sdhci - Implement ADMA2 transfer support. Keep SDMA support for now.
[dragonfly.git] / contrib / ldns / util.c
blobf5462c4b08f644ed4ad9b24296b289dbe21dbbf8
1 /*
2 * util.c
4 * some general memory functions
6 * a Net::DNS like library for C
8 * (c) NLnet Labs, 2004-2006
10 * See the file LICENSE for the license
13 #include <ldns/config.h>
15 #include <ldns/rdata.h>
16 #include <ldns/rr.h>
17 #include <ldns/util.h>
18 #include <strings.h>
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <sys/time.h>
22 #include <time.h>
24 #ifdef HAVE_SSL
25 #include <openssl/rand.h>
26 #endif
28 /* put this here tmp. for debugging */
29 void
30 xprintf_rdf(ldns_rdf *rd)
32 /* assume printable string */
33 fprintf(stderr, "size\t:%u\n", (unsigned int)ldns_rdf_size(rd));
34 fprintf(stderr, "type\t:%u\n", (unsigned int)ldns_rdf_get_type(rd));
35 fprintf(stderr, "data\t:[%.*s]\n", (int)ldns_rdf_size(rd),
36 (char*)ldns_rdf_data(rd));
39 void
40 xprintf_rr(ldns_rr *rr)
42 /* assume printable string */
43 uint16_t count, i;
45 count = ldns_rr_rd_count(rr);
47 for(i = 0; i < count; i++) {
48 fprintf(stderr, "print rd %u\n", (unsigned int) i);
49 xprintf_rdf(rr->_rdata_fields[i]);
53 void xprintf_hex(uint8_t *data, size_t len)
55 size_t i;
56 for (i = 0; i < len; i++) {
57 if (i > 0 && i % 20 == 0) {
58 printf("\t; %u - %u\n", (unsigned int) i - 19, (unsigned int) i);
60 printf("%02x ", (unsigned int) data[i]);
62 printf("\n");
65 ldns_lookup_table *
66 ldns_lookup_by_name(ldns_lookup_table *table, const char *name)
68 while (table->name != NULL) {
69 if (strcasecmp(name, table->name) == 0)
70 return table;
71 table++;
73 return NULL;
76 ldns_lookup_table *
77 ldns_lookup_by_id(ldns_lookup_table *table, int id)
79 while (table->name != NULL) {
80 if (table->id == id)
81 return table;
82 table++;
84 return NULL;
87 int
88 ldns_get_bit(uint8_t bits[], size_t index)
91 * The bits are counted from left to right, so bit #0 is the
92 * left most bit.
94 return (int) (bits[index / 8] & (1 << (7 - index % 8)));
97 int
98 ldns_get_bit_r(uint8_t bits[], size_t index)
101 * The bits are counted from right to left, so bit #0 is the
102 * right most bit.
104 return (int) bits[index / 8] & (1 << (index % 8));
107 void
108 ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
111 * The bits are counted from right to left, so bit #0 is the
112 * right most bit.
114 if (bit_nr >= 0 && bit_nr < 8) {
115 if (value) {
116 *byte = *byte | (0x01 << bit_nr);
117 } else {
118 *byte = *byte & ~(0x01 << bit_nr);
124 ldns_hexdigit_to_int(char ch)
126 switch (ch) {
127 case '0': return 0;
128 case '1': return 1;
129 case '2': return 2;
130 case '3': return 3;
131 case '4': return 4;
132 case '5': return 5;
133 case '6': return 6;
134 case '7': return 7;
135 case '8': return 8;
136 case '9': return 9;
137 case 'a': case 'A': return 10;
138 case 'b': case 'B': return 11;
139 case 'c': case 'C': return 12;
140 case 'd': case 'D': return 13;
141 case 'e': case 'E': return 14;
142 case 'f': case 'F': return 15;
143 default:
144 return -1;
148 char
149 ldns_int_to_hexdigit(int i)
151 switch (i) {
152 case 0: return '0';
153 case 1: return '1';
154 case 2: return '2';
155 case 3: return '3';
156 case 4: return '4';
157 case 5: return '5';
158 case 6: return '6';
159 case 7: return '7';
160 case 8: return '8';
161 case 9: return '9';
162 case 10: return 'a';
163 case 11: return 'b';
164 case 12: return 'c';
165 case 13: return 'd';
166 case 14: return 'e';
167 case 15: return 'f';
168 default:
169 abort();
174 ldns_hexstring_to_data(uint8_t *data, const char *str)
176 size_t i;
178 if (!str || !data) {
179 return -1;
182 if (strlen(str) % 2 != 0) {
183 return -2;
186 for (i = 0; i < strlen(str) / 2; i++) {
187 data[i] =
188 16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) +
189 (uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]);
192 return (int) i;
195 const char *
196 ldns_version(void)
198 return (char*)LDNS_VERSION;
201 /* Number of days per month (except for February in leap years). */
202 static const int mdays[] = {
203 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
206 #define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
207 #define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) - 1 ) : ((x) / (y)))
209 static int
210 is_leap_year(int year)
212 return LDNS_MOD(year, 4) == 0 && (LDNS_MOD(year, 100) != 0
213 || LDNS_MOD(year, 400) == 0);
216 static int
217 leap_days(int y1, int y2)
219 --y1;
220 --y2;
221 return (LDNS_DIV(y2, 4) - LDNS_DIV(y1, 4)) -
222 (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
223 (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
227 * Code adapted from Python 2.4.1 sources (Lib/calendar.py).
229 time_t
230 ldns_mktime_from_utc(const struct tm *tm)
232 int year = 1900 + tm->tm_year;
233 time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
234 time_t hours;
235 time_t minutes;
236 time_t seconds;
237 int i;
239 for (i = 0; i < tm->tm_mon; ++i) {
240 days += mdays[i];
242 if (tm->tm_mon > 1 && is_leap_year(year)) {
243 ++days;
245 days += tm->tm_mday - 1;
247 hours = days * 24 + tm->tm_hour;
248 minutes = hours * 60 + tm->tm_min;
249 seconds = minutes * 60 + tm->tm_sec;
251 return seconds;
254 time_t
255 mktime_from_utc(const struct tm *tm)
257 return ldns_mktime_from_utc(tm);
260 #if SIZEOF_TIME_T <= 4
262 static void
263 ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
265 int year = 1970;
266 int new_year;
268 while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
269 new_year = year + (int) LDNS_DIV(days, 365);
270 days -= (new_year - year) * 365;
271 days -= leap_days(year, new_year);
272 year = new_year;
274 result->tm_year = year;
275 result->tm_yday = (int) days;
278 /* Number of days per month in a leap year. */
279 static const int leap_year_mdays[] = {
280 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
283 static void
284 ldns_mon_and_mday_from_year_and_yday(struct tm *result)
286 int idays = result->tm_yday;
287 const int *mon_lengths = is_leap_year(result->tm_year) ?
288 leap_year_mdays : mdays;
290 result->tm_mon = 0;
291 while (idays >= mon_lengths[result->tm_mon]) {
292 idays -= mon_lengths[result->tm_mon++];
294 result->tm_mday = idays + 1;
297 static void
298 ldns_wday_from_year_and_yday(struct tm *result)
300 result->tm_wday = 4 /* 1-1-1970 was a thursday */
301 + LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
302 + leap_days(1970, result->tm_year)
303 + result->tm_yday;
304 result->tm_wday = LDNS_MOD(result->tm_wday, 7);
305 if (result->tm_wday < 0) {
306 result->tm_wday += 7;
310 static struct tm *
311 ldns_gmtime64_r(int64_t clock, struct tm *result)
313 result->tm_isdst = 0;
314 result->tm_sec = (int) LDNS_MOD(clock, 60);
315 clock = LDNS_DIV(clock, 60);
316 result->tm_min = (int) LDNS_MOD(clock, 60);
317 clock = LDNS_DIV(clock, 60);
318 result->tm_hour = (int) LDNS_MOD(clock, 24);
319 clock = LDNS_DIV(clock, 24);
321 ldns_year_and_yday_from_days_since_epoch(clock, result);
322 ldns_mon_and_mday_from_year_and_yday(result);
323 ldns_wday_from_year_and_yday(result);
324 result->tm_year -= 1900;
326 return result;
329 #endif /* SIZEOF_TIME_T <= 4 */
331 static int64_t
332 ldns_serial_arithmitics_time(int32_t time, time_t now)
334 int32_t offset = time - (int32_t) now;
335 return (int64_t) now + offset;
339 struct tm *
340 ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result)
342 #if SIZEOF_TIME_T <= 4
343 int64_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
344 return ldns_gmtime64_r(secs_since_epoch, result);
345 #else
346 time_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
347 return gmtime_r(&secs_since_epoch, result);
348 #endif
352 * Init the random source
353 * applications should call this if they need entropy data within ldns
354 * If openSSL is available, it is automatically seeded from /dev/urandom
355 * or /dev/random
357 * If you need more entropy, or have no openssl available, this function
358 * MUST be called at the start of the program
360 * If openssl *is* available, this function just adds more entropy
363 ldns_init_random(FILE *fd, unsigned int size)
365 /* if fp is given, seed srandom with data from file
366 otherwise use /dev/urandom */
367 FILE *rand_f;
368 uint8_t *seed;
369 size_t read = 0;
370 unsigned int seed_i;
371 struct timeval tv;
373 /* we'll need at least sizeof(unsigned int) bytes for the
374 standard prng seed */
375 if (size < (unsigned int) sizeof(seed_i)){
376 size = (unsigned int) sizeof(seed_i);
379 seed = LDNS_XMALLOC(uint8_t, size);
380 if(!seed) {
381 return 1;
384 if (!fd) {
385 if ((rand_f = fopen("/dev/urandom", "r")) == NULL) {
386 /* no readable /dev/urandom, try /dev/random */
387 if ((rand_f = fopen("/dev/random", "r")) == NULL) {
388 /* no readable /dev/random either, and no entropy
389 source given. we'll have to improvise */
390 for (read = 0; read < size; read++) {
391 gettimeofday(&tv, NULL);
392 seed[read] = (uint8_t) (tv.tv_usec % 256);
394 } else {
395 read = fread(seed, 1, size, rand_f);
397 } else {
398 read = fread(seed, 1, size, rand_f);
400 } else {
401 rand_f = fd;
402 read = fread(seed, 1, size, rand_f);
405 if (read < size) {
406 LDNS_FREE(seed);
407 if (!fd) fclose(rand_f);
408 return 1;
409 } else {
410 #ifdef HAVE_SSL
411 /* Seed the OpenSSL prng (most systems have it seeded
412 automatically, in that case this call just adds entropy */
413 RAND_seed(seed, (int) size);
414 #else
415 /* Seed the standard prng, only uses the first
416 * unsigned sizeof(unsiged int) bytes found in the entropy pool
418 memcpy(&seed_i, seed, sizeof(seed_i));
419 srandom(seed_i);
420 #endif
421 LDNS_FREE(seed);
424 if (!fd) {
425 if (rand_f) fclose(rand_f);
428 return 0;
432 * Get random number.
435 uint16_t
436 ldns_get_random(void)
438 uint16_t rid = 0;
439 #ifdef HAVE_SSL
440 if (RAND_bytes((unsigned char*)&rid, 2) != 1) {
441 rid = (uint16_t) random();
443 #else
444 rid = (uint16_t) random();
445 #endif
446 return rid;
450 * BubbleBabble code taken from OpenSSH
451 * Copyright (c) 2001 Carsten Raskgaard. All rights reserved.
453 char *
454 ldns_bubblebabble(uint8_t *data, size_t len)
456 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
457 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
458 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
459 size_t i, j = 0, rounds, seed = 1;
460 char *retval;
462 rounds = (len / 2) + 1;
463 retval = LDNS_XMALLOC(char, rounds * 6);
464 if(!retval) return NULL;
465 retval[j++] = 'x';
466 for (i = 0; i < rounds; i++) {
467 size_t idx0, idx1, idx2, idx3, idx4;
468 if ((i + 1 < rounds) || (len % 2 != 0)) {
469 idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) +
470 seed) % 6;
471 idx1 = (((size_t)(data[2 * i])) >> 2) & 15;
472 idx2 = ((((size_t)(data[2 * i])) & 3) +
473 (seed / 6)) % 6;
474 retval[j++] = vowels[idx0];
475 retval[j++] = consonants[idx1];
476 retval[j++] = vowels[idx2];
477 if ((i + 1) < rounds) {
478 idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15;
479 idx4 = (((size_t)(data[(2 * i) + 1]))) & 15;
480 retval[j++] = consonants[idx3];
481 retval[j++] = '-';
482 retval[j++] = consonants[idx4];
483 seed = ((seed * 5) +
484 ((((size_t)(data[2 * i])) * 7) +
485 ((size_t)(data[(2 * i) + 1])))) % 36;
487 } else {
488 idx0 = seed % 6;
489 idx1 = 16;
490 idx2 = seed / 6;
491 retval[j++] = vowels[idx0];
492 retval[j++] = consonants[idx1];
493 retval[j++] = vowels[idx2];
496 retval[j++] = 'x';
497 retval[j++] = '\0';
498 return retval;