* gcc.c (getenv_spec_function): New function.
[official-gcc.git] / gcc / ada / s-fatgen.adb
blobf6a9327e66364bd3acedd8cda8926b795c68f8bb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S Y S T E M . F A T _ G E N --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- The implementation here is portable to any IEEE implementation. It does
35 -- not handle non-binary radix, and also assumes that model numbers and
36 -- machine numbers are basically identical, which is not true of all possible
37 -- floating-point implementations. On a non-IEEE machine, this body must be
38 -- specialized appropriately, or better still, its generic instantiations
39 -- should be replaced by efficient machine-specific code.
41 with Ada.Unchecked_Conversion;
42 with System;
43 package body System.Fat_Gen is
45 Float_Radix : constant T := T (T'Machine_Radix);
46 Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1);
48 pragma Assert (T'Machine_Radix = 2);
49 -- This version does not handle radix 16
51 -- Constants for Decompose and Scaling
53 Rad : constant T := T (T'Machine_Radix);
54 Invrad : constant T := 1.0 / Rad;
56 subtype Expbits is Integer range 0 .. 6;
57 -- 2 ** (2 ** 7) might overflow. how big can radix-16 exponents get?
59 Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64);
61 R_Power : constant array (Expbits) of T :=
62 (Rad ** 1,
63 Rad ** 2,
64 Rad ** 4,
65 Rad ** 8,
66 Rad ** 16,
67 Rad ** 32,
68 Rad ** 64);
70 R_Neg_Power : constant array (Expbits) of T :=
71 (Invrad ** 1,
72 Invrad ** 2,
73 Invrad ** 4,
74 Invrad ** 8,
75 Invrad ** 16,
76 Invrad ** 32,
77 Invrad ** 64);
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
83 procedure Decompose (XX : T; Frac : out T; Expo : out UI);
84 -- Decomposes a floating-point number into fraction and exponent parts.
85 -- Both results are signed, with Frac having the sign of XX, and UI has
86 -- the sign of the exponent. The absolute value of Frac is in the range
87 -- 0.0 <= Frac < 1.0. If Frac = 0.0 or -0.0, then Expo is always zero.
89 function Gradual_Scaling (Adjustment : UI) return T;
90 -- Like Scaling with a first argument of 1.0, but returns the smallest
91 -- denormal rather than zero when the adjustment is smaller than
92 -- Machine_Emin. Used for Succ and Pred.
94 --------------
95 -- Adjacent --
96 --------------
98 function Adjacent (X, Towards : T) return T is
99 begin
100 if Towards = X then
101 return X;
102 elsif Towards > X then
103 return Succ (X);
104 else
105 return Pred (X);
106 end if;
107 end Adjacent;
109 -------------
110 -- Ceiling --
111 -------------
113 function Ceiling (X : T) return T is
114 XT : constant T := Truncation (X);
115 begin
116 if X <= 0.0 then
117 return XT;
118 elsif X = XT then
119 return X;
120 else
121 return XT + 1.0;
122 end if;
123 end Ceiling;
125 -------------
126 -- Compose --
127 -------------
129 function Compose (Fraction : T; Exponent : UI) return T is
130 Arg_Frac : T;
131 Arg_Exp : UI;
132 begin
133 Decompose (Fraction, Arg_Frac, Arg_Exp);
134 return Scaling (Arg_Frac, Exponent);
135 end Compose;
137 ---------------
138 -- Copy_Sign --
139 ---------------
141 function Copy_Sign (Value, Sign : T) return T is
142 Result : T;
144 function Is_Negative (V : T) return Boolean;
145 pragma Import (Intrinsic, Is_Negative);
147 begin
148 Result := abs Value;
150 if Is_Negative (Sign) then
151 return -Result;
152 else
153 return Result;
154 end if;
155 end Copy_Sign;
157 ---------------
158 -- Decompose --
159 ---------------
161 procedure Decompose (XX : T; Frac : out T; Expo : out UI) is
162 X : constant T := T'Machine (XX);
164 begin
165 if X = 0.0 then
166 Frac := X;
167 Expo := 0;
169 -- More useful would be defining Expo to be T'Machine_Emin - 1 or
170 -- T'Machine_Emin - T'Machine_Mantissa, which would preserve
171 -- monotonicity of the exponent function ???
173 -- Check for infinities, transfinites, whatnot
175 elsif X > T'Safe_Last then
176 Frac := Invrad;
177 Expo := T'Machine_Emax + 1;
179 elsif X < T'Safe_First then
180 Frac := -Invrad;
181 Expo := T'Machine_Emax + 2; -- how many extra negative values?
183 else
184 -- Case of nonzero finite x. Essentially, we just multiply
185 -- by Rad ** (+-2**N) to reduce the range.
187 declare
188 Ax : T := abs X;
189 Ex : UI := 0;
191 -- Ax * Rad ** Ex is invariant
193 begin
194 if Ax >= 1.0 then
195 while Ax >= R_Power (Expbits'Last) loop
196 Ax := Ax * R_Neg_Power (Expbits'Last);
197 Ex := Ex + Log_Power (Expbits'Last);
198 end loop;
200 -- Ax < Rad ** 64
202 for N in reverse Expbits'First .. Expbits'Last - 1 loop
203 if Ax >= R_Power (N) then
204 Ax := Ax * R_Neg_Power (N);
205 Ex := Ex + Log_Power (N);
206 end if;
208 -- Ax < R_Power (N)
209 end loop;
211 -- 1 <= Ax < Rad
213 Ax := Ax * Invrad;
214 Ex := Ex + 1;
216 else
217 -- 0 < ax < 1
219 while Ax < R_Neg_Power (Expbits'Last) loop
220 Ax := Ax * R_Power (Expbits'Last);
221 Ex := Ex - Log_Power (Expbits'Last);
222 end loop;
224 -- Rad ** -64 <= Ax < 1
226 for N in reverse Expbits'First .. Expbits'Last - 1 loop
227 if Ax < R_Neg_Power (N) then
228 Ax := Ax * R_Power (N);
229 Ex := Ex - Log_Power (N);
230 end if;
232 -- R_Neg_Power (N) <= Ax < 1
233 end loop;
234 end if;
236 if X > 0.0 then
237 Frac := Ax;
238 else
239 Frac := -Ax;
240 end if;
242 Expo := Ex;
243 end;
244 end if;
245 end Decompose;
247 --------------
248 -- Exponent --
249 --------------
251 function Exponent (X : T) return UI is
252 X_Frac : T;
253 X_Exp : UI;
254 begin
255 Decompose (X, X_Frac, X_Exp);
256 return X_Exp;
257 end Exponent;
259 -----------
260 -- Floor --
261 -----------
263 function Floor (X : T) return T is
264 XT : constant T := Truncation (X);
265 begin
266 if X >= 0.0 then
267 return XT;
268 elsif XT = X then
269 return X;
270 else
271 return XT - 1.0;
272 end if;
273 end Floor;
275 --------------
276 -- Fraction --
277 --------------
279 function Fraction (X : T) return T is
280 X_Frac : T;
281 X_Exp : UI;
282 begin
283 Decompose (X, X_Frac, X_Exp);
284 return X_Frac;
285 end Fraction;
287 ---------------------
288 -- Gradual_Scaling --
289 ---------------------
291 function Gradual_Scaling (Adjustment : UI) return T is
292 Y : T;
293 Y1 : T;
294 Ex : UI := Adjustment;
296 begin
297 if Adjustment < T'Machine_Emin - 1 then
298 Y := 2.0 ** T'Machine_Emin;
299 Y1 := Y;
300 Ex := Ex - T'Machine_Emin;
301 while Ex < 0 loop
302 Y := T'Machine (Y / 2.0);
304 if Y = 0.0 then
305 return Y1;
306 end if;
308 Ex := Ex + 1;
309 Y1 := Y;
310 end loop;
312 return Y1;
314 else
315 return Scaling (1.0, Adjustment);
316 end if;
317 end Gradual_Scaling;
319 ------------------
320 -- Leading_Part --
321 ------------------
323 function Leading_Part (X : T; Radix_Digits : UI) return T is
324 L : UI;
325 Y, Z : T;
327 begin
328 if Radix_Digits >= T'Machine_Mantissa then
329 return X;
331 elsif Radix_Digits <= 0 then
332 raise Constraint_Error;
334 else
335 L := Exponent (X) - Radix_Digits;
336 Y := Truncation (Scaling (X, -L));
337 Z := Scaling (Y, L);
338 return Z;
339 end if;
340 end Leading_Part;
342 -------------
343 -- Machine --
344 -------------
346 -- The trick with Machine is to force the compiler to store the result
347 -- in memory so that we do not have extra precision used. The compiler
348 -- is clever, so we have to outwit its possible optimizations! We do
349 -- this by using an intermediate pragma Volatile location.
351 function Machine (X : T) return T is
352 Temp : T;
353 pragma Volatile (Temp);
354 begin
355 Temp := X;
356 return Temp;
357 end Machine;
359 ----------------------
360 -- Machine_Rounding --
361 ----------------------
363 -- For now, the implementation is identical to that of Rounding, which is
364 -- a permissible behavior, but is not the most efficient possible approach.
366 function Machine_Rounding (X : T) return T is
367 Result : T;
368 Tail : T;
370 begin
371 Result := Truncation (abs X);
372 Tail := abs X - Result;
374 if Tail >= 0.5 then
375 Result := Result + 1.0;
376 end if;
378 if X > 0.0 then
379 return Result;
381 elsif X < 0.0 then
382 return -Result;
384 -- For zero case, make sure sign of zero is preserved
386 else
387 return X;
388 end if;
389 end Machine_Rounding;
391 -----------
392 -- Model --
393 -----------
395 -- We treat Model as identical to Machine. This is true of IEEE and other
396 -- nice floating-point systems, but not necessarily true of all systems.
398 function Model (X : T) return T is
399 begin
400 return Machine (X);
401 end Model;
403 ----------
404 -- Pred --
405 ----------
407 -- Subtract from the given number a number equivalent to the value of its
408 -- least significant bit. Given that the most significant bit represents
409 -- a value of 1.0 * radix ** (exp - 1), the value we want is obtained by
410 -- shifting this by (mantissa-1) bits to the right, i.e. decreasing the
411 -- exponent by that amount.
413 -- Zero has to be treated specially, since its exponent is zero
415 function Pred (X : T) return T is
416 X_Frac : T;
417 X_Exp : UI;
419 begin
420 if X = 0.0 then
421 return -Succ (X);
423 else
424 Decompose (X, X_Frac, X_Exp);
426 -- A special case, if the number we had was a positive power of
427 -- two, then we want to subtract half of what we would otherwise
428 -- subtract, since the exponent is going to be reduced.
430 -- Note that X_Frac has the same sign as X, so if X_Frac is 0.5,
431 -- then we know that we have a positive number (and hence a
432 -- positive power of 2).
434 if X_Frac = 0.5 then
435 return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
437 -- Otherwise the exponent is unchanged
439 else
440 return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa);
441 end if;
442 end if;
443 end Pred;
445 ---------------
446 -- Remainder --
447 ---------------
449 function Remainder (X, Y : T) return T is
450 A : T;
451 B : T;
452 Arg : T;
453 P : T;
454 Arg_Frac : T;
455 P_Frac : T;
456 Sign_X : T;
457 IEEE_Rem : T;
458 Arg_Exp : UI;
459 P_Exp : UI;
460 K : UI;
461 P_Even : Boolean;
463 begin
464 if Y = 0.0 then
465 raise Constraint_Error;
466 end if;
468 if X > 0.0 then
469 Sign_X := 1.0;
470 Arg := X;
471 else
472 Sign_X := -1.0;
473 Arg := -X;
474 end if;
476 P := abs Y;
478 if Arg < P then
479 P_Even := True;
480 IEEE_Rem := Arg;
481 P_Exp := Exponent (P);
483 else
484 Decompose (Arg, Arg_Frac, Arg_Exp);
485 Decompose (P, P_Frac, P_Exp);
487 P := Compose (P_Frac, Arg_Exp);
488 K := Arg_Exp - P_Exp;
489 P_Even := True;
490 IEEE_Rem := Arg;
492 for Cnt in reverse 0 .. K loop
493 if IEEE_Rem >= P then
494 P_Even := False;
495 IEEE_Rem := IEEE_Rem - P;
496 else
497 P_Even := True;
498 end if;
500 P := P * 0.5;
501 end loop;
502 end if;
504 -- That completes the calculation of modulus remainder. The final
505 -- step is get the IEEE remainder. Here we need to compare Rem with
506 -- (abs Y) / 2. We must be careful of unrepresentable Y/2 value
507 -- caused by subnormal numbers
509 if P_Exp >= 0 then
510 A := IEEE_Rem;
511 B := abs Y * 0.5;
513 else
514 A := IEEE_Rem * 2.0;
515 B := abs Y;
516 end if;
518 if A > B or else (A = B and then not P_Even) then
519 IEEE_Rem := IEEE_Rem - abs Y;
520 end if;
522 return Sign_X * IEEE_Rem;
523 end Remainder;
525 --------------
526 -- Rounding --
527 --------------
529 function Rounding (X : T) return T is
530 Result : T;
531 Tail : T;
533 begin
534 Result := Truncation (abs X);
535 Tail := abs X - Result;
537 if Tail >= 0.5 then
538 Result := Result + 1.0;
539 end if;
541 if X > 0.0 then
542 return Result;
544 elsif X < 0.0 then
545 return -Result;
547 -- For zero case, make sure sign of zero is preserved
549 else
550 return X;
551 end if;
552 end Rounding;
554 -------------
555 -- Scaling --
556 -------------
558 -- Return x * rad ** adjustment quickly,
559 -- or quietly underflow to zero, or overflow naturally.
561 function Scaling (X : T; Adjustment : UI) return T is
562 begin
563 if X = 0.0 or else Adjustment = 0 then
564 return X;
565 end if;
567 -- Nonzero x. essentially, just multiply repeatedly by Rad ** (+-2**n)
569 declare
570 Y : T := X;
571 Ex : UI := Adjustment;
573 -- Y * Rad ** Ex is invariant
575 begin
576 if Ex < 0 then
577 while Ex <= -Log_Power (Expbits'Last) loop
578 Y := Y * R_Neg_Power (Expbits'Last);
579 Ex := Ex + Log_Power (Expbits'Last);
580 end loop;
582 -- -64 < Ex <= 0
584 for N in reverse Expbits'First .. Expbits'Last - 1 loop
585 if Ex <= -Log_Power (N) then
586 Y := Y * R_Neg_Power (N);
587 Ex := Ex + Log_Power (N);
588 end if;
590 -- -Log_Power (N) < Ex <= 0
591 end loop;
593 -- Ex = 0
595 else
596 -- Ex >= 0
598 while Ex >= Log_Power (Expbits'Last) loop
599 Y := Y * R_Power (Expbits'Last);
600 Ex := Ex - Log_Power (Expbits'Last);
601 end loop;
603 -- 0 <= Ex < 64
605 for N in reverse Expbits'First .. Expbits'Last - 1 loop
606 if Ex >= Log_Power (N) then
607 Y := Y * R_Power (N);
608 Ex := Ex - Log_Power (N);
609 end if;
611 -- 0 <= Ex < Log_Power (N)
613 end loop;
615 -- Ex = 0
616 end if;
618 return Y;
619 end;
620 end Scaling;
622 ----------
623 -- Succ --
624 ----------
626 -- Similar computation to that of Pred: find value of least significant
627 -- bit of given number, and add. Zero has to be treated specially since
628 -- the exponent can be zero, and also we want the smallest denormal if
629 -- denormals are supported.
631 function Succ (X : T) return T is
632 X_Frac : T;
633 X_Exp : UI;
634 X1, X2 : T;
636 begin
637 if X = 0.0 then
638 X1 := 2.0 ** T'Machine_Emin;
640 -- Following loop generates smallest denormal
642 loop
643 X2 := T'Machine (X1 / 2.0);
644 exit when X2 = 0.0;
645 X1 := X2;
646 end loop;
648 return X1;
650 else
651 Decompose (X, X_Frac, X_Exp);
653 -- A special case, if the number we had was a negative power of
654 -- two, then we want to add half of what we would otherwise add,
655 -- since the exponent is going to be reduced.
657 -- Note that X_Frac has the same sign as X, so if X_Frac is -0.5,
658 -- then we know that we have a ngeative number (and hence a
659 -- negative power of 2).
661 if X_Frac = -0.5 then
662 return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
664 -- Otherwise the exponent is unchanged
666 else
667 return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa);
668 end if;
669 end if;
670 end Succ;
672 ----------------
673 -- Truncation --
674 ----------------
676 -- The basic approach is to compute
678 -- T'Machine (RM1 + N) - RM1
680 -- where N >= 0.0 and RM1 = radix ** (mantissa - 1)
682 -- This works provided that the intermediate result (RM1 + N) does not
683 -- have extra precision (which is why we call Machine). When we compute
684 -- RM1 + N, the exponent of N will be normalized and the mantissa shifted
685 -- shifted appropriately so the lower order bits, which cannot contribute
686 -- to the integer part of N, fall off on the right. When we subtract RM1
687 -- again, the significant bits of N are shifted to the left, and what we
688 -- have is an integer, because only the first e bits are different from
689 -- zero (assuming binary radix here).
691 function Truncation (X : T) return T is
692 Result : T;
694 begin
695 Result := abs X;
697 if Result >= Radix_To_M_Minus_1 then
698 return Machine (X);
700 else
701 Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1;
703 if Result > abs X then
704 Result := Result - 1.0;
705 end if;
707 if X > 0.0 then
708 return Result;
710 elsif X < 0.0 then
711 return -Result;
713 -- For zero case, make sure sign of zero is preserved
715 else
716 return X;
717 end if;
718 end if;
719 end Truncation;
721 -----------------------
722 -- Unbiased_Rounding --
723 -----------------------
725 function Unbiased_Rounding (X : T) return T is
726 Abs_X : constant T := abs X;
727 Result : T;
728 Tail : T;
730 begin
731 Result := Truncation (Abs_X);
732 Tail := Abs_X - Result;
734 if Tail > 0.5 then
735 Result := Result + 1.0;
737 elsif Tail = 0.5 then
738 Result := 2.0 * Truncation ((Result / 2.0) + 0.5);
739 end if;
741 if X > 0.0 then
742 return Result;
744 elsif X < 0.0 then
745 return -Result;
747 -- For zero case, make sure sign of zero is preserved
749 else
750 return X;
751 end if;
752 end Unbiased_Rounding;
754 -----------
755 -- Valid --
756 -----------
758 -- Note: this routine does not work for VAX float. We compensate for this
759 -- in Exp_Attr by using the Valid functions in Vax_Float_Operations rather
760 -- than the corresponding instantiation of this function.
762 function Valid (X : access T) return Boolean is
764 IEEE_Emin : constant Integer := T'Machine_Emin - 1;
765 IEEE_Emax : constant Integer := T'Machine_Emax - 1;
767 IEEE_Bias : constant Integer := -(IEEE_Emin - 1);
769 subtype IEEE_Exponent_Range is
770 Integer range IEEE_Emin - 1 .. IEEE_Emax + 1;
772 -- The implementation of this floating point attribute uses a
773 -- representation type Float_Rep that allows direct access to the
774 -- exponent and mantissa parts of a floating point number.
776 -- The Float_Rep type is an array of Float_Word elements. This
777 -- representation is chosen to make it possible to size the type based
778 -- on a generic parameter. Since the array size is known at compile
779 -- time, efficient code can still be generated. The size of Float_Word
780 -- elements should be large enough to allow accessing the exponent in
781 -- one read, but small enough so that all floating point object sizes
782 -- are a multiple of the Float_Word'Size.
784 -- The following conditions must be met for all possible
785 -- instantiations of the attributes package:
787 -- - T'Size is an integral multiple of Float_Word'Size
789 -- - The exponent and sign are completely contained in a single
790 -- component of Float_Rep, named Most_Significant_Word (MSW).
792 -- - The sign occupies the most significant bit of the MSW and the
793 -- exponent is in the following bits. Unused bits (if any) are in
794 -- the least significant part.
796 type Float_Word is mod 2**Positive'Min (System.Word_Size, 32);
797 type Rep_Index is range 0 .. 7;
799 Rep_Words : constant Positive :=
800 (T'Size + Float_Word'Size - 1) / Float_Word'Size;
801 Rep_Last : constant Rep_Index := Rep_Index'Min
802 (Rep_Index (Rep_Words - 1), (T'Mantissa + 16) / Float_Word'Size);
803 -- Determine the number of Float_Words needed for representing the
804 -- entire floating-point value. Do not take into account excessive
805 -- padding, as occurs on IA-64 where 80 bits floats get padded to 128
806 -- bits. In general, the exponent field cannot be larger than 15 bits,
807 -- even for 128-bit floating-poin t types, so the final format size
808 -- won't be larger than T'Mantissa + 16.
810 type Float_Rep is
811 array (Rep_Index range 0 .. Rep_Index (Rep_Words - 1)) of Float_Word;
813 pragma Suppress_Initialization (Float_Rep);
814 -- This pragma supresses the generation of an initialization procedure
815 -- for type Float_Rep when operating in Initialize/Normalize_Scalars
816 -- mode. This is not just a matter of efficiency, but of functionality,
817 -- since Valid has a pragma Inline_Always, which is not permitted if
818 -- there are nested subprograms present.
820 Most_Significant_Word : constant Rep_Index :=
821 Rep_Last * Standard'Default_Bit_Order;
822 -- Finding the location of the Exponent_Word is a bit tricky. In general
823 -- we assume Word_Order = Bit_Order. This expression needs to be refined
824 -- for VMS.
826 Exponent_Factor : constant Float_Word :=
827 2**(Float_Word'Size - 1) /
828 Float_Word (IEEE_Emax - IEEE_Emin + 3) *
829 Boolean'Pos (Most_Significant_Word /= 2) +
830 Boolean'Pos (Most_Significant_Word = 2);
831 -- Factor that the extracted exponent needs to be divided by to be in
832 -- range 0 .. IEEE_Emax - IEEE_Emin + 2. Special kludge: Exponent_Factor
833 -- is 1 for x86/IA64 double extended as GCC adds unused bits to the
834 -- type.
836 Exponent_Mask : constant Float_Word :=
837 Float_Word (IEEE_Emax - IEEE_Emin + 2) *
838 Exponent_Factor;
839 -- Value needed to mask out the exponent field. This assumes that the
840 -- range IEEE_Emin - 1 .. IEEE_Emax + contains 2**N values, for some N
841 -- in Natural.
843 function To_Float is new Ada.Unchecked_Conversion (Float_Rep, T);
845 type Float_Access is access all T;
846 function To_Address is
847 new Ada.Unchecked_Conversion (Float_Access, System.Address);
849 XA : constant System.Address := To_Address (Float_Access (X));
851 R : Float_Rep;
852 pragma Import (Ada, R);
853 for R'Address use XA;
854 -- R is a view of the input floating-point parameter. Note that we
855 -- must avoid copying the actual bits of this parameter in float
856 -- form (since it may be a signalling NaN.
858 E : constant IEEE_Exponent_Range :=
859 Integer ((R (Most_Significant_Word) and Exponent_Mask) /
860 Exponent_Factor)
861 - IEEE_Bias;
862 -- Mask/Shift T to only get bits from the exponent. Then convert biased
863 -- value to integer value.
865 SR : Float_Rep;
866 -- Float_Rep representation of significant of X.all
868 begin
869 if T'Denorm then
871 -- All denormalized numbers are valid, so only invalid numbers are
872 -- overflows and NaN's, both with exponent = Emax + 1.
874 return E /= IEEE_Emax + 1;
876 end if;
878 -- All denormalized numbers except 0.0 are invalid
880 -- Set exponent of X to zero, so we end up with the significand, which
881 -- definitely is a valid number and can be converted back to a float.
883 SR := R;
884 SR (Most_Significant_Word) :=
885 (SR (Most_Significant_Word)
886 and not Exponent_Mask) + Float_Word (IEEE_Bias) * Exponent_Factor;
888 return (E in IEEE_Emin .. IEEE_Emax) or else
889 ((E = IEEE_Emin - 1) and then abs To_Float (SR) = 1.0);
890 end Valid;
892 ---------------------
893 -- Unaligned_Valid --
894 ---------------------
896 function Unaligned_Valid (A : System.Address) return Boolean is
897 subtype FS is String (1 .. T'Size / Character'Size);
898 type FSP is access FS;
900 function To_FSP is new Ada.Unchecked_Conversion (Address, FSP);
902 Local_T : aliased T;
904 begin
905 -- Note that we have to be sure that we do not load the value into a
906 -- floating-point register, since a signalling NaN may cause a trap.
907 -- The following assignment is what does the actual alignment, since
908 -- we know that the target Local_T is aligned.
910 To_FSP (Local_T'Address).all := To_FSP (A).all;
912 -- Now that we have an aligned value, we can use the normal aligned
913 -- version of Valid to obtain the required result.
915 return Valid (Local_T'Access);
916 end Unaligned_Valid;
918 end System.Fat_Gen;