* function.c (dump_stack_clash_frame_info): New function.
[official-gcc.git] / gcc / tree-switch-conversion.c
blob6d7c2c4902fa75c6fcdcf6765953373d747b9d1b
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2017 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "params.h"
40 #include "fold-const.h"
41 #include "varasm.h"
42 #include "stor-layout.h"
43 #include "cfganal.h"
44 #include "gimplify.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
47 #include "tree-cfg.h"
48 #include "cfgloop.h"
49 #include "alloc-pool.h"
50 #include "target.h"
51 #include "tree-into-ssa.h"
53 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
54 type in the GIMPLE type system that is language-independent? */
55 #include "langhooks.h"
58 /* Maximum number of case bit tests.
59 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
60 targetm.case_values_threshold(), or be its own param. */
61 #define MAX_CASE_BIT_TESTS 3
63 /* Split the basic block at the statement pointed to by GSIP, and insert
64 a branch to the target basic block of E_TRUE conditional on tree
65 expression COND.
67 It is assumed that there is already an edge from the to-be-split
68 basic block to E_TRUE->dest block. This edge is removed, and the
69 profile information on the edge is re-used for the new conditional
70 jump.
72 The CFG is updated. The dominator tree will not be valid after
73 this transformation, but the immediate dominators are updated if
74 UPDATE_DOMINATORS is true.
76 Returns the newly created basic block. */
78 static basic_block
79 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
80 tree cond, edge e_true,
81 bool update_dominators)
83 tree tmp;
84 gcond *cond_stmt;
85 edge e_false;
86 basic_block new_bb, split_bb = gsi_bb (*gsip);
87 bool dominated_e_true = false;
89 gcc_assert (e_true->src == split_bb);
91 if (update_dominators
92 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
93 dominated_e_true = true;
95 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
96 /*before=*/true, GSI_SAME_STMT);
97 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
98 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
100 e_false = split_block (split_bb, cond_stmt);
101 new_bb = e_false->dest;
102 redirect_edge_pred (e_true, split_bb);
104 e_true->flags &= ~EDGE_FALLTHRU;
105 e_true->flags |= EDGE_TRUE_VALUE;
107 e_false->flags &= ~EDGE_FALLTHRU;
108 e_false->flags |= EDGE_FALSE_VALUE;
109 e_false->probability = e_true->probability.invert ();
110 e_false->count = split_bb->count - e_true->count;
111 new_bb->count = e_false->count;
113 if (update_dominators)
115 if (dominated_e_true)
116 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
117 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
120 return new_bb;
124 /* Return true if a switch should be expanded as a bit test.
125 RANGE is the difference between highest and lowest case.
126 UNIQ is number of unique case node targets, not counting the default case.
127 COUNT is the number of comparisons needed, not counting the default case. */
129 static bool
130 expand_switch_using_bit_tests_p (tree range,
131 unsigned int uniq,
132 unsigned int count, bool speed_p)
134 return (((uniq == 1 && count >= 3)
135 || (uniq == 2 && count >= 5)
136 || (uniq == 3 && count >= 6))
137 && lshift_cheap_p (speed_p)
138 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
139 && compare_tree_int (range, 0) > 0);
142 /* Implement switch statements with bit tests
144 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
145 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
146 where CST and MINVAL are integer constants. This is better than a series
147 of compare-and-banch insns in some cases, e.g. we can implement:
149 if ((x==4) || (x==6) || (x==9) || (x==11))
151 as a single bit test:
153 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
155 This transformation is only applied if the number of case targets is small,
156 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
157 performed in "word_mode".
159 The following example shows the code the transformation generates:
161 int bar(int x)
163 switch (x)
165 case '0': case '1': case '2': case '3': case '4':
166 case '5': case '6': case '7': case '8': case '9':
167 case 'A': case 'B': case 'C': case 'D': case 'E':
168 case 'F':
169 return 1;
171 return 0;
176 bar (int x)
178 tmp1 = x - 48;
179 if (tmp1 > (70 - 48)) goto L2;
180 tmp2 = 1 << tmp1;
181 tmp3 = 0b11111100000001111111111;
182 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
184 return 1;
186 return 0;
189 TODO: There are still some improvements to this transformation that could
190 be implemented:
192 * A narrower mode than word_mode could be used if that is cheaper, e.g.
193 for x86_64 where a narrower-mode shift may result in smaller code.
195 * The compounded constant could be shifted rather than the one. The
196 test would be either on the sign bit or on the least significant bit,
197 depending on the direction of the shift. On some machines, the test
198 for the branch would be free if the bit to test is already set by the
199 shift operation.
201 This transformation was contributed by Roger Sayle, see this e-mail:
202 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
205 /* A case_bit_test represents a set of case nodes that may be
206 selected from using a bit-wise comparison. HI and LO hold
207 the integer to be tested against, TARGET_EDGE contains the
208 edge to the basic block to jump to upon success and BITS
209 counts the number of case nodes handled by this test,
210 typically the number of bits set in HI:LO. The LABEL field
211 is used to quickly identify all cases in this set without
212 looking at label_to_block for every case label. */
214 struct case_bit_test
216 wide_int mask;
217 edge target_edge;
218 tree label;
219 int bits;
222 /* Comparison function for qsort to order bit tests by decreasing
223 probability of execution. Our best guess comes from a measured
224 profile. If the profile counts are equal, break even on the
225 number of case nodes, i.e. the node with the most cases gets
226 tested first.
228 TODO: Actually this currently runs before a profile is available.
229 Therefore the case-as-bit-tests transformation should be done
230 later in the pass pipeline, or something along the lines of
231 "Efficient and effective branch reordering using profile data"
232 (Yang et. al., 2002) should be implemented (although, how good
233 is a paper is called "Efficient and effective ..." when the
234 latter is implied by the former, but oh well...). */
236 static int
237 case_bit_test_cmp (const void *p1, const void *p2)
239 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
240 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
242 if (d2->target_edge->count < d1->target_edge->count)
243 return -1;
244 if (d2->target_edge->count > d1->target_edge->count)
245 return 1;
246 if (d2->bits != d1->bits)
247 return d2->bits - d1->bits;
249 /* Stabilize the sort. */
250 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
253 /* Expand a switch statement by a short sequence of bit-wise
254 comparisons. "switch(x)" is effectively converted into
255 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
256 integer constants.
258 INDEX_EXPR is the value being switched on.
260 MINVAL is the lowest case value of in the case nodes,
261 and RANGE is highest value minus MINVAL. MINVAL and RANGE
262 are not guaranteed to be of the same type as INDEX_EXPR
263 (the gimplifier doesn't change the type of case label values,
264 and MINVAL and RANGE are derived from those values).
265 MAXVAL is MINVAL + RANGE.
267 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
268 node targets. */
270 static void
271 emit_case_bit_tests (gswitch *swtch, tree index_expr,
272 tree minval, tree range, tree maxval)
274 struct case_bit_test test[MAX_CASE_BIT_TESTS] = { {} };
275 unsigned int i, j, k;
276 unsigned int count;
278 basic_block switch_bb = gimple_bb (swtch);
279 basic_block default_bb, new_default_bb, new_bb;
280 edge default_edge;
281 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
283 vec<basic_block> bbs_to_fix_dom = vNULL;
285 tree index_type = TREE_TYPE (index_expr);
286 tree unsigned_index_type = unsigned_type_for (index_type);
287 unsigned int branch_num = gimple_switch_num_labels (swtch);
289 gimple_stmt_iterator gsi;
290 gassign *shift_stmt;
292 tree idx, tmp, csui;
293 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
294 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
295 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
296 int prec = TYPE_PRECISION (word_type_node);
297 wide_int wone = wi::one (prec);
299 /* Get the edge for the default case. */
300 tmp = gimple_switch_default_label (swtch);
301 default_bb = label_to_block (CASE_LABEL (tmp));
302 default_edge = find_edge (switch_bb, default_bb);
304 /* Go through all case labels, and collect the case labels, profile
305 counts, and other information we need to build the branch tests. */
306 count = 0;
307 for (i = 1; i < branch_num; i++)
309 unsigned int lo, hi;
310 tree cs = gimple_switch_label (swtch, i);
311 tree label = CASE_LABEL (cs);
312 edge e = find_edge (switch_bb, label_to_block (label));
313 for (k = 0; k < count; k++)
314 if (e == test[k].target_edge)
315 break;
317 if (k == count)
319 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
320 test[k].mask = wi::zero (prec);
321 test[k].target_edge = e;
322 test[k].label = label;
323 test[k].bits = 1;
324 count++;
326 else
327 test[k].bits++;
329 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR,
330 CASE_LOW (cs), minval));
331 if (CASE_HIGH (cs) == NULL_TREE)
332 hi = lo;
333 else
334 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR,
335 CASE_HIGH (cs), minval));
337 for (j = lo; j <= hi; j++)
338 test[k].mask |= wi::lshift (wone, j);
341 qsort (test, count, sizeof (*test), case_bit_test_cmp);
343 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
344 the minval subtractions, but it might make the mask constants more
345 expensive. So, compare the costs. */
346 if (compare_tree_int (minval, 0) > 0
347 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
349 int cost_diff;
350 HOST_WIDE_INT m = tree_to_uhwi (minval);
351 rtx reg = gen_raw_REG (word_mode, 10000);
352 bool speed_p = optimize_bb_for_speed_p (gimple_bb (swtch));
353 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
354 GEN_INT (-m)), speed_p);
355 for (i = 0; i < count; i++)
357 rtx r = immed_wide_int_const (test[i].mask, word_mode);
358 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
359 word_mode, speed_p);
360 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
361 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
362 word_mode, speed_p);
364 if (cost_diff > 0)
366 for (i = 0; i < count; i++)
367 test[i].mask = wi::lshift (test[i].mask, m);
368 minval = build_zero_cst (TREE_TYPE (minval));
369 range = maxval;
373 /* We generate two jumps to the default case label.
374 Split the default edge, so that we don't have to do any PHI node
375 updating. */
376 new_default_bb = split_edge (default_edge);
378 if (update_dom)
380 bbs_to_fix_dom.create (10);
381 bbs_to_fix_dom.quick_push (switch_bb);
382 bbs_to_fix_dom.quick_push (default_bb);
383 bbs_to_fix_dom.quick_push (new_default_bb);
386 /* Now build the test-and-branch code. */
388 gsi = gsi_last_bb (switch_bb);
390 /* idx = (unsigned)x - minval. */
391 idx = fold_convert (unsigned_index_type, index_expr);
392 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
393 fold_convert (unsigned_index_type, minval));
394 idx = force_gimple_operand_gsi (&gsi, idx,
395 /*simple=*/true, NULL_TREE,
396 /*before=*/true, GSI_SAME_STMT);
398 /* if (idx > range) goto default */
399 range = force_gimple_operand_gsi (&gsi,
400 fold_convert (unsigned_index_type, range),
401 /*simple=*/true, NULL_TREE,
402 /*before=*/true, GSI_SAME_STMT);
403 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
404 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
405 if (update_dom)
406 bbs_to_fix_dom.quick_push (new_bb);
407 gcc_assert (gimple_bb (swtch) == new_bb);
408 gsi = gsi_last_bb (new_bb);
410 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
411 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
412 if (update_dom)
414 vec<basic_block> dom_bbs;
415 basic_block dom_son;
417 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
418 FOR_EACH_VEC_ELT (dom_bbs, i, dom_son)
420 edge e = find_edge (new_bb, dom_son);
421 if (e && single_pred_p (e->dest))
422 continue;
423 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
424 bbs_to_fix_dom.safe_push (dom_son);
426 dom_bbs.release ();
429 /* csui = (1 << (word_mode) idx) */
430 csui = make_ssa_name (word_type_node);
431 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
432 fold_convert (word_type_node, idx));
433 tmp = force_gimple_operand_gsi (&gsi, tmp,
434 /*simple=*/false, NULL_TREE,
435 /*before=*/true, GSI_SAME_STMT);
436 shift_stmt = gimple_build_assign (csui, tmp);
437 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
438 update_stmt (shift_stmt);
440 /* for each unique set of cases:
441 if (const & csui) goto target */
442 for (k = 0; k < count; k++)
444 tmp = wide_int_to_tree (word_type_node, test[k].mask);
445 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
446 tmp = force_gimple_operand_gsi (&gsi, tmp,
447 /*simple=*/true, NULL_TREE,
448 /*before=*/true, GSI_SAME_STMT);
449 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
450 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
451 update_dom);
452 if (update_dom)
453 bbs_to_fix_dom.safe_push (new_bb);
454 gcc_assert (gimple_bb (swtch) == new_bb);
455 gsi = gsi_last_bb (new_bb);
458 /* We should have removed all edges now. */
459 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
461 /* If nothing matched, go to the default label. */
462 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
464 /* The GIMPLE_SWITCH is now redundant. */
465 gsi_remove (&gsi, true);
467 if (update_dom)
469 /* Fix up the dominator tree. */
470 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
471 bbs_to_fix_dom.release ();
476 Switch initialization conversion
478 The following pass changes simple initializations of scalars in a switch
479 statement into initializations from a static array. Obviously, the values
480 must be constant and known at compile time and a default branch must be
481 provided. For example, the following code:
483 int a,b;
485 switch (argc)
487 case 1:
488 case 2:
489 a_1 = 8;
490 b_1 = 6;
491 break;
492 case 3:
493 a_2 = 9;
494 b_2 = 5;
495 break;
496 case 12:
497 a_3 = 10;
498 b_3 = 4;
499 break;
500 default:
501 a_4 = 16;
502 b_4 = 1;
503 break;
505 a_5 = PHI <a_1, a_2, a_3, a_4>
506 b_5 = PHI <b_1, b_2, b_3, b_4>
509 is changed into:
511 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
512 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
513 16, 16, 10};
515 if (((unsigned) argc) - 1 < 11)
517 a_6 = CSWTCH02[argc - 1];
518 b_6 = CSWTCH01[argc - 1];
520 else
522 a_7 = 16;
523 b_7 = 1;
525 a_5 = PHI <a_6, a_7>
526 b_b = PHI <b_6, b_7>
528 There are further constraints. Specifically, the range of values across all
529 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
530 eight) times the number of the actual switch branches.
532 This transformation was contributed by Martin Jambor, see this e-mail:
533 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
535 /* The main structure of the pass. */
536 struct switch_conv_info
538 /* The expression used to decide the switch branch. */
539 tree index_expr;
541 /* The following integer constants store the minimum and maximum value
542 covered by the case labels. */
543 tree range_min;
544 tree range_max;
546 /* The difference between the above two numbers. Stored here because it
547 is used in all the conversion heuristics, as well as for some of the
548 transformation, and it is expensive to re-compute it all the time. */
549 tree range_size;
551 /* Basic block that contains the actual GIMPLE_SWITCH. */
552 basic_block switch_bb;
554 /* Basic block that is the target of the default case. */
555 basic_block default_bb;
557 /* The single successor block of all branches out of the GIMPLE_SWITCH,
558 if such a block exists. Otherwise NULL. */
559 basic_block final_bb;
561 /* The probability of the default edge in the replaced switch. */
562 profile_probability default_prob;
564 /* The count of the default edge in the replaced switch. */
565 profile_count default_count;
567 /* Combined count of all other (non-default) edges in the replaced switch. */
568 profile_count other_count;
570 /* Number of phi nodes in the final bb (that we'll be replacing). */
571 int phi_count;
573 /* Array of default values, in the same order as phi nodes. */
574 tree *default_values;
576 /* Constructors of new static arrays. */
577 vec<constructor_elt, va_gc> **constructors;
579 /* Array of ssa names that are initialized with a value from a new static
580 array. */
581 tree *target_inbound_names;
583 /* Array of ssa names that are initialized with the default value if the
584 switch expression is out of range. */
585 tree *target_outbound_names;
587 /* VOP SSA_NAME. */
588 tree target_vop;
590 /* The first load statement that loads a temporary from a new static array.
592 gimple *arr_ref_first;
594 /* The last load statement that loads a temporary from a new static array. */
595 gimple *arr_ref_last;
597 /* String reason why the case wasn't a good candidate that is written to the
598 dump file, if there is one. */
599 const char *reason;
601 /* True if default case is not used for any value between range_min and
602 range_max inclusive. */
603 bool contiguous_range;
605 /* True if default case does not have the required shape for other case
606 labels. */
607 bool default_case_nonstandard;
609 /* Parameters for expand_switch_using_bit_tests. Should be computed
610 the same way as in expand_case. */
611 unsigned int uniq;
612 unsigned int count;
615 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
617 static void
618 collect_switch_conv_info (gswitch *swtch, struct switch_conv_info *info)
620 unsigned int branch_num = gimple_switch_num_labels (swtch);
621 tree min_case, max_case;
622 unsigned int count, i;
623 edge e, e_default, e_first;
624 edge_iterator ei;
625 basic_block first;
627 memset (info, 0, sizeof (*info));
629 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
630 is a default label which is the first in the vector.
631 Collect the bits we can deduce from the CFG. */
632 info->index_expr = gimple_switch_index (swtch);
633 info->switch_bb = gimple_bb (swtch);
634 info->default_bb
635 = label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
636 e_default = find_edge (info->switch_bb, info->default_bb);
637 info->default_prob = e_default->probability;
638 info->default_count = e_default->count;
639 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
640 if (e != e_default)
641 info->other_count += e->count;
643 /* Get upper and lower bounds of case values, and the covered range. */
644 min_case = gimple_switch_label (swtch, 1);
645 max_case = gimple_switch_label (swtch, branch_num - 1);
647 info->range_min = CASE_LOW (min_case);
648 if (CASE_HIGH (max_case) != NULL_TREE)
649 info->range_max = CASE_HIGH (max_case);
650 else
651 info->range_max = CASE_LOW (max_case);
653 info->contiguous_range = true;
654 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : info->range_min;
655 for (i = 2; i < branch_num; i++)
657 tree elt = gimple_switch_label (swtch, i);
658 wide_int w = last;
659 if (w + 1 != CASE_LOW (elt))
661 info->contiguous_range = false;
662 break;
664 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
667 if (info->contiguous_range)
669 first = label_to_block (CASE_LABEL (gimple_switch_label (swtch, 1)));
670 e_first = find_edge (info->switch_bb, first);
672 else
674 first = info->default_bb;
675 e_first = e_default;
678 /* See if there is one common successor block for all branch
679 targets. If it exists, record it in FINAL_BB.
680 Start with the destination of the first non-default case
681 if the range is contiguous and default case otherwise as
682 guess or its destination in case it is a forwarder block. */
683 if (! single_pred_p (e_first->dest))
684 info->final_bb = e_first->dest;
685 else if (single_succ_p (e_first->dest)
686 && ! single_pred_p (single_succ (e_first->dest)))
687 info->final_bb = single_succ (e_first->dest);
688 /* Require that all switch destinations are either that common
689 FINAL_BB or a forwarder to it, except for the default
690 case if contiguous range. */
691 if (info->final_bb)
692 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
694 if (e->dest == info->final_bb)
695 continue;
697 if (single_pred_p (e->dest)
698 && single_succ_p (e->dest)
699 && single_succ (e->dest) == info->final_bb)
700 continue;
702 if (e == e_default && info->contiguous_range)
704 info->default_case_nonstandard = true;
705 continue;
708 info->final_bb = NULL;
709 break;
712 info->range_size
713 = int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
715 /* Get a count of the number of case labels. Single-valued case labels
716 simply count as one, but a case range counts double, since it may
717 require two compares if it gets lowered as a branching tree. */
718 count = 0;
719 for (i = 1; i < branch_num; i++)
721 tree elt = gimple_switch_label (swtch, i);
722 count++;
723 if (CASE_HIGH (elt)
724 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
725 count++;
727 info->count = count;
729 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
730 block. Assume a CFG cleanup would have already removed degenerate
731 switch statements, this allows us to just use EDGE_COUNT. */
732 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
735 /* Checks whether the range given by individual case statements of the SWTCH
736 switch statement isn't too big and whether the number of branches actually
737 satisfies the size of the new array. */
739 static bool
740 check_range (struct switch_conv_info *info)
742 gcc_assert (info->range_size);
743 if (!tree_fits_uhwi_p (info->range_size))
745 info->reason = "index range way too large or otherwise unusable";
746 return false;
749 if (tree_to_uhwi (info->range_size)
750 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
752 info->reason = "the maximum range-branch ratio exceeded";
753 return false;
756 return true;
759 /* Checks whether all but the FINAL_BB basic blocks are empty. */
761 static bool
762 check_all_empty_except_final (struct switch_conv_info *info)
764 edge e, e_default = find_edge (info->switch_bb, info->default_bb);
765 edge_iterator ei;
767 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
769 if (e->dest == info->final_bb)
770 continue;
772 if (!empty_block_p (e->dest))
774 if (info->contiguous_range && e == e_default)
776 info->default_case_nonstandard = true;
777 continue;
780 info->reason = "bad case - a non-final BB not empty";
781 return false;
785 return true;
788 /* This function checks whether all required values in phi nodes in final_bb
789 are constants. Required values are those that correspond to a basic block
790 which is a part of the examined switch statement. It returns true if the
791 phi nodes are OK, otherwise false. */
793 static bool
794 check_final_bb (gswitch *swtch, struct switch_conv_info *info)
796 gphi_iterator gsi;
798 info->phi_count = 0;
799 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
801 gphi *phi = gsi.phi ();
802 unsigned int i;
804 if (virtual_operand_p (gimple_phi_result (phi)))
805 continue;
807 info->phi_count++;
809 for (i = 0; i < gimple_phi_num_args (phi); i++)
811 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
813 if (bb == info->switch_bb
814 || (single_pred_p (bb)
815 && single_pred (bb) == info->switch_bb
816 && (!info->default_case_nonstandard
817 || empty_block_p (bb))))
819 tree reloc, val;
820 const char *reason = NULL;
822 val = gimple_phi_arg_def (phi, i);
823 if (!is_gimple_ip_invariant (val))
824 reason = "non-invariant value from a case";
825 else
827 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
828 if ((flag_pic && reloc != null_pointer_node)
829 || (!flag_pic && reloc == NULL_TREE))
831 if (reloc)
832 reason
833 = "value from a case would need runtime relocations";
834 else
835 reason
836 = "value from a case is not a valid initializer";
839 if (reason)
841 /* For contiguous range, we can allow non-constant
842 or one that needs relocation, as long as it is
843 only reachable from the default case. */
844 if (bb == info->switch_bb)
845 bb = info->final_bb;
846 if (!info->contiguous_range || bb != info->default_bb)
848 info->reason = reason;
849 return false;
852 unsigned int branch_num = gimple_switch_num_labels (swtch);
853 for (unsigned int i = 1; i < branch_num; i++)
855 tree lab = CASE_LABEL (gimple_switch_label (swtch, i));
856 if (label_to_block (lab) == bb)
858 info->reason = reason;
859 return false;
862 info->default_case_nonstandard = true;
868 return true;
871 /* The following function allocates default_values, target_{in,out}_names and
872 constructors arrays. The last one is also populated with pointers to
873 vectors that will become constructors of new arrays. */
875 static void
876 create_temp_arrays (struct switch_conv_info *info)
878 int i;
880 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
881 /* ??? Macros do not support multi argument templates in their
882 argument list. We create a typedef to work around that problem. */
883 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
884 info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count);
885 info->target_inbound_names = info->default_values + info->phi_count;
886 info->target_outbound_names = info->target_inbound_names + info->phi_count;
887 for (i = 0; i < info->phi_count; i++)
888 vec_alloc (info->constructors[i], tree_to_uhwi (info->range_size) + 1);
891 /* Free the arrays created by create_temp_arrays(). The vectors that are
892 created by that function are not freed here, however, because they have
893 already become constructors and must be preserved. */
895 static void
896 free_temp_arrays (struct switch_conv_info *info)
898 XDELETEVEC (info->constructors);
899 XDELETEVEC (info->default_values);
902 /* Populate the array of default values in the order of phi nodes.
903 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
904 if the range is non-contiguous or the default case has standard
905 structure, otherwise it is the first non-default case instead. */
907 static void
908 gather_default_values (tree default_case, struct switch_conv_info *info)
910 gphi_iterator gsi;
911 basic_block bb = label_to_block (CASE_LABEL (default_case));
912 edge e;
913 int i = 0;
915 gcc_assert (CASE_LOW (default_case) == NULL_TREE
916 || info->default_case_nonstandard);
918 if (bb == info->final_bb)
919 e = find_edge (info->switch_bb, bb);
920 else
921 e = single_succ_edge (bb);
923 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
925 gphi *phi = gsi.phi ();
926 if (virtual_operand_p (gimple_phi_result (phi)))
927 continue;
928 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
929 gcc_assert (val);
930 info->default_values[i++] = val;
934 /* The following function populates the vectors in the constructors array with
935 future contents of the static arrays. The vectors are populated in the
936 order of phi nodes. SWTCH is the switch statement being converted. */
938 static void
939 build_constructors (gswitch *swtch, struct switch_conv_info *info)
941 unsigned i, branch_num = gimple_switch_num_labels (swtch);
942 tree pos = info->range_min;
943 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
945 for (i = 1; i < branch_num; i++)
947 tree cs = gimple_switch_label (swtch, i);
948 basic_block bb = label_to_block (CASE_LABEL (cs));
949 edge e;
950 tree high;
951 gphi_iterator gsi;
952 int j;
954 if (bb == info->final_bb)
955 e = find_edge (info->switch_bb, bb);
956 else
957 e = single_succ_edge (bb);
958 gcc_assert (e);
960 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
962 int k;
963 gcc_assert (!info->contiguous_range);
964 for (k = 0; k < info->phi_count; k++)
966 constructor_elt elt;
968 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
969 elt.value
970 = unshare_expr_without_location (info->default_values[k]);
971 info->constructors[k]->quick_push (elt);
974 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
976 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
978 j = 0;
979 if (CASE_HIGH (cs))
980 high = CASE_HIGH (cs);
981 else
982 high = CASE_LOW (cs);
983 for (gsi = gsi_start_phis (info->final_bb);
984 !gsi_end_p (gsi); gsi_next (&gsi))
986 gphi *phi = gsi.phi ();
987 if (virtual_operand_p (gimple_phi_result (phi)))
988 continue;
989 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
990 tree low = CASE_LOW (cs);
991 pos = CASE_LOW (cs);
995 constructor_elt elt;
997 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
998 elt.value = unshare_expr_without_location (val);
999 info->constructors[j]->quick_push (elt);
1001 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
1002 } while (!tree_int_cst_lt (high, pos)
1003 && tree_int_cst_lt (low, pos));
1004 j++;
1009 /* If all values in the constructor vector are the same, return the value.
1010 Otherwise return NULL_TREE. Not supposed to be called for empty
1011 vectors. */
1013 static tree
1014 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec)
1016 unsigned int i;
1017 tree prev = NULL_TREE;
1018 constructor_elt *elt;
1020 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
1022 if (!prev)
1023 prev = elt->value;
1024 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
1025 return NULL_TREE;
1027 return prev;
1030 /* Return type which should be used for array elements, either TYPE's
1031 main variant or, for integral types, some smaller integral type
1032 that can still hold all the constants. */
1034 static tree
1035 array_value_type (gswitch *swtch, tree type, int num,
1036 struct switch_conv_info *info)
1038 unsigned int i, len = vec_safe_length (info->constructors[num]);
1039 constructor_elt *elt;
1040 int sign = 0;
1041 tree smaller_type;
1043 /* Types with alignments greater than their size can reach here, e.g. out of
1044 SRA. We couldn't use these as an array component type so get back to the
1045 main variant first, which, for our purposes, is fine for other types as
1046 well. */
1048 type = TYPE_MAIN_VARIANT (type);
1050 if (!INTEGRAL_TYPE_P (type))
1051 return type;
1053 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
1054 scalar_int_mode mode = get_narrowest_mode (type_mode);
1055 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
1056 return type;
1058 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
1059 return type;
1061 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1063 wide_int cst;
1065 if (TREE_CODE (elt->value) != INTEGER_CST)
1066 return type;
1068 cst = elt->value;
1069 while (1)
1071 unsigned int prec = GET_MODE_BITSIZE (mode);
1072 if (prec > HOST_BITS_PER_WIDE_INT)
1073 return type;
1075 if (sign >= 0 && cst == wi::zext (cst, prec))
1077 if (sign == 0 && cst == wi::sext (cst, prec))
1078 break;
1079 sign = 1;
1080 break;
1082 if (sign <= 0 && cst == wi::sext (cst, prec))
1084 sign = -1;
1085 break;
1088 if (sign == 1)
1089 sign = 0;
1091 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
1092 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
1093 return type;
1097 if (sign == 0)
1098 sign = TYPE_UNSIGNED (type) ? 1 : -1;
1099 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1100 if (GET_MODE_SIZE (type_mode)
1101 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
1102 return type;
1104 return smaller_type;
1107 /* Create an appropriate array type and declaration and assemble a static array
1108 variable. Also create a load statement that initializes the variable in
1109 question with a value from the static array. SWTCH is the switch statement
1110 being converted, NUM is the index to arrays of constructors, default values
1111 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1112 of the index of the new array, PHI is the phi node of the final BB that
1113 corresponds to the value that will be loaded from the created array. TIDX
1114 is an ssa name of a temporary variable holding the index for loads from the
1115 new array. */
1117 static void
1118 build_one_array (gswitch *swtch, int num, tree arr_index_type,
1119 gphi *phi, tree tidx, struct switch_conv_info *info)
1121 tree name, cst;
1122 gimple *load;
1123 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1124 location_t loc = gimple_location (swtch);
1126 gcc_assert (info->default_values[num]);
1128 name = copy_ssa_name (PHI_RESULT (phi));
1129 info->target_inbound_names[num] = name;
1131 cst = constructor_contains_same_values_p (info->constructors[num]);
1132 if (cst)
1133 load = gimple_build_assign (name, cst);
1134 else
1136 tree array_type, ctor, decl, value_type, fetch, default_type;
1138 default_type = TREE_TYPE (info->default_values[num]);
1139 value_type = array_value_type (swtch, default_type, num, info);
1140 array_type = build_array_type (value_type, arr_index_type);
1141 if (default_type != value_type)
1143 unsigned int i;
1144 constructor_elt *elt;
1146 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1147 elt->value = fold_convert (value_type, elt->value);
1149 ctor = build_constructor (array_type, info->constructors[num]);
1150 TREE_CONSTANT (ctor) = true;
1151 TREE_STATIC (ctor) = true;
1153 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1154 TREE_STATIC (decl) = 1;
1155 DECL_INITIAL (decl) = ctor;
1157 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1158 DECL_ARTIFICIAL (decl) = 1;
1159 DECL_IGNORED_P (decl) = 1;
1160 TREE_CONSTANT (decl) = 1;
1161 TREE_READONLY (decl) = 1;
1162 DECL_IGNORED_P (decl) = 1;
1163 varpool_node::finalize_decl (decl);
1165 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1166 NULL_TREE);
1167 if (default_type != value_type)
1169 fetch = fold_convert (default_type, fetch);
1170 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1171 true, GSI_SAME_STMT);
1173 load = gimple_build_assign (name, fetch);
1176 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1177 update_stmt (load);
1178 info->arr_ref_last = load;
1181 /* Builds and initializes static arrays initialized with values gathered from
1182 the SWTCH switch statement. Also creates statements that load values from
1183 them. */
1185 static void
1186 build_arrays (gswitch *swtch, struct switch_conv_info *info)
1188 tree arr_index_type;
1189 tree tidx, sub, utype;
1190 gimple *stmt;
1191 gimple_stmt_iterator gsi;
1192 gphi_iterator gpi;
1193 int i;
1194 location_t loc = gimple_location (swtch);
1196 gsi = gsi_for_stmt (swtch);
1198 /* Make sure we do not generate arithmetics in a subrange. */
1199 utype = TREE_TYPE (info->index_expr);
1200 if (TREE_TYPE (utype))
1201 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1202 else
1203 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1205 arr_index_type = build_index_type (info->range_size);
1206 tidx = make_ssa_name (utype);
1207 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1208 fold_convert_loc (loc, utype, info->index_expr),
1209 fold_convert_loc (loc, utype, info->range_min));
1210 sub = force_gimple_operand_gsi (&gsi, sub,
1211 false, NULL, true, GSI_SAME_STMT);
1212 stmt = gimple_build_assign (tidx, sub);
1214 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1215 update_stmt (stmt);
1216 info->arr_ref_first = stmt;
1218 for (gpi = gsi_start_phis (info->final_bb), i = 0;
1219 !gsi_end_p (gpi); gsi_next (&gpi))
1221 gphi *phi = gpi.phi ();
1222 if (!virtual_operand_p (gimple_phi_result (phi)))
1223 build_one_array (swtch, i++, arr_index_type, phi, tidx, info);
1224 else
1226 edge e;
1227 edge_iterator ei;
1228 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
1230 if (e->dest == info->final_bb)
1231 break;
1232 if (!info->default_case_nonstandard
1233 || e->dest != info->default_bb)
1235 e = single_succ_edge (e->dest);
1236 break;
1239 gcc_assert (e && e->dest == info->final_bb);
1240 info->target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
1245 /* Generates and appropriately inserts loads of default values at the position
1246 given by BSI. Returns the last inserted statement. */
1248 static gassign *
1249 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1251 int i;
1252 gassign *assign = NULL;
1254 for (i = 0; i < info->phi_count; i++)
1256 tree name = copy_ssa_name (info->target_inbound_names[i]);
1257 info->target_outbound_names[i] = name;
1258 assign = gimple_build_assign (name, info->default_values[i]);
1259 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1260 update_stmt (assign);
1262 return assign;
1265 /* Deletes the unused bbs and edges that now contain the switch statement and
1266 its empty branch bbs. BBD is the now dead BB containing the original switch
1267 statement, FINAL is the last BB of the converted switch statement (in terms
1268 of succession). */
1270 static void
1271 prune_bbs (basic_block bbd, basic_block final, basic_block default_bb)
1273 edge_iterator ei;
1274 edge e;
1276 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1278 basic_block bb;
1279 bb = e->dest;
1280 remove_edge (e);
1281 if (bb != final && bb != default_bb)
1282 delete_basic_block (bb);
1284 delete_basic_block (bbd);
1287 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1288 from the basic block loading values from an array and E2F from the basic
1289 block loading default values. BBF is the last switch basic block (see the
1290 bbf description in the comment below). */
1292 static void
1293 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1294 struct switch_conv_info *info)
1296 gphi_iterator gsi;
1297 int i;
1299 for (gsi = gsi_start_phis (bbf), i = 0;
1300 !gsi_end_p (gsi); gsi_next (&gsi))
1302 gphi *phi = gsi.phi ();
1303 tree inbound, outbound;
1304 if (virtual_operand_p (gimple_phi_result (phi)))
1305 inbound = outbound = info->target_vop;
1306 else
1308 inbound = info->target_inbound_names[i];
1309 outbound = info->target_outbound_names[i++];
1311 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
1312 if (!info->default_case_nonstandard)
1313 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
1317 /* Creates a check whether the switch expression value actually falls into the
1318 range given by all the cases. If it does not, the temporaries are loaded
1319 with default values instead. SWTCH is the switch statement being converted.
1321 bb0 is the bb with the switch statement, however, we'll end it with a
1322 condition instead.
1324 bb1 is the bb to be used when the range check went ok. It is derived from
1325 the switch BB
1327 bb2 is the bb taken when the expression evaluated outside of the range
1328 covered by the created arrays. It is populated by loads of default
1329 values.
1331 bbF is a fall through for both bb1 and bb2 and contains exactly what
1332 originally followed the switch statement.
1334 bbD contains the switch statement (in the end). It is unreachable but we
1335 still need to strip off its edges.
1338 static void
1339 gen_inbound_check (gswitch *swtch, struct switch_conv_info *info)
1341 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1342 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1343 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1344 glabel *label1, *label2, *label3;
1345 tree utype, tidx;
1346 tree bound;
1348 gcond *cond_stmt;
1350 gassign *last_assign = NULL;
1351 gimple_stmt_iterator gsi;
1352 basic_block bb0, bb1, bb2, bbf, bbd;
1353 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
1354 location_t loc = gimple_location (swtch);
1356 gcc_assert (info->default_values);
1358 bb0 = gimple_bb (swtch);
1360 tidx = gimple_assign_lhs (info->arr_ref_first);
1361 utype = TREE_TYPE (tidx);
1363 /* (end of) block 0 */
1364 gsi = gsi_for_stmt (info->arr_ref_first);
1365 gsi_next (&gsi);
1367 bound = fold_convert_loc (loc, utype, info->range_size);
1368 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1369 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1370 update_stmt (cond_stmt);
1372 /* block 2 */
1373 if (!info->default_case_nonstandard)
1375 label2 = gimple_build_label (label_decl2);
1376 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1377 last_assign = gen_def_assigns (&gsi, info);
1380 /* block 1 */
1381 label1 = gimple_build_label (label_decl1);
1382 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1384 /* block F */
1385 gsi = gsi_start_bb (info->final_bb);
1386 label3 = gimple_build_label (label_decl3);
1387 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1389 /* cfg fix */
1390 e02 = split_block (bb0, cond_stmt);
1391 bb2 = e02->dest;
1393 if (info->default_case_nonstandard)
1395 bb1 = bb2;
1396 bb2 = info->default_bb;
1397 e01 = e02;
1398 e01->flags = EDGE_TRUE_VALUE;
1399 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
1400 edge e_default = find_edge (bb1, bb2);
1401 for (gphi_iterator gsi = gsi_start_phis (bb2);
1402 !gsi_end_p (gsi); gsi_next (&gsi))
1404 gphi *phi = gsi.phi ();
1405 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
1406 add_phi_arg (phi, arg, e02,
1407 gimple_phi_arg_location_from_edge (phi, e_default));
1409 /* Partially fix the dominator tree, if it is available. */
1410 if (dom_info_available_p (CDI_DOMINATORS))
1411 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
1413 else
1415 e21 = split_block (bb2, last_assign);
1416 bb1 = e21->dest;
1417 remove_edge (e21);
1420 e1d = split_block (bb1, info->arr_ref_last);
1421 bbd = e1d->dest;
1422 remove_edge (e1d);
1424 /* flags and profiles of the edge for in-range values */
1425 if (!info->default_case_nonstandard)
1426 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1427 e01->probability = info->default_prob.invert ();
1428 e01->count = info->other_count;
1430 /* flags and profiles of the edge taking care of out-of-range values */
1431 e02->flags &= ~EDGE_FALLTHRU;
1432 e02->flags |= EDGE_FALSE_VALUE;
1433 e02->probability = info->default_prob;
1434 e02->count = info->default_count;
1436 bbf = info->final_bb;
1438 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1439 e1f->probability = profile_probability::always ();
1440 e1f->count = info->other_count;
1442 if (info->default_case_nonstandard)
1443 e2f = NULL;
1444 else
1446 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1447 e2f->probability = profile_probability::always ();
1448 e2f->count = info->default_count;
1451 /* frequencies of the new BBs */
1452 bb1->frequency = EDGE_FREQUENCY (e01);
1453 bb2->frequency = EDGE_FREQUENCY (e02);
1454 if (!info->default_case_nonstandard)
1455 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1457 /* Tidy blocks that have become unreachable. */
1458 prune_bbs (bbd, info->final_bb,
1459 info->default_case_nonstandard ? info->default_bb : NULL);
1461 /* Fixup the PHI nodes in bbF. */
1462 fix_phi_nodes (e1f, e2f, bbf, info);
1464 /* Fix the dominator tree, if it is available. */
1465 if (dom_info_available_p (CDI_DOMINATORS))
1467 vec<basic_block> bbs_to_fix_dom;
1469 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1470 if (!info->default_case_nonstandard)
1471 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1472 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1473 /* If bbD was the immediate dominator ... */
1474 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1476 bbs_to_fix_dom.create (3 + (bb2 != bbf));
1477 bbs_to_fix_dom.quick_push (bb0);
1478 bbs_to_fix_dom.quick_push (bb1);
1479 if (bb2 != bbf)
1480 bbs_to_fix_dom.quick_push (bb2);
1481 bbs_to_fix_dom.quick_push (bbf);
1483 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1484 bbs_to_fix_dom.release ();
1488 /* The following function is invoked on every switch statement (the current one
1489 is given in SWTCH) and runs the individual phases of switch conversion on it
1490 one after another until one fails or the conversion is completed.
1491 Returns NULL on success, or a pointer to a string with the reason why the
1492 conversion failed. */
1494 static const char *
1495 process_switch (gswitch *swtch)
1497 struct switch_conv_info info;
1499 /* Group case labels so that we get the right results from the heuristics
1500 that decide on the code generation approach for this switch. */
1501 group_case_labels_stmt (swtch);
1503 /* If this switch is now a degenerate case with only a default label,
1504 there is nothing left for us to do. */
1505 if (gimple_switch_num_labels (swtch) < 2)
1506 return "switch is a degenerate case";
1508 collect_switch_conv_info (swtch, &info);
1510 /* No error markers should reach here (they should be filtered out
1511 during gimplification). */
1512 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1514 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1515 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1517 if (info.uniq <= MAX_CASE_BIT_TESTS)
1519 if (expand_switch_using_bit_tests_p (info.range_size,
1520 info.uniq, info.count,
1521 optimize_bb_for_speed_p
1522 (gimple_bb (swtch))))
1524 if (dump_file)
1525 fputs (" expanding as bit test is preferable\n", dump_file);
1526 emit_case_bit_tests (swtch, info.index_expr, info.range_min,
1527 info.range_size, info.range_max);
1528 loops_state_set (LOOPS_NEED_FIXUP);
1529 return NULL;
1532 if (info.uniq <= 2)
1533 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1534 return " expanding as jumps is preferable";
1537 /* If there is no common successor, we cannot do the transformation. */
1538 if (! info.final_bb)
1539 return "no common successor to all case label target blocks found";
1541 /* Check the case label values are within reasonable range: */
1542 if (!check_range (&info))
1544 gcc_assert (info.reason);
1545 return info.reason;
1548 /* For all the cases, see whether they are empty, the assignments they
1549 represent constant and so on... */
1550 if (! check_all_empty_except_final (&info))
1552 gcc_assert (info.reason);
1553 return info.reason;
1555 if (!check_final_bb (swtch, &info))
1557 gcc_assert (info.reason);
1558 return info.reason;
1561 /* At this point all checks have passed and we can proceed with the
1562 transformation. */
1564 create_temp_arrays (&info);
1565 gather_default_values (info.default_case_nonstandard
1566 ? gimple_switch_label (swtch, 1)
1567 : gimple_switch_default_label (swtch), &info);
1568 build_constructors (swtch, &info);
1570 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1571 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1573 /* Cleanup: */
1574 free_temp_arrays (&info);
1575 return NULL;
1578 /* The main function of the pass scans statements for switches and invokes
1579 process_switch on them. */
1581 namespace {
1583 const pass_data pass_data_convert_switch =
1585 GIMPLE_PASS, /* type */
1586 "switchconv", /* name */
1587 OPTGROUP_NONE, /* optinfo_flags */
1588 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1589 ( PROP_cfg | PROP_ssa ), /* properties_required */
1590 0, /* properties_provided */
1591 0, /* properties_destroyed */
1592 0, /* todo_flags_start */
1593 TODO_update_ssa, /* todo_flags_finish */
1596 class pass_convert_switch : public gimple_opt_pass
1598 public:
1599 pass_convert_switch (gcc::context *ctxt)
1600 : gimple_opt_pass (pass_data_convert_switch, ctxt)
1603 /* opt_pass methods: */
1604 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
1605 virtual unsigned int execute (function *);
1607 }; // class pass_convert_switch
1609 unsigned int
1610 pass_convert_switch::execute (function *fun)
1612 basic_block bb;
1614 FOR_EACH_BB_FN (bb, fun)
1616 const char *failure_reason;
1617 gimple *stmt = last_stmt (bb);
1618 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1620 if (dump_file)
1622 expanded_location loc = expand_location (gimple_location (stmt));
1624 fprintf (dump_file, "beginning to process the following "
1625 "SWITCH statement (%s:%d) : ------- \n",
1626 loc.file, loc.line);
1627 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1628 putc ('\n', dump_file);
1631 failure_reason = process_switch (as_a <gswitch *> (stmt));
1632 if (! failure_reason)
1634 if (dump_file)
1636 fputs ("Switch converted\n", dump_file);
1637 fputs ("--------------------------------\n", dump_file);
1640 /* Make no effort to update the post-dominator tree. It is actually not
1641 that hard for the transformations we have performed, but it is not
1642 supported by iterate_fix_dominators. */
1643 free_dominance_info (CDI_POST_DOMINATORS);
1645 else
1647 if (dump_file)
1649 fputs ("Bailing out - ", dump_file);
1650 fputs (failure_reason, dump_file);
1651 fputs ("\n--------------------------------\n", dump_file);
1657 return 0;
1660 } // anon namespace
1662 gimple_opt_pass *
1663 make_pass_convert_switch (gcc::context *ctxt)
1665 return new pass_convert_switch (ctxt);
1668 struct case_node
1670 case_node *left; /* Left son in binary tree. */
1671 case_node *right; /* Right son in binary tree;
1672 also node chain. */
1673 case_node *parent; /* Parent of node in binary tree. */
1674 tree low; /* Lowest index value for this label. */
1675 tree high; /* Highest index value for this label. */
1676 basic_block case_bb; /* Label to jump to when node matches. */
1677 tree case_label; /* Label to jump to when node matches. */
1678 profile_probability prob; /* Probability of taking this case. */
1679 profile_probability subtree_prob; /* Probability of reaching subtree
1680 rooted at this node. */
1683 typedef case_node *case_node_ptr;
1685 static basic_block emit_case_nodes (basic_block, tree, case_node_ptr,
1686 basic_block, tree, profile_probability,
1687 tree, hash_map<tree, tree> *);
1688 static bool node_has_low_bound (case_node_ptr, tree);
1689 static bool node_has_high_bound (case_node_ptr, tree);
1690 static bool node_is_bounded (case_node_ptr, tree);
1692 /* Return the smallest number of different values for which it is best to use a
1693 jump-table instead of a tree of conditional branches. */
1695 static unsigned int
1696 case_values_threshold (void)
1698 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
1700 if (threshold == 0)
1701 threshold = targetm.case_values_threshold ();
1703 return threshold;
1706 /* Reset the aux field of all outgoing edges of basic block BB. */
1708 static inline void
1709 reset_out_edges_aux (basic_block bb)
1711 edge e;
1712 edge_iterator ei;
1713 FOR_EACH_EDGE (e, ei, bb->succs)
1714 e->aux = (void *) 0;
1717 /* Compute the number of case labels that correspond to each outgoing edge of
1718 STMT. Record this information in the aux field of the edge. */
1720 static inline void
1721 compute_cases_per_edge (gswitch *stmt)
1723 basic_block bb = gimple_bb (stmt);
1724 reset_out_edges_aux (bb);
1725 int ncases = gimple_switch_num_labels (stmt);
1726 for (int i = ncases - 1; i >= 1; --i)
1728 tree elt = gimple_switch_label (stmt, i);
1729 tree lab = CASE_LABEL (elt);
1730 basic_block case_bb = label_to_block_fn (cfun, lab);
1731 edge case_edge = find_edge (bb, case_bb);
1732 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1736 /* Do the insertion of a case label into case_list. The labels are
1737 fed to us in descending order from the sorted vector of case labels used
1738 in the tree part of the middle end. So the list we construct is
1739 sorted in ascending order.
1741 LABEL is the case label to be inserted. LOW and HIGH are the bounds
1742 against which the index is compared to jump to LABEL and PROB is the
1743 estimated probability LABEL is reached from the switch statement. */
1745 static case_node *
1746 add_case_node (case_node *head, tree low, tree high, basic_block case_bb,
1747 tree case_label, profile_probability prob,
1748 object_allocator<case_node> &case_node_pool)
1750 case_node *r;
1752 gcc_checking_assert (low);
1753 gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
1755 /* Add this label to the chain. */
1756 r = case_node_pool.allocate ();
1757 r->low = low;
1758 r->high = high;
1759 r->case_bb = case_bb;
1760 r->case_label = case_label;
1761 r->parent = r->left = NULL;
1762 r->prob = prob;
1763 r->subtree_prob = prob;
1764 r->right = head;
1765 return r;
1768 /* Dump ROOT, a list or tree of case nodes, to file. */
1770 static void
1771 dump_case_nodes (FILE *f, case_node *root, int indent_step, int indent_level)
1773 if (root == 0)
1774 return;
1775 indent_level++;
1777 dump_case_nodes (f, root->left, indent_step, indent_level);
1779 fputs (";; ", f);
1780 fprintf (f, "%*s", indent_step * indent_level, "");
1781 print_dec (root->low, f, TYPE_SIGN (TREE_TYPE (root->low)));
1782 if (!tree_int_cst_equal (root->low, root->high))
1784 fprintf (f, " ... ");
1785 print_dec (root->high, f, TYPE_SIGN (TREE_TYPE (root->high)));
1787 fputs ("\n", f);
1789 dump_case_nodes (f, root->right, indent_step, indent_level);
1792 /* Take an ordered list of case nodes
1793 and transform them into a near optimal binary tree,
1794 on the assumption that any target code selection value is as
1795 likely as any other.
1797 The transformation is performed by splitting the ordered
1798 list into two equal sections plus a pivot. The parts are
1799 then attached to the pivot as left and right branches. Each
1800 branch is then transformed recursively. */
1802 static void
1803 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
1805 case_node_ptr np;
1807 np = *head;
1808 if (np)
1810 int i = 0;
1811 int ranges = 0;
1812 case_node_ptr *npp;
1813 case_node_ptr left;
1815 /* Count the number of entries on branch. Also count the ranges. */
1817 while (np)
1819 if (!tree_int_cst_equal (np->low, np->high))
1820 ranges++;
1822 i++;
1823 np = np->right;
1826 if (i > 2)
1828 /* Split this list if it is long enough for that to help. */
1829 npp = head;
1830 left = *npp;
1832 /* If there are just three nodes, split at the middle one. */
1833 if (i == 3)
1834 npp = &(*npp)->right;
1835 else
1837 /* Find the place in the list that bisects the list's total cost,
1838 where ranges count as 2.
1839 Here I gets half the total cost. */
1840 i = (i + ranges + 1) / 2;
1841 while (1)
1843 /* Skip nodes while their cost does not reach that amount. */
1844 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
1845 i--;
1846 i--;
1847 if (i <= 0)
1848 break;
1849 npp = &(*npp)->right;
1852 *head = np = *npp;
1853 *npp = 0;
1854 np->parent = parent;
1855 np->left = left;
1857 /* Optimize each of the two split parts. */
1858 balance_case_nodes (&np->left, np);
1859 balance_case_nodes (&np->right, np);
1860 np->subtree_prob = np->prob;
1861 np->subtree_prob += np->left->subtree_prob;
1862 np->subtree_prob += np->right->subtree_prob;
1864 else
1866 /* Else leave this branch as one level,
1867 but fill in `parent' fields. */
1868 np = *head;
1869 np->parent = parent;
1870 np->subtree_prob = np->prob;
1871 for (; np->right; np = np->right)
1873 np->right->parent = np;
1874 (*head)->subtree_prob += np->right->subtree_prob;
1880 /* Return true if a switch should be expanded as a decision tree.
1881 RANGE is the difference between highest and lowest case.
1882 UNIQ is number of unique case node targets, not counting the default case.
1883 COUNT is the number of comparisons needed, not counting the default case. */
1885 static bool
1886 expand_switch_as_decision_tree_p (tree range,
1887 unsigned int uniq ATTRIBUTE_UNUSED,
1888 unsigned int count)
1890 int max_ratio;
1892 /* If neither casesi or tablejump is available, or flag_jump_tables
1893 over-ruled us, we really have no choice. */
1894 if (!targetm.have_casesi () && !targetm.have_tablejump ())
1895 return true;
1896 if (!flag_jump_tables)
1897 return true;
1898 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
1899 if (flag_pic)
1900 return true;
1901 #endif
1903 /* If the switch is relatively small such that the cost of one
1904 indirect jump on the target are higher than the cost of a
1905 decision tree, go with the decision tree.
1907 If range of values is much bigger than number of values,
1908 or if it is too large to represent in a HOST_WIDE_INT,
1909 make a sequence of conditional branches instead of a dispatch.
1911 The definition of "much bigger" depends on whether we are
1912 optimizing for size or for speed. If the former, the maximum
1913 ratio range/count = 3, because this was found to be the optimal
1914 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
1915 10 is much older, and was probably selected after an extensive
1916 benchmarking investigation on numerous platforms. Or maybe it
1917 just made sense to someone at some point in the history of GCC,
1918 who knows... */
1919 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
1920 if (count < case_values_threshold () || !tree_fits_uhwi_p (range)
1921 || compare_tree_int (range, max_ratio * count) > 0)
1922 return true;
1924 return false;
1927 static void
1928 fix_phi_operands_for_edge (edge e, hash_map<tree, tree> *phi_mapping)
1930 basic_block bb = e->dest;
1931 gphi_iterator gsi;
1932 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1934 gphi *phi = gsi.phi ();
1936 tree *definition = phi_mapping->get (gimple_phi_result (phi));
1937 if (definition)
1938 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1943 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */
1945 static void
1946 emit_jump (basic_block bb, basic_block case_bb,
1947 hash_map<tree, tree> *phi_mapping)
1949 edge e = single_succ_edge (bb);
1950 redirect_edge_succ (e, case_bb);
1951 fix_phi_operands_for_edge (e, phi_mapping);
1954 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1955 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1956 DEFAULT_PROB is the estimated probability that it jumps to
1957 DEFAULT_LABEL.
1959 We generate a binary decision tree to select the appropriate target
1960 code. */
1962 static void
1963 emit_case_decision_tree (gswitch *s, tree index_expr, tree index_type,
1964 case_node_ptr case_list, basic_block default_bb,
1965 tree default_label, profile_probability default_prob,
1966 hash_map<tree, tree> *phi_mapping)
1968 balance_case_nodes (&case_list, NULL);
1970 if (dump_file)
1971 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1972 if (dump_file && (dump_flags & TDF_DETAILS))
1974 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
1975 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
1976 dump_case_nodes (dump_file, case_list, indent_step, 0);
1979 basic_block bb = gimple_bb (s);
1980 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1981 edge e;
1982 if (gsi_end_p (gsi))
1983 e = split_block_after_labels (bb);
1984 else
1986 gsi_prev (&gsi);
1987 e = split_block (bb, gsi_stmt (gsi));
1989 bb = split_edge (e);
1991 bb = emit_case_nodes (bb, index_expr, case_list, default_bb, default_label,
1992 default_prob, index_type, phi_mapping);
1994 if (bb)
1995 emit_jump (bb, default_bb, phi_mapping);
1997 /* Remove all edges and do just an edge that will reach default_bb. */
1998 gsi = gsi_last_bb (gimple_bb (s));
1999 gsi_remove (&gsi, true);
2002 static void
2003 record_phi_operand_mapping (const vec<basic_block> bbs, basic_block switch_bb,
2004 hash_map <tree, tree> *map)
2006 /* Record all PHI nodes that have to be fixed after conversion. */
2007 for (unsigned i = 0; i < bbs.length (); i++)
2009 basic_block bb = bbs[i];
2011 gphi_iterator gsi;
2012 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2014 gphi *phi = gsi.phi ();
2016 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
2018 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
2019 if (phi_src_bb == switch_bb)
2021 tree def = gimple_phi_arg_def (phi, i);
2022 tree result = gimple_phi_result (phi);
2023 map->put (result, def);
2024 break;
2031 /* Attempt to expand gimple switch STMT to a decision tree. */
2033 static bool
2034 try_switch_expansion (gswitch *stmt)
2036 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
2037 basic_block default_bb;
2038 unsigned int count, uniq;
2039 int i;
2040 int ncases = gimple_switch_num_labels (stmt);
2041 tree index_expr = gimple_switch_index (stmt);
2042 tree index_type = TREE_TYPE (index_expr);
2043 tree elt;
2044 basic_block bb = gimple_bb (stmt);
2046 hash_map<tree, tree> phi_mapping;
2047 auto_vec<basic_block> case_bbs;
2049 /* A list of case labels; it is first built as a list and it may then
2050 be rearranged into a nearly balanced binary tree. */
2051 case_node *case_list = 0;
2053 /* A pool for case nodes. */
2054 object_allocator<case_node> case_node_pool ("struct case_node pool");
2056 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
2057 expressions being INTEGER_CST. */
2058 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
2060 if (ncases == 1)
2061 return false;
2063 /* Find the default case target label. */
2064 tree default_label = CASE_LABEL (gimple_switch_default_label (stmt));
2065 default_bb = label_to_block_fn (cfun, default_label);
2066 edge default_edge = find_edge (bb, default_bb);
2067 profile_probability default_prob = default_edge->probability;
2068 case_bbs.safe_push (default_bb);
2070 /* Get upper and lower bounds of case values. */
2071 elt = gimple_switch_label (stmt, 1);
2072 minval = fold_convert (index_type, CASE_LOW (elt));
2073 elt = gimple_switch_label (stmt, ncases - 1);
2074 if (CASE_HIGH (elt))
2075 maxval = fold_convert (index_type, CASE_HIGH (elt));
2076 else
2077 maxval = fold_convert (index_type, CASE_LOW (elt));
2079 /* Compute span of values. */
2080 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
2082 /* Listify the labels queue and gather some numbers to decide
2083 how to expand this switch. */
2084 uniq = 0;
2085 count = 0;
2086 hash_set<tree> seen_labels;
2087 compute_cases_per_edge (stmt);
2089 for (i = ncases - 1; i >= 1; --i)
2091 elt = gimple_switch_label (stmt, i);
2092 tree low = CASE_LOW (elt);
2093 gcc_assert (low);
2094 tree high = CASE_HIGH (elt);
2095 gcc_assert (!high || tree_int_cst_lt (low, high));
2096 tree lab = CASE_LABEL (elt);
2098 /* Count the elements.
2099 A range counts double, since it requires two compares. */
2100 count++;
2101 if (high)
2102 count++;
2104 /* If we have not seen this label yet, then increase the
2105 number of unique case node targets seen. */
2106 if (!seen_labels.add (lab))
2107 uniq++;
2109 /* The bounds on the case range, LOW and HIGH, have to be converted
2110 to case's index type TYPE. Note that the original type of the
2111 case index in the source code is usually "lost" during
2112 gimplification due to type promotion, but the case labels retain the
2113 original type. Make sure to drop overflow flags. */
2114 low = fold_convert (index_type, low);
2115 if (TREE_OVERFLOW (low))
2116 low = wide_int_to_tree (index_type, low);
2118 /* The canonical from of a case label in GIMPLE is that a simple case
2119 has an empty CASE_HIGH. For the casesi and tablejump expanders,
2120 the back ends want simple cases to have high == low. */
2121 if (!high)
2122 high = low;
2123 high = fold_convert (index_type, high);
2124 if (TREE_OVERFLOW (high))
2125 high = wide_int_to_tree (index_type, high);
2127 basic_block case_bb = label_to_block_fn (cfun, lab);
2128 edge case_edge = find_edge (bb, case_bb);
2129 case_list = add_case_node (
2130 case_list, low, high, case_bb, lab,
2131 case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux)),
2132 case_node_pool);
2134 case_bbs.safe_push (case_bb);
2136 reset_out_edges_aux (bb);
2137 record_phi_operand_mapping (case_bbs, bb, &phi_mapping);
2139 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
2140 destination, such as one with a default case only.
2141 It also removes cases that are out of range for the switch
2142 type, so we should never get a zero here. */
2143 gcc_assert (count > 0);
2145 /* Decide how to expand this switch.
2146 The two options at this point are a dispatch table (casesi or
2147 tablejump) or a decision tree. */
2149 if (expand_switch_as_decision_tree_p (range, uniq, count))
2151 emit_case_decision_tree (stmt, index_expr, index_type, case_list,
2152 default_bb, default_label, default_prob,
2153 &phi_mapping);
2154 return true;
2157 return false;
2160 /* The main function of the pass scans statements for switches and invokes
2161 process_switch on them. */
2163 namespace {
2165 const pass_data pass_data_lower_switch =
2167 GIMPLE_PASS, /* type */
2168 "switchlower", /* name */
2169 OPTGROUP_NONE, /* optinfo_flags */
2170 TV_TREE_SWITCH_LOWERING, /* tv_id */
2171 ( PROP_cfg | PROP_ssa ), /* properties_required */
2172 0, /* properties_provided */
2173 0, /* properties_destroyed */
2174 0, /* todo_flags_start */
2175 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2178 class pass_lower_switch : public gimple_opt_pass
2180 public:
2181 pass_lower_switch (gcc::context *ctxt)
2182 : gimple_opt_pass (pass_data_lower_switch, ctxt)
2185 /* opt_pass methods: */
2186 virtual bool gate (function *) { return true; }
2187 virtual unsigned int execute (function *);
2189 }; // class pass_lower_switch
2191 unsigned int
2192 pass_lower_switch::execute (function *fun)
2194 basic_block bb;
2195 bool expanded = false;
2197 FOR_EACH_BB_FN (bb, fun)
2199 gimple *stmt = last_stmt (bb);
2200 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2202 if (dump_file)
2204 expanded_location loc = expand_location (gimple_location (stmt));
2206 fprintf (dump_file, "beginning to process the following "
2207 "SWITCH statement (%s:%d) : ------- \n",
2208 loc.file, loc.line);
2209 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2210 putc ('\n', dump_file);
2213 expanded |= try_switch_expansion (as_a<gswitch *> (stmt));
2217 if (expanded)
2219 free_dominance_info (CDI_DOMINATORS);
2220 free_dominance_info (CDI_POST_DOMINATORS);
2221 mark_virtual_operands_for_renaming (cfun);
2224 return 0;
2227 } // anon namespace
2229 gimple_opt_pass *
2230 make_pass_lower_switch (gcc::context *ctxt)
2232 return new pass_lower_switch (ctxt);
2235 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE.
2236 PROB is the probability of jumping to LABEL. */
2237 static basic_block
2238 do_jump_if_equal (basic_block bb, tree op0, tree op1, basic_block label_bb,
2239 profile_probability prob, hash_map<tree, tree> *phi_mapping)
2241 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
2242 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2243 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2245 gcc_assert (single_succ_p (bb));
2247 /* Make a new basic block where false branch will take place. */
2248 edge false_edge = split_block (bb, cond);
2249 false_edge->flags = EDGE_FALSE_VALUE;
2250 false_edge->probability = prob.invert ();
2252 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2253 fix_phi_operands_for_edge (true_edge, phi_mapping);
2254 true_edge->probability = prob;
2256 return false_edge->dest;
2259 /* Generate code to compare X with Y so that the condition codes are
2260 set and to jump to LABEL if the condition is true. If X is a
2261 constant and Y is not a constant, then the comparison is swapped to
2262 ensure that the comparison RTL has the canonical form.
2264 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
2265 need to be widened. UNSIGNEDP is also used to select the proper
2266 branch condition code.
2268 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
2270 MODE is the mode of the inputs (in case they are const_int).
2272 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
2273 It will be potentially converted into an unsigned variant based on
2274 UNSIGNEDP to select a proper jump instruction.
2276 PROB is the probability of jumping to LABEL. */
2278 static basic_block
2279 emit_cmp_and_jump_insns (basic_block bb, tree op0, tree op1,
2280 tree_code comparison, basic_block label_bb,
2281 profile_probability prob,
2282 hash_map<tree, tree> *phi_mapping)
2284 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
2285 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2286 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2288 gcc_assert (single_succ_p (bb));
2290 /* Make a new basic block where false branch will take place. */
2291 edge false_edge = split_block (bb, cond);
2292 false_edge->flags = EDGE_FALSE_VALUE;
2293 false_edge->probability = prob.invert ();
2295 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2296 fix_phi_operands_for_edge (true_edge, phi_mapping);
2297 true_edge->probability = prob;
2299 return false_edge->dest;
2302 /* Computes the conditional probability of jumping to a target if the branch
2303 instruction is executed.
2304 TARGET_PROB is the estimated probability of jumping to a target relative
2305 to some basic block BB.
2306 BASE_PROB is the probability of reaching the branch instruction relative
2307 to the same basic block BB. */
2309 static inline profile_probability
2310 conditional_probability (profile_probability target_prob,
2311 profile_probability base_prob)
2313 return target_prob / base_prob;
2316 /* Emit step-by-step code to select a case for the value of INDEX.
2317 The thus generated decision tree follows the form of the
2318 case-node binary tree NODE, whose nodes represent test conditions.
2319 INDEX_TYPE is the type of the index of the switch.
2321 Care is taken to prune redundant tests from the decision tree
2322 by detecting any boundary conditions already checked by
2323 emitted rtx. (See node_has_high_bound, node_has_low_bound
2324 and node_is_bounded, above.)
2326 Where the test conditions can be shown to be redundant we emit
2327 an unconditional jump to the target code. As a further
2328 optimization, the subordinates of a tree node are examined to
2329 check for bounded nodes. In this case conditional and/or
2330 unconditional jumps as a result of the boundary check for the
2331 current node are arranged to target the subordinates associated
2332 code for out of bound conditions on the current node.
2334 We can assume that when control reaches the code generated here,
2335 the index value has already been compared with the parents
2336 of this node, and determined to be on the same side of each parent
2337 as this node is. Thus, if this node tests for the value 51,
2338 and a parent tested for 52, we don't need to consider
2339 the possibility of a value greater than 51. If another parent
2340 tests for the value 50, then this node need not test anything. */
2342 static basic_block
2343 emit_case_nodes (basic_block bb, tree index, case_node_ptr node,
2344 basic_block default_bb, tree default_label,
2345 profile_probability default_prob, tree index_type,
2346 hash_map<tree, tree> *phi_mapping)
2348 /* If INDEX has an unsigned type, we must make unsigned branches. */
2349 profile_probability probability;
2350 profile_probability prob = node->prob, subtree_prob = node->subtree_prob;
2352 /* See if our parents have already tested everything for us.
2353 If they have, emit an unconditional jump for this node. */
2354 if (node_is_bounded (node, index_type))
2356 emit_jump (bb, node->case_bb, phi_mapping);
2357 return NULL;
2360 else if (tree_int_cst_equal (node->low, node->high))
2362 probability = conditional_probability (prob, subtree_prob + default_prob);
2363 /* Node is single valued. First see if the index expression matches
2364 this node and then check our children, if any. */
2365 bb = do_jump_if_equal (bb, index, node->low, node->case_bb, probability,
2366 phi_mapping);
2367 /* Since this case is taken at this point, reduce its weight from
2368 subtree_weight. */
2369 subtree_prob -= prob;
2370 if (node->right != 0 && node->left != 0)
2372 /* This node has children on both sides.
2373 Dispatch to one side or the other
2374 by comparing the index value with this node's value.
2375 If one subtree is bounded, check that one first,
2376 so we can avoid real branches in the tree. */
2378 if (node_is_bounded (node->right, index_type))
2380 probability
2381 = conditional_probability (node->right->prob,
2382 subtree_prob + default_prob);
2383 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2384 node->right->case_bb, probability,
2385 phi_mapping);
2386 bb = emit_case_nodes (bb, index, node->left, default_bb,
2387 default_label, default_prob, index_type,
2388 phi_mapping);
2391 else if (node_is_bounded (node->left, index_type))
2393 probability
2394 = conditional_probability (node->left->prob,
2395 subtree_prob + default_prob);
2396 bb = emit_cmp_and_jump_insns (bb, index, node->high, LT_EXPR,
2397 node->left->case_bb, probability,
2398 phi_mapping);
2399 bb = emit_case_nodes (bb, index, node->right, default_bb,
2400 default_label, default_prob, index_type,
2401 phi_mapping);
2404 /* If both children are single-valued cases with no
2405 children, finish up all the work. This way, we can save
2406 one ordered comparison. */
2407 else if (tree_int_cst_equal (node->right->low, node->right->high)
2408 && node->right->left == 0 && node->right->right == 0
2409 && tree_int_cst_equal (node->left->low, node->left->high)
2410 && node->left->left == 0 && node->left->right == 0)
2412 /* Neither node is bounded. First distinguish the two sides;
2413 then emit the code for one side at a time. */
2415 /* See if the value matches what the right hand side
2416 wants. */
2417 probability
2418 = conditional_probability (node->right->prob,
2419 subtree_prob + default_prob);
2420 bb = do_jump_if_equal (bb, index, node->right->low,
2421 node->right->case_bb, probability,
2422 phi_mapping);
2424 /* See if the value matches what the left hand side
2425 wants. */
2426 probability
2427 = conditional_probability (node->left->prob,
2428 subtree_prob + default_prob);
2429 bb = do_jump_if_equal (bb, index, node->left->low,
2430 node->left->case_bb, probability,
2431 phi_mapping);
2434 else
2436 /* Neither node is bounded. First distinguish the two sides;
2437 then emit the code for one side at a time. */
2439 basic_block test_bb = split_edge (single_succ_edge (bb));
2440 redirect_edge_succ (single_pred_edge (test_bb),
2441 single_succ_edge (bb)->dest);
2443 /* The default label could be reached either through the right
2444 subtree or the left subtree. Divide the probability
2445 equally. */
2446 probability
2447 = conditional_probability (node->right->subtree_prob
2448 + default_prob.apply_scale (1, 2),
2449 subtree_prob + default_prob);
2450 /* See if the value is on the right. */
2451 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2452 test_bb, probability, phi_mapping);
2453 default_prob = default_prob.apply_scale (1, 2);
2455 /* Value must be on the left.
2456 Handle the left-hand subtree. */
2457 bb = emit_case_nodes (bb, index, node->left, default_bb,
2458 default_label, default_prob, index_type,
2459 phi_mapping);
2460 /* If left-hand subtree does nothing,
2461 go to default. */
2463 if (bb && default_bb)
2464 emit_jump (bb, default_bb, phi_mapping);
2466 /* Code branches here for the right-hand subtree. */
2467 bb = emit_case_nodes (test_bb, index, node->right, default_bb,
2468 default_label, default_prob, index_type,
2469 phi_mapping);
2472 else if (node->right != 0 && node->left == 0)
2474 /* Here we have a right child but no left so we issue a conditional
2475 branch to default and process the right child.
2477 Omit the conditional branch to default if the right child
2478 does not have any children and is single valued; it would
2479 cost too much space to save so little time. */
2481 if (node->right->right || node->right->left
2482 || !tree_int_cst_equal (node->right->low, node->right->high))
2484 if (!node_has_low_bound (node, index_type))
2486 probability
2487 = conditional_probability (default_prob.apply_scale (1, 2),
2488 subtree_prob + default_prob);
2489 bb = emit_cmp_and_jump_insns (bb, index, node->high, LT_EXPR,
2490 default_bb, probability,
2491 phi_mapping);
2492 default_prob = default_prob.apply_scale (1, 2);
2495 bb = emit_case_nodes (bb, index, node->right, default_bb,
2496 default_label, default_prob, index_type,
2497 phi_mapping);
2499 else
2501 probability
2502 = conditional_probability (node->right->subtree_prob,
2503 subtree_prob + default_prob);
2504 /* We cannot process node->right normally
2505 since we haven't ruled out the numbers less than
2506 this node's value. So handle node->right explicitly. */
2507 bb = do_jump_if_equal (bb, index, node->right->low,
2508 node->right->case_bb, probability,
2509 phi_mapping);
2513 else if (node->right == 0 && node->left != 0)
2515 /* Just one subtree, on the left. */
2516 if (node->left->left || node->left->right
2517 || !tree_int_cst_equal (node->left->low, node->left->high))
2519 if (!node_has_high_bound (node, index_type))
2521 probability
2522 = conditional_probability (default_prob.apply_scale (1, 2),
2523 subtree_prob + default_prob);
2524 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2525 default_bb, probability,
2526 phi_mapping);
2527 default_prob = default_prob.apply_scale (1, 2);
2530 bb = emit_case_nodes (bb, index, node->left, default_bb,
2531 default_label, default_prob, index_type,
2532 phi_mapping);
2534 else
2536 probability
2537 = conditional_probability (node->left->subtree_prob,
2538 subtree_prob + default_prob);
2539 /* We cannot process node->left normally
2540 since we haven't ruled out the numbers less than
2541 this node's value. So handle node->left explicitly. */
2542 do_jump_if_equal (bb, index, node->left->low, node->left->case_bb,
2543 probability, phi_mapping);
2547 else
2549 /* Node is a range. These cases are very similar to those for a single
2550 value, except that we do not start by testing whether this node
2551 is the one to branch to. */
2553 if (node->right != 0 && node->left != 0)
2555 /* Node has subtrees on both sides.
2556 If the right-hand subtree is bounded,
2557 test for it first, since we can go straight there.
2558 Otherwise, we need to make a branch in the control structure,
2559 then handle the two subtrees. */
2560 basic_block test_bb = NULL;
2562 if (node_is_bounded (node->right, index_type))
2564 /* Right hand node is fully bounded so we can eliminate any
2565 testing and branch directly to the target code. */
2566 probability
2567 = conditional_probability (node->right->subtree_prob,
2568 subtree_prob + default_prob);
2569 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2570 node->right->case_bb, probability,
2571 phi_mapping);
2573 else
2575 /* Right hand node requires testing.
2576 Branch to a label where we will handle it later. */
2578 test_bb = split_edge (single_succ_edge (bb));
2579 redirect_edge_succ (single_pred_edge (test_bb),
2580 single_succ_edge (bb)->dest);
2582 probability
2583 = conditional_probability (node->right->subtree_prob
2584 + default_prob.apply_scale (1, 2),
2585 subtree_prob + default_prob);
2586 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2587 test_bb, probability, phi_mapping);
2588 default_prob = default_prob.apply_scale (1, 2);
2591 /* Value belongs to this node or to the left-hand subtree. */
2593 probability
2594 = conditional_probability (prob, subtree_prob + default_prob);
2595 bb = emit_cmp_and_jump_insns (bb, index, node->low, GE_EXPR,
2596 node->case_bb, probability,
2597 phi_mapping);
2599 /* Handle the left-hand subtree. */
2600 bb = emit_case_nodes (bb, index, node->left, default_bb,
2601 default_label, default_prob, index_type,
2602 phi_mapping);
2604 /* If right node had to be handled later, do that now. */
2605 if (test_bb)
2607 /* If the left-hand subtree fell through,
2608 don't let it fall into the right-hand subtree. */
2609 if (bb && default_bb)
2610 emit_jump (bb, default_bb, phi_mapping);
2612 bb = emit_case_nodes (test_bb, index, node->right, default_bb,
2613 default_label, default_prob, index_type,
2614 phi_mapping);
2618 else if (node->right != 0 && node->left == 0)
2620 /* Deal with values to the left of this node,
2621 if they are possible. */
2622 if (!node_has_low_bound (node, index_type))
2624 probability
2625 = conditional_probability (default_prob.apply_scale (1, 2),
2626 subtree_prob + default_prob);
2627 bb = emit_cmp_and_jump_insns (bb, index, node->low, LT_EXPR,
2628 default_bb, probability,
2629 phi_mapping);
2630 default_prob = default_prob.apply_scale (1, 2);
2633 /* Value belongs to this node or to the right-hand subtree. */
2635 probability
2636 = conditional_probability (prob, subtree_prob + default_prob);
2637 bb = emit_cmp_and_jump_insns (bb, index, node->high, LE_EXPR,
2638 node->case_bb, probability,
2639 phi_mapping);
2641 bb = emit_case_nodes (bb, index, node->right, default_bb,
2642 default_label, default_prob, index_type,
2643 phi_mapping);
2646 else if (node->right == 0 && node->left != 0)
2648 /* Deal with values to the right of this node,
2649 if they are possible. */
2650 if (!node_has_high_bound (node, index_type))
2652 probability
2653 = conditional_probability (default_prob.apply_scale (1, 2),
2654 subtree_prob + default_prob);
2655 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2656 default_bb, probability,
2657 phi_mapping);
2658 default_prob = default_prob.apply_scale (1, 2);
2661 /* Value belongs to this node or to the left-hand subtree. */
2663 probability
2664 = conditional_probability (prob, subtree_prob + default_prob);
2665 bb = emit_cmp_and_jump_insns (bb, index, node->low, GE_EXPR,
2666 node->case_bb, probability,
2667 phi_mapping);
2669 bb = emit_case_nodes (bb, index, node->left, default_bb,
2670 default_label, default_prob, index_type,
2671 phi_mapping);
2674 else
2676 /* Node has no children so we check low and high bounds to remove
2677 redundant tests. Only one of the bounds can exist,
2678 since otherwise this node is bounded--a case tested already. */
2679 bool high_bound = node_has_high_bound (node, index_type);
2680 bool low_bound = node_has_low_bound (node, index_type);
2682 if (!high_bound && low_bound)
2684 probability
2685 = conditional_probability (default_prob,
2686 subtree_prob + default_prob);
2687 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2688 default_bb, probability,
2689 phi_mapping);
2692 else if (!low_bound && high_bound)
2694 probability
2695 = conditional_probability (default_prob,
2696 subtree_prob + default_prob);
2697 bb = emit_cmp_and_jump_insns (bb, index, node->low, LT_EXPR,
2698 default_bb, probability,
2699 phi_mapping);
2701 else if (!low_bound && !high_bound)
2703 tree lhs, rhs;
2704 generate_range_test (bb, index, node->low, node->high,
2705 &lhs, &rhs);
2706 probability
2707 = conditional_probability (default_prob,
2708 subtree_prob + default_prob);
2709 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
2710 default_bb, probability,
2711 phi_mapping);
2714 emit_jump (bb, node->case_bb, phi_mapping);
2715 return NULL;
2719 return bb;
2722 /* Search the parent sections of the case node tree
2723 to see if a test for the lower bound of NODE would be redundant.
2724 INDEX_TYPE is the type of the index expression.
2726 The instructions to generate the case decision tree are
2727 output in the same order as nodes are processed so it is
2728 known that if a parent node checks the range of the current
2729 node minus one that the current node is bounded at its lower
2730 span. Thus the test would be redundant. */
2732 static bool
2733 node_has_low_bound (case_node_ptr node, tree index_type)
2735 tree low_minus_one;
2736 case_node_ptr pnode;
2738 /* If the lower bound of this node is the lowest value in the index type,
2739 we need not test it. */
2741 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
2742 return true;
2744 /* If this node has a left branch, the value at the left must be less
2745 than that at this node, so it cannot be bounded at the bottom and
2746 we need not bother testing any further. */
2748 if (node->left)
2749 return false;
2751 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low), node->low,
2752 build_int_cst (TREE_TYPE (node->low), 1));
2754 /* If the subtraction above overflowed, we can't verify anything.
2755 Otherwise, look for a parent that tests our value - 1. */
2757 if (!tree_int_cst_lt (low_minus_one, node->low))
2758 return false;
2760 for (pnode = node->parent; pnode; pnode = pnode->parent)
2761 if (tree_int_cst_equal (low_minus_one, pnode->high))
2762 return true;
2764 return false;
2767 /* Search the parent sections of the case node tree
2768 to see if a test for the upper bound of NODE would be redundant.
2769 INDEX_TYPE is the type of the index expression.
2771 The instructions to generate the case decision tree are
2772 output in the same order as nodes are processed so it is
2773 known that if a parent node checks the range of the current
2774 node plus one that the current node is bounded at its upper
2775 span. Thus the test would be redundant. */
2777 static bool
2778 node_has_high_bound (case_node_ptr node, tree index_type)
2780 tree high_plus_one;
2781 case_node_ptr pnode;
2783 /* If there is no upper bound, obviously no test is needed. */
2785 if (TYPE_MAX_VALUE (index_type) == NULL)
2786 return true;
2788 /* If the upper bound of this node is the highest value in the type
2789 of the index expression, we need not test against it. */
2791 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
2792 return true;
2794 /* If this node has a right branch, the value at the right must be greater
2795 than that at this node, so it cannot be bounded at the top and
2796 we need not bother testing any further. */
2798 if (node->right)
2799 return false;
2801 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high), node->high,
2802 build_int_cst (TREE_TYPE (node->high), 1));
2804 /* If the addition above overflowed, we can't verify anything.
2805 Otherwise, look for a parent that tests our value + 1. */
2807 if (!tree_int_cst_lt (node->high, high_plus_one))
2808 return false;
2810 for (pnode = node->parent; pnode; pnode = pnode->parent)
2811 if (tree_int_cst_equal (high_plus_one, pnode->low))
2812 return true;
2814 return false;
2817 /* Search the parent sections of the
2818 case node tree to see if both tests for the upper and lower
2819 bounds of NODE would be redundant. */
2821 static bool
2822 node_is_bounded (case_node_ptr node, tree index_type)
2824 return (node_has_low_bound (node, index_type)
2825 && node_has_high_bound (node, index_type));