* config/rl78/mulsi3.S: Remove a few unneeded moves and branches.
[official-gcc.git] / gcc / modulo-sched.c
blob3ad2ec77f1e5bb96c484545411ba1476296c3a94
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "function.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "except.h"
36 #include "recog.h"
37 #include "sched-int.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "expr.h"
41 #include "params.h"
42 #include "gcov-io.h"
43 #include "ddg.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46 #include "df.h"
48 #ifdef INSN_SCHEDULING
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx insn;
161 typedef struct ps_reg_move_info ps_reg_move_info;
163 /* Holds the partial schedule as an array of II rows. Each entry of the
164 array points to a linked list of PS_INSNs, which represents the
165 instructions that are scheduled for that row. */
166 struct partial_schedule
168 int ii; /* Number of rows in the partial schedule. */
169 int history; /* Threshold for conflict checking using DFA. */
171 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
172 ps_insn_ptr *rows;
174 /* All the moves added for this partial schedule. Index X has
175 a ps_insn id of X + g->num_nodes. */
176 vec<ps_reg_move_info> reg_moves;
178 /* rows_length[i] holds the number of instructions in the row.
179 It is used only (as an optimization) to back off quickly from
180 trying to schedule a node in a full row; that is, to avoid running
181 through futile DFA state transitions. */
182 int *rows_length;
184 /* The earliest absolute cycle of an insn in the partial schedule. */
185 int min_cycle;
187 /* The latest absolute cycle of an insn in the partial schedule. */
188 int max_cycle;
190 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
192 int stage_count; /* The stage count of the partial schedule. */
196 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
197 static void free_partial_schedule (partial_schedule_ptr);
198 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
199 void print_partial_schedule (partial_schedule_ptr, FILE *);
200 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
201 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
202 int, int, sbitmap, sbitmap);
203 static void rotate_partial_schedule (partial_schedule_ptr, int);
204 void set_row_column_for_ps (partial_schedule_ptr);
205 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
206 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
209 /* This page defines constants and structures for the modulo scheduling
210 driver. */
212 static int sms_order_nodes (ddg_ptr, int, int *, int *);
213 static void set_node_sched_params (ddg_ptr);
214 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
215 static void permute_partial_schedule (partial_schedule_ptr, rtx);
216 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
217 rtx, rtx);
218 static int calculate_stage_count (partial_schedule_ptr, int);
219 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
220 int, int, sbitmap, sbitmap, sbitmap);
221 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
222 sbitmap, int, int *, int *, int *);
223 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
224 sbitmap, int *, sbitmap, sbitmap);
225 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
227 #define NODE_ASAP(node) ((node)->aux.count)
229 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
230 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
231 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
232 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
233 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
235 /* The scheduling parameters held for each node. */
236 typedef struct node_sched_params
238 int time; /* The absolute scheduling cycle. */
240 int row; /* Holds time % ii. */
241 int stage; /* Holds time / ii. */
243 /* The column of a node inside the ps. If nodes u, v are on the same row,
244 u will precede v if column (u) < column (v). */
245 int column;
246 } *node_sched_params_ptr;
248 typedef struct node_sched_params node_sched_params;
250 /* The following three functions are copied from the current scheduler
251 code in order to use sched_analyze() for computing the dependencies.
252 They are used when initializing the sched_info structure. */
253 static const char *
254 sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
256 static char tmp[80];
258 sprintf (tmp, "i%4d", INSN_UID (insn));
259 return tmp;
262 static void
263 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
264 regset used ATTRIBUTE_UNUSED)
268 static struct common_sched_info_def sms_common_sched_info;
270 static struct sched_deps_info_def sms_sched_deps_info =
272 compute_jump_reg_dependencies,
273 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
274 NULL,
275 0, 0, 0
278 static struct haifa_sched_info sms_sched_info =
280 NULL,
281 NULL,
282 NULL,
283 NULL,
284 NULL,
285 sms_print_insn,
286 NULL,
287 NULL, /* insn_finishes_block_p */
288 NULL, NULL,
289 NULL, NULL,
290 0, 0,
292 NULL, NULL, NULL, NULL,
293 NULL, NULL,
297 /* Partial schedule instruction ID in PS is a register move. Return
298 information about it. */
299 static struct ps_reg_move_info *
300 ps_reg_move (partial_schedule_ptr ps, int id)
302 gcc_checking_assert (id >= ps->g->num_nodes);
303 return &ps->reg_moves[id - ps->g->num_nodes];
306 /* Return the rtl instruction that is being scheduled by partial schedule
307 instruction ID, which belongs to schedule PS. */
308 static rtx
309 ps_rtl_insn (partial_schedule_ptr ps, int id)
311 if (id < ps->g->num_nodes)
312 return ps->g->nodes[id].insn;
313 else
314 return ps_reg_move (ps, id)->insn;
317 /* Partial schedule instruction ID, which belongs to PS, occurred in
318 the original (unscheduled) loop. Return the first instruction
319 in the loop that was associated with ps_rtl_insn (PS, ID).
320 If the instruction had some notes before it, this is the first
321 of those notes. */
322 static rtx
323 ps_first_note (partial_schedule_ptr ps, int id)
325 gcc_assert (id < ps->g->num_nodes);
326 return ps->g->nodes[id].first_note;
329 /* Return the number of consecutive stages that are occupied by
330 partial schedule instruction ID in PS. */
331 static int
332 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
334 if (id < ps->g->num_nodes)
335 return 1;
336 else
337 return ps_reg_move (ps, id)->num_consecutive_stages;
340 /* Given HEAD and TAIL which are the first and last insns in a loop;
341 return the register which controls the loop. Return zero if it has
342 more than one occurrence in the loop besides the control part or the
343 do-loop pattern is not of the form we expect. */
344 static rtx
345 doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
347 #ifdef HAVE_doloop_end
348 rtx reg, condition, insn, first_insn_not_to_check;
350 if (!JUMP_P (tail))
351 return NULL_RTX;
353 /* TODO: Free SMS's dependence on doloop_condition_get. */
354 condition = doloop_condition_get (tail);
355 if (! condition)
356 return NULL_RTX;
358 if (REG_P (XEXP (condition, 0)))
359 reg = XEXP (condition, 0);
360 else if (GET_CODE (XEXP (condition, 0)) == PLUS
361 && REG_P (XEXP (XEXP (condition, 0), 0)))
362 reg = XEXP (XEXP (condition, 0), 0);
363 else
364 gcc_unreachable ();
366 /* Check that the COUNT_REG has no other occurrences in the loop
367 until the decrement. We assume the control part consists of
368 either a single (parallel) branch-on-count or a (non-parallel)
369 branch immediately preceded by a single (decrement) insn. */
370 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
371 : prev_nondebug_insn (tail));
373 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
374 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
376 if (dump_file)
378 fprintf (dump_file, "SMS count_reg found ");
379 print_rtl_single (dump_file, reg);
380 fprintf (dump_file, " outside control in insn:\n");
381 print_rtl_single (dump_file, insn);
384 return NULL_RTX;
387 return reg;
388 #else
389 return NULL_RTX;
390 #endif
393 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
394 that the number of iterations is a compile-time constant. If so,
395 return the rtx that sets COUNT_REG to a constant, and set COUNT to
396 this constant. Otherwise return 0. */
397 static rtx
398 const_iteration_count (rtx count_reg, basic_block pre_header,
399 HOST_WIDEST_INT * count)
401 rtx insn;
402 rtx head, tail;
404 if (! pre_header)
405 return NULL_RTX;
407 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
409 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
410 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
411 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
413 rtx pat = single_set (insn);
415 if (CONST_INT_P (SET_SRC (pat)))
417 *count = INTVAL (SET_SRC (pat));
418 return insn;
421 return NULL_RTX;
424 return NULL_RTX;
427 /* A very simple resource-based lower bound on the initiation interval.
428 ??? Improve the accuracy of this bound by considering the
429 utilization of various units. */
430 static int
431 res_MII (ddg_ptr g)
433 if (targetm.sched.sms_res_mii)
434 return targetm.sched.sms_res_mii (g);
436 return ((g->num_nodes - g->num_debug) / issue_rate);
440 /* A vector that contains the sched data for each ps_insn. */
441 static vec<node_sched_params> node_sched_param_vec;
443 /* Allocate sched_params for each node and initialize it. */
444 static void
445 set_node_sched_params (ddg_ptr g)
447 node_sched_param_vec.truncate (0);
448 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
451 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
452 static void
453 extend_node_sched_params (partial_schedule_ptr ps)
455 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
456 + ps->reg_moves.length ());
459 /* Update the sched_params (time, row and stage) for node U using the II,
460 the CYCLE of U and MIN_CYCLE.
461 We're not simply taking the following
462 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
463 because the stages may not be aligned on cycle 0. */
464 static void
465 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
467 int sc_until_cycle_zero;
468 int stage;
470 SCHED_TIME (u) = cycle;
471 SCHED_ROW (u) = SMODULO (cycle, ii);
473 /* The calculation of stage count is done adding the number
474 of stages before cycle zero and after cycle zero. */
475 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
477 if (SCHED_TIME (u) < 0)
479 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
480 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
482 else
484 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
485 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
489 static void
490 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
492 int i;
494 if (! file)
495 return;
496 for (i = 0; i < num_nodes; i++)
498 node_sched_params_ptr nsp = SCHED_PARAMS (i);
500 fprintf (file, "Node = %d; INSN = %d\n", i,
501 INSN_UID (ps_rtl_insn (ps, i)));
502 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
503 fprintf (file, " time = %d:\n", nsp->time);
504 fprintf (file, " stage = %d:\n", nsp->stage);
508 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
509 static void
510 set_columns_for_row (partial_schedule_ptr ps, int row)
512 ps_insn_ptr cur_insn;
513 int column;
515 column = 0;
516 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
517 SCHED_COLUMN (cur_insn->id) = column++;
520 /* Set SCHED_COLUMN for each instruction in PS. */
521 static void
522 set_columns_for_ps (partial_schedule_ptr ps)
524 int row;
526 for (row = 0; row < ps->ii; row++)
527 set_columns_for_row (ps, row);
530 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
531 Its single predecessor has already been scheduled, as has its
532 ddg node successors. (The move may have also another move as its
533 successor, in which case that successor will be scheduled later.)
535 The move is part of a chain that satisfies register dependencies
536 between a producing ddg node and various consuming ddg nodes.
537 If some of these dependencies have a distance of 1 (meaning that
538 the use is upward-exposed) then DISTANCE1_USES is nonnull and
539 contains the set of uses with distance-1 dependencies.
540 DISTANCE1_USES is null otherwise.
542 MUST_FOLLOW is a scratch bitmap that is big enough to hold
543 all current ps_insn ids.
545 Return true on success. */
546 static bool
547 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
548 sbitmap distance1_uses, sbitmap must_follow)
550 unsigned int u;
551 int this_time, this_distance, this_start, this_end, this_latency;
552 int start, end, c, ii;
553 sbitmap_iterator sbi;
554 ps_reg_move_info *move;
555 rtx this_insn;
556 ps_insn_ptr psi;
558 move = ps_reg_move (ps, i_reg_move);
559 ii = ps->ii;
560 if (dump_file)
562 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
563 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
564 PS_MIN_CYCLE (ps));
565 print_rtl_single (dump_file, move->insn);
566 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
567 fprintf (dump_file, "=========== =========== =====\n");
570 start = INT_MIN;
571 end = INT_MAX;
573 /* For dependencies of distance 1 between a producer ddg node A
574 and consumer ddg node B, we have a chain of dependencies:
576 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
578 where Mi is the ith move. For dependencies of distance 0 between
579 a producer ddg node A and consumer ddg node C, we have a chain of
580 dependencies:
582 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
584 where Mi' occupies the same position as Mi but occurs a stage later.
585 We can only schedule each move once, so if we have both types of
586 chain, we model the second as:
588 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
590 First handle the dependencies between the previously-scheduled
591 predecessor and the move. */
592 this_insn = ps_rtl_insn (ps, move->def);
593 this_latency = insn_latency (this_insn, move->insn);
594 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
595 this_time = SCHED_TIME (move->def) - this_distance * ii;
596 this_start = this_time + this_latency;
597 this_end = this_time + ii;
598 if (dump_file)
599 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
600 this_start, this_end, SCHED_TIME (move->def),
601 INSN_UID (this_insn), this_latency, this_distance,
602 INSN_UID (move->insn));
604 if (start < this_start)
605 start = this_start;
606 if (end > this_end)
607 end = this_end;
609 /* Handle the dependencies between the move and previously-scheduled
610 successors. */
611 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
613 this_insn = ps_rtl_insn (ps, u);
614 this_latency = insn_latency (move->insn, this_insn);
615 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
616 this_distance = -1;
617 else
618 this_distance = 0;
619 this_time = SCHED_TIME (u) + this_distance * ii;
620 this_start = this_time - ii;
621 this_end = this_time - this_latency;
622 if (dump_file)
623 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
624 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
625 this_latency, this_distance, INSN_UID (this_insn));
627 if (start < this_start)
628 start = this_start;
629 if (end > this_end)
630 end = this_end;
633 if (dump_file)
635 fprintf (dump_file, "----------- ----------- -----\n");
636 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
639 bitmap_clear (must_follow);
640 bitmap_set_bit (must_follow, move->def);
642 start = MAX (start, end - (ii - 1));
643 for (c = end; c >= start; c--)
645 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
646 move->uses, must_follow);
647 if (psi)
649 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
650 if (dump_file)
651 fprintf (dump_file, "\nScheduled register move INSN %d at"
652 " time %d, row %d\n\n", INSN_UID (move->insn), c,
653 SCHED_ROW (i_reg_move));
654 return true;
658 if (dump_file)
659 fprintf (dump_file, "\nNo available slot\n\n");
661 return false;
665 Breaking intra-loop register anti-dependences:
666 Each intra-loop register anti-dependence implies a cross-iteration true
667 dependence of distance 1. Therefore, we can remove such false dependencies
668 and figure out if the partial schedule broke them by checking if (for a
669 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
670 if so generate a register move. The number of such moves is equal to:
671 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
672 nreg_moves = ----------------------------------- + 1 - { dependence.
673 ii { 1 if not.
675 static bool
676 schedule_reg_moves (partial_schedule_ptr ps)
678 ddg_ptr g = ps->g;
679 int ii = ps->ii;
680 int i;
682 for (i = 0; i < g->num_nodes; i++)
684 ddg_node_ptr u = &g->nodes[i];
685 ddg_edge_ptr e;
686 int nreg_moves = 0, i_reg_move;
687 rtx prev_reg, old_reg;
688 int first_move;
689 int distances[2];
690 sbitmap must_follow;
691 sbitmap distance1_uses;
692 rtx set = single_set (u->insn);
694 /* Skip instructions that do not set a register. */
695 if ((set && !REG_P (SET_DEST (set))))
696 continue;
698 /* Compute the number of reg_moves needed for u, by looking at life
699 ranges started at u (excluding self-loops). */
700 distances[0] = distances[1] = false;
701 for (e = u->out; e; e = e->next_out)
702 if (e->type == TRUE_DEP && e->dest != e->src)
704 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
705 - SCHED_TIME (e->src->cuid)) / ii;
707 if (e->distance == 1)
708 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
709 - SCHED_TIME (e->src->cuid) + ii) / ii;
711 /* If dest precedes src in the schedule of the kernel, then dest
712 will read before src writes and we can save one reg_copy. */
713 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
714 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
715 nreg_moves4e--;
717 if (nreg_moves4e >= 1)
719 /* !single_set instructions are not supported yet and
720 thus we do not except to encounter them in the loop
721 except from the doloop part. For the latter case
722 we assume no regmoves are generated as the doloop
723 instructions are tied to the branch with an edge. */
724 gcc_assert (set);
725 /* If the instruction contains auto-inc register then
726 validate that the regmov is being generated for the
727 target regsiter rather then the inc'ed register. */
728 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
731 if (nreg_moves4e)
733 gcc_assert (e->distance < 2);
734 distances[e->distance] = true;
736 nreg_moves = MAX (nreg_moves, nreg_moves4e);
739 if (nreg_moves == 0)
740 continue;
742 /* Create NREG_MOVES register moves. */
743 first_move = ps->reg_moves.length ();
744 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
745 extend_node_sched_params (ps);
747 /* Record the moves associated with this node. */
748 first_move += ps->g->num_nodes;
750 /* Generate each move. */
751 old_reg = prev_reg = SET_DEST (single_set (u->insn));
752 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
754 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
756 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
757 move->uses = sbitmap_alloc (first_move + nreg_moves);
758 move->old_reg = old_reg;
759 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
760 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
761 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
762 bitmap_clear (move->uses);
764 prev_reg = move->new_reg;
767 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
769 /* Every use of the register defined by node may require a different
770 copy of this register, depending on the time the use is scheduled.
771 Record which uses require which move results. */
772 for (e = u->out; e; e = e->next_out)
773 if (e->type == TRUE_DEP && e->dest != e->src)
775 int dest_copy = (SCHED_TIME (e->dest->cuid)
776 - SCHED_TIME (e->src->cuid)) / ii;
778 if (e->distance == 1)
779 dest_copy = (SCHED_TIME (e->dest->cuid)
780 - SCHED_TIME (e->src->cuid) + ii) / ii;
782 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
783 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
784 dest_copy--;
786 if (dest_copy)
788 ps_reg_move_info *move;
790 move = ps_reg_move (ps, first_move + dest_copy - 1);
791 bitmap_set_bit (move->uses, e->dest->cuid);
792 if (e->distance == 1)
793 bitmap_set_bit (distance1_uses, e->dest->cuid);
797 must_follow = sbitmap_alloc (first_move + nreg_moves);
798 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
799 if (!schedule_reg_move (ps, first_move + i_reg_move,
800 distance1_uses, must_follow))
801 break;
802 sbitmap_free (must_follow);
803 if (distance1_uses)
804 sbitmap_free (distance1_uses);
805 if (i_reg_move < nreg_moves)
806 return false;
808 return true;
811 /* Emit the moves associatied with PS. Apply the substitutions
812 associated with them. */
813 static void
814 apply_reg_moves (partial_schedule_ptr ps)
816 ps_reg_move_info *move;
817 int i;
819 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
821 unsigned int i_use;
822 sbitmap_iterator sbi;
824 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
826 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
827 df_insn_rescan (ps->g->nodes[i_use].insn);
832 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
833 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
834 will move to cycle zero. */
835 static void
836 reset_sched_times (partial_schedule_ptr ps, int amount)
838 int row;
839 int ii = ps->ii;
840 ps_insn_ptr crr_insn;
842 for (row = 0; row < ii; row++)
843 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
845 int u = crr_insn->id;
846 int normalized_time = SCHED_TIME (u) - amount;
847 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
849 if (dump_file)
851 /* Print the scheduling times after the rotation. */
852 rtx insn = ps_rtl_insn (ps, u);
854 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
855 "crr_insn->cycle=%d, min_cycle=%d", u,
856 INSN_UID (insn), normalized_time, new_min_cycle);
857 if (JUMP_P (insn))
858 fprintf (dump_file, " (branch)");
859 fprintf (dump_file, "\n");
862 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
863 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
865 crr_insn->cycle = normalized_time;
866 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
870 /* Permute the insns according to their order in PS, from row 0 to
871 row ii-1, and position them right before LAST. This schedules
872 the insns of the loop kernel. */
873 static void
874 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
876 int ii = ps->ii;
877 int row;
878 ps_insn_ptr ps_ij;
880 for (row = 0; row < ii ; row++)
881 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
883 rtx insn = ps_rtl_insn (ps, ps_ij->id);
885 if (PREV_INSN (last) != insn)
887 if (ps_ij->id < ps->g->num_nodes)
888 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
889 PREV_INSN (last));
890 else
891 add_insn_before (insn, last, NULL);
896 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
897 respectively only if cycle C falls on the border of the scheduling
898 window boundaries marked by START and END cycles. STEP is the
899 direction of the window. */
900 static inline void
901 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
902 sbitmap *tmp_precede, sbitmap must_precede, int c,
903 int start, int end, int step)
905 *tmp_precede = NULL;
906 *tmp_follow = NULL;
908 if (c == start)
910 if (step == 1)
911 *tmp_precede = must_precede;
912 else /* step == -1. */
913 *tmp_follow = must_follow;
915 if (c == end - step)
917 if (step == 1)
918 *tmp_follow = must_follow;
919 else /* step == -1. */
920 *tmp_precede = must_precede;
925 /* Return True if the branch can be moved to row ii-1 while
926 normalizing the partial schedule PS to start from cycle zero and thus
927 optimize the SC. Otherwise return False. */
928 static bool
929 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
931 int amount = PS_MIN_CYCLE (ps);
932 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
933 int start, end, step;
934 int ii = ps->ii;
935 bool ok = false;
936 int stage_count, stage_count_curr;
938 /* Compare the SC after normalization and SC after bringing the branch
939 to row ii-1. If they are equal just bail out. */
940 stage_count = calculate_stage_count (ps, amount);
941 stage_count_curr =
942 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
944 if (stage_count == stage_count_curr)
946 if (dump_file)
947 fprintf (dump_file, "SMS SC already optimized.\n");
949 ok = false;
950 goto clear;
953 if (dump_file)
955 fprintf (dump_file, "SMS Trying to optimize branch location\n");
956 fprintf (dump_file, "SMS partial schedule before trial:\n");
957 print_partial_schedule (ps, dump_file);
960 /* First, normalize the partial scheduling. */
961 reset_sched_times (ps, amount);
962 rotate_partial_schedule (ps, amount);
963 if (dump_file)
965 fprintf (dump_file,
966 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
967 ii, stage_count);
968 print_partial_schedule (ps, dump_file);
971 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
973 ok = true;
974 goto clear;
977 bitmap_ones (sched_nodes);
979 /* Calculate the new placement of the branch. It should be in row
980 ii-1 and fall into it's scheduling window. */
981 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
982 &step, &end) == 0)
984 bool success;
985 ps_insn_ptr next_ps_i;
986 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
987 int row = SMODULO (branch_cycle, ps->ii);
988 int num_splits = 0;
989 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
990 int c;
992 if (dump_file)
993 fprintf (dump_file, "\nTrying to schedule node %d "
994 "INSN = %d in (%d .. %d) step %d\n",
995 g->closing_branch->cuid,
996 (INSN_UID (g->closing_branch->insn)), start, end, step);
998 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
999 if (step == 1)
1001 c = start + ii - SMODULO (start, ii) - 1;
1002 gcc_assert (c >= start);
1003 if (c >= end)
1005 ok = false;
1006 if (dump_file)
1007 fprintf (dump_file,
1008 "SMS failed to schedule branch at cycle: %d\n", c);
1009 goto clear;
1012 else
1014 c = start - SMODULO (start, ii) - 1;
1015 gcc_assert (c <= start);
1017 if (c <= end)
1019 if (dump_file)
1020 fprintf (dump_file,
1021 "SMS failed to schedule branch at cycle: %d\n", c);
1022 ok = false;
1023 goto clear;
1027 must_precede = sbitmap_alloc (g->num_nodes);
1028 must_follow = sbitmap_alloc (g->num_nodes);
1030 /* Try to schedule the branch is it's new cycle. */
1031 calculate_must_precede_follow (g->closing_branch, start, end,
1032 step, ii, sched_nodes,
1033 must_precede, must_follow);
1035 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1036 must_precede, c, start, end, step);
1038 /* Find the element in the partial schedule related to the closing
1039 branch so we can remove it from it's current cycle. */
1040 for (next_ps_i = ps->rows[row];
1041 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1042 if (next_ps_i->id == g->closing_branch->cuid)
1043 break;
1045 remove_node_from_ps (ps, next_ps_i);
1046 success =
1047 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1048 sched_nodes, &num_splits,
1049 tmp_precede, tmp_follow);
1050 gcc_assert (num_splits == 0);
1051 if (!success)
1053 if (dump_file)
1054 fprintf (dump_file,
1055 "SMS failed to schedule branch at cycle: %d, "
1056 "bringing it back to cycle %d\n", c, branch_cycle);
1058 /* The branch was failed to be placed in row ii - 1.
1059 Put it back in it's original place in the partial
1060 schedualing. */
1061 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1062 must_precede, branch_cycle, start, end,
1063 step);
1064 success =
1065 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1066 branch_cycle, sched_nodes,
1067 &num_splits, tmp_precede,
1068 tmp_follow);
1069 gcc_assert (success && (num_splits == 0));
1070 ok = false;
1072 else
1074 /* The branch is placed in row ii - 1. */
1075 if (dump_file)
1076 fprintf (dump_file,
1077 "SMS success in moving branch to cycle %d\n", c);
1079 update_node_sched_params (g->closing_branch->cuid, ii, c,
1080 PS_MIN_CYCLE (ps));
1081 ok = true;
1084 free (must_precede);
1085 free (must_follow);
1088 clear:
1089 free (sched_nodes);
1090 return ok;
1093 static void
1094 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1095 int to_stage, rtx count_reg)
1097 int row;
1098 ps_insn_ptr ps_ij;
1100 for (row = 0; row < ps->ii; row++)
1101 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1103 int u = ps_ij->id;
1104 int first_u, last_u;
1105 rtx u_insn;
1107 /* Do not duplicate any insn which refers to count_reg as it
1108 belongs to the control part.
1109 The closing branch is scheduled as well and thus should
1110 be ignored.
1111 TODO: This should be done by analyzing the control part of
1112 the loop. */
1113 u_insn = ps_rtl_insn (ps, u);
1114 if (reg_mentioned_p (count_reg, u_insn)
1115 || JUMP_P (u_insn))
1116 continue;
1118 first_u = SCHED_STAGE (u);
1119 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1120 if (from_stage <= last_u && to_stage >= first_u)
1122 if (u < ps->g->num_nodes)
1123 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1124 else
1125 emit_insn (copy_rtx (PATTERN (u_insn)));
1131 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1132 static void
1133 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1134 rtx count_reg, rtx count_init)
1136 int i;
1137 int last_stage = PS_STAGE_COUNT (ps) - 1;
1138 edge e;
1140 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1141 start_sequence ();
1143 if (!count_init)
1145 /* Generate instructions at the beginning of the prolog to
1146 adjust the loop count by STAGE_COUNT. If loop count is constant
1147 (count_init), this constant is adjusted by STAGE_COUNT in
1148 generate_prolog_epilog function. */
1149 rtx sub_reg = NULL_RTX;
1151 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1152 gen_int_mode (last_stage,
1153 GET_MODE (count_reg)),
1154 count_reg, 1, OPTAB_DIRECT);
1155 gcc_assert (REG_P (sub_reg));
1156 if (REGNO (sub_reg) != REGNO (count_reg))
1157 emit_move_insn (count_reg, sub_reg);
1160 for (i = 0; i < last_stage; i++)
1161 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1163 /* Put the prolog on the entry edge. */
1164 e = loop_preheader_edge (loop);
1165 split_edge_and_insert (e, get_insns ());
1166 if (!flag_resched_modulo_sched)
1167 e->dest->flags |= BB_DISABLE_SCHEDULE;
1169 end_sequence ();
1171 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1172 start_sequence ();
1174 for (i = 0; i < last_stage; i++)
1175 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1177 /* Put the epilogue on the exit edge. */
1178 gcc_assert (single_exit (loop));
1179 e = single_exit (loop);
1180 split_edge_and_insert (e, get_insns ());
1181 if (!flag_resched_modulo_sched)
1182 e->dest->flags |= BB_DISABLE_SCHEDULE;
1184 end_sequence ();
1187 /* Mark LOOP as software pipelined so the later
1188 scheduling passes don't touch it. */
1189 static void
1190 mark_loop_unsched (struct loop *loop)
1192 unsigned i;
1193 basic_block *bbs = get_loop_body (loop);
1195 for (i = 0; i < loop->num_nodes; i++)
1196 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1198 free (bbs);
1201 /* Return true if all the BBs of the loop are empty except the
1202 loop header. */
1203 static bool
1204 loop_single_full_bb_p (struct loop *loop)
1206 unsigned i;
1207 basic_block *bbs = get_loop_body (loop);
1209 for (i = 0; i < loop->num_nodes ; i++)
1211 rtx head, tail;
1212 bool empty_bb = true;
1214 if (bbs[i] == loop->header)
1215 continue;
1217 /* Make sure that basic blocks other than the header
1218 have only notes labels or jumps. */
1219 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1220 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1222 if (NOTE_P (head) || LABEL_P (head)
1223 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1224 continue;
1225 empty_bb = false;
1226 break;
1229 if (! empty_bb)
1231 free (bbs);
1232 return false;
1235 free (bbs);
1236 return true;
1239 /* Dump file:line from INSN's location info to dump_file. */
1241 static void
1242 dump_insn_location (rtx insn)
1244 if (dump_file && INSN_LOCATION (insn))
1246 const char *file = insn_file (insn);
1247 if (file)
1248 fprintf (dump_file, " %s:%i", file, insn_line (insn));
1252 /* A simple loop from SMS point of view; it is a loop that is composed of
1253 either a single basic block or two BBs - a header and a latch. */
1254 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1255 && (EDGE_COUNT (loop->latch->preds) == 1) \
1256 && (EDGE_COUNT (loop->latch->succs) == 1))
1258 /* Return true if the loop is in its canonical form and false if not.
1259 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1260 static bool
1261 loop_canon_p (struct loop *loop)
1264 if (loop->inner || !loop_outer (loop))
1266 if (dump_file)
1267 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1268 return false;
1271 if (!single_exit (loop))
1273 if (dump_file)
1275 rtx insn = BB_END (loop->header);
1277 fprintf (dump_file, "SMS loop many exits");
1278 dump_insn_location (insn);
1279 fprintf (dump_file, "\n");
1281 return false;
1284 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1286 if (dump_file)
1288 rtx insn = BB_END (loop->header);
1290 fprintf (dump_file, "SMS loop many BBs.");
1291 dump_insn_location (insn);
1292 fprintf (dump_file, "\n");
1294 return false;
1297 return true;
1300 /* If there are more than one entry for the loop,
1301 make it one by splitting the first entry edge and
1302 redirecting the others to the new BB. */
1303 static void
1304 canon_loop (struct loop *loop)
1306 edge e;
1307 edge_iterator i;
1309 /* Avoid annoying special cases of edges going to exit
1310 block. */
1311 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
1312 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1313 split_edge (e);
1315 if (loop->latch == loop->header
1316 || EDGE_COUNT (loop->latch->succs) > 1)
1318 FOR_EACH_EDGE (e, i, loop->header->preds)
1319 if (e->src == loop->latch)
1320 break;
1321 split_edge (e);
1325 /* Setup infos. */
1326 static void
1327 setup_sched_infos (void)
1329 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1330 sizeof (sms_common_sched_info));
1331 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1332 common_sched_info = &sms_common_sched_info;
1334 sched_deps_info = &sms_sched_deps_info;
1335 current_sched_info = &sms_sched_info;
1338 /* Probability in % that the sms-ed loop rolls enough so that optimized
1339 version may be entered. Just a guess. */
1340 #define PROB_SMS_ENOUGH_ITERATIONS 80
1342 /* Used to calculate the upper bound of ii. */
1343 #define MAXII_FACTOR 2
1345 /* Main entry point, perform SMS scheduling on the loops of the function
1346 that consist of single basic blocks. */
1347 static void
1348 sms_schedule (void)
1350 rtx insn;
1351 ddg_ptr *g_arr, g;
1352 int * node_order;
1353 int maxii, max_asap;
1354 loop_iterator li;
1355 partial_schedule_ptr ps;
1356 basic_block bb = NULL;
1357 struct loop *loop;
1358 basic_block condition_bb = NULL;
1359 edge latch_edge;
1360 gcov_type trip_count = 0;
1362 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1363 | LOOPS_HAVE_RECORDED_EXITS);
1364 if (number_of_loops (cfun) <= 1)
1366 loop_optimizer_finalize ();
1367 return; /* There are no loops to schedule. */
1370 /* Initialize issue_rate. */
1371 if (targetm.sched.issue_rate)
1373 int temp = reload_completed;
1375 reload_completed = 1;
1376 issue_rate = targetm.sched.issue_rate ();
1377 reload_completed = temp;
1379 else
1380 issue_rate = 1;
1382 /* Initialize the scheduler. */
1383 setup_sched_infos ();
1384 haifa_sched_init ();
1386 /* Allocate memory to hold the DDG array one entry for each loop.
1387 We use loop->num as index into this array. */
1388 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1390 if (dump_file)
1392 fprintf (dump_file, "\n\nSMS analysis phase\n");
1393 fprintf (dump_file, "===================\n\n");
1396 /* Build DDGs for all the relevant loops and hold them in G_ARR
1397 indexed by the loop index. */
1398 FOR_EACH_LOOP (li, loop, 0)
1400 rtx head, tail;
1401 rtx count_reg;
1403 /* For debugging. */
1404 if (dbg_cnt (sms_sched_loop) == false)
1406 if (dump_file)
1407 fprintf (dump_file, "SMS reached max limit... \n");
1409 FOR_EACH_LOOP_BREAK (li);
1412 if (dump_file)
1414 rtx insn = BB_END (loop->header);
1416 fprintf (dump_file, "SMS loop num: %d", loop->num);
1417 dump_insn_location (insn);
1418 fprintf (dump_file, "\n");
1421 if (! loop_canon_p (loop))
1422 continue;
1424 if (! loop_single_full_bb_p (loop))
1426 if (dump_file)
1427 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1428 continue;
1431 bb = loop->header;
1433 get_ebb_head_tail (bb, bb, &head, &tail);
1434 latch_edge = loop_latch_edge (loop);
1435 gcc_assert (single_exit (loop));
1436 if (single_exit (loop)->count)
1437 trip_count = latch_edge->count / single_exit (loop)->count;
1439 /* Perform SMS only on loops that their average count is above threshold. */
1441 if ( latch_edge->count
1442 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1444 if (dump_file)
1446 dump_insn_location (tail);
1447 fprintf (dump_file, "\nSMS single-bb-loop\n");
1448 if (profile_info && flag_branch_probabilities)
1450 fprintf (dump_file, "SMS loop-count ");
1451 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1452 (HOST_WIDEST_INT) bb->count);
1453 fprintf (dump_file, "\n");
1454 fprintf (dump_file, "SMS trip-count ");
1455 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1456 (HOST_WIDEST_INT) trip_count);
1457 fprintf (dump_file, "\n");
1458 fprintf (dump_file, "SMS profile-sum-max ");
1459 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1460 (HOST_WIDEST_INT) profile_info->sum_max);
1461 fprintf (dump_file, "\n");
1464 continue;
1467 /* Make sure this is a doloop. */
1468 if ( !(count_reg = doloop_register_get (head, tail)))
1470 if (dump_file)
1471 fprintf (dump_file, "SMS doloop_register_get failed\n");
1472 continue;
1475 /* Don't handle BBs with calls or barriers
1476 or !single_set with the exception of instructions that include
1477 count_reg---these instructions are part of the control part
1478 that do-loop recognizes.
1479 ??? Should handle insns defining subregs. */
1480 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1482 rtx set;
1484 if (CALL_P (insn)
1485 || BARRIER_P (insn)
1486 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1487 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1488 && !reg_mentioned_p (count_reg, insn))
1489 || (INSN_P (insn) && (set = single_set (insn))
1490 && GET_CODE (SET_DEST (set)) == SUBREG))
1491 break;
1494 if (insn != NEXT_INSN (tail))
1496 if (dump_file)
1498 if (CALL_P (insn))
1499 fprintf (dump_file, "SMS loop-with-call\n");
1500 else if (BARRIER_P (insn))
1501 fprintf (dump_file, "SMS loop-with-barrier\n");
1502 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1503 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1504 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1505 else
1506 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1507 print_rtl_single (dump_file, insn);
1510 continue;
1513 /* Always schedule the closing branch with the rest of the
1514 instructions. The branch is rotated to be in row ii-1 at the
1515 end of the scheduling procedure to make sure it's the last
1516 instruction in the iteration. */
1517 if (! (g = create_ddg (bb, 1)))
1519 if (dump_file)
1520 fprintf (dump_file, "SMS create_ddg failed\n");
1521 continue;
1524 g_arr[loop->num] = g;
1525 if (dump_file)
1526 fprintf (dump_file, "...OK\n");
1529 if (dump_file)
1531 fprintf (dump_file, "\nSMS transformation phase\n");
1532 fprintf (dump_file, "=========================\n\n");
1535 /* We don't want to perform SMS on new loops - created by versioning. */
1536 FOR_EACH_LOOP (li, loop, 0)
1538 rtx head, tail;
1539 rtx count_reg, count_init;
1540 int mii, rec_mii, stage_count, min_cycle;
1541 HOST_WIDEST_INT loop_count = 0;
1542 bool opt_sc_p;
1544 if (! (g = g_arr[loop->num]))
1545 continue;
1547 if (dump_file)
1549 rtx insn = BB_END (loop->header);
1551 fprintf (dump_file, "SMS loop num: %d", loop->num);
1552 dump_insn_location (insn);
1553 fprintf (dump_file, "\n");
1555 print_ddg (dump_file, g);
1558 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1560 latch_edge = loop_latch_edge (loop);
1561 gcc_assert (single_exit (loop));
1562 if (single_exit (loop)->count)
1563 trip_count = latch_edge->count / single_exit (loop)->count;
1565 if (dump_file)
1567 dump_insn_location (tail);
1568 fprintf (dump_file, "\nSMS single-bb-loop\n");
1569 if (profile_info && flag_branch_probabilities)
1571 fprintf (dump_file, "SMS loop-count ");
1572 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1573 (HOST_WIDEST_INT) bb->count);
1574 fprintf (dump_file, "\n");
1575 fprintf (dump_file, "SMS profile-sum-max ");
1576 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1577 (HOST_WIDEST_INT) profile_info->sum_max);
1578 fprintf (dump_file, "\n");
1580 fprintf (dump_file, "SMS doloop\n");
1581 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1582 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1583 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1587 /* In case of th loop have doloop register it gets special
1588 handling. */
1589 count_init = NULL_RTX;
1590 if ((count_reg = doloop_register_get (head, tail)))
1592 basic_block pre_header;
1594 pre_header = loop_preheader_edge (loop)->src;
1595 count_init = const_iteration_count (count_reg, pre_header,
1596 &loop_count);
1598 gcc_assert (count_reg);
1600 if (dump_file && count_init)
1602 fprintf (dump_file, "SMS const-doloop ");
1603 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1604 loop_count);
1605 fprintf (dump_file, "\n");
1608 node_order = XNEWVEC (int, g->num_nodes);
1610 mii = 1; /* Need to pass some estimate of mii. */
1611 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1612 mii = MAX (res_MII (g), rec_mii);
1613 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1615 if (dump_file)
1616 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1617 rec_mii, mii, maxii);
1619 for (;;)
1621 set_node_sched_params (g);
1623 stage_count = 0;
1624 opt_sc_p = false;
1625 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1627 if (ps)
1629 /* Try to achieve optimized SC by normalizing the partial
1630 schedule (having the cycles start from cycle zero).
1631 The branch location must be placed in row ii-1 in the
1632 final scheduling. If failed, shift all instructions to
1633 position the branch in row ii-1. */
1634 opt_sc_p = optimize_sc (ps, g);
1635 if (opt_sc_p)
1636 stage_count = calculate_stage_count (ps, 0);
1637 else
1639 /* Bring the branch to cycle ii-1. */
1640 int amount = (SCHED_TIME (g->closing_branch->cuid)
1641 - (ps->ii - 1));
1643 if (dump_file)
1644 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1646 stage_count = calculate_stage_count (ps, amount);
1649 gcc_assert (stage_count >= 1);
1652 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1653 1 means that there is no interleaving between iterations thus
1654 we let the scheduling passes do the job in this case. */
1655 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1656 || (count_init && (loop_count <= stage_count))
1657 || (flag_branch_probabilities && (trip_count <= stage_count)))
1659 if (dump_file)
1661 fprintf (dump_file, "SMS failed... \n");
1662 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1663 " loop-count=", stage_count);
1664 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1665 fprintf (dump_file, ", trip-count=");
1666 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
1667 fprintf (dump_file, ")\n");
1669 break;
1672 if (!opt_sc_p)
1674 /* Rotate the partial schedule to have the branch in row ii-1. */
1675 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1677 reset_sched_times (ps, amount);
1678 rotate_partial_schedule (ps, amount);
1681 set_columns_for_ps (ps);
1683 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1684 if (!schedule_reg_moves (ps))
1686 mii = ps->ii + 1;
1687 free_partial_schedule (ps);
1688 continue;
1691 /* Moves that handle incoming values might have been added
1692 to a new first stage. Bump the stage count if so.
1694 ??? Perhaps we could consider rotating the schedule here
1695 instead? */
1696 if (PS_MIN_CYCLE (ps) < min_cycle)
1698 reset_sched_times (ps, 0);
1699 stage_count++;
1702 /* The stage count should now be correct without rotation. */
1703 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1704 PS_STAGE_COUNT (ps) = stage_count;
1706 canon_loop (loop);
1708 if (dump_file)
1710 dump_insn_location (tail);
1711 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1712 ps->ii, stage_count);
1713 print_partial_schedule (ps, dump_file);
1716 /* case the BCT count is not known , Do loop-versioning */
1717 if (count_reg && ! count_init)
1719 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1720 gen_int_mode (stage_count,
1721 GET_MODE (count_reg)));
1722 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1723 * REG_BR_PROB_BASE) / 100;
1725 loop_version (loop, comp_rtx, &condition_bb,
1726 prob, prob, REG_BR_PROB_BASE - prob,
1727 true);
1730 /* Set new iteration count of loop kernel. */
1731 if (count_reg && count_init)
1732 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1733 - stage_count + 1);
1735 /* Now apply the scheduled kernel to the RTL of the loop. */
1736 permute_partial_schedule (ps, g->closing_branch->first_note);
1738 /* Mark this loop as software pipelined so the later
1739 scheduling passes don't touch it. */
1740 if (! flag_resched_modulo_sched)
1741 mark_loop_unsched (loop);
1743 /* The life-info is not valid any more. */
1744 df_set_bb_dirty (g->bb);
1746 apply_reg_moves (ps);
1747 if (dump_file)
1748 print_node_sched_params (dump_file, g->num_nodes, ps);
1749 /* Generate prolog and epilog. */
1750 generate_prolog_epilog (ps, loop, count_reg, count_init);
1751 break;
1754 free_partial_schedule (ps);
1755 node_sched_param_vec.release ();
1756 free (node_order);
1757 free_ddg (g);
1760 free (g_arr);
1762 /* Release scheduler data, needed until now because of DFA. */
1763 haifa_sched_finish ();
1764 loop_optimizer_finalize ();
1767 /* The SMS scheduling algorithm itself
1768 -----------------------------------
1769 Input: 'O' an ordered list of insns of a loop.
1770 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1772 'Q' is the empty Set
1773 'PS' is the partial schedule; it holds the currently scheduled nodes with
1774 their cycle/slot.
1775 'PSP' previously scheduled predecessors.
1776 'PSS' previously scheduled successors.
1777 't(u)' the cycle where u is scheduled.
1778 'l(u)' is the latency of u.
1779 'd(v,u)' is the dependence distance from v to u.
1780 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1781 the node ordering phase.
1782 'check_hardware_resources_conflicts(u, PS, c)'
1783 run a trace around cycle/slot through DFA model
1784 to check resource conflicts involving instruction u
1785 at cycle c given the partial schedule PS.
1786 'add_to_partial_schedule_at_time(u, PS, c)'
1787 Add the node/instruction u to the partial schedule
1788 PS at time c.
1789 'calculate_register_pressure(PS)'
1790 Given a schedule of instructions, calculate the register
1791 pressure it implies. One implementation could be the
1792 maximum number of overlapping live ranges.
1793 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1794 registers available in the hardware.
1796 1. II = MII.
1797 2. PS = empty list
1798 3. for each node u in O in pre-computed order
1799 4. if (PSP(u) != Q && PSS(u) == Q) then
1800 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1801 6. start = Early_start; end = Early_start + II - 1; step = 1
1802 11. else if (PSP(u) == Q && PSS(u) != Q) then
1803 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1804 13. start = Late_start; end = Late_start - II + 1; step = -1
1805 14. else if (PSP(u) != Q && PSS(u) != Q) then
1806 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1807 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1808 17. start = Early_start;
1809 18. end = min(Early_start + II - 1 , Late_start);
1810 19. step = 1
1811 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1812 21. start = ASAP(u); end = start + II - 1; step = 1
1813 22. endif
1815 23. success = false
1816 24. for (c = start ; c != end ; c += step)
1817 25. if check_hardware_resources_conflicts(u, PS, c) then
1818 26. add_to_partial_schedule_at_time(u, PS, c)
1819 27. success = true
1820 28. break
1821 29. endif
1822 30. endfor
1823 31. if (success == false) then
1824 32. II = II + 1
1825 33. if (II > maxII) then
1826 34. finish - failed to schedule
1827 35. endif
1828 36. goto 2.
1829 37. endif
1830 38. endfor
1831 39. if (calculate_register_pressure(PS) > maxRP) then
1832 40. goto 32.
1833 41. endif
1834 42. compute epilogue & prologue
1835 43. finish - succeeded to schedule
1837 ??? The algorithm restricts the scheduling window to II cycles.
1838 In rare cases, it may be better to allow windows of II+1 cycles.
1839 The window would then start and end on the same row, but with
1840 different "must precede" and "must follow" requirements. */
1842 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1843 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1844 set to 0 to save compile time. */
1845 #define DFA_HISTORY SMS_DFA_HISTORY
1847 /* A threshold for the number of repeated unsuccessful attempts to insert
1848 an empty row, before we flush the partial schedule and start over. */
1849 #define MAX_SPLIT_NUM 10
1850 /* Given the partial schedule PS, this function calculates and returns the
1851 cycles in which we can schedule the node with the given index I.
1852 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1853 noticed that there are several cases in which we fail to SMS the loop
1854 because the sched window of a node is empty due to tight data-deps. In
1855 such cases we want to unschedule some of the predecessors/successors
1856 until we get non-empty scheduling window. It returns -1 if the
1857 scheduling window is empty and zero otherwise. */
1859 static int
1860 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1861 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1862 int *end_p)
1864 int start, step, end;
1865 int early_start, late_start;
1866 ddg_edge_ptr e;
1867 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1868 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1869 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1870 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1871 int psp_not_empty;
1872 int pss_not_empty;
1873 int count_preds;
1874 int count_succs;
1876 /* 1. compute sched window for u (start, end, step). */
1877 bitmap_clear (psp);
1878 bitmap_clear (pss);
1879 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1880 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1882 /* We first compute a forward range (start <= end), then decide whether
1883 to reverse it. */
1884 early_start = INT_MIN;
1885 late_start = INT_MAX;
1886 start = INT_MIN;
1887 end = INT_MAX;
1888 step = 1;
1890 count_preds = 0;
1891 count_succs = 0;
1893 if (dump_file && (psp_not_empty || pss_not_empty))
1895 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1896 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1897 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1898 "start", "early start", "late start", "end", "time");
1899 fprintf (dump_file, "=========== =========== =========== ==========="
1900 " =====\n");
1902 /* Calculate early_start and limit end. Both bounds are inclusive. */
1903 if (psp_not_empty)
1904 for (e = u_node->in; e != 0; e = e->next_in)
1906 int v = e->src->cuid;
1908 if (bitmap_bit_p (sched_nodes, v))
1910 int p_st = SCHED_TIME (v);
1911 int earliest = p_st + e->latency - (e->distance * ii);
1912 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1914 if (dump_file)
1916 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1917 "", earliest, "", latest, p_st);
1918 print_ddg_edge (dump_file, e);
1919 fprintf (dump_file, "\n");
1922 early_start = MAX (early_start, earliest);
1923 end = MIN (end, latest);
1925 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1926 count_preds++;
1930 /* Calculate late_start and limit start. Both bounds are inclusive. */
1931 if (pss_not_empty)
1932 for (e = u_node->out; e != 0; e = e->next_out)
1934 int v = e->dest->cuid;
1936 if (bitmap_bit_p (sched_nodes, v))
1938 int s_st = SCHED_TIME (v);
1939 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1940 int latest = s_st - e->latency + (e->distance * ii);
1942 if (dump_file)
1944 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1945 earliest, "", latest, "", s_st);
1946 print_ddg_edge (dump_file, e);
1947 fprintf (dump_file, "\n");
1950 start = MAX (start, earliest);
1951 late_start = MIN (late_start, latest);
1953 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1954 count_succs++;
1958 if (dump_file && (psp_not_empty || pss_not_empty))
1960 fprintf (dump_file, "----------- ----------- ----------- -----------"
1961 " -----\n");
1962 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1963 start, early_start, late_start, end, "",
1964 "(max, max, min, min)");
1967 /* Get a target scheduling window no bigger than ii. */
1968 if (early_start == INT_MIN && late_start == INT_MAX)
1969 early_start = NODE_ASAP (u_node);
1970 else if (early_start == INT_MIN)
1971 early_start = late_start - (ii - 1);
1972 late_start = MIN (late_start, early_start + (ii - 1));
1974 /* Apply memory dependence limits. */
1975 start = MAX (start, early_start);
1976 end = MIN (end, late_start);
1978 if (dump_file && (psp_not_empty || pss_not_empty))
1979 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1980 "", start, end, "", "");
1982 /* If there are at least as many successors as predecessors, schedule the
1983 node close to its successors. */
1984 if (pss_not_empty && count_succs >= count_preds)
1986 int tmp = end;
1987 end = start;
1988 start = tmp;
1989 step = -1;
1992 /* Now that we've finalized the window, make END an exclusive rather
1993 than an inclusive bound. */
1994 end += step;
1996 *start_p = start;
1997 *step_p = step;
1998 *end_p = end;
1999 sbitmap_free (psp);
2000 sbitmap_free (pss);
2002 if ((start >= end && step == 1) || (start <= end && step == -1))
2004 if (dump_file)
2005 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2006 start, end, step);
2007 return -1;
2010 return 0;
2013 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2014 node currently been scheduled. At the end of the calculation
2015 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2016 U_NODE which are (1) already scheduled in the first/last row of
2017 U_NODE's scheduling window, (2) whose dependence inequality with U
2018 becomes an equality when U is scheduled in this same row, and (3)
2019 whose dependence latency is zero.
2021 The first and last rows are calculated using the following parameters:
2022 START/END rows - The cycles that begins/ends the traversal on the window;
2023 searching for an empty cycle to schedule U_NODE.
2024 STEP - The direction in which we traverse the window.
2025 II - The initiation interval. */
2027 static void
2028 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2029 int step, int ii, sbitmap sched_nodes,
2030 sbitmap must_precede, sbitmap must_follow)
2032 ddg_edge_ptr e;
2033 int first_cycle_in_window, last_cycle_in_window;
2035 gcc_assert (must_precede && must_follow);
2037 /* Consider the following scheduling window:
2038 {first_cycle_in_window, first_cycle_in_window+1, ...,
2039 last_cycle_in_window}. If step is 1 then the following will be
2040 the order we traverse the window: {start=first_cycle_in_window,
2041 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2042 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2043 end=first_cycle_in_window-1} if step is -1. */
2044 first_cycle_in_window = (step == 1) ? start : end - step;
2045 last_cycle_in_window = (step == 1) ? end - step : start;
2047 bitmap_clear (must_precede);
2048 bitmap_clear (must_follow);
2050 if (dump_file)
2051 fprintf (dump_file, "\nmust_precede: ");
2053 /* Instead of checking if:
2054 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2055 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2056 first_cycle_in_window)
2057 && e->latency == 0
2058 we use the fact that latency is non-negative:
2059 SCHED_TIME (e->src) - (e->distance * ii) <=
2060 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2061 first_cycle_in_window
2062 and check only if
2063 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2064 for (e = u_node->in; e != 0; e = e->next_in)
2065 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2066 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2067 first_cycle_in_window))
2069 if (dump_file)
2070 fprintf (dump_file, "%d ", e->src->cuid);
2072 bitmap_set_bit (must_precede, e->src->cuid);
2075 if (dump_file)
2076 fprintf (dump_file, "\nmust_follow: ");
2078 /* Instead of checking if:
2079 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2080 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2081 last_cycle_in_window)
2082 && e->latency == 0
2083 we use the fact that latency is non-negative:
2084 SCHED_TIME (e->dest) + (e->distance * ii) >=
2085 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2086 last_cycle_in_window
2087 and check only if
2088 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2089 for (e = u_node->out; e != 0; e = e->next_out)
2090 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2091 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2092 last_cycle_in_window))
2094 if (dump_file)
2095 fprintf (dump_file, "%d ", e->dest->cuid);
2097 bitmap_set_bit (must_follow, e->dest->cuid);
2100 if (dump_file)
2101 fprintf (dump_file, "\n");
2104 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2105 parameters to decide if that's possible:
2106 PS - The partial schedule.
2107 U - The serial number of U_NODE.
2108 NUM_SPLITS - The number of row splits made so far.
2109 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2110 the first row of the scheduling window)
2111 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2112 last row of the scheduling window) */
2114 static bool
2115 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2116 int u, int cycle, sbitmap sched_nodes,
2117 int *num_splits, sbitmap must_precede,
2118 sbitmap must_follow)
2120 ps_insn_ptr psi;
2121 bool success = 0;
2123 verify_partial_schedule (ps, sched_nodes);
2124 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2125 if (psi)
2127 SCHED_TIME (u) = cycle;
2128 bitmap_set_bit (sched_nodes, u);
2129 success = 1;
2130 *num_splits = 0;
2131 if (dump_file)
2132 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2136 return success;
2139 /* This function implements the scheduling algorithm for SMS according to the
2140 above algorithm. */
2141 static partial_schedule_ptr
2142 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2144 int ii = mii;
2145 int i, c, success, num_splits = 0;
2146 int flush_and_start_over = true;
2147 int num_nodes = g->num_nodes;
2148 int start, end, step; /* Place together into one struct? */
2149 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
2150 sbitmap must_precede = sbitmap_alloc (num_nodes);
2151 sbitmap must_follow = sbitmap_alloc (num_nodes);
2152 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
2154 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2156 bitmap_ones (tobe_scheduled);
2157 bitmap_clear (sched_nodes);
2159 while (flush_and_start_over && (ii < maxii))
2162 if (dump_file)
2163 fprintf (dump_file, "Starting with ii=%d\n", ii);
2164 flush_and_start_over = false;
2165 bitmap_clear (sched_nodes);
2167 for (i = 0; i < num_nodes; i++)
2169 int u = nodes_order[i];
2170 ddg_node_ptr u_node = &ps->g->nodes[u];
2171 rtx insn = u_node->insn;
2173 if (!NONDEBUG_INSN_P (insn))
2175 bitmap_clear_bit (tobe_scheduled, u);
2176 continue;
2179 if (bitmap_bit_p (sched_nodes, u))
2180 continue;
2182 /* Try to get non-empty scheduling window. */
2183 success = 0;
2184 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2185 &step, &end) == 0)
2187 if (dump_file)
2188 fprintf (dump_file, "\nTrying to schedule node %d "
2189 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2190 (g->nodes[u].insn)), start, end, step);
2192 gcc_assert ((step > 0 && start < end)
2193 || (step < 0 && start > end));
2195 calculate_must_precede_follow (u_node, start, end, step, ii,
2196 sched_nodes, must_precede,
2197 must_follow);
2199 for (c = start; c != end; c += step)
2201 sbitmap tmp_precede, tmp_follow;
2203 set_must_precede_follow (&tmp_follow, must_follow,
2204 &tmp_precede, must_precede,
2205 c, start, end, step);
2206 success =
2207 try_scheduling_node_in_cycle (ps, u, c,
2208 sched_nodes,
2209 &num_splits, tmp_precede,
2210 tmp_follow);
2211 if (success)
2212 break;
2215 verify_partial_schedule (ps, sched_nodes);
2217 if (!success)
2219 int split_row;
2221 if (ii++ == maxii)
2222 break;
2224 if (num_splits >= MAX_SPLIT_NUM)
2226 num_splits = 0;
2227 flush_and_start_over = true;
2228 verify_partial_schedule (ps, sched_nodes);
2229 reset_partial_schedule (ps, ii);
2230 verify_partial_schedule (ps, sched_nodes);
2231 break;
2234 num_splits++;
2235 /* The scheduling window is exclusive of 'end'
2236 whereas compute_split_window() expects an inclusive,
2237 ordered range. */
2238 if (step == 1)
2239 split_row = compute_split_row (sched_nodes, start, end - 1,
2240 ps->ii, u_node);
2241 else
2242 split_row = compute_split_row (sched_nodes, end + 1, start,
2243 ps->ii, u_node);
2245 ps_insert_empty_row (ps, split_row, sched_nodes);
2246 i--; /* Go back and retry node i. */
2248 if (dump_file)
2249 fprintf (dump_file, "num_splits=%d\n", num_splits);
2252 /* ??? If (success), check register pressure estimates. */
2253 } /* Continue with next node. */
2254 } /* While flush_and_start_over. */
2255 if (ii >= maxii)
2257 free_partial_schedule (ps);
2258 ps = NULL;
2260 else
2261 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2263 sbitmap_free (sched_nodes);
2264 sbitmap_free (must_precede);
2265 sbitmap_free (must_follow);
2266 sbitmap_free (tobe_scheduled);
2268 return ps;
2271 /* This function inserts a new empty row into PS at the position
2272 according to SPLITROW, keeping all already scheduled instructions
2273 intact and updating their SCHED_TIME and cycle accordingly. */
2274 static void
2275 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2276 sbitmap sched_nodes)
2278 ps_insn_ptr crr_insn;
2279 ps_insn_ptr *rows_new;
2280 int ii = ps->ii;
2281 int new_ii = ii + 1;
2282 int row;
2283 int *rows_length_new;
2285 verify_partial_schedule (ps, sched_nodes);
2287 /* We normalize sched_time and rotate ps to have only non-negative sched
2288 times, for simplicity of updating cycles after inserting new row. */
2289 split_row -= ps->min_cycle;
2290 split_row = SMODULO (split_row, ii);
2291 if (dump_file)
2292 fprintf (dump_file, "split_row=%d\n", split_row);
2294 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2295 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2297 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2298 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2299 for (row = 0; row < split_row; row++)
2301 rows_new[row] = ps->rows[row];
2302 rows_length_new[row] = ps->rows_length[row];
2303 ps->rows[row] = NULL;
2304 for (crr_insn = rows_new[row];
2305 crr_insn; crr_insn = crr_insn->next_in_row)
2307 int u = crr_insn->id;
2308 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2310 SCHED_TIME (u) = new_time;
2311 crr_insn->cycle = new_time;
2312 SCHED_ROW (u) = new_time % new_ii;
2313 SCHED_STAGE (u) = new_time / new_ii;
2318 rows_new[split_row] = NULL;
2320 for (row = split_row; row < ii; row++)
2322 rows_new[row + 1] = ps->rows[row];
2323 rows_length_new[row + 1] = ps->rows_length[row];
2324 ps->rows[row] = NULL;
2325 for (crr_insn = rows_new[row + 1];
2326 crr_insn; crr_insn = crr_insn->next_in_row)
2328 int u = crr_insn->id;
2329 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2331 SCHED_TIME (u) = new_time;
2332 crr_insn->cycle = new_time;
2333 SCHED_ROW (u) = new_time % new_ii;
2334 SCHED_STAGE (u) = new_time / new_ii;
2338 /* Updating ps. */
2339 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2340 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2341 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2342 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2343 free (ps->rows);
2344 ps->rows = rows_new;
2345 free (ps->rows_length);
2346 ps->rows_length = rows_length_new;
2347 ps->ii = new_ii;
2348 gcc_assert (ps->min_cycle >= 0);
2350 verify_partial_schedule (ps, sched_nodes);
2352 if (dump_file)
2353 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2354 ps->max_cycle);
2357 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2358 UP which are the boundaries of it's scheduling window; compute using
2359 SCHED_NODES and II a row in the partial schedule that can be split
2360 which will separate a critical predecessor from a critical successor
2361 thereby expanding the window, and return it. */
2362 static int
2363 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2364 ddg_node_ptr u_node)
2366 ddg_edge_ptr e;
2367 int lower = INT_MIN, upper = INT_MAX;
2368 int crit_pred = -1;
2369 int crit_succ = -1;
2370 int crit_cycle;
2372 for (e = u_node->in; e != 0; e = e->next_in)
2374 int v = e->src->cuid;
2376 if (bitmap_bit_p (sched_nodes, v)
2377 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2378 if (SCHED_TIME (v) > lower)
2380 crit_pred = v;
2381 lower = SCHED_TIME (v);
2385 if (crit_pred >= 0)
2387 crit_cycle = SCHED_TIME (crit_pred) + 1;
2388 return SMODULO (crit_cycle, ii);
2391 for (e = u_node->out; e != 0; e = e->next_out)
2393 int v = e->dest->cuid;
2395 if (bitmap_bit_p (sched_nodes, v)
2396 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2397 if (SCHED_TIME (v) < upper)
2399 crit_succ = v;
2400 upper = SCHED_TIME (v);
2404 if (crit_succ >= 0)
2406 crit_cycle = SCHED_TIME (crit_succ);
2407 return SMODULO (crit_cycle, ii);
2410 if (dump_file)
2411 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2413 return SMODULO ((low + up + 1) / 2, ii);
2416 static void
2417 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2419 int row;
2420 ps_insn_ptr crr_insn;
2422 for (row = 0; row < ps->ii; row++)
2424 int length = 0;
2426 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2428 int u = crr_insn->id;
2430 length++;
2431 gcc_assert (bitmap_bit_p (sched_nodes, u));
2432 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2433 popcount (sched_nodes) == number of insns in ps. */
2434 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2435 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2438 gcc_assert (ps->rows_length[row] == length);
2443 /* This page implements the algorithm for ordering the nodes of a DDG
2444 for modulo scheduling, activated through the
2445 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2447 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2448 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2449 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2450 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2451 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2452 #define DEPTH(x) (ASAP ((x)))
2454 typedef struct node_order_params * nopa;
2456 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2457 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2458 static nopa calculate_order_params (ddg_ptr, int, int *);
2459 static int find_max_asap (ddg_ptr, sbitmap);
2460 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2461 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2463 enum sms_direction {BOTTOMUP, TOPDOWN};
2465 struct node_order_params
2467 int asap;
2468 int alap;
2469 int height;
2472 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2473 static void
2474 check_nodes_order (int *node_order, int num_nodes)
2476 int i;
2477 sbitmap tmp = sbitmap_alloc (num_nodes);
2479 bitmap_clear (tmp);
2481 if (dump_file)
2482 fprintf (dump_file, "SMS final nodes order: \n");
2484 for (i = 0; i < num_nodes; i++)
2486 int u = node_order[i];
2488 if (dump_file)
2489 fprintf (dump_file, "%d ", u);
2490 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2492 bitmap_set_bit (tmp, u);
2495 if (dump_file)
2496 fprintf (dump_file, "\n");
2498 sbitmap_free (tmp);
2501 /* Order the nodes of G for scheduling and pass the result in
2502 NODE_ORDER. Also set aux.count of each node to ASAP.
2503 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2504 static int
2505 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2507 int i;
2508 int rec_mii = 0;
2509 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2511 nopa nops = calculate_order_params (g, mii, pmax_asap);
2513 if (dump_file)
2514 print_sccs (dump_file, sccs, g);
2516 order_nodes_of_sccs (sccs, node_order);
2518 if (sccs->num_sccs > 0)
2519 /* First SCC has the largest recurrence_length. */
2520 rec_mii = sccs->sccs[0]->recurrence_length;
2522 /* Save ASAP before destroying node_order_params. */
2523 for (i = 0; i < g->num_nodes; i++)
2525 ddg_node_ptr v = &g->nodes[i];
2526 v->aux.count = ASAP (v);
2529 free (nops);
2530 free_ddg_all_sccs (sccs);
2531 check_nodes_order (node_order, g->num_nodes);
2533 return rec_mii;
2536 static void
2537 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2539 int i, pos = 0;
2540 ddg_ptr g = all_sccs->ddg;
2541 int num_nodes = g->num_nodes;
2542 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2543 sbitmap on_path = sbitmap_alloc (num_nodes);
2544 sbitmap tmp = sbitmap_alloc (num_nodes);
2545 sbitmap ones = sbitmap_alloc (num_nodes);
2547 bitmap_clear (prev_sccs);
2548 bitmap_ones (ones);
2550 /* Perform the node ordering starting from the SCC with the highest recMII.
2551 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2552 for (i = 0; i < all_sccs->num_sccs; i++)
2554 ddg_scc_ptr scc = all_sccs->sccs[i];
2556 /* Add nodes on paths from previous SCCs to the current SCC. */
2557 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2558 bitmap_ior (tmp, scc->nodes, on_path);
2560 /* Add nodes on paths from the current SCC to previous SCCs. */
2561 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2562 bitmap_ior (tmp, tmp, on_path);
2564 /* Remove nodes of previous SCCs from current extended SCC. */
2565 bitmap_and_compl (tmp, tmp, prev_sccs);
2567 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2568 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2571 /* Handle the remaining nodes that do not belong to any scc. Each call
2572 to order_nodes_in_scc handles a single connected component. */
2573 while (pos < g->num_nodes)
2575 bitmap_and_compl (tmp, ones, prev_sccs);
2576 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2578 sbitmap_free (prev_sccs);
2579 sbitmap_free (on_path);
2580 sbitmap_free (tmp);
2581 sbitmap_free (ones);
2584 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2585 static struct node_order_params *
2586 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2588 int u;
2589 int max_asap;
2590 int num_nodes = g->num_nodes;
2591 ddg_edge_ptr e;
2592 /* Allocate a place to hold ordering params for each node in the DDG. */
2593 nopa node_order_params_arr;
2595 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2596 node_order_params_arr = (nopa) xcalloc (num_nodes,
2597 sizeof (struct node_order_params));
2599 /* Set the aux pointer of each node to point to its order_params structure. */
2600 for (u = 0; u < num_nodes; u++)
2601 g->nodes[u].aux.info = &node_order_params_arr[u];
2603 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2604 calculate ASAP, ALAP, mobility, distance, and height for each node
2605 in the dependence (direct acyclic) graph. */
2607 /* We assume that the nodes in the array are in topological order. */
2609 max_asap = 0;
2610 for (u = 0; u < num_nodes; u++)
2612 ddg_node_ptr u_node = &g->nodes[u];
2614 ASAP (u_node) = 0;
2615 for (e = u_node->in; e; e = e->next_in)
2616 if (e->distance == 0)
2617 ASAP (u_node) = MAX (ASAP (u_node),
2618 ASAP (e->src) + e->latency);
2619 max_asap = MAX (max_asap, ASAP (u_node));
2622 for (u = num_nodes - 1; u > -1; u--)
2624 ddg_node_ptr u_node = &g->nodes[u];
2626 ALAP (u_node) = max_asap;
2627 HEIGHT (u_node) = 0;
2628 for (e = u_node->out; e; e = e->next_out)
2629 if (e->distance == 0)
2631 ALAP (u_node) = MIN (ALAP (u_node),
2632 ALAP (e->dest) - e->latency);
2633 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2634 HEIGHT (e->dest) + e->latency);
2637 if (dump_file)
2639 fprintf (dump_file, "\nOrder params\n");
2640 for (u = 0; u < num_nodes; u++)
2642 ddg_node_ptr u_node = &g->nodes[u];
2644 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2645 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2649 *pmax_asap = max_asap;
2650 return node_order_params_arr;
2653 static int
2654 find_max_asap (ddg_ptr g, sbitmap nodes)
2656 unsigned int u = 0;
2657 int max_asap = -1;
2658 int result = -1;
2659 sbitmap_iterator sbi;
2661 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2663 ddg_node_ptr u_node = &g->nodes[u];
2665 if (max_asap < ASAP (u_node))
2667 max_asap = ASAP (u_node);
2668 result = u;
2671 return result;
2674 static int
2675 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2677 unsigned int u = 0;
2678 int max_hv = -1;
2679 int min_mob = INT_MAX;
2680 int result = -1;
2681 sbitmap_iterator sbi;
2683 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2685 ddg_node_ptr u_node = &g->nodes[u];
2687 if (max_hv < HEIGHT (u_node))
2689 max_hv = HEIGHT (u_node);
2690 min_mob = MOB (u_node);
2691 result = u;
2693 else if ((max_hv == HEIGHT (u_node))
2694 && (min_mob > MOB (u_node)))
2696 min_mob = MOB (u_node);
2697 result = u;
2700 return result;
2703 static int
2704 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2706 unsigned int u = 0;
2707 int max_dv = -1;
2708 int min_mob = INT_MAX;
2709 int result = -1;
2710 sbitmap_iterator sbi;
2712 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2714 ddg_node_ptr u_node = &g->nodes[u];
2716 if (max_dv < DEPTH (u_node))
2718 max_dv = DEPTH (u_node);
2719 min_mob = MOB (u_node);
2720 result = u;
2722 else if ((max_dv == DEPTH (u_node))
2723 && (min_mob > MOB (u_node)))
2725 min_mob = MOB (u_node);
2726 result = u;
2729 return result;
2732 /* Places the nodes of SCC into the NODE_ORDER array starting
2733 at position POS, according to the SMS ordering algorithm.
2734 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2735 the NODE_ORDER array, starting from position zero. */
2736 static int
2737 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2738 int * node_order, int pos)
2740 enum sms_direction dir;
2741 int num_nodes = g->num_nodes;
2742 sbitmap workset = sbitmap_alloc (num_nodes);
2743 sbitmap tmp = sbitmap_alloc (num_nodes);
2744 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2745 sbitmap predecessors = sbitmap_alloc (num_nodes);
2746 sbitmap successors = sbitmap_alloc (num_nodes);
2748 bitmap_clear (predecessors);
2749 find_predecessors (predecessors, g, nodes_ordered);
2751 bitmap_clear (successors);
2752 find_successors (successors, g, nodes_ordered);
2754 bitmap_clear (tmp);
2755 if (bitmap_and (tmp, predecessors, scc))
2757 bitmap_copy (workset, tmp);
2758 dir = BOTTOMUP;
2760 else if (bitmap_and (tmp, successors, scc))
2762 bitmap_copy (workset, tmp);
2763 dir = TOPDOWN;
2765 else
2767 int u;
2769 bitmap_clear (workset);
2770 if ((u = find_max_asap (g, scc)) >= 0)
2771 bitmap_set_bit (workset, u);
2772 dir = BOTTOMUP;
2775 bitmap_clear (zero_bitmap);
2776 while (!bitmap_equal_p (workset, zero_bitmap))
2778 int v;
2779 ddg_node_ptr v_node;
2780 sbitmap v_node_preds;
2781 sbitmap v_node_succs;
2783 if (dir == TOPDOWN)
2785 while (!bitmap_equal_p (workset, zero_bitmap))
2787 v = find_max_hv_min_mob (g, workset);
2788 v_node = &g->nodes[v];
2789 node_order[pos++] = v;
2790 v_node_succs = NODE_SUCCESSORS (v_node);
2791 bitmap_and (tmp, v_node_succs, scc);
2793 /* Don't consider the already ordered successors again. */
2794 bitmap_and_compl (tmp, tmp, nodes_ordered);
2795 bitmap_ior (workset, workset, tmp);
2796 bitmap_clear_bit (workset, v);
2797 bitmap_set_bit (nodes_ordered, v);
2799 dir = BOTTOMUP;
2800 bitmap_clear (predecessors);
2801 find_predecessors (predecessors, g, nodes_ordered);
2802 bitmap_and (workset, predecessors, scc);
2804 else
2806 while (!bitmap_equal_p (workset, zero_bitmap))
2808 v = find_max_dv_min_mob (g, workset);
2809 v_node = &g->nodes[v];
2810 node_order[pos++] = v;
2811 v_node_preds = NODE_PREDECESSORS (v_node);
2812 bitmap_and (tmp, v_node_preds, scc);
2814 /* Don't consider the already ordered predecessors again. */
2815 bitmap_and_compl (tmp, tmp, nodes_ordered);
2816 bitmap_ior (workset, workset, tmp);
2817 bitmap_clear_bit (workset, v);
2818 bitmap_set_bit (nodes_ordered, v);
2820 dir = TOPDOWN;
2821 bitmap_clear (successors);
2822 find_successors (successors, g, nodes_ordered);
2823 bitmap_and (workset, successors, scc);
2826 sbitmap_free (tmp);
2827 sbitmap_free (workset);
2828 sbitmap_free (zero_bitmap);
2829 sbitmap_free (predecessors);
2830 sbitmap_free (successors);
2831 return pos;
2835 /* This page contains functions for manipulating partial-schedules during
2836 modulo scheduling. */
2838 /* Create a partial schedule and allocate a memory to hold II rows. */
2840 static partial_schedule_ptr
2841 create_partial_schedule (int ii, ddg_ptr g, int history)
2843 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2844 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2845 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2846 ps->reg_moves.create (0);
2847 ps->ii = ii;
2848 ps->history = history;
2849 ps->min_cycle = INT_MAX;
2850 ps->max_cycle = INT_MIN;
2851 ps->g = g;
2853 return ps;
2856 /* Free the PS_INSNs in rows array of the given partial schedule.
2857 ??? Consider caching the PS_INSN's. */
2858 static void
2859 free_ps_insns (partial_schedule_ptr ps)
2861 int i;
2863 for (i = 0; i < ps->ii; i++)
2865 while (ps->rows[i])
2867 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2869 free (ps->rows[i]);
2870 ps->rows[i] = ps_insn;
2872 ps->rows[i] = NULL;
2876 /* Free all the memory allocated to the partial schedule. */
2878 static void
2879 free_partial_schedule (partial_schedule_ptr ps)
2881 ps_reg_move_info *move;
2882 unsigned int i;
2884 if (!ps)
2885 return;
2887 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2888 sbitmap_free (move->uses);
2889 ps->reg_moves.release ();
2891 free_ps_insns (ps);
2892 free (ps->rows);
2893 free (ps->rows_length);
2894 free (ps);
2897 /* Clear the rows array with its PS_INSNs, and create a new one with
2898 NEW_II rows. */
2900 static void
2901 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2903 if (!ps)
2904 return;
2905 free_ps_insns (ps);
2906 if (new_ii == ps->ii)
2907 return;
2908 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2909 * sizeof (ps_insn_ptr));
2910 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2911 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2912 memset (ps->rows_length, 0, new_ii * sizeof (int));
2913 ps->ii = new_ii;
2914 ps->min_cycle = INT_MAX;
2915 ps->max_cycle = INT_MIN;
2918 /* Prints the partial schedule as an ii rows array, for each rows
2919 print the ids of the insns in it. */
2920 void
2921 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2923 int i;
2925 for (i = 0; i < ps->ii; i++)
2927 ps_insn_ptr ps_i = ps->rows[i];
2929 fprintf (dump, "\n[ROW %d ]: ", i);
2930 while (ps_i)
2932 rtx insn = ps_rtl_insn (ps, ps_i->id);
2934 if (JUMP_P (insn))
2935 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2936 else
2937 fprintf (dump, "%d, ", INSN_UID (insn));
2939 ps_i = ps_i->next_in_row;
2944 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2945 static ps_insn_ptr
2946 create_ps_insn (int id, int cycle)
2948 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2950 ps_i->id = id;
2951 ps_i->next_in_row = NULL;
2952 ps_i->prev_in_row = NULL;
2953 ps_i->cycle = cycle;
2955 return ps_i;
2959 /* Removes the given PS_INSN from the partial schedule. */
2960 static void
2961 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2963 int row;
2965 gcc_assert (ps && ps_i);
2967 row = SMODULO (ps_i->cycle, ps->ii);
2968 if (! ps_i->prev_in_row)
2970 gcc_assert (ps_i == ps->rows[row]);
2971 ps->rows[row] = ps_i->next_in_row;
2972 if (ps->rows[row])
2973 ps->rows[row]->prev_in_row = NULL;
2975 else
2977 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2978 if (ps_i->next_in_row)
2979 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2982 ps->rows_length[row] -= 1;
2983 free (ps_i);
2984 return;
2987 /* Unlike what literature describes for modulo scheduling (which focuses
2988 on VLIW machines) the order of the instructions inside a cycle is
2989 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2990 where the current instruction should go relative to the already
2991 scheduled instructions in the given cycle. Go over these
2992 instructions and find the first possible column to put it in. */
2993 static bool
2994 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2995 sbitmap must_precede, sbitmap must_follow)
2997 ps_insn_ptr next_ps_i;
2998 ps_insn_ptr first_must_follow = NULL;
2999 ps_insn_ptr last_must_precede = NULL;
3000 ps_insn_ptr last_in_row = NULL;
3001 int row;
3003 if (! ps_i)
3004 return false;
3006 row = SMODULO (ps_i->cycle, ps->ii);
3008 /* Find the first must follow and the last must precede
3009 and insert the node immediately after the must precede
3010 but make sure that it there is no must follow after it. */
3011 for (next_ps_i = ps->rows[row];
3012 next_ps_i;
3013 next_ps_i = next_ps_i->next_in_row)
3015 if (must_follow
3016 && bitmap_bit_p (must_follow, next_ps_i->id)
3017 && ! first_must_follow)
3018 first_must_follow = next_ps_i;
3019 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
3021 /* If we have already met a node that must follow, then
3022 there is no possible column. */
3023 if (first_must_follow)
3024 return false;
3025 else
3026 last_must_precede = next_ps_i;
3028 /* The closing branch must be the last in the row. */
3029 if (must_precede
3030 && bitmap_bit_p (must_precede, next_ps_i->id)
3031 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3032 return false;
3034 last_in_row = next_ps_i;
3037 /* The closing branch is scheduled as well. Make sure there is no
3038 dependent instruction after it as the branch should be the last
3039 instruction in the row. */
3040 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3042 if (first_must_follow)
3043 return false;
3044 if (last_in_row)
3046 /* Make the branch the last in the row. New instructions
3047 will be inserted at the beginning of the row or after the
3048 last must_precede instruction thus the branch is guaranteed
3049 to remain the last instruction in the row. */
3050 last_in_row->next_in_row = ps_i;
3051 ps_i->prev_in_row = last_in_row;
3052 ps_i->next_in_row = NULL;
3054 else
3055 ps->rows[row] = ps_i;
3056 return true;
3059 /* Now insert the node after INSERT_AFTER_PSI. */
3061 if (! last_must_precede)
3063 ps_i->next_in_row = ps->rows[row];
3064 ps_i->prev_in_row = NULL;
3065 if (ps_i->next_in_row)
3066 ps_i->next_in_row->prev_in_row = ps_i;
3067 ps->rows[row] = ps_i;
3069 else
3071 ps_i->next_in_row = last_must_precede->next_in_row;
3072 last_must_precede->next_in_row = ps_i;
3073 ps_i->prev_in_row = last_must_precede;
3074 if (ps_i->next_in_row)
3075 ps_i->next_in_row->prev_in_row = ps_i;
3078 return true;
3081 /* Advances the PS_INSN one column in its current row; returns false
3082 in failure and true in success. Bit N is set in MUST_FOLLOW if
3083 the node with cuid N must be come after the node pointed to by
3084 PS_I when scheduled in the same cycle. */
3085 static int
3086 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3087 sbitmap must_follow)
3089 ps_insn_ptr prev, next;
3090 int row;
3092 if (!ps || !ps_i)
3093 return false;
3095 row = SMODULO (ps_i->cycle, ps->ii);
3097 if (! ps_i->next_in_row)
3098 return false;
3100 /* Check if next_in_row is dependent on ps_i, both having same sched
3101 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3102 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3103 return false;
3105 /* Advance PS_I over its next_in_row in the doubly linked list. */
3106 prev = ps_i->prev_in_row;
3107 next = ps_i->next_in_row;
3109 if (ps_i == ps->rows[row])
3110 ps->rows[row] = next;
3112 ps_i->next_in_row = next->next_in_row;
3114 if (next->next_in_row)
3115 next->next_in_row->prev_in_row = ps_i;
3117 next->next_in_row = ps_i;
3118 ps_i->prev_in_row = next;
3120 next->prev_in_row = prev;
3121 if (prev)
3122 prev->next_in_row = next;
3124 return true;
3127 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3128 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3129 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3130 before/after (respectively) the node pointed to by PS_I when scheduled
3131 in the same cycle. */
3132 static ps_insn_ptr
3133 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3134 sbitmap must_precede, sbitmap must_follow)
3136 ps_insn_ptr ps_i;
3137 int row = SMODULO (cycle, ps->ii);
3139 if (ps->rows_length[row] >= issue_rate)
3140 return NULL;
3142 ps_i = create_ps_insn (id, cycle);
3144 /* Finds and inserts PS_I according to MUST_FOLLOW and
3145 MUST_PRECEDE. */
3146 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3148 free (ps_i);
3149 return NULL;
3152 ps->rows_length[row] += 1;
3153 return ps_i;
3156 /* Advance time one cycle. Assumes DFA is being used. */
3157 static void
3158 advance_one_cycle (void)
3160 if (targetm.sched.dfa_pre_cycle_insn)
3161 state_transition (curr_state,
3162 targetm.sched.dfa_pre_cycle_insn ());
3164 state_transition (curr_state, NULL);
3166 if (targetm.sched.dfa_post_cycle_insn)
3167 state_transition (curr_state,
3168 targetm.sched.dfa_post_cycle_insn ());
3173 /* Checks if PS has resource conflicts according to DFA, starting from
3174 FROM cycle to TO cycle; returns true if there are conflicts and false
3175 if there are no conflicts. Assumes DFA is being used. */
3176 static int
3177 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3179 int cycle;
3181 state_reset (curr_state);
3183 for (cycle = from; cycle <= to; cycle++)
3185 ps_insn_ptr crr_insn;
3186 /* Holds the remaining issue slots in the current row. */
3187 int can_issue_more = issue_rate;
3189 /* Walk through the DFA for the current row. */
3190 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3191 crr_insn;
3192 crr_insn = crr_insn->next_in_row)
3194 rtx insn = ps_rtl_insn (ps, crr_insn->id);
3196 if (!NONDEBUG_INSN_P (insn))
3197 continue;
3199 /* Check if there is room for the current insn. */
3200 if (!can_issue_more || state_dead_lock_p (curr_state))
3201 return true;
3203 /* Update the DFA state and return with failure if the DFA found
3204 resource conflicts. */
3205 if (state_transition (curr_state, insn) >= 0)
3206 return true;
3208 if (targetm.sched.variable_issue)
3209 can_issue_more =
3210 targetm.sched.variable_issue (sched_dump, sched_verbose,
3211 insn, can_issue_more);
3212 /* A naked CLOBBER or USE generates no instruction, so don't
3213 let them consume issue slots. */
3214 else if (GET_CODE (PATTERN (insn)) != USE
3215 && GET_CODE (PATTERN (insn)) != CLOBBER)
3216 can_issue_more--;
3219 /* Advance the DFA to the next cycle. */
3220 advance_one_cycle ();
3222 return false;
3225 /* Checks if the given node causes resource conflicts when added to PS at
3226 cycle C. If not the node is added to PS and returned; otherwise zero
3227 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3228 cuid N must be come before/after (respectively) the node pointed to by
3229 PS_I when scheduled in the same cycle. */
3230 ps_insn_ptr
3231 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3232 int c, sbitmap must_precede,
3233 sbitmap must_follow)
3235 int has_conflicts = 0;
3236 ps_insn_ptr ps_i;
3238 /* First add the node to the PS, if this succeeds check for
3239 conflicts, trying different issue slots in the same row. */
3240 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3241 return NULL; /* Failed to insert the node at the given cycle. */
3243 has_conflicts = ps_has_conflicts (ps, c, c)
3244 || (ps->history > 0
3245 && ps_has_conflicts (ps,
3246 c - ps->history,
3247 c + ps->history));
3249 /* Try different issue slots to find one that the given node can be
3250 scheduled in without conflicts. */
3251 while (has_conflicts)
3253 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3254 break;
3255 has_conflicts = ps_has_conflicts (ps, c, c)
3256 || (ps->history > 0
3257 && ps_has_conflicts (ps,
3258 c - ps->history,
3259 c + ps->history));
3262 if (has_conflicts)
3264 remove_node_from_ps (ps, ps_i);
3265 return NULL;
3268 ps->min_cycle = MIN (ps->min_cycle, c);
3269 ps->max_cycle = MAX (ps->max_cycle, c);
3270 return ps_i;
3273 /* Calculate the stage count of the partial schedule PS. The calculation
3274 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3276 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3278 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3279 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3280 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3282 /* The calculation of stage count is done adding the number of stages
3283 before cycle zero and after cycle zero. */
3284 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3286 return stage_count;
3289 /* Rotate the rows of PS such that insns scheduled at time
3290 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3291 void
3292 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3294 int i, row, backward_rotates;
3295 int last_row = ps->ii - 1;
3297 if (start_cycle == 0)
3298 return;
3300 backward_rotates = SMODULO (start_cycle, ps->ii);
3302 /* Revisit later and optimize this into a single loop. */
3303 for (i = 0; i < backward_rotates; i++)
3305 ps_insn_ptr first_row = ps->rows[0];
3306 int first_row_length = ps->rows_length[0];
3308 for (row = 0; row < last_row; row++)
3310 ps->rows[row] = ps->rows[row + 1];
3311 ps->rows_length[row] = ps->rows_length[row + 1];
3314 ps->rows[last_row] = first_row;
3315 ps->rows_length[last_row] = first_row_length;
3318 ps->max_cycle -= start_cycle;
3319 ps->min_cycle -= start_cycle;
3322 #endif /* INSN_SCHEDULING */
3324 static bool
3325 gate_handle_sms (void)
3327 return (optimize > 0 && flag_modulo_sched);
3331 /* Run instruction scheduler. */
3332 /* Perform SMS module scheduling. */
3333 static unsigned int
3334 rest_of_handle_sms (void)
3336 #ifdef INSN_SCHEDULING
3337 basic_block bb;
3339 /* Collect loop information to be used in SMS. */
3340 cfg_layout_initialize (0);
3341 sms_schedule ();
3343 /* Update the life information, because we add pseudos. */
3344 max_regno = max_reg_num ();
3346 /* Finalize layout changes. */
3347 FOR_EACH_BB (bb)
3348 if (bb->next_bb != EXIT_BLOCK_PTR)
3349 bb->aux = bb->next_bb;
3350 free_dominance_info (CDI_DOMINATORS);
3351 cfg_layout_finalize ();
3352 #endif /* INSN_SCHEDULING */
3353 return 0;
3356 namespace {
3358 const pass_data pass_data_sms =
3360 RTL_PASS, /* type */
3361 "sms", /* name */
3362 OPTGROUP_NONE, /* optinfo_flags */
3363 true, /* has_gate */
3364 true, /* has_execute */
3365 TV_SMS, /* tv_id */
3366 0, /* properties_required */
3367 0, /* properties_provided */
3368 0, /* properties_destroyed */
3369 0, /* todo_flags_start */
3370 ( TODO_df_finish | TODO_verify_flow
3371 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
3374 class pass_sms : public rtl_opt_pass
3376 public:
3377 pass_sms(gcc::context *ctxt)
3378 : rtl_opt_pass(pass_data_sms, ctxt)
3381 /* opt_pass methods: */
3382 bool gate () { return gate_handle_sms (); }
3383 unsigned int execute () { return rest_of_handle_sms (); }
3385 }; // class pass_sms
3387 } // anon namespace
3389 rtl_opt_pass *
3390 make_pass_sms (gcc::context *ctxt)
3392 return new pass_sms (ctxt);