* gcc.c (getenv_spec_function): New function.
[official-gcc.git] / gcc / ada / exp_ch6.adb
blob90684120fcc0a43251d6cde1b11d34e7f944c063
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Elists; use Elists;
33 with Exp_Ch2; use Exp_Ch2;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Dist; use Exp_Dist;
40 with Exp_Intr; use Exp_Intr;
41 with Exp_Pakd; use Exp_Pakd;
42 with Exp_Tss; use Exp_Tss;
43 with Exp_Util; use Exp_Util;
44 with Fname; use Fname;
45 with Freeze; use Freeze;
46 with Hostparm; use Hostparm;
47 with Inline; use Inline;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Restrict; use Restrict;
53 with Rident; use Rident;
54 with Rtsfind; use Rtsfind;
55 with Sem; use Sem;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch8; use Sem_Ch8;
58 with Sem_Ch12; use Sem_Ch12;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Eval; use Sem_Eval;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Dist; use Sem_Dist;
63 with Sem_Mech; use Sem_Mech;
64 with Sem_Res; use Sem_Res;
65 with Sem_Type; use Sem_Type;
66 with Sem_Util; use Sem_Util;
67 with Sinfo; use Sinfo;
68 with Snames; use Snames;
69 with Stand; use Stand;
70 with Tbuild; use Tbuild;
71 with Ttypes; use Ttypes;
72 with Uintp; use Uintp;
73 with Validsw; use Validsw;
75 package body Exp_Ch6 is
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Add_Access_Actual_To_Build_In_Place_Call
82 (Function_Call : Node_Id;
83 Function_Id : Entity_Id;
84 Return_Object : Node_Id);
85 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
86 -- object name given by Return_Object and add the attribute to the end of
87 -- the actual parameter list associated with the build-in-place function
88 -- call denoted by Function_Call.
90 procedure Check_Overriding_Operation (Subp : Entity_Id);
91 -- Subp is a dispatching operation. Check whether it may override an
92 -- inherited private operation, in which case its DT entry is that of
93 -- the hidden operation, not the one it may have received earlier.
94 -- This must be done before emitting the code to set the corresponding
95 -- DT to the address of the subprogram. The actual placement of Subp in
96 -- the proper place in the list of primitive operations is done in
97 -- Declare_Inherited_Private_Subprograms, which also has to deal with
98 -- implicit operations. This duplication is unavoidable for now???
100 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
101 -- This procedure is called only if the subprogram body N, whose spec
102 -- has the given entity Spec, contains a parameterless recursive call.
103 -- It attempts to generate runtime code to detect if this a case of
104 -- infinite recursion.
106 -- The body is scanned to determine dependencies. If the only external
107 -- dependencies are on a small set of scalar variables, then the values
108 -- of these variables are captured on entry to the subprogram, and if
109 -- the values are not changed for the call, we know immediately that
110 -- we have an infinite recursion.
112 procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id);
113 -- For each actual of an in-out or out parameter which is a numeric
114 -- (view) conversion of the form T (A), where A denotes a variable,
115 -- we insert the declaration:
117 -- Temp : T[ := T (A)];
119 -- prior to the call. Then we replace the actual with a reference to Temp,
120 -- and append the assignment:
122 -- A := TypeA (Temp);
124 -- after the call. Here TypeA is the actual type of variable A.
125 -- For out parameters, the initial declaration has no expression.
126 -- If A is not an entity name, we generate instead:
128 -- Var : TypeA renames A;
129 -- Temp : T := Var; -- omitting expression for out parameter.
130 -- ...
131 -- Var := TypeA (Temp);
133 -- For other in-out parameters, we emit the required constraint checks
134 -- before and/or after the call.
136 -- For all parameter modes, actuals that denote components and slices
137 -- of packed arrays are expanded into suitable temporaries.
139 -- For non-scalar objects that are possibly unaligned, add call by copy
140 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
142 procedure Expand_Inlined_Call
143 (N : Node_Id;
144 Subp : Entity_Id;
145 Orig_Subp : Entity_Id);
146 -- If called subprogram can be inlined by the front-end, retrieve the
147 -- analyzed body, replace formals with actuals and expand call in place.
148 -- Generate thunks for actuals that are expressions, and insert the
149 -- corresponding constant declarations before the call. If the original
150 -- call is to a derived operation, the return type is the one of the
151 -- derived operation, but the body is that of the original, so return
152 -- expressions in the body must be converted to the desired type (which
153 -- is simply not noted in the tree without inline expansion).
155 function Expand_Protected_Object_Reference
156 (N : Node_Id;
157 Scop : Entity_Id) return Node_Id;
159 procedure Expand_Protected_Subprogram_Call
160 (N : Node_Id;
161 Subp : Entity_Id;
162 Scop : Entity_Id);
163 -- A call to a protected subprogram within the protected object may appear
164 -- as a regular call. The list of actuals must be expanded to contain a
165 -- reference to the object itself, and the call becomes a call to the
166 -- corresponding protected subprogram.
168 ----------------------------------------------
169 -- Add_Access_Actual_To_Build_In_Place_Call --
170 ----------------------------------------------
172 procedure Add_Access_Actual_To_Build_In_Place_Call
173 (Function_Call : Node_Id;
174 Function_Id : Entity_Id;
175 Return_Object : Node_Id)
177 Loc : constant Source_Ptr := Sloc (Function_Call);
178 Obj_Address : Node_Id;
179 Obj_Acc_Formal : Node_Id;
180 Param_Assoc : Node_Id;
182 begin
183 -- Locate the implicit access parameter in the called function. Maybe
184 -- we should be testing for the name of the access parameter (or perhaps
185 -- better, each implicit formal for build-in-place could have an
186 -- identifying flag, or a Uint attribute to identify it). ???
188 Obj_Acc_Formal := Extra_Formals (Function_Id);
190 while Present (Obj_Acc_Formal) loop
191 exit when Ekind (Etype (Obj_Acc_Formal)) = E_Anonymous_Access_Type;
192 Next_Formal_With_Extras (Obj_Acc_Formal);
193 end loop;
195 pragma Assert (Present (Obj_Acc_Formal));
197 -- Apply Unrestricted_Access to caller's return object
199 Obj_Address :=
200 Make_Attribute_Reference (Loc,
201 Prefix => Return_Object,
202 Attribute_Name => Name_Unrestricted_Access);
204 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
206 -- Build the parameter association for the new actual and add it to the
207 -- end of the function's actuals.
209 Param_Assoc :=
210 Make_Parameter_Association (Loc,
211 Selector_Name => New_Occurrence_Of (Obj_Acc_Formal, Loc),
212 Explicit_Actual_Parameter => Obj_Address);
214 Set_Parent (Param_Assoc, Function_Call);
215 Set_Parent (Obj_Address, Param_Assoc);
217 if Present (Parameter_Associations (Function_Call)) then
218 if Nkind (Last (Parameter_Associations (Function_Call))) =
219 N_Parameter_Association
220 then
221 Set_Next_Named_Actual
222 (Last (Parameter_Associations (Function_Call)),
223 Obj_Address);
224 else
225 Set_First_Named_Actual (Function_Call, Obj_Address);
226 end if;
228 Append (Param_Assoc, To => Parameter_Associations (Function_Call));
230 else
231 Set_Parameter_Associations (Function_Call, New_List (Param_Assoc));
232 Set_First_Named_Actual (Function_Call, Obj_Address);
233 end if;
234 end Add_Access_Actual_To_Build_In_Place_Call;
236 --------------------------------
237 -- Check_Overriding_Operation --
238 --------------------------------
240 procedure Check_Overriding_Operation (Subp : Entity_Id) is
241 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
242 Op_List : constant Elist_Id := Primitive_Operations (Typ);
243 Op_Elmt : Elmt_Id;
244 Prim_Op : Entity_Id;
245 Par_Op : Entity_Id;
247 begin
248 if Is_Derived_Type (Typ)
249 and then not Is_Private_Type (Typ)
250 and then In_Open_Scopes (Scope (Etype (Typ)))
251 and then Typ = Base_Type (Typ)
252 then
253 -- Subp overrides an inherited private operation if there is an
254 -- inherited operation with a different name than Subp (see
255 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
256 -- same name as Subp.
258 Op_Elmt := First_Elmt (Op_List);
259 while Present (Op_Elmt) loop
260 Prim_Op := Node (Op_Elmt);
261 Par_Op := Alias (Prim_Op);
263 if Present (Par_Op)
264 and then not Comes_From_Source (Prim_Op)
265 and then Chars (Prim_Op) /= Chars (Par_Op)
266 and then Chars (Par_Op) = Chars (Subp)
267 and then Is_Hidden (Par_Op)
268 and then Type_Conformant (Prim_Op, Subp)
269 then
270 Set_DT_Position (Subp, DT_Position (Prim_Op));
271 end if;
273 Next_Elmt (Op_Elmt);
274 end loop;
275 end if;
276 end Check_Overriding_Operation;
278 -------------------------------
279 -- Detect_Infinite_Recursion --
280 -------------------------------
282 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
283 Loc : constant Source_Ptr := Sloc (N);
285 Var_List : constant Elist_Id := New_Elmt_List;
286 -- List of globals referenced by body of procedure
288 Call_List : constant Elist_Id := New_Elmt_List;
289 -- List of recursive calls in body of procedure
291 Shad_List : constant Elist_Id := New_Elmt_List;
292 -- List of entity id's for entities created to capture the value of
293 -- referenced globals on entry to the procedure.
295 Scop : constant Uint := Scope_Depth (Spec);
296 -- This is used to record the scope depth of the current procedure, so
297 -- that we can identify global references.
299 Max_Vars : constant := 4;
300 -- Do not test more than four global variables
302 Count_Vars : Natural := 0;
303 -- Count variables found so far
305 Var : Entity_Id;
306 Elm : Elmt_Id;
307 Ent : Entity_Id;
308 Call : Elmt_Id;
309 Decl : Node_Id;
310 Test : Node_Id;
311 Elm1 : Elmt_Id;
312 Elm2 : Elmt_Id;
313 Last : Node_Id;
315 function Process (Nod : Node_Id) return Traverse_Result;
316 -- Function to traverse the subprogram body (using Traverse_Func)
318 -------------
319 -- Process --
320 -------------
322 function Process (Nod : Node_Id) return Traverse_Result is
323 begin
324 -- Procedure call
326 if Nkind (Nod) = N_Procedure_Call_Statement then
328 -- Case of one of the detected recursive calls
330 if Is_Entity_Name (Name (Nod))
331 and then Has_Recursive_Call (Entity (Name (Nod)))
332 and then Entity (Name (Nod)) = Spec
333 then
334 Append_Elmt (Nod, Call_List);
335 return Skip;
337 -- Any other procedure call may have side effects
339 else
340 return Abandon;
341 end if;
343 -- A call to a pure function can always be ignored
345 elsif Nkind (Nod) = N_Function_Call
346 and then Is_Entity_Name (Name (Nod))
347 and then Is_Pure (Entity (Name (Nod)))
348 then
349 return Skip;
351 -- Case of an identifier reference
353 elsif Nkind (Nod) = N_Identifier then
354 Ent := Entity (Nod);
356 -- If no entity, then ignore the reference
358 -- Not clear why this can happen. To investigate, remove this
359 -- test and look at the crash that occurs here in 3401-004 ???
361 if No (Ent) then
362 return Skip;
364 -- Ignore entities with no Scope, again not clear how this
365 -- can happen, to investigate, look at 4108-008 ???
367 elsif No (Scope (Ent)) then
368 return Skip;
370 -- Ignore the reference if not to a more global object
372 elsif Scope_Depth (Scope (Ent)) >= Scop then
373 return Skip;
375 -- References to types, exceptions and constants are always OK
377 elsif Is_Type (Ent)
378 or else Ekind (Ent) = E_Exception
379 or else Ekind (Ent) = E_Constant
380 then
381 return Skip;
383 -- If other than a non-volatile scalar variable, we have some
384 -- kind of global reference (e.g. to a function) that we cannot
385 -- deal with so we forget the attempt.
387 elsif Ekind (Ent) /= E_Variable
388 or else not Is_Scalar_Type (Etype (Ent))
389 or else Treat_As_Volatile (Ent)
390 then
391 return Abandon;
393 -- Otherwise we have a reference to a global scalar
395 else
396 -- Loop through global entities already detected
398 Elm := First_Elmt (Var_List);
399 loop
400 -- If not detected before, record this new global reference
402 if No (Elm) then
403 Count_Vars := Count_Vars + 1;
405 if Count_Vars <= Max_Vars then
406 Append_Elmt (Entity (Nod), Var_List);
407 else
408 return Abandon;
409 end if;
411 exit;
413 -- If recorded before, ignore
415 elsif Node (Elm) = Entity (Nod) then
416 return Skip;
418 -- Otherwise keep looking
420 else
421 Next_Elmt (Elm);
422 end if;
423 end loop;
425 return Skip;
426 end if;
428 -- For all other node kinds, recursively visit syntactic children
430 else
431 return OK;
432 end if;
433 end Process;
435 function Traverse_Body is new Traverse_Func (Process);
437 -- Start of processing for Detect_Infinite_Recursion
439 begin
440 -- Do not attempt detection in No_Implicit_Conditional mode, since we
441 -- won't be able to generate the code to handle the recursion in any
442 -- case.
444 if Restriction_Active (No_Implicit_Conditionals) then
445 return;
446 end if;
448 -- Otherwise do traversal and quit if we get abandon signal
450 if Traverse_Body (N) = Abandon then
451 return;
453 -- We must have a call, since Has_Recursive_Call was set. If not just
454 -- ignore (this is only an error check, so if we have a funny situation,
455 -- due to bugs or errors, we do not want to bomb!)
457 elsif Is_Empty_Elmt_List (Call_List) then
458 return;
459 end if;
461 -- Here is the case where we detect recursion at compile time
463 -- Push our current scope for analyzing the declarations and code that
464 -- we will insert for the checking.
466 New_Scope (Spec);
468 -- This loop builds temporary variables for each of the referenced
469 -- globals, so that at the end of the loop the list Shad_List contains
470 -- these temporaries in one-to-one correspondence with the elements in
471 -- Var_List.
473 Last := Empty;
474 Elm := First_Elmt (Var_List);
475 while Present (Elm) loop
476 Var := Node (Elm);
477 Ent :=
478 Make_Defining_Identifier (Loc,
479 Chars => New_Internal_Name ('S'));
480 Append_Elmt (Ent, Shad_List);
482 -- Insert a declaration for this temporary at the start of the
483 -- declarations for the procedure. The temporaries are declared as
484 -- constant objects initialized to the current values of the
485 -- corresponding temporaries.
487 Decl :=
488 Make_Object_Declaration (Loc,
489 Defining_Identifier => Ent,
490 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
491 Constant_Present => True,
492 Expression => New_Occurrence_Of (Var, Loc));
494 if No (Last) then
495 Prepend (Decl, Declarations (N));
496 else
497 Insert_After (Last, Decl);
498 end if;
500 Last := Decl;
501 Analyze (Decl);
502 Next_Elmt (Elm);
503 end loop;
505 -- Loop through calls
507 Call := First_Elmt (Call_List);
508 while Present (Call) loop
510 -- Build a predicate expression of the form
512 -- True
513 -- and then global1 = temp1
514 -- and then global2 = temp2
515 -- ...
517 -- This predicate determines if any of the global values
518 -- referenced by the procedure have changed since the
519 -- current call, if not an infinite recursion is assured.
521 Test := New_Occurrence_Of (Standard_True, Loc);
523 Elm1 := First_Elmt (Var_List);
524 Elm2 := First_Elmt (Shad_List);
525 while Present (Elm1) loop
526 Test :=
527 Make_And_Then (Loc,
528 Left_Opnd => Test,
529 Right_Opnd =>
530 Make_Op_Eq (Loc,
531 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
532 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
534 Next_Elmt (Elm1);
535 Next_Elmt (Elm2);
536 end loop;
538 -- Now we replace the call with the sequence
540 -- if no-changes (see above) then
541 -- raise Storage_Error;
542 -- else
543 -- original-call
544 -- end if;
546 Rewrite (Node (Call),
547 Make_If_Statement (Loc,
548 Condition => Test,
549 Then_Statements => New_List (
550 Make_Raise_Storage_Error (Loc,
551 Reason => SE_Infinite_Recursion)),
553 Else_Statements => New_List (
554 Relocate_Node (Node (Call)))));
556 Analyze (Node (Call));
558 Next_Elmt (Call);
559 end loop;
561 -- Remove temporary scope stack entry used for analysis
563 Pop_Scope;
564 end Detect_Infinite_Recursion;
566 --------------------
567 -- Expand_Actuals --
568 --------------------
570 procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id) is
571 Loc : constant Source_Ptr := Sloc (N);
572 Actual : Node_Id;
573 Formal : Entity_Id;
574 N_Node : Node_Id;
575 Post_Call : List_Id;
576 E_Formal : Entity_Id;
578 procedure Add_Call_By_Copy_Code;
579 -- For cases where the parameter must be passed by copy, this routine
580 -- generates a temporary variable into which the actual is copied and
581 -- then passes this as the parameter. For an OUT or IN OUT parameter,
582 -- an assignment is also generated to copy the result back. The call
583 -- also takes care of any constraint checks required for the type
584 -- conversion case (on both the way in and the way out).
586 procedure Add_Simple_Call_By_Copy_Code;
587 -- This is similar to the above, but is used in cases where we know
588 -- that all that is needed is to simply create a temporary and copy
589 -- the value in and out of the temporary.
591 procedure Check_Fortran_Logical;
592 -- A value of type Logical that is passed through a formal parameter
593 -- must be normalized because .TRUE. usually does not have the same
594 -- representation as True. We assume that .FALSE. = False = 0.
595 -- What about functions that return a logical type ???
597 function Is_Legal_Copy return Boolean;
598 -- Check that an actual can be copied before generating the temporary
599 -- to be used in the call. If the actual is of a by_reference type then
600 -- the program is illegal (this can only happen in the presence of
601 -- rep. clauses that force an incorrect alignment). If the formal is
602 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
603 -- the effect that this might lead to unaligned arguments.
605 function Make_Var (Actual : Node_Id) return Entity_Id;
606 -- Returns an entity that refers to the given actual parameter,
607 -- Actual (not including any type conversion). If Actual is an
608 -- entity name, then this entity is returned unchanged, otherwise
609 -- a renaming is created to provide an entity for the actual.
611 procedure Reset_Packed_Prefix;
612 -- The expansion of a packed array component reference is delayed in
613 -- the context of a call. Now we need to complete the expansion, so we
614 -- unmark the analyzed bits in all prefixes.
616 ---------------------------
617 -- Add_Call_By_Copy_Code --
618 ---------------------------
620 procedure Add_Call_By_Copy_Code is
621 Expr : Node_Id;
622 Init : Node_Id;
623 Temp : Entity_Id;
624 Indic : Node_Id;
625 Var : Entity_Id;
626 F_Typ : constant Entity_Id := Etype (Formal);
627 V_Typ : Entity_Id;
628 Crep : Boolean;
630 begin
631 if not Is_Legal_Copy then
632 return;
633 end if;
635 Temp :=
636 Make_Defining_Identifier (Loc,
637 Chars => New_Internal_Name ('T'));
639 -- Use formal type for temp, unless formal type is an unconstrained
640 -- array, in which case we don't have to worry about bounds checks,
641 -- and we use the actual type, since that has appropriate bounds.
643 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
644 Indic := New_Occurrence_Of (Etype (Actual), Loc);
645 else
646 Indic := New_Occurrence_Of (Etype (Formal), Loc);
647 end if;
649 if Nkind (Actual) = N_Type_Conversion then
650 V_Typ := Etype (Expression (Actual));
652 -- If the formal is an (in-)out parameter, capture the name
653 -- of the variable in order to build the post-call assignment.
655 Var := Make_Var (Expression (Actual));
657 Crep := not Same_Representation
658 (F_Typ, Etype (Expression (Actual)));
660 else
661 V_Typ := Etype (Actual);
662 Var := Make_Var (Actual);
663 Crep := False;
664 end if;
666 -- Setup initialization for case of in out parameter, or an out
667 -- parameter where the formal is an unconstrained array (in the
668 -- latter case, we have to pass in an object with bounds).
670 -- If this is an out parameter, the initial copy is wasteful, so as
671 -- an optimization for the one-dimensional case we extract the
672 -- bounds of the actual and build an uninitialized temporary of the
673 -- right size.
675 if Ekind (Formal) = E_In_Out_Parameter
676 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
677 then
678 if Nkind (Actual) = N_Type_Conversion then
679 if Conversion_OK (Actual) then
680 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
681 else
682 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
683 end if;
685 elsif Ekind (Formal) = E_Out_Parameter
686 and then Is_Array_Type (F_Typ)
687 and then Number_Dimensions (F_Typ) = 1
688 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
689 then
690 -- Actual is a one-dimensional array or slice, and the type
691 -- requires no initialization. Create a temporary of the
692 -- right size, but do not copy actual into it (optimization).
694 Init := Empty;
695 Indic :=
696 Make_Subtype_Indication (Loc,
697 Subtype_Mark =>
698 New_Occurrence_Of (F_Typ, Loc),
699 Constraint =>
700 Make_Index_Or_Discriminant_Constraint (Loc,
701 Constraints => New_List (
702 Make_Range (Loc,
703 Low_Bound =>
704 Make_Attribute_Reference (Loc,
705 Prefix => New_Occurrence_Of (Var, Loc),
706 Attribute_name => Name_First),
707 High_Bound =>
708 Make_Attribute_Reference (Loc,
709 Prefix => New_Occurrence_Of (Var, Loc),
710 Attribute_Name => Name_Last)))));
712 else
713 Init := New_Occurrence_Of (Var, Loc);
714 end if;
716 -- An initialization is created for packed conversions as
717 -- actuals for out parameters to enable Make_Object_Declaration
718 -- to determine the proper subtype for N_Node. Note that this
719 -- is wasteful because the extra copying on the call side is
720 -- not required for such out parameters. ???
722 elsif Ekind (Formal) = E_Out_Parameter
723 and then Nkind (Actual) = N_Type_Conversion
724 and then (Is_Bit_Packed_Array (F_Typ)
725 or else
726 Is_Bit_Packed_Array (Etype (Expression (Actual))))
727 then
728 if Conversion_OK (Actual) then
729 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
730 else
731 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
732 end if;
734 elsif Ekind (Formal) = E_In_Parameter then
736 -- Handle the case in which the actual is a type conversion
738 if Nkind (Actual) = N_Type_Conversion then
739 if Conversion_OK (Actual) then
740 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
741 else
742 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
743 end if;
744 else
745 Init := New_Occurrence_Of (Var, Loc);
746 end if;
748 else
749 Init := Empty;
750 end if;
752 N_Node :=
753 Make_Object_Declaration (Loc,
754 Defining_Identifier => Temp,
755 Object_Definition => Indic,
756 Expression => Init);
757 Set_Assignment_OK (N_Node);
758 Insert_Action (N, N_Node);
760 -- Now, normally the deal here is that we use the defining
761 -- identifier created by that object declaration. There is
762 -- one exception to this. In the change of representation case
763 -- the above declaration will end up looking like:
765 -- temp : type := identifier;
767 -- And in this case we might as well use the identifier directly
768 -- and eliminate the temporary. Note that the analysis of the
769 -- declaration was not a waste of time in that case, since it is
770 -- what generated the necessary change of representation code. If
771 -- the change of representation introduced additional code, as in
772 -- a fixed-integer conversion, the expression is not an identifier
773 -- and must be kept.
775 if Crep
776 and then Present (Expression (N_Node))
777 and then Is_Entity_Name (Expression (N_Node))
778 then
779 Temp := Entity (Expression (N_Node));
780 Rewrite (N_Node, Make_Null_Statement (Loc));
781 end if;
783 -- For IN parameter, all we do is to replace the actual
785 if Ekind (Formal) = E_In_Parameter then
786 Rewrite (Actual, New_Reference_To (Temp, Loc));
787 Analyze (Actual);
789 -- Processing for OUT or IN OUT parameter
791 else
792 -- Kill current value indications for the temporary variable we
793 -- created, since we just passed it as an OUT parameter.
795 Kill_Current_Values (Temp);
797 -- If type conversion, use reverse conversion on exit
799 if Nkind (Actual) = N_Type_Conversion then
800 if Conversion_OK (Actual) then
801 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
802 else
803 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
804 end if;
805 else
806 Expr := New_Occurrence_Of (Temp, Loc);
807 end if;
809 Rewrite (Actual, New_Reference_To (Temp, Loc));
810 Analyze (Actual);
812 Append_To (Post_Call,
813 Make_Assignment_Statement (Loc,
814 Name => New_Occurrence_Of (Var, Loc),
815 Expression => Expr));
817 Set_Assignment_OK (Name (Last (Post_Call)));
818 end if;
819 end Add_Call_By_Copy_Code;
821 ----------------------------------
822 -- Add_Simple_Call_By_Copy_Code --
823 ----------------------------------
825 procedure Add_Simple_Call_By_Copy_Code is
826 Temp : Entity_Id;
827 Decl : Node_Id;
828 Incod : Node_Id;
829 Outcod : Node_Id;
830 Lhs : Node_Id;
831 Rhs : Node_Id;
832 Indic : Node_Id;
833 F_Typ : constant Entity_Id := Etype (Formal);
835 begin
836 if not Is_Legal_Copy then
837 return;
838 end if;
840 -- Use formal type for temp, unless formal type is an unconstrained
841 -- array, in which case we don't have to worry about bounds checks,
842 -- and we use the actual type, since that has appropriate bounds.
844 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
845 Indic := New_Occurrence_Of (Etype (Actual), Loc);
846 else
847 Indic := New_Occurrence_Of (Etype (Formal), Loc);
848 end if;
850 -- Prepare to generate code
852 Reset_Packed_Prefix;
854 Temp :=
855 Make_Defining_Identifier (Loc,
856 Chars => New_Internal_Name ('T'));
857 Incod := Relocate_Node (Actual);
858 Outcod := New_Copy_Tree (Incod);
860 -- Generate declaration of temporary variable, initializing it
861 -- with the input parameter unless we have an OUT formal or
862 -- this is an initialization call.
864 -- If the formal is an out parameter with discriminants, the
865 -- discriminants must be captured even if the rest of the object
866 -- is in principle uninitialized, because the discriminants may
867 -- be read by the called subprogram.
869 if Ekind (Formal) = E_Out_Parameter then
870 Incod := Empty;
872 if Has_Discriminants (Etype (Formal)) then
873 Indic := New_Occurrence_Of (Etype (Actual), Loc);
874 end if;
876 elsif Inside_Init_Proc then
878 -- Could use a comment here to match comment below ???
880 if Nkind (Actual) /= N_Selected_Component
881 or else
882 not Has_Discriminant_Dependent_Constraint
883 (Entity (Selector_Name (Actual)))
884 then
885 Incod := Empty;
887 -- Otherwise, keep the component in order to generate the proper
888 -- actual subtype, that depends on enclosing discriminants.
890 else
891 null;
892 end if;
893 end if;
895 Decl :=
896 Make_Object_Declaration (Loc,
897 Defining_Identifier => Temp,
898 Object_Definition => Indic,
899 Expression => Incod);
901 if Inside_Init_Proc
902 and then No (Incod)
903 then
904 -- If the call is to initialize a component of a composite type,
905 -- and the component does not depend on discriminants, use the
906 -- actual type of the component. This is required in case the
907 -- component is constrained, because in general the formal of the
908 -- initialization procedure will be unconstrained. Note that if
909 -- the component being initialized is constrained by an enclosing
910 -- discriminant, the presence of the initialization in the
911 -- declaration will generate an expression for the actual subtype.
913 Set_No_Initialization (Decl);
914 Set_Object_Definition (Decl,
915 New_Occurrence_Of (Etype (Actual), Loc));
916 end if;
918 Insert_Action (N, Decl);
920 -- The actual is simply a reference to the temporary
922 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
924 -- Generate copy out if OUT or IN OUT parameter
926 if Ekind (Formal) /= E_In_Parameter then
927 Lhs := Outcod;
928 Rhs := New_Occurrence_Of (Temp, Loc);
930 -- Deal with conversion
932 if Nkind (Lhs) = N_Type_Conversion then
933 Lhs := Expression (Lhs);
934 Rhs := Convert_To (Etype (Actual), Rhs);
935 end if;
937 Append_To (Post_Call,
938 Make_Assignment_Statement (Loc,
939 Name => Lhs,
940 Expression => Rhs));
941 Set_Assignment_OK (Name (Last (Post_Call)));
942 end if;
943 end Add_Simple_Call_By_Copy_Code;
945 ---------------------------
946 -- Check_Fortran_Logical --
947 ---------------------------
949 procedure Check_Fortran_Logical is
950 Logical : constant Entity_Id := Etype (Formal);
951 Var : Entity_Id;
953 -- Note: this is very incomplete, e.g. it does not handle arrays
954 -- of logical values. This is really not the right approach at all???)
956 begin
957 if Convention (Subp) = Convention_Fortran
958 and then Root_Type (Etype (Formal)) = Standard_Boolean
959 and then Ekind (Formal) /= E_In_Parameter
960 then
961 Var := Make_Var (Actual);
962 Append_To (Post_Call,
963 Make_Assignment_Statement (Loc,
964 Name => New_Occurrence_Of (Var, Loc),
965 Expression =>
966 Unchecked_Convert_To (
967 Logical,
968 Make_Op_Ne (Loc,
969 Left_Opnd => New_Occurrence_Of (Var, Loc),
970 Right_Opnd =>
971 Unchecked_Convert_To (
972 Logical,
973 New_Occurrence_Of (Standard_False, Loc))))));
974 end if;
975 end Check_Fortran_Logical;
977 -------------------
978 -- Is_Legal_Copy --
979 -------------------
981 function Is_Legal_Copy return Boolean is
982 begin
983 -- An attempt to copy a value of such a type can only occur if
984 -- representation clauses give the actual a misaligned address.
986 if Is_By_Reference_Type (Etype (Formal)) then
987 Error_Msg_N
988 ("misaligned actual cannot be passed by reference", Actual);
989 return False;
991 -- For users of Starlet, we assume that the specification of by-
992 -- reference mechanism is mandatory. This may lead to unligned
993 -- objects but at least for DEC legacy code it is known to work.
994 -- The warning will alert users of this code that a problem may
995 -- be lurking.
997 elsif Mechanism (Formal) = By_Reference
998 and then Is_Valued_Procedure (Scope (Formal))
999 then
1000 Error_Msg_N
1001 ("by_reference actual may be misaligned?", Actual);
1002 return False;
1004 else
1005 return True;
1006 end if;
1007 end Is_Legal_Copy;
1009 --------------
1010 -- Make_Var --
1011 --------------
1013 function Make_Var (Actual : Node_Id) return Entity_Id is
1014 Var : Entity_Id;
1016 begin
1017 if Is_Entity_Name (Actual) then
1018 return Entity (Actual);
1020 else
1021 Var :=
1022 Make_Defining_Identifier (Loc,
1023 Chars => New_Internal_Name ('T'));
1025 N_Node :=
1026 Make_Object_Renaming_Declaration (Loc,
1027 Defining_Identifier => Var,
1028 Subtype_Mark =>
1029 New_Occurrence_Of (Etype (Actual), Loc),
1030 Name => Relocate_Node (Actual));
1032 Insert_Action (N, N_Node);
1033 return Var;
1034 end if;
1035 end Make_Var;
1037 -------------------------
1038 -- Reset_Packed_Prefix --
1039 -------------------------
1041 procedure Reset_Packed_Prefix is
1042 Pfx : Node_Id := Actual;
1043 begin
1044 loop
1045 Set_Analyzed (Pfx, False);
1046 exit when Nkind (Pfx) /= N_Selected_Component
1047 and then Nkind (Pfx) /= N_Indexed_Component;
1048 Pfx := Prefix (Pfx);
1049 end loop;
1050 end Reset_Packed_Prefix;
1052 -- Start of processing for Expand_Actuals
1054 begin
1055 Post_Call := New_List;
1057 Formal := First_Formal (Subp);
1058 Actual := First_Actual (N);
1059 while Present (Formal) loop
1060 E_Formal := Etype (Formal);
1062 if Is_Scalar_Type (E_Formal)
1063 or else Nkind (Actual) = N_Slice
1064 then
1065 Check_Fortran_Logical;
1067 -- RM 6.4.1 (11)
1069 elsif Ekind (Formal) /= E_Out_Parameter then
1071 -- The unusual case of the current instance of a protected type
1072 -- requires special handling. This can only occur in the context
1073 -- of a call within the body of a protected operation.
1075 if Is_Entity_Name (Actual)
1076 and then Ekind (Entity (Actual)) = E_Protected_Type
1077 and then In_Open_Scopes (Entity (Actual))
1078 then
1079 if Scope (Subp) /= Entity (Actual) then
1080 Error_Msg_N ("operation outside protected type may not "
1081 & "call back its protected operations?", Actual);
1082 end if;
1084 Rewrite (Actual,
1085 Expand_Protected_Object_Reference (N, Entity (Actual)));
1086 end if;
1088 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1089 -- build-in-place function, then a temporary return object needs
1090 -- to be created and access to it must be passed to the function.
1091 -- Currently we limit such functions to those with constrained
1092 -- inherently limited result subtypes, but eventually we plan to
1093 -- expand the allowed forms of funtions that are treated as
1094 -- build-in-place.
1096 if Ada_Version >= Ada_05
1097 and then Is_Build_In_Place_Function_Call (Actual)
1098 then
1099 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1100 end if;
1102 Apply_Constraint_Check (Actual, E_Formal);
1104 -- Out parameter case. No constraint checks on access type
1105 -- RM 6.4.1 (13)
1107 elsif Is_Access_Type (E_Formal) then
1108 null;
1110 -- RM 6.4.1 (14)
1112 elsif Has_Discriminants (Base_Type (E_Formal))
1113 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1114 then
1115 Apply_Constraint_Check (Actual, E_Formal);
1117 -- RM 6.4.1 (15)
1119 else
1120 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1121 end if;
1123 -- Processing for IN-OUT and OUT parameters
1125 if Ekind (Formal) /= E_In_Parameter then
1127 -- For type conversions of arrays, apply length/range checks
1129 if Is_Array_Type (E_Formal)
1130 and then Nkind (Actual) = N_Type_Conversion
1131 then
1132 if Is_Constrained (E_Formal) then
1133 Apply_Length_Check (Expression (Actual), E_Formal);
1134 else
1135 Apply_Range_Check (Expression (Actual), E_Formal);
1136 end if;
1137 end if;
1139 -- If argument is a type conversion for a type that is passed
1140 -- by copy, then we must pass the parameter by copy.
1142 if Nkind (Actual) = N_Type_Conversion
1143 and then
1144 (Is_Numeric_Type (E_Formal)
1145 or else Is_Access_Type (E_Formal)
1146 or else Is_Enumeration_Type (E_Formal)
1147 or else Is_Bit_Packed_Array (Etype (Formal))
1148 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1150 -- Also pass by copy if change of representation
1152 or else not Same_Representation
1153 (Etype (Formal),
1154 Etype (Expression (Actual))))
1155 then
1156 Add_Call_By_Copy_Code;
1158 -- References to components of bit packed arrays are expanded
1159 -- at this point, rather than at the point of analysis of the
1160 -- actuals, to handle the expansion of the assignment to
1161 -- [in] out parameters.
1163 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1164 Add_Simple_Call_By_Copy_Code;
1166 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1167 -- because the back-end cannot cope with such objects. In other
1168 -- cases where alignment forces a copy, the back-end generates
1169 -- it properly. It should not be generated unconditionally in the
1170 -- front-end because it does not know precisely the alignment
1171 -- requirements of the target, and makes too conservative an
1172 -- estimate, leading to superfluous copies or spurious errors
1173 -- on by-reference parameters.
1175 elsif Nkind (Actual) = N_Selected_Component
1176 and then
1177 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
1178 and then not Represented_As_Scalar (Etype (Formal))
1179 then
1180 Add_Simple_Call_By_Copy_Code;
1182 -- References to slices of bit packed arrays are expanded
1184 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1185 Add_Call_By_Copy_Code;
1187 -- References to possibly unaligned slices of arrays are expanded
1189 elsif Is_Possibly_Unaligned_Slice (Actual) then
1190 Add_Call_By_Copy_Code;
1192 -- Deal with access types where the actual subtpe and the
1193 -- formal subtype are not the same, requiring a check.
1195 -- It is necessary to exclude tagged types because of "downward
1196 -- conversion" errors and a strange assertion error in namet
1197 -- from gnatf in bug 1215-001 ???
1199 elsif Is_Access_Type (E_Formal)
1200 and then not Same_Type (E_Formal, Etype (Actual))
1201 and then not Is_Tagged_Type (Designated_Type (E_Formal))
1202 then
1203 Add_Call_By_Copy_Code;
1205 -- If the actual is not a scalar and is marked for volatile
1206 -- treatment, whereas the formal is not volatile, then pass
1207 -- by copy unless it is a by-reference type.
1209 elsif Is_Entity_Name (Actual)
1210 and then Treat_As_Volatile (Entity (Actual))
1211 and then not Is_By_Reference_Type (Etype (Actual))
1212 and then not Is_Scalar_Type (Etype (Entity (Actual)))
1213 and then not Treat_As_Volatile (E_Formal)
1214 then
1215 Add_Call_By_Copy_Code;
1217 elsif Nkind (Actual) = N_Indexed_Component
1218 and then Is_Entity_Name (Prefix (Actual))
1219 and then Has_Volatile_Components (Entity (Prefix (Actual)))
1220 then
1221 Add_Call_By_Copy_Code;
1222 end if;
1224 -- Processing for IN parameters
1226 else
1227 -- For IN parameters is in the packed array case, we expand an
1228 -- indexed component (the circuit in Exp_Ch4 deliberately left
1229 -- indexed components appearing as actuals untouched, so that
1230 -- the special processing above for the OUT and IN OUT cases
1231 -- could be performed. We could make the test in Exp_Ch4 more
1232 -- complex and have it detect the parameter mode, but it is
1233 -- easier simply to handle all cases here.)
1235 if Nkind (Actual) = N_Indexed_Component
1236 and then Is_Packed (Etype (Prefix (Actual)))
1237 then
1238 Reset_Packed_Prefix;
1239 Expand_Packed_Element_Reference (Actual);
1241 -- If we have a reference to a bit packed array, we copy it,
1242 -- since the actual must be byte aligned.
1244 -- Is this really necessary in all cases???
1246 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1247 Add_Simple_Call_By_Copy_Code;
1249 -- If a non-scalar actual is possibly unaligned, we need a copy
1251 elsif Is_Possibly_Unaligned_Object (Actual)
1252 and then not Represented_As_Scalar (Etype (Formal))
1253 then
1254 Add_Simple_Call_By_Copy_Code;
1256 -- Similarly, we have to expand slices of packed arrays here
1257 -- because the result must be byte aligned.
1259 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1260 Add_Call_By_Copy_Code;
1262 -- Only processing remaining is to pass by copy if this is a
1263 -- reference to a possibly unaligned slice, since the caller
1264 -- expects an appropriately aligned argument.
1266 elsif Is_Possibly_Unaligned_Slice (Actual) then
1267 Add_Call_By_Copy_Code;
1268 end if;
1269 end if;
1271 Next_Formal (Formal);
1272 Next_Actual (Actual);
1273 end loop;
1275 -- Find right place to put post call stuff if it is present
1277 if not Is_Empty_List (Post_Call) then
1279 -- If call is not a list member, it must be the triggering statement
1280 -- of a triggering alternative or an entry call alternative, and we
1281 -- can add the post call stuff to the corresponding statement list.
1283 if not Is_List_Member (N) then
1284 declare
1285 P : constant Node_Id := Parent (N);
1287 begin
1288 pragma Assert (Nkind (P) = N_Triggering_Alternative
1289 or else Nkind (P) = N_Entry_Call_Alternative);
1291 if Is_Non_Empty_List (Statements (P)) then
1292 Insert_List_Before_And_Analyze
1293 (First (Statements (P)), Post_Call);
1294 else
1295 Set_Statements (P, Post_Call);
1296 end if;
1297 end;
1299 -- Otherwise, normal case where N is in a statement sequence,
1300 -- just put the post-call stuff after the call statement.
1302 else
1303 Insert_Actions_After (N, Post_Call);
1304 end if;
1305 end if;
1307 -- The call node itself is re-analyzed in Expand_Call
1309 end Expand_Actuals;
1311 -----------------
1312 -- Expand_Call --
1313 -----------------
1315 -- This procedure handles expansion of function calls and procedure call
1316 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
1317 -- Expand_N_Procedure_Call_Statement. Processing for calls includes:
1319 -- Replace call to Raise_Exception by Raise_Exception always if possible
1320 -- Provide values of actuals for all formals in Extra_Formals list
1321 -- Replace "call" to enumeration literal function by literal itself
1322 -- Rewrite call to predefined operator as operator
1323 -- Replace actuals to in-out parameters that are numeric conversions,
1324 -- with explicit assignment to temporaries before and after the call.
1325 -- Remove optional actuals if First_Optional_Parameter specified.
1327 -- Note that the list of actuals has been filled with default expressions
1328 -- during semantic analysis of the call. Only the extra actuals required
1329 -- for the 'Constrained attribute and for accessibility checks are added
1330 -- at this point.
1332 procedure Expand_Call (N : Node_Id) is
1333 Loc : constant Source_Ptr := Sloc (N);
1334 Remote : constant Boolean := Is_Remote_Call (N);
1335 Subp : Entity_Id;
1336 Orig_Subp : Entity_Id := Empty;
1337 Parent_Subp : Entity_Id;
1338 Parent_Formal : Entity_Id;
1339 Actual : Node_Id;
1340 Formal : Entity_Id;
1341 Prev : Node_Id := Empty;
1343 Prev_Orig : Node_Id;
1344 -- Original node for an actual, which may have been rewritten. If the
1345 -- actual is a function call that has been transformed from a selected
1346 -- component, the original node is unanalyzed. Otherwise, it carries
1347 -- semantic information used to generate additional actuals.
1349 Scop : Entity_Id;
1350 Extra_Actuals : List_Id := No_List;
1352 CW_Interface_Formals_Present : Boolean := False;
1354 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
1355 -- Adds one entry to the end of the actual parameter list. Used for
1356 -- default parameters and for extra actuals (for Extra_Formals). The
1357 -- argument is an N_Parameter_Association node.
1359 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
1360 -- Adds an extra actual to the list of extra actuals. Expr is the
1361 -- expression for the value of the actual, EF is the entity for the
1362 -- extra formal.
1364 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
1365 -- Within an instance, a type derived from a non-tagged formal derived
1366 -- type inherits from the original parent, not from the actual. This is
1367 -- tested in 4723-003. The current derivation mechanism has the derived
1368 -- type inherit from the actual, which is only correct outside of the
1369 -- instance. If the subprogram is inherited, we test for this particular
1370 -- case through a convoluted tree traversal before setting the proper
1371 -- subprogram to be called.
1373 --------------------------
1374 -- Add_Actual_Parameter --
1375 --------------------------
1377 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
1378 Actual_Expr : constant Node_Id :=
1379 Explicit_Actual_Parameter (Insert_Param);
1381 begin
1382 -- Case of insertion is first named actual
1384 if No (Prev) or else
1385 Nkind (Parent (Prev)) /= N_Parameter_Association
1386 then
1387 Set_Next_Named_Actual (Insert_Param, First_Named_Actual (N));
1388 Set_First_Named_Actual (N, Actual_Expr);
1390 if No (Prev) then
1391 if No (Parameter_Associations (N)) then
1392 Set_Parameter_Associations (N, New_List);
1393 Append (Insert_Param, Parameter_Associations (N));
1394 end if;
1395 else
1396 Insert_After (Prev, Insert_Param);
1397 end if;
1399 -- Case of insertion is not first named actual
1401 else
1402 Set_Next_Named_Actual
1403 (Insert_Param, Next_Named_Actual (Parent (Prev)));
1404 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
1405 Append (Insert_Param, Parameter_Associations (N));
1406 end if;
1408 Prev := Actual_Expr;
1409 end Add_Actual_Parameter;
1411 ----------------------
1412 -- Add_Extra_Actual --
1413 ----------------------
1415 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
1416 Loc : constant Source_Ptr := Sloc (Expr);
1418 begin
1419 if Extra_Actuals = No_List then
1420 Extra_Actuals := New_List;
1421 Set_Parent (Extra_Actuals, N);
1422 end if;
1424 Append_To (Extra_Actuals,
1425 Make_Parameter_Association (Loc,
1426 Explicit_Actual_Parameter => Expr,
1427 Selector_Name =>
1428 Make_Identifier (Loc, Chars (EF))));
1430 Analyze_And_Resolve (Expr, Etype (EF));
1431 end Add_Extra_Actual;
1433 ---------------------------
1434 -- Inherited_From_Formal --
1435 ---------------------------
1437 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
1438 Par : Entity_Id;
1439 Gen_Par : Entity_Id;
1440 Gen_Prim : Elist_Id;
1441 Elmt : Elmt_Id;
1442 Indic : Node_Id;
1444 begin
1445 -- If the operation is inherited, it is attached to the corresponding
1446 -- type derivation. If the parent in the derivation is a generic
1447 -- actual, it is a subtype of the actual, and we have to recover the
1448 -- original derived type declaration to find the proper parent.
1450 if Nkind (Parent (S)) /= N_Full_Type_Declaration
1451 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
1452 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
1453 N_Derived_Type_Definition
1454 or else not In_Instance
1455 then
1456 return Empty;
1458 else
1459 Indic :=
1460 (Subtype_Indication
1461 (Type_Definition (Original_Node (Parent (S)))));
1463 if Nkind (Indic) = N_Subtype_Indication then
1464 Par := Entity (Subtype_Mark (Indic));
1465 else
1466 Par := Entity (Indic);
1467 end if;
1468 end if;
1470 if not Is_Generic_Actual_Type (Par)
1471 or else Is_Tagged_Type (Par)
1472 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
1473 or else not In_Open_Scopes (Scope (Par))
1474 then
1475 return Empty;
1477 else
1478 Gen_Par := Generic_Parent_Type (Parent (Par));
1479 end if;
1481 -- If the generic parent type is still the generic type, this is a
1482 -- private formal, not a derived formal, and there are no operations
1483 -- inherited from the formal.
1485 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
1486 return Empty;
1487 end if;
1489 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
1491 Elmt := First_Elmt (Gen_Prim);
1492 while Present (Elmt) loop
1493 if Chars (Node (Elmt)) = Chars (S) then
1494 declare
1495 F1 : Entity_Id;
1496 F2 : Entity_Id;
1498 begin
1499 F1 := First_Formal (S);
1500 F2 := First_Formal (Node (Elmt));
1501 while Present (F1)
1502 and then Present (F2)
1503 loop
1504 if Etype (F1) = Etype (F2)
1505 or else Etype (F2) = Gen_Par
1506 then
1507 Next_Formal (F1);
1508 Next_Formal (F2);
1509 else
1510 Next_Elmt (Elmt);
1511 exit; -- not the right subprogram
1512 end if;
1514 return Node (Elmt);
1515 end loop;
1516 end;
1518 else
1519 Next_Elmt (Elmt);
1520 end if;
1521 end loop;
1523 raise Program_Error;
1524 end Inherited_From_Formal;
1526 -- Start of processing for Expand_Call
1528 begin
1529 -- Ignore if previous error
1531 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1532 return;
1533 end if;
1535 -- Call using access to subprogram with explicit dereference
1537 if Nkind (Name (N)) = N_Explicit_Dereference then
1538 Subp := Etype (Name (N));
1539 Parent_Subp := Empty;
1541 -- Case of call to simple entry, where the Name is a selected component
1542 -- whose prefix is the task, and whose selector name is the entry name
1544 elsif Nkind (Name (N)) = N_Selected_Component then
1545 Subp := Entity (Selector_Name (Name (N)));
1546 Parent_Subp := Empty;
1548 -- Case of call to member of entry family, where Name is an indexed
1549 -- component, with the prefix being a selected component giving the
1550 -- task and entry family name, and the index being the entry index.
1552 elsif Nkind (Name (N)) = N_Indexed_Component then
1553 Subp := Entity (Selector_Name (Prefix (Name (N))));
1554 Parent_Subp := Empty;
1556 -- Normal case
1558 else
1559 Subp := Entity (Name (N));
1560 Parent_Subp := Alias (Subp);
1562 -- Replace call to Raise_Exception by call to Raise_Exception_Always
1563 -- if we can tell that the first parameter cannot possibly be null.
1564 -- This helps optimization and also generation of warnings.
1566 if not Restriction_Active (No_Exception_Handlers)
1567 and then Is_RTE (Subp, RE_Raise_Exception)
1568 then
1569 declare
1570 FA : constant Node_Id := Original_Node (First_Actual (N));
1572 begin
1573 -- The case we catch is where the first argument is obtained
1574 -- using the Identity attribute (which must always be
1575 -- non-null).
1577 if Nkind (FA) = N_Attribute_Reference
1578 and then Attribute_Name (FA) = Name_Identity
1579 then
1580 Subp := RTE (RE_Raise_Exception_Always);
1581 Set_Entity (Name (N), Subp);
1582 end if;
1583 end;
1584 end if;
1586 if Ekind (Subp) = E_Entry then
1587 Parent_Subp := Empty;
1588 end if;
1589 end if;
1591 -- Ada 2005 (AI-345): We have a procedure call as a triggering
1592 -- alternative in an asynchronous select or as an entry call in
1593 -- a conditional or timed select. Check whether the procedure call
1594 -- is a renaming of an entry and rewrite it as an entry call.
1596 if Ada_Version >= Ada_05
1597 and then Nkind (N) = N_Procedure_Call_Statement
1598 and then
1599 ((Nkind (Parent (N)) = N_Triggering_Alternative
1600 and then Triggering_Statement (Parent (N)) = N)
1601 or else
1602 (Nkind (Parent (N)) = N_Entry_Call_Alternative
1603 and then Entry_Call_Statement (Parent (N)) = N))
1604 then
1605 declare
1606 Ren_Decl : Node_Id;
1607 Ren_Root : Entity_Id := Subp;
1609 begin
1610 -- This may be a chain of renamings, find the root
1612 if Present (Alias (Ren_Root)) then
1613 Ren_Root := Alias (Ren_Root);
1614 end if;
1616 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
1617 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
1619 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
1620 Rewrite (N,
1621 Make_Entry_Call_Statement (Loc,
1622 Name =>
1623 New_Copy_Tree (Name (Ren_Decl)),
1624 Parameter_Associations =>
1625 New_Copy_List_Tree (Parameter_Associations (N))));
1627 return;
1628 end if;
1629 end if;
1630 end;
1631 end if;
1633 -- First step, compute extra actuals, corresponding to any
1634 -- Extra_Formals present. Note that we do not access Extra_Formals
1635 -- directly, instead we simply note the presence of the extra
1636 -- formals as we process the regular formals and collect the
1637 -- corresponding actuals in Extra_Actuals.
1639 -- We also generate any required range checks for actuals as we go
1640 -- through the loop, since this is a convenient place to do this.
1642 Formal := First_Formal (Subp);
1643 Actual := First_Actual (N);
1644 while Present (Formal) loop
1646 -- Generate range check if required (not activated yet ???)
1648 -- if Do_Range_Check (Actual) then
1649 -- Set_Do_Range_Check (Actual, False);
1650 -- Generate_Range_Check
1651 -- (Actual, Etype (Formal), CE_Range_Check_Failed);
1652 -- end if;
1654 -- Prepare to examine current entry
1656 Prev := Actual;
1657 Prev_Orig := Original_Node (Prev);
1659 if not Analyzed (Prev_Orig)
1660 and then Nkind (Actual) = N_Function_Call
1661 then
1662 Prev_Orig := Prev;
1663 end if;
1665 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
1666 -- to expand it in a further round.
1668 CW_Interface_Formals_Present :=
1669 CW_Interface_Formals_Present
1670 or else
1671 (Ekind (Etype (Formal)) = E_Class_Wide_Type
1672 and then Is_Interface (Etype (Etype (Formal))))
1673 or else
1674 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
1675 and then Is_Interface (Directly_Designated_Type
1676 (Etype (Etype (Formal)))));
1678 -- Create possible extra actual for constrained case. Usually, the
1679 -- extra actual is of the form actual'constrained, but since this
1680 -- attribute is only available for unconstrained records, TRUE is
1681 -- expanded if the type of the formal happens to be constrained (for
1682 -- instance when this procedure is inherited from an unconstrained
1683 -- record to a constrained one) or if the actual has no discriminant
1684 -- (its type is constrained). An exception to this is the case of a
1685 -- private type without discriminants. In this case we pass FALSE
1686 -- because the object has underlying discriminants with defaults.
1688 if Present (Extra_Constrained (Formal)) then
1689 if Ekind (Etype (Prev)) in Private_Kind
1690 and then not Has_Discriminants (Base_Type (Etype (Prev)))
1691 then
1692 Add_Extra_Actual (
1693 New_Occurrence_Of (Standard_False, Loc),
1694 Extra_Constrained (Formal));
1696 elsif Is_Constrained (Etype (Formal))
1697 or else not Has_Discriminants (Etype (Prev))
1698 then
1699 Add_Extra_Actual (
1700 New_Occurrence_Of (Standard_True, Loc),
1701 Extra_Constrained (Formal));
1703 -- Do not produce extra actuals for Unchecked_Union parameters.
1704 -- Jump directly to the end of the loop.
1706 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
1707 goto Skip_Extra_Actual_Generation;
1709 else
1710 -- If the actual is a type conversion, then the constrained
1711 -- test applies to the actual, not the target type.
1713 declare
1714 Act_Prev : Node_Id;
1716 begin
1717 -- Test for unchecked conversions as well, which can occur
1718 -- as out parameter actuals on calls to stream procedures.
1720 Act_Prev := Prev;
1721 while Nkind (Act_Prev) = N_Type_Conversion
1722 or else Nkind (Act_Prev) = N_Unchecked_Type_Conversion
1723 loop
1724 Act_Prev := Expression (Act_Prev);
1725 end loop;
1727 -- If the expression is a conversion of a dereference,
1728 -- this is internally generated code that manipulates
1729 -- addresses, e.g. when building interface tables. No
1730 -- check should occur in this case, and the discriminated
1731 -- object is not directly a hand.
1733 if not Comes_From_Source (Actual)
1734 and then Nkind (Actual) = N_Unchecked_Type_Conversion
1735 and then Nkind (Act_Prev) = N_Explicit_Dereference
1736 then
1737 Add_Extra_Actual
1738 (New_Occurrence_Of (Standard_False, Loc),
1739 Extra_Constrained (Formal));
1741 else
1742 Add_Extra_Actual
1743 (Make_Attribute_Reference (Sloc (Prev),
1744 Prefix =>
1745 Duplicate_Subexpr_No_Checks
1746 (Act_Prev, Name_Req => True),
1747 Attribute_Name => Name_Constrained),
1748 Extra_Constrained (Formal));
1749 end if;
1750 end;
1751 end if;
1752 end if;
1754 -- Create possible extra actual for accessibility level
1756 if Present (Extra_Accessibility (Formal)) then
1757 if Is_Entity_Name (Prev_Orig) then
1759 -- When passing an access parameter as the actual to another
1760 -- access parameter we need to pass along the actual's own
1761 -- associated access level parameter. This is done if we are
1762 -- in the scope of the formal access parameter (if this is an
1763 -- inlined body the extra formal is irrelevant).
1765 if Ekind (Entity (Prev_Orig)) in Formal_Kind
1766 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
1767 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
1768 then
1769 declare
1770 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
1772 begin
1773 pragma Assert (Present (Parm_Ent));
1775 if Present (Extra_Accessibility (Parm_Ent)) then
1776 Add_Extra_Actual
1777 (New_Occurrence_Of
1778 (Extra_Accessibility (Parm_Ent), Loc),
1779 Extra_Accessibility (Formal));
1781 -- If the actual access parameter does not have an
1782 -- associated extra formal providing its scope level,
1783 -- then treat the actual as having library-level
1784 -- accessibility.
1786 else
1787 Add_Extra_Actual
1788 (Make_Integer_Literal (Loc,
1789 Intval => Scope_Depth (Standard_Standard)),
1790 Extra_Accessibility (Formal));
1791 end if;
1792 end;
1794 -- The actual is a normal access value, so just pass the
1795 -- level of the actual's access type.
1797 else
1798 Add_Extra_Actual
1799 (Make_Integer_Literal (Loc,
1800 Intval => Type_Access_Level (Etype (Prev_Orig))),
1801 Extra_Accessibility (Formal));
1802 end if;
1804 else
1805 case Nkind (Prev_Orig) is
1807 when N_Attribute_Reference =>
1809 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
1811 -- For X'Access, pass on the level of the prefix X
1813 when Attribute_Access =>
1814 Add_Extra_Actual (
1815 Make_Integer_Literal (Loc,
1816 Intval =>
1817 Object_Access_Level (Prefix (Prev_Orig))),
1818 Extra_Accessibility (Formal));
1820 -- Treat the unchecked attributes as library-level
1822 when Attribute_Unchecked_Access |
1823 Attribute_Unrestricted_Access =>
1824 Add_Extra_Actual (
1825 Make_Integer_Literal (Loc,
1826 Intval => Scope_Depth (Standard_Standard)),
1827 Extra_Accessibility (Formal));
1829 -- No other cases of attributes returning access
1830 -- values that can be passed to access parameters
1832 when others =>
1833 raise Program_Error;
1835 end case;
1837 -- For allocators we pass the level of the execution of
1838 -- the called subprogram, which is one greater than the
1839 -- current scope level.
1841 when N_Allocator =>
1842 Add_Extra_Actual (
1843 Make_Integer_Literal (Loc,
1844 Scope_Depth (Current_Scope) + 1),
1845 Extra_Accessibility (Formal));
1847 -- For other cases we simply pass the level of the
1848 -- actual's access type.
1850 when others =>
1851 Add_Extra_Actual (
1852 Make_Integer_Literal (Loc,
1853 Intval => Type_Access_Level (Etype (Prev_Orig))),
1854 Extra_Accessibility (Formal));
1856 end case;
1857 end if;
1858 end if;
1860 -- Perform the check of 4.6(49) that prevents a null value from being
1861 -- passed as an actual to an access parameter. Note that the check is
1862 -- elided in the common cases of passing an access attribute or
1863 -- access parameter as an actual. Also, we currently don't enforce
1864 -- this check for expander-generated actuals and when -gnatdj is set.
1866 if Ada_Version >= Ada_05 then
1868 -- Ada 2005 (AI-231): Check null-excluding access types
1870 if Is_Access_Type (Etype (Formal))
1871 and then Can_Never_Be_Null (Etype (Formal))
1872 and then Nkind (Prev) /= N_Raise_Constraint_Error
1873 and then (Nkind (Prev) = N_Null
1874 or else not Can_Never_Be_Null (Etype (Prev)))
1875 then
1876 Install_Null_Excluding_Check (Prev);
1877 end if;
1879 -- Ada_Version < Ada_05
1881 else
1882 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
1883 or else Access_Checks_Suppressed (Subp)
1884 then
1885 null;
1887 elsif Debug_Flag_J then
1888 null;
1890 elsif not Comes_From_Source (Prev) then
1891 null;
1893 elsif Is_Entity_Name (Prev)
1894 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
1895 then
1896 null;
1898 elsif Nkind (Prev) = N_Allocator
1899 or else Nkind (Prev) = N_Attribute_Reference
1900 then
1901 null;
1903 -- Suppress null checks when passing to access parameters of Java
1904 -- subprograms. (Should this be done for other foreign conventions
1905 -- as well ???)
1907 elsif Convention (Subp) = Convention_Java then
1908 null;
1910 else
1911 Install_Null_Excluding_Check (Prev);
1912 end if;
1913 end if;
1915 -- Perform appropriate validity checks on parameters that
1916 -- are entities.
1918 if Validity_Checks_On then
1919 if (Ekind (Formal) = E_In_Parameter
1920 and then Validity_Check_In_Params)
1921 or else
1922 (Ekind (Formal) = E_In_Out_Parameter
1923 and then Validity_Check_In_Out_Params)
1924 then
1925 -- If the actual is an indexed component of a packed
1926 -- type, it has not been expanded yet. It will be
1927 -- copied in the validity code that follows, and has
1928 -- to be expanded appropriately, so reanalyze it.
1930 if Nkind (Actual) = N_Indexed_Component then
1931 Set_Analyzed (Actual, False);
1932 end if;
1934 Ensure_Valid (Actual);
1935 end if;
1936 end if;
1938 -- For IN OUT and OUT parameters, ensure that subscripts are valid
1939 -- since this is a left side reference. We only do this for calls
1940 -- from the source program since we assume that compiler generated
1941 -- calls explicitly generate any required checks. We also need it
1942 -- only if we are doing standard validity checks, since clearly it
1943 -- is not needed if validity checks are off, and in subscript
1944 -- validity checking mode, all indexed components are checked with
1945 -- a call directly from Expand_N_Indexed_Component.
1947 if Comes_From_Source (N)
1948 and then Ekind (Formal) /= E_In_Parameter
1949 and then Validity_Checks_On
1950 and then Validity_Check_Default
1951 and then not Validity_Check_Subscripts
1952 then
1953 Check_Valid_Lvalue_Subscripts (Actual);
1954 end if;
1956 -- Mark any scalar OUT parameter that is a simple variable as no
1957 -- longer known to be valid (unless the type is always valid). This
1958 -- reflects the fact that if an OUT parameter is never set in a
1959 -- procedure, then it can become invalid on the procedure return.
1961 if Ekind (Formal) = E_Out_Parameter
1962 and then Is_Entity_Name (Actual)
1963 and then Ekind (Entity (Actual)) = E_Variable
1964 and then not Is_Known_Valid (Etype (Actual))
1965 then
1966 Set_Is_Known_Valid (Entity (Actual), False);
1967 end if;
1969 -- For an OUT or IN OUT parameter, if the actual is an entity, then
1970 -- clear current values, since they can be clobbered. We are probably
1971 -- doing this in more places than we need to, but better safe than
1972 -- sorry when it comes to retaining bad current values!
1974 if Ekind (Formal) /= E_In_Parameter
1975 and then Is_Entity_Name (Actual)
1976 then
1977 Kill_Current_Values (Entity (Actual));
1978 end if;
1980 -- If the formal is class wide and the actual is an aggregate, force
1981 -- evaluation so that the back end who does not know about class-wide
1982 -- type, does not generate a temporary of the wrong size.
1984 if not Is_Class_Wide_Type (Etype (Formal)) then
1985 null;
1987 elsif Nkind (Actual) = N_Aggregate
1988 or else (Nkind (Actual) = N_Qualified_Expression
1989 and then Nkind (Expression (Actual)) = N_Aggregate)
1990 then
1991 Force_Evaluation (Actual);
1992 end if;
1994 -- In a remote call, if the formal is of a class-wide type, check
1995 -- that the actual meets the requirements described in E.4(18).
1997 if Remote
1998 and then Is_Class_Wide_Type (Etype (Formal))
1999 then
2000 Insert_Action (Actual,
2001 Make_Implicit_If_Statement (N,
2002 Condition =>
2003 Make_Op_Not (Loc,
2004 Get_Remotely_Callable
2005 (Duplicate_Subexpr_Move_Checks (Actual))),
2006 Then_Statements => New_List (
2007 Make_Raise_Program_Error (Loc,
2008 Reason => PE_Illegal_RACW_E_4_18))));
2009 end if;
2011 -- This label is required when skipping extra actual generation for
2012 -- Unchecked_Union parameters.
2014 <<Skip_Extra_Actual_Generation>>
2016 Next_Actual (Actual);
2017 Next_Formal (Formal);
2018 end loop;
2020 -- If we are expanding a rhs of an assignment we need to check if tag
2021 -- propagation is needed. You might expect this processing to be in
2022 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
2023 -- assignment might be transformed to a declaration for an unconstrained
2024 -- value if the expression is classwide.
2026 if Nkind (N) = N_Function_Call
2027 and then Is_Tag_Indeterminate (N)
2028 and then Is_Entity_Name (Name (N))
2029 then
2030 declare
2031 Ass : Node_Id := Empty;
2033 begin
2034 if Nkind (Parent (N)) = N_Assignment_Statement then
2035 Ass := Parent (N);
2037 elsif Nkind (Parent (N)) = N_Qualified_Expression
2038 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2039 then
2040 Ass := Parent (Parent (N));
2042 elsif Nkind (Parent (N)) = N_Explicit_Dereference
2043 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2044 then
2045 Ass := Parent (Parent (N));
2046 end if;
2048 if Present (Ass)
2049 and then Is_Class_Wide_Type (Etype (Name (Ass)))
2050 then
2051 if Is_Access_Type (Etype (N)) then
2052 if Designated_Type (Etype (N)) /=
2053 Root_Type (Etype (Name (Ass)))
2054 then
2055 Error_Msg_NE
2056 ("tag-indeterminate expression "
2057 & " must have designated type& ('R'M 5.2 (6))",
2058 N, Root_Type (Etype (Name (Ass))));
2059 else
2060 Propagate_Tag (Name (Ass), N);
2061 end if;
2063 elsif Etype (N) /= Root_Type (Etype (Name (Ass))) then
2064 Error_Msg_NE
2065 ("tag-indeterminate expression must have type&"
2066 & "('R'M 5.2 (6))", N, Root_Type (Etype (Name (Ass))));
2068 else
2069 Propagate_Tag (Name (Ass), N);
2070 end if;
2072 -- The call will be rewritten as a dispatching call, and
2073 -- expanded as such.
2075 return;
2076 end if;
2077 end;
2078 end if;
2080 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
2081 -- it to point to the correct secondary virtual table
2083 if (Nkind (N) = N_Function_Call
2084 or else Nkind (N) = N_Procedure_Call_Statement)
2085 and then CW_Interface_Formals_Present
2086 then
2087 Expand_Interface_Actuals (N);
2088 end if;
2090 -- Deals with Dispatch_Call if we still have a call, before expanding
2091 -- extra actuals since this will be done on the re-analysis of the
2092 -- dispatching call. Note that we do not try to shorten the actual
2093 -- list for a dispatching call, it would not make sense to do so.
2094 -- Expansion of dispatching calls is suppressed when Java_VM, because
2095 -- the JVM back end directly handles the generation of dispatching
2096 -- calls and would have to undo any expansion to an indirect call.
2098 if (Nkind (N) = N_Function_Call
2099 or else Nkind (N) = N_Procedure_Call_Statement)
2100 and then Present (Controlling_Argument (N))
2101 and then not Java_VM
2102 then
2103 Expand_Dispatching_Call (N);
2105 -- The following return is worrisome. Is it really OK to
2106 -- skip all remaining processing in this procedure ???
2108 return;
2110 -- Similarly, expand calls to RCI subprograms on which pragma
2111 -- All_Calls_Remote applies. The rewriting will be reanalyzed
2112 -- later. Do this only when the call comes from source since we do
2113 -- not want such a rewritting to occur in expanded code.
2115 elsif Is_All_Remote_Call (N) then
2116 Expand_All_Calls_Remote_Subprogram_Call (N);
2118 -- Similarly, do not add extra actuals for an entry call whose entity
2119 -- is a protected procedure, or for an internal protected subprogram
2120 -- call, because it will be rewritten as a protected subprogram call
2121 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
2123 elsif Is_Protected_Type (Scope (Subp))
2124 and then (Ekind (Subp) = E_Procedure
2125 or else Ekind (Subp) = E_Function)
2126 then
2127 null;
2129 -- During that loop we gathered the extra actuals (the ones that
2130 -- correspond to Extra_Formals), so now they can be appended.
2132 else
2133 while Is_Non_Empty_List (Extra_Actuals) loop
2134 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2135 end loop;
2136 end if;
2138 -- At this point we have all the actuals, so this is the point at
2139 -- which the various expansion activities for actuals is carried out.
2141 Expand_Actuals (N, Subp);
2143 -- If the subprogram is a renaming, or if it is inherited, replace it
2144 -- in the call with the name of the actual subprogram being called.
2145 -- If this is a dispatching call, the run-time decides what to call.
2146 -- The Alias attribute does not apply to entries.
2148 if Nkind (N) /= N_Entry_Call_Statement
2149 and then No (Controlling_Argument (N))
2150 and then Present (Parent_Subp)
2151 then
2152 if Present (Inherited_From_Formal (Subp)) then
2153 Parent_Subp := Inherited_From_Formal (Subp);
2154 else
2155 while Present (Alias (Parent_Subp)) loop
2156 Parent_Subp := Alias (Parent_Subp);
2157 end loop;
2158 end if;
2160 -- The below setting of Entity is suspect, see F109-018 discussion???
2162 Set_Entity (Name (N), Parent_Subp);
2164 if Is_Abstract (Parent_Subp)
2165 and then not In_Instance
2166 then
2167 Error_Msg_NE
2168 ("cannot call abstract subprogram &!", Name (N), Parent_Subp);
2169 end if;
2171 -- Add an explicit conversion for parameter of the derived type.
2172 -- This is only done for scalar and access in-parameters. Others
2173 -- have been expanded in expand_actuals.
2175 Formal := First_Formal (Subp);
2176 Parent_Formal := First_Formal (Parent_Subp);
2177 Actual := First_Actual (N);
2179 -- It is not clear that conversion is needed for intrinsic
2180 -- subprograms, but it certainly is for those that are user-
2181 -- defined, and that can be inherited on derivation, namely
2182 -- unchecked conversion and deallocation.
2183 -- General case needs study ???
2185 if not Is_Intrinsic_Subprogram (Parent_Subp)
2186 or else Is_Generic_Instance (Parent_Subp)
2187 then
2188 while Present (Formal) loop
2189 if Etype (Formal) /= Etype (Parent_Formal)
2190 and then Is_Scalar_Type (Etype (Formal))
2191 and then Ekind (Formal) = E_In_Parameter
2192 and then
2193 not Subtypes_Statically_Match
2194 (Etype (Parent_Formal), Etype (Actual))
2195 and then not Raises_Constraint_Error (Actual)
2196 then
2197 Rewrite (Actual,
2198 OK_Convert_To (Etype (Parent_Formal),
2199 Relocate_Node (Actual)));
2201 Analyze (Actual);
2202 Resolve (Actual, Etype (Parent_Formal));
2203 Enable_Range_Check (Actual);
2205 elsif Is_Access_Type (Etype (Formal))
2206 and then Base_Type (Etype (Parent_Formal)) /=
2207 Base_Type (Etype (Actual))
2208 then
2209 if Ekind (Formal) /= E_In_Parameter then
2210 Rewrite (Actual,
2211 Convert_To (Etype (Parent_Formal),
2212 Relocate_Node (Actual)));
2214 Analyze (Actual);
2215 Resolve (Actual, Etype (Parent_Formal));
2217 elsif
2218 Ekind (Etype (Parent_Formal)) = E_Anonymous_Access_Type
2219 and then Designated_Type (Etype (Parent_Formal))
2221 Designated_Type (Etype (Actual))
2222 and then not Is_Controlling_Formal (Formal)
2223 then
2224 -- This unchecked conversion is not necessary unless
2225 -- inlining is enabled, because in that case the type
2226 -- mismatch may become visible in the body about to be
2227 -- inlined.
2229 Rewrite (Actual,
2230 Unchecked_Convert_To (Etype (Parent_Formal),
2231 Relocate_Node (Actual)));
2233 Analyze (Actual);
2234 Resolve (Actual, Etype (Parent_Formal));
2235 end if;
2236 end if;
2238 Next_Formal (Formal);
2239 Next_Formal (Parent_Formal);
2240 Next_Actual (Actual);
2241 end loop;
2242 end if;
2244 Orig_Subp := Subp;
2245 Subp := Parent_Subp;
2246 end if;
2248 -- Check for violation of No_Abort_Statements
2250 if Is_RTE (Subp, RE_Abort_Task) then
2251 Check_Restriction (No_Abort_Statements, N);
2253 -- Check for violation of No_Dynamic_Attachment
2255 elsif RTU_Loaded (Ada_Interrupts)
2256 and then (Is_RTE (Subp, RE_Is_Reserved) or else
2257 Is_RTE (Subp, RE_Is_Attached) or else
2258 Is_RTE (Subp, RE_Current_Handler) or else
2259 Is_RTE (Subp, RE_Attach_Handler) or else
2260 Is_RTE (Subp, RE_Exchange_Handler) or else
2261 Is_RTE (Subp, RE_Detach_Handler) or else
2262 Is_RTE (Subp, RE_Reference))
2263 then
2264 Check_Restriction (No_Dynamic_Attachment, N);
2265 end if;
2267 -- Deal with case where call is an explicit dereference
2269 if Nkind (Name (N)) = N_Explicit_Dereference then
2271 -- Handle case of access to protected subprogram type
2273 if Ekind (Base_Type (Etype (Prefix (Name (N))))) =
2274 E_Access_Protected_Subprogram_Type
2275 then
2276 -- If this is a call through an access to protected operation,
2277 -- the prefix has the form (object'address, operation'access).
2278 -- Rewrite as a for other protected calls: the object is the
2279 -- first parameter of the list of actuals.
2281 declare
2282 Call : Node_Id;
2283 Parm : List_Id;
2284 Nam : Node_Id;
2285 Obj : Node_Id;
2286 Ptr : constant Node_Id := Prefix (Name (N));
2288 T : constant Entity_Id :=
2289 Equivalent_Type (Base_Type (Etype (Ptr)));
2291 D_T : constant Entity_Id :=
2292 Designated_Type (Base_Type (Etype (Ptr)));
2294 begin
2295 Obj :=
2296 Make_Selected_Component (Loc,
2297 Prefix => Unchecked_Convert_To (T, Ptr),
2298 Selector_Name =>
2299 New_Occurrence_Of (First_Entity (T), Loc));
2301 Nam :=
2302 Make_Selected_Component (Loc,
2303 Prefix => Unchecked_Convert_To (T, Ptr),
2304 Selector_Name =>
2305 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
2307 Nam :=
2308 Make_Explicit_Dereference (Loc,
2309 Prefix => Nam);
2311 if Present (Parameter_Associations (N)) then
2312 Parm := Parameter_Associations (N);
2313 else
2314 Parm := New_List;
2315 end if;
2317 Prepend (Obj, Parm);
2319 if Etype (D_T) = Standard_Void_Type then
2320 Call :=
2321 Make_Procedure_Call_Statement (Loc,
2322 Name => Nam,
2323 Parameter_Associations => Parm);
2324 else
2325 Call :=
2326 Make_Function_Call (Loc,
2327 Name => Nam,
2328 Parameter_Associations => Parm);
2329 end if;
2331 Set_First_Named_Actual (Call, First_Named_Actual (N));
2332 Set_Etype (Call, Etype (D_T));
2334 -- We do not re-analyze the call to avoid infinite recursion.
2335 -- We analyze separately the prefix and the object, and set
2336 -- the checks on the prefix that would otherwise be emitted
2337 -- when resolving a call.
2339 Rewrite (N, Call);
2340 Analyze (Nam);
2341 Apply_Access_Check (Nam);
2342 Analyze (Obj);
2343 return;
2344 end;
2345 end if;
2346 end if;
2348 -- If this is a call to an intrinsic subprogram, then perform the
2349 -- appropriate expansion to the corresponding tree node and we
2350 -- are all done (since after that the call is gone!)
2352 -- In the case where the intrinsic is to be processed by the back end,
2353 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
2354 -- since the idea in this case is to pass the call unchanged.
2356 if Is_Intrinsic_Subprogram (Subp) then
2357 Expand_Intrinsic_Call (N, Subp);
2358 return;
2359 end if;
2361 if Ekind (Subp) = E_Function
2362 or else Ekind (Subp) = E_Procedure
2363 then
2364 if Is_Inlined (Subp) then
2366 Inlined_Subprogram : declare
2367 Bod : Node_Id;
2368 Must_Inline : Boolean := False;
2369 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
2370 Scop : constant Entity_Id := Scope (Subp);
2372 function In_Unfrozen_Instance return Boolean;
2373 -- If the subprogram comes from an instance in the same
2374 -- unit, and the instance is not yet frozen, inlining might
2375 -- trigger order-of-elaboration problems in gigi.
2377 --------------------------
2378 -- In_Unfrozen_Instance --
2379 --------------------------
2381 function In_Unfrozen_Instance return Boolean is
2382 S : Entity_Id;
2384 begin
2385 S := Scop;
2386 while Present (S)
2387 and then S /= Standard_Standard
2388 loop
2389 if Is_Generic_Instance (S)
2390 and then Present (Freeze_Node (S))
2391 and then not Analyzed (Freeze_Node (S))
2392 then
2393 return True;
2394 end if;
2396 S := Scope (S);
2397 end loop;
2399 return False;
2400 end In_Unfrozen_Instance;
2402 -- Start of processing for Inlined_Subprogram
2404 begin
2405 -- Verify that the body to inline has already been seen, and
2406 -- that if the body is in the current unit the inlining does
2407 -- not occur earlier. This avoids order-of-elaboration problems
2408 -- in the back end.
2410 -- This should be documented in sinfo/einfo ???
2412 if No (Spec)
2413 or else Nkind (Spec) /= N_Subprogram_Declaration
2414 or else No (Body_To_Inline (Spec))
2415 then
2416 Must_Inline := False;
2418 -- If this an inherited function that returns a private
2419 -- type, do not inline if the full view is an unconstrained
2420 -- array, because such calls cannot be inlined.
2422 elsif Present (Orig_Subp)
2423 and then Is_Array_Type (Etype (Orig_Subp))
2424 and then not Is_Constrained (Etype (Orig_Subp))
2425 then
2426 Must_Inline := False;
2428 elsif In_Unfrozen_Instance then
2429 Must_Inline := False;
2431 else
2432 Bod := Body_To_Inline (Spec);
2434 if (In_Extended_Main_Code_Unit (N)
2435 or else In_Extended_Main_Code_Unit (Parent (N))
2436 or else Is_Always_Inlined (Subp))
2437 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
2438 or else
2439 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
2440 then
2441 Must_Inline := True;
2443 -- If we are compiling a package body that is not the main
2444 -- unit, it must be for inlining/instantiation purposes,
2445 -- in which case we inline the call to insure that the same
2446 -- temporaries are generated when compiling the body by
2447 -- itself. Otherwise link errors can occur.
2449 -- If the function being called is itself in the main unit,
2450 -- we cannot inline, because there is a risk of double
2451 -- elaboration and/or circularity: the inlining can make
2452 -- visible a private entity in the body of the main unit,
2453 -- that gigi will see before its sees its proper definition.
2455 elsif not (In_Extended_Main_Code_Unit (N))
2456 and then In_Package_Body
2457 then
2458 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
2459 end if;
2460 end if;
2462 if Must_Inline then
2463 Expand_Inlined_Call (N, Subp, Orig_Subp);
2465 else
2466 -- Let the back end handle it
2468 Add_Inlined_Body (Subp);
2470 if Front_End_Inlining
2471 and then Nkind (Spec) = N_Subprogram_Declaration
2472 and then (In_Extended_Main_Code_Unit (N))
2473 and then No (Body_To_Inline (Spec))
2474 and then not Has_Completion (Subp)
2475 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
2476 then
2477 Cannot_Inline
2478 ("cannot inline& (body not seen yet)?",
2479 N, Subp);
2480 end if;
2481 end if;
2482 end Inlined_Subprogram;
2483 end if;
2484 end if;
2486 -- Check for a protected subprogram. This is either an intra-object
2487 -- call, or a protected function call. Protected procedure calls are
2488 -- rewritten as entry calls and handled accordingly.
2490 -- In Ada 2005, this may be an indirect call to an access parameter
2491 -- that is an access_to_subprogram. In that case the anonymous type
2492 -- has a scope that is a protected operation, but the call is a
2493 -- regular one.
2495 Scop := Scope (Subp);
2497 if Nkind (N) /= N_Entry_Call_Statement
2498 and then Is_Protected_Type (Scop)
2499 and then Ekind (Subp) /= E_Subprogram_Type
2500 then
2501 -- If the call is an internal one, it is rewritten as a call to
2502 -- to the corresponding unprotected subprogram.
2504 Expand_Protected_Subprogram_Call (N, Subp, Scop);
2505 end if;
2507 -- Functions returning controlled objects need special attention
2509 if Controlled_Type (Etype (Subp))
2510 and then not Is_Inherently_Limited_Type (Etype (Subp))
2511 then
2512 Expand_Ctrl_Function_Call (N);
2513 end if;
2515 -- Test for First_Optional_Parameter, and if so, truncate parameter
2516 -- list if there are optional parameters at the trailing end.
2517 -- Note we never delete procedures for call via a pointer.
2519 if (Ekind (Subp) = E_Procedure or else Ekind (Subp) = E_Function)
2520 and then Present (First_Optional_Parameter (Subp))
2521 then
2522 declare
2523 Last_Keep_Arg : Node_Id;
2525 begin
2526 -- Last_Keep_Arg will hold the last actual that should be
2527 -- retained. If it remains empty at the end, it means that
2528 -- all parameters are optional.
2530 Last_Keep_Arg := Empty;
2532 -- Find first optional parameter, must be present since we
2533 -- checked the validity of the parameter before setting it.
2535 Formal := First_Formal (Subp);
2536 Actual := First_Actual (N);
2537 while Formal /= First_Optional_Parameter (Subp) loop
2538 Last_Keep_Arg := Actual;
2539 Next_Formal (Formal);
2540 Next_Actual (Actual);
2541 end loop;
2543 -- We have Formal and Actual pointing to the first potentially
2544 -- droppable argument. We can drop all the trailing arguments
2545 -- whose actual matches the default. Note that we know that all
2546 -- remaining formals have defaults, because we checked that this
2547 -- requirement was met before setting First_Optional_Parameter.
2549 -- We use Fully_Conformant_Expressions to check for identity
2550 -- between formals and actuals, which may miss some cases, but
2551 -- on the other hand, this is only an optimization (if we fail
2552 -- to truncate a parameter it does not affect functionality).
2553 -- So if the default is 3 and the actual is 1+2, we consider
2554 -- them unequal, which hardly seems worrisome.
2556 while Present (Formal) loop
2557 if not Fully_Conformant_Expressions
2558 (Actual, Default_Value (Formal))
2559 then
2560 Last_Keep_Arg := Actual;
2561 end if;
2563 Next_Formal (Formal);
2564 Next_Actual (Actual);
2565 end loop;
2567 -- If no arguments, delete entire list, this is the easy case
2569 if No (Last_Keep_Arg) then
2570 while Is_Non_Empty_List (Parameter_Associations (N)) loop
2571 Delete_Tree (Remove_Head (Parameter_Associations (N)));
2572 end loop;
2574 Set_Parameter_Associations (N, No_List);
2575 Set_First_Named_Actual (N, Empty);
2577 -- Case where at the last retained argument is positional. This
2578 -- is also an easy case, since the retained arguments are already
2579 -- in the right form, and we don't need to worry about the order
2580 -- of arguments that get eliminated.
2582 elsif Is_List_Member (Last_Keep_Arg) then
2583 while Present (Next (Last_Keep_Arg)) loop
2584 Delete_Tree (Remove_Next (Last_Keep_Arg));
2585 end loop;
2587 Set_First_Named_Actual (N, Empty);
2589 -- This is the annoying case where the last retained argument
2590 -- is a named parameter. Since the original arguments are not
2591 -- in declaration order, we may have to delete some fairly
2592 -- random collection of arguments.
2594 else
2595 declare
2596 Temp : Node_Id;
2597 Passoc : Node_Id;
2599 Discard : Node_Id;
2600 pragma Warnings (Off, Discard);
2602 begin
2603 -- First step, remove all the named parameters from the
2604 -- list (they are still chained using First_Named_Actual
2605 -- and Next_Named_Actual, so we have not lost them!)
2607 Temp := First (Parameter_Associations (N));
2609 -- Case of all parameters named, remove them all
2611 if Nkind (Temp) = N_Parameter_Association then
2612 while Is_Non_Empty_List (Parameter_Associations (N)) loop
2613 Temp := Remove_Head (Parameter_Associations (N));
2614 end loop;
2616 -- Case of mixed positional/named, remove named parameters
2618 else
2619 while Nkind (Next (Temp)) /= N_Parameter_Association loop
2620 Next (Temp);
2621 end loop;
2623 while Present (Next (Temp)) loop
2624 Discard := Remove_Next (Temp);
2625 end loop;
2626 end if;
2628 -- Now we loop through the named parameters, till we get
2629 -- to the last one to be retained, adding them to the list.
2630 -- Note that the Next_Named_Actual list does not need to be
2631 -- touched since we are only reordering them on the actual
2632 -- parameter association list.
2634 Passoc := Parent (First_Named_Actual (N));
2635 loop
2636 Temp := Relocate_Node (Passoc);
2637 Append_To
2638 (Parameter_Associations (N), Temp);
2639 exit when
2640 Last_Keep_Arg = Explicit_Actual_Parameter (Passoc);
2641 Passoc := Parent (Next_Named_Actual (Passoc));
2642 end loop;
2644 Set_Next_Named_Actual (Temp, Empty);
2646 loop
2647 Temp := Next_Named_Actual (Passoc);
2648 exit when No (Temp);
2649 Set_Next_Named_Actual
2650 (Passoc, Next_Named_Actual (Parent (Temp)));
2651 Delete_Tree (Temp);
2652 end loop;
2653 end;
2654 end if;
2655 end;
2656 end if;
2658 -- Special processing for Ada 2005 AI-329, which requires a call to
2659 -- Raise_Exception to raise Constraint_Error if the Exception_Id is
2660 -- null. Note that we never need to do this in GNAT mode, or if the
2661 -- parameter to Raise_Exception is a use of Identity, since in these
2662 -- cases we know that the parameter is never null.
2664 if Ada_Version >= Ada_05
2665 and then not GNAT_Mode
2666 and then Is_RTE (Subp, RE_Raise_Exception)
2667 and then (Nkind (First_Actual (N)) /= N_Attribute_Reference
2668 or else Attribute_Name (First_Actual (N)) /= Name_Identity)
2669 then
2670 declare
2671 RCE : constant Node_Id :=
2672 Make_Raise_Constraint_Error (Loc,
2673 Reason => CE_Null_Exception_Id);
2674 begin
2675 Insert_After (N, RCE);
2676 Analyze (RCE);
2677 end;
2678 end if;
2679 end Expand_Call;
2681 --------------------------
2682 -- Expand_Inlined_Call --
2683 --------------------------
2685 procedure Expand_Inlined_Call
2686 (N : Node_Id;
2687 Subp : Entity_Id;
2688 Orig_Subp : Entity_Id)
2690 Loc : constant Source_Ptr := Sloc (N);
2691 Is_Predef : constant Boolean :=
2692 Is_Predefined_File_Name
2693 (Unit_File_Name (Get_Source_Unit (Subp)));
2694 Orig_Bod : constant Node_Id :=
2695 Body_To_Inline (Unit_Declaration_Node (Subp));
2697 Blk : Node_Id;
2698 Bod : Node_Id;
2699 Decl : Node_Id;
2700 Decls : constant List_Id := New_List;
2701 Exit_Lab : Entity_Id := Empty;
2702 F : Entity_Id;
2703 A : Node_Id;
2704 Lab_Decl : Node_Id;
2705 Lab_Id : Node_Id;
2706 New_A : Node_Id;
2707 Num_Ret : Int := 0;
2708 Ret_Type : Entity_Id;
2709 Targ : Node_Id;
2710 Targ1 : Node_Id;
2711 Temp : Entity_Id;
2712 Temp_Typ : Entity_Id;
2714 Is_Unc : constant Boolean :=
2715 Is_Array_Type (Etype (Subp))
2716 and then not Is_Constrained (Etype (Subp));
2717 -- If the type returned by the function is unconstrained and the
2718 -- call can be inlined, special processing is required.
2720 procedure Make_Exit_Label;
2721 -- Build declaration for exit label to be used in Return statements
2723 function Process_Formals (N : Node_Id) return Traverse_Result;
2724 -- Replace occurrence of a formal with the corresponding actual, or
2725 -- the thunk generated for it.
2727 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
2728 -- If the call being expanded is that of an internal subprogram,
2729 -- set the sloc of the generated block to that of the call itself,
2730 -- so that the expansion is skipped by the -next- command in gdb.
2731 -- Same processing for a subprogram in a predefined file, e.g.
2732 -- Ada.Tags. If Debug_Generated_Code is true, suppress this change
2733 -- to simplify our own development.
2735 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
2736 -- If the function body is a single expression, replace call with
2737 -- expression, else insert block appropriately.
2739 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
2740 -- If procedure body has no local variables, inline body without
2741 -- creating block, otherwise rewrite call with block.
2743 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
2744 -- Determine whether a formal parameter is used only once in Orig_Bod
2746 ---------------------
2747 -- Make_Exit_Label --
2748 ---------------------
2750 procedure Make_Exit_Label is
2751 begin
2752 -- Create exit label for subprogram if one does not exist yet
2754 if No (Exit_Lab) then
2755 Lab_Id :=
2756 Make_Identifier (Loc,
2757 Chars => New_Internal_Name ('L'));
2758 Set_Entity (Lab_Id,
2759 Make_Defining_Identifier (Loc, Chars (Lab_Id)));
2760 Exit_Lab := Make_Label (Loc, Lab_Id);
2762 Lab_Decl :=
2763 Make_Implicit_Label_Declaration (Loc,
2764 Defining_Identifier => Entity (Lab_Id),
2765 Label_Construct => Exit_Lab);
2766 end if;
2767 end Make_Exit_Label;
2769 ---------------------
2770 -- Process_Formals --
2771 ---------------------
2773 function Process_Formals (N : Node_Id) return Traverse_Result is
2774 A : Entity_Id;
2775 E : Entity_Id;
2776 Ret : Node_Id;
2778 begin
2779 if Is_Entity_Name (N)
2780 and then Present (Entity (N))
2781 then
2782 E := Entity (N);
2784 if Is_Formal (E)
2785 and then Scope (E) = Subp
2786 then
2787 A := Renamed_Object (E);
2789 -- Rewrite the occurrence of the formal into an occurrence of
2790 -- the actual. Also establish visibility on the proper view of
2791 -- the actual's subtype for the body's context (if the actual's
2792 -- subtype is private at the call point but its full view is
2793 -- visible to the body, then the inlined tree here must be
2794 -- analyzed with the full view).
2796 if Is_Entity_Name (A) then
2797 Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
2798 Check_Private_View (N);
2800 elsif Nkind (A) = N_Defining_Identifier then
2801 Rewrite (N, New_Occurrence_Of (A, Loc));
2802 Check_Private_View (N);
2804 else -- numeric literal
2805 Rewrite (N, New_Copy (A));
2806 end if;
2807 end if;
2809 return Skip;
2811 elsif Nkind (N) = N_Return_Statement then
2813 if No (Expression (N)) then
2814 Make_Exit_Label;
2815 Rewrite (N, Make_Goto_Statement (Loc,
2816 Name => New_Copy (Lab_Id)));
2818 else
2819 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
2820 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
2821 then
2822 -- Function body is a single expression. No need for
2823 -- exit label.
2825 null;
2827 else
2828 Num_Ret := Num_Ret + 1;
2829 Make_Exit_Label;
2830 end if;
2832 -- Because of the presence of private types, the views of the
2833 -- expression and the context may be different, so place an
2834 -- unchecked conversion to the context type to avoid spurious
2835 -- errors, eg. when the expression is a numeric literal and
2836 -- the context is private. If the expression is an aggregate,
2837 -- use a qualified expression, because an aggregate is not a
2838 -- legal argument of a conversion.
2840 if Nkind (Expression (N)) = N_Aggregate
2841 or else Nkind (Expression (N)) = N_Null
2842 then
2843 Ret :=
2844 Make_Qualified_Expression (Sloc (N),
2845 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
2846 Expression => Relocate_Node (Expression (N)));
2847 else
2848 Ret :=
2849 Unchecked_Convert_To
2850 (Ret_Type, Relocate_Node (Expression (N)));
2851 end if;
2853 if Nkind (Targ) = N_Defining_Identifier then
2854 Rewrite (N,
2855 Make_Assignment_Statement (Loc,
2856 Name => New_Occurrence_Of (Targ, Loc),
2857 Expression => Ret));
2858 else
2859 Rewrite (N,
2860 Make_Assignment_Statement (Loc,
2861 Name => New_Copy (Targ),
2862 Expression => Ret));
2863 end if;
2865 Set_Assignment_OK (Name (N));
2867 if Present (Exit_Lab) then
2868 Insert_After (N,
2869 Make_Goto_Statement (Loc,
2870 Name => New_Copy (Lab_Id)));
2871 end if;
2872 end if;
2874 return OK;
2876 -- Remove pragma Unreferenced since it may refer to formals that
2877 -- are not visible in the inlined body, and in any case we will
2878 -- not be posting warnings on the inlined body so it is unneeded.
2880 elsif Nkind (N) = N_Pragma
2881 and then Chars (N) = Name_Unreferenced
2882 then
2883 Rewrite (N, Make_Null_Statement (Sloc (N)));
2884 return OK;
2886 else
2887 return OK;
2888 end if;
2889 end Process_Formals;
2891 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
2893 ------------------
2894 -- Process_Sloc --
2895 ------------------
2897 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
2898 begin
2899 if not Debug_Generated_Code then
2900 Set_Sloc (Nod, Sloc (N));
2901 Set_Comes_From_Source (Nod, False);
2902 end if;
2904 return OK;
2905 end Process_Sloc;
2907 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
2909 ---------------------------
2910 -- Rewrite_Function_Call --
2911 ---------------------------
2913 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
2914 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2915 Fst : constant Node_Id := First (Statements (HSS));
2917 begin
2918 -- Optimize simple case: function body is a single return statement,
2919 -- which has been expanded into an assignment.
2921 if Is_Empty_List (Declarations (Blk))
2922 and then Nkind (Fst) = N_Assignment_Statement
2923 and then No (Next (Fst))
2924 then
2926 -- The function call may have been rewritten as the temporary
2927 -- that holds the result of the call, in which case remove the
2928 -- now useless declaration.
2930 if Nkind (N) = N_Identifier
2931 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2932 then
2933 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
2934 end if;
2936 Rewrite (N, Expression (Fst));
2938 elsif Nkind (N) = N_Identifier
2939 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2940 then
2941 -- The block assigns the result of the call to the temporary
2943 Insert_After (Parent (Entity (N)), Blk);
2945 elsif Nkind (Parent (N)) = N_Assignment_Statement
2946 and then
2947 (Is_Entity_Name (Name (Parent (N)))
2948 or else
2949 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
2950 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
2951 then
2952 -- Replace assignment with the block
2954 declare
2955 Original_Assignment : constant Node_Id := Parent (N);
2957 begin
2958 -- Preserve the original assignment node to keep the complete
2959 -- assignment subtree consistent enough for Analyze_Assignment
2960 -- to proceed (specifically, the original Lhs node must still
2961 -- have an assignment statement as its parent).
2963 -- We cannot rely on Original_Node to go back from the block
2964 -- node to the assignment node, because the assignment might
2965 -- already be a rewrite substitution.
2967 Discard_Node (Relocate_Node (Original_Assignment));
2968 Rewrite (Original_Assignment, Blk);
2969 end;
2971 elsif Nkind (Parent (N)) = N_Object_Declaration then
2972 Set_Expression (Parent (N), Empty);
2973 Insert_After (Parent (N), Blk);
2975 elsif Is_Unc then
2976 Insert_Before (Parent (N), Blk);
2977 end if;
2978 end Rewrite_Function_Call;
2980 ----------------------------
2981 -- Rewrite_Procedure_Call --
2982 ----------------------------
2984 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
2985 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2986 begin
2987 -- If there is a transient scope for N, this will be the scope of the
2988 -- actions for N, and the statements in Blk need to be within this
2989 -- scope. For example, they need to have visibility on the constant
2990 -- declarations created for the formals.
2992 -- If N needs no transient scope, and if there are no declarations in
2993 -- the inlined body, we can do a little optimization and insert the
2994 -- statements for the body directly after N, and rewrite N to a
2995 -- null statement, instead of rewriting N into a full-blown block
2996 -- statement.
2998 if not Scope_Is_Transient
2999 and then Is_Empty_List (Declarations (Blk))
3000 then
3001 Insert_List_After (N, Statements (HSS));
3002 Rewrite (N, Make_Null_Statement (Loc));
3003 else
3004 Rewrite (N, Blk);
3005 end if;
3006 end Rewrite_Procedure_Call;
3008 -------------------------
3009 -- Formal_Is_Used_Once --
3010 -------------------------
3012 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
3013 Use_Counter : Int := 0;
3015 function Count_Uses (N : Node_Id) return Traverse_Result;
3016 -- Traverse the tree and count the uses of the formal parameter.
3017 -- In this case, for optimization purposes, we do not need to
3018 -- continue the traversal once more than one use is encountered.
3020 ----------------
3021 -- Count_Uses --
3022 ----------------
3024 function Count_Uses (N : Node_Id) return Traverse_Result is
3025 begin
3026 -- The original node is an identifier
3028 if Nkind (N) = N_Identifier
3029 and then Present (Entity (N))
3031 -- Original node's entity points to the one in the copied body
3033 and then Nkind (Entity (N)) = N_Identifier
3034 and then Present (Entity (Entity (N)))
3036 -- The entity of the copied node is the formal parameter
3038 and then Entity (Entity (N)) = Formal
3039 then
3040 Use_Counter := Use_Counter + 1;
3042 if Use_Counter > 1 then
3044 -- Denote more than one use and abandon the traversal
3046 Use_Counter := 2;
3047 return Abandon;
3049 end if;
3050 end if;
3052 return OK;
3053 end Count_Uses;
3055 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
3057 -- Start of processing for Formal_Is_Used_Once
3059 begin
3060 Count_Formal_Uses (Orig_Bod);
3061 return Use_Counter = 1;
3062 end Formal_Is_Used_Once;
3064 -- Start of processing for Expand_Inlined_Call
3066 begin
3067 -- Check for special case of To_Address call, and if so, just do an
3068 -- unchecked conversion instead of expanding the call. Not only is this
3069 -- more efficient, but it also avoids problem with order of elaboration
3070 -- when address clauses are inlined (address expression elaborated at
3071 -- wrong point).
3073 if Subp = RTE (RE_To_Address) then
3074 Rewrite (N,
3075 Unchecked_Convert_To
3076 (RTE (RE_Address),
3077 Relocate_Node (First_Actual (N))));
3078 return;
3079 end if;
3081 -- Check for an illegal attempt to inline a recursive procedure. If the
3082 -- subprogram has parameters this is detected when trying to supply a
3083 -- binding for parameters that already have one. For parameterless
3084 -- subprograms this must be done explicitly.
3086 if In_Open_Scopes (Subp) then
3087 Error_Msg_N ("call to recursive subprogram cannot be inlined?", N);
3088 Set_Is_Inlined (Subp, False);
3089 return;
3090 end if;
3092 if Nkind (Orig_Bod) = N_Defining_Identifier
3093 or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
3094 then
3095 -- Subprogram is a renaming_as_body. Calls appearing after the
3096 -- renaming can be replaced with calls to the renamed entity
3097 -- directly, because the subprograms are subtype conformant. If
3098 -- the renamed subprogram is an inherited operation, we must redo
3099 -- the expansion because implicit conversions may be needed.
3101 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
3103 if Present (Alias (Orig_Bod)) then
3104 Expand_Call (N);
3105 end if;
3107 return;
3108 end if;
3110 -- Use generic machinery to copy body of inlined subprogram, as if it
3111 -- were an instantiation, resetting source locations appropriately, so
3112 -- that nested inlined calls appear in the main unit.
3114 Save_Env (Subp, Empty);
3115 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
3117 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3118 Blk :=
3119 Make_Block_Statement (Loc,
3120 Declarations => Declarations (Bod),
3121 Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
3123 if No (Declarations (Bod)) then
3124 Set_Declarations (Blk, New_List);
3125 end if;
3127 -- For the unconstrained case, capture the name of the local
3128 -- variable that holds the result. This must be the first declaration
3129 -- in the block, because its bounds cannot depend on local variables.
3130 -- Otherwise there is no way to declare the result outside of the
3131 -- block. Needless to say, in general the bounds will depend on the
3132 -- actuals in the call.
3134 if Is_Unc then
3135 Targ1 := Defining_Identifier (First (Declarations (Blk)));
3136 end if;
3138 -- If this is a derived function, establish the proper return type
3140 if Present (Orig_Subp)
3141 and then Orig_Subp /= Subp
3142 then
3143 Ret_Type := Etype (Orig_Subp);
3144 else
3145 Ret_Type := Etype (Subp);
3146 end if;
3148 -- Create temporaries for the actuals that are expressions, or that
3149 -- are scalars and require copying to preserve semantics.
3151 F := First_Formal (Subp);
3152 A := First_Actual (N);
3153 while Present (F) loop
3154 if Present (Renamed_Object (F)) then
3155 Error_Msg_N ("cannot inline call to recursive subprogram", N);
3156 return;
3157 end if;
3159 -- If the argument may be a controlling argument in a call within
3160 -- the inlined body, we must preserve its classwide nature to insure
3161 -- that dynamic dispatching take place subsequently. If the formal
3162 -- has a constraint it must be preserved to retain the semantics of
3163 -- the body.
3165 if Is_Class_Wide_Type (Etype (F))
3166 or else (Is_Access_Type (Etype (F))
3167 and then
3168 Is_Class_Wide_Type (Designated_Type (Etype (F))))
3169 then
3170 Temp_Typ := Etype (F);
3172 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3173 and then Etype (F) /= Base_Type (Etype (F))
3174 then
3175 Temp_Typ := Etype (F);
3177 else
3178 Temp_Typ := Etype (A);
3179 end if;
3181 -- If the actual is a simple name or a literal, no need to
3182 -- create a temporary, object can be used directly.
3184 if (Is_Entity_Name (A)
3185 and then
3186 (not Is_Scalar_Type (Etype (A))
3187 or else Ekind (Entity (A)) = E_Enumeration_Literal))
3189 -- When the actual is an identifier and the corresponding formal
3190 -- is used only once in the original body, the formal can be
3191 -- substituted directly with the actual parameter.
3193 or else (Nkind (A) = N_Identifier
3194 and then Formal_Is_Used_Once (F))
3196 or else Nkind (A) = N_Real_Literal
3197 or else Nkind (A) = N_Integer_Literal
3198 or else Nkind (A) = N_Character_Literal
3199 then
3200 if Etype (F) /= Etype (A) then
3201 Set_Renamed_Object
3202 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3203 else
3204 Set_Renamed_Object (F, A);
3205 end if;
3207 else
3208 Temp :=
3209 Make_Defining_Identifier (Loc,
3210 Chars => New_Internal_Name ('C'));
3212 -- If the actual for an in/in-out parameter is a view conversion,
3213 -- make it into an unchecked conversion, given that an untagged
3214 -- type conversion is not a proper object for a renaming.
3216 -- In-out conversions that involve real conversions have already
3217 -- been transformed in Expand_Actuals.
3219 if Nkind (A) = N_Type_Conversion
3220 and then Ekind (F) /= E_In_Parameter
3221 then
3222 New_A :=
3223 Make_Unchecked_Type_Conversion (Loc,
3224 Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
3225 Expression => Relocate_Node (Expression (A)));
3227 elsif Etype (F) /= Etype (A) then
3228 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3229 Temp_Typ := Etype (F);
3231 else
3232 New_A := Relocate_Node (A);
3233 end if;
3235 Set_Sloc (New_A, Sloc (N));
3237 -- If the actual has a by-reference type, it cannot be copied, so
3238 -- its value is captured in a renaming declaration. Otherwise
3239 -- declare a local constant initalized with the actual.
3241 if Ekind (F) = E_In_Parameter
3242 and then not Is_Limited_Type (Etype (A))
3243 and then not Is_Tagged_Type (Etype (A))
3244 then
3245 Decl :=
3246 Make_Object_Declaration (Loc,
3247 Defining_Identifier => Temp,
3248 Constant_Present => True,
3249 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3250 Expression => New_A);
3251 else
3252 Decl :=
3253 Make_Object_Renaming_Declaration (Loc,
3254 Defining_Identifier => Temp,
3255 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3256 Name => New_A);
3257 end if;
3259 Append (Decl, Decls);
3260 Set_Renamed_Object (F, Temp);
3261 end if;
3263 Next_Formal (F);
3264 Next_Actual (A);
3265 end loop;
3267 -- Establish target of function call. If context is not assignment or
3268 -- declaration, create a temporary as a target. The declaration for
3269 -- the temporary may be subsequently optimized away if the body is a
3270 -- single expression, or if the left-hand side of the assignment is
3271 -- simple enough, i.e. an entity or an explicit dereference of one.
3273 if Ekind (Subp) = E_Function then
3274 if Nkind (Parent (N)) = N_Assignment_Statement
3275 and then Is_Entity_Name (Name (Parent (N)))
3276 then
3277 Targ := Name (Parent (N));
3279 elsif Nkind (Parent (N)) = N_Assignment_Statement
3280 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3281 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3282 then
3283 Targ := Name (Parent (N));
3285 else
3286 -- Replace call with temporary and create its declaration
3288 Temp :=
3289 Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
3290 Set_Is_Internal (Temp);
3292 -- For the unconstrained case. the generated temporary has the
3293 -- same constrained declaration as the result variable.
3294 -- It may eventually be possible to remove that temporary and
3295 -- use the result variable directly.
3297 if Is_Unc then
3298 Decl :=
3299 Make_Object_Declaration (Loc,
3300 Defining_Identifier => Temp,
3301 Object_Definition =>
3302 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3304 Replace_Formals (Decl);
3306 else
3307 Decl :=
3308 Make_Object_Declaration (Loc,
3309 Defining_Identifier => Temp,
3310 Object_Definition =>
3311 New_Occurrence_Of (Ret_Type, Loc));
3313 Set_Etype (Temp, Ret_Type);
3314 end if;
3316 Set_No_Initialization (Decl);
3317 Append (Decl, Decls);
3318 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3319 Targ := Temp;
3320 end if;
3321 end if;
3323 Insert_Actions (N, Decls);
3325 -- Traverse the tree and replace formals with actuals or their thunks.
3326 -- Attach block to tree before analysis and rewriting.
3328 Replace_Formals (Blk);
3329 Set_Parent (Blk, N);
3331 if not Comes_From_Source (Subp)
3332 or else Is_Predef
3333 then
3334 Reset_Slocs (Blk);
3335 end if;
3337 if Present (Exit_Lab) then
3339 -- If the body was a single expression, the single return statement
3340 -- and the corresponding label are useless.
3342 if Num_Ret = 1
3343 and then
3344 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3345 N_Goto_Statement
3346 then
3347 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3348 else
3349 Append (Lab_Decl, (Declarations (Blk)));
3350 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3351 end if;
3352 end if;
3354 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors on
3355 -- conflicting private views that Gigi would ignore. If this is
3356 -- predefined unit, analyze with checks off, as is done in the non-
3357 -- inlined run-time units.
3359 declare
3360 I_Flag : constant Boolean := In_Inlined_Body;
3362 begin
3363 In_Inlined_Body := True;
3365 if Is_Predef then
3366 declare
3367 Style : constant Boolean := Style_Check;
3368 begin
3369 Style_Check := False;
3370 Analyze (Blk, Suppress => All_Checks);
3371 Style_Check := Style;
3372 end;
3374 else
3375 Analyze (Blk);
3376 end if;
3378 In_Inlined_Body := I_Flag;
3379 end;
3381 if Ekind (Subp) = E_Procedure then
3382 Rewrite_Procedure_Call (N, Blk);
3383 else
3384 Rewrite_Function_Call (N, Blk);
3386 -- For the unconstrained case, the replacement of the call has been
3387 -- made prior to the complete analysis of the generated declarations.
3388 -- Propagate the proper type now.
3390 if Is_Unc then
3391 if Nkind (N) = N_Identifier then
3392 Set_Etype (N, Etype (Entity (N)));
3393 else
3394 Set_Etype (N, Etype (Targ1));
3395 end if;
3396 end if;
3397 end if;
3399 Restore_Env;
3401 -- Cleanup mapping between formals and actuals for other expansions
3403 F := First_Formal (Subp);
3404 while Present (F) loop
3405 Set_Renamed_Object (F, Empty);
3406 Next_Formal (F);
3407 end loop;
3408 end Expand_Inlined_Call;
3410 ----------------------------
3411 -- Expand_N_Function_Call --
3412 ----------------------------
3414 procedure Expand_N_Function_Call (N : Node_Id) is
3415 Typ : constant Entity_Id := Etype (N);
3417 function Returned_By_Reference return Boolean;
3418 -- If the return type is returned through the secondary stack; that is
3419 -- by reference, we don't want to create a temp to force stack checking.
3420 -- ???"sec stack" is not right -- Ada 95 return-by-reference object are
3421 -- returned whereever they are.
3422 -- Shouldn't this function be moved to exp_util???
3424 function Rhs_Of_Assign_Or_Decl (N : Node_Id) return Boolean;
3425 -- If the call is the right side of an assignment or the expression in
3426 -- an object declaration, we don't need to create a temp as the left
3427 -- side will already trigger stack checking if necessary.
3429 -- If the call is a component in an extension aggregate, it will be
3430 -- expanded into assignments as well, so no temporary is needed. This
3431 -- also solves the problem of functions returning types with unknown
3432 -- discriminants, where it is not possible to declare an object of the
3433 -- type altogether.
3435 ---------------------------
3436 -- Returned_By_Reference --
3437 ---------------------------
3439 function Returned_By_Reference return Boolean is
3440 S : Entity_Id;
3442 begin
3443 if Is_Inherently_Limited_Type (Typ) then
3444 return True;
3446 elsif Nkind (Parent (N)) /= N_Return_Statement then
3447 return False;
3449 elsif Requires_Transient_Scope (Typ) then
3451 -- Verify that the return type of the enclosing function has the
3452 -- same constrained status as that of the expression.
3454 S := Current_Scope;
3455 while Ekind (S) /= E_Function loop
3456 S := Scope (S);
3457 end loop;
3459 return Is_Constrained (Typ) = Is_Constrained (Etype (S));
3460 else
3461 return False;
3462 end if;
3463 end Returned_By_Reference;
3465 ---------------------------
3466 -- Rhs_Of_Assign_Or_Decl --
3467 ---------------------------
3469 function Rhs_Of_Assign_Or_Decl (N : Node_Id) return Boolean is
3470 begin
3471 if (Nkind (Parent (N)) = N_Assignment_Statement
3472 and then Expression (Parent (N)) = N)
3473 or else
3474 (Nkind (Parent (N)) = N_Qualified_Expression
3475 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
3476 and then Expression (Parent (Parent (N))) = Parent (N))
3477 or else
3478 (Nkind (Parent (N)) = N_Object_Declaration
3479 and then Expression (Parent (N)) = N)
3480 or else
3481 (Nkind (Parent (N)) = N_Component_Association
3482 and then Expression (Parent (N)) = N
3483 and then Nkind (Parent (Parent (N))) = N_Aggregate
3484 and then Rhs_Of_Assign_Or_Decl (Parent (Parent (N))))
3485 or else
3486 (Nkind (Parent (N)) = N_Extension_Aggregate
3487 and then Is_Private_Type (Etype (Typ)))
3488 then
3489 return True;
3490 else
3491 return False;
3492 end if;
3493 end Rhs_Of_Assign_Or_Decl;
3495 -- Start of processing for Expand_N_Function_Call
3497 begin
3498 -- A special check. If stack checking is enabled, and the return type
3499 -- might generate a large temporary, and the call is not the right side
3500 -- of an assignment, then generate an explicit temporary. We do this
3501 -- because otherwise gigi may generate a large temporary on the fly and
3502 -- this can cause trouble with stack checking.
3504 -- This is unecessary if the call is the expression in an object
3505 -- declaration, or if it appears outside of any library unit. This can
3506 -- only happen if it appears as an actual in a library-level instance,
3507 -- in which case a temporary will be generated for it once the instance
3508 -- itself is installed.
3510 if May_Generate_Large_Temp (Typ)
3511 and then not Rhs_Of_Assign_Or_Decl (N)
3512 and then not Returned_By_Reference
3513 and then Current_Scope /= Standard_Standard
3514 then
3515 if Stack_Checking_Enabled then
3517 -- Note: it might be thought that it would be OK to use a call to
3518 -- Force_Evaluation here, but that's not good enough, because
3519 -- that can results in a 'Reference construct that may still need
3520 -- a temporary.
3522 declare
3523 Loc : constant Source_Ptr := Sloc (N);
3524 Temp_Obj : constant Entity_Id :=
3525 Make_Defining_Identifier (Loc,
3526 Chars => New_Internal_Name ('F'));
3527 Temp_Typ : Entity_Id := Typ;
3528 Decl : Node_Id;
3529 A : Node_Id;
3530 F : Entity_Id;
3531 Proc : Entity_Id;
3533 begin
3534 if Is_Tagged_Type (Typ)
3535 and then Present (Controlling_Argument (N))
3536 then
3537 if Nkind (Parent (N)) /= N_Procedure_Call_Statement
3538 and then Nkind (Parent (N)) /= N_Function_Call
3539 then
3540 -- If this is a tag-indeterminate call, the object must
3541 -- be classwide.
3543 if Is_Tag_Indeterminate (N) then
3544 Temp_Typ := Class_Wide_Type (Typ);
3545 end if;
3547 else
3548 -- If this is a dispatching call that is itself the
3549 -- controlling argument of an enclosing call, the
3550 -- nominal subtype of the object that replaces it must
3551 -- be classwide, so that dispatching will take place
3552 -- properly. If it is not a controlling argument, the
3553 -- object is not classwide.
3555 Proc := Entity (Name (Parent (N)));
3557 F := First_Formal (Proc);
3558 A := First_Actual (Parent (N));
3559 while A /= N loop
3560 Next_Formal (F);
3561 Next_Actual (A);
3562 end loop;
3564 if Is_Controlling_Formal (F) then
3565 Temp_Typ := Class_Wide_Type (Typ);
3566 end if;
3567 end if;
3568 end if;
3570 Decl :=
3571 Make_Object_Declaration (Loc,
3572 Defining_Identifier => Temp_Obj,
3573 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3574 Constant_Present => True,
3575 Expression => Relocate_Node (N));
3576 Set_Assignment_OK (Decl);
3578 Insert_Actions (N, New_List (Decl));
3579 Rewrite (N, New_Occurrence_Of (Temp_Obj, Loc));
3580 end;
3582 else
3583 -- If stack-checking is not enabled, increment serial number
3584 -- for internal names, so that subsequent symbols are consistent
3585 -- with and without stack-checking.
3587 Synchronize_Serial_Number;
3589 -- Now we can expand the call with consistent symbol names
3591 Expand_Call (N);
3592 end if;
3594 -- Normal case, expand the call
3596 else
3597 Expand_Call (N);
3598 end if;
3599 end Expand_N_Function_Call;
3601 ---------------------------------------
3602 -- Expand_N_Procedure_Call_Statement --
3603 ---------------------------------------
3605 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
3606 begin
3607 Expand_Call (N);
3608 end Expand_N_Procedure_Call_Statement;
3610 ------------------------------
3611 -- Expand_N_Subprogram_Body --
3612 ------------------------------
3614 -- Add poll call if ATC polling is enabled, unless the body will be
3615 -- inlined by the back-end.
3617 -- Add return statement if last statement in body is not a return statement
3618 -- (this makes things easier on Gigi which does not want to have to handle
3619 -- a missing return).
3621 -- Add call to Activate_Tasks if body is a task activator
3623 -- Deal with possible detection of infinite recursion
3625 -- Eliminate body completely if convention stubbed
3627 -- Encode entity names within body, since we will not need to reference
3628 -- these entities any longer in the front end.
3630 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
3632 -- Reset Pure indication if any parameter has root type System.Address
3634 -- Wrap thread body
3636 procedure Expand_N_Subprogram_Body (N : Node_Id) is
3637 Loc : constant Source_Ptr := Sloc (N);
3638 H : constant Node_Id := Handled_Statement_Sequence (N);
3639 Body_Id : Entity_Id;
3640 Spec_Id : Entity_Id;
3641 Except_H : Node_Id;
3642 Scop : Entity_Id;
3643 Dec : Node_Id;
3644 Next_Op : Node_Id;
3645 L : List_Id;
3647 procedure Add_Return (S : List_Id);
3648 -- Append a return statement to the statement sequence S if the last
3649 -- statement is not already a return or a goto statement. Note that
3650 -- the latter test is not critical, it does not matter if we add a
3651 -- few extra returns, since they get eliminated anyway later on.
3653 procedure Expand_Thread_Body;
3654 -- Perform required expansion of a thread body
3656 ----------------
3657 -- Add_Return --
3658 ----------------
3660 procedure Add_Return (S : List_Id) is
3661 begin
3662 if not Is_Transfer (Last (S)) then
3664 -- The source location for the return is the end label
3665 -- of the procedure in all cases. This is a bit odd when
3666 -- there are exception handlers, but not much else we can do.
3668 Append_To (S, Make_Return_Statement (Sloc (End_Label (H))));
3669 end if;
3670 end Add_Return;
3672 ------------------------
3673 -- Expand_Thread_Body --
3674 ------------------------
3676 -- The required expansion of a thread body is as follows
3678 -- procedure <thread body procedure name> is
3680 -- _Secondary_Stack : aliased
3681 -- Storage_Elements.Storage_Array
3682 -- (1 .. Storage_Offset (Sec_Stack_Size));
3683 -- for _Secondary_Stack'Alignment use Standard'Maximum_Alignment;
3685 -- _Process_ATSD : aliased System.Threads.ATSD;
3687 -- begin
3688 -- System.Threads.Thread_Body_Enter;
3689 -- (_Secondary_Stack'Address,
3690 -- _Secondary_Stack'Length,
3691 -- _Process_ATSD'Address);
3693 -- declare
3694 -- <user declarations>
3695 -- begin
3696 -- <user statements>
3697 -- <user exception handlers>
3698 -- end;
3700 -- System.Threads.Thread_Body_Leave;
3702 -- exception
3703 -- when E : others =>
3704 -- System.Threads.Thread_Body_Exceptional_Exit (E);
3705 -- end;
3707 -- Note the exception handler is omitted if pragma Restriction
3708 -- No_Exception_Handlers is currently active.
3710 procedure Expand_Thread_Body is
3711 User_Decls : constant List_Id := Declarations (N);
3712 Sec_Stack_Len : Node_Id;
3714 TB_Pragma : constant Node_Id :=
3715 Get_Rep_Pragma (Spec_Id, Name_Thread_Body);
3717 Ent_SS : Entity_Id;
3718 Ent_ATSD : Entity_Id;
3719 Ent_EO : Entity_Id;
3721 Decl_SS : Node_Id;
3722 Decl_ATSD : Node_Id;
3724 Excep_Handlers : List_Id;
3726 begin
3727 New_Scope (Spec_Id);
3729 -- Get proper setting for secondary stack size
3731 if List_Length (Pragma_Argument_Associations (TB_Pragma)) = 2 then
3732 Sec_Stack_Len :=
3733 Expression (Last (Pragma_Argument_Associations (TB_Pragma)));
3734 else
3735 Sec_Stack_Len :=
3736 New_Occurrence_Of (RTE (RE_Default_Secondary_Stack_Size), Loc);
3737 end if;
3739 Sec_Stack_Len := Convert_To (RTE (RE_Storage_Offset), Sec_Stack_Len);
3741 -- Build and set declarations for the wrapped thread body
3743 Ent_SS :=
3744 Make_Defining_Identifier (Loc,
3745 Chars => Name_uSecondary_Stack);
3746 Ent_ATSD :=
3747 Make_Defining_Identifier (Loc,
3748 Chars => Name_uProcess_ATSD);
3750 Decl_SS :=
3751 Make_Object_Declaration (Loc,
3752 Defining_Identifier => Ent_SS,
3753 Aliased_Present => True,
3754 Object_Definition =>
3755 Make_Subtype_Indication (Loc,
3756 Subtype_Mark =>
3757 New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
3758 Constraint =>
3759 Make_Index_Or_Discriminant_Constraint (Loc,
3760 Constraints => New_List (
3761 Make_Range (Loc,
3762 Low_Bound => Make_Integer_Literal (Loc, 1),
3763 High_Bound => Sec_Stack_Len)))));
3765 Decl_ATSD :=
3766 Make_Object_Declaration (Loc,
3767 Defining_Identifier => Ent_ATSD,
3768 Aliased_Present => True,
3769 Object_Definition => New_Occurrence_Of (RTE (RE_ATSD), Loc));
3771 Set_Declarations (N, New_List (Decl_SS, Decl_ATSD));
3772 Analyze (Decl_SS);
3773 Analyze (Decl_ATSD);
3774 Set_Alignment (Ent_SS, UI_From_Int (Maximum_Alignment));
3776 -- Create new exception handler
3778 if Restriction_Active (No_Exception_Handlers) then
3779 Excep_Handlers := No_List;
3781 else
3782 Check_Restriction (No_Exception_Handlers, N);
3784 Ent_EO :=
3785 Make_Defining_Identifier (Loc,
3786 Chars => Name_uE);
3788 Excep_Handlers := New_List (
3789 Make_Exception_Handler (Loc,
3790 Choice_Parameter => Ent_EO,
3791 Exception_Choices => New_List (
3792 Make_Others_Choice (Loc)),
3793 Statements => New_List (
3794 Make_Procedure_Call_Statement (Loc,
3795 Name =>
3796 New_Occurrence_Of
3797 (RTE (RE_Thread_Body_Exceptional_Exit), Loc),
3798 Parameter_Associations => New_List (
3799 New_Occurrence_Of (Ent_EO, Loc))))));
3800 end if;
3802 -- Now build new handled statement sequence and analyze it
3804 Set_Handled_Statement_Sequence (N,
3805 Make_Handled_Sequence_Of_Statements (Loc,
3806 Statements => New_List (
3808 Make_Procedure_Call_Statement (Loc,
3809 Name => New_Occurrence_Of (RTE (RE_Thread_Body_Enter), Loc),
3810 Parameter_Associations => New_List (
3812 Make_Attribute_Reference (Loc,
3813 Prefix => New_Occurrence_Of (Ent_SS, Loc),
3814 Attribute_Name => Name_Address),
3816 Make_Attribute_Reference (Loc,
3817 Prefix => New_Occurrence_Of (Ent_SS, Loc),
3818 Attribute_Name => Name_Length),
3820 Make_Attribute_Reference (Loc,
3821 Prefix => New_Occurrence_Of (Ent_ATSD, Loc),
3822 Attribute_Name => Name_Address))),
3824 Make_Block_Statement (Loc,
3825 Declarations => User_Decls,
3826 Handled_Statement_Sequence => H),
3828 Make_Procedure_Call_Statement (Loc,
3829 Name => New_Occurrence_Of (RTE (RE_Thread_Body_Leave), Loc))),
3831 Exception_Handlers => Excep_Handlers));
3833 Analyze (Handled_Statement_Sequence (N));
3834 End_Scope;
3835 end Expand_Thread_Body;
3837 -- Start of processing for Expand_N_Subprogram_Body
3839 begin
3840 -- Set L to either the list of declarations if present, or
3841 -- to the list of statements if no declarations are present.
3842 -- This is used to insert new stuff at the start.
3844 if Is_Non_Empty_List (Declarations (N)) then
3845 L := Declarations (N);
3846 else
3847 L := Statements (Handled_Statement_Sequence (N));
3848 end if;
3850 -- Find entity for subprogram
3852 Body_Id := Defining_Entity (N);
3854 if Present (Corresponding_Spec (N)) then
3855 Spec_Id := Corresponding_Spec (N);
3856 else
3857 Spec_Id := Body_Id;
3858 end if;
3860 -- Need poll on entry to subprogram if polling enabled. We only
3861 -- do this for non-empty subprograms, since it does not seem
3862 -- necessary to poll for a dummy null subprogram. Do not add polling
3863 -- point if calls to this subprogram will be inlined by the back-end,
3864 -- to avoid repeated polling points in nested inlinings.
3866 if Is_Non_Empty_List (L) then
3867 if Is_Inlined (Spec_Id)
3868 and then Front_End_Inlining
3869 and then Optimization_Level > 1
3870 then
3871 null;
3872 else
3873 Generate_Poll_Call (First (L));
3874 end if;
3875 end if;
3877 -- If this is a Pure function which has any parameters whose root
3878 -- type is System.Address, reset the Pure indication, since it will
3879 -- likely cause incorrect code to be generated as the parameter is
3880 -- probably a pointer, and the fact that the same pointer is passed
3881 -- does not mean that the same value is being referenced.
3883 -- Note that if the programmer gave an explicit Pure_Function pragma,
3884 -- then we believe the programmer, and leave the subprogram Pure.
3886 -- This code should probably be at the freeze point, so that it
3887 -- happens even on a -gnatc (or more importantly -gnatt) compile
3888 -- so that the semantic tree has Is_Pure set properly ???
3890 if Is_Pure (Spec_Id)
3891 and then Is_Subprogram (Spec_Id)
3892 and then not Has_Pragma_Pure_Function (Spec_Id)
3893 then
3894 declare
3895 F : Entity_Id;
3897 begin
3898 F := First_Formal (Spec_Id);
3899 while Present (F) loop
3900 if Is_Descendent_Of_Address (Etype (F)) then
3901 Set_Is_Pure (Spec_Id, False);
3903 if Spec_Id /= Body_Id then
3904 Set_Is_Pure (Body_Id, False);
3905 end if;
3907 exit;
3908 end if;
3910 Next_Formal (F);
3911 end loop;
3912 end;
3913 end if;
3915 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
3917 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
3918 declare
3919 F : Entity_Id;
3921 begin
3922 -- Loop through formals
3924 F := First_Formal (Spec_Id);
3925 while Present (F) loop
3926 if Is_Scalar_Type (Etype (F))
3927 and then Ekind (F) = E_Out_Parameter
3928 then
3929 -- Insert the initialization. We turn off validity checks
3930 -- for this assignment, since we do not want any check on
3931 -- the initial value itself (which may well be invalid).
3933 Insert_Before_And_Analyze (First (L),
3934 Make_Assignment_Statement (Loc,
3935 Name => New_Occurrence_Of (F, Loc),
3936 Expression => Get_Simple_Init_Val (Etype (F), Loc)),
3937 Suppress => Validity_Check);
3938 end if;
3940 Next_Formal (F);
3941 end loop;
3942 end;
3943 end if;
3945 Scop := Scope (Spec_Id);
3947 -- Add discriminal renamings to protected subprograms. Install new
3948 -- discriminals for expansion of the next subprogram of this protected
3949 -- type, if any.
3951 if Is_List_Member (N)
3952 and then Present (Parent (List_Containing (N)))
3953 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
3954 then
3955 Add_Discriminal_Declarations
3956 (Declarations (N), Scop, Name_uObject, Loc);
3957 Add_Private_Declarations (Declarations (N), Scop, Name_uObject, Loc);
3959 -- Associate privals and discriminals with the next protected
3960 -- operation body to be expanded. These are used to expand references
3961 -- to private data objects and discriminants, respectively.
3963 Next_Op := Next_Protected_Operation (N);
3965 if Present (Next_Op) then
3966 Dec := Parent (Base_Type (Scop));
3967 Set_Privals (Dec, Next_Op, Loc);
3968 Set_Discriminals (Dec);
3969 end if;
3970 end if;
3972 -- Clear out statement list for stubbed procedure
3974 if Present (Corresponding_Spec (N)) then
3975 Set_Elaboration_Flag (N, Spec_Id);
3977 if Convention (Spec_Id) = Convention_Stubbed
3978 or else Is_Eliminated (Spec_Id)
3979 then
3980 Set_Declarations (N, Empty_List);
3981 Set_Handled_Statement_Sequence (N,
3982 Make_Handled_Sequence_Of_Statements (Loc,
3983 Statements => New_List (
3984 Make_Null_Statement (Loc))));
3985 return;
3986 end if;
3987 end if;
3989 -- Returns_By_Ref flag is normally set when the subprogram is frozen
3990 -- but subprograms with no specs are not frozen.
3992 declare
3993 Typ : constant Entity_Id := Etype (Spec_Id);
3994 Utyp : constant Entity_Id := Underlying_Type (Typ);
3996 begin
3997 if not Acts_As_Spec (N)
3998 and then Nkind (Parent (Parent (Spec_Id))) /=
3999 N_Subprogram_Body_Stub
4000 then
4001 null;
4003 elsif Is_Inherently_Limited_Type (Typ) then
4004 Set_Returns_By_Ref (Spec_Id);
4006 elsif Present (Utyp)
4007 and then (Is_Class_Wide_Type (Utyp) or else Controlled_Type (Utyp))
4008 then
4009 Set_Returns_By_Ref (Spec_Id);
4010 end if;
4011 end;
4013 -- For a procedure, we add a return for all possible syntactic ends
4014 -- of the subprogram. Note that reanalysis is not necessary in this
4015 -- case since it would require a lot of work and accomplish nothing.
4017 if Ekind (Spec_Id) = E_Procedure
4018 or else Ekind (Spec_Id) = E_Generic_Procedure
4019 then
4020 Add_Return (Statements (H));
4022 if Present (Exception_Handlers (H)) then
4023 Except_H := First_Non_Pragma (Exception_Handlers (H));
4024 while Present (Except_H) loop
4025 Add_Return (Statements (Except_H));
4026 Next_Non_Pragma (Except_H);
4027 end loop;
4028 end if;
4030 -- For a function, we must deal with the case where there is at least
4031 -- one missing return. What we do is to wrap the entire body of the
4032 -- function in a block:
4034 -- begin
4035 -- ...
4036 -- end;
4038 -- becomes
4040 -- begin
4041 -- begin
4042 -- ...
4043 -- end;
4045 -- raise Program_Error;
4046 -- end;
4048 -- This approach is necessary because the raise must be signalled
4049 -- to the caller, not handled by any local handler (RM 6.4(11)).
4051 -- Note: we do not need to analyze the constructed sequence here,
4052 -- since it has no handler, and an attempt to analyze the handled
4053 -- statement sequence twice is risky in various ways (e.g. the
4054 -- issue of expanding cleanup actions twice).
4056 elsif Has_Missing_Return (Spec_Id) then
4057 declare
4058 Hloc : constant Source_Ptr := Sloc (H);
4059 Blok : constant Node_Id :=
4060 Make_Block_Statement (Hloc,
4061 Handled_Statement_Sequence => H);
4062 Rais : constant Node_Id :=
4063 Make_Raise_Program_Error (Hloc,
4064 Reason => PE_Missing_Return);
4066 begin
4067 Set_Handled_Statement_Sequence (N,
4068 Make_Handled_Sequence_Of_Statements (Hloc,
4069 Statements => New_List (Blok, Rais)));
4071 New_Scope (Spec_Id);
4072 Analyze (Blok);
4073 Analyze (Rais);
4074 Pop_Scope;
4075 end;
4076 end if;
4078 -- If subprogram contains a parameterless recursive call, then we may
4079 -- have an infinite recursion, so see if we can generate code to check
4080 -- for this possibility if storage checks are not suppressed.
4082 if Ekind (Spec_Id) = E_Procedure
4083 and then Has_Recursive_Call (Spec_Id)
4084 and then not Storage_Checks_Suppressed (Spec_Id)
4085 then
4086 Detect_Infinite_Recursion (N, Spec_Id);
4087 end if;
4089 -- Finally, if we are in Normalize_Scalars mode, then any scalar out
4090 -- parameters must be initialized to the appropriate default value.
4092 if Ekind (Spec_Id) = E_Procedure and then Normalize_Scalars then
4093 declare
4094 Floc : Source_Ptr;
4095 Formal : Entity_Id;
4096 Stm : Node_Id;
4098 begin
4099 Formal := First_Formal (Spec_Id);
4100 while Present (Formal) loop
4101 Floc := Sloc (Formal);
4103 if Ekind (Formal) = E_Out_Parameter
4104 and then Is_Scalar_Type (Etype (Formal))
4105 then
4106 Stm :=
4107 Make_Assignment_Statement (Floc,
4108 Name => New_Occurrence_Of (Formal, Floc),
4109 Expression =>
4110 Get_Simple_Init_Val (Etype (Formal), Floc));
4111 Prepend (Stm, Declarations (N));
4112 Analyze (Stm);
4113 end if;
4115 Next_Formal (Formal);
4116 end loop;
4117 end;
4118 end if;
4120 -- Deal with thread body
4122 if Is_Thread_Body (Spec_Id) then
4123 Expand_Thread_Body;
4124 end if;
4126 -- Set to encode entity names in package body before gigi is called
4128 Qualify_Entity_Names (N);
4129 end Expand_N_Subprogram_Body;
4131 -----------------------------------
4132 -- Expand_N_Subprogram_Body_Stub --
4133 -----------------------------------
4135 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
4136 begin
4137 if Present (Corresponding_Body (N)) then
4138 Expand_N_Subprogram_Body (
4139 Unit_Declaration_Node (Corresponding_Body (N)));
4140 end if;
4141 end Expand_N_Subprogram_Body_Stub;
4143 -------------------------------------
4144 -- Expand_N_Subprogram_Declaration --
4145 -------------------------------------
4147 -- If the declaration appears within a protected body, it is a private
4148 -- operation of the protected type. We must create the corresponding
4149 -- protected subprogram an associated formals. For a normal protected
4150 -- operation, this is done when expanding the protected type declaration.
4152 -- If the declaration is for a null procedure, emit null body
4154 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
4155 Loc : constant Source_Ptr := Sloc (N);
4156 Subp : constant Entity_Id := Defining_Entity (N);
4157 Scop : constant Entity_Id := Scope (Subp);
4158 Prot_Decl : Node_Id;
4159 Prot_Bod : Node_Id;
4160 Prot_Id : Entity_Id;
4162 begin
4163 -- Deal with case of protected subprogram. Do not generate protected
4164 -- operation if operation is flagged as eliminated.
4166 if Is_List_Member (N)
4167 and then Present (Parent (List_Containing (N)))
4168 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
4169 and then Is_Protected_Type (Scop)
4170 then
4171 if No (Protected_Body_Subprogram (Subp))
4172 and then not Is_Eliminated (Subp)
4173 then
4174 Prot_Decl :=
4175 Make_Subprogram_Declaration (Loc,
4176 Specification =>
4177 Build_Protected_Sub_Specification
4178 (N, Scop, Unprotected_Mode));
4180 -- The protected subprogram is declared outside of the protected
4181 -- body. Given that the body has frozen all entities so far, we
4182 -- analyze the subprogram and perform freezing actions explicitly.
4183 -- If the body is a subunit, the insertion point is before the
4184 -- stub in the parent.
4186 Prot_Bod := Parent (List_Containing (N));
4188 if Nkind (Parent (Prot_Bod)) = N_Subunit then
4189 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
4190 end if;
4192 Insert_Before (Prot_Bod, Prot_Decl);
4193 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
4195 New_Scope (Scope (Scop));
4196 Analyze (Prot_Decl);
4197 Create_Extra_Formals (Prot_Id);
4198 Set_Protected_Body_Subprogram (Subp, Prot_Id);
4199 Pop_Scope;
4200 end if;
4202 -- Ada 2005 (AI-348): Generation of the null body
4204 elsif Nkind (Specification (N)) = N_Procedure_Specification
4205 and then Null_Present (Specification (N))
4206 then
4207 declare
4208 Bod : constant Node_Id :=
4209 Make_Subprogram_Body (Loc,
4210 Specification =>
4211 New_Copy_Tree (Specification (N)),
4212 Declarations => New_List,
4213 Handled_Statement_Sequence =>
4214 Make_Handled_Sequence_Of_Statements (Loc,
4215 Statements => New_List (Make_Null_Statement (Loc))));
4216 begin
4217 Set_Body_To_Inline (N, Bod);
4218 Insert_After (N, Bod);
4219 Analyze (Bod);
4221 -- Corresponding_Spec isn't being set by Analyze_Subprogram_Body,
4222 -- evidently because Set_Has_Completion is called earlier for null
4223 -- procedures in Analyze_Subprogram_Declaration, so we force its
4224 -- setting here. If the setting of Has_Completion is not set
4225 -- earlier, then it can result in missing body errors if other
4226 -- errors were already reported (since expansion is turned off).
4228 -- Should creation of the empty body be moved to the analyzer???
4230 Set_Corresponding_Spec (Bod, Defining_Entity (Specification (N)));
4231 end;
4232 end if;
4233 end Expand_N_Subprogram_Declaration;
4235 ---------------------------------------
4236 -- Expand_Protected_Object_Reference --
4237 ---------------------------------------
4239 function Expand_Protected_Object_Reference
4240 (N : Node_Id;
4241 Scop : Entity_Id) return Node_Id
4243 Loc : constant Source_Ptr := Sloc (N);
4244 Corr : Entity_Id;
4245 Rec : Node_Id;
4246 Param : Entity_Id;
4247 Proc : Entity_Id;
4249 begin
4250 Rec :=
4251 Make_Identifier (Loc,
4252 Chars => Name_uObject);
4253 Set_Etype (Rec, Corresponding_Record_Type (Scop));
4255 -- Find enclosing protected operation, and retrieve its first parameter,
4256 -- which denotes the enclosing protected object. If the enclosing
4257 -- operation is an entry, we are immediately within the protected body,
4258 -- and we can retrieve the object from the service entries procedure. A
4259 -- barrier function has has the same signature as an entry. A barrier
4260 -- function is compiled within the protected object, but unlike
4261 -- protected operations its never needs locks, so that its protected
4262 -- body subprogram points to itself.
4264 Proc := Current_Scope;
4265 while Present (Proc)
4266 and then Scope (Proc) /= Scop
4267 loop
4268 Proc := Scope (Proc);
4269 end loop;
4271 Corr := Protected_Body_Subprogram (Proc);
4273 if No (Corr) then
4275 -- Previous error left expansion incomplete.
4276 -- Nothing to do on this call.
4278 return Empty;
4279 end if;
4281 Param :=
4282 Defining_Identifier
4283 (First (Parameter_Specifications (Parent (Corr))));
4285 if Is_Subprogram (Proc)
4286 and then Proc /= Corr
4287 then
4288 -- Protected function or procedure
4290 Set_Entity (Rec, Param);
4292 -- Rec is a reference to an entity which will not be in scope when
4293 -- the call is reanalyzed, and needs no further analysis.
4295 Set_Analyzed (Rec);
4297 else
4298 -- Entry or barrier function for entry body. The first parameter of
4299 -- the entry body procedure is pointer to the object. We create a
4300 -- local variable of the proper type, duplicating what is done to
4301 -- define _object later on.
4303 declare
4304 Decls : List_Id;
4305 Obj_Ptr : constant Entity_Id := Make_Defining_Identifier (Loc,
4306 Chars =>
4307 New_Internal_Name ('T'));
4309 begin
4310 Decls := New_List (
4311 Make_Full_Type_Declaration (Loc,
4312 Defining_Identifier => Obj_Ptr,
4313 Type_Definition =>
4314 Make_Access_To_Object_Definition (Loc,
4315 Subtype_Indication =>
4316 New_Reference_To
4317 (Corresponding_Record_Type (Scop), Loc))));
4319 Insert_Actions (N, Decls);
4320 Insert_Actions (N, Freeze_Entity (Obj_Ptr, Sloc (N)));
4322 Rec :=
4323 Make_Explicit_Dereference (Loc,
4324 Unchecked_Convert_To (Obj_Ptr,
4325 New_Occurrence_Of (Param, Loc)));
4327 -- Analyze new actual. Other actuals in calls are already analyzed
4328 -- and the list of actuals is not renalyzed after rewriting.
4330 Set_Parent (Rec, N);
4331 Analyze (Rec);
4332 end;
4333 end if;
4335 return Rec;
4336 end Expand_Protected_Object_Reference;
4338 --------------------------------------
4339 -- Expand_Protected_Subprogram_Call --
4340 --------------------------------------
4342 procedure Expand_Protected_Subprogram_Call
4343 (N : Node_Id;
4344 Subp : Entity_Id;
4345 Scop : Entity_Id)
4347 Rec : Node_Id;
4349 begin
4350 -- If the protected object is not an enclosing scope, this is
4351 -- an inter-object function call. Inter-object procedure
4352 -- calls are expanded by Exp_Ch9.Build_Simple_Entry_Call.
4353 -- The call is intra-object only if the subprogram being
4354 -- called is in the protected body being compiled, and if the
4355 -- protected object in the call is statically the enclosing type.
4356 -- The object may be an component of some other data structure,
4357 -- in which case this must be handled as an inter-object call.
4359 if not In_Open_Scopes (Scop)
4360 or else not Is_Entity_Name (Name (N))
4361 then
4362 if Nkind (Name (N)) = N_Selected_Component then
4363 Rec := Prefix (Name (N));
4365 else
4366 pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
4367 Rec := Prefix (Prefix (Name (N)));
4368 end if;
4370 Build_Protected_Subprogram_Call (N,
4371 Name => New_Occurrence_Of (Subp, Sloc (N)),
4372 Rec => Convert_Concurrent (Rec, Etype (Rec)),
4373 External => True);
4375 else
4376 Rec := Expand_Protected_Object_Reference (N, Scop);
4378 if No (Rec) then
4379 return;
4380 end if;
4382 Build_Protected_Subprogram_Call (N,
4383 Name => Name (N),
4384 Rec => Rec,
4385 External => False);
4387 end if;
4389 Analyze (N);
4391 -- If it is a function call it can appear in elaboration code and
4392 -- the called entity must be frozen here.
4394 if Ekind (Subp) = E_Function then
4395 Freeze_Expression (Name (N));
4396 end if;
4397 end Expand_Protected_Subprogram_Call;
4399 --------------------------------
4400 -- Is_Build_In_Place_Function --
4401 --------------------------------
4403 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
4404 begin
4405 -- For now we test whether E denotes a function or access-to-function
4406 -- type whose result subtype is constrained and inherently limited.
4407 -- Later this test will be revised to include unconstrained limited
4408 -- types and composite nonlimited types in general. Functions with
4409 -- a foreign convention or whose result type has a foreign convention
4410 -- never qualify.
4412 if Ekind (E) = E_Function
4413 or else (Ekind (E) = E_Subprogram_Type
4414 and then Etype (E) /= Standard_Void_Type)
4415 then
4416 if Has_Foreign_Convention (E)
4417 or else Has_Foreign_Convention (Etype (E))
4418 then
4419 return False;
4421 else
4422 return Is_Inherently_Limited_Type (Etype (E))
4423 and then Is_Constrained (Etype (E));
4424 end if;
4426 else
4427 return False;
4428 end if;
4429 end Is_Build_In_Place_Function;
4431 -------------------------------------
4432 -- Is_Build_In_Place_Function_Call --
4433 -------------------------------------
4435 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
4436 Exp_Node : Node_Id := N;
4437 Function_Id : Entity_Id;
4439 begin
4440 if Nkind (Exp_Node) = N_Qualified_Expression then
4441 Exp_Node := Expression (N);
4442 end if;
4444 if Nkind (Exp_Node) /= N_Function_Call then
4445 return False;
4447 else
4448 if Is_Entity_Name (Name (Exp_Node)) then
4449 Function_Id := Entity (Name (Exp_Node));
4451 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
4452 Function_Id := Etype (Name (Exp_Node));
4453 end if;
4455 return Is_Build_In_Place_Function (Function_Id);
4456 end if;
4457 end Is_Build_In_Place_Function_Call;
4459 -----------------------
4460 -- Freeze_Subprogram --
4461 -----------------------
4463 procedure Freeze_Subprogram (N : Node_Id) is
4464 Loc : constant Source_Ptr := Sloc (N);
4465 E : constant Entity_Id := Entity (N);
4467 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
4468 -- (Ada 2005): Register a predefined primitive in all the secondary
4469 -- dispatch tables of its primitive type.
4471 ----------------------------------
4472 -- Register_Predefined_DT_Entry --
4473 ----------------------------------
4475 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
4476 Iface_DT_Ptr : Elmt_Id;
4477 Iface_Typ : Entity_Id;
4478 Iface_Elmt : Elmt_Id;
4479 Tagged_Typ : Entity_Id;
4480 Thunk_Id : Entity_Id;
4482 begin
4483 Tagged_Typ := Find_Dispatching_Type (Prim);
4485 if No (Access_Disp_Table (Tagged_Typ))
4486 or else No (Abstract_Interfaces (Tagged_Typ))
4487 or else not RTE_Available (RE_Interface_Tag)
4488 then
4489 return;
4490 end if;
4492 -- Skip the first access-to-dispatch-table pointer since it leads
4493 -- to the primary dispatch table. We are only concerned with the
4494 -- secondary dispatch table pointers. Note that the access-to-
4495 -- dispatch-table pointer corresponds to the first implemented
4496 -- interface retrieved below.
4498 Iface_DT_Ptr :=
4499 Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ)));
4500 Iface_Elmt := First_Elmt (Abstract_Interfaces (Tagged_Typ));
4501 while Present (Iface_DT_Ptr) and then Present (Iface_Elmt) loop
4502 Iface_Typ := Node (Iface_Elmt);
4504 if not Is_Ancestor (Iface_Typ, Tagged_Typ) then
4505 Thunk_Id :=
4506 Make_Defining_Identifier (Loc,
4507 Chars => New_Internal_Name ('T'));
4509 Insert_Actions (N, New_List (
4510 Expand_Interface_Thunk
4511 (N => Prim,
4512 Thunk_Alias => Prim,
4513 Thunk_Id => Thunk_Id),
4515 Make_DT_Access_Action (Iface_Typ,
4516 Action => Set_Predefined_Prim_Op_Address,
4517 Args => New_List (
4518 Unchecked_Convert_To (RTE (RE_Tag),
4519 New_Reference_To (Node (Iface_DT_Ptr), Loc)),
4521 Make_Integer_Literal (Loc, DT_Position (Prim)),
4523 Make_Attribute_Reference (Loc,
4524 Prefix => New_Reference_To (Thunk_Id, Loc),
4525 Attribute_Name => Name_Address)))));
4526 end if;
4528 Next_Elmt (Iface_DT_Ptr);
4529 Next_Elmt (Iface_Elmt);
4530 end loop;
4531 end Register_Predefined_DT_Entry;
4533 -- Start of processing for Freeze_Subprogram
4535 begin
4536 -- We assume that imported CPP primitives correspond with objects
4537 -- whose constructor is in the CPP side (and therefore we don't need
4538 -- to generate code to register them in the dispatch table).
4540 if not Debug_Flag_QQ
4541 and then Is_Imported (E)
4542 and then Convention (E) = Convention_CPP
4543 then
4544 return;
4545 end if;
4547 -- When a primitive is frozen, enter its name in the corresponding
4548 -- dispatch table. If the DTC_Entity field is not set this is an
4549 -- overridden primitive that can be ignored. We suppress the
4550 -- initialization of the dispatch table entry when Java_VM because
4551 -- the dispatching mechanism is handled internally by the JVM.
4553 if Is_Dispatching_Operation (E)
4554 and then not Is_Abstract (E)
4555 and then Present (DTC_Entity (E))
4556 and then not Java_VM
4557 and then not Is_CPP_Class (Scope (DTC_Entity (E)))
4558 then
4559 Check_Overriding_Operation (E);
4561 -- Ada 95 case: Register the subprogram in the primary dispatch table
4563 if Ada_Version < Ada_05 then
4565 -- Do not register the subprogram in the dispatch table if we
4566 -- are compiling with the No_Dispatching_Calls restriction.
4568 if not Restriction_Active (No_Dispatching_Calls) then
4569 Insert_After (N,
4570 Fill_DT_Entry (Sloc (N), Prim => E));
4571 end if;
4573 -- Ada 2005 case: Register the subprogram in the secondary dispatch
4574 -- tables associated with abstract interfaces.
4576 else
4577 declare
4578 Typ : constant Entity_Id := Scope (DTC_Entity (E));
4580 begin
4581 -- There is no dispatch table associated with abstract
4582 -- interface types. Each type implementing interfaces will
4583 -- fill the associated secondary DT entries.
4585 if not Is_Interface (Typ)
4586 or else Present (Alias (E))
4587 then
4588 -- Ada 2005 (AI-251): Check if this entry corresponds with
4589 -- a subprogram that covers an abstract interface type.
4591 if Present (Abstract_Interface_Alias (E)) then
4592 Register_Interface_DT_Entry (N, E);
4594 -- Common case: Primitive subprogram
4596 else
4597 -- Generate thunks for all the predefined operations
4599 if not Restriction_Active (No_Dispatching_Calls) then
4600 if Is_Predefined_Dispatching_Operation (E) then
4601 Register_Predefined_DT_Entry (E);
4602 end if;
4604 Insert_After (N,
4605 Fill_DT_Entry (Sloc (N), Prim => E));
4606 end if;
4607 end if;
4608 end if;
4609 end;
4610 end if;
4611 end if;
4613 -- Mark functions that return by reference. Note that it cannot be
4614 -- part of the normal semantic analysis of the spec since the
4615 -- underlying returned type may not be known yet (for private types).
4617 declare
4618 Typ : constant Entity_Id := Etype (E);
4619 Utyp : constant Entity_Id := Underlying_Type (Typ);
4621 begin
4622 if Is_Inherently_Limited_Type (Typ) then
4623 Set_Returns_By_Ref (E);
4625 elsif Present (Utyp)
4626 and then (Is_Class_Wide_Type (Utyp) or else Controlled_Type (Utyp))
4627 then
4628 Set_Returns_By_Ref (E);
4629 end if;
4630 end;
4631 end Freeze_Subprogram;
4633 -------------------------------------------
4634 -- Make_Build_In_Place_Call_In_Allocator --
4635 -------------------------------------------
4637 procedure Make_Build_In_Place_Call_In_Allocator
4638 (Allocator : Node_Id;
4639 Function_Call : Node_Id)
4641 Loc : Source_Ptr;
4642 Func_Call : Node_Id := Function_Call;
4643 Function_Id : Entity_Id;
4644 Result_Subt : Entity_Id;
4645 Acc_Type : constant Entity_Id := Etype (Allocator);
4646 New_Allocator : Node_Id;
4647 Return_Obj_Access : Entity_Id;
4649 begin
4650 if Nkind (Func_Call) = N_Qualified_Expression then
4651 Func_Call := Expression (Func_Call);
4652 end if;
4654 Loc := Sloc (Function_Call);
4656 if Is_Entity_Name (Name (Func_Call)) then
4657 Function_Id := Entity (Name (Func_Call));
4659 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
4660 Function_Id := Etype (Name (Func_Call));
4662 else
4663 raise Program_Error;
4664 end if;
4666 Result_Subt := Etype (Function_Id);
4668 -- Replace the initialized allocator of form "new T'(Func (...))" with
4669 -- an uninitialized allocator of form "new T", where T is the result
4670 -- subtype of the called function. The call to the function is handled
4671 -- separately further below.
4673 New_Allocator :=
4674 Make_Allocator (Loc, New_Reference_To (Result_Subt, Loc));
4675 Set_No_Initialization (New_Allocator);
4677 Rewrite (Allocator, New_Allocator);
4679 -- Create a new access object and initialize it to the result of the new
4680 -- uninitialized allocator.
4682 Return_Obj_Access :=
4683 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
4684 Set_Etype (Return_Obj_Access, Acc_Type);
4686 Insert_Action (Allocator,
4687 Make_Object_Declaration (Loc,
4688 Defining_Identifier => Return_Obj_Access,
4689 Object_Definition => New_Reference_To (Acc_Type, Loc),
4690 Expression => Relocate_Node (Allocator)));
4692 -- Add an implicit actual to the function call that provides access to
4693 -- the allocated object. An unchecked conversion to the (specific)
4694 -- result subtype of the function is inserted to handle the case where
4695 -- the access type of the allocator has a class-wide designated type.
4697 Add_Access_Actual_To_Build_In_Place_Call
4698 (Func_Call,
4699 Function_Id,
4700 Make_Unchecked_Type_Conversion (Loc,
4701 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
4702 Expression =>
4703 Make_Explicit_Dereference (Loc,
4704 Prefix => New_Reference_To (Return_Obj_Access, Loc))));
4706 -- Finally, replace the allocator node with a reference to the result
4707 -- of the function call itself (which will effectively be an access
4708 -- to the object created by the allocator).
4710 Rewrite (Allocator, Make_Reference (Loc, Relocate_Node (Function_Call)));
4711 Analyze_And_Resolve (Allocator, Acc_Type);
4712 end Make_Build_In_Place_Call_In_Allocator;
4714 ---------------------------------------------------
4715 -- Make_Build_In_Place_Call_In_Anonymous_Context --
4716 ---------------------------------------------------
4718 procedure Make_Build_In_Place_Call_In_Anonymous_Context
4719 (Function_Call : Node_Id)
4721 Loc : Source_Ptr;
4722 Func_Call : Node_Id := Function_Call;
4723 Function_Id : Entity_Id;
4724 Result_Subt : Entity_Id;
4725 Return_Obj_Id : Entity_Id;
4726 Return_Obj_Decl : Entity_Id;
4728 begin
4729 if Nkind (Func_Call) = N_Qualified_Expression then
4730 Func_Call := Expression (Func_Call);
4731 end if;
4733 Loc := Sloc (Function_Call);
4735 if Is_Entity_Name (Name (Func_Call)) then
4736 Function_Id := Entity (Name (Func_Call));
4738 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
4739 Function_Id := Etype (Name (Func_Call));
4741 else
4742 raise Program_Error;
4743 end if;
4745 Result_Subt := Etype (Function_Id);
4747 -- Create a temporary object to hold the function result
4749 Return_Obj_Id :=
4750 Make_Defining_Identifier (Loc,
4751 Chars => New_Internal_Name ('R'));
4752 Set_Etype (Return_Obj_Id, Result_Subt);
4754 Return_Obj_Decl :=
4755 Make_Object_Declaration (Loc,
4756 Defining_Identifier => Return_Obj_Id,
4757 Aliased_Present => True,
4758 Object_Definition => New_Reference_To (Result_Subt, Loc));
4760 Set_No_Initialization (Return_Obj_Decl);
4762 Insert_Action (Func_Call, Return_Obj_Decl);
4764 -- Add an implicit actual to the function call that provides access to
4765 -- the caller's return object.
4767 Add_Access_Actual_To_Build_In_Place_Call
4768 (Func_Call, Function_Id, New_Reference_To (Return_Obj_Id, Loc));
4769 end Make_Build_In_Place_Call_In_Anonymous_Context;
4771 ---------------------------------------------------
4772 -- Make_Build_In_Place_Call_In_Assignment --
4773 ---------------------------------------------------
4775 procedure Make_Build_In_Place_Call_In_Assignment
4776 (Assign : Node_Id;
4777 Function_Call : Node_Id)
4779 Lhs : constant Node_Id := Name (Assign);
4780 Loc : Source_Ptr;
4781 Func_Call : Node_Id := Function_Call;
4782 Function_Id : Entity_Id;
4783 Result_Subt : Entity_Id;
4784 Ref_Type : Entity_Id;
4785 Ptr_Typ_Decl : Node_Id;
4786 Def_Id : Entity_Id;
4787 New_Expr : Node_Id;
4789 begin
4790 if Nkind (Func_Call) = N_Qualified_Expression then
4791 Func_Call := Expression (Func_Call);
4792 end if;
4794 Loc := Sloc (Function_Call);
4796 if Is_Entity_Name (Name (Func_Call)) then
4797 Function_Id := Entity (Name (Func_Call));
4799 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
4800 Function_Id := Etype (Name (Func_Call));
4802 else
4803 raise Program_Error;
4804 end if;
4806 Result_Subt := Etype (Function_Id);
4808 -- Add an implicit actual to the function call that provides access to
4809 -- the caller's return object.
4811 Add_Access_Actual_To_Build_In_Place_Call
4812 (Func_Call,
4813 Function_Id,
4814 Make_Unchecked_Type_Conversion (Loc,
4815 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
4816 Expression => Relocate_Node (Lhs)));
4818 -- Create an access type designating the function's result subtype
4820 Ref_Type :=
4821 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
4823 Ptr_Typ_Decl :=
4824 Make_Full_Type_Declaration (Loc,
4825 Defining_Identifier => Ref_Type,
4826 Type_Definition =>
4827 Make_Access_To_Object_Definition (Loc,
4828 All_Present => True,
4829 Subtype_Indication =>
4830 New_Reference_To (Result_Subt, Loc)));
4832 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
4834 -- Finally, create an access object initialized to a reference to the
4835 -- function call.
4837 Def_Id :=
4838 Make_Defining_Identifier (Loc,
4839 Chars => New_Internal_Name ('R'));
4840 Set_Etype (Def_Id, Ref_Type);
4842 New_Expr :=
4843 Make_Reference (Loc,
4844 Prefix => Relocate_Node (Func_Call));
4846 Insert_After_And_Analyze (Ptr_Typ_Decl,
4847 Make_Object_Declaration (Loc,
4848 Defining_Identifier => Def_Id,
4849 Object_Definition => New_Reference_To (Ref_Type, Loc),
4850 Expression => New_Expr));
4852 Rewrite (Assign, Make_Null_Statement (Loc));
4853 end Make_Build_In_Place_Call_In_Assignment;
4855 ----------------------------------------------------
4856 -- Make_Build_In_Place_Call_In_Object_Declaration --
4857 ----------------------------------------------------
4859 procedure Make_Build_In_Place_Call_In_Object_Declaration
4860 (Object_Decl : Node_Id;
4861 Function_Call : Node_Id)
4863 Loc : Source_Ptr;
4864 Func_Call : Node_Id := Function_Call;
4865 Function_Id : Entity_Id;
4866 Result_Subt : Entity_Id;
4867 Ref_Type : Entity_Id;
4868 Ptr_Typ_Decl : Node_Id;
4869 Def_Id : Entity_Id;
4870 New_Expr : Node_Id;
4872 begin
4873 if Nkind (Func_Call) = N_Qualified_Expression then
4874 Func_Call := Expression (Func_Call);
4875 end if;
4877 Loc := Sloc (Function_Call);
4879 if Is_Entity_Name (Name (Func_Call)) then
4880 Function_Id := Entity (Name (Func_Call));
4882 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
4883 Function_Id := Etype (Name (Func_Call));
4885 else
4886 raise Program_Error;
4887 end if;
4889 Result_Subt := Etype (Function_Id);
4891 -- Add an implicit actual to the function call that provides access to
4892 -- the declared object. An unchecked conversion to the (specific) result
4893 -- type of the function is inserted to handle the case where the object
4894 -- is declared with a class-wide type.
4896 Add_Access_Actual_To_Build_In_Place_Call
4897 (Func_Call,
4898 Function_Id,
4899 Make_Unchecked_Type_Conversion (Loc,
4900 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
4901 Expression => New_Reference_To
4902 (Defining_Identifier (Object_Decl), Loc)));
4904 -- Create an access type designating the function's result subtype
4906 Ref_Type :=
4907 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
4909 Ptr_Typ_Decl :=
4910 Make_Full_Type_Declaration (Loc,
4911 Defining_Identifier => Ref_Type,
4912 Type_Definition =>
4913 Make_Access_To_Object_Definition (Loc,
4914 All_Present => True,
4915 Subtype_Indication =>
4916 New_Reference_To (Result_Subt, Loc)));
4918 Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
4920 -- Finally, create an access object initialized to a reference to the
4921 -- function call.
4923 Def_Id :=
4924 Make_Defining_Identifier (Loc,
4925 Chars => New_Internal_Name ('R'));
4926 Set_Etype (Def_Id, Ref_Type);
4928 New_Expr :=
4929 Make_Reference (Loc,
4930 Prefix => Relocate_Node (Func_Call));
4932 Insert_After_And_Analyze (Ptr_Typ_Decl,
4933 Make_Object_Declaration (Loc,
4934 Defining_Identifier => Def_Id,
4935 Object_Definition => New_Reference_To (Ref_Type, Loc),
4936 Expression => New_Expr));
4938 Set_Expression (Object_Decl, Empty);
4939 Set_No_Initialization (Object_Decl);
4941 -- If the object entity has a class-wide Etype, then we need to change
4942 -- it to the result subtype of the function call, because otherwise the
4943 -- object will be class-wide without an explicit intialization and won't
4944 -- be allocated properly by the back end. It seems unclean to make such
4945 -- a revision to the type at this point, and we should try to improve
4946 -- this treatment when build-in-place functions with class-wide results
4947 -- are implemented. ???
4949 if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
4950 Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
4951 end if;
4952 end Make_Build_In_Place_Call_In_Object_Declaration;
4954 ---------------------------------
4955 -- Register_Interface_DT_Entry --
4956 ---------------------------------
4958 procedure Register_Interface_DT_Entry
4959 (Related_Nod : Node_Id;
4960 Prim : Entity_Id)
4962 Loc : constant Source_Ptr := Sloc (Prim);
4963 Iface_Typ : Entity_Id;
4964 Tagged_Typ : Entity_Id;
4965 Thunk_Id : Entity_Id;
4967 begin
4968 -- Nothing to do if the run-time does not support abstract interfaces
4970 if not (RTE_Available (RE_Interface_Tag)) then
4971 return;
4972 end if;
4974 Tagged_Typ := Find_Dispatching_Type (Alias (Prim));
4975 Iface_Typ := Find_Dispatching_Type (Abstract_Interface_Alias (Prim));
4977 -- Generate the code of the thunk only if the abstract interface type is
4978 -- not an immediate ancestor of Tagged_Type; otherwise the dispatch
4979 -- table associated with the interface is the primary dispatch table.
4981 pragma Assert (Is_Interface (Iface_Typ));
4983 if not Is_Ancestor (Iface_Typ, Tagged_Typ) then
4984 Thunk_Id :=
4985 Make_Defining_Identifier (Loc,
4986 Chars => New_Internal_Name ('T'));
4988 Insert_Actions (Related_Nod, New_List (
4989 Expand_Interface_Thunk
4990 (N => Prim,
4991 Thunk_Alias => Alias (Prim),
4992 Thunk_Id => Thunk_Id),
4994 Fill_Secondary_DT_Entry (Sloc (Prim),
4995 Prim => Prim,
4996 Iface_DT_Ptr => Find_Interface_ADT (Tagged_Typ, Iface_Typ),
4997 Thunk_Id => Thunk_Id)));
4998 end if;
4999 end Register_Interface_DT_Entry;
5001 end Exp_Ch6;