* gcc.c (getenv_spec_function): New function.
[official-gcc.git] / gcc / ada / s-taprop-vxworks.adb
blob6874fd53c515b1cae3c430c16f8670e1fb0f1e5d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This is the VxWorks version of this package
36 -- This package contains all the GNULL primitives that interface directly
37 -- with the underlying OS.
39 pragma Polling (Off);
40 -- Turn off polling, we do not want ATC polling to take place during
41 -- tasking operations. It causes infinite loops and other problems.
43 with System.Tasking.Debug;
44 -- used for Known_Tasks
46 with System.Interrupt_Management;
47 -- used for Keep_Unmasked
48 -- Abort_Task_Signal
49 -- Signal_ID
50 -- Initialize_Interrupts
52 with Interfaces.C;
54 with System.Soft_Links;
55 -- used for Abort_Defer/Undefer
57 -- We use System.Soft_Links instead of System.Tasking.Initialization
58 -- because the later is a higher level package that we shouldn't depend on.
59 -- For example when using the restricted run time, it is replaced by
60 -- System.Tasking.Restricted.Stages.
62 with Unchecked_Conversion;
63 with Unchecked_Deallocation;
65 package body System.Task_Primitives.Operations is
67 package SSL renames System.Soft_Links;
69 use System.Tasking.Debug;
70 use System.Tasking;
71 use System.OS_Interface;
72 use System.Parameters;
73 use type Interfaces.C.int;
75 subtype int is System.OS_Interface.int;
77 Relative : constant := 0;
79 ----------------
80 -- Local Data --
81 ----------------
83 -- The followings are logically constants, but need to be initialized at
84 -- run time.
86 Single_RTS_Lock : aliased RTS_Lock;
87 -- This is a lock to allow only one thread of control in the RTS at a
88 -- time; it is used to execute in mutual exclusion from all other tasks.
89 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
91 Environment_Task_Id : Task_Id;
92 -- A variable to hold Task_Id for the environment task
94 Unblocked_Signal_Mask : aliased sigset_t;
95 -- The set of signals that should unblocked in all tasks
97 -- The followings are internal configuration constants needed
99 Time_Slice_Val : Integer;
100 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
102 Locking_Policy : Character;
103 pragma Import (C, Locking_Policy, "__gl_locking_policy");
105 Dispatching_Policy : Character;
106 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
108 function Get_Policy (Prio : System.Any_Priority) return Character;
109 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
110 -- Get priority specific dispatching policy
112 Mutex_Protocol : Priority_Type;
114 Foreign_Task_Elaborated : aliased Boolean := True;
115 -- Used to identified fake tasks (i.e., non-Ada Threads)
117 --------------------
118 -- Local Packages --
119 --------------------
121 package Specific is
123 procedure Initialize;
124 pragma Inline (Initialize);
125 -- Initialize task specific data
127 function Is_Valid_Task return Boolean;
128 pragma Inline (Is_Valid_Task);
129 -- Does executing thread have a TCB?
131 procedure Set (Self_Id : Task_Id);
132 pragma Inline (Set);
133 -- Set the self id for the current task
135 procedure Delete;
136 pragma Inline (Delete);
137 -- Delete the task specific data associated with the current task
139 function Self return Task_Id;
140 pragma Inline (Self);
141 -- Return a pointer to the Ada Task Control Block of the calling task
143 end Specific;
145 package body Specific is separate;
146 -- The body of this package is target specific
148 ---------------------------------
149 -- Support for foreign threads --
150 ---------------------------------
152 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
153 -- Allocate and Initialize a new ATCB for the current Thread
155 function Register_Foreign_Thread
156 (Thread : Thread_Id) return Task_Id is separate;
158 -----------------------
159 -- Local Subprograms --
160 -----------------------
162 procedure Abort_Handler (signo : Signal);
163 -- Handler for the abort (SIGABRT) signal to handle asynchronous abort
165 procedure Install_Signal_Handlers;
166 -- Install the default signal handlers for the current task
168 function To_Address is new Unchecked_Conversion (Task_Id, System.Address);
170 -------------------
171 -- Abort_Handler --
172 -------------------
174 procedure Abort_Handler (signo : Signal) is
175 pragma Unreferenced (signo);
177 Self_ID : constant Task_Id := Self;
178 Result : int;
179 Old_Set : aliased sigset_t;
181 begin
182 -- It is not safe to raise an exception when using ZCX and the GCC
183 -- exception handling mechanism.
185 if ZCX_By_Default and then GCC_ZCX_Support then
186 return;
187 end if;
189 if Self_ID.Deferral_Level = 0
190 and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
191 and then not Self_ID.Aborting
192 then
193 Self_ID.Aborting := True;
195 -- Make sure signals used for RTS internal purpose are unmasked
197 Result := pthread_sigmask (SIG_UNBLOCK,
198 Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
199 pragma Assert (Result = 0);
201 raise Standard'Abort_Signal;
202 end if;
203 end Abort_Handler;
205 -----------------
206 -- Stack_Guard --
207 -----------------
209 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
210 pragma Unreferenced (T);
211 pragma Unreferenced (On);
213 begin
214 -- Nothing needed (why not???)
216 null;
217 end Stack_Guard;
219 -------------------
220 -- Get_Thread_Id --
221 -------------------
223 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
224 begin
225 return T.Common.LL.Thread;
226 end Get_Thread_Id;
228 ----------
229 -- Self --
230 ----------
232 function Self return Task_Id renames Specific.Self;
234 -----------------------------
235 -- Install_Signal_Handlers --
236 -----------------------------
238 procedure Install_Signal_Handlers is
239 act : aliased struct_sigaction;
240 old_act : aliased struct_sigaction;
241 Tmp_Set : aliased sigset_t;
242 Result : int;
244 begin
245 act.sa_flags := 0;
246 act.sa_handler := Abort_Handler'Address;
248 Result := sigemptyset (Tmp_Set'Access);
249 pragma Assert (Result = 0);
250 act.sa_mask := Tmp_Set;
252 Result :=
253 sigaction
254 (Signal (Interrupt_Management.Abort_Task_Signal),
255 act'Unchecked_Access,
256 old_act'Unchecked_Access);
257 pragma Assert (Result = 0);
259 Interrupt_Management.Initialize_Interrupts;
260 end Install_Signal_Handlers;
262 ---------------------
263 -- Initialize_Lock --
264 ---------------------
266 procedure Initialize_Lock (Prio : System.Any_Priority; L : access Lock) is
267 begin
268 L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
269 L.Prio_Ceiling := int (Prio);
270 L.Protocol := Mutex_Protocol;
271 pragma Assert (L.Mutex /= 0);
272 end Initialize_Lock;
274 procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
275 pragma Unreferenced (Level);
277 begin
278 L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
279 L.Prio_Ceiling := int (System.Any_Priority'Last);
280 L.Protocol := Mutex_Protocol;
281 pragma Assert (L.Mutex /= 0);
282 end Initialize_Lock;
284 -------------------
285 -- Finalize_Lock --
286 -------------------
288 procedure Finalize_Lock (L : access Lock) is
289 Result : int;
290 begin
291 Result := semDelete (L.Mutex);
292 pragma Assert (Result = 0);
293 end Finalize_Lock;
295 procedure Finalize_Lock (L : access RTS_Lock) is
296 Result : int;
297 begin
298 Result := semDelete (L.Mutex);
299 pragma Assert (Result = 0);
300 end Finalize_Lock;
302 ----------------
303 -- Write_Lock --
304 ----------------
306 procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
307 Result : int;
308 begin
309 if L.Protocol = Prio_Protect
310 and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
311 then
312 Ceiling_Violation := True;
313 return;
314 else
315 Ceiling_Violation := False;
316 end if;
318 Result := semTake (L.Mutex, WAIT_FOREVER);
319 pragma Assert (Result = 0);
320 end Write_Lock;
322 procedure Write_Lock
323 (L : access RTS_Lock;
324 Global_Lock : Boolean := False)
326 Result : int;
327 begin
328 if not Single_Lock or else Global_Lock then
329 Result := semTake (L.Mutex, WAIT_FOREVER);
330 pragma Assert (Result = 0);
331 end if;
332 end Write_Lock;
334 procedure Write_Lock (T : Task_Id) is
335 Result : int;
336 begin
337 if not Single_Lock then
338 Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
339 pragma Assert (Result = 0);
340 end if;
341 end Write_Lock;
343 ---------------
344 -- Read_Lock --
345 ---------------
347 procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
348 begin
349 Write_Lock (L, Ceiling_Violation);
350 end Read_Lock;
352 ------------
353 -- Unlock --
354 ------------
356 procedure Unlock (L : access Lock) is
357 Result : int;
358 begin
359 Result := semGive (L.Mutex);
360 pragma Assert (Result = 0);
361 end Unlock;
363 procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
364 Result : int;
365 begin
366 if not Single_Lock or else Global_Lock then
367 Result := semGive (L.Mutex);
368 pragma Assert (Result = 0);
369 end if;
370 end Unlock;
372 procedure Unlock (T : Task_Id) is
373 Result : int;
374 begin
375 if not Single_Lock then
376 Result := semGive (T.Common.LL.L.Mutex);
377 pragma Assert (Result = 0);
378 end if;
379 end Unlock;
381 -----------
382 -- Sleep --
383 -----------
385 procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
386 pragma Unreferenced (Reason);
388 Result : int;
390 begin
391 pragma Assert (Self_ID = Self);
393 -- Release the mutex before sleeping
395 if Single_Lock then
396 Result := semGive (Single_RTS_Lock.Mutex);
397 else
398 Result := semGive (Self_ID.Common.LL.L.Mutex);
399 end if;
401 pragma Assert (Result = 0);
403 -- Perform a blocking operation to take the CV semaphore. Note that a
404 -- blocking operation in VxWorks will reenable task scheduling. When we
405 -- are no longer blocked and control is returned, task scheduling will
406 -- again be disabled.
408 Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
409 pragma Assert (Result = 0);
411 -- Take the mutex back
413 if Single_Lock then
414 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
415 else
416 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
417 end if;
419 pragma Assert (Result = 0);
420 end Sleep;
422 -----------------
423 -- Timed_Sleep --
424 -----------------
426 -- This is for use within the run-time system, so abort is assumed to be
427 -- already deferred, and the caller should be holding its own ATCB lock.
429 procedure Timed_Sleep
430 (Self_ID : Task_Id;
431 Time : Duration;
432 Mode : ST.Delay_Modes;
433 Reason : System.Tasking.Task_States;
434 Timedout : out Boolean;
435 Yielded : out Boolean)
437 pragma Unreferenced (Reason);
439 Orig : constant Duration := Monotonic_Clock;
440 Absolute : Duration;
441 Ticks : int;
442 Result : int;
443 Wakeup : Boolean := False;
445 begin
446 Timedout := False;
447 Yielded := True;
449 if Mode = Relative then
450 Absolute := Orig + Time;
452 -- Systematically add one since the first tick will delay *at most*
453 -- 1 / Rate_Duration seconds, so we need to add one to be on the
454 -- safe side.
456 Ticks := To_Clock_Ticks (Time);
458 if Ticks > 0 and then Ticks < int'Last then
459 Ticks := Ticks + 1;
460 end if;
462 else
463 Absolute := Time;
464 Ticks := To_Clock_Ticks (Time - Monotonic_Clock);
465 end if;
467 if Ticks > 0 then
468 loop
469 -- Release the mutex before sleeping
471 if Single_Lock then
472 Result := semGive (Single_RTS_Lock.Mutex);
473 else
474 Result := semGive (Self_ID.Common.LL.L.Mutex);
475 end if;
477 pragma Assert (Result = 0);
479 -- Perform a blocking operation to take the CV semaphore. Note
480 -- that a blocking operation in VxWorks will reenable task
481 -- scheduling. When we are no longer blocked and control is
482 -- returned, task scheduling will again be disabled.
484 Result := semTake (Self_ID.Common.LL.CV, Ticks);
486 if Result = 0 then
488 -- Somebody may have called Wakeup for us
490 Wakeup := True;
492 else
493 if errno /= S_objLib_OBJ_TIMEOUT then
494 Wakeup := True;
496 else
497 -- If Ticks = int'last, it was most probably truncated so
498 -- let's make another round after recomputing Ticks from
499 -- the the absolute time.
501 if Ticks /= int'Last then
502 Timedout := True;
503 else
504 Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
506 if Ticks < 0 then
507 Timedout := True;
508 end if;
509 end if;
510 end if;
511 end if;
513 -- Take the mutex back
515 if Single_Lock then
516 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
517 else
518 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
519 end if;
521 pragma Assert (Result = 0);
523 exit when Timedout or Wakeup;
524 end loop;
526 else
527 Timedout := True;
529 -- Should never hold a lock while yielding
531 if Single_Lock then
532 Result := semGive (Single_RTS_Lock.Mutex);
533 taskDelay (0);
534 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
536 else
537 Result := semGive (Self_ID.Common.LL.L.Mutex);
538 taskDelay (0);
539 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
540 end if;
541 end if;
542 end Timed_Sleep;
544 -----------------
545 -- Timed_Delay --
546 -----------------
548 -- This is for use in implementing delay statements, so we assume the
549 -- caller is holding no locks.
551 procedure Timed_Delay
552 (Self_ID : Task_Id;
553 Time : Duration;
554 Mode : ST.Delay_Modes)
556 Orig : constant Duration := Monotonic_Clock;
557 Absolute : Duration;
558 Ticks : int;
559 Timedout : Boolean;
560 Aborted : Boolean := False;
562 Result : int;
563 pragma Warnings (Off, Result);
565 begin
566 if Mode = Relative then
567 Absolute := Orig + Time;
568 Ticks := To_Clock_Ticks (Time);
570 if Ticks > 0 and then Ticks < int'Last then
572 -- First tick will delay anytime between 0 and 1 / sysClkRateGet
573 -- seconds, so we need to add one to be on the safe side.
575 Ticks := Ticks + 1;
576 end if;
578 else
579 Absolute := Time;
580 Ticks := To_Clock_Ticks (Time - Orig);
581 end if;
583 if Ticks > 0 then
585 -- Modifying State and Pending_Priority_Change, locking the TCB
587 if Single_Lock then
588 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
589 else
590 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
591 end if;
593 pragma Assert (Result = 0);
595 Self_ID.Common.State := Delay_Sleep;
596 Timedout := False;
598 loop
599 if Self_ID.Pending_Priority_Change then
600 Self_ID.Pending_Priority_Change := False;
601 Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
602 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
603 end if;
605 Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
607 -- Release the TCB before sleeping
609 if Single_Lock then
610 Result := semGive (Single_RTS_Lock.Mutex);
611 else
612 Result := semGive (Self_ID.Common.LL.L.Mutex);
613 end if;
614 pragma Assert (Result = 0);
616 exit when Aborted;
618 Result := semTake (Self_ID.Common.LL.CV, Ticks);
620 if Result /= 0 then
622 -- If Ticks = int'last, it was most probably truncated
623 -- so let's make another round after recomputing Ticks
624 -- from the the absolute time.
626 if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
627 Timedout := True;
628 else
629 Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
631 if Ticks < 0 then
632 Timedout := True;
633 end if;
634 end if;
635 end if;
637 -- Take back the lock after having slept, to protect further
638 -- access to Self_ID.
640 if Single_Lock then
641 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
642 else
643 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
644 end if;
646 pragma Assert (Result = 0);
648 exit when Timedout;
649 end loop;
651 Self_ID.Common.State := Runnable;
653 if Single_Lock then
654 Result := semGive (Single_RTS_Lock.Mutex);
655 else
656 Result := semGive (Self_ID.Common.LL.L.Mutex);
657 end if;
659 else
660 taskDelay (0);
661 end if;
662 end Timed_Delay;
664 ---------------------
665 -- Monotonic_Clock --
666 ---------------------
668 function Monotonic_Clock return Duration is
669 TS : aliased timespec;
670 Result : int;
671 begin
672 Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
673 pragma Assert (Result = 0);
674 return To_Duration (TS);
675 end Monotonic_Clock;
677 -------------------
678 -- RT_Resolution --
679 -------------------
681 function RT_Resolution return Duration is
682 begin
683 return 1.0 / Duration (sysClkRateGet);
684 end RT_Resolution;
686 ------------
687 -- Wakeup --
688 ------------
690 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
691 pragma Unreferenced (Reason);
692 Result : int;
693 begin
694 Result := semGive (T.Common.LL.CV);
695 pragma Assert (Result = 0);
696 end Wakeup;
698 -----------
699 -- Yield --
700 -----------
702 procedure Yield (Do_Yield : Boolean := True) is
703 pragma Unreferenced (Do_Yield);
704 Result : int;
705 pragma Unreferenced (Result);
706 begin
707 Result := taskDelay (0);
708 end Yield;
710 ------------------
711 -- Set_Priority --
712 ------------------
714 type Prio_Array_Type is array (System.Any_Priority) of Integer;
715 pragma Atomic_Components (Prio_Array_Type);
717 Prio_Array : Prio_Array_Type;
718 -- Global array containing the id of the currently running task for
719 -- each priority. Note that we assume that we are on a single processor
720 -- with run-till-blocked scheduling.
722 procedure Set_Priority
723 (T : Task_Id;
724 Prio : System.Any_Priority;
725 Loss_Of_Inheritance : Boolean := False)
727 Array_Item : Integer;
728 Result : int;
730 begin
731 Result :=
732 taskPrioritySet
733 (T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
734 pragma Assert (Result = 0);
736 if (Dispatching_Policy = 'F' or else Get_Policy (Prio) = 'F')
737 and then Loss_Of_Inheritance
738 and then Prio < T.Common.Current_Priority
739 then
740 -- Annex D requirement [RM D.2.2 par. 9]:
742 -- If the task drops its priority due to the loss of inherited
743 -- priority, it is added at the head of the ready queue for its
744 -- new active priority.
746 Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
747 Prio_Array (T.Common.Base_Priority) := Array_Item;
749 loop
750 -- Give some processes a chance to arrive
752 taskDelay (0);
754 -- Then wait for our turn to proceed
756 exit when Array_Item = Prio_Array (T.Common.Base_Priority)
757 or else Prio_Array (T.Common.Base_Priority) = 1;
758 end loop;
760 Prio_Array (T.Common.Base_Priority) :=
761 Prio_Array (T.Common.Base_Priority) - 1;
762 end if;
764 T.Common.Current_Priority := Prio;
765 end Set_Priority;
767 ------------------
768 -- Get_Priority --
769 ------------------
771 function Get_Priority (T : Task_Id) return System.Any_Priority is
772 begin
773 return T.Common.Current_Priority;
774 end Get_Priority;
776 ----------------
777 -- Enter_Task --
778 ----------------
780 procedure Enter_Task (Self_ID : Task_Id) is
781 procedure Init_Float;
782 pragma Import (C, Init_Float, "__gnat_init_float");
783 -- Properly initializes the FPU for PPC/MIPS systems
785 begin
786 -- Store the user-level task id in the Thread field (to be used
787 -- internally by the run-time system) and the kernel-level task id in
788 -- the LWP field (to be used by the debugger).
790 Self_ID.Common.LL.Thread := taskIdSelf;
791 Self_ID.Common.LL.LWP := getpid;
793 Specific.Set (Self_ID);
795 Init_Float;
797 -- Install the signal handlers
799 -- This is called for each task since there is no signal inheritance
800 -- between VxWorks tasks.
802 Install_Signal_Handlers;
804 Lock_RTS;
806 for J in Known_Tasks'Range loop
807 if Known_Tasks (J) = null then
808 Known_Tasks (J) := Self_ID;
809 Self_ID.Known_Tasks_Index := J;
810 exit;
811 end if;
812 end loop;
814 Unlock_RTS;
815 end Enter_Task;
817 --------------
818 -- New_ATCB --
819 --------------
821 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
822 begin
823 return new Ada_Task_Control_Block (Entry_Num);
824 end New_ATCB;
826 -------------------
827 -- Is_Valid_Task --
828 -------------------
830 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
832 -----------------------------
833 -- Register_Foreign_Thread --
834 -----------------------------
836 function Register_Foreign_Thread return Task_Id is
837 begin
838 if Is_Valid_Task then
839 return Self;
840 else
841 return Register_Foreign_Thread (taskIdSelf);
842 end if;
843 end Register_Foreign_Thread;
845 --------------------
846 -- Initialize_TCB --
847 --------------------
849 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
850 begin
851 Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
852 Self_ID.Common.LL.Thread := 0;
854 if Self_ID.Common.LL.CV = 0 then
855 Succeeded := False;
856 else
857 Succeeded := True;
859 if not Single_Lock then
860 Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
861 end if;
862 end if;
863 end Initialize_TCB;
865 -----------------
866 -- Create_Task --
867 -----------------
869 procedure Create_Task
870 (T : Task_Id;
871 Wrapper : System.Address;
872 Stack_Size : System.Parameters.Size_Type;
873 Priority : System.Any_Priority;
874 Succeeded : out Boolean)
876 Adjusted_Stack_Size : size_t;
877 begin
878 -- Ask for four extra bytes of stack space so that the ATCB pointer can
879 -- be stored below the stack limit, plus extra space for the frame of
880 -- Task_Wrapper. This is so the user gets the amount of stack requested
881 -- exclusive of the needs.
883 -- We also have to allocate n more bytes for the task name storage and
884 -- enough space for the Wind Task Control Block which is around 0x778
885 -- bytes. VxWorks also seems to carve out additional space, so use 2048
886 -- as a nice round number. We might want to increment to the nearest
887 -- page size in case we ever support VxVMI.
889 -- ??? - we should come back and visit this so we can set the task name
890 -- to something appropriate.
892 Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
894 -- Since the initial signal mask of a thread is inherited from the
895 -- creator, and the Environment task has all its signals masked, we do
896 -- not need to manipulate caller's signal mask at this point. All tasks
897 -- in RTS will have All_Tasks_Mask initially.
899 -- We now compute the VxWorks task name and options, then spawn ...
901 declare
902 Name : aliased String (1 .. T.Common.Task_Image_Len + 1);
903 Name_Address : System.Address;
904 -- Task name we are going to hand down to VxWorks
906 Task_Options : aliased int;
907 -- VxWorks options we are going to set for the created task,
908 -- a combination of VX_optname_TASK attributes.
910 function To_int is new Unchecked_Conversion (unsigned_int, int);
911 function To_uint is new Unchecked_Conversion (int, unsigned_int);
913 begin
914 -- If there is no Ada task name handy, let VxWorks choose one.
915 -- Otherwise, tell VxWorks what the Ada task name is.
917 if T.Common.Task_Image_Len = 0 then
918 Name_Address := System.Null_Address;
919 else
920 Name (1 .. Name'Last - 1) :=
921 T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
922 Name (Name'Last) := ASCII.NUL;
923 Name_Address := Name'Address;
924 end if;
926 -- For task options, we fetch the options assigned to the current
927 -- task, so offering some user level control over the options for a
928 -- task hierarchy, and force VX_FP_TASK because it is almost always
929 -- required.
931 if taskOptionsGet (taskIdSelf, Task_Options'Access) /= OK then
932 Task_Options := 0;
933 end if;
935 Task_Options :=
936 To_int (To_uint (Task_Options) or To_uint (VX_FP_TASK));
938 -- Now spawn the VxWorks task for real
940 T.Common.LL.Thread := taskSpawn
941 (Name_Address,
942 To_VxWorks_Priority (int (Priority)),
943 Task_Options,
944 Adjusted_Stack_Size,
945 Wrapper,
946 To_Address (T));
947 end;
949 if T.Common.LL.Thread = -1 then
950 Succeeded := False;
951 else
952 Succeeded := True;
953 end if;
955 Task_Creation_Hook (T.Common.LL.Thread);
956 Set_Priority (T, Priority);
957 end Create_Task;
959 ------------------
960 -- Finalize_TCB --
961 ------------------
963 procedure Finalize_TCB (T : Task_Id) is
964 Result : int;
965 Tmp : Task_Id := T;
966 Is_Self : constant Boolean := (T = Self);
968 procedure Free is new
969 Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
971 begin
972 if not Single_Lock then
973 Result := semDelete (T.Common.LL.L.Mutex);
974 pragma Assert (Result = 0);
975 end if;
977 T.Common.LL.Thread := 0;
979 Result := semDelete (T.Common.LL.CV);
980 pragma Assert (Result = 0);
982 if T.Known_Tasks_Index /= -1 then
983 Known_Tasks (T.Known_Tasks_Index) := null;
984 end if;
986 Free (Tmp);
988 if Is_Self then
989 Specific.Delete;
990 end if;
991 end Finalize_TCB;
993 ---------------
994 -- Exit_Task --
995 ---------------
997 procedure Exit_Task is
998 begin
999 Specific.Set (null);
1000 end Exit_Task;
1002 ----------------
1003 -- Abort_Task --
1004 ----------------
1006 procedure Abort_Task (T : Task_Id) is
1007 Result : int;
1008 begin
1009 Result := kill (T.Common.LL.Thread,
1010 Signal (Interrupt_Management.Abort_Task_Signal));
1011 pragma Assert (Result = 0);
1012 end Abort_Task;
1014 ----------------
1015 -- Initialize --
1016 ----------------
1018 procedure Initialize (S : in out Suspension_Object) is
1019 begin
1020 -- Initialize internal state. It is always initialized to False (ARM
1021 -- D.10 par. 6).
1023 S.State := False;
1024 S.Waiting := False;
1026 -- Initialize internal mutex
1028 -- Use simpler binary semaphore instead of VxWorks
1029 -- mutual exclusion semaphore, because we don't need
1030 -- the fancier semantics and their overhead.
1032 S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
1034 -- Initialize internal condition variable
1036 S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
1037 end Initialize;
1039 --------------
1040 -- Finalize --
1041 --------------
1043 procedure Finalize (S : in out Suspension_Object) is
1044 Result : STATUS;
1045 begin
1046 -- Destroy internal mutex
1048 Result := semDelete (S.L);
1049 pragma Assert (Result = OK);
1051 -- Destroy internal condition variable
1053 Result := semDelete (S.CV);
1054 pragma Assert (Result = OK);
1055 end Finalize;
1057 -------------------
1058 -- Current_State --
1059 -------------------
1061 function Current_State (S : Suspension_Object) return Boolean is
1062 begin
1063 -- We do not want to use lock on this read operation. State is marked
1064 -- as Atomic so that we ensure that the value retrieved is correct.
1066 return S.State;
1067 end Current_State;
1069 ---------------
1070 -- Set_False --
1071 ---------------
1073 procedure Set_False (S : in out Suspension_Object) is
1074 Result : STATUS;
1075 begin
1076 SSL.Abort_Defer.all;
1078 Result := semTake (S.L, WAIT_FOREVER);
1079 pragma Assert (Result = OK);
1081 S.State := False;
1083 Result := semGive (S.L);
1084 pragma Assert (Result = OK);
1086 SSL.Abort_Undefer.all;
1087 end Set_False;
1089 --------------
1090 -- Set_True --
1091 --------------
1093 procedure Set_True (S : in out Suspension_Object) is
1094 Result : STATUS;
1095 begin
1096 SSL.Abort_Defer.all;
1098 Result := semTake (S.L, WAIT_FOREVER);
1099 pragma Assert (Result = OK);
1101 -- If there is already a task waiting on this suspension object then
1102 -- we resume it, leaving the state of the suspension object to False,
1103 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1104 -- the state to True.
1106 if S.Waiting then
1107 S.Waiting := False;
1108 S.State := False;
1110 Result := semGive (S.CV);
1111 pragma Assert (Result = OK);
1112 else
1113 S.State := True;
1114 end if;
1116 Result := semGive (S.L);
1117 pragma Assert (Result = OK);
1119 SSL.Abort_Undefer.all;
1120 end Set_True;
1122 ------------------------
1123 -- Suspend_Until_True --
1124 ------------------------
1126 procedure Suspend_Until_True (S : in out Suspension_Object) is
1127 Result : STATUS;
1128 begin
1129 SSL.Abort_Defer.all;
1131 Result := semTake (S.L, WAIT_FOREVER);
1133 if S.Waiting then
1134 -- Program_Error must be raised upon calling Suspend_Until_True
1135 -- if another task is already waiting on that suspension object
1136 -- (ARM D.10 par. 10).
1138 Result := semGive (S.L);
1139 pragma Assert (Result = OK);
1141 SSL.Abort_Undefer.all;
1143 raise Program_Error;
1144 else
1145 -- Suspend the task if the state is False. Otherwise, the task
1146 -- continues its execution, and the state of the suspension object
1147 -- is set to False (ARM D.10 par. 9).
1149 if S.State then
1150 S.State := False;
1152 Result := semGive (S.L);
1153 pragma Assert (Result = 0);
1155 SSL.Abort_Undefer.all;
1156 else
1157 S.Waiting := True;
1159 -- Release the mutex before sleeping
1161 Result := semGive (S.L);
1162 pragma Assert (Result = OK);
1164 SSL.Abort_Undefer.all;
1166 Result := semTake (S.CV, WAIT_FOREVER);
1167 pragma Assert (Result = 0);
1168 end if;
1169 end if;
1170 end Suspend_Until_True;
1172 ----------------
1173 -- Check_Exit --
1174 ----------------
1176 -- Dummy version
1178 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1179 pragma Unreferenced (Self_ID);
1180 begin
1181 return True;
1182 end Check_Exit;
1184 --------------------
1185 -- Check_No_Locks --
1186 --------------------
1188 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1189 pragma Unreferenced (Self_ID);
1190 begin
1191 return True;
1192 end Check_No_Locks;
1194 ----------------------
1195 -- Environment_Task --
1196 ----------------------
1198 function Environment_Task return Task_Id is
1199 begin
1200 return Environment_Task_Id;
1201 end Environment_Task;
1203 --------------
1204 -- Lock_RTS --
1205 --------------
1207 procedure Lock_RTS is
1208 begin
1209 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1210 end Lock_RTS;
1212 ----------------
1213 -- Unlock_RTS --
1214 ----------------
1216 procedure Unlock_RTS is
1217 begin
1218 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1219 end Unlock_RTS;
1221 ------------------
1222 -- Suspend_Task --
1223 ------------------
1225 function Suspend_Task
1226 (T : ST.Task_Id;
1227 Thread_Self : Thread_Id) return Boolean
1229 begin
1230 if T.Common.LL.Thread /= 0
1231 and then T.Common.LL.Thread /= Thread_Self
1232 then
1233 return taskSuspend (T.Common.LL.Thread) = 0;
1234 else
1235 return True;
1236 end if;
1237 end Suspend_Task;
1239 -----------------
1240 -- Resume_Task --
1241 -----------------
1243 function Resume_Task
1244 (T : ST.Task_Id;
1245 Thread_Self : Thread_Id) return Boolean
1247 begin
1248 if T.Common.LL.Thread /= 0
1249 and then T.Common.LL.Thread /= Thread_Self
1250 then
1251 return taskResume (T.Common.LL.Thread) = 0;
1252 else
1253 return True;
1254 end if;
1255 end Resume_Task;
1257 ----------------
1258 -- Initialize --
1259 ----------------
1261 procedure Initialize (Environment_Task : Task_Id) is
1262 Result : int;
1263 begin
1264 Environment_Task_Id := Environment_Task;
1266 Interrupt_Management.Initialize;
1267 Specific.Initialize;
1269 if Locking_Policy = 'C' then
1270 Mutex_Protocol := Prio_Protect;
1271 elsif Locking_Policy = 'I' then
1272 Mutex_Protocol := Prio_Inherit;
1273 else
1274 Mutex_Protocol := Prio_None;
1275 end if;
1277 if Time_Slice_Val > 0 then
1278 Result := Set_Time_Slice
1279 (To_Clock_Ticks
1280 (Duration (Time_Slice_Val) / Duration (1_000_000.0)));
1282 elsif Dispatching_Policy = 'R' then
1283 Result := Set_Time_Slice (To_Clock_Ticks (0.01));
1285 end if;
1287 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1288 pragma Assert (Result = 0);
1290 for J in Interrupt_Management.Signal_ID loop
1291 if System.Interrupt_Management.Keep_Unmasked (J) then
1292 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1293 pragma Assert (Result = 0);
1294 end if;
1295 end loop;
1297 -- Initialize the lock used to synchronize chain of all ATCBs
1299 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1301 Enter_Task (Environment_Task);
1302 end Initialize;
1304 end System.Task_Primitives.Operations;