBYINT:
12944 CASE_CFN_RINT:
12945 CASE_CFN_ROUND:
12946 CASE_CFN_SCALB:
12947 CASE_CFN_SCALBLN:
12948 CASE_CFN_SCALBN:
12949 CASE_CFN_SIGNBIT:
12950 CASE_CFN_SIGNIFICAND:
12951 CASE_CFN_SINH:
12952 CASE_CFN_TANH:
12953 CASE_CFN_TRUNC:
12954 /* True if the 1st argument is nonnegative. */
12955 return RECURSE (arg0);
12957 CASE_CFN_FMAX:
12958 /* True if the 1st OR 2nd arguments are nonnegative. */
12959 return RECURSE (arg0) || RECURSE (arg1);
12961 CASE_CFN_FMIN:
12962 /* True if the 1st AND 2nd arguments are nonnegative. */
12963 return RECURSE (arg0) && RECURSE (arg1);
12965 CASE_CFN_COPYSIGN:
12966 /* True if the 2nd argument is nonnegative. */
12967 return RECURSE (arg1);
12969 CASE_CFN_POWI:
12970 /* True if the 1st argument is nonnegative or the second
12971 argument is an even integer. */
12972 if (TREE_CODE (arg1) == INTEGER_CST
12973 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
12974 return true;
12975 return RECURSE (arg0);
12977 CASE_CFN_POW:
12978 /* True if the 1st argument is nonnegative or the second
12979 argument is an even integer valued real. */
12980 if (TREE_CODE (arg1) == REAL_CST)
12982 REAL_VALUE_TYPE c;
12983 HOST_WIDE_INT n;
12985 c = TREE_REAL_CST (arg1);
12986 n = real_to_integer (&c);
12987 if ((n & 1) == 0)
12989 REAL_VALUE_TYPE cint;
12990 real_from_integer (&cint, VOIDmode, n, SIGNED);
12991 if (real_identical (&c, &cint))
12992 return true;
12995 return RECURSE (arg0);
12997 default:
12998 break;
13000 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13003 /* Return true if T is known to be non-negative. If the return
13004 value is based on the assumption that signed overflow is undefined,
13005 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13006 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13008 static bool
13009 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13011 enum tree_code code = TREE_CODE (t);
13012 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13013 return true;
13015 switch (code)
13017 case TARGET_EXPR:
13019 tree temp = TARGET_EXPR_SLOT (t);
13020 t = TARGET_EXPR_INITIAL (t);
13022 /* If the initializer is non-void, then it's a normal expression
13023 that will be assigned to the slot. */
13024 if (!VOID_TYPE_P (t))
13025 return RECURSE (t);
13027 /* Otherwise, the initializer sets the slot in some way. One common
13028 way is an assignment statement at the end of the initializer. */
13029 while (1)
13031 if (TREE_CODE (t) == BIND_EXPR)
13032 t = expr_last (BIND_EXPR_BODY (t));
13033 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13034 || TREE_CODE (t) == TRY_CATCH_EXPR)
13035 t = expr_last (TREE_OPERAND (t, 0));
13036 else if (TREE_CODE (t) == STATEMENT_LIST)
13037 t = expr_last (t);
13038 else
13039 break;
13041 if (TREE_CODE (t) == MODIFY_EXPR
13042 && TREE_OPERAND (t, 0) == temp)
13043 return RECURSE (TREE_OPERAND (t, 1));
13045 return false;
13048 case CALL_EXPR:
13050 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13051 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13053 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13054 get_call_combined_fn (t),
13055 arg0,
13056 arg1,
13057 strict_overflow_p, depth);
13059 case COMPOUND_EXPR:
13060 case MODIFY_EXPR:
13061 return RECURSE (TREE_OPERAND (t, 1));
13063 case BIND_EXPR:
13064 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13066 case SAVE_EXPR:
13067 return RECURSE (TREE_OPERAND (t, 0));
13069 default:
13070 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13074 #undef RECURSE
13075 #undef tree_expr_nonnegative_warnv_p
13077 /* Return true if T is known to be non-negative. If the return
13078 value is based on the assumption that signed overflow is undefined,
13079 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13080 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13082 bool
13083 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13085 enum tree_code code;
13086 if (t == error_mark_node)
13087 return false;
13089 code = TREE_CODE (t);
13090 switch (TREE_CODE_CLASS (code))
13092 case tcc_binary:
13093 case tcc_comparison:
13094 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13095 TREE_TYPE (t),
13096 TREE_OPERAND (t, 0),
13097 TREE_OPERAND (t, 1),
13098 strict_overflow_p, depth);
13100 case tcc_unary:
13101 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13102 TREE_TYPE (t),
13103 TREE_OPERAND (t, 0),
13104 strict_overflow_p, depth);
13106 case tcc_constant:
13107 case tcc_declaration:
13108 case tcc_reference:
13109 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13111 default:
13112 break;
13115 switch (code)
13117 case TRUTH_AND_EXPR:
13118 case TRUTH_OR_EXPR:
13119 case TRUTH_XOR_EXPR:
13120 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13121 TREE_TYPE (t),
13122 TREE_OPERAND (t, 0),
13123 TREE_OPERAND (t, 1),
13124 strict_overflow_p, depth);
13125 case TRUTH_NOT_EXPR:
13126 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13127 TREE_TYPE (t),
13128 TREE_OPERAND (t, 0),
13129 strict_overflow_p, depth);
13131 case COND_EXPR:
13132 case CONSTRUCTOR:
13133 case OBJ_TYPE_REF:
13134 case ASSERT_EXPR:
13135 case ADDR_EXPR:
13136 case WITH_SIZE_EXPR:
13137 case SSA_NAME:
13138 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13140 default:
13141 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13145 /* Return true if `t' is known to be non-negative. Handle warnings
13146 about undefined signed overflow. */
13148 bool
13149 tree_expr_nonnegative_p (tree t)
13151 bool ret, strict_overflow_p;
13153 strict_overflow_p = false;
13154 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13155 if (strict_overflow_p)
13156 fold_overflow_warning (("assuming signed overflow does not occur when "
13157 "determining that expression is always "
13158 "non-negative"),
13159 WARN_STRICT_OVERFLOW_MISC);
13160 return ret;
13164 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13165 For floating point we further ensure that T is not denormal.
13166 Similar logic is present in nonzero_address in rtlanal.h.
13168 If the return value is based on the assumption that signed overflow
13169 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13170 change *STRICT_OVERFLOW_P. */
13172 bool
13173 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13174 bool *strict_overflow_p)
13176 switch (code)
13178 case ABS_EXPR:
13179 return tree_expr_nonzero_warnv_p (op0,
13180 strict_overflow_p);
13182 case NOP_EXPR:
13184 tree inner_type = TREE_TYPE (op0);
13185 tree outer_type = type;
13187 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13188 && tree_expr_nonzero_warnv_p (op0,
13189 strict_overflow_p));
13191 break;
13193 case NON_LVALUE_EXPR:
13194 return tree_expr_nonzero_warnv_p (op0,
13195 strict_overflow_p);
13197 default:
13198 break;
13201 return false;
13204 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13205 For floating point we further ensure that T is not denormal.
13206 Similar logic is present in nonzero_address in rtlanal.h.
13208 If the return value is based on the assumption that signed overflow
13209 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13210 change *STRICT_OVERFLOW_P. */
13212 bool
13213 tree_binary_nonzero_warnv_p (enum tree_code code,
13214 tree type,
13215 tree op0,
13216 tree op1, bool *strict_overflow_p)
13218 bool sub_strict_overflow_p;
13219 switch (code)
13221 case POINTER_PLUS_EXPR:
13222 case PLUS_EXPR:
13223 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13225 /* With the presence of negative values it is hard
13226 to say something. */
13227 sub_strict_overflow_p = false;
13228 if (!tree_expr_nonnegative_warnv_p (op0,
13229 &sub_strict_overflow_p)
13230 || !tree_expr_nonnegative_warnv_p (op1,
13231 &sub_strict_overflow_p))
13232 return false;
13233 /* One of operands must be positive and the other non-negative. */
13234 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13235 overflows, on a twos-complement machine the sum of two
13236 nonnegative numbers can never be zero. */
13237 return (tree_expr_nonzero_warnv_p (op0,
13238 strict_overflow_p)
13239 || tree_expr_nonzero_warnv_p (op1,
13240 strict_overflow_p));
13242 break;
13244 case MULT_EXPR:
13245 if (TYPE_OVERFLOW_UNDEFINED (type))
13247 if (tree_expr_nonzero_warnv_p (op0,
13248 strict_overflow_p)
13249 && tree_expr_nonzero_warnv_p (op1,
13250 strict_overflow_p))
13252 *strict_overflow_p = true;
13253 return true;
13256 break;
13258 case MIN_EXPR:
13259 sub_strict_overflow_p = false;
13260 if (tree_expr_nonzero_warnv_p (op0,
13261 &sub_strict_overflow_p)
13262 && tree_expr_nonzero_warnv_p (op1,
13263 &sub_strict_overflow_p))
13265 if (sub_strict_overflow_p)
13266 *strict_overflow_p = true;
13268 break;
13270 case MAX_EXPR:
13271 sub_strict_overflow_p = false;
13272 if (tree_expr_nonzero_warnv_p (op0,
13273 &sub_strict_overflow_p))
13275 if (sub_strict_overflow_p)
13276 *strict_overflow_p = true;
13278 /* When both operands are nonzero, then MAX must be too. */
13279 if (tree_expr_nonzero_warnv_p (op1,
13280 strict_overflow_p))
13281 return true;
13283 /* MAX where operand 0 is positive is positive. */
13284 return tree_expr_nonnegative_warnv_p (op0,
13285 strict_overflow_p);
13287 /* MAX where operand 1 is positive is positive. */
13288 else if (tree_expr_nonzero_warnv_p (op1,
13289 &sub_strict_overflow_p)
13290 && tree_expr_nonnegative_warnv_p (op1,
13291 &sub_strict_overflow_p))
13293 if (sub_strict_overflow_p)
13294 *strict_overflow_p = true;
13295 return true;
13297 break;
13299 case BIT_IOR_EXPR:
13300 return (tree_expr_nonzero_warnv_p (op1,
13301 strict_overflow_p)
13302 || tree_expr_nonzero_warnv_p (op0,
13303 strict_overflow_p));
13305 default:
13306 break;
13309 return false;
13312 /* Return true when T is an address and is known to be nonzero.
13313 For floating point we further ensure that T is not denormal.
13314 Similar logic is present in nonzero_address in rtlanal.h.
13316 If the return value is based on the assumption that signed overflow
13317 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13318 change *STRICT_OVERFLOW_P. */
13320 bool
13321 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13323 bool sub_strict_overflow_p;
13324 switch (TREE_CODE (t))
13326 case INTEGER_CST:
13327 return !integer_zerop (t);
13329 case ADDR_EXPR:
13331 tree base = TREE_OPERAND (t, 0);
13333 if (!DECL_P (base))
13334 base = get_base_address (base);
13336 if (base && TREE_CODE (base) == TARGET_EXPR)
13337 base = TARGET_EXPR_SLOT (base);
13339 if (!base)
13340 return false;
13342 /* For objects in symbol table check if we know they are non-zero.
13343 Don't do anything for variables and functions before symtab is built;
13344 it is quite possible that they will be declared weak later. */
13345 int nonzero_addr = maybe_nonzero_address (base);
13346 if (nonzero_addr >= 0)
13347 return nonzero_addr;
13349 /* Constants are never weak. */
13350 if (CONSTANT_CLASS_P (base))
13351 return true;
13353 return false;
13356 case COND_EXPR:
13357 sub_strict_overflow_p = false;
13358 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13359 &sub_strict_overflow_p)
13360 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13361 &sub_strict_overflow_p))
13363 if (sub_strict_overflow_p)
13364 *strict_overflow_p = true;
13365 return true;
13367 break;
13369 case SSA_NAME:
13370 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13371 break;
13372 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
13374 default:
13375 break;
13377 return false;
13380 #define integer_valued_real_p(X) \
13381 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13383 #define RECURSE(X) \
13384 ((integer_valued_real_p) (X, depth + 1))
13386 /* Return true if the floating point result of (CODE OP0) has an
13387 integer value. We also allow +Inf, -Inf and NaN to be considered
13388 integer values. Return false for signaling NaN.
13390 DEPTH is the current nesting depth of the query. */
13392 bool
13393 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13395 switch (code)
13397 case FLOAT_EXPR:
13398 return true;
13400 case ABS_EXPR:
13401 return RECURSE (op0);
13403 CASE_CONVERT:
13405 tree type = TREE_TYPE (op0);
13406 if (TREE_CODE (type) == INTEGER_TYPE)
13407 return true;
13408 if (TREE_CODE (type) == REAL_TYPE)
13409 return RECURSE (op0);
13410 break;
13413 default:
13414 break;
13416 return false;
13419 /* Return true if the floating point result of (CODE OP0 OP1) has an
13420 integer value. We also allow +Inf, -Inf and NaN to be considered
13421 integer values. Return false for signaling NaN.
13423 DEPTH is the current nesting depth of the query. */
13425 bool
13426 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13428 switch (code)
13430 case PLUS_EXPR:
13431 case MINUS_EXPR:
13432 case MULT_EXPR:
13433 case MIN_EXPR:
13434 case MAX_EXPR:
13435 return RECURSE (op0) && RECURSE (op1);
13437 default:
13438 break;
13440 return false;
13443 /* Return true if the floating point result of calling FNDECL with arguments
13444 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13445 considered integer values. Return false for signaling NaN. If FNDECL
13446 takes fewer than 2 arguments, the remaining ARGn are null.
13448 DEPTH is the current nesting depth of the query. */
13450 bool
13451 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13453 switch (fn)
13455 CASE_CFN_CEIL:
13456 CASE_CFN_FLOOR:
13457 CASE_CFN_NEARBYINT:
13458 CASE_CFN_RINT:
13459 CASE_CFN_ROUND:
13460 CASE_CFN_TRUNC:
13461 return true;
13463 CASE_CFN_FMIN:
13464 CASE_CFN_FMAX:
13465 return RECURSE (arg0) && RECURSE (arg1);
13467 default:
13468 break;
13470 return false;
13473 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13474 has an integer value. We also allow +Inf, -Inf and NaN to be
13475 considered integer values. Return false for signaling NaN.
13477 DEPTH is the current nesting depth of the query. */
13479 bool
13480 integer_valued_real_single_p (tree t, int depth)
13482 switch (TREE_CODE (t))
13484 case REAL_CST:
13485 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13487 case COND_EXPR:
13488 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13490 case SSA_NAME:
13491 /* Limit the depth of recursion to avoid quadratic behavior.
13492 This is expected to catch almost all occurrences in practice.
13493 If this code misses important cases that unbounded recursion
13494 would not, passes that need this information could be revised
13495 to provide it through dataflow propagation. */
13496 return (!name_registered_for_update_p (t)
13497 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13498 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13499 depth));
13501 default:
13502 break;
13504 return false;
13507 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13508 has an integer value. We also allow +Inf, -Inf and NaN to be
13509 considered integer values. Return false for signaling NaN.
13511 DEPTH is the current nesting depth of the query. */
13513 static bool
13514 integer_valued_real_invalid_p (tree t, int depth)
13516 switch (TREE_CODE (t))
13518 case COMPOUND_EXPR:
13519 case MODIFY_EXPR:
13520 case BIND_EXPR:
13521 return RECURSE (TREE_OPERAND (t, 1));
13523 case SAVE_EXPR:
13524 return RECURSE (TREE_OPERAND (t, 0));
13526 default:
13527 break;
13529 return false;
13532 #undef RECURSE
13533 #undef integer_valued_real_p
13535 /* Return true if the floating point expression T has an integer value.
13536 We also allow +Inf, -Inf and NaN to be considered integer values.
13537 Return false for signaling NaN.
13539 DEPTH is the current nesting depth of the query. */
13541 bool
13542 integer_valued_real_p (tree t, int depth)
13544 if (t == error_mark_node)
13545 return false;
13547 tree_code code = TREE_CODE (t);
13548 switch (TREE_CODE_CLASS (code))
13550 case tcc_binary:
13551 case tcc_comparison:
13552 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13553 TREE_OPERAND (t, 1), depth);
13555 case tcc_unary:
13556 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13558 case tcc_constant:
13559 case tcc_declaration:
13560 case tcc_reference:
13561 return integer_valued_real_single_p (t, depth);
13563 default:
13564 break;
13567 switch (code)
13569 case COND_EXPR:
13570 case SSA_NAME:
13571 return integer_valued_real_single_p (t, depth);
13573 case CALL_EXPR:
13575 tree arg0 = (call_expr_nargs (t) > 0
13576 ? CALL_EXPR_ARG (t, 0)
13577 : NULL_TREE);
13578 tree arg1 = (call_expr_nargs (t) > 1
13579 ? CALL_EXPR_ARG (t, 1)
13580 : NULL_TREE);
13581 return integer_valued_real_call_p (get_call_combined_fn (t),
13582 arg0, arg1, depth);
13585 default:
13586 return integer_valued_real_invalid_p (t, depth);
13590 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13591 attempt to fold the expression to a constant without modifying TYPE,
13592 OP0 or OP1.
13594 If the expression could be simplified to a constant, then return
13595 the constant. If the expression would not be simplified to a
13596 constant, then return NULL_TREE. */
13598 tree
13599 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13601 tree tem = fold_binary (code, type, op0, op1);
13602 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13605 /* Given the components of a unary expression CODE, TYPE and OP0,
13606 attempt to fold the expression to a constant without modifying
13607 TYPE or OP0.
13609 If the expression could be simplified to a constant, then return
13610 the constant. If the expression would not be simplified to a
13611 constant, then return NULL_TREE. */
13613 tree
13614 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13616 tree tem = fold_unary (code, type, op0);
13617 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13620 /* If EXP represents referencing an element in a constant string
13621 (either via pointer arithmetic or array indexing), return the
13622 tree representing the value accessed, otherwise return NULL. */
13624 tree
13625 fold_read_from_constant_string (tree exp)
13627 if ((TREE_CODE (exp) == INDIRECT_REF
13628 || TREE_CODE (exp) == ARRAY_REF)
13629 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13631 tree exp1 = TREE_OPERAND (exp, 0);
13632 tree index;
13633 tree string;
13634 location_t loc = EXPR_LOCATION (exp);
13636 if (TREE_CODE (exp) == INDIRECT_REF)
13637 string = string_constant (exp1, &index);
13638 else
13640 tree low_bound = array_ref_low_bound (exp);
13641 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13643 /* Optimize the special-case of a zero lower bound.
13645 We convert the low_bound to sizetype to avoid some problems
13646 with constant folding. (E.g. suppose the lower bound is 1,
13647 and its mode is QI. Without the conversion,l (ARRAY
13648 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13649 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13650 if (! integer_zerop (low_bound))
13651 index = size_diffop_loc (loc, index,
13652 fold_convert_loc (loc, sizetype, low_bound));
13654 string = exp1;
13657 scalar_int_mode char_mode;
13658 if (string
13659 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13660 && TREE_CODE (string) == STRING_CST
13661 && TREE_CODE (index) == INTEGER_CST
13662 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13663 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
13664 &char_mode)
13665 && GET_MODE_SIZE (char_mode) == 1)
13666 return build_int_cst_type (TREE_TYPE (exp),
13667 (TREE_STRING_POINTER (string)
13668 [TREE_INT_CST_LOW (index)]));
13670 return NULL;
13673 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13674 an integer constant, real, or fixed-point constant.
13676 TYPE is the type of the result. */
13678 static tree
13679 fold_negate_const (tree arg0, tree type)
13681 tree t = NULL_TREE;
13683 switch (TREE_CODE (arg0))
13685 case INTEGER_CST:
13687 bool overflow;
13688 wide_int val = wi::neg (arg0, &overflow);
13689 t = force_fit_type (type, val, 1,
13690 (overflow && ! TYPE_UNSIGNED (type))
13691 || TREE_OVERFLOW (arg0));
13692 break;
13695 case REAL_CST:
13696 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13697 break;
13699 case FIXED_CST:
13701 FIXED_VALUE_TYPE f;
13702 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13703 &(TREE_FIXED_CST (arg0)), NULL,
13704 TYPE_SATURATING (type));
13705 t = build_fixed (type, f);
13706 /* Propagate overflow flags. */
13707 if (overflow_p | TREE_OVERFLOW (arg0))
13708 TREE_OVERFLOW (t) = 1;
13709 break;
13712 default:
13713 gcc_unreachable ();
13716 return t;
13719 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13720 an integer constant or real constant.
13722 TYPE is the type of the result. */
13724 tree
13725 fold_abs_const (tree arg0, tree type)
13727 tree t = NULL_TREE;
13729 switch (TREE_CODE (arg0))
13731 case INTEGER_CST:
13733 /* If the value is unsigned or non-negative, then the absolute value
13734 is the same as the ordinary value. */
13735 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13736 t = arg0;
13738 /* If the value is negative, then the absolute value is
13739 its negation. */
13740 else
13742 bool overflow;
13743 wide_int val = wi::neg (arg0, &overflow);
13744 t = force_fit_type (type, val, -1,
13745 overflow | TREE_OVERFLOW (arg0));
13748 break;
13750 case REAL_CST:
13751 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13752 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13753 else
13754 t = arg0;
13755 break;
13757 default:
13758 gcc_unreachable ();
13761 return t;
13764 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13765 constant. TYPE is the type of the result. */
13767 static tree
13768 fold_not_const (const_tree arg0, tree type)
13770 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13772 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13775 /* Given CODE, a relational operator, the target type, TYPE and two
13776 constant operands OP0 and OP1, return the result of the
13777 relational operation. If the result is not a compile time
13778 constant, then return NULL_TREE. */
13780 static tree
13781 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13783 int result, invert;
13785 /* From here on, the only cases we handle are when the result is
13786 known to be a constant. */
13788 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13790 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13791 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13793 /* Handle the cases where either operand is a NaN. */
13794 if (real_isnan (c0) || real_isnan (c1))
13796 switch (code)
13798 case EQ_EXPR:
13799 case ORDERED_EXPR:
13800 result = 0;
13801 break;
13803 case NE_EXPR:
13804 case UNORDERED_EXPR:
13805 case UNLT_EXPR:
13806 case UNLE_EXPR:
13807 case UNGT_EXPR:
13808 case UNGE_EXPR:
13809 case UNEQ_EXPR:
13810 result = 1;
13811 break;
13813 case LT_EXPR:
13814 case LE_EXPR:
13815 case GT_EXPR:
13816 case GE_EXPR:
13817 case LTGT_EXPR:
13818 if (flag_trapping_math)
13819 return NULL_TREE;
13820 result = 0;
13821 break;
13823 default:
13824 gcc_unreachable ();
13827 return constant_boolean_node (result, type);
13830 return constant_boolean_node (real_compare (code, c0, c1), type);
13833 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13835 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13836 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13837 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13840 /* Handle equality/inequality of complex constants. */
13841 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13843 tree rcond = fold_relational_const (code, type,
13844 TREE_REALPART (op0),
13845 TREE_REALPART (op1));
13846 tree icond = fold_relational_const (code, type,
13847 TREE_IMAGPART (op0),
13848 TREE_IMAGPART (op1));
13849 if (code == EQ_EXPR)
13850 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13851 else if (code == NE_EXPR)
13852 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13853 else
13854 return NULL_TREE;
13857 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13859 if (!VECTOR_TYPE_P (type))
13861 /* Have vector comparison with scalar boolean result. */
13862 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
13863 && VECTOR_CST_NELTS (op0) == VECTOR_CST_NELTS (op1));
13864 for (unsigned i = 0; i < VECTOR_CST_NELTS (op0); i++)
13866 tree elem0 = VECTOR_CST_ELT (op0, i);
13867 tree elem1 = VECTOR_CST_ELT (op1, i);
13868 tree tmp = fold_relational_const (code, type, elem0, elem1);
13869 if (tmp == NULL_TREE)
13870 return NULL_TREE;
13871 if (integer_zerop (tmp))
13872 return constant_boolean_node (false, type);
13874 return constant_boolean_node (true, type);
13876 unsigned count = VECTOR_CST_NELTS (op0);
13877 tree *elts = XALLOCAVEC (tree, count);
13878 gcc_assert (VECTOR_CST_NELTS (op1) == count
13879 && TYPE_VECTOR_SUBPARTS (type) == count);
13881 for (unsigned i = 0; i < count; i++)
13883 tree elem_type = TREE_TYPE (type);
13884 tree elem0 = VECTOR_CST_ELT (op0, i);
13885 tree elem1 = VECTOR_CST_ELT (op1, i);
13887 tree tem = fold_relational_const (code, elem_type,
13888 elem0, elem1);
13890 if (tem == NULL_TREE)
13891 return NULL_TREE;
13893 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
13896 return build_vector (type, elts);
13899 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13901 To compute GT, swap the arguments and do LT.
13902 To compute GE, do LT and invert the result.
13903 To compute LE, swap the arguments, do LT and invert the result.
13904 To compute NE, do EQ and invert the result.
13906 Therefore, the code below must handle only EQ and LT. */
13908 if (code == LE_EXPR || code == GT_EXPR)
13910 std::swap (op0, op1);
13911 code = swap_tree_comparison (code);
13914 /* Note that it is safe to invert for real values here because we
13915 have already handled the one case that it matters. */
13917 invert = 0;
13918 if (code == NE_EXPR || code == GE_EXPR)
13920 invert = 1;
13921 code = invert_tree_comparison (code, false);
13924 /* Compute a result for LT or EQ if args permit;
13925 Otherwise return T. */
13926 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13928 if (code == EQ_EXPR)
13929 result = tree_int_cst_equal (op0, op1);
13930 else
13931 result = tree_int_cst_lt (op0, op1);
13933 else
13934 return NULL_TREE;
13936 if (invert)
13937 result ^= 1;
13938 return constant_boolean_node (result, type);
13941 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13942 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13943 itself. */
13945 tree
13946 fold_build_cleanup_point_expr (tree type, tree expr)
13948 /* If the expression does not have side effects then we don't have to wrap
13949 it with a cleanup point expression. */
13950 if (!TREE_SIDE_EFFECTS (expr))
13951 return expr;
13953 /* If the expression is a return, check to see if the expression inside the
13954 return has no side effects or the right hand side of the modify expression
13955 inside the return. If either don't have side effects set we don't need to
13956 wrap the expression in a cleanup point expression. Note we don't check the
13957 left hand side of the modify because it should always be a return decl. */
13958 if (TREE_CODE (expr) == RETURN_EXPR)
13960 tree op = TREE_OPERAND (expr, 0);
13961 if (!op || !TREE_SIDE_EFFECTS (op))
13962 return expr;
13963 op = TREE_OPERAND (op, 1);
13964 if (!TREE_SIDE_EFFECTS (op))
13965 return expr;
13968 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
13971 /* Given a pointer value OP0 and a type TYPE, return a simplified version
13972 of an indirection through OP0, or NULL_TREE if no simplification is
13973 possible. */
13975 tree
13976 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
13978 tree sub = op0;
13979 tree subtype;
13981 STRIP_NOPS (sub);
13982 subtype = TREE_TYPE (sub);
13983 if (!POINTER_TYPE_P (subtype)
13984 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
13985 return NULL_TREE;
13987 if (TREE_CODE (sub) == ADDR_EXPR)
13989 tree op = TREE_OPERAND (sub, 0);
13990 tree optype = TREE_TYPE (op);
13991 /* *&CONST_DECL -> to the value of the const decl. */
13992 if (TREE_CODE (op) == CONST_DECL)
13993 return DECL_INITIAL (op);
13994 /* *&p => p; make sure to handle *&"str"[cst] here. */
13995 if (type == optype)
13997 tree fop = fold_read_from_constant_string (op);
13998 if (fop)
13999 return fop;
14000 else
14001 return op;
14003 /* *(foo *)&fooarray => fooarray[0] */
14004 else if (TREE_CODE (optype) == ARRAY_TYPE
14005 && type == TREE_TYPE (optype)
14006 && (!in_gimple_form
14007 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14009 tree type_domain = TYPE_DOMAIN (optype);
14010 tree min_val = size_zero_node;
14011 if (type_domain && TYPE_MIN_VALUE (type_domain))
14012 min_val = TYPE_MIN_VALUE (type_domain);
14013 if (in_gimple_form
14014 && TREE_CODE (min_val) != INTEGER_CST)
14015 return NULL_TREE;
14016 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14017 NULL_TREE, NULL_TREE);
14019 /* *(foo *)&complexfoo => __real__ complexfoo */
14020 else if (TREE_CODE (optype) == COMPLEX_TYPE
14021 && type == TREE_TYPE (optype))
14022 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14023 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14024 else if (TREE_CODE (optype) == VECTOR_TYPE
14025 && type == TREE_TYPE (optype))
14027 tree part_width = TYPE_SIZE (type);
14028 tree index = bitsize_int (0);
14029 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14033 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14034 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14036 tree op00 = TREE_OPERAND (sub, 0);
14037 tree op01 = TREE_OPERAND (sub, 1);
14039 STRIP_NOPS (op00);
14040 if (TREE_CODE (op00) == ADDR_EXPR)
14042 tree op00type;
14043 op00 = TREE_OPERAND (op00, 0);
14044 op00type = TREE_TYPE (op00);
14046 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14047 if (TREE_CODE (op00type) == VECTOR_TYPE
14048 && type == TREE_TYPE (op00type))
14050 tree part_width = TYPE_SIZE (type);
14051 unsigned HOST_WIDE_INT max_offset
14052 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14053 * TYPE_VECTOR_SUBPARTS (op00type));
14054 if (tree_int_cst_sign_bit (op01) == 0
14055 && compare_tree_int (op01, max_offset) == -1)
14057 unsigned HOST_WIDE_INT offset = tree_to_uhwi (op01);
14058 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14059 tree index = bitsize_int (indexi);
14060 return fold_build3_loc (loc,
14061 BIT_FIELD_REF, type, op00,
14062 part_width, index);
14065 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14066 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14067 && type == TREE_TYPE (op00type))
14069 tree size = TYPE_SIZE_UNIT (type);
14070 if (tree_int_cst_equal (size, op01))
14071 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14073 /* ((foo *)&fooarray)[1] => fooarray[1] */
14074 else if (TREE_CODE (op00type) == ARRAY_TYPE
14075 && type == TREE_TYPE (op00type))
14077 tree type_domain = TYPE_DOMAIN (op00type);
14078 tree min = size_zero_node;
14079 if (type_domain && TYPE_MIN_VALUE (type_domain))
14080 min = TYPE_MIN_VALUE (type_domain);
14081 offset_int off = wi::to_offset (op01);
14082 offset_int el_sz = wi::to_offset (TYPE_SIZE_UNIT (type));
14083 offset_int remainder;
14084 off = wi::divmod_trunc (off, el_sz, SIGNED, &remainder);
14085 if (remainder == 0 && TREE_CODE (min) == INTEGER_CST)
14087 off = off + wi::to_offset (min);
14088 op01 = wide_int_to_tree (sizetype, off);
14089 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14090 NULL_TREE, NULL_TREE);
14096 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14097 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14098 && type == TREE_TYPE (TREE_TYPE (subtype))
14099 && (!in_gimple_form
14100 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14102 tree type_domain;
14103 tree min_val = size_zero_node;
14104 sub = build_fold_indirect_ref_loc (loc, sub);
14105 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14106 if (type_domain && TYPE_MIN_VALUE (type_domain))
14107 min_val = TYPE_MIN_VALUE (type_domain);
14108 if (in_gimple_form
14109 && TREE_CODE (min_val) != INTEGER_CST)
14110 return NULL_TREE;
14111 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14112 NULL_TREE);
14115 return NULL_TREE;
14118 /* Builds an expression for an indirection through T, simplifying some
14119 cases. */
14121 tree
14122 build_fold_indirect_ref_loc (location_t loc, tree t)
14124 tree type = TREE_TYPE (TREE_TYPE (t));
14125 tree sub = fold_indirect_ref_1 (loc, type, t);
14127 if (sub)
14128 return sub;
14130 return build1_loc (loc, INDIRECT_REF, type, t);
14133 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14135 tree
14136 fold_indirect_ref_loc (location_t loc, tree t)
14138 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14140 if (sub)
14141 return sub;
14142 else
14143 return t;
14146 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14147 whose result is ignored. The type of the returned tree need not be
14148 the same as the original expression. */
14150 tree
14151 fold_ignored_result (tree t)
14153 if (!TREE_SIDE_EFFECTS (t))
14154 return integer_zero_node;
14156 for (;;)
14157 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14159 case tcc_unary:
14160 t = TREE_OPERAND (t, 0);
14161 break;
14163 case tcc_binary:
14164 case tcc_comparison:
14165 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14166 t = TREE_OPERAND (t, 0);
14167 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14168 t = TREE_OPERAND (t, 1);
14169 else
14170 return t;
14171 break;
14173 case tcc_expression:
14174 switch (TREE_CODE (t))
14176 case COMPOUND_EXPR:
14177 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14178 return t;
14179 t = TREE_OPERAND (t, 0);
14180 break;
14182 case COND_EXPR:
14183 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14184 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14185 return t;
14186 t = TREE_OPERAND (t, 0);
14187 break;
14189 default:
14190 return t;
14192 break;
14194 default:
14195 return t;
14199 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14201 tree
14202 round_up_loc (location_t loc, tree value, unsigned int divisor)
14204 tree div = NULL_TREE;
14206 if (divisor == 1)
14207 return value;
14209 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14210 have to do anything. Only do this when we are not given a const,
14211 because in that case, this check is more expensive than just
14212 doing it. */
14213 if (TREE_CODE (value) != INTEGER_CST)
14215 div = build_int_cst (TREE_TYPE (value), divisor);
14217 if (multiple_of_p (TREE_TYPE (value), value, div))
14218 return value;
14221 /* If divisor is a power of two, simplify this to bit manipulation. */
14222 if (pow2_or_zerop (divisor))
14224 if (TREE_CODE (value) == INTEGER_CST)
14226 wide_int val = value;
14227 bool overflow_p;
14229 if ((val & (divisor - 1)) == 0)
14230 return value;
14232 overflow_p = TREE_OVERFLOW (value);
14233 val += divisor - 1;
14234 val &= (int) -divisor;
14235 if (val == 0)
14236 overflow_p = true;
14238 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14240 else
14242 tree t;
14244 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14245 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14246 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14247 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14250 else
14252 if (!div)
14253 div = build_int_cst (TREE_TYPE (value), divisor);
14254 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14255 value = size_binop_loc (loc, MULT_EXPR, value, div);
14258 return value;
14261 /* Likewise, but round down. */
14263 tree
14264 round_down_loc (location_t loc, tree value, int divisor)
14266 tree div = NULL_TREE;
14268 gcc_assert (divisor > 0);
14269 if (divisor == 1)
14270 return value;
14272 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14273 have to do anything. Only do this when we are not given a const,
14274 because in that case, this check is more expensive than just
14275 doing it. */
14276 if (TREE_CODE (value) != INTEGER_CST)
14278 div = build_int_cst (TREE_TYPE (value), divisor);
14280 if (multiple_of_p (TREE_TYPE (value), value, div))
14281 return value;
14284 /* If divisor is a power of two, simplify this to bit manipulation. */
14285 if (pow2_or_zerop (divisor))
14287 tree t;
14289 t = build_int_cst (TREE_TYPE (value), -divisor);
14290 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14292 else
14294 if (!div)
14295 div = build_int_cst (TREE_TYPE (value), divisor);
14296 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14297 value = size_binop_loc (loc, MULT_EXPR, value, div);
14300 return value;
14303 /* Returns the pointer to the base of the object addressed by EXP and
14304 extracts the information about the offset of the access, storing it
14305 to PBITPOS and POFFSET. */
14307 static tree
14308 split_address_to_core_and_offset (tree exp,
14309 HOST_WIDE_INT *pbitpos, tree *poffset)
14311 tree core;
14312 machine_mode mode;
14313 int unsignedp, reversep, volatilep;
14314 HOST_WIDE_INT bitsize;
14315 location_t loc = EXPR_LOCATION (exp);
14317 if (TREE_CODE (exp) == ADDR_EXPR)
14319 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14320 poffset, &mode, &unsignedp, &reversep,
14321 &volatilep);
14322 core = build_fold_addr_expr_loc (loc, core);
14324 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
14326 core = TREE_OPERAND (exp, 0);
14327 STRIP_NOPS (core);
14328 *pbitpos = 0;
14329 *poffset = TREE_OPERAND (exp, 1);
14330 if (TREE_CODE (*poffset) == INTEGER_CST)
14332 offset_int tem = wi::sext (wi::to_offset (*poffset),
14333 TYPE_PRECISION (TREE_TYPE (*poffset)));
14334 tem <<= LOG2_BITS_PER_UNIT;
14335 if (wi::fits_shwi_p (tem))
14337 *pbitpos = tem.to_shwi ();
14338 *poffset = NULL_TREE;
14342 else
14344 core = exp;
14345 *pbitpos = 0;
14346 *poffset = NULL_TREE;
14349 return core;
14352 /* Returns true if addresses of E1 and E2 differ by a constant, false
14353 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14355 bool
14356 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14358 tree core1, core2;
14359 HOST_WIDE_INT bitpos1, bitpos2;
14360 tree toffset1, toffset2, tdiff, type;
14362 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14363 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14365 if (bitpos1 % BITS_PER_UNIT != 0
14366 || bitpos2 % BITS_PER_UNIT != 0
14367 || !operand_equal_p (core1, core2, 0))
14368 return false;
14370 if (toffset1 && toffset2)
14372 type = TREE_TYPE (toffset1);
14373 if (type != TREE_TYPE (toffset2))
14374 toffset2 = fold_convert (type, toffset2);
14376 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14377 if (!cst_and_fits_in_hwi (tdiff))
14378 return false;
14380 *diff = int_cst_value (tdiff);
14382 else if (toffset1 || toffset2)
14384 /* If only one of the offsets is non-constant, the difference cannot
14385 be a constant. */
14386 return false;
14388 else
14389 *diff = 0;
14391 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14392 return true;
14395 /* Return OFF converted to a pointer offset type suitable as offset for
14396 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14397 tree
14398 convert_to_ptrofftype_loc (location_t loc, tree off)
14400 return fold_convert_loc (loc, sizetype, off);
14403 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14404 tree
14405 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14407 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14408 ptr, convert_to_ptrofftype_loc (loc, off));
14411 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14412 tree
14413 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14415 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14416 ptr, size_int (off));
14419 /* Return a char pointer for a C string if it is a string constant
14420 or sum of string constant and integer constant. We only support
14421 string constants properly terminated with '\0' character.
14422 If STRLEN is a valid pointer, length (including terminating character)
14423 of returned string is stored to the argument. */
14425 const char *
14426 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen)
14428 tree offset_node;
14430 if (strlen)
14431 *strlen = 0;
14433 src = string_constant (src, &offset_node);
14434 if (src == 0)
14435 return NULL;
14437 unsigned HOST_WIDE_INT offset = 0;
14438 if (offset_node != NULL_TREE)
14440 if (!tree_fits_uhwi_p (offset_node))
14441 return NULL;
14442 else
14443 offset = tree_to_uhwi (offset_node);
14446 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
14447 const char *string = TREE_STRING_POINTER (src);
14449 /* Support only properly null-terminated strings. */
14450 if (string_length == 0
14451 || string[string_length - 1] != '\0'
14452 || offset >= string_length)
14453 return NULL;
14455 if (strlen)
14456 *strlen = string_length - offset;
14457 return string + offset;
14460 #if CHECKING_P
14462 namespace selftest {
14464 /* Helper functions for writing tests of folding trees. */
14466 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14468 static void
14469 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14470 tree constant)
14472 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14475 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14476 wrapping WRAPPED_EXPR. */
14478 static void
14479 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14480 tree wrapped_expr)
14482 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14483 ASSERT_NE (wrapped_expr, result);
14484 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14485 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14488 /* Verify that various arithmetic binary operations are folded
14489 correctly. */
14491 static void
14492 test_arithmetic_folding ()
14494 tree type = integer_type_node;
14495 tree x = create_tmp_var_raw (type, "x");
14496 tree zero = build_zero_cst (type);
14497 tree one = build_int_cst (type, 1);
14499 /* Addition. */
14500 /* 1 <-- (0 + 1) */
14501 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14502 one);
14503 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14504 one);
14506 /* (nonlvalue)x <-- (x + 0) */
14507 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14510 /* Subtraction. */
14511 /* 0 <-- (x - x) */
14512 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14513 zero);
14514 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14517 /* Multiplication. */
14518 /* 0 <-- (x * 0) */
14519 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14520 zero);
14522 /* (nonlvalue)x <-- (x * 1) */
14523 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14527 /* Verify that various binary operations on vectors are folded
14528 correctly. */
14530 static void
14531 test_vector_folding ()
14533 tree inner_type = integer_type_node;
14534 tree type = build_vector_type (inner_type, 4);
14535 tree zero = build_zero_cst (type);
14536 tree one = build_one_cst (type);
14538 /* Verify equality tests that return a scalar boolean result. */
14539 tree res_type = boolean_type_node;
14540 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14541 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14542 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14543 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14546 /* Run all of the selftests within this file. */
14548 void
14549 fold_const_c_tests ()
14551 test_arithmetic_folding ();
14552 test_vector_folding ();
14555 } // namespace selftest
14557 #endif /* CHECKING_P */