Remove several xfails for 32-bit hppa*-*-*
[official-gcc.git] / gcc / tree-vect-loop-manip.cc
blob1477906e96e103d236e15462ef896400792b809e
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
50 #include "insn-config.h"
51 #include "rtl.h"
52 #include "recog.h"
53 #include "langhooks.h"
54 #include "tree-vector-builder.h"
55 #include "optabs-tree.h"
57 /*************************************************************************
58 Simple Loop Peeling Utilities
60 Utilities to support loop peeling for vectorization purposes.
61 *************************************************************************/
64 /* Renames the use *OP_P. */
66 static void
67 rename_use_op (use_operand_p op_p)
69 tree new_name;
71 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
72 return;
74 new_name = get_current_def (USE_FROM_PTR (op_p));
76 /* Something defined outside of the loop. */
77 if (!new_name)
78 return;
80 /* An ordinary ssa name defined in the loop. */
82 SET_USE (op_p, new_name);
86 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
87 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
88 true. */
90 static void
91 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
93 gimple *stmt;
94 use_operand_p use_p;
95 ssa_op_iter iter;
96 edge e;
97 edge_iterator ei;
98 class loop *loop = bb->loop_father;
99 class loop *outer_loop = NULL;
101 if (rename_from_outer_loop)
103 gcc_assert (loop);
104 outer_loop = loop_outer (loop);
107 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
108 gsi_next (&gsi))
110 stmt = gsi_stmt (gsi);
111 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
112 rename_use_op (use_p);
115 FOR_EACH_EDGE (e, ei, bb->preds)
117 if (!flow_bb_inside_loop_p (loop, e->src))
119 if (!rename_from_outer_loop)
120 continue;
121 if (e->src != outer_loop->header)
123 if (outer_loop->inner->next)
125 /* If outer_loop has 2 inner loops, allow there to
126 be an extra basic block which decides which of the
127 two loops to use using LOOP_VECTORIZED. */
128 if (!single_pred_p (e->src)
129 || single_pred (e->src) != outer_loop->header)
130 continue;
134 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
135 gsi_next (&gsi))
136 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
141 struct adjust_info
143 tree from, to;
144 basic_block bb;
147 /* A stack of values to be adjusted in debug stmts. We have to
148 process them LIFO, so that the closest substitution applies. If we
149 processed them FIFO, without the stack, we might substitute uses
150 with a PHI DEF that would soon become non-dominant, and when we got
151 to the suitable one, it wouldn't have anything to substitute any
152 more. */
153 static vec<adjust_info, va_heap> adjust_vec;
155 /* Adjust any debug stmts that referenced AI->from values to use the
156 loop-closed AI->to, if the references are dominated by AI->bb and
157 not by the definition of AI->from. */
159 static void
160 adjust_debug_stmts_now (adjust_info *ai)
162 basic_block bbphi = ai->bb;
163 tree orig_def = ai->from;
164 tree new_def = ai->to;
165 imm_use_iterator imm_iter;
166 gimple *stmt;
167 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
169 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
171 /* Adjust any debug stmts that held onto non-loop-closed
172 references. */
173 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
175 use_operand_p use_p;
176 basic_block bbuse;
178 if (!is_gimple_debug (stmt))
179 continue;
181 gcc_assert (gimple_debug_bind_p (stmt));
183 bbuse = gimple_bb (stmt);
185 if ((bbuse == bbphi
186 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
187 && !(bbuse == bbdef
188 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
190 if (new_def)
191 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
192 SET_USE (use_p, new_def);
193 else
195 gimple_debug_bind_reset_value (stmt);
196 update_stmt (stmt);
202 /* Adjust debug stmts as scheduled before. */
204 static void
205 adjust_vec_debug_stmts (void)
207 if (!MAY_HAVE_DEBUG_BIND_STMTS)
208 return;
210 gcc_assert (adjust_vec.exists ());
212 while (!adjust_vec.is_empty ())
214 adjust_debug_stmts_now (&adjust_vec.last ());
215 adjust_vec.pop ();
219 /* Adjust any debug stmts that referenced FROM values to use the
220 loop-closed TO, if the references are dominated by BB and not by
221 the definition of FROM. If adjust_vec is non-NULL, adjustments
222 will be postponed until adjust_vec_debug_stmts is called. */
224 static void
225 adjust_debug_stmts (tree from, tree to, basic_block bb)
227 adjust_info ai;
229 if (MAY_HAVE_DEBUG_BIND_STMTS
230 && TREE_CODE (from) == SSA_NAME
231 && ! SSA_NAME_IS_DEFAULT_DEF (from)
232 && ! virtual_operand_p (from))
234 ai.from = from;
235 ai.to = to;
236 ai.bb = bb;
238 if (adjust_vec.exists ())
239 adjust_vec.safe_push (ai);
240 else
241 adjust_debug_stmts_now (&ai);
245 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
246 to adjust any debug stmts that referenced the old phi arg,
247 presumably non-loop-closed references left over from other
248 transformations. */
250 static void
251 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
253 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
255 gcc_assert (TREE_CODE (orig_def) != SSA_NAME
256 || orig_def != new_def);
258 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
260 if (MAY_HAVE_DEBUG_BIND_STMTS)
261 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
262 gimple_bb (update_phi));
265 /* Define one loop rgroup control CTRL from loop LOOP. INIT_CTRL is the value
266 that the control should have during the first iteration and NEXT_CTRL is the
267 value that it should have on subsequent iterations. */
269 static void
270 vect_set_loop_control (class loop *loop, tree ctrl, tree init_ctrl,
271 tree next_ctrl)
273 gphi *phi = create_phi_node (ctrl, loop->header);
274 add_phi_arg (phi, init_ctrl, loop_preheader_edge (loop), UNKNOWN_LOCATION);
275 add_phi_arg (phi, next_ctrl, loop_latch_edge (loop), UNKNOWN_LOCATION);
278 /* Add SEQ to the end of LOOP's preheader block. */
280 static void
281 add_preheader_seq (class loop *loop, gimple_seq seq)
283 if (seq)
285 edge pe = loop_preheader_edge (loop);
286 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
287 gcc_assert (!new_bb);
291 /* Add SEQ to the beginning of LOOP's header block. */
293 static void
294 add_header_seq (class loop *loop, gimple_seq seq)
296 if (seq)
298 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
299 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
303 /* Return true if the target can interleave elements of two vectors.
304 OFFSET is 0 if the first half of the vectors should be interleaved
305 or 1 if the second half should. When returning true, store the
306 associated permutation in INDICES. */
308 static bool
309 interleave_supported_p (vec_perm_indices *indices, tree vectype,
310 unsigned int offset)
312 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
313 poly_uint64 base = exact_div (nelts, 2) * offset;
314 vec_perm_builder sel (nelts, 2, 3);
315 for (unsigned int i = 0; i < 3; ++i)
317 sel.quick_push (base + i);
318 sel.quick_push (base + i + nelts);
320 indices->new_vector (sel, 2, nelts);
321 return can_vec_perm_const_p (TYPE_MODE (vectype), TYPE_MODE (vectype),
322 *indices);
325 /* Try to use permutes to define the masks in DEST_RGM using the masks
326 in SRC_RGM, given that the former has twice as many masks as the
327 latter. Return true on success, adding any new statements to SEQ. */
329 static bool
330 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_controls *dest_rgm,
331 rgroup_controls *src_rgm)
333 tree src_masktype = src_rgm->type;
334 tree dest_masktype = dest_rgm->type;
335 machine_mode src_mode = TYPE_MODE (src_masktype);
336 insn_code icode1, icode2;
337 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
338 && (icode1 = optab_handler (vec_unpacku_hi_optab,
339 src_mode)) != CODE_FOR_nothing
340 && (icode2 = optab_handler (vec_unpacku_lo_optab,
341 src_mode)) != CODE_FOR_nothing)
343 /* Unpacking the source masks gives at least as many mask bits as
344 we need. We can then VIEW_CONVERT any excess bits away. */
345 machine_mode dest_mode = insn_data[icode1].operand[0].mode;
346 gcc_assert (dest_mode == insn_data[icode2].operand[0].mode);
347 tree unpack_masktype = vect_halve_mask_nunits (src_masktype, dest_mode);
348 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
350 tree src = src_rgm->controls[i / 2];
351 tree dest = dest_rgm->controls[i];
352 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
353 ? VEC_UNPACK_HI_EXPR
354 : VEC_UNPACK_LO_EXPR);
355 gassign *stmt;
356 if (dest_masktype == unpack_masktype)
357 stmt = gimple_build_assign (dest, code, src);
358 else
360 tree temp = make_ssa_name (unpack_masktype);
361 stmt = gimple_build_assign (temp, code, src);
362 gimple_seq_add_stmt (seq, stmt);
363 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
364 build1 (VIEW_CONVERT_EXPR,
365 dest_masktype, temp));
367 gimple_seq_add_stmt (seq, stmt);
369 return true;
371 vec_perm_indices indices[2];
372 if (dest_masktype == src_masktype
373 && interleave_supported_p (&indices[0], src_masktype, 0)
374 && interleave_supported_p (&indices[1], src_masktype, 1))
376 /* The destination requires twice as many mask bits as the source, so
377 we can use interleaving permutes to double up the number of bits. */
378 tree masks[2];
379 for (unsigned int i = 0; i < 2; ++i)
380 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
381 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
383 tree src = src_rgm->controls[i / 2];
384 tree dest = dest_rgm->controls[i];
385 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
386 src, src, masks[i & 1]);
387 gimple_seq_add_stmt (seq, stmt);
389 return true;
391 return false;
394 /* Populate DEST_RGM->controls, given that they should add up to STEP.
396 STEP = MIN_EXPR <ivtmp_34, VF>;
398 First length (MIN (X, VF/N)):
399 loop_len_15 = MIN_EXPR <STEP, VF/N>;
401 Second length:
402 tmp = STEP - loop_len_15;
403 loop_len_16 = MIN (tmp, VF/N);
405 Third length:
406 tmp2 = tmp - loop_len_16;
407 loop_len_17 = MIN (tmp2, VF/N);
409 Last length:
410 loop_len_18 = tmp2 - loop_len_17;
413 static void
414 vect_adjust_loop_lens_control (tree iv_type, gimple_seq *seq,
415 rgroup_controls *dest_rgm, tree step)
417 tree ctrl_type = dest_rgm->type;
418 poly_uint64 nitems_per_ctrl
419 = TYPE_VECTOR_SUBPARTS (ctrl_type) * dest_rgm->factor;
420 tree length_limit = build_int_cst (iv_type, nitems_per_ctrl);
422 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
424 tree ctrl = dest_rgm->controls[i];
425 if (i == 0)
427 /* First iteration: MIN (X, VF/N) capped to the range [0, VF/N]. */
428 gassign *assign
429 = gimple_build_assign (ctrl, MIN_EXPR, step, length_limit);
430 gimple_seq_add_stmt (seq, assign);
432 else if (i == dest_rgm->controls.length () - 1)
434 /* Last iteration: Remain capped to the range [0, VF/N]. */
435 gassign *assign = gimple_build_assign (ctrl, MINUS_EXPR, step,
436 dest_rgm->controls[i - 1]);
437 gimple_seq_add_stmt (seq, assign);
439 else
441 /* (MIN (remain, VF*I/N)) capped to the range [0, VF/N]. */
442 step = gimple_build (seq, MINUS_EXPR, iv_type, step,
443 dest_rgm->controls[i - 1]);
444 gassign *assign
445 = gimple_build_assign (ctrl, MIN_EXPR, step, length_limit);
446 gimple_seq_add_stmt (seq, assign);
451 /* Stores the standard position for induction variable increment in belonging to
452 LOOP_EXIT (just before the exit condition of the given exit to BSI.
453 INSERT_AFTER is set to true if the increment should be inserted after
454 *BSI. */
456 void
457 vect_iv_increment_position (edge loop_exit, gimple_stmt_iterator *bsi,
458 bool *insert_after)
460 basic_block bb = loop_exit->src;
461 *bsi = gsi_last_bb (bb);
462 *insert_after = false;
465 /* Helper for vect_set_loop_condition_partial_vectors. Generate definitions
466 for all the rgroup controls in RGC and return a control that is nonzero
467 when the loop needs to iterate. Add any new preheader statements to
468 PREHEADER_SEQ. Use LOOP_COND_GSI to insert code before the exit gcond.
470 RGC belongs to loop LOOP. The loop originally iterated NITERS
471 times and has been vectorized according to LOOP_VINFO.
473 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
474 starts with NITERS_SKIP dummy iterations of the scalar loop before
475 the real work starts. The mask elements for these dummy iterations
476 must be 0, to ensure that the extra iterations do not have an effect.
478 It is known that:
480 NITERS * RGC->max_nscalars_per_iter * RGC->factor
482 does not overflow. However, MIGHT_WRAP_P says whether an induction
483 variable that starts at 0 and has step:
485 VF * RGC->max_nscalars_per_iter * RGC->factor
487 might overflow before hitting a value above:
489 (NITERS + NITERS_SKIP) * RGC->max_nscalars_per_iter * RGC->factor
491 This means that we cannot guarantee that such an induction variable
492 would ever hit a value that produces a set of all-false masks or zero
493 lengths for RGC.
495 Note: the cost of the code generated by this function is modeled
496 by vect_estimate_min_profitable_iters, so changes here may need
497 corresponding changes there. */
499 static tree
500 vect_set_loop_controls_directly (class loop *loop, loop_vec_info loop_vinfo,
501 gimple_seq *preheader_seq,
502 gimple_seq *header_seq,
503 gimple_stmt_iterator loop_cond_gsi,
504 rgroup_controls *rgc, tree niters,
505 tree niters_skip, bool might_wrap_p,
506 tree *iv_step, tree *compare_step)
508 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
509 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
510 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
512 tree ctrl_type = rgc->type;
513 unsigned int nitems_per_iter = rgc->max_nscalars_per_iter * rgc->factor;
514 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type) * rgc->factor;
515 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
516 tree length_limit = NULL_TREE;
517 /* For length, we need length_limit to ensure length in range. */
518 if (!use_masks_p)
519 length_limit = build_int_cst (compare_type, nitems_per_ctrl);
521 /* Calculate the maximum number of item values that the rgroup
522 handles in total, the number that it handles for each iteration
523 of the vector loop, and the number that it should skip during the
524 first iteration of the vector loop. */
525 tree nitems_total = niters;
526 tree nitems_step = build_int_cst (iv_type, vf);
527 tree nitems_skip = niters_skip;
528 if (nitems_per_iter != 1)
530 /* We checked before setting LOOP_VINFO_USING_PARTIAL_VECTORS_P that
531 these multiplications don't overflow. */
532 tree compare_factor = build_int_cst (compare_type, nitems_per_iter);
533 tree iv_factor = build_int_cst (iv_type, nitems_per_iter);
534 nitems_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
535 nitems_total, compare_factor);
536 nitems_step = gimple_build (preheader_seq, MULT_EXPR, iv_type,
537 nitems_step, iv_factor);
538 if (nitems_skip)
539 nitems_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
540 nitems_skip, compare_factor);
543 /* Create an induction variable that counts the number of items
544 processed. */
545 tree index_before_incr, index_after_incr;
546 gimple_stmt_iterator incr_gsi;
547 bool insert_after;
548 edge exit_e = LOOP_VINFO_IV_EXIT (loop_vinfo);
549 vect_iv_increment_position (exit_e, &incr_gsi, &insert_after);
550 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo))
552 /* Create an IV that counts down from niters_total and whose step
553 is the (variable) amount processed in the current iteration:
555 _10 = (unsigned long) count_12(D);
557 # ivtmp_9 = PHI <ivtmp_35(6), _10(5)>
558 _36 = (MIN_EXPR | SELECT_VL) <ivtmp_9, POLY_INT_CST [4, 4]>;
560 vect__4.8_28 = .LEN_LOAD (_17, 32B, _36, 0);
562 ivtmp_35 = ivtmp_9 - POLY_INT_CST [4, 4];
564 if (ivtmp_9 > POLY_INT_CST [4, 4])
565 goto <bb 4>; [83.33%]
566 else
567 goto <bb 5>; [16.67%]
569 nitems_total = gimple_convert (preheader_seq, iv_type, nitems_total);
570 tree step = rgc->controls.length () == 1 ? rgc->controls[0]
571 : make_ssa_name (iv_type);
572 /* Create decrement IV. */
573 if (LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo))
575 create_iv (nitems_total, MINUS_EXPR, step, NULL_TREE, loop, &incr_gsi,
576 insert_after, &index_before_incr, &index_after_incr);
577 tree len = gimple_build (header_seq, IFN_SELECT_VL, iv_type,
578 index_before_incr, nitems_step);
579 gimple_seq_add_stmt (header_seq, gimple_build_assign (step, len));
581 else
583 create_iv (nitems_total, MINUS_EXPR, nitems_step, NULL_TREE, loop,
584 &incr_gsi, insert_after, &index_before_incr,
585 &index_after_incr);
586 gimple_seq_add_stmt (header_seq,
587 gimple_build_assign (step, MIN_EXPR,
588 index_before_incr,
589 nitems_step));
591 *iv_step = step;
592 *compare_step = nitems_step;
593 return LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo) ? index_after_incr
594 : index_before_incr;
597 /* Create increment IV. */
598 create_iv (build_int_cst (iv_type, 0), PLUS_EXPR, nitems_step, NULL_TREE,
599 loop, &incr_gsi, insert_after, &index_before_incr,
600 &index_after_incr);
602 tree zero_index = build_int_cst (compare_type, 0);
603 tree test_index, test_limit, first_limit;
604 gimple_stmt_iterator *test_gsi;
605 if (might_wrap_p)
607 /* In principle the loop should stop iterating once the incremented
608 IV reaches a value greater than or equal to:
610 NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP
612 However, there's no guarantee that this addition doesn't overflow
613 the comparison type, or that the IV hits a value above it before
614 wrapping around. We therefore adjust the limit down by one
615 IV step:
617 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
618 -[infinite-prec] NITEMS_STEP
620 and compare the IV against this limit _before_ incrementing it.
621 Since the comparison type is unsigned, we actually want the
622 subtraction to saturate at zero:
624 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
625 -[sat] NITEMS_STEP
627 And since NITEMS_SKIP < NITEMS_STEP, we can reassociate this as:
629 NITEMS_TOTAL -[sat] (NITEMS_STEP - NITEMS_SKIP)
631 where the rightmost subtraction can be done directly in
632 COMPARE_TYPE. */
633 test_index = index_before_incr;
634 tree adjust = gimple_convert (preheader_seq, compare_type,
635 nitems_step);
636 if (nitems_skip)
637 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
638 adjust, nitems_skip);
639 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
640 nitems_total, adjust);
641 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
642 test_limit, adjust);
643 test_gsi = &incr_gsi;
645 /* Get a safe limit for the first iteration. */
646 if (nitems_skip)
648 /* The first vector iteration can handle at most NITEMS_STEP
649 items. NITEMS_STEP <= CONST_LIMIT, and adding
650 NITEMS_SKIP to that cannot overflow. */
651 tree const_limit = build_int_cst (compare_type,
652 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
653 * nitems_per_iter);
654 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
655 nitems_total, const_limit);
656 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
657 first_limit, nitems_skip);
659 else
660 /* For the first iteration it doesn't matter whether the IV hits
661 a value above NITEMS_TOTAL. That only matters for the latch
662 condition. */
663 first_limit = nitems_total;
665 else
667 /* Test the incremented IV, which will always hit a value above
668 the bound before wrapping. */
669 test_index = index_after_incr;
670 test_limit = nitems_total;
671 if (nitems_skip)
672 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
673 test_limit, nitems_skip);
674 test_gsi = &loop_cond_gsi;
676 first_limit = test_limit;
679 /* Convert the IV value to the comparison type (either a no-op or
680 a demotion). */
681 gimple_seq test_seq = NULL;
682 test_index = gimple_convert (&test_seq, compare_type, test_index);
683 gsi_insert_seq_before (test_gsi, test_seq, GSI_SAME_STMT);
685 /* Provide a definition of each control in the group. */
686 tree next_ctrl = NULL_TREE;
687 tree ctrl;
688 unsigned int i;
689 FOR_EACH_VEC_ELT_REVERSE (rgc->controls, i, ctrl)
691 /* Previous controls will cover BIAS items. This control covers the
692 next batch. */
693 poly_uint64 bias = nitems_per_ctrl * i;
694 tree bias_tree = build_int_cst (compare_type, bias);
696 /* See whether the first iteration of the vector loop is known
697 to have a full control. */
698 poly_uint64 const_limit;
699 bool first_iteration_full
700 = (poly_int_tree_p (first_limit, &const_limit)
701 && known_ge (const_limit, (i + 1) * nitems_per_ctrl));
703 /* Rather than have a new IV that starts at BIAS and goes up to
704 TEST_LIMIT, prefer to use the same 0-based IV for each control
705 and adjust the bound down by BIAS. */
706 tree this_test_limit = test_limit;
707 if (i != 0)
709 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
710 compare_type, this_test_limit,
711 bias_tree);
712 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
713 compare_type, this_test_limit,
714 bias_tree);
717 /* Create the initial control. First include all items that
718 are within the loop limit. */
719 tree init_ctrl = NULL_TREE;
720 if (!first_iteration_full)
722 tree start, end;
723 if (first_limit == test_limit)
725 /* Use a natural test between zero (the initial IV value)
726 and the loop limit. The "else" block would be valid too,
727 but this choice can avoid the need to load BIAS_TREE into
728 a register. */
729 start = zero_index;
730 end = this_test_limit;
732 else
734 /* FIRST_LIMIT is the maximum number of items handled by the
735 first iteration of the vector loop. Test the portion
736 associated with this control. */
737 start = bias_tree;
738 end = first_limit;
741 if (use_masks_p)
742 init_ctrl = vect_gen_while (preheader_seq, ctrl_type,
743 start, end, "max_mask");
744 else
746 init_ctrl = make_temp_ssa_name (compare_type, NULL, "max_len");
747 gimple_seq seq = vect_gen_len (init_ctrl, start,
748 end, length_limit);
749 gimple_seq_add_seq (preheader_seq, seq);
753 /* Now AND out the bits that are within the number of skipped
754 items. */
755 poly_uint64 const_skip;
756 if (nitems_skip
757 && !(poly_int_tree_p (nitems_skip, &const_skip)
758 && known_le (const_skip, bias)))
760 gcc_assert (use_masks_p);
761 tree unskipped_mask = vect_gen_while_not (preheader_seq, ctrl_type,
762 bias_tree, nitems_skip);
763 if (init_ctrl)
764 init_ctrl = gimple_build (preheader_seq, BIT_AND_EXPR, ctrl_type,
765 init_ctrl, unskipped_mask);
766 else
767 init_ctrl = unskipped_mask;
770 if (!init_ctrl)
772 /* First iteration is full. */
773 if (use_masks_p)
774 init_ctrl = build_minus_one_cst (ctrl_type);
775 else
776 init_ctrl = length_limit;
779 /* Get the control value for the next iteration of the loop. */
780 if (use_masks_p)
782 gimple_seq stmts = NULL;
783 next_ctrl = vect_gen_while (&stmts, ctrl_type, test_index,
784 this_test_limit, "next_mask");
785 gsi_insert_seq_before (test_gsi, stmts, GSI_SAME_STMT);
787 else
789 next_ctrl = make_temp_ssa_name (compare_type, NULL, "next_len");
790 gimple_seq seq = vect_gen_len (next_ctrl, test_index, this_test_limit,
791 length_limit);
792 gsi_insert_seq_before (test_gsi, seq, GSI_SAME_STMT);
795 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
798 int partial_load_bias = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
799 if (partial_load_bias != 0)
801 tree adjusted_len = rgc->bias_adjusted_ctrl;
802 gassign *minus = gimple_build_assign (adjusted_len, PLUS_EXPR,
803 rgc->controls[0],
804 build_int_cst
805 (TREE_TYPE (rgc->controls[0]),
806 partial_load_bias));
807 gimple_seq_add_stmt (header_seq, minus);
810 return next_ctrl;
813 /* Set up the iteration condition and rgroup controls for LOOP, given
814 that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the vectorized
815 loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
816 the number of iterations of the original scalar loop that should be
817 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
818 for vect_set_loop_condition.
820 Insert the branch-back condition before LOOP_COND_GSI and return the
821 final gcond. */
823 static gcond *
824 vect_set_loop_condition_partial_vectors (class loop *loop, edge exit_edge,
825 loop_vec_info loop_vinfo, tree niters,
826 tree final_iv, bool niters_maybe_zero,
827 gimple_stmt_iterator loop_cond_gsi)
829 gimple_seq preheader_seq = NULL;
830 gimple_seq header_seq = NULL;
832 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
833 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
834 unsigned int compare_precision = TYPE_PRECISION (compare_type);
835 tree orig_niters = niters;
837 /* Type of the initial value of NITERS. */
838 tree ni_actual_type = TREE_TYPE (niters);
839 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
840 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
841 if (niters_skip)
842 niters_skip = gimple_convert (&preheader_seq, compare_type, niters_skip);
844 /* Convert NITERS to the same size as the compare. */
845 if (compare_precision > ni_actual_precision
846 && niters_maybe_zero)
848 /* We know that there is always at least one iteration, so if the
849 count is zero then it must have wrapped. Cope with this by
850 subtracting 1 before the conversion and adding 1 to the result. */
851 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
852 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
853 niters, build_minus_one_cst (ni_actual_type));
854 niters = gimple_convert (&preheader_seq, compare_type, niters);
855 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
856 niters, build_one_cst (compare_type));
858 else
859 niters = gimple_convert (&preheader_seq, compare_type, niters);
861 /* Iterate over all the rgroups and fill in their controls. We could use
862 the first control from any rgroup for the loop condition; here we
863 arbitrarily pick the last. */
864 tree test_ctrl = NULL_TREE;
865 tree iv_step = NULL_TREE;
866 tree compare_step = NULL_TREE;
867 rgroup_controls *rgc;
868 rgroup_controls *iv_rgc = nullptr;
869 unsigned int i;
870 auto_vec<rgroup_controls> *controls = use_masks_p
871 ? &LOOP_VINFO_MASKS (loop_vinfo).rgc_vec
872 : &LOOP_VINFO_LENS (loop_vinfo);
873 FOR_EACH_VEC_ELT (*controls, i, rgc)
874 if (!rgc->controls.is_empty ())
876 /* First try using permutes. This adds a single vector
877 instruction to the loop for each mask, but needs no extra
878 loop invariants or IVs. */
879 unsigned int nmasks = i + 1;
880 if (use_masks_p && (nmasks & 1) == 0)
882 rgroup_controls *half_rgc = &(*controls)[nmasks / 2 - 1];
883 if (!half_rgc->controls.is_empty ()
884 && vect_maybe_permute_loop_masks (&header_seq, rgc, half_rgc))
885 continue;
888 if (!LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
889 || !iv_rgc
890 || (iv_rgc->max_nscalars_per_iter * iv_rgc->factor
891 != rgc->max_nscalars_per_iter * rgc->factor))
893 /* See whether zero-based IV would ever generate all-false masks
894 or zero length before wrapping around. */
895 bool might_wrap_p = vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc);
897 /* Set up all controls for this group. */
898 test_ctrl
899 = vect_set_loop_controls_directly (loop, loop_vinfo,
900 &preheader_seq, &header_seq,
901 loop_cond_gsi, rgc, niters,
902 niters_skip, might_wrap_p,
903 &iv_step, &compare_step);
905 iv_rgc = rgc;
908 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
909 && rgc->controls.length () > 1)
911 /* vect_set_loop_controls_directly creates an IV whose step
912 is equal to the expected sum of RGC->controls. Use that
913 information to populate RGC->controls. */
914 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
915 gcc_assert (iv_step);
916 vect_adjust_loop_lens_control (iv_type, &header_seq, rgc, iv_step);
920 /* Emit all accumulated statements. */
921 add_preheader_seq (loop, preheader_seq);
922 add_header_seq (loop, header_seq);
924 /* Get a boolean result that tells us whether to iterate. */
925 gcond *cond_stmt;
926 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo)
927 && !LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo))
929 gcc_assert (compare_step);
930 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? LE_EXPR : GT_EXPR;
931 cond_stmt = gimple_build_cond (code, test_ctrl, compare_step, NULL_TREE,
932 NULL_TREE);
934 else
936 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
937 tree zero_ctrl = build_zero_cst (TREE_TYPE (test_ctrl));
938 cond_stmt
939 = gimple_build_cond (code, test_ctrl, zero_ctrl, NULL_TREE, NULL_TREE);
941 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
943 /* The loop iterates (NITERS - 1) / VF + 1 times.
944 Subtract one from this to get the latch count. */
945 tree step = build_int_cst (compare_type,
946 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
947 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
948 build_minus_one_cst (compare_type));
949 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
950 niters_minus_one, step);
952 if (final_iv)
954 gassign *assign;
955 /* If vectorizing an inverted early break loop we have to restart the
956 scalar loop at niters - vf. This matches what we do in
957 vect_gen_vector_loop_niters_mult_vf for non-masked loops. */
958 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
960 tree ftype = TREE_TYPE (orig_niters);
961 tree vf = build_int_cst (ftype, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
962 assign = gimple_build_assign (final_iv, MINUS_EXPR, orig_niters, vf);
964 else
965 assign = gimple_build_assign (final_iv, orig_niters);
966 gsi_insert_on_edge_immediate (exit_edge, assign);
969 return cond_stmt;
972 /* Set up the iteration condition and rgroup controls for LOOP in AVX512
973 style, given that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the
974 vectorized loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
975 the number of iterations of the original scalar loop that should be
976 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
977 for vect_set_loop_condition.
979 Insert the branch-back condition before LOOP_COND_GSI and return the
980 final gcond. */
982 static gcond *
983 vect_set_loop_condition_partial_vectors_avx512 (class loop *loop,
984 edge exit_edge,
985 loop_vec_info loop_vinfo, tree niters,
986 tree final_iv,
987 bool niters_maybe_zero,
988 gimple_stmt_iterator loop_cond_gsi)
990 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
991 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
992 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
993 tree orig_niters = niters;
994 gimple_seq preheader_seq = NULL;
996 /* Create an IV that counts down from niters and whose step
997 is the number of iterations processed in the current iteration.
998 Produce the controls with compares like the following.
1000 # iv_2 = PHI <niters, iv_3>
1001 rem_4 = MIN <iv_2, VF>;
1002 remv_6 = { rem_4, rem_4, rem_4, ... }
1003 mask_5 = { 0, 0, 1, 1, 2, 2, ... } < remv6;
1004 iv_3 = iv_2 - VF;
1005 if (iv_2 > VF)
1006 continue;
1008 Where the constant is built with elements at most VF - 1 and
1009 repetitions according to max_nscalars_per_iter which is guarnateed
1010 to be the same within a group. */
1012 /* Convert NITERS to the determined IV type. */
1013 if (TYPE_PRECISION (iv_type) > TYPE_PRECISION (TREE_TYPE (niters))
1014 && niters_maybe_zero)
1016 /* We know that there is always at least one iteration, so if the
1017 count is zero then it must have wrapped. Cope with this by
1018 subtracting 1 before the conversion and adding 1 to the result. */
1019 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (niters)));
1020 niters = gimple_build (&preheader_seq, PLUS_EXPR, TREE_TYPE (niters),
1021 niters, build_minus_one_cst (TREE_TYPE (niters)));
1022 niters = gimple_convert (&preheader_seq, iv_type, niters);
1023 niters = gimple_build (&preheader_seq, PLUS_EXPR, iv_type,
1024 niters, build_one_cst (iv_type));
1026 else
1027 niters = gimple_convert (&preheader_seq, iv_type, niters);
1029 /* Bias the initial value of the IV in case we need to skip iterations
1030 at the beginning. */
1031 tree niters_adj = niters;
1032 if (niters_skip)
1034 tree skip = gimple_convert (&preheader_seq, iv_type, niters_skip);
1035 niters_adj = gimple_build (&preheader_seq, PLUS_EXPR,
1036 iv_type, niters, skip);
1039 /* The iteration step is the vectorization factor. */
1040 tree iv_step = build_int_cst (iv_type, vf);
1042 /* Create the decrement IV. */
1043 tree index_before_incr, index_after_incr;
1044 gimple_stmt_iterator incr_gsi;
1045 bool insert_after;
1046 vect_iv_increment_position (exit_edge, &incr_gsi, &insert_after);
1047 create_iv (niters_adj, MINUS_EXPR, iv_step, NULL_TREE, loop,
1048 &incr_gsi, insert_after, &index_before_incr,
1049 &index_after_incr);
1051 /* Iterate over all the rgroups and fill in their controls. */
1052 for (auto &rgc : LOOP_VINFO_MASKS (loop_vinfo).rgc_vec)
1054 if (rgc.controls.is_empty ())
1055 continue;
1057 tree ctrl_type = rgc.type;
1058 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type);
1060 tree vectype = rgc.compare_type;
1062 /* index_after_incr is the IV specifying the remaining iterations in
1063 the next iteration. */
1064 tree rem = index_after_incr;
1065 /* When the data type for the compare to produce the mask is
1066 smaller than the IV type we need to saturate. Saturate to
1067 the smallest possible value (IV_TYPE) so we only have to
1068 saturate once (CSE will catch redundant ones we add). */
1069 if (TYPE_PRECISION (TREE_TYPE (vectype)) < TYPE_PRECISION (iv_type))
1070 rem = gimple_build (&incr_gsi, false, GSI_CONTINUE_LINKING,
1071 UNKNOWN_LOCATION,
1072 MIN_EXPR, TREE_TYPE (rem), rem, iv_step);
1073 rem = gimple_convert (&incr_gsi, false, GSI_CONTINUE_LINKING,
1074 UNKNOWN_LOCATION, TREE_TYPE (vectype), rem);
1076 /* Build a data vector composed of the remaining iterations. */
1077 rem = gimple_build_vector_from_val (&incr_gsi, false, GSI_CONTINUE_LINKING,
1078 UNKNOWN_LOCATION, vectype, rem);
1080 /* Provide a definition of each vector in the control group. */
1081 tree next_ctrl = NULL_TREE;
1082 tree first_rem = NULL_TREE;
1083 tree ctrl;
1084 unsigned int i;
1085 FOR_EACH_VEC_ELT_REVERSE (rgc.controls, i, ctrl)
1087 /* Previous controls will cover BIAS items. This control covers the
1088 next batch. */
1089 poly_uint64 bias = nitems_per_ctrl * i;
1091 /* Build the constant to compare the remaining iters against,
1092 this is sth like { 0, 0, 1, 1, 2, 2, 3, 3, ... } appropriately
1093 split into pieces. */
1094 unsigned n = TYPE_VECTOR_SUBPARTS (ctrl_type).to_constant ();
1095 tree_vector_builder builder (vectype, n, 1);
1096 for (unsigned i = 0; i < n; ++i)
1098 unsigned HOST_WIDE_INT val
1099 = (i + bias.to_constant ()) / rgc.max_nscalars_per_iter;
1100 gcc_assert (val < vf.to_constant ());
1101 builder.quick_push (build_int_cst (TREE_TYPE (vectype), val));
1103 tree cmp_series = builder.build ();
1105 /* Create the initial control. First include all items that
1106 are within the loop limit. */
1107 tree init_ctrl = NULL_TREE;
1108 poly_uint64 const_limit;
1109 /* See whether the first iteration of the vector loop is known
1110 to have a full control. */
1111 if (poly_int_tree_p (niters, &const_limit)
1112 && known_ge (const_limit, (i + 1) * nitems_per_ctrl))
1113 init_ctrl = build_minus_one_cst (ctrl_type);
1114 else
1116 /* The remaining work items initially are niters. Saturate,
1117 splat and compare. */
1118 if (!first_rem)
1120 first_rem = niters;
1121 if (TYPE_PRECISION (TREE_TYPE (vectype))
1122 < TYPE_PRECISION (iv_type))
1123 first_rem = gimple_build (&preheader_seq,
1124 MIN_EXPR, TREE_TYPE (first_rem),
1125 first_rem, iv_step);
1126 first_rem = gimple_convert (&preheader_seq, TREE_TYPE (vectype),
1127 first_rem);
1128 first_rem = gimple_build_vector_from_val (&preheader_seq,
1129 vectype, first_rem);
1131 init_ctrl = gimple_build (&preheader_seq, LT_EXPR, ctrl_type,
1132 cmp_series, first_rem);
1135 /* Now AND out the bits that are within the number of skipped
1136 items. */
1137 poly_uint64 const_skip;
1138 if (niters_skip
1139 && !(poly_int_tree_p (niters_skip, &const_skip)
1140 && known_le (const_skip, bias)))
1142 /* For integer mode masks it's cheaper to shift out the bits
1143 since that avoids loading a constant. */
1144 gcc_assert (GET_MODE_CLASS (TYPE_MODE (ctrl_type)) == MODE_INT);
1145 init_ctrl = gimple_build (&preheader_seq, VIEW_CONVERT_EXPR,
1146 lang_hooks.types.type_for_mode
1147 (TYPE_MODE (ctrl_type), 1),
1148 init_ctrl);
1149 /* ??? But when the shift amount isn't constant this requires
1150 a round-trip to GRPs. We could apply the bias to either
1151 side of the compare instead. */
1152 tree shift = gimple_build (&preheader_seq, MULT_EXPR,
1153 TREE_TYPE (niters_skip), niters_skip,
1154 build_int_cst (TREE_TYPE (niters_skip),
1155 rgc.max_nscalars_per_iter));
1156 init_ctrl = gimple_build (&preheader_seq, LSHIFT_EXPR,
1157 TREE_TYPE (init_ctrl),
1158 init_ctrl, shift);
1159 init_ctrl = gimple_build (&preheader_seq, VIEW_CONVERT_EXPR,
1160 ctrl_type, init_ctrl);
1163 /* Get the control value for the next iteration of the loop. */
1164 next_ctrl = gimple_build (&incr_gsi, false, GSI_CONTINUE_LINKING,
1165 UNKNOWN_LOCATION,
1166 LT_EXPR, ctrl_type, cmp_series, rem);
1168 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
1172 /* Emit all accumulated statements. */
1173 add_preheader_seq (loop, preheader_seq);
1175 /* Adjust the exit test using the decrementing IV. */
1176 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? LE_EXPR : GT_EXPR;
1177 /* When we peel for alignment with niter_skip != 0 this can
1178 cause niter + niter_skip to wrap and since we are comparing the
1179 value before the decrement here we get a false early exit.
1180 We can't compare the value after decrement either because that
1181 decrement could wrap as well as we're not doing a saturating
1182 decrement. To avoid this situation we force a larger
1183 iv_type. */
1184 gcond *cond_stmt = gimple_build_cond (code, index_before_incr, iv_step,
1185 NULL_TREE, NULL_TREE);
1186 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
1188 /* The loop iterates (NITERS - 1 + NITERS_SKIP) / VF + 1 times.
1189 Subtract one from this to get the latch count. */
1190 tree niters_minus_one
1191 = fold_build2 (PLUS_EXPR, TREE_TYPE (orig_niters), orig_niters,
1192 build_minus_one_cst (TREE_TYPE (orig_niters)));
1193 tree niters_adj2 = fold_convert (iv_type, niters_minus_one);
1194 if (niters_skip)
1195 niters_adj2 = fold_build2 (PLUS_EXPR, iv_type, niters_minus_one,
1196 fold_convert (iv_type, niters_skip));
1197 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, iv_type,
1198 niters_adj2, iv_step);
1200 if (final_iv)
1202 gassign *assign;
1203 /* If vectorizing an inverted early break loop we have to restart the
1204 scalar loop at niters - vf. This matches what we do in
1205 vect_gen_vector_loop_niters_mult_vf for non-masked loops. */
1206 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
1208 tree ftype = TREE_TYPE (orig_niters);
1209 tree vf = build_int_cst (ftype, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1210 assign = gimple_build_assign (final_iv, MINUS_EXPR, orig_niters, vf);
1212 else
1213 assign = gimple_build_assign (final_iv, orig_niters);
1214 gsi_insert_on_edge_immediate (exit_edge, assign);
1217 return cond_stmt;
1221 /* Like vect_set_loop_condition, but handle the case in which the vector
1222 loop handles exactly VF scalars per iteration. */
1224 static gcond *
1225 vect_set_loop_condition_normal (loop_vec_info /* loop_vinfo */, edge exit_edge,
1226 class loop *loop, tree niters, tree step,
1227 tree final_iv, bool niters_maybe_zero,
1228 gimple_stmt_iterator loop_cond_gsi)
1230 tree indx_before_incr, indx_after_incr;
1231 gcond *cond_stmt;
1232 gcond *orig_cond;
1233 edge pe = loop_preheader_edge (loop);
1234 gimple_stmt_iterator incr_gsi;
1235 bool insert_after;
1236 enum tree_code code;
1237 tree niters_type = TREE_TYPE (niters);
1239 orig_cond = get_loop_exit_condition (exit_edge);
1240 gcc_assert (orig_cond);
1241 loop_cond_gsi = gsi_for_stmt (orig_cond);
1243 tree init, limit;
1244 if (!niters_maybe_zero && integer_onep (step))
1246 /* In this case we can use a simple 0-based IV:
1249 x = 0;
1253 x += 1;
1255 while (x < NITERS); */
1256 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
1257 init = build_zero_cst (niters_type);
1258 limit = niters;
1260 else
1262 /* The following works for all values of NITERS except 0:
1265 x = 0;
1269 x += STEP;
1271 while (x <= NITERS - STEP);
1273 so that the loop continues to iterate if x + STEP - 1 < NITERS
1274 but stops if x + STEP - 1 >= NITERS.
1276 However, if NITERS is zero, x never hits a value above NITERS - STEP
1277 before wrapping around. There are two obvious ways of dealing with
1278 this:
1280 - start at STEP - 1 and compare x before incrementing it
1281 - start at -1 and compare x after incrementing it
1283 The latter is simpler and is what we use. The loop in this case
1284 looks like:
1287 x = -1;
1291 x += STEP;
1293 while (x < NITERS - STEP);
1295 In both cases the loop limit is NITERS - STEP. */
1296 gimple_seq seq = NULL;
1297 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
1298 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
1299 if (seq)
1301 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1302 gcc_assert (!new_bb);
1304 if (niters_maybe_zero)
1306 /* Case C. */
1307 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
1308 init = build_all_ones_cst (niters_type);
1310 else
1312 /* Case B. */
1313 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
1314 init = build_zero_cst (niters_type);
1318 vect_iv_increment_position (exit_edge, &incr_gsi, &insert_after);
1319 create_iv (init, PLUS_EXPR, step, NULL_TREE, loop,
1320 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
1321 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
1322 true, NULL_TREE, true,
1323 GSI_SAME_STMT);
1324 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
1325 true, GSI_SAME_STMT);
1327 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
1328 NULL_TREE);
1330 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
1332 /* Record the number of latch iterations. */
1333 if (limit == niters)
1334 /* Case A: the loop iterates NITERS times. Subtract one to get the
1335 latch count. */
1336 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
1337 build_int_cst (niters_type, 1));
1338 else
1339 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
1340 Subtract one from this to get the latch count. */
1341 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
1342 limit, step);
1344 if (final_iv)
1346 gassign *assign;
1347 gcc_assert (single_pred_p (exit_edge->dest));
1348 tree phi_dest
1349 = integer_zerop (init) ? final_iv : copy_ssa_name (indx_after_incr);
1350 /* Make sure to maintain LC SSA form here and elide the subtraction
1351 if the value is zero. */
1352 gphi *phi = create_phi_node (phi_dest, exit_edge->dest);
1353 add_phi_arg (phi, indx_after_incr, exit_edge, UNKNOWN_LOCATION);
1354 if (!integer_zerop (init))
1356 assign = gimple_build_assign (final_iv, MINUS_EXPR,
1357 phi_dest, init);
1358 gimple_stmt_iterator gsi = gsi_after_labels (exit_edge->dest);
1359 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
1363 return cond_stmt;
1366 /* If we're using fully-masked loops, make LOOP iterate:
1368 N == (NITERS - 1) / STEP + 1
1370 times. When NITERS is zero, this is equivalent to making the loop
1371 execute (1 << M) / STEP times, where M is the precision of NITERS.
1372 NITERS_MAYBE_ZERO is true if this last case might occur.
1374 If we're not using fully-masked loops, make LOOP iterate:
1376 N == (NITERS - STEP) / STEP + 1
1378 times, where NITERS is known to be outside the range [1, STEP - 1].
1379 This is equivalent to making the loop execute NITERS / STEP times
1380 when NITERS is nonzero and (1 << M) / STEP times otherwise.
1381 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
1383 If FINAL_IV is nonnull, it is an SSA name that should be set to
1384 N * STEP on exit from the loop.
1386 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
1388 void
1389 vect_set_loop_condition (class loop *loop, edge loop_e, loop_vec_info loop_vinfo,
1390 tree niters, tree step, tree final_iv,
1391 bool niters_maybe_zero)
1393 gcond *cond_stmt;
1394 gcond *orig_cond = get_loop_exit_condition (loop_e);
1395 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
1397 if (loop_vinfo && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
1399 if (LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo) == vect_partial_vectors_avx512)
1400 cond_stmt = vect_set_loop_condition_partial_vectors_avx512 (loop, loop_e,
1401 loop_vinfo,
1402 niters, final_iv,
1403 niters_maybe_zero,
1404 loop_cond_gsi);
1405 else
1406 cond_stmt = vect_set_loop_condition_partial_vectors (loop, loop_e,
1407 loop_vinfo,
1408 niters, final_iv,
1409 niters_maybe_zero,
1410 loop_cond_gsi);
1412 else
1413 cond_stmt = vect_set_loop_condition_normal (loop_vinfo, loop_e, loop,
1414 niters,
1415 step, final_iv,
1416 niters_maybe_zero,
1417 loop_cond_gsi);
1419 /* Remove old loop exit test. */
1420 stmt_vec_info orig_cond_info;
1421 if (loop_vinfo
1422 && (orig_cond_info = loop_vinfo->lookup_stmt (orig_cond)))
1423 loop_vinfo->remove_stmt (orig_cond_info);
1424 else
1425 gsi_remove (&loop_cond_gsi, true);
1427 if (dump_enabled_p ())
1428 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: %G",
1429 (gimple *) cond_stmt);
1432 /* Given LOOP this function generates a new copy of it and puts it
1433 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
1434 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
1435 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
1436 entry or exit of LOOP. If FLOW_LOOPS then connect LOOP to SCALAR_LOOP as a
1437 continuation. This is correct for cases where one loop continues from the
1438 other like in the vectorizer, but not true for uses in e.g. loop distribution
1439 where the contents of the loop body are split but the iteration space of both
1440 copies remains the same.
1442 If UPDATED_DOMS is not NULL it is update with the list of basic blocks whoms
1443 dominators were updated during the peeling. When doing early break vectorization
1444 then LOOP_VINFO needs to be provided and is used to keep track of any newly created
1445 memory references that need to be updated should we decide to vectorize. */
1447 class loop *
1448 slpeel_tree_duplicate_loop_to_edge_cfg (class loop *loop, edge loop_exit,
1449 class loop *scalar_loop,
1450 edge scalar_exit, edge e, edge *new_e,
1451 bool flow_loops,
1452 vec<basic_block> *updated_doms)
1454 class loop *new_loop;
1455 basic_block *new_bbs, *bbs, *pbbs;
1456 bool at_exit;
1457 bool was_imm_dom;
1458 basic_block exit_dest;
1459 edge exit, new_exit;
1460 bool duplicate_outer_loop = false;
1462 exit = loop_exit;
1463 at_exit = (e == exit);
1464 if (!at_exit && e != loop_preheader_edge (loop))
1465 return NULL;
1467 if (scalar_loop == NULL)
1469 scalar_loop = loop;
1470 scalar_exit = loop_exit;
1472 else if (scalar_loop == loop)
1473 scalar_exit = loop_exit;
1474 else
1476 /* Loop has been version, match exits up using the aux index. */
1477 for (edge exit : get_loop_exit_edges (scalar_loop))
1478 if (exit->aux == loop_exit->aux)
1480 scalar_exit = exit;
1481 break;
1484 gcc_assert (scalar_exit);
1487 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1488 pbbs = bbs + 1;
1489 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1490 /* Allow duplication of outer loops. */
1491 if (scalar_loop->inner)
1492 duplicate_outer_loop = true;
1494 /* Generate new loop structure. */
1495 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1496 duplicate_subloops (scalar_loop, new_loop);
1498 exit_dest = exit->dest;
1499 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1500 exit_dest) == loop->header ?
1501 true : false);
1503 /* Also copy the pre-header, this avoids jumping through hoops to
1504 duplicate the loop entry PHI arguments. Create an empty
1505 pre-header unconditionally for this. */
1506 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1507 edge entry_e = single_pred_edge (preheader);
1508 bbs[0] = preheader;
1509 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1511 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1512 &scalar_exit, 1, &new_exit, NULL,
1513 at_exit ? loop->latch : e->src, true);
1514 exit = loop_exit;
1515 basic_block new_preheader = new_bbs[0];
1517 gcc_assert (new_exit);
1519 /* Record the new loop exit information. new_loop doesn't have SCEV data and
1520 so we must initialize the exit information. */
1521 if (new_e)
1522 *new_e = new_exit;
1524 /* Before installing PHI arguments make sure that the edges
1525 into them match that of the scalar loop we analyzed. This
1526 makes sure the SLP tree matches up between the main vectorized
1527 loop and the epilogue vectorized copies. */
1528 if (single_succ_edge (preheader)->dest_idx
1529 != single_succ_edge (new_bbs[0])->dest_idx)
1531 basic_block swap_bb = new_bbs[1];
1532 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1533 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1534 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1535 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1537 if (duplicate_outer_loop)
1539 class loop *new_inner_loop = get_loop_copy (scalar_loop->inner);
1540 if (loop_preheader_edge (scalar_loop)->dest_idx
1541 != loop_preheader_edge (new_inner_loop)->dest_idx)
1543 basic_block swap_bb = new_inner_loop->header;
1544 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1545 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1546 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1547 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1551 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1553 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1554 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1555 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1557 /* Rename the exit uses. */
1558 for (edge exit : get_loop_exit_edges (new_loop))
1559 for (auto gsi = gsi_start_phis (exit->dest);
1560 !gsi_end_p (gsi); gsi_next (&gsi))
1562 tree orig_def = PHI_ARG_DEF_FROM_EDGE (gsi.phi (), exit);
1563 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), exit));
1564 if (MAY_HAVE_DEBUG_BIND_STMTS)
1565 adjust_debug_stmts (orig_def, PHI_RESULT (gsi.phi ()), exit->dest);
1568 auto loop_exits = get_loop_exit_edges (loop);
1569 bool multiple_exits_p = loop_exits.length () > 1;
1570 auto_vec<basic_block> doms;
1571 class loop *update_loop = NULL;
1573 if (at_exit) /* Add the loop copy at exit. */
1575 if (scalar_loop != loop && new_exit->dest != exit_dest)
1577 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1578 flush_pending_stmts (new_exit);
1581 bool need_virtual_phi = get_virtual_phi (loop->header);
1583 /* For the main loop exit preserve the LC PHI nodes. For vectorization
1584 we need them to continue or finalize reductions. Since we do not
1585 copy the loop exit blocks we have to materialize PHIs at the
1586 new destination before redirecting edges. */
1587 for (auto gsi_from = gsi_start_phis (loop_exit->dest);
1588 !gsi_end_p (gsi_from); gsi_next (&gsi_from))
1590 tree res = gimple_phi_result (*gsi_from);
1591 create_phi_node (copy_ssa_name (res), new_preheader);
1593 edge e = redirect_edge_and_branch (loop_exit, new_preheader);
1594 gcc_assert (e == loop_exit);
1595 flush_pending_stmts (loop_exit);
1596 set_immediate_dominator (CDI_DOMINATORS, new_preheader, loop_exit->src);
1598 bool multiple_exits_p = loop_exits.length () > 1;
1599 basic_block main_loop_exit_block = new_preheader;
1600 basic_block alt_loop_exit_block = NULL;
1601 /* Create the CFG for multiple exits.
1602 | loop_exit | alt1 | altN
1603 v v ... v
1604 main_loop_exit_block: alt_loop_exit_block:
1607 new_preheader:
1608 where in the new preheader we need merge PHIs for
1609 the continuation values into the epilogue header.
1610 Do not bother with exit PHIs for the early exits but
1611 their live virtual operand. We'll fix up things below. */
1612 if (multiple_exits_p)
1614 edge loop_e = single_succ_edge (new_preheader);
1615 new_preheader = split_edge (loop_e);
1617 gphi *vphi = NULL;
1618 alt_loop_exit_block = new_preheader;
1619 for (auto exit : loop_exits)
1620 if (exit != loop_exit)
1622 tree vphi_def = NULL_TREE;
1623 if (gphi *evphi = get_virtual_phi (exit->dest))
1624 vphi_def = gimple_phi_arg_def_from_edge (evphi, exit);
1625 edge res = redirect_edge_and_branch (exit, alt_loop_exit_block);
1626 gcc_assert (res == exit);
1627 redirect_edge_var_map_clear (exit);
1628 if (alt_loop_exit_block == new_preheader)
1629 alt_loop_exit_block = split_edge (exit);
1630 if (!need_virtual_phi)
1631 continue;
1632 if (vphi_def)
1634 if (!vphi)
1635 vphi = create_phi_node (copy_ssa_name (vphi_def),
1636 alt_loop_exit_block);
1637 else
1638 /* Edge redirection might re-allocate the PHI node
1639 so we have to rediscover it. */
1640 vphi = get_virtual_phi (alt_loop_exit_block);
1641 add_phi_arg (vphi, vphi_def, exit, UNKNOWN_LOCATION);
1645 set_immediate_dominator (CDI_DOMINATORS, new_preheader,
1646 loop->header);
1649 /* Adjust the epilog loop PHI entry values to continue iteration.
1650 This adds remaining necessary LC PHI nodes to the main exit
1651 and creates merge PHIs when we have multiple exits with
1652 their appropriate continuation. */
1653 if (flow_loops)
1655 edge loop_entry = single_succ_edge (new_preheader);
1656 bool peeled_iters = single_pred (loop->latch) != loop_exit->src;
1658 /* Record the new SSA names in the cache so that we can skip
1659 materializing them again when we fill in the rest of the LC SSA
1660 variables. */
1661 hash_map <tree, tree> new_phi_args;
1662 for (auto psi = gsi_start_phis (main_loop_exit_block);
1663 !gsi_end_p (psi); gsi_next (&psi))
1665 gphi *phi = *psi;
1666 tree new_arg = gimple_phi_arg_def_from_edge (phi, loop_exit);
1667 if (TREE_CODE (new_arg) != SSA_NAME)
1668 continue;
1670 /* If the loop doesn't have a virtual def then only possibly keep
1671 the epilog LC PHI for it and avoid creating new defs. */
1672 if (virtual_operand_p (new_arg) && !need_virtual_phi)
1674 auto gsi = gsi_for_stmt (phi);
1675 remove_phi_node (&gsi, true);
1676 continue;
1679 /* If we decided not to remove the PHI node we should also not
1680 rematerialize it later on. */
1681 new_phi_args.put (new_arg, gimple_phi_result (phi));
1684 /* Create the merge PHI nodes in new_preheader and populate the
1685 arguments for the main exit. */
1686 for (auto gsi_from = gsi_start_phis (loop->header),
1687 gsi_to = gsi_start_phis (new_loop->header);
1688 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1689 gsi_next (&gsi_from), gsi_next (&gsi_to))
1691 gimple *from_phi = gsi_stmt (gsi_from);
1692 gimple *to_phi = gsi_stmt (gsi_to);
1693 tree new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1694 loop_latch_edge (loop));
1696 /* Check if we've already created a new phi node during edge
1697 redirection. If we have, only propagate the value
1698 downwards in case there is no merge block. */
1699 if (tree *res = new_phi_args.get (new_arg))
1701 if (multiple_exits_p)
1702 new_arg = *res;
1703 else
1705 adjust_phi_and_debug_stmts (to_phi, loop_entry, *res);
1706 continue;
1709 /* If we have multiple exits and the vector loop is peeled then we
1710 need to use the value at start of loop. If we're looking at
1711 virtual operands we have to keep the original link. Virtual
1712 operands don't all become the same because we'll corrupt the
1713 vUSE chains among others. */
1714 if (peeled_iters)
1716 tree tmp_arg = gimple_phi_result (from_phi);
1717 /* Similar to the single exit case, If we have an existing
1718 LCSSA variable thread through the original value otherwise
1719 skip it and directly use the final value. */
1720 if (tree *res = new_phi_args.get (tmp_arg))
1721 new_arg = *res;
1722 else if (!virtual_operand_p (new_arg))
1723 new_arg = tmp_arg;
1726 tree new_res = copy_ssa_name (gimple_phi_result (from_phi));
1727 gphi *lcssa_phi = create_phi_node (new_res, new_preheader);
1729 /* Otherwise, main loop exit should use the final iter value. */
1730 if (multiple_exits_p)
1731 SET_PHI_ARG_DEF_ON_EDGE (lcssa_phi,
1732 single_succ_edge (main_loop_exit_block),
1733 new_arg);
1734 else
1735 SET_PHI_ARG_DEF_ON_EDGE (lcssa_phi, loop_exit, new_arg);
1737 adjust_phi_and_debug_stmts (to_phi, loop_entry, new_res);
1740 /* Now fill in the values for the merge PHI in new_preheader
1741 for the alternative exits. */
1742 if (multiple_exits_p)
1744 for (auto gsi_from = gsi_start_phis (loop->header),
1745 gsi_to = gsi_start_phis (new_preheader);
1746 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1747 gsi_next (&gsi_from), gsi_next (&gsi_to))
1749 gimple *from_phi = gsi_stmt (gsi_from);
1750 gimple *to_phi = gsi_stmt (gsi_to);
1752 /* Now update the virtual PHI nodes with the right value. */
1753 tree alt_arg = gimple_phi_result (from_phi);
1754 if (virtual_operand_p (alt_arg))
1756 gphi *vphi = get_virtual_phi (alt_loop_exit_block);
1757 /* ??? When the exit yields to a path without
1758 any virtual use we can miss a LC PHI for the
1759 live virtual operand. Simply choosing the
1760 one live at the start of the loop header isn't
1761 correct, but we should get here only with
1762 early-exit vectorization which will move all
1763 defs after the main exit, so leave a temporarily
1764 wrong virtual operand in place. This happens
1765 for gcc.c-torture/execute/20150611-1.c */
1766 if (vphi)
1767 alt_arg = gimple_phi_result (vphi);
1769 edge main_e = single_succ_edge (alt_loop_exit_block);
1770 SET_PHI_ARG_DEF_ON_EDGE (to_phi, main_e, alt_arg);
1775 if (was_imm_dom || duplicate_outer_loop)
1776 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1778 /* And remove the non-necessary forwarder again. Keep the other
1779 one so we have a proper pre-header for the loop at the exit edge. */
1780 redirect_edge_pred (single_succ_edge (preheader),
1781 single_pred (preheader));
1782 delete_basic_block (preheader);
1783 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1784 loop_preheader_edge (scalar_loop)->src);
1786 /* Finally after wiring the new epilogue we need to update its main exit
1787 to the original function exit we recorded. Other exits are already
1788 correct. */
1789 if (multiple_exits_p)
1791 update_loop = new_loop;
1792 doms = get_all_dominated_blocks (CDI_DOMINATORS, loop->header);
1793 for (unsigned i = 0; i < doms.length (); ++i)
1794 if (flow_bb_inside_loop_p (loop, doms[i]))
1795 doms.unordered_remove (i);
1798 else /* Add the copy at entry. */
1800 /* Copy the current loop LC PHI nodes between the original loop exit
1801 block and the new loop header. This allows us to later split the
1802 preheader block and still find the right LC nodes. */
1803 if (flow_loops)
1804 for (auto gsi_from = gsi_start_phis (new_loop->header),
1805 gsi_to = gsi_start_phis (loop->header);
1806 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
1807 gsi_next (&gsi_from), gsi_next (&gsi_to))
1809 gimple *from_phi = gsi_stmt (gsi_from);
1810 gimple *to_phi = gsi_stmt (gsi_to);
1811 tree new_arg = PHI_ARG_DEF_FROM_EDGE (from_phi,
1812 loop_latch_edge (new_loop));
1813 adjust_phi_and_debug_stmts (to_phi, loop_preheader_edge (loop),
1814 new_arg);
1817 if (scalar_loop != loop)
1819 /* Remove the non-necessary forwarder of scalar_loop again. */
1820 redirect_edge_pred (single_succ_edge (preheader),
1821 single_pred (preheader));
1822 delete_basic_block (preheader);
1823 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1824 loop_preheader_edge (scalar_loop)->src);
1825 preheader = split_edge (loop_preheader_edge (loop));
1826 entry_e = single_pred_edge (preheader);
1829 redirect_edge_and_branch_force (entry_e, new_preheader);
1830 flush_pending_stmts (entry_e);
1831 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1833 redirect_edge_and_branch_force (new_exit, preheader);
1834 flush_pending_stmts (new_exit);
1835 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1837 /* And remove the non-necessary forwarder again. Keep the other
1838 one so we have a proper pre-header for the loop at the exit edge. */
1839 redirect_edge_pred (single_succ_edge (new_preheader),
1840 single_pred (new_preheader));
1841 delete_basic_block (new_preheader);
1842 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1843 loop_preheader_edge (new_loop)->src);
1845 if (multiple_exits_p)
1846 update_loop = loop;
1849 if (multiple_exits_p)
1851 for (edge e : get_loop_exit_edges (update_loop))
1853 edge ex;
1854 edge_iterator ei;
1855 FOR_EACH_EDGE (ex, ei, e->dest->succs)
1857 /* Find the first non-fallthrough block as fall-throughs can't
1858 dominate other blocks. */
1859 if (single_succ_p (ex->dest))
1861 doms.safe_push (ex->dest);
1862 ex = single_succ_edge (ex->dest);
1864 doms.safe_push (ex->dest);
1866 doms.safe_push (e->dest);
1869 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
1870 if (updated_doms)
1871 updated_doms->safe_splice (doms);
1874 free (new_bbs);
1875 free (bbs);
1877 checking_verify_dominators (CDI_DOMINATORS);
1879 return new_loop;
1883 /* Given the condition expression COND, put it as the last statement of
1884 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1885 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1886 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1887 new edge as irreducible if IRREDUCIBLE_P is true. */
1889 static edge
1890 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1891 basic_block guard_to, basic_block dom_bb,
1892 profile_probability probability, bool irreducible_p)
1894 gimple_stmt_iterator gsi;
1895 edge new_e, enter_e;
1896 gcond *cond_stmt;
1897 gimple_seq gimplify_stmt_list = NULL;
1899 enter_e = EDGE_SUCC (guard_bb, 0);
1900 enter_e->flags &= ~EDGE_FALLTHRU;
1901 enter_e->flags |= EDGE_FALSE_VALUE;
1902 gsi = gsi_last_bb (guard_bb);
1904 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list,
1905 is_gimple_condexpr_for_cond, NULL_TREE);
1906 if (gimplify_stmt_list)
1907 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1909 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1910 gsi = gsi_last_bb (guard_bb);
1911 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1913 /* Add new edge to connect guard block to the merge/loop-exit block. */
1914 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1916 new_e->probability = probability;
1917 if (irreducible_p)
1918 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1920 enter_e->probability = probability.invert ();
1921 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1923 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1924 if (enter_e->dest->loop_father->header == enter_e->dest)
1925 split_edge (enter_e);
1927 return new_e;
1931 /* This function verifies that the following restrictions apply to LOOP:
1932 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1933 for innermost loop and 5 basic blocks for outer-loop.
1934 (2) it is single entry, single exit
1935 (3) its exit condition is the last stmt in the header
1936 (4) E is the entry/exit edge of LOOP.
1939 bool
1940 slpeel_can_duplicate_loop_p (const class loop *loop, const_edge exit_e,
1941 const_edge e)
1943 edge entry_e = loop_preheader_edge (loop);
1944 gcond *orig_cond = get_loop_exit_condition (exit_e);
1945 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1947 /* All loops have an outer scope; the only case loop->outer is NULL is for
1948 the function itself. */
1949 if (!loop_outer (loop)
1950 || !empty_block_p (loop->latch)
1951 || !exit_e
1952 /* Verify that new loop exit condition can be trivially modified. */
1953 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1954 || (e != exit_e && e != entry_e))
1955 return false;
1957 basic_block *bbs = XNEWVEC (basic_block, loop->num_nodes);
1958 get_loop_body_with_size (loop, bbs, loop->num_nodes);
1959 bool ret = can_copy_bbs_p (bbs, loop->num_nodes);
1960 free (bbs);
1961 return ret;
1964 /* Function find_loop_location.
1966 Extract the location of the loop in the source code.
1967 If the loop is not well formed for vectorization, an estimated
1968 location is calculated.
1969 Return the loop location if succeed and NULL if not. */
1971 dump_user_location_t
1972 find_loop_location (class loop *loop)
1974 gimple *stmt = NULL;
1975 basic_block bb;
1976 gimple_stmt_iterator si;
1978 if (!loop)
1979 return dump_user_location_t ();
1981 /* For the root of the loop tree return the function location. */
1982 if (!loop_outer (loop))
1983 return dump_user_location_t::from_function_decl (cfun->decl);
1985 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1987 /* We only care about the loop location, so use any exit with location
1988 information. */
1989 for (edge e : get_loop_exit_edges (loop))
1991 stmt = get_loop_exit_condition (e);
1993 if (stmt
1994 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1995 return stmt;
1999 /* If we got here the loop is probably not "well formed",
2000 try to estimate the loop location */
2002 if (!loop->header)
2003 return dump_user_location_t ();
2005 bb = loop->header;
2007 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2009 stmt = gsi_stmt (si);
2010 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
2011 return stmt;
2014 return dump_user_location_t ();
2017 /* Return true if the phi described by STMT_INFO defines an IV of the
2018 loop to be vectorized. */
2020 static bool
2021 iv_phi_p (stmt_vec_info stmt_info)
2023 gphi *phi = as_a <gphi *> (stmt_info->stmt);
2024 if (virtual_operand_p (PHI_RESULT (phi)))
2025 return false;
2027 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
2028 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
2029 return false;
2031 return true;
2034 /* Return true if vectorizer can peel for nonlinear iv. */
2035 static bool
2036 vect_can_peel_nonlinear_iv_p (loop_vec_info loop_vinfo,
2037 stmt_vec_info stmt_info)
2039 enum vect_induction_op_type induction_type
2040 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info);
2041 tree niters_skip;
2042 /* Init_expr will be update by vect_update_ivs_after_vectorizer,
2043 if niters or vf is unkown:
2044 For shift, when shift mount >= precision, there would be UD.
2045 For mult, don't known how to generate
2046 init_expr * pow (step, niters) for variable niters.
2047 For neg, it should be ok, since niters of vectorized main loop
2048 will always be multiple of 2. */
2049 if ((!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2050 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ())
2051 && induction_type != vect_step_op_neg)
2053 if (dump_enabled_p ())
2054 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2055 "Peeling for epilogue is not supported"
2056 " for nonlinear induction except neg"
2057 " when iteration count is unknown.\n");
2058 return false;
2061 /* Avoid compile time hog on vect_peel_nonlinear_iv_init. */
2062 if (induction_type == vect_step_op_mul)
2064 tree step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
2065 tree type = TREE_TYPE (step_expr);
2067 if (wi::exact_log2 (wi::to_wide (step_expr)) == -1
2068 && LOOP_VINFO_INT_NITERS(loop_vinfo) >= TYPE_PRECISION (type))
2070 if (dump_enabled_p ())
2071 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2072 "Avoid compile time hog on"
2073 " vect_peel_nonlinear_iv_init"
2074 " for nonlinear induction vec_step_op_mul"
2075 " when iteration count is too big.\n");
2076 return false;
2080 /* Also doens't support peel for neg when niter is variable.
2081 ??? generate something like niter_expr & 1 ? init_expr : -init_expr? */
2082 niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
2083 if ((niters_skip != NULL_TREE
2084 && (TREE_CODE (niters_skip) != INTEGER_CST
2085 || (HOST_WIDE_INT) TREE_INT_CST_LOW (niters_skip) < 0))
2086 || (!vect_use_loop_mask_for_alignment_p (loop_vinfo)
2087 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0))
2089 if (dump_enabled_p ())
2090 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2091 "Peeling for alignement is not supported"
2092 " for nonlinear induction when niters_skip"
2093 " is not constant.\n");
2094 return false;
2097 /* We can't support partial vectors and early breaks with an induction
2098 type other than add or neg since we require the epilog and can't
2099 perform the peeling. The below condition mirrors that of
2100 vect_gen_vector_loop_niters where niters_vector_mult_vf_var then sets
2101 step_vector to VF rather than 1. This is what creates the nonlinear
2102 IV. PR113163. */
2103 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo)
2104 && LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ()
2105 && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
2106 && induction_type != vect_step_op_neg)
2108 if (dump_enabled_p ())
2109 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2110 "Peeling for epilogue is not supported"
2111 " for nonlinear induction except neg"
2112 " when VF is known and early breaks.\n");
2113 return false;
2116 return true;
2119 /* Function vect_can_advance_ivs_p
2121 In case the number of iterations that LOOP iterates is unknown at compile
2122 time, an epilog loop will be generated, and the loop induction variables
2123 (IVs) will be "advanced" to the value they are supposed to take just before
2124 the epilog loop. Here we check that the access function of the loop IVs
2125 and the expression that represents the loop bound are simple enough.
2126 These restrictions will be relaxed in the future. */
2128 bool
2129 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
2131 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2132 basic_block bb = loop->header;
2133 gphi_iterator gsi;
2135 /* Analyze phi functions of the loop header. */
2137 if (dump_enabled_p ())
2138 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
2139 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2141 tree evolution_part;
2142 enum vect_induction_op_type induction_type;
2144 gphi *phi = gsi.phi ();
2145 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
2146 if (dump_enabled_p ())
2147 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
2148 phi_info->stmt);
2150 /* Skip virtual phi's. The data dependences that are associated with
2151 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
2153 Skip reduction phis. */
2154 if (!iv_phi_p (phi_info))
2156 if (dump_enabled_p ())
2157 dump_printf_loc (MSG_NOTE, vect_location,
2158 "reduc or virtual phi. skip.\n");
2159 continue;
2162 induction_type = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
2163 if (induction_type != vect_step_op_add)
2165 if (!vect_can_peel_nonlinear_iv_p (loop_vinfo, phi_info))
2166 return false;
2168 continue;
2171 /* Analyze the evolution function. */
2173 evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
2174 if (evolution_part == NULL_TREE)
2176 if (dump_enabled_p ())
2177 dump_printf (MSG_MISSED_OPTIMIZATION,
2178 "No access function or evolution.\n");
2179 return false;
2182 /* FORNOW: We do not transform initial conditions of IVs
2183 which evolution functions are not invariants in the loop. */
2185 if (!expr_invariant_in_loop_p (loop, evolution_part))
2187 if (dump_enabled_p ())
2188 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2189 "evolution not invariant in loop.\n");
2190 return false;
2193 /* FORNOW: We do not transform initial conditions of IVs
2194 which evolution functions are a polynomial of degree >= 2. */
2196 if (tree_is_chrec (evolution_part))
2198 if (dump_enabled_p ())
2199 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2200 "evolution is chrec.\n");
2201 return false;
2205 return true;
2209 /* Function vect_update_ivs_after_vectorizer.
2211 "Advance" the induction variables of LOOP to the value they should take
2212 after the execution of LOOP. This is currently necessary because the
2213 vectorizer does not handle induction variables that are used after the
2214 loop. Such a situation occurs when the last iterations of LOOP are
2215 peeled, because:
2216 1. We introduced new uses after LOOP for IVs that were not originally used
2217 after LOOP: the IVs of LOOP are now used by an epilog loop.
2218 2. LOOP is going to be vectorized; this means that it will iterate N/VF
2219 times, whereas the loop IVs should be bumped N times.
2221 Input:
2222 - LOOP - a loop that is going to be vectorized. The last few iterations
2223 of LOOP were peeled.
2224 - NITERS - the number of iterations that LOOP executes (before it is
2225 vectorized). i.e, the number of times the ivs should be bumped.
2226 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
2227 coming out from LOOP on which there are uses of the LOOP ivs
2228 (this is the path from LOOP->exit to epilog_loop->preheader).
2230 The new definitions of the ivs are placed in LOOP->exit.
2231 The phi args associated with the edge UPDATE_E in the bb
2232 UPDATE_E->dest are updated accordingly.
2234 Assumption 1: Like the rest of the vectorizer, this function assumes
2235 a single loop exit that has a single predecessor.
2237 Assumption 2: The phi nodes in the LOOP header and in update_bb are
2238 organized in the same order.
2240 Assumption 3: The access function of the ivs is simple enough (see
2241 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
2243 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
2244 coming out of LOOP on which the ivs of LOOP are used (this is the path
2245 that leads to the epilog loop; other paths skip the epilog loop). This
2246 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
2247 needs to have its phis updated.
2250 static void
2251 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
2252 tree niters, edge update_e)
2254 gphi_iterator gsi, gsi1;
2255 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2256 basic_block update_bb = update_e->dest;
2257 basic_block exit_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
2258 gimple_stmt_iterator last_gsi = gsi_last_bb (exit_bb);
2260 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
2261 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
2262 gsi_next (&gsi), gsi_next (&gsi1))
2264 tree init_expr;
2265 tree step_expr, off;
2266 tree type;
2267 tree var, ni, ni_name;
2269 gphi *phi = gsi.phi ();
2270 gphi *phi1 = gsi1.phi ();
2271 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
2272 if (dump_enabled_p ())
2273 dump_printf_loc (MSG_NOTE, vect_location,
2274 "vect_update_ivs_after_vectorizer: phi: %G",
2275 (gimple *) phi);
2277 /* Skip reduction and virtual phis. */
2278 if (!iv_phi_p (phi_info))
2280 if (dump_enabled_p ())
2281 dump_printf_loc (MSG_NOTE, vect_location,
2282 "reduc or virtual phi. skip.\n");
2283 continue;
2286 type = TREE_TYPE (gimple_phi_result (phi));
2287 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
2288 step_expr = unshare_expr (step_expr);
2290 /* FORNOW: We do not support IVs whose evolution function is a polynomial
2291 of degree >= 2 or exponential. */
2292 gcc_assert (!tree_is_chrec (step_expr));
2294 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2295 gimple_seq stmts = NULL;
2296 enum vect_induction_op_type induction_type
2297 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
2299 if (induction_type == vect_step_op_add)
2301 tree stype = TREE_TYPE (step_expr);
2302 off = fold_build2 (MULT_EXPR, stype,
2303 fold_convert (stype, niters), step_expr);
2305 if (POINTER_TYPE_P (type))
2306 ni = fold_build_pointer_plus (init_expr, off);
2307 else
2308 ni = fold_convert (type,
2309 fold_build2 (PLUS_EXPR, stype,
2310 fold_convert (stype, init_expr),
2311 off));
2313 /* Don't bother call vect_peel_nonlinear_iv_init. */
2314 else if (induction_type == vect_step_op_neg)
2315 ni = init_expr;
2316 else
2317 ni = vect_peel_nonlinear_iv_init (&stmts, init_expr,
2318 niters, step_expr,
2319 induction_type);
2321 var = create_tmp_var (type, "tmp");
2323 gimple_seq new_stmts = NULL;
2324 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
2326 /* Exit_bb shouldn't be empty. */
2327 if (!gsi_end_p (last_gsi))
2329 gsi_insert_seq_after (&last_gsi, stmts, GSI_SAME_STMT);
2330 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
2332 else
2334 gsi_insert_seq_before (&last_gsi, stmts, GSI_SAME_STMT);
2335 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
2338 /* Fix phi expressions in the successor bb. */
2339 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
2343 /* Return a gimple value containing the misalignment (measured in vector
2344 elements) for the loop described by LOOP_VINFO, i.e. how many elements
2345 it is away from a perfectly aligned address. Add any new statements
2346 to SEQ. */
2348 static tree
2349 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
2351 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2352 stmt_vec_info stmt_info = dr_info->stmt;
2353 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2355 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
2356 unsigned HOST_WIDE_INT target_align_c;
2357 tree target_align_minus_1;
2359 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
2360 size_zero_node) < 0;
2361 tree offset = (negative
2362 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
2363 * TREE_INT_CST_LOW
2364 (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
2365 : size_zero_node);
2366 tree start_addr = vect_create_addr_base_for_vector_ref (loop_vinfo,
2367 stmt_info, seq,
2368 offset);
2369 tree type = unsigned_type_for (TREE_TYPE (start_addr));
2370 if (target_align.is_constant (&target_align_c))
2371 target_align_minus_1 = build_int_cst (type, target_align_c - 1);
2372 else
2374 tree vla = build_int_cst (type, target_align);
2375 tree vla_align = fold_build2 (BIT_AND_EXPR, type, vla,
2376 fold_build2 (MINUS_EXPR, type,
2377 build_int_cst (type, 0), vla));
2378 target_align_minus_1 = fold_build2 (MINUS_EXPR, type, vla_align,
2379 build_int_cst (type, 1));
2382 HOST_WIDE_INT elem_size
2383 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2384 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
2386 /* Create: misalign_in_bytes = addr & (target_align - 1). */
2387 tree int_start_addr = fold_convert (type, start_addr);
2388 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
2389 target_align_minus_1);
2391 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
2392 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
2393 elem_size_log);
2395 return misalign_in_elems;
2398 /* Function vect_gen_prolog_loop_niters
2400 Generate the number of iterations which should be peeled as prolog for the
2401 loop represented by LOOP_VINFO. It is calculated as the misalignment of
2402 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
2403 As a result, after the execution of this loop, the data reference DR will
2404 refer to an aligned location. The following computation is generated:
2406 If the misalignment of DR is known at compile time:
2407 addr_mis = int mis = DR_MISALIGNMENT (dr);
2408 Else, compute address misalignment in bytes:
2409 addr_mis = addr & (target_align - 1)
2411 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
2413 (elem_size = element type size; an element is the scalar element whose type
2414 is the inner type of the vectype)
2416 The computations will be emitted at the end of BB. We also compute and
2417 store upper bound (included) of the result in BOUND.
2419 When the step of the data-ref in the loop is not 1 (as in interleaved data
2420 and SLP), the number of iterations of the prolog must be divided by the step
2421 (which is equal to the size of interleaved group).
2423 The above formulas assume that VF == number of elements in the vector. This
2424 may not hold when there are multiple-types in the loop.
2425 In this case, for some data-references in the loop the VF does not represent
2426 the number of elements that fit in the vector. Therefore, instead of VF we
2427 use TYPE_VECTOR_SUBPARTS. */
2429 static tree
2430 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
2431 basic_block bb, int *bound)
2433 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2434 tree var;
2435 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
2436 gimple_seq stmts = NULL, new_stmts = NULL;
2437 tree iters, iters_name;
2438 stmt_vec_info stmt_info = dr_info->stmt;
2439 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2440 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
2442 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2444 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2446 if (dump_enabled_p ())
2447 dump_printf_loc (MSG_NOTE, vect_location,
2448 "known peeling = %d.\n", npeel);
2450 iters = build_int_cst (niters_type, npeel);
2451 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2453 else
2455 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
2456 tree type = TREE_TYPE (misalign_in_elems);
2457 HOST_WIDE_INT elem_size
2458 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2459 /* We only do prolog peeling if the target alignment is known at compile
2460 time. */
2461 poly_uint64 align_in_elems =
2462 exact_div (target_align, elem_size);
2463 tree align_in_elems_minus_1 =
2464 build_int_cst (type, align_in_elems - 1);
2465 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
2467 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
2468 & (align_in_elems - 1)). */
2469 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
2470 size_zero_node) < 0;
2471 if (negative)
2472 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
2473 align_in_elems_tree);
2474 else
2475 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
2476 misalign_in_elems);
2477 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
2478 iters = fold_convert (niters_type, iters);
2479 unsigned HOST_WIDE_INT align_in_elems_c;
2480 if (align_in_elems.is_constant (&align_in_elems_c))
2481 *bound = align_in_elems_c - 1;
2482 else
2483 *bound = -1;
2486 if (dump_enabled_p ())
2487 dump_printf_loc (MSG_NOTE, vect_location,
2488 "niters for prolog loop: %T\n", iters);
2490 var = create_tmp_var (niters_type, "prolog_loop_niters");
2491 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
2493 if (new_stmts)
2494 gimple_seq_add_seq (&stmts, new_stmts);
2495 if (stmts)
2497 gcc_assert (single_succ_p (bb));
2498 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2499 if (gsi_end_p (gsi))
2500 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2501 else
2502 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
2504 return iters_name;
2508 /* Function vect_update_init_of_dr
2510 If CODE is PLUS, the vector loop starts NITERS iterations after the
2511 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
2512 iterations before the scalar one (using masking to skip inactive
2513 elements). This function updates the information recorded in DR to
2514 account for the difference. Specifically, it updates the OFFSET
2515 field of DR_INFO. */
2517 static void
2518 vect_update_init_of_dr (dr_vec_info *dr_info, tree niters, tree_code code)
2520 struct data_reference *dr = dr_info->dr;
2521 tree offset = dr_info->offset;
2522 if (!offset)
2523 offset = build_zero_cst (sizetype);
2525 niters = fold_build2 (MULT_EXPR, sizetype,
2526 fold_convert (sizetype, niters),
2527 fold_convert (sizetype, DR_STEP (dr)));
2528 offset = fold_build2 (code, sizetype,
2529 fold_convert (sizetype, offset), niters);
2530 dr_info->offset = offset;
2534 /* Function vect_update_inits_of_drs
2536 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
2537 CODE and NITERS are as for vect_update_inits_of_dr. */
2539 void
2540 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
2541 tree_code code)
2543 unsigned int i;
2544 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2545 struct data_reference *dr;
2547 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
2549 /* Adjust niters to sizetype. We used to insert the stmts on loop preheader
2550 here, but since we might use these niters to update the epilogues niters
2551 and data references we can't insert them here as this definition might not
2552 always dominate its uses. */
2553 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
2554 niters = fold_convert (sizetype, niters);
2556 FOR_EACH_VEC_ELT (datarefs, i, dr)
2558 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2559 if (!STMT_VINFO_GATHER_SCATTER_P (dr_info->stmt)
2560 && !STMT_VINFO_SIMD_LANE_ACCESS_P (dr_info->stmt))
2561 vect_update_init_of_dr (dr_info, niters, code);
2565 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
2566 by masking. This involves calculating the number of iterations to
2567 be peeled and then aligning all memory references appropriately. */
2569 void
2570 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
2572 tree misalign_in_elems;
2573 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
2575 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
2577 /* From the information recorded in LOOP_VINFO get the number of iterations
2578 that need to be skipped via masking. */
2579 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2581 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
2582 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
2583 misalign_in_elems = build_int_cst (type, misalign);
2585 else
2587 gimple_seq seq1 = NULL, seq2 = NULL;
2588 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
2589 misalign_in_elems = fold_convert (type, misalign_in_elems);
2590 misalign_in_elems = force_gimple_operand (misalign_in_elems,
2591 &seq2, true, NULL_TREE);
2592 gimple_seq_add_seq (&seq1, seq2);
2593 if (seq1)
2595 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2596 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
2597 gcc_assert (!new_bb);
2601 if (dump_enabled_p ())
2602 dump_printf_loc (MSG_NOTE, vect_location,
2603 "misalignment for fully-masked loop: %T\n",
2604 misalign_in_elems);
2606 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
2608 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
2611 /* This function builds ni_name = number of iterations. Statements
2612 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
2613 it to TRUE if new ssa_var is generated. */
2615 tree
2616 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
2618 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
2619 if (TREE_CODE (ni) == INTEGER_CST)
2620 return ni;
2621 else
2623 tree ni_name, var;
2624 gimple_seq stmts = NULL;
2625 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2627 var = create_tmp_var (TREE_TYPE (ni), "niters");
2628 ni_name = force_gimple_operand (ni, &stmts, false, var);
2629 if (stmts)
2631 gsi_insert_seq_on_edge_immediate (pe, stmts);
2632 if (new_var_p != NULL)
2633 *new_var_p = true;
2636 return ni_name;
2640 /* Calculate the number of iterations above which vectorized loop will be
2641 preferred than scalar loop. NITERS_PROLOG is the number of iterations
2642 of prolog loop. If it's integer const, the integer number is also passed
2643 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
2644 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
2645 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
2646 threshold below which the scalar (rather than vectorized) loop will be
2647 executed. This function stores the upper bound (inclusive) of the result
2648 in BOUND_SCALAR. */
2650 static tree
2651 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
2652 int bound_prolog, poly_int64 bound_epilog, int th,
2653 poly_uint64 *bound_scalar,
2654 bool check_profitability)
2656 tree type = TREE_TYPE (niters_prolog);
2657 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
2658 build_int_cst (type, bound_epilog));
2660 *bound_scalar = bound_prolog + bound_epilog;
2661 if (check_profitability)
2663 /* TH indicates the minimum niters of vectorized loop, while we
2664 compute the maximum niters of scalar loop. */
2665 th--;
2666 /* Peeling for constant times. */
2667 if (int_niters_prolog >= 0)
2669 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
2670 return build_int_cst (type, *bound_scalar);
2672 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
2673 and BOUND_EPILOG are inclusive upper bounds. */
2674 if (known_ge (th, bound_prolog + bound_epilog))
2676 *bound_scalar = th;
2677 return build_int_cst (type, th);
2679 /* Need to do runtime comparison. */
2680 else if (maybe_gt (th, bound_epilog))
2682 *bound_scalar = upper_bound (*bound_scalar, th);
2683 return fold_build2 (MAX_EXPR, type,
2684 build_int_cst (type, th), niters);
2687 return niters;
2690 /* NITERS is the number of times that the original scalar loop executes
2691 after peeling. Work out the maximum number of iterations N that can
2692 be handled by the vectorized form of the loop and then either:
2694 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
2696 niters_vector = N
2698 b) set *STEP_VECTOR_PTR to one and generate:
2700 niters_vector = N / vf
2702 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
2703 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
2704 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
2706 void
2707 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
2708 tree *niters_vector_ptr, tree *step_vector_ptr,
2709 bool niters_no_overflow)
2711 tree ni_minus_gap, var;
2712 tree niters_vector, step_vector, type = TREE_TYPE (niters);
2713 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2714 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2715 tree log_vf = NULL_TREE;
2717 /* If epilogue loop is required because of data accesses with gaps, we
2718 subtract one iteration from the total number of iterations here for
2719 correct calculation of RATIO. */
2720 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2722 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
2723 build_one_cst (type));
2724 if (!is_gimple_val (ni_minus_gap))
2726 var = create_tmp_var (type, "ni_gap");
2727 gimple *stmts = NULL;
2728 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
2729 true, var);
2730 gsi_insert_seq_on_edge_immediate (pe, stmts);
2733 else
2734 ni_minus_gap = niters;
2736 /* To silence some unexpected warnings, simply initialize to 0. */
2737 unsigned HOST_WIDE_INT const_vf = 0;
2738 if (vf.is_constant (&const_vf)
2739 && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
2741 /* Create: niters >> log2(vf) */
2742 /* If it's known that niters == number of latch executions + 1 doesn't
2743 overflow, we can generate niters >> log2(vf); otherwise we generate
2744 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
2745 will be at least one. */
2746 log_vf = build_int_cst (type, exact_log2 (const_vf));
2747 if (niters_no_overflow)
2748 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
2749 else
2750 niters_vector
2751 = fold_build2 (PLUS_EXPR, type,
2752 fold_build2 (RSHIFT_EXPR, type,
2753 fold_build2 (MINUS_EXPR, type,
2754 ni_minus_gap,
2755 build_int_cst (type, vf)),
2756 log_vf),
2757 build_int_cst (type, 1));
2758 step_vector = build_one_cst (type);
2760 else
2762 niters_vector = ni_minus_gap;
2763 step_vector = build_int_cst (type, vf);
2766 if (!is_gimple_val (niters_vector))
2768 var = create_tmp_var (type, "bnd");
2769 gimple_seq stmts = NULL;
2770 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
2771 gsi_insert_seq_on_edge_immediate (pe, stmts);
2772 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
2773 we set range information to make niters analyzer's life easier.
2774 Note the number of latch iteration value can be TYPE_MAX_VALUE so
2775 we have to represent the vector niter TYPE_MAX_VALUE + 1 >> log_vf. */
2776 if (stmts != NULL && log_vf)
2778 if (niters_no_overflow)
2780 value_range vr (type,
2781 wi::one (TYPE_PRECISION (type)),
2782 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2783 TYPE_SIGN (type)),
2784 exact_log2 (const_vf),
2785 TYPE_SIGN (type)));
2786 set_range_info (niters_vector, vr);
2788 /* For VF == 1 the vector IV might also overflow so we cannot
2789 assert a minimum value of 1. */
2790 else if (const_vf > 1)
2792 value_range vr (type,
2793 wi::one (TYPE_PRECISION (type)),
2794 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2795 TYPE_SIGN (type))
2796 - (const_vf - 1),
2797 exact_log2 (const_vf), TYPE_SIGN (type))
2798 + 1);
2799 set_range_info (niters_vector, vr);
2803 *niters_vector_ptr = niters_vector;
2804 *step_vector_ptr = step_vector;
2806 return;
2809 /* Given NITERS_VECTOR which is the number of iterations for vectorized
2810 loop specified by LOOP_VINFO after vectorization, compute the number
2811 of iterations before vectorization (niters_vector * vf) and store it
2812 to NITERS_VECTOR_MULT_VF_PTR. */
2814 static void
2815 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
2816 tree niters_vector,
2817 tree *niters_vector_mult_vf_ptr)
2819 /* We should be using a step_vector of VF if VF is variable. */
2820 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
2821 tree type = TREE_TYPE (niters_vector);
2822 tree log_vf = build_int_cst (type, exact_log2 (vf));
2823 tree tree_vf = build_int_cst (type, vf);
2824 basic_block exit_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
2826 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2827 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2828 niters_vector, log_vf);
2830 /* If we've peeled a vector iteration then subtract one full vector
2831 iteration. */
2832 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
2833 niters_vector_mult_vf = fold_build2 (MINUS_EXPR, type,
2834 niters_vector_mult_vf, tree_vf);
2836 if (!is_gimple_val (niters_vector_mult_vf))
2838 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2839 gimple_seq stmts = NULL;
2840 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2841 &stmts, true, var);
2842 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2843 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2845 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2848 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2849 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2850 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2851 appear like below:
2853 guard_bb:
2854 if (cond)
2855 goto merge_bb;
2856 else
2857 goto skip_loop;
2859 skip_loop:
2860 header_a:
2861 i_1 = PHI<i_0, i_2>;
2863 i_2 = i_1 + 1;
2864 if (cond_a)
2865 goto latch_a;
2866 else
2867 goto exit_a;
2868 latch_a:
2869 goto header_a;
2871 exit_a:
2872 i_5 = PHI<i_2>;
2874 merge_bb:
2875 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2877 update_loop:
2878 header_b:
2879 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2881 i_4 = i_3 + 1;
2882 if (cond_b)
2883 goto latch_b;
2884 else
2885 goto exit_bb;
2886 latch_b:
2887 goto header_b;
2889 exit_bb:
2891 This function creates PHI nodes at merge_bb and replaces the use of i_5
2892 in the update_loop's PHI node with the result of new PHI result. */
2894 static void
2895 slpeel_update_phi_nodes_for_guard1 (class loop *skip_loop,
2896 class loop *update_loop,
2897 edge guard_edge, edge merge_edge)
2899 location_t merge_loc, guard_loc;
2900 edge orig_e = loop_preheader_edge (skip_loop);
2901 edge update_e = loop_preheader_edge (update_loop);
2902 gphi_iterator gsi_orig, gsi_update;
2904 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2905 gsi_update = gsi_start_phis (update_loop->header));
2906 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2907 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2909 gphi *orig_phi = gsi_orig.phi ();
2910 gphi *update_phi = gsi_update.phi ();
2912 /* Generate new phi node at merge bb of the guard. */
2913 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2914 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2916 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2917 args in NEW_PHI for these edges. */
2918 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2919 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2920 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2921 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2922 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2923 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2925 /* Update phi in UPDATE_PHI. */
2926 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2930 /* LOOP_VINFO is an epilogue loop whose corresponding main loop can be skipped.
2931 Return a value that equals:
2933 - MAIN_LOOP_VALUE when LOOP_VINFO is entered from the main loop and
2934 - SKIP_VALUE when the main loop is skipped. */
2936 tree
2937 vect_get_main_loop_result (loop_vec_info loop_vinfo, tree main_loop_value,
2938 tree skip_value)
2940 gcc_assert (loop_vinfo->main_loop_edge);
2942 tree phi_result = make_ssa_name (TREE_TYPE (main_loop_value));
2943 basic_block bb = loop_vinfo->main_loop_edge->dest;
2944 gphi *new_phi = create_phi_node (phi_result, bb);
2945 add_phi_arg (new_phi, main_loop_value, loop_vinfo->main_loop_edge,
2946 UNKNOWN_LOCATION);
2947 add_phi_arg (new_phi, skip_value,
2948 loop_vinfo->skip_main_loop_edge, UNKNOWN_LOCATION);
2949 return phi_result;
2952 /* Function vect_do_peeling.
2954 Input:
2955 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2957 preheader:
2958 LOOP:
2959 header_bb:
2960 loop_body
2961 if (exit_loop_cond) goto exit_bb
2962 else goto header_bb
2963 exit_bb:
2965 - NITERS: The number of iterations of the loop.
2966 - NITERSM1: The number of iterations of the loop's latch.
2967 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2968 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2969 CHECK_PROFITABILITY is true.
2970 Output:
2971 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2972 iterate after vectorization; see vect_set_loop_condition for details.
2973 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2974 should be set to the number of scalar iterations handled by the
2975 vector loop. The SSA name is only used on exit from the loop.
2977 This function peels prolog and epilog from the loop, adds guards skipping
2978 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2979 would look like:
2981 guard_bb_1:
2982 if (prefer_scalar_loop) goto merge_bb_1
2983 else goto guard_bb_2
2985 guard_bb_2:
2986 if (skip_prolog) goto merge_bb_2
2987 else goto prolog_preheader
2989 prolog_preheader:
2990 PROLOG:
2991 prolog_header_bb:
2992 prolog_body
2993 if (exit_prolog_cond) goto prolog_exit_bb
2994 else goto prolog_header_bb
2995 prolog_exit_bb:
2997 merge_bb_2:
2999 vector_preheader:
3000 VECTOR LOOP:
3001 vector_header_bb:
3002 vector_body
3003 if (exit_vector_cond) goto vector_exit_bb
3004 else goto vector_header_bb
3005 vector_exit_bb:
3007 guard_bb_3:
3008 if (skip_epilog) goto merge_bb_3
3009 else goto epilog_preheader
3011 merge_bb_1:
3013 epilog_preheader:
3014 EPILOG:
3015 epilog_header_bb:
3016 epilog_body
3017 if (exit_epilog_cond) goto merge_bb_3
3018 else goto epilog_header_bb
3020 merge_bb_3:
3022 Note this function peels prolog and epilog only if it's necessary,
3023 as well as guards.
3024 This function returns the epilogue loop if a decision was made to vectorize
3025 it, otherwise NULL.
3027 The analysis resulting in this epilogue loop's loop_vec_info was performed
3028 in the same vect_analyze_loop call as the main loop's. At that time
3029 vect_analyze_loop constructs a list of accepted loop_vec_info's for lower
3030 vectorization factors than the main loop. This list is stored in the main
3031 loop's loop_vec_info in the 'epilogue_vinfos' member. Everytime we decide to
3032 vectorize the epilogue loop for a lower vectorization factor, the
3033 loop_vec_info sitting at the top of the epilogue_vinfos list is removed,
3034 updated and linked to the epilogue loop. This is later used to vectorize
3035 the epilogue. The reason the loop_vec_info needs updating is that it was
3036 constructed based on the original main loop, and the epilogue loop is a
3037 copy of this loop, so all links pointing to statements in the original loop
3038 need updating. Furthermore, these loop_vec_infos share the
3039 data_reference's records, which will also need to be updated.
3041 TODO: Guard for prefer_scalar_loop should be emitted along with
3042 versioning conditions if loop versioning is needed. */
3045 class loop *
3046 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
3047 tree *niters_vector, tree *step_vector,
3048 tree *niters_vector_mult_vf_var, int th,
3049 bool check_profitability, bool niters_no_overflow,
3050 tree *advance)
3052 edge e, guard_e;
3053 tree type = TREE_TYPE (niters), guard_cond;
3054 basic_block guard_bb, guard_to;
3055 profile_probability prob_prolog, prob_vector, prob_epilog;
3056 int estimated_vf;
3057 int prolog_peeling = 0;
3058 bool vect_epilogues = loop_vinfo->epilogue_vinfos.length () > 0;
3059 /* We currently do not support prolog peeling if the target alignment is not
3060 known at compile time. 'vect_gen_prolog_loop_niters' depends on the
3061 target alignment being constant. */
3062 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
3063 if (dr_info && !DR_TARGET_ALIGNMENT (dr_info).is_constant ())
3064 return NULL;
3066 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
3067 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3069 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3070 poly_uint64 bound_epilog = 0;
3071 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
3072 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
3073 bound_epilog += vf - 1;
3074 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
3075 bound_epilog += 1;
3077 /* For early breaks the scalar loop needs to execute at most VF times
3078 to find the element that caused the break. */
3079 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3080 bound_epilog = vf;
3082 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
3083 poly_uint64 bound_scalar = bound_epilog;
3085 if (!prolog_peeling && !epilog_peeling)
3086 return NULL;
3088 /* Before doing any peeling make sure to reset debug binds outside of
3089 the loop refering to defs not in LC SSA. */
3090 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3091 for (unsigned i = 0; i < loop->num_nodes; ++i)
3093 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
3094 imm_use_iterator ui;
3095 gimple *use_stmt;
3096 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
3097 gsi_next (&gsi))
3099 FOR_EACH_IMM_USE_STMT (use_stmt, ui, gimple_phi_result (gsi.phi ()))
3100 if (gimple_debug_bind_p (use_stmt)
3101 && loop != gimple_bb (use_stmt)->loop_father
3102 && !flow_loop_nested_p (loop,
3103 gimple_bb (use_stmt)->loop_father))
3105 gimple_debug_bind_reset_value (use_stmt);
3106 update_stmt (use_stmt);
3109 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
3110 gsi_next (&gsi))
3112 ssa_op_iter op_iter;
3113 def_operand_p def_p;
3114 FOR_EACH_SSA_DEF_OPERAND (def_p, gsi_stmt (gsi), op_iter, SSA_OP_DEF)
3115 FOR_EACH_IMM_USE_STMT (use_stmt, ui, DEF_FROM_PTR (def_p))
3116 if (gimple_debug_bind_p (use_stmt)
3117 && loop != gimple_bb (use_stmt)->loop_father
3118 && !flow_loop_nested_p (loop,
3119 gimple_bb (use_stmt)->loop_father))
3121 gimple_debug_bind_reset_value (use_stmt);
3122 update_stmt (use_stmt);
3127 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
3128 estimated_vf = vect_vf_for_cost (loop_vinfo);
3129 if (estimated_vf == 2)
3130 estimated_vf = 3;
3131 prob_prolog = prob_epilog = profile_probability::guessed_always ()
3132 .apply_scale (estimated_vf - 1, estimated_vf);
3134 class loop *prolog, *epilog = NULL;
3135 class loop *first_loop = loop;
3136 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
3138 /* SSA form needs to be up-to-date since we are going to manually
3139 update SSA form in slpeel_tree_duplicate_loop_to_edge_cfg and delete all
3140 update SSA state after that, so we have to make sure to not lose any
3141 pending update needs. */
3142 gcc_assert (!need_ssa_update_p (cfun));
3144 /* If we're vectorizing an epilogue loop, we have ensured that the
3145 virtual operand is in SSA form throughout the vectorized main loop.
3146 Normally it is possible to trace the updated
3147 vector-stmt vdefs back to scalar-stmt vdefs and vector-stmt vuses
3148 back to scalar-stmt vuses, meaning that the effect of the SSA update
3149 remains local to the main loop. However, there are rare cases in
3150 which the vectorized loop should have vdefs even when the original scalar
3151 loop didn't. For example, vectorizing a load with IFN_LOAD_LANES
3152 introduces clobbers of the temporary vector array, which in turn
3153 needs new vdefs. If the scalar loop doesn't write to memory, these
3154 new vdefs will be the only ones in the vector loop.
3155 We are currently defering updating virtual SSA form and creating
3156 of a virtual PHI for this case so we do not have to make sure the
3157 newly introduced virtual def is in LCSSA form. */
3159 if (MAY_HAVE_DEBUG_BIND_STMTS)
3161 gcc_assert (!adjust_vec.exists ());
3162 adjust_vec.create (32);
3164 initialize_original_copy_tables ();
3166 /* Record the anchor bb at which the guard should be placed if the scalar
3167 loop might be preferred. */
3168 basic_block anchor = loop_preheader_edge (loop)->src;
3170 /* Generate the number of iterations for the prolog loop. We do this here
3171 so that we can also get the upper bound on the number of iterations. */
3172 tree niters_prolog;
3173 int bound_prolog = 0;
3174 if (prolog_peeling)
3176 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
3177 &bound_prolog);
3178 /* If algonment peeling is known, we will always execute prolog. */
3179 if (TREE_CODE (niters_prolog) == INTEGER_CST)
3180 prob_prolog = profile_probability::always ();
3182 else
3183 niters_prolog = build_int_cst (type, 0);
3185 loop_vec_info epilogue_vinfo = NULL;
3186 if (vect_epilogues)
3188 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
3189 loop_vinfo->epilogue_vinfos.ordered_remove (0);
3192 tree niters_vector_mult_vf = NULL_TREE;
3193 /* Saving NITERs before the loop, as this may be changed by prologue. */
3194 tree before_loop_niters = LOOP_VINFO_NITERS (loop_vinfo);
3195 edge update_e = NULL, skip_e = NULL;
3196 unsigned int lowest_vf = constant_lower_bound (vf);
3197 /* Prolog loop may be skipped. */
3198 bool skip_prolog = (prolog_peeling != 0);
3199 /* Skip this loop to epilog when there are not enough iterations to enter this
3200 vectorized loop. If true we should perform runtime checks on the NITERS
3201 to check whether we should skip the current vectorized loop. If we know
3202 the number of scalar iterations we may choose to add a runtime check if
3203 this number "maybe" smaller than the number of iterations required
3204 when we know the number of scalar iterations may potentially
3205 be smaller than the number of iterations required to enter this loop, for
3206 this we use the upper bounds on the prolog and epilog peeling. When we
3207 don't know the number of iterations and don't require versioning it is
3208 because we have asserted that there are enough scalar iterations to enter
3209 the main loop, so this skip is not necessary. When we are versioning then
3210 we only add such a skip if we have chosen to vectorize the epilogue. */
3211 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3212 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
3213 bound_prolog + bound_epilog)
3214 : (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
3215 || vect_epilogues));
3217 /* Epilog loop must be executed if the number of iterations for epilog
3218 loop is known at compile time, otherwise we need to add a check at
3219 the end of vector loop and skip to the end of epilog loop. */
3220 bool skip_epilog = (prolog_peeling < 0
3221 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3222 || !vf.is_constant ());
3223 /* PEELING_FOR_GAPS and peeling for early breaks are special because epilog
3224 loop must be executed. */
3225 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
3226 || LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3227 skip_epilog = false;
3229 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3230 auto_vec<profile_count> original_counts;
3231 basic_block *original_bbs = NULL;
3233 if (skip_vector)
3235 split_edge (loop_preheader_edge (loop));
3237 if (epilog_peeling && (vect_epilogues || scalar_loop == NULL))
3239 original_bbs = get_loop_body (loop);
3240 for (unsigned int i = 0; i < loop->num_nodes; i++)
3241 original_counts.safe_push(original_bbs[i]->count);
3244 /* Due to the order in which we peel prolog and epilog, we first
3245 propagate probability to the whole loop. The purpose is to
3246 avoid adjusting probabilities of both prolog and vector loops
3247 separately. Note in this case, the probability of epilog loop
3248 needs to be scaled back later. */
3249 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
3250 if (prob_vector.initialized_p ())
3252 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
3253 scale_loop_profile (loop, prob_vector, -1);
3257 if (vect_epilogues)
3259 /* Make sure to set the epilogue's epilogue scalar loop, such that we can
3260 use the original scalar loop as remaining epilogue if necessary. */
3261 LOOP_VINFO_SCALAR_LOOP (epilogue_vinfo)
3262 = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3263 LOOP_VINFO_SCALAR_IV_EXIT (epilogue_vinfo)
3264 = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3267 if (prolog_peeling)
3269 e = loop_preheader_edge (loop);
3270 edge exit_e = LOOP_VINFO_IV_EXIT (loop_vinfo);
3271 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop, exit_e, e)
3272 && !LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo));
3274 /* Peel prolog and put it on preheader edge of loop. */
3275 edge scalar_e = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3276 edge prolog_e = NULL;
3277 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, exit_e,
3278 scalar_loop, scalar_e,
3279 e, &prolog_e);
3280 gcc_assert (prolog);
3281 prolog->force_vectorize = false;
3283 first_loop = prolog;
3284 reset_original_copy_tables ();
3286 /* Update the number of iterations for prolog loop. */
3287 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
3288 vect_set_loop_condition (prolog, prolog_e, NULL, niters_prolog,
3289 step_prolog, NULL_TREE, false);
3291 /* Skip the prolog loop. */
3292 if (skip_prolog)
3294 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3295 niters_prolog, build_int_cst (type, 0));
3296 guard_bb = loop_preheader_edge (prolog)->src;
3297 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
3298 guard_to = split_edge (loop_preheader_edge (loop));
3299 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
3300 guard_to, guard_bb,
3301 prob_prolog.invert (),
3302 irred_flag);
3303 e = EDGE_PRED (guard_to, 0);
3304 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
3305 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
3307 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
3308 scale_loop_profile (prolog, prob_prolog, bound_prolog - 1);
3311 /* Update init address of DRs. */
3312 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
3313 /* Update niters for vector loop. */
3314 LOOP_VINFO_NITERS (loop_vinfo)
3315 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
3316 LOOP_VINFO_NITERSM1 (loop_vinfo)
3317 = fold_build2 (MINUS_EXPR, type,
3318 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
3319 bool new_var_p = false;
3320 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
3321 /* It's guaranteed that vector loop bound before vectorization is at
3322 least VF, so set range information for newly generated var. */
3323 if (new_var_p)
3325 value_range vr (type,
3326 wi::to_wide (build_int_cst (type, lowest_vf)),
3327 wi::to_wide (TYPE_MAX_VALUE (type)));
3328 set_range_info (niters, vr);
3331 /* Prolog iterates at most bound_prolog times, latch iterates at
3332 most bound_prolog - 1 times. */
3333 record_niter_bound (prolog, bound_prolog - 1, false, true);
3334 delete_update_ssa ();
3335 adjust_vec_debug_stmts ();
3336 scev_reset ();
3338 basic_block bb_before_epilog = NULL;
3340 if (epilog_peeling)
3342 e = LOOP_VINFO_IV_EXIT (loop_vinfo);
3343 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop, e, e));
3345 /* Peel epilog and put it on exit edge of loop. If we are vectorizing
3346 said epilog then we should use a copy of the main loop as a starting
3347 point. This loop may have already had some preliminary transformations
3348 to allow for more optimal vectorization, for example if-conversion.
3349 If we are not vectorizing the epilog then we should use the scalar loop
3350 as the transformations mentioned above make less or no sense when not
3351 vectorizing. */
3352 edge scalar_e = LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo);
3353 epilog = vect_epilogues ? get_loop_copy (loop) : scalar_loop;
3354 edge epilog_e = vect_epilogues ? e : scalar_e;
3355 edge new_epilog_e = NULL;
3356 auto_vec<basic_block> doms;
3357 epilog
3358 = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e, epilog, epilog_e, e,
3359 &new_epilog_e, true, &doms);
3361 LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo) = new_epilog_e;
3362 gcc_assert (epilog);
3363 gcc_assert (new_epilog_e);
3364 epilog->force_vectorize = false;
3365 bb_before_epilog = loop_preheader_edge (epilog)->src;
3367 /* Scalar version loop may be preferred. In this case, add guard
3368 and skip to epilog. Note this only happens when the number of
3369 iterations of loop is unknown at compile time, otherwise this
3370 won't be vectorized. */
3371 if (skip_vector)
3373 /* Additional epilogue iteration is peeled if gap exists. */
3374 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
3375 bound_prolog, bound_epilog,
3376 th, &bound_scalar,
3377 check_profitability);
3378 /* Build guard against NITERSM1 since NITERS may overflow. */
3379 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
3380 guard_bb = anchor;
3381 guard_to = split_edge (loop_preheader_edge (epilog));
3382 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
3383 guard_to, guard_bb,
3384 prob_vector.invert (),
3385 irred_flag);
3386 skip_e = guard_e;
3387 e = EDGE_PRED (guard_to, 0);
3388 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
3389 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
3391 /* Simply propagate profile info from guard_bb to guard_to which is
3392 a merge point of control flow. */
3393 profile_count old_count = guard_to->count;
3394 guard_to->count = guard_bb->count;
3396 /* Restore the counts of the epilog loop if we didn't use the scalar loop. */
3397 if (vect_epilogues || scalar_loop == NULL)
3399 gcc_assert(epilog->num_nodes == loop->num_nodes);
3400 basic_block *bbs = get_loop_body (epilog);
3401 for (unsigned int i = 0; i < epilog->num_nodes; i++)
3403 gcc_assert(get_bb_original (bbs[i]) == original_bbs[i]);
3404 bbs[i]->count = original_counts[i];
3406 free (bbs);
3407 free (original_bbs);
3409 else if (old_count.nonzero_p ())
3410 scale_loop_profile (epilog, guard_to->count.probability_in (old_count), -1);
3412 /* Only need to handle basic block before epilog loop if it's not
3413 the guard_bb, which is the case when skip_vector is true. */
3414 if (guard_bb != bb_before_epilog && single_pred_p (bb_before_epilog))
3415 bb_before_epilog->count = single_pred_edge (bb_before_epilog)->count ();
3416 bb_before_epilog = loop_preheader_edge (epilog)->src;
3419 /* If loop is peeled for non-zero constant times, now niters refers to
3420 orig_niters - prolog_peeling, it won't overflow even the orig_niters
3421 overflows. */
3422 niters_no_overflow |= (prolog_peeling > 0);
3423 vect_gen_vector_loop_niters (loop_vinfo, niters,
3424 niters_vector, step_vector,
3425 niters_no_overflow);
3426 if (!integer_onep (*step_vector))
3428 /* On exit from the loop we will have an easy way of calcalating
3429 NITERS_VECTOR / STEP * STEP. Install a dummy definition
3430 until then. */
3431 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
3432 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
3433 *niters_vector_mult_vf_var = niters_vector_mult_vf;
3435 else
3436 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
3437 &niters_vector_mult_vf);
3438 /* Update IVs of original loop as if they were advanced by
3439 niters_vector_mult_vf steps. */
3440 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
3441 update_e = skip_vector ? e : loop_preheader_edge (epilog);
3442 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3443 update_e = single_succ_edge (LOOP_VINFO_IV_EXIT (loop_vinfo)->dest);
3445 /* If we have a peeled vector iteration, all exits are the same, leave it
3446 and so the main exit needs to be treated the same as the alternative
3447 exits in that we leave their updates to vectorizable_live_operations.
3449 if (!LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo))
3450 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
3451 update_e);
3453 /* If we have a peeled vector iteration we will never skip the epilog loop
3454 and we can simplify the cfg a lot by not doing the edge split. */
3455 if (skip_epilog || LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3457 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3458 niters, niters_vector_mult_vf);
3460 guard_bb = LOOP_VINFO_IV_EXIT (loop_vinfo)->dest;
3461 edge epilog_e = LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo);
3462 guard_to = epilog_e->dest;
3463 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
3464 skip_vector ? anchor : guard_bb,
3465 prob_epilog.invert (),
3466 irred_flag);
3467 doms.safe_push (guard_to);
3468 if (vect_epilogues)
3469 epilogue_vinfo->skip_this_loop_edge = guard_e;
3470 edge main_iv = LOOP_VINFO_IV_EXIT (loop_vinfo);
3471 gphi_iterator gsi2 = gsi_start_phis (main_iv->dest);
3472 for (gphi_iterator gsi = gsi_start_phis (guard_to);
3473 !gsi_end_p (gsi); gsi_next (&gsi))
3475 /* We are expecting all of the PHIs we have on epilog_e
3476 to be also on the main loop exit. But sometimes
3477 a stray virtual definition can appear at epilog_e
3478 which we can then take as the same on all exits,
3479 we've removed the LC SSA PHI on the main exit before
3480 so we wouldn't need to create a loop PHI for it. */
3481 if (virtual_operand_p (gimple_phi_result (*gsi))
3482 && (gsi_end_p (gsi2)
3483 || !virtual_operand_p (gimple_phi_result (*gsi2))))
3484 add_phi_arg (*gsi,
3485 gimple_phi_arg_def_from_edge (*gsi, epilog_e),
3486 guard_e, UNKNOWN_LOCATION);
3487 else
3489 add_phi_arg (*gsi, gimple_phi_result (*gsi2), guard_e,
3490 UNKNOWN_LOCATION);
3491 gsi_next (&gsi2);
3495 /* Only need to handle basic block before epilog loop if it's not
3496 the guard_bb, which is the case when skip_vector is true. */
3497 if (guard_bb != bb_before_epilog)
3499 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
3501 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
3503 scale_loop_profile (epilog, prob_epilog, -1);
3506 /* Recalculate the dominators after adding the guard edge. */
3507 if (LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3508 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
3510 /* When we do not have a loop-around edge to the epilog we know
3511 the vector loop covered at least VF scalar iterations unless
3512 we have early breaks.
3513 Update any known upper bound with this knowledge. */
3514 if (! skip_vector
3515 && ! LOOP_VINFO_EARLY_BREAKS (loop_vinfo))
3517 if (epilog->any_upper_bound)
3518 epilog->nb_iterations_upper_bound -= lowest_vf;
3519 if (epilog->any_likely_upper_bound)
3520 epilog->nb_iterations_likely_upper_bound -= lowest_vf;
3521 if (epilog->any_estimate)
3522 epilog->nb_iterations_estimate -= lowest_vf;
3525 unsigned HOST_WIDE_INT bound;
3526 if (bound_scalar.is_constant (&bound))
3528 gcc_assert (bound != 0);
3529 /* Adjust the upper bound by the extra peeled vector iteration if we
3530 are an epilogue of an peeled vect loop and not VLA. For VLA the
3531 loop bounds are unknown. */
3532 if (LOOP_VINFO_EARLY_BREAKS_VECT_PEELED (loop_vinfo)
3533 && vf.is_constant ())
3534 bound += vf.to_constant ();
3535 /* -1 to convert loop iterations to latch iterations. */
3536 record_niter_bound (epilog, bound - 1, false, true);
3537 scale_loop_profile (epilog, profile_probability::always (),
3538 bound - 1);
3541 delete_update_ssa ();
3542 adjust_vec_debug_stmts ();
3543 scev_reset ();
3546 if (vect_epilogues)
3548 epilog->aux = epilogue_vinfo;
3549 LOOP_VINFO_LOOP (epilogue_vinfo) = epilog;
3550 LOOP_VINFO_IV_EXIT (epilogue_vinfo)
3551 = LOOP_VINFO_EPILOGUE_IV_EXIT (loop_vinfo);
3553 loop_constraint_clear (epilog, LOOP_C_INFINITE);
3555 /* We now must calculate the number of NITERS performed by the previous
3556 loop and EPILOGUE_NITERS to be performed by the epilogue. */
3557 tree niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters_vector_mult_vf),
3558 niters_prolog, niters_vector_mult_vf);
3560 /* If skip_vector we may skip the previous loop, we insert a phi-node to
3561 determine whether we are coming from the previous vectorized loop
3562 using the update_e edge or the skip_vector basic block using the
3563 skip_e edge. */
3564 if (skip_vector)
3566 gcc_assert (update_e != NULL && skip_e != NULL);
3567 gphi *new_phi = create_phi_node (make_ssa_name (TREE_TYPE (niters)),
3568 update_e->dest);
3569 tree new_ssa = make_ssa_name (TREE_TYPE (niters));
3570 gimple *stmt = gimple_build_assign (new_ssa, niters);
3571 gimple_stmt_iterator gsi;
3572 if (TREE_CODE (niters_vector_mult_vf) == SSA_NAME
3573 && SSA_NAME_DEF_STMT (niters_vector_mult_vf)->bb != NULL)
3575 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (niters_vector_mult_vf));
3576 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
3578 else
3580 gsi = gsi_last_bb (update_e->src);
3581 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
3584 niters = new_ssa;
3585 add_phi_arg (new_phi, niters, update_e, UNKNOWN_LOCATION);
3586 add_phi_arg (new_phi, build_zero_cst (TREE_TYPE (niters)), skip_e,
3587 UNKNOWN_LOCATION);
3588 niters = PHI_RESULT (new_phi);
3589 epilogue_vinfo->main_loop_edge = update_e;
3590 epilogue_vinfo->skip_main_loop_edge = skip_e;
3593 /* Set ADVANCE to the number of iterations performed by the previous
3594 loop and its prologue. */
3595 *advance = niters;
3597 /* Subtract the number of iterations performed by the vectorized loop
3598 from the number of total iterations. */
3599 tree epilogue_niters = fold_build2 (MINUS_EXPR, TREE_TYPE (niters),
3600 before_loop_niters,
3601 niters);
3603 LOOP_VINFO_NITERS (epilogue_vinfo) = epilogue_niters;
3604 LOOP_VINFO_NITERSM1 (epilogue_vinfo)
3605 = fold_build2 (MINUS_EXPR, TREE_TYPE (epilogue_niters),
3606 epilogue_niters,
3607 build_one_cst (TREE_TYPE (epilogue_niters)));
3609 /* Decide what to do if the number of epilogue iterations is not
3610 a multiple of the epilogue loop's vectorization factor.
3611 We should have rejected the loop during the analysis phase
3612 if this fails. */
3613 bool res = vect_determine_partial_vectors_and_peeling (epilogue_vinfo);
3614 gcc_assert (res);
3617 adjust_vec.release ();
3618 free_original_copy_tables ();
3620 return vect_epilogues ? epilog : NULL;
3623 /* Function vect_create_cond_for_niters_checks.
3625 Create a conditional expression that represents the run-time checks for
3626 loop's niter. The loop is guaranteed to terminate if the run-time
3627 checks hold.
3629 Input:
3630 COND_EXPR - input conditional expression. New conditions will be chained
3631 with logical AND operation. If it is NULL, then the function
3632 is used to return the number of alias checks.
3633 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3634 to be checked.
3636 Output:
3637 COND_EXPR - conditional expression.
3639 The returned COND_EXPR is the conditional expression to be used in the
3640 if statement that controls which version of the loop gets executed at
3641 runtime. */
3643 static void
3644 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
3646 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
3648 if (*cond_expr)
3649 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3650 *cond_expr, part_cond_expr);
3651 else
3652 *cond_expr = part_cond_expr;
3655 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3656 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
3658 static void
3659 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
3661 if (*cond_expr)
3662 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3663 *cond_expr, part_cond_expr);
3664 else
3665 *cond_expr = part_cond_expr;
3668 /* Function vect_create_cond_for_align_checks.
3670 Create a conditional expression that represents the alignment checks for
3671 all of data references (array element references) whose alignment must be
3672 checked at runtime.
3674 Input:
3675 COND_EXPR - input conditional expression. New conditions will be chained
3676 with logical AND operation.
3677 LOOP_VINFO - two fields of the loop information are used.
3678 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
3679 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
3681 Output:
3682 COND_EXPR_STMT_LIST - statements needed to construct the conditional
3683 expression.
3684 The returned value is the conditional expression to be used in the if
3685 statement that controls which version of the loop gets executed at runtime.
3687 The algorithm makes two assumptions:
3688 1) The number of bytes "n" in a vector is a power of 2.
3689 2) An address "a" is aligned if a%n is zero and that this
3690 test can be done as a&(n-1) == 0. For example, for 16
3691 byte vectors the test is a&0xf == 0. */
3693 static void
3694 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
3695 tree *cond_expr,
3696 gimple_seq *cond_expr_stmt_list)
3698 const vec<stmt_vec_info> &may_misalign_stmts
3699 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
3700 stmt_vec_info stmt_info;
3701 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
3702 tree mask_cst;
3703 unsigned int i;
3704 tree int_ptrsize_type;
3705 char tmp_name[20];
3706 tree or_tmp_name = NULL_TREE;
3707 tree and_tmp_name;
3708 gimple *and_stmt;
3709 tree ptrsize_zero;
3710 tree part_cond_expr;
3712 /* Check that mask is one less than a power of 2, i.e., mask is
3713 all zeros followed by all ones. */
3714 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
3716 int_ptrsize_type = signed_type_for (ptr_type_node);
3718 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
3719 of the first vector of the i'th data reference. */
3721 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
3723 gimple_seq new_stmt_list = NULL;
3724 tree addr_base;
3725 tree addr_tmp_name;
3726 tree new_or_tmp_name;
3727 gimple *addr_stmt, *or_stmt;
3728 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3729 bool negative = tree_int_cst_compare
3730 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
3731 tree offset = negative
3732 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
3733 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
3734 : size_zero_node;
3736 /* create: addr_tmp = (int)(address_of_first_vector) */
3737 addr_base =
3738 vect_create_addr_base_for_vector_ref (loop_vinfo,
3739 stmt_info, &new_stmt_list,
3740 offset);
3741 if (new_stmt_list != NULL)
3742 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
3744 sprintf (tmp_name, "addr2int%d", i);
3745 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3746 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
3747 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
3749 /* The addresses are OR together. */
3751 if (or_tmp_name != NULL_TREE)
3753 /* create: or_tmp = or_tmp | addr_tmp */
3754 sprintf (tmp_name, "orptrs%d", i);
3755 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3756 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
3757 or_tmp_name, addr_tmp_name);
3758 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
3759 or_tmp_name = new_or_tmp_name;
3761 else
3762 or_tmp_name = addr_tmp_name;
3764 } /* end for i */
3766 mask_cst = build_int_cst (int_ptrsize_type, mask);
3768 /* create: and_tmp = or_tmp & mask */
3769 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
3771 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
3772 or_tmp_name, mask_cst);
3773 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
3775 /* Make and_tmp the left operand of the conditional test against zero.
3776 if and_tmp has a nonzero bit then some address is unaligned. */
3777 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
3778 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
3779 and_tmp_name, ptrsize_zero);
3780 chain_cond_expr (cond_expr, part_cond_expr);
3783 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
3784 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
3785 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3786 and this new condition are true. Treat a null *COND_EXPR as "true". */
3788 static void
3789 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
3791 const vec<vec_object_pair> &pairs
3792 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3793 unsigned int i;
3794 vec_object_pair *pair;
3795 FOR_EACH_VEC_ELT (pairs, i, pair)
3797 tree addr1 = build_fold_addr_expr (pair->first);
3798 tree addr2 = build_fold_addr_expr (pair->second);
3799 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
3800 addr1, addr2);
3801 chain_cond_expr (cond_expr, part_cond_expr);
3805 /* Create an expression that is true when all lower-bound conditions for
3806 the vectorized loop are met. Chain this condition with *COND_EXPR. */
3808 static void
3809 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
3811 const vec<vec_lower_bound> &lower_bounds
3812 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3813 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3815 tree expr = lower_bounds[i].expr;
3816 tree type = unsigned_type_for (TREE_TYPE (expr));
3817 expr = fold_convert (type, expr);
3818 poly_uint64 bound = lower_bounds[i].min_value;
3819 if (!lower_bounds[i].unsigned_p)
3821 expr = fold_build2 (PLUS_EXPR, type, expr,
3822 build_int_cstu (type, bound - 1));
3823 bound += bound - 1;
3825 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
3826 build_int_cstu (type, bound));
3827 chain_cond_expr (cond_expr, part_cond_expr);
3831 /* Function vect_create_cond_for_alias_checks.
3833 Create a conditional expression that represents the run-time checks for
3834 overlapping of address ranges represented by a list of data references
3835 relations passed as input.
3837 Input:
3838 COND_EXPR - input conditional expression. New conditions will be chained
3839 with logical AND operation. If it is NULL, then the function
3840 is used to return the number of alias checks.
3841 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3842 to be checked.
3844 Output:
3845 COND_EXPR - conditional expression.
3847 The returned COND_EXPR is the conditional expression to be used in the if
3848 statement that controls which version of the loop gets executed at runtime.
3851 void
3852 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
3854 const vec<dr_with_seg_len_pair_t> &comp_alias_ddrs =
3855 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3857 if (comp_alias_ddrs.is_empty ())
3858 return;
3860 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
3861 &comp_alias_ddrs, cond_expr);
3862 if (dump_enabled_p ())
3863 dump_printf_loc (MSG_NOTE, vect_location,
3864 "created %u versioning for alias checks.\n",
3865 comp_alias_ddrs.length ());
3869 /* Function vect_loop_versioning.
3871 If the loop has data references that may or may not be aligned or/and
3872 has data reference relations whose independence was not proven then
3873 two versions of the loop need to be generated, one which is vectorized
3874 and one which isn't. A test is then generated to control which of the
3875 loops is executed. The test checks for the alignment of all of the
3876 data references that may or may not be aligned. An additional
3877 sequence of runtime tests is generated for each pairs of DDRs whose
3878 independence was not proven. The vectorized version of loop is
3879 executed only if both alias and alignment tests are passed.
3881 The test generated to check which version of loop is executed
3882 is modified to also check for profitability as indicated by the
3883 cost model threshold TH.
3885 The versioning precondition(s) are placed in *COND_EXPR and
3886 *COND_EXPR_STMT_LIST. */
3888 class loop *
3889 vect_loop_versioning (loop_vec_info loop_vinfo,
3890 gimple *loop_vectorized_call)
3892 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
3893 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3894 basic_block condition_bb;
3895 gphi_iterator gsi;
3896 gimple_stmt_iterator cond_exp_gsi;
3897 basic_block merge_bb;
3898 basic_block new_exit_bb;
3899 edge new_exit_e, e;
3900 gphi *orig_phi, *new_phi;
3901 tree cond_expr = NULL_TREE;
3902 gimple_seq cond_expr_stmt_list = NULL;
3903 tree arg;
3904 profile_probability prob = profile_probability::likely ();
3905 gimple_seq gimplify_stmt_list = NULL;
3906 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
3907 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
3908 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
3909 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
3910 poly_uint64 versioning_threshold
3911 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
3912 tree version_simd_if_cond
3913 = LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (loop_vinfo);
3914 unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
3916 if (vect_apply_runtime_profitability_check_p (loop_vinfo)
3917 && !ordered_p (th, versioning_threshold))
3918 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3919 build_int_cst (TREE_TYPE (scalar_loop_iters),
3920 th - 1));
3921 if (maybe_ne (versioning_threshold, 0U))
3923 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3924 build_int_cst (TREE_TYPE (scalar_loop_iters),
3925 versioning_threshold - 1));
3926 if (cond_expr)
3927 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
3928 expr, cond_expr);
3929 else
3930 cond_expr = expr;
3933 tree cost_name = NULL_TREE;
3934 profile_probability prob2 = profile_probability::always ();
3935 if (cond_expr
3936 && EXPR_P (cond_expr)
3937 && (version_niter
3938 || version_align
3939 || version_alias
3940 || version_simd_if_cond))
3942 cost_name = cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3943 &cond_expr_stmt_list,
3944 is_gimple_val, NULL_TREE);
3945 /* Split prob () into two so that the overall probability of passing
3946 both the cost-model and versioning checks is the orig prob. */
3947 prob2 = prob = prob.sqrt ();
3950 if (version_niter)
3951 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3953 if (cond_expr)
3955 gimple_seq tem = NULL;
3956 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3957 &tem, is_gimple_condexpr_for_cond,
3958 NULL_TREE);
3959 gimple_seq_add_seq (&cond_expr_stmt_list, tem);
3962 if (version_align)
3963 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3964 &cond_expr_stmt_list);
3966 if (version_alias)
3968 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
3969 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
3970 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3973 if (version_simd_if_cond)
3975 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
3976 if (flag_checking)
3977 if (basic_block bb
3978 = gimple_bb (SSA_NAME_DEF_STMT (version_simd_if_cond)))
3979 gcc_assert (bb != loop->header
3980 && dominated_by_p (CDI_DOMINATORS, loop->header, bb)
3981 && (scalar_loop == NULL
3982 || (bb != scalar_loop->header
3983 && dominated_by_p (CDI_DOMINATORS,
3984 scalar_loop->header, bb))));
3985 tree zero = build_zero_cst (TREE_TYPE (version_simd_if_cond));
3986 tree c = fold_build2 (NE_EXPR, boolean_type_node,
3987 version_simd_if_cond, zero);
3988 if (cond_expr)
3989 cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3990 c, cond_expr);
3991 else
3992 cond_expr = c;
3993 if (dump_enabled_p ())
3994 dump_printf_loc (MSG_NOTE, vect_location,
3995 "created versioning for simd if condition check.\n");
3998 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3999 &gimplify_stmt_list,
4000 is_gimple_condexpr_for_cond, NULL_TREE);
4001 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
4003 /* Compute the outermost loop cond_expr and cond_expr_stmt_list are
4004 invariant in. */
4005 class loop *outermost = outermost_invariant_loop_for_expr (loop, cond_expr);
4006 for (gimple_stmt_iterator gsi = gsi_start (cond_expr_stmt_list);
4007 !gsi_end_p (gsi); gsi_next (&gsi))
4009 gimple *stmt = gsi_stmt (gsi);
4010 update_stmt (stmt);
4011 ssa_op_iter iter;
4012 use_operand_p use_p;
4013 basic_block def_bb;
4014 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
4015 if ((def_bb = gimple_bb (SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p))))
4016 && flow_bb_inside_loop_p (outermost, def_bb))
4017 outermost = superloop_at_depth (loop, bb_loop_depth (def_bb) + 1);
4020 /* Search for the outermost loop we can version. Avoid versioning of
4021 non-perfect nests but allow if-conversion versioned loops inside. */
4022 class loop *loop_to_version = loop;
4023 if (flow_loop_nested_p (outermost, loop))
4025 if (dump_enabled_p ())
4026 dump_printf_loc (MSG_NOTE, vect_location,
4027 "trying to apply versioning to outer loop %d\n",
4028 outermost->num);
4029 if (outermost->num == 0)
4030 outermost = superloop_at_depth (loop, 1);
4031 /* And avoid applying versioning on non-perfect nests. */
4032 while (loop_to_version != outermost
4033 && (e = single_exit (loop_outer (loop_to_version)))
4034 && !(e->flags & EDGE_COMPLEX)
4035 && (!loop_outer (loop_to_version)->inner->next
4036 || vect_loop_vectorized_call (loop_to_version))
4037 && (!loop_outer (loop_to_version)->inner->next
4038 || !loop_outer (loop_to_version)->inner->next->next))
4039 loop_to_version = loop_outer (loop_to_version);
4042 /* Apply versioning. If there is already a scalar version created by
4043 if-conversion re-use that. Note we cannot re-use the copy of
4044 an if-converted outer-loop when vectorizing the inner loop only. */
4045 gcond *cond;
4046 if ((!loop_to_version->inner || loop == loop_to_version)
4047 && loop_vectorized_call)
4049 gcc_assert (scalar_loop);
4050 condition_bb = gimple_bb (loop_vectorized_call);
4051 cond = as_a <gcond *> (*gsi_last_bb (condition_bb));
4052 gimple_cond_set_condition_from_tree (cond, cond_expr);
4053 update_stmt (cond);
4055 if (cond_expr_stmt_list)
4057 cond_exp_gsi = gsi_for_stmt (loop_vectorized_call);
4058 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
4059 GSI_SAME_STMT);
4062 /* if-conversion uses profile_probability::always () for both paths,
4063 reset the paths probabilities appropriately. */
4064 edge te, fe;
4065 extract_true_false_edges_from_block (condition_bb, &te, &fe);
4066 te->probability = prob;
4067 fe->probability = prob.invert ();
4068 /* We can scale loops counts immediately but have to postpone
4069 scaling the scalar loop because we re-use it during peeling.
4071 Ifcvt duplicates loop preheader, loop body and produces an basic
4072 block after loop exit. We need to scale all that. */
4073 basic_block preheader = loop_preheader_edge (loop_to_version)->src;
4074 preheader->count = preheader->count.apply_probability (prob * prob2);
4075 scale_loop_frequencies (loop_to_version, prob * prob2);
4076 /* When the loop has multiple exits then we can only version itself.
4077 This is denoted by loop_to_version == loop. In this case we can
4078 do the versioning by selecting the exit edge the vectorizer is
4079 currently using. */
4080 edge exit_edge;
4081 if (loop_to_version == loop)
4082 exit_edge = LOOP_VINFO_IV_EXIT (loop_vinfo);
4083 else
4084 exit_edge = single_exit (loop_to_version);
4085 exit_edge->dest->count = preheader->count;
4086 LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo) = (prob * prob2).invert ();
4088 nloop = scalar_loop;
4089 if (dump_enabled_p ())
4090 dump_printf_loc (MSG_NOTE, vect_location,
4091 "reusing %sloop version created by if conversion\n",
4092 loop_to_version != loop ? "outer " : "");
4094 else
4096 if (loop_to_version != loop
4097 && dump_enabled_p ())
4098 dump_printf_loc (MSG_NOTE, vect_location,
4099 "applying loop versioning to outer loop %d\n",
4100 loop_to_version->num);
4102 unsigned orig_pe_idx = loop_preheader_edge (loop)->dest_idx;
4104 initialize_original_copy_tables ();
4105 nloop = loop_version (loop_to_version, cond_expr, &condition_bb,
4106 prob * prob2, (prob * prob2).invert (),
4107 prob * prob2, (prob * prob2).invert (),
4108 true);
4109 /* We will later insert second conditional so overall outcome of
4110 both is prob * prob2. */
4111 edge true_e, false_e;
4112 extract_true_false_edges_from_block (condition_bb, &true_e, &false_e);
4113 true_e->probability = prob;
4114 false_e->probability = prob.invert ();
4115 gcc_assert (nloop);
4116 nloop = get_loop_copy (loop);
4118 /* For cycle vectorization with SLP we rely on the PHI arguments
4119 appearing in the same order as the SLP node operands which for the
4120 loop PHI nodes means the preheader edge dest index needs to remain
4121 the same for the analyzed loop which also becomes the vectorized one.
4122 Make it so in case the state after versioning differs by redirecting
4123 the first edge into the header to the same destination which moves
4124 it last. */
4125 if (loop_preheader_edge (loop)->dest_idx != orig_pe_idx)
4127 edge e = EDGE_PRED (loop->header, 0);
4128 ssa_redirect_edge (e, e->dest);
4129 flush_pending_stmts (e);
4131 gcc_assert (loop_preheader_edge (loop)->dest_idx == orig_pe_idx);
4133 /* Kill off IFN_LOOP_VECTORIZED_CALL in the copy, nobody will
4134 reap those otherwise; they also refer to the original
4135 loops. */
4136 class loop *l = loop;
4137 while (gimple *call = vect_loop_vectorized_call (l))
4139 call = SSA_NAME_DEF_STMT (get_current_def (gimple_call_lhs (call)));
4140 fold_loop_internal_call (call, boolean_false_node);
4141 l = loop_outer (l);
4143 free_original_copy_tables ();
4145 if (cond_expr_stmt_list)
4147 cond_exp_gsi = gsi_last_bb (condition_bb);
4148 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
4149 GSI_SAME_STMT);
4152 /* Loop versioning violates an assumption we try to maintain during
4153 vectorization - that the loop exit block has a single predecessor.
4154 After versioning, the exit block of both loop versions is the same
4155 basic block (i.e. it has two predecessors). Just in order to simplify
4156 following transformations in the vectorizer, we fix this situation
4157 here by adding a new (empty) block on the exit-edge of the loop,
4158 with the proper loop-exit phis to maintain loop-closed-form.
4159 If loop versioning wasn't done from loop, but scalar_loop instead,
4160 merge_bb will have already just a single successor. */
4162 /* When the loop has multiple exits then we can only version itself.
4163 This is denoted by loop_to_version == loop. In this case we can
4164 do the versioning by selecting the exit edge the vectorizer is
4165 currently using. */
4166 edge exit_edge;
4167 if (loop_to_version == loop)
4168 exit_edge = LOOP_VINFO_IV_EXIT (loop_vinfo);
4169 else
4170 exit_edge = single_exit (loop_to_version);
4172 gcc_assert (exit_edge);
4173 merge_bb = exit_edge->dest;
4174 if (EDGE_COUNT (merge_bb->preds) >= 2)
4176 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
4177 new_exit_bb = split_edge (exit_edge);
4178 new_exit_e = exit_edge;
4179 e = EDGE_SUCC (new_exit_bb, 0);
4181 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi);
4182 gsi_next (&gsi))
4184 tree new_res;
4185 orig_phi = gsi.phi ();
4186 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
4187 new_phi = create_phi_node (new_res, new_exit_bb);
4188 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
4189 add_phi_arg (new_phi, arg, new_exit_e,
4190 gimple_phi_arg_location_from_edge (orig_phi, e));
4191 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
4195 update_ssa (TODO_update_ssa_no_phi);
4198 /* Split the cost model check off to a separate BB. Costing assumes
4199 this is the only thing we perform when we enter the scalar loop
4200 from a failed cost decision. */
4201 if (cost_name && TREE_CODE (cost_name) == SSA_NAME)
4203 gimple *def = SSA_NAME_DEF_STMT (cost_name);
4204 gcc_assert (gimple_bb (def) == condition_bb);
4205 /* All uses of the cost check are 'true' after the check we
4206 are going to insert. */
4207 replace_uses_by (cost_name, boolean_true_node);
4208 /* And we're going to build the new single use of it. */
4209 gcond *cond = gimple_build_cond (NE_EXPR, cost_name, boolean_false_node,
4210 NULL_TREE, NULL_TREE);
4211 edge e = split_block (gimple_bb (def), def);
4212 gimple_stmt_iterator gsi = gsi_for_stmt (def);
4213 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
4214 edge true_e, false_e;
4215 extract_true_false_edges_from_block (e->dest, &true_e, &false_e);
4216 e->flags &= ~EDGE_FALLTHRU;
4217 e->flags |= EDGE_TRUE_VALUE;
4218 edge e2 = make_edge (e->src, false_e->dest, EDGE_FALSE_VALUE);
4219 e->probability = prob2;
4220 e2->probability = prob2.invert ();
4221 e->dest->count = e->count ();
4222 set_immediate_dominator (CDI_DOMINATORS, false_e->dest, e->src);
4223 auto_vec<basic_block, 3> adj;
4224 for (basic_block son = first_dom_son (CDI_DOMINATORS, e->dest);
4225 son;
4226 son = next_dom_son (CDI_DOMINATORS, son))
4227 if (EDGE_COUNT (son->preds) > 1)
4228 adj.safe_push (son);
4229 for (auto son : adj)
4230 set_immediate_dominator (CDI_DOMINATORS, son, e->src);
4231 //debug_bb (condition_bb);
4232 //debug_bb (e->src);
4235 if (version_niter)
4237 /* The versioned loop could be infinite, we need to clear existing
4238 niter information which is copied from the original loop. */
4239 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
4240 vect_free_loop_info_assumptions (nloop);
4243 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
4244 && dump_enabled_p ())
4246 if (version_alias)
4247 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
4248 vect_location,
4249 "loop versioned for vectorization because of "
4250 "possible aliasing\n");
4251 if (version_align)
4252 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
4253 vect_location,
4254 "loop versioned for vectorization to enhance "
4255 "alignment\n");
4259 return nloop;