Add -Wshadow to the gcc command line options used when compiling the binutils.
[binutils.git] / gold / output.h
blob21d80fb6aa5be69f0382e97c47ecc20f0e5ec165
1 // output.h -- manage the output file for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
26 #include <list>
27 #include <vector>
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
34 namespace gold
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
50 // This class specifies an input section. It is used as a key type
51 // for maps.
53 class Input_section_specifier
55 public:
56 Input_section_specifier(const Relobj* robj, unsigned int sec_shndx)
57 : relobj_(robj), shndx_(sec_shndx)
58 { }
60 // Return Relobj of this.
61 const Relobj*
62 relobj() const
63 { return this->relobj_; }
65 // Return section index of this.
66 unsigned int
67 shndx() const
68 { return this->shndx_; }
70 // Whether this equals to another specifier ISS.
71 bool
72 eq(const Input_section_specifier& iss) const
73 { return this->relobj_ == iss.relobj_ && this->shndx_ == iss.shndx_; }
75 // Compute a hash value of this.
76 size_t
77 hash_value() const
79 return (gold::string_hash<char>(this->relobj_->name().c_str())
80 ^ this->shndx_);
83 // Functors for containers.
84 struct equal_to
86 bool
87 operator()(const Input_section_specifier& iss1,
88 const Input_section_specifier& iss2) const
89 { return iss1.eq(iss2); }
92 struct hash
94 size_t
95 operator()(const Input_section_specifier& iss) const
96 { return iss.hash_value(); }
99 private:
100 // An object.
101 const Relobj* relobj_;
102 // A section index.
103 unsigned int shndx_;
106 // An abtract class for data which has to go into the output file.
108 class Output_data
110 public:
111 explicit Output_data()
112 : address_(0), data_size_(0), offset_(-1),
113 is_address_valid_(false), is_data_size_valid_(false),
114 is_offset_valid_(false), is_data_size_fixed_(false),
115 dynamic_reloc_count_(0)
118 virtual
119 ~Output_data();
121 // Return the address. For allocated sections, this is only valid
122 // after Layout::finalize is finished.
123 uint64_t
124 address() const
126 gold_assert(this->is_address_valid_);
127 return this->address_;
130 // Return the size of the data. For allocated sections, this must
131 // be valid after Layout::finalize calls set_address, but need not
132 // be valid before then.
133 off_t
134 data_size() const
136 gold_assert(this->is_data_size_valid_);
137 return this->data_size_;
140 // Return true if data size is fixed.
141 bool
142 is_data_size_fixed() const
143 { return this->is_data_size_fixed_; }
145 // Return the file offset. This is only valid after
146 // Layout::finalize is finished. For some non-allocated sections,
147 // it may not be valid until near the end of the link.
148 off_t
149 offset() const
151 gold_assert(this->is_offset_valid_);
152 return this->offset_;
155 // Reset the address and file offset. This essentially disables the
156 // sanity testing about duplicate and unknown settings.
157 void
158 reset_address_and_file_offset()
160 this->is_address_valid_ = false;
161 this->is_offset_valid_ = false;
162 if (!this->is_data_size_fixed_)
163 this->is_data_size_valid_ = false;
164 this->do_reset_address_and_file_offset();
167 // Return true if address and file offset already have reset values. In
168 // other words, calling reset_address_and_file_offset will not change them.
169 bool
170 address_and_file_offset_have_reset_values() const
171 { return this->do_address_and_file_offset_have_reset_values(); }
173 // Return the required alignment.
174 uint64_t
175 addralign() const
176 { return this->do_addralign(); }
178 // Return whether this has a load address.
179 bool
180 has_load_address() const
181 { return this->do_has_load_address(); }
183 // Return the load address.
184 uint64_t
185 load_address() const
186 { return this->do_load_address(); }
188 // Return whether this is an Output_section.
189 bool
190 is_section() const
191 { return this->do_is_section(); }
193 // Return whether this is an Output_section of the specified type.
194 bool
195 is_section_type(elfcpp::Elf_Word stt) const
196 { return this->do_is_section_type(stt); }
198 // Return whether this is an Output_section with the specified flag
199 // set.
200 bool
201 is_section_flag_set(elfcpp::Elf_Xword shf) const
202 { return this->do_is_section_flag_set(shf); }
204 // Return the output section that this goes in, if there is one.
205 Output_section*
206 output_section()
207 { return this->do_output_section(); }
209 // Return the output section index, if there is an output section.
210 unsigned int
211 out_shndx() const
212 { return this->do_out_shndx(); }
214 // Set the output section index, if this is an output section.
215 void
216 set_out_shndx(unsigned int shndx)
217 { this->do_set_out_shndx(shndx); }
219 // Set the address and file offset of this data, and finalize the
220 // size of the data. This is called during Layout::finalize for
221 // allocated sections.
222 void
223 set_address_and_file_offset(uint64_t addr, off_t off)
225 this->set_address(addr);
226 this->set_file_offset(off);
227 this->finalize_data_size();
230 // Set the address.
231 void
232 set_address(uint64_t addr)
234 gold_assert(!this->is_address_valid_);
235 this->address_ = addr;
236 this->is_address_valid_ = true;
239 // Set the file offset.
240 void
241 set_file_offset(off_t off)
243 gold_assert(!this->is_offset_valid_);
244 this->offset_ = off;
245 this->is_offset_valid_ = true;
248 // Finalize the data size.
249 void
250 finalize_data_size()
252 if (!this->is_data_size_valid_)
254 // Tell the child class to set the data size.
255 this->set_final_data_size();
256 gold_assert(this->is_data_size_valid_);
260 // Set the TLS offset. Called only for SHT_TLS sections.
261 void
262 set_tls_offset(uint64_t tls_base)
263 { this->do_set_tls_offset(tls_base); }
265 // Return the TLS offset, relative to the base of the TLS segment.
266 // Valid only for SHT_TLS sections.
267 uint64_t
268 tls_offset() const
269 { return this->do_tls_offset(); }
271 // Write the data to the output file. This is called after
272 // Layout::finalize is complete.
273 void
274 write(Output_file* file)
275 { this->do_write(file); }
277 // This is called by Layout::finalize to note that the sizes of
278 // allocated sections must now be fixed.
279 static void
280 layout_complete()
281 { Output_data::allocated_sizes_are_fixed = true; }
283 // Used to check that layout has been done.
284 static bool
285 is_layout_complete()
286 { return Output_data::allocated_sizes_are_fixed; }
288 // Count the number of dynamic relocations applied to this section.
289 void
290 add_dynamic_reloc()
291 { ++this->dynamic_reloc_count_; }
293 // Return the number of dynamic relocations applied to this section.
294 unsigned int
295 dynamic_reloc_count() const
296 { return this->dynamic_reloc_count_; }
298 // Whether the address is valid.
299 bool
300 is_address_valid() const
301 { return this->is_address_valid_; }
303 // Whether the file offset is valid.
304 bool
305 is_offset_valid() const
306 { return this->is_offset_valid_; }
308 // Whether the data size is valid.
309 bool
310 is_data_size_valid() const
311 { return this->is_data_size_valid_; }
313 // Print information to the map file.
314 void
315 print_to_mapfile(Mapfile* mapfile) const
316 { return this->do_print_to_mapfile(mapfile); }
318 protected:
319 // Functions that child classes may or in some cases must implement.
321 // Write the data to the output file.
322 virtual void
323 do_write(Output_file*) = 0;
325 // Return the required alignment.
326 virtual uint64_t
327 do_addralign() const = 0;
329 // Return whether this has a load address.
330 virtual bool
331 do_has_load_address() const
332 { return false; }
334 // Return the load address.
335 virtual uint64_t
336 do_load_address() const
337 { gold_unreachable(); }
339 // Return whether this is an Output_section.
340 virtual bool
341 do_is_section() const
342 { return false; }
344 // Return whether this is an Output_section of the specified type.
345 // This only needs to be implement by Output_section.
346 virtual bool
347 do_is_section_type(elfcpp::Elf_Word) const
348 { return false; }
350 // Return whether this is an Output_section with the specific flag
351 // set. This only needs to be implemented by Output_section.
352 virtual bool
353 do_is_section_flag_set(elfcpp::Elf_Xword) const
354 { return false; }
356 // Return the output section, if there is one.
357 virtual Output_section*
358 do_output_section()
359 { return NULL; }
361 // Return the output section index, if there is an output section.
362 virtual unsigned int
363 do_out_shndx() const
364 { gold_unreachable(); }
366 // Set the output section index, if this is an output section.
367 virtual void
368 do_set_out_shndx(unsigned int)
369 { gold_unreachable(); }
371 // This is a hook for derived classes to set the data size. This is
372 // called by finalize_data_size, normally called during
373 // Layout::finalize, when the section address is set.
374 virtual void
375 set_final_data_size()
376 { gold_unreachable(); }
378 // A hook for resetting the address and file offset.
379 virtual void
380 do_reset_address_and_file_offset()
383 // Return true if address and file offset already have reset values. In
384 // other words, calling reset_address_and_file_offset will not change them.
385 // A child class overriding do_reset_address_and_file_offset may need to
386 // also override this.
387 virtual bool
388 do_address_and_file_offset_have_reset_values() const
389 { return !this->is_address_valid_ && !this->is_offset_valid_; }
391 // Set the TLS offset. Called only for SHT_TLS sections.
392 virtual void
393 do_set_tls_offset(uint64_t)
394 { gold_unreachable(); }
396 // Return the TLS offset, relative to the base of the TLS segment.
397 // Valid only for SHT_TLS sections.
398 virtual uint64_t
399 do_tls_offset() const
400 { gold_unreachable(); }
402 // Print to the map file. This only needs to be implemented by
403 // classes which may appear in a PT_LOAD segment.
404 virtual void
405 do_print_to_mapfile(Mapfile*) const
406 { gold_unreachable(); }
408 // Functions that child classes may call.
410 // Reset the address. The Output_section class needs this when an
411 // SHF_ALLOC input section is added to an output section which was
412 // formerly not SHF_ALLOC.
413 void
414 mark_address_invalid()
415 { this->is_address_valid_ = false; }
417 // Set the size of the data.
418 void
419 set_data_size(off_t datasize)
421 gold_assert(!this->is_data_size_valid_
422 && !this->is_data_size_fixed_);
423 this->data_size_ = datasize;
424 this->is_data_size_valid_ = true;
427 // Fix the data size. Once it is fixed, it cannot be changed
428 // and the data size remains always valid.
429 void
430 fix_data_size()
432 gold_assert(this->is_data_size_valid_);
433 this->is_data_size_fixed_ = true;
436 // Get the current data size--this is for the convenience of
437 // sections which build up their size over time.
438 off_t
439 current_data_size_for_child() const
440 { return this->data_size_; }
442 // Set the current data size--this is for the convenience of
443 // sections which build up their size over time.
444 void
445 set_current_data_size_for_child(off_t datasize)
447 gold_assert(!this->is_data_size_valid_);
448 this->data_size_ = datasize;
451 // Return default alignment for the target size.
452 static uint64_t
453 default_alignment();
455 // Return default alignment for a specified size--32 or 64.
456 static uint64_t
457 default_alignment_for_size(int size);
459 private:
460 Output_data(const Output_data&);
461 Output_data& operator=(const Output_data&);
463 // This is used for verification, to make sure that we don't try to
464 // change any sizes of allocated sections after we set the section
465 // addresses.
466 static bool allocated_sizes_are_fixed;
468 // Memory address in output file.
469 uint64_t address_;
470 // Size of data in output file.
471 off_t data_size_;
472 // File offset of contents in output file.
473 off_t offset_;
474 // Whether address_ is valid.
475 bool is_address_valid_;
476 // Whether data_size_ is valid.
477 bool is_data_size_valid_;
478 // Whether offset_ is valid.
479 bool is_offset_valid_;
480 // Whether data size is fixed.
481 bool is_data_size_fixed_;
482 // Count of dynamic relocations applied to this section.
483 unsigned int dynamic_reloc_count_;
486 // Output the section headers.
488 class Output_section_headers : public Output_data
490 public:
491 Output_section_headers(const Layout*,
492 const Layout::Segment_list*,
493 const Layout::Section_list*,
494 const Layout::Section_list*,
495 const Stringpool*,
496 const Output_section*);
498 protected:
499 // Write the data to the file.
500 void
501 do_write(Output_file*);
503 // Return the required alignment.
504 uint64_t
505 do_addralign() const
506 { return Output_data::default_alignment(); }
508 // Write to a map file.
509 void
510 do_print_to_mapfile(Mapfile* mapfile) const
511 { mapfile->print_output_data(this, _("** section headers")); }
513 // Set final data size.
514 void
515 set_final_data_size()
516 { this->set_data_size(this->do_size()); }
518 private:
519 // Write the data to the file with the right size and endianness.
520 template<int size, bool big_endian>
521 void
522 do_sized_write(Output_file*);
524 // Compute data size.
525 off_t
526 do_size() const;
528 const Layout* layout_;
529 const Layout::Segment_list* segment_list_;
530 const Layout::Section_list* section_list_;
531 const Layout::Section_list* unattached_section_list_;
532 const Stringpool* secnamepool_;
533 const Output_section* shstrtab_section_;
536 // Output the segment headers.
538 class Output_segment_headers : public Output_data
540 public:
541 Output_segment_headers(const Layout::Segment_list& segment_list);
543 protected:
544 // Write the data to the file.
545 void
546 do_write(Output_file*);
548 // Return the required alignment.
549 uint64_t
550 do_addralign() const
551 { return Output_data::default_alignment(); }
553 // Write to a map file.
554 void
555 do_print_to_mapfile(Mapfile* mapfile) const
556 { mapfile->print_output_data(this, _("** segment headers")); }
558 // Set final data size.
559 void
560 set_final_data_size()
561 { this->set_data_size(this->do_size()); }
563 private:
564 // Write the data to the file with the right size and endianness.
565 template<int size, bool big_endian>
566 void
567 do_sized_write(Output_file*);
569 // Compute the current size.
570 off_t
571 do_size() const;
573 const Layout::Segment_list& segment_list_;
576 // Output the ELF file header.
578 class Output_file_header : public Output_data
580 public:
581 Output_file_header(const Target*,
582 const Symbol_table*,
583 const Output_segment_headers*,
584 const char* entry);
586 // Add information about the section headers. We lay out the ELF
587 // file header before we create the section headers.
588 void set_section_info(const Output_section_headers*,
589 const Output_section* shstrtab);
591 protected:
592 // Write the data to the file.
593 void
594 do_write(Output_file*);
596 // Return the required alignment.
597 uint64_t
598 do_addralign() const
599 { return Output_data::default_alignment(); }
601 // Write to a map file.
602 void
603 do_print_to_mapfile(Mapfile* mapfile) const
604 { mapfile->print_output_data(this, _("** file header")); }
606 // Set final data size.
607 void
608 set_final_data_size(void)
609 { this->set_data_size(this->do_size()); }
611 private:
612 // Write the data to the file with the right size and endianness.
613 template<int size, bool big_endian>
614 void
615 do_sized_write(Output_file*);
617 // Return the value to use for the entry address.
618 template<int size>
619 typename elfcpp::Elf_types<size>::Elf_Addr
620 entry();
622 // Compute the current data size.
623 off_t
624 do_size() const;
626 const Target* target_;
627 const Symbol_table* symtab_;
628 const Output_segment_headers* segment_header_;
629 const Output_section_headers* section_header_;
630 const Output_section* shstrtab_;
631 const char* entry_;
634 // Output sections are mainly comprised of input sections. However,
635 // there are cases where we have data to write out which is not in an
636 // input section. Output_section_data is used in such cases. This is
637 // an abstract base class.
639 class Output_section_data : public Output_data
641 public:
642 Output_section_data(off_t datasize, uint64_t addr_align,
643 bool is_datasize_fixed)
644 : Output_data(), output_section_(NULL), addralign_(addr_align)
646 this->set_data_size(datasize);
647 if (is_datasize_fixed)
648 this->fix_data_size();
651 Output_section_data(uint64_t addr_align)
652 : Output_data(), output_section_(NULL), addralign_(addr_align)
655 // Return the output section.
656 const Output_section*
657 output_section() const
658 { return this->output_section_; }
660 // Record the output section.
661 void
662 set_output_section(Output_section* os);
664 // Add an input section, for SHF_MERGE sections. This returns true
665 // if the section was handled.
666 bool
667 add_input_section(Relobj* object, unsigned int shndx)
668 { return this->do_add_input_section(object, shndx); }
670 // Given an input OBJECT, an input section index SHNDX within that
671 // object, and an OFFSET relative to the start of that input
672 // section, return whether or not the corresponding offset within
673 // the output section is known. If this function returns true, it
674 // sets *POUTPUT to the output offset. The value -1 indicates that
675 // this input offset is being discarded.
676 bool
677 output_offset(const Relobj* object, unsigned int shndx,
678 section_offset_type sec_offset,
679 section_offset_type *poutput) const
680 { return this->do_output_offset(object, shndx, sec_offset, poutput); }
682 // Return whether this is the merge section for the input section
683 // SHNDX in OBJECT. This should return true when output_offset
684 // would return true for some values of OFFSET.
685 bool
686 is_merge_section_for(const Relobj* object, unsigned int shndx) const
687 { return this->do_is_merge_section_for(object, shndx); }
689 // Write the contents to a buffer. This is used for sections which
690 // require postprocessing, such as compression.
691 void
692 write_to_buffer(unsigned char* buffer)
693 { this->do_write_to_buffer(buffer); }
695 // Print merge stats to stderr. This should only be called for
696 // SHF_MERGE sections.
697 void
698 print_merge_stats(const char* section_name)
699 { this->do_print_merge_stats(section_name); }
701 protected:
702 // The child class must implement do_write.
704 // The child class may implement specific adjustments to the output
705 // section.
706 virtual void
707 do_adjust_output_section(Output_section*)
710 // May be implemented by child class. Return true if the section
711 // was handled.
712 virtual bool
713 do_add_input_section(Relobj*, unsigned int)
714 { gold_unreachable(); }
716 // The child class may implement output_offset.
717 virtual bool
718 do_output_offset(const Relobj*, unsigned int, section_offset_type,
719 section_offset_type*) const
720 { return false; }
722 // The child class may implement is_merge_section_for.
723 virtual bool
724 do_is_merge_section_for(const Relobj*, unsigned int) const
725 { return false; }
727 // The child class may implement write_to_buffer. Most child
728 // classes can not appear in a compressed section, and they do not
729 // implement this.
730 virtual void
731 do_write_to_buffer(unsigned char*)
732 { gold_unreachable(); }
734 // Print merge statistics.
735 virtual void
736 do_print_merge_stats(const char*)
737 { gold_unreachable(); }
739 // Return the required alignment.
740 uint64_t
741 do_addralign() const
742 { return this->addralign_; }
744 // Return the output section.
745 Output_section*
746 do_output_section()
747 { return this->output_section_; }
749 // Return the section index of the output section.
750 unsigned int
751 do_out_shndx() const;
753 // Set the alignment.
754 void
755 set_addralign(uint64_t addralign);
757 private:
758 // The output section for this section.
759 Output_section* output_section_;
760 // The required alignment.
761 uint64_t addralign_;
764 // Some Output_section_data classes build up their data step by step,
765 // rather than all at once. This class provides an interface for
766 // them.
768 class Output_section_data_build : public Output_section_data
770 public:
771 Output_section_data_build(uint64_t addr_align)
772 : Output_section_data(addr_align)
775 // Get the current data size.
776 off_t
777 current_data_size() const
778 { return this->current_data_size_for_child(); }
780 // Set the current data size.
781 void
782 set_current_data_size(off_t datasize)
783 { this->set_current_data_size_for_child(datasize); }
785 protected:
786 // Set the final data size.
787 virtual void
788 set_final_data_size()
789 { this->set_data_size(this->current_data_size_for_child()); }
792 // A simple case of Output_data in which we have constant data to
793 // output.
795 class Output_data_const : public Output_section_data
797 public:
798 Output_data_const(const std::string& data, uint64_t addr_align)
799 : Output_section_data(data.size(), addr_align, true), data_(data)
802 Output_data_const(const char* p, off_t len, uint64_t addr_align)
803 : Output_section_data(len, addr_align, true), data_(p, len)
806 Output_data_const(const unsigned char* p, off_t len, uint64_t addr_align)
807 : Output_section_data(len, addr_align, true),
808 data_(reinterpret_cast<const char*>(p), len)
811 protected:
812 // Write the data to the output file.
813 void
814 do_write(Output_file*);
816 // Write the data to a buffer.
817 void
818 do_write_to_buffer(unsigned char* buffer)
819 { memcpy(buffer, this->data_.data(), this->data_.size()); }
821 // Write to a map file.
822 void
823 do_print_to_mapfile(Mapfile* mapfile) const
824 { mapfile->print_output_data(this, _("** fill")); }
826 private:
827 std::string data_;
830 // Another version of Output_data with constant data, in which the
831 // buffer is allocated by the caller.
833 class Output_data_const_buffer : public Output_section_data
835 public:
836 Output_data_const_buffer(const unsigned char* p, off_t len,
837 uint64_t addr_align, const char* map_name)
838 : Output_section_data(len, addr_align, true),
839 p_(p), map_name_(map_name)
842 protected:
843 // Write the data the output file.
844 void
845 do_write(Output_file*);
847 // Write the data to a buffer.
848 void
849 do_write_to_buffer(unsigned char* buffer)
850 { memcpy(buffer, this->p_, this->data_size()); }
852 // Write to a map file.
853 void
854 do_print_to_mapfile(Mapfile* mapfile) const
855 { mapfile->print_output_data(this, _(this->map_name_)); }
857 private:
858 // The data to output.
859 const unsigned char* p_;
860 // Name to use in a map file. Maps are a rarely used feature, but
861 // the space usage is minor as aren't very many of these objects.
862 const char* map_name_;
865 // A place holder for a fixed amount of data written out via some
866 // other mechanism.
868 class Output_data_fixed_space : public Output_section_data
870 public:
871 Output_data_fixed_space(off_t datasize, uint64_t addr_align,
872 const char* map_name)
873 : Output_section_data(datasize, addr_align, true),
874 map_name_(map_name)
877 protected:
878 // Write out the data--the actual data must be written out
879 // elsewhere.
880 void
881 do_write(Output_file*)
884 // Write to a map file.
885 void
886 do_print_to_mapfile(Mapfile* mapfile) const
887 { mapfile->print_output_data(this, _(this->map_name_)); }
889 private:
890 // Name to use in a map file. Maps are a rarely used feature, but
891 // the space usage is minor as aren't very many of these objects.
892 const char* map_name_;
895 // A place holder for variable sized data written out via some other
896 // mechanism.
898 class Output_data_space : public Output_section_data_build
900 public:
901 explicit Output_data_space(uint64_t addr_align, const char* map_name)
902 : Output_section_data_build(addr_align),
903 map_name_(map_name)
906 // Set the alignment.
907 void
908 set_space_alignment(uint64_t align)
909 { this->set_addralign(align); }
911 protected:
912 // Write out the data--the actual data must be written out
913 // elsewhere.
914 void
915 do_write(Output_file*)
918 // Write to a map file.
919 void
920 do_print_to_mapfile(Mapfile* mapfile) const
921 { mapfile->print_output_data(this, _(this->map_name_)); }
923 private:
924 // Name to use in a map file. Maps are a rarely used feature, but
925 // the space usage is minor as aren't very many of these objects.
926 const char* map_name_;
929 // Fill fixed space with zeroes. This is just like
930 // Output_data_fixed_space, except that the map name is known.
932 class Output_data_zero_fill : public Output_section_data
934 public:
935 Output_data_zero_fill(off_t datasize, uint64_t addr_align)
936 : Output_section_data(datasize, addr_align, true)
939 protected:
940 // There is no data to write out.
941 void
942 do_write(Output_file*)
945 // Write to a map file.
946 void
947 do_print_to_mapfile(Mapfile* mapfile) const
948 { mapfile->print_output_data(this, "** zero fill"); }
951 // A string table which goes into an output section.
953 class Output_data_strtab : public Output_section_data
955 public:
956 Output_data_strtab(Stringpool* strtab)
957 : Output_section_data(1), strtab_(strtab)
960 protected:
961 // This is called to set the address and file offset. Here we make
962 // sure that the Stringpool is finalized.
963 void
964 set_final_data_size();
966 // Write out the data.
967 void
968 do_write(Output_file*);
970 // Write the data to a buffer.
971 void
972 do_write_to_buffer(unsigned char* buffer)
973 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
975 // Write to a map file.
976 void
977 do_print_to_mapfile(Mapfile* mapfile) const
978 { mapfile->print_output_data(this, _("** string table")); }
980 private:
981 Stringpool* strtab_;
984 // This POD class is used to represent a single reloc in the output
985 // file. This could be a private class within Output_data_reloc, but
986 // the templatization is complex enough that I broke it out into a
987 // separate class. The class is templatized on either elfcpp::SHT_REL
988 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
989 // relocation or an ordinary relocation.
991 // A relocation can be against a global symbol, a local symbol, a
992 // local section symbol, an output section, or the undefined symbol at
993 // index 0. We represent the latter by using a NULL global symbol.
995 template<int sh_type, bool dynamic, int size, bool big_endian>
996 class Output_reloc;
998 template<bool dynamic, int size, bool big_endian>
999 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1001 public:
1002 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1003 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1005 static const Address invalid_address = static_cast<Address>(0) - 1;
1007 // An uninitialized entry. We need this because we want to put
1008 // instances of this class into an STL container.
1009 Output_reloc()
1010 : local_sym_index_(INVALID_CODE)
1013 // We have a bunch of different constructors. They come in pairs
1014 // depending on how the address of the relocation is specified. It
1015 // can either be an offset in an Output_data or an offset in an
1016 // input section.
1018 // A reloc against a global symbol.
1020 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1021 Address address, bool is_relative);
1023 Output_reloc(Symbol* gsym, unsigned int type,
1024 Sized_relobj<size, big_endian>* relobj,
1025 unsigned int shndx, Address address, bool is_relative);
1027 // A reloc against a local symbol or local section symbol.
1029 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1030 unsigned int local_sym_index, unsigned int type,
1031 Output_data* od, Address address, bool is_relative,
1032 bool is_section_symbol);
1034 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1035 unsigned int local_sym_index, unsigned int type,
1036 unsigned int shndx, Address address, bool is_relative,
1037 bool is_section_symbol);
1039 // A reloc against the STT_SECTION symbol of an output section.
1041 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1042 Address address);
1044 Output_reloc(Output_section* os, unsigned int type,
1045 Sized_relobj<size, big_endian>* relobj,
1046 unsigned int shndx, Address address);
1048 // Return TRUE if this is a RELATIVE relocation.
1049 bool
1050 is_relative() const
1051 { return this->is_relative_; }
1053 // Return whether this is against a local section symbol.
1054 bool
1055 is_local_section_symbol() const
1057 return (this->local_sym_index_ != GSYM_CODE
1058 && this->local_sym_index_ != SECTION_CODE
1059 && this->local_sym_index_ != INVALID_CODE
1060 && this->is_section_symbol_);
1063 // For a local section symbol, return the offset of the input
1064 // section within the output section. ADDEND is the addend being
1065 // applied to the input section.
1066 Address
1067 local_section_offset(Addend addend) const;
1069 // Get the value of the symbol referred to by a Rel relocation when
1070 // we are adding the given ADDEND.
1071 Address
1072 symbol_value(Addend addend) const;
1074 // Write the reloc entry to an output view.
1075 void
1076 write(unsigned char* pov) const;
1078 // Write the offset and info fields to Write_rel.
1079 template<typename Write_rel>
1080 void write_rel(Write_rel*) const;
1082 // This is used when sorting dynamic relocs. Return -1 to sort this
1083 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1085 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1086 const;
1088 // Return whether this reloc should be sorted before the argument
1089 // when sorting dynamic relocs.
1090 bool
1091 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1092 r2) const
1093 { return this->compare(r2) < 0; }
1095 private:
1096 // Record that we need a dynamic symbol index.
1097 void
1098 set_needs_dynsym_index();
1100 // Return the symbol index.
1101 unsigned int
1102 get_symbol_index() const;
1104 // Return the output address.
1105 Address
1106 get_address() const;
1108 // Codes for local_sym_index_.
1109 enum
1111 // Global symbol.
1112 GSYM_CODE = -1U,
1113 // Output section.
1114 SECTION_CODE = -2U,
1115 // Invalid uninitialized entry.
1116 INVALID_CODE = -3U
1119 union
1121 // For a local symbol or local section symbol
1122 // (this->local_sym_index_ >= 0), the object. We will never
1123 // generate a relocation against a local symbol in a dynamic
1124 // object; that doesn't make sense. And our callers will always
1125 // be templatized, so we use Sized_relobj here.
1126 Sized_relobj<size, big_endian>* relobj;
1127 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1128 // symbol. If this is NULL, it indicates a relocation against the
1129 // undefined 0 symbol.
1130 Symbol* gsym;
1131 // For a relocation against an output section
1132 // (this->local_sym_index_ == SECTION_CODE), the output section.
1133 Output_section* os;
1134 } u1_;
1135 union
1137 // If this->shndx_ is not INVALID CODE, the object which holds the
1138 // input section being used to specify the reloc address.
1139 Sized_relobj<size, big_endian>* relobj;
1140 // If this->shndx_ is INVALID_CODE, the output data being used to
1141 // specify the reloc address. This may be NULL if the reloc
1142 // address is absolute.
1143 Output_data* od;
1144 } u2_;
1145 // The address offset within the input section or the Output_data.
1146 Address address_;
1147 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1148 // relocation against an output section, or INVALID_CODE for an
1149 // uninitialized value. Otherwise, for a local symbol
1150 // (this->is_section_symbol_ is false), the local symbol index. For
1151 // a local section symbol (this->is_section_symbol_ is true), the
1152 // section index in the input file.
1153 unsigned int local_sym_index_;
1154 // The reloc type--a processor specific code.
1155 unsigned int type_ : 30;
1156 // True if the relocation is a RELATIVE relocation.
1157 bool is_relative_ : 1;
1158 // True if the relocation is against a section symbol.
1159 bool is_section_symbol_ : 1;
1160 // If the reloc address is an input section in an object, the
1161 // section index. This is INVALID_CODE if the reloc address is
1162 // specified in some other way.
1163 unsigned int shndx_;
1166 // The SHT_RELA version of Output_reloc<>. This is just derived from
1167 // the SHT_REL version of Output_reloc, but it adds an addend.
1169 template<bool dynamic, int size, bool big_endian>
1170 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1172 public:
1173 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1174 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1176 // An uninitialized entry.
1177 Output_reloc()
1178 : rel_()
1181 // A reloc against a global symbol.
1183 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1184 Address addr, Addend addend, bool is_relative)
1185 : rel_(gsym, type, od, addr, is_relative), addend_(addend)
1188 Output_reloc(Symbol* gsym, unsigned int type,
1189 Sized_relobj<size, big_endian>* relobj,
1190 unsigned int shndx, Address addr, Addend addend,
1191 bool is_relative)
1192 : rel_(gsym, type, relobj, shndx, addr, is_relative), addend_(addend)
1195 // A reloc against a local symbol.
1197 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1198 unsigned int local_sym_index, unsigned int type,
1199 Output_data* od, Address addr,
1200 Addend addend, bool is_relative, bool is_section_symbol)
1201 : rel_(relobj, local_sym_index, type, od, addr, is_relative,
1202 is_section_symbol),
1203 addend_(addend)
1206 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1207 unsigned int local_sym_index, unsigned int type,
1208 unsigned int shndx, Address addr,
1209 Addend addend, bool is_relative, bool is_section_symbol)
1210 : rel_(relobj, local_sym_index, type, shndx, addr, is_relative,
1211 is_section_symbol),
1212 addend_(addend)
1215 // A reloc against the STT_SECTION symbol of an output section.
1217 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1218 Address addr, Addend addend)
1219 : rel_(os, type, od, addr), addend_(addend)
1222 Output_reloc(Output_section* os, unsigned int type,
1223 Sized_relobj<size, big_endian>* relobj,
1224 unsigned int shndx, Address addr, Addend addend)
1225 : rel_(os, type, relobj, shndx, addr), addend_(addend)
1228 // Write the reloc entry to an output view.
1229 void
1230 write(unsigned char* pov) const;
1232 // Return whether this reloc should be sorted before the argument
1233 // when sorting dynamic relocs.
1234 bool
1235 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1236 r2) const
1238 int i = this->rel_.compare(r2.rel_);
1239 if (i < 0)
1240 return true;
1241 else if (i > 0)
1242 return false;
1243 else
1244 return this->addend_ < r2.addend_;
1247 private:
1248 // The basic reloc.
1249 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1250 // The addend.
1251 Addend addend_;
1254 // Output_data_reloc is used to manage a section containing relocs.
1255 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1256 // indicates whether this is a dynamic relocation or a normal
1257 // relocation. Output_data_reloc_base is a base class.
1258 // Output_data_reloc is the real class, which we specialize based on
1259 // the reloc type.
1261 template<int sh_type, bool dynamic, int size, bool big_endian>
1262 class Output_data_reloc_base : public Output_section_data_build
1264 public:
1265 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1266 typedef typename Output_reloc_type::Address Address;
1267 static const int reloc_size =
1268 Reloc_types<sh_type, size, big_endian>::reloc_size;
1270 // Construct the section.
1271 Output_data_reloc_base(bool sort_relocs)
1272 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1273 sort_relocs_(sort_relocs)
1276 protected:
1277 // Write out the data.
1278 void
1279 do_write(Output_file*);
1281 // Set the entry size and the link.
1282 void
1283 do_adjust_output_section(Output_section *os);
1285 // Write to a map file.
1286 void
1287 do_print_to_mapfile(Mapfile* mapfile) const
1289 mapfile->print_output_data(this,
1290 (dynamic
1291 ? _("** dynamic relocs")
1292 : _("** relocs")));
1295 // Add a relocation entry.
1296 void
1297 add(Output_data *od, const Output_reloc_type& reloc)
1299 this->relocs_.push_back(reloc);
1300 this->set_current_data_size(this->relocs_.size() * reloc_size);
1301 od->add_dynamic_reloc();
1304 private:
1305 typedef std::vector<Output_reloc_type> Relocs;
1307 // The class used to sort the relocations.
1308 struct Sort_relocs_comparison
1310 bool
1311 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1312 { return r1.sort_before(r2); }
1315 // The relocations in this section.
1316 Relocs relocs_;
1317 // Whether to sort the relocations when writing them out, to make
1318 // the dynamic linker more efficient.
1319 bool sort_relocs_;
1322 // The class which callers actually create.
1324 template<int sh_type, bool dynamic, int size, bool big_endian>
1325 class Output_data_reloc;
1327 // The SHT_REL version of Output_data_reloc.
1329 template<bool dynamic, int size, bool big_endian>
1330 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1331 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1333 private:
1334 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1335 big_endian> Base;
1337 public:
1338 typedef typename Base::Output_reloc_type Output_reloc_type;
1339 typedef typename Output_reloc_type::Address Address;
1341 Output_data_reloc(bool sr)
1342 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1345 // Add a reloc against a global symbol.
1347 void
1348 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address addr)
1349 { this->add(od, Output_reloc_type(gsym, type, od, addr, false)); }
1351 void
1352 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1353 Sized_relobj<size, big_endian>* relobj,
1354 unsigned int shndx, Address addr)
1355 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, addr,
1356 false)); }
1358 // These are to simplify the Copy_relocs class.
1360 void
1361 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address addr,
1362 Address addend)
1364 gold_assert(addend == 0);
1365 this->add_global(gsym, type, od, addr);
1368 void
1369 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1370 Sized_relobj<size, big_endian>* relobj,
1371 unsigned int shndx, Address addr, Address addend)
1373 gold_assert(addend == 0);
1374 this->add_global(gsym, type, od, relobj, shndx, addr);
1377 // Add a RELATIVE reloc against a global symbol. The final relocation
1378 // will not reference the symbol.
1380 void
1381 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1382 Address addr)
1383 { this->add(od, Output_reloc_type(gsym, type, od, addr, true)); }
1385 void
1386 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1387 Sized_relobj<size, big_endian>* relobj,
1388 unsigned int shndx, Address addr)
1390 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, addr,
1391 true));
1394 // Add a reloc against a local symbol.
1396 void
1397 add_local(Sized_relobj<size, big_endian>* relobj,
1398 unsigned int local_sym_index, unsigned int type,
1399 Output_data* od, Address addr)
1401 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1402 addr, false, false));
1405 void
1406 add_local(Sized_relobj<size, big_endian>* relobj,
1407 unsigned int local_sym_index, unsigned int type,
1408 Output_data* od, unsigned int shndx, Address addr)
1410 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1411 addr, false, false));
1414 // Add a RELATIVE reloc against a local symbol.
1416 void
1417 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1418 unsigned int local_sym_index, unsigned int type,
1419 Output_data* od, Address addr)
1421 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1422 addr, true, false));
1425 void
1426 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1427 unsigned int local_sym_index, unsigned int type,
1428 Output_data* od, unsigned int shndx, Address addr)
1430 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1431 addr, true, false));
1434 // Add a reloc against a local section symbol. This will be
1435 // converted into a reloc against the STT_SECTION symbol of the
1436 // output section.
1438 void
1439 add_local_section(Sized_relobj<size, big_endian>* relobj,
1440 unsigned int input_shndx, unsigned int type,
1441 Output_data* od, Address addr)
1443 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1444 addr, false, true));
1447 void
1448 add_local_section(Sized_relobj<size, big_endian>* relobj,
1449 unsigned int input_shndx, unsigned int type,
1450 Output_data* od, unsigned int shndx, Address addr)
1452 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1453 addr, false, true));
1456 // A reloc against the STT_SECTION symbol of an output section.
1457 // OS is the Output_section that the relocation refers to; OD is
1458 // the Output_data object being relocated.
1460 void
1461 add_output_section(Output_section* os, unsigned int type,
1462 Output_data* od, Address addr)
1463 { this->add(od, Output_reloc_type(os, type, od, addr)); }
1465 void
1466 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1467 Sized_relobj<size, big_endian>* relobj,
1468 unsigned int shndx, Address addr)
1469 { this->add(od, Output_reloc_type(os, type, relobj, shndx, addr)); }
1472 // The SHT_RELA version of Output_data_reloc.
1474 template<bool dynamic, int size, bool big_endian>
1475 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1476 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1478 private:
1479 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1480 big_endian> Base;
1482 public:
1483 typedef typename Base::Output_reloc_type Output_reloc_type;
1484 typedef typename Output_reloc_type::Address Address;
1485 typedef typename Output_reloc_type::Addend Addend;
1487 Output_data_reloc(bool sr)
1488 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1491 // Add a reloc against a global symbol.
1493 void
1494 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1495 Address addr, Addend addend)
1496 { this->add(od, Output_reloc_type(gsym, type, od, addr, addend,
1497 false)); }
1499 void
1500 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1501 Sized_relobj<size, big_endian>* relobj,
1502 unsigned int shndx, Address addr,
1503 Addend addend)
1504 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, addr,
1505 addend, false)); }
1507 // Add a RELATIVE reloc against a global symbol. The final output
1508 // relocation will not reference the symbol, but we must keep the symbol
1509 // information long enough to set the addend of the relocation correctly
1510 // when it is written.
1512 void
1513 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1514 Address addr, Addend addend)
1515 { this->add(od, Output_reloc_type(gsym, type, od, addr, addend, true)); }
1517 void
1518 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1519 Sized_relobj<size, big_endian>* relobj,
1520 unsigned int shndx, Address addr, Addend addend)
1521 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, addr,
1522 addend, true)); }
1524 // Add a reloc against a local symbol.
1526 void
1527 add_local(Sized_relobj<size, big_endian>* relobj,
1528 unsigned int local_sym_index, unsigned int type,
1529 Output_data* od, Address addr, Addend addend)
1531 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, addr,
1532 addend, false, false));
1535 void
1536 add_local(Sized_relobj<size, big_endian>* relobj,
1537 unsigned int local_sym_index, unsigned int type,
1538 Output_data* od, unsigned int shndx, Address addr,
1539 Addend addend)
1541 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1542 addr, addend, false, false));
1545 // Add a RELATIVE reloc against a local symbol.
1547 void
1548 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1549 unsigned int local_sym_index, unsigned int type,
1550 Output_data* od, Address addr, Addend addend)
1552 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, addr,
1553 addend, true, false));
1556 void
1557 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1558 unsigned int local_sym_index, unsigned int type,
1559 Output_data* od, unsigned int shndx, Address addr,
1560 Addend addend)
1562 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1563 addr, addend, true, false));
1566 // Add a reloc against a local section symbol. This will be
1567 // converted into a reloc against the STT_SECTION symbol of the
1568 // output section.
1570 void
1571 add_local_section(Sized_relobj<size, big_endian>* relobj,
1572 unsigned int input_shndx, unsigned int type,
1573 Output_data* od, Address addr, Addend addend)
1575 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, addr,
1576 addend, false, true));
1579 void
1580 add_local_section(Sized_relobj<size, big_endian>* relobj,
1581 unsigned int input_shndx, unsigned int type,
1582 Output_data* od, unsigned int shndx, Address addr,
1583 Addend addend)
1585 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1586 addr, addend, false, true));
1589 // A reloc against the STT_SECTION symbol of an output section.
1591 void
1592 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1593 Address addr, Addend addend)
1594 { this->add(os, Output_reloc_type(os, type, od, addr, addend)); }
1596 void
1597 add_output_section(Output_section* os, unsigned int type,
1598 Sized_relobj<size, big_endian>* relobj,
1599 unsigned int shndx, Address addr, Addend addend)
1600 { this->add(os, Output_reloc_type(os, type, relobj, shndx, addr,
1601 addend)); }
1604 // Output_relocatable_relocs represents a relocation section in a
1605 // relocatable link. The actual data is written out in the target
1606 // hook relocate_for_relocatable. This just saves space for it.
1608 template<int sh_type, int size, bool big_endian>
1609 class Output_relocatable_relocs : public Output_section_data
1611 public:
1612 Output_relocatable_relocs(Relocatable_relocs* rr)
1613 : Output_section_data(Output_data::default_alignment_for_size(size)),
1614 rr_(rr)
1617 void
1618 set_final_data_size();
1620 // Write out the data. There is nothing to do here.
1621 void
1622 do_write(Output_file*)
1625 // Write to a map file.
1626 void
1627 do_print_to_mapfile(Mapfile* mapfile) const
1628 { mapfile->print_output_data(this, _("** relocs")); }
1630 private:
1631 // The relocs associated with this input section.
1632 Relocatable_relocs* rr_;
1635 // Handle a GROUP section.
1637 template<int size, bool big_endian>
1638 class Output_data_group : public Output_section_data
1640 public:
1641 // The constructor clears *INPUT_SHNDXES.
1642 Output_data_group(Sized_relobj<size, big_endian>* relobj,
1643 section_size_type entry_count,
1644 elfcpp::Elf_Word flags,
1645 std::vector<unsigned int>* input_shndxes);
1647 void
1648 do_write(Output_file*);
1650 // Write to a map file.
1651 void
1652 do_print_to_mapfile(Mapfile* mapfile) const
1653 { mapfile->print_output_data(this, _("** group")); }
1655 // Set final data size.
1656 void
1657 set_final_data_size()
1658 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1660 private:
1661 // The input object.
1662 Sized_relobj<size, big_endian>* relobj_;
1663 // The group flag word.
1664 elfcpp::Elf_Word flags_;
1665 // The section indexes of the input sections in this group.
1666 std::vector<unsigned int> input_shndxes_;
1669 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1670 // for one symbol--either a global symbol or a local symbol in an
1671 // object. The target specific code adds entries to the GOT as
1672 // needed.
1674 template<int size, bool big_endian>
1675 class Output_data_got : public Output_section_data_build
1677 public:
1678 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1679 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1680 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1682 Output_data_got()
1683 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1684 entries_()
1687 // Add an entry for a global symbol to the GOT. Return true if this
1688 // is a new GOT entry, false if the symbol was already in the GOT.
1689 bool
1690 add_global(Symbol* gsym, unsigned int got_type);
1692 // Add an entry for a global symbol to the GOT, and add a dynamic
1693 // relocation of type R_TYPE for the GOT entry.
1694 void
1695 add_global_with_rel(Symbol* gsym, unsigned int got_type,
1696 Rel_dyn* rel_dyn, unsigned int r_type);
1698 void
1699 add_global_with_rela(Symbol* gsym, unsigned int got_type,
1700 Rela_dyn* rela_dyn, unsigned int r_type);
1702 // Add a pair of entries for a global symbol to the GOT, and add
1703 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1704 void
1705 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
1706 Rel_dyn* rel_dyn, unsigned int r_type_1,
1707 unsigned int r_type_2);
1709 void
1710 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
1711 Rela_dyn* rela_dyn, unsigned int r_type_1,
1712 unsigned int r_type_2);
1714 // Add an entry for a local symbol to the GOT. This returns true if
1715 // this is a new GOT entry, false if the symbol already has a GOT
1716 // entry.
1717 bool
1718 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1719 unsigned int got_type);
1721 // Add an entry for a local symbol to the GOT, and add a dynamic
1722 // relocation of type R_TYPE for the GOT entry.
1723 void
1724 add_local_with_rel(Sized_relobj<size, big_endian>* object,
1725 unsigned int sym_index, unsigned int got_type,
1726 Rel_dyn* rel_dyn, unsigned int r_type);
1728 void
1729 add_local_with_rela(Sized_relobj<size, big_endian>* object,
1730 unsigned int sym_index, unsigned int got_type,
1731 Rela_dyn* rela_dyn, unsigned int r_type);
1733 // Add a pair of entries for a local symbol to the GOT, and add
1734 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1735 void
1736 add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
1737 unsigned int sym_index, unsigned int shndx,
1738 unsigned int got_type, Rel_dyn* rel_dyn,
1739 unsigned int r_type_1, unsigned int r_type_2);
1741 void
1742 add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
1743 unsigned int sym_index, unsigned int shndx,
1744 unsigned int got_type, Rela_dyn* rela_dyn,
1745 unsigned int r_type_1, unsigned int r_type_2);
1747 // Add a constant to the GOT. This returns the offset of the new
1748 // entry from the start of the GOT.
1749 unsigned int
1750 add_constant(Valtype constant)
1752 this->entries_.push_back(Got_entry(constant));
1753 this->set_got_size();
1754 return this->last_got_offset();
1757 protected:
1758 // Write out the GOT table.
1759 void
1760 do_write(Output_file*);
1762 // Write to a map file.
1763 void
1764 do_print_to_mapfile(Mapfile* mapfile) const
1765 { mapfile->print_output_data(this, _("** GOT")); }
1767 private:
1768 // This POD class holds a single GOT entry.
1769 class Got_entry
1771 public:
1772 // Create a zero entry.
1773 Got_entry()
1774 : local_sym_index_(CONSTANT_CODE)
1775 { this->u_.constant = 0; }
1777 // Create a global symbol entry.
1778 explicit Got_entry(Symbol* gsym)
1779 : local_sym_index_(GSYM_CODE)
1780 { this->u_.gsym = gsym; }
1782 // Create a local symbol entry.
1783 Got_entry(Sized_relobj<size, big_endian>* object,
1784 unsigned int local_sym_index)
1785 : local_sym_index_(local_sym_index)
1787 gold_assert(local_sym_index != GSYM_CODE
1788 && local_sym_index != CONSTANT_CODE);
1789 this->u_.object = object;
1792 // Create a constant entry. The constant is a host value--it will
1793 // be swapped, if necessary, when it is written out.
1794 explicit Got_entry(Valtype constant)
1795 : local_sym_index_(CONSTANT_CODE)
1796 { this->u_.constant = constant; }
1798 // Write the GOT entry to an output view.
1799 void
1800 write(unsigned char* pov) const;
1802 private:
1803 enum
1805 GSYM_CODE = -1U,
1806 CONSTANT_CODE = -2U
1809 union
1811 // For a local symbol, the object.
1812 Sized_relobj<size, big_endian>* object;
1813 // For a global symbol, the symbol.
1814 Symbol* gsym;
1815 // For a constant, the constant.
1816 Valtype constant;
1817 } u_;
1818 // For a local symbol, the local symbol index. This is GSYM_CODE
1819 // for a global symbol, or CONSTANT_CODE for a constant.
1820 unsigned int local_sym_index_;
1823 typedef std::vector<Got_entry> Got_entries;
1825 // Return the offset into the GOT of GOT entry I.
1826 unsigned int
1827 got_offset(unsigned int i) const
1828 { return i * (size / 8); }
1830 // Return the offset into the GOT of the last entry added.
1831 unsigned int
1832 last_got_offset() const
1833 { return this->got_offset(this->entries_.size() - 1); }
1835 // Set the size of the section.
1836 void
1837 set_got_size()
1838 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
1840 // The list of GOT entries.
1841 Got_entries entries_;
1844 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
1845 // section.
1847 class Output_data_dynamic : public Output_section_data
1849 public:
1850 Output_data_dynamic(Stringpool* pool)
1851 : Output_section_data(Output_data::default_alignment()),
1852 entries_(), pool_(pool)
1855 // Add a new dynamic entry with a fixed numeric value.
1856 void
1857 add_constant(elfcpp::DT tag, unsigned int val)
1858 { this->add_entry(Dynamic_entry(tag, val)); }
1860 // Add a new dynamic entry with the address of output data.
1861 void
1862 add_section_address(elfcpp::DT tag, const Output_data* od)
1863 { this->add_entry(Dynamic_entry(tag, od, false)); }
1865 // Add a new dynamic entry with the address of output data
1866 // plus a constant offset.
1867 void
1868 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
1869 unsigned int sec_offset)
1870 { this->add_entry(Dynamic_entry(tag, od, sec_offset)); }
1872 // Add a new dynamic entry with the size of output data.
1873 void
1874 add_section_size(elfcpp::DT tag, const Output_data* od)
1875 { this->add_entry(Dynamic_entry(tag, od, true)); }
1877 // Add a new dynamic entry with the address of a symbol.
1878 void
1879 add_symbol(elfcpp::DT tag, const Symbol* sym)
1880 { this->add_entry(Dynamic_entry(tag, sym)); }
1882 // Add a new dynamic entry with a string.
1883 void
1884 add_string(elfcpp::DT tag, const char* str)
1885 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
1887 void
1888 add_string(elfcpp::DT tag, const std::string& str)
1889 { this->add_string(tag, str.c_str()); }
1891 protected:
1892 // Adjust the output section to set the entry size.
1893 void
1894 do_adjust_output_section(Output_section*);
1896 // Set the final data size.
1897 void
1898 set_final_data_size();
1900 // Write out the dynamic entries.
1901 void
1902 do_write(Output_file*);
1904 // Write to a map file.
1905 void
1906 do_print_to_mapfile(Mapfile* mapfile) const
1907 { mapfile->print_output_data(this, _("** dynamic")); }
1909 private:
1910 // This POD class holds a single dynamic entry.
1911 class Dynamic_entry
1913 public:
1914 // Create an entry with a fixed numeric value.
1915 Dynamic_entry(elfcpp::DT etag, unsigned int val)
1916 : tag_(etag), offset_(DYNAMIC_NUMBER)
1917 { this->u_.val = val; }
1919 // Create an entry with the size or address of a section.
1920 Dynamic_entry(elfcpp::DT etag, const Output_data* od, bool section_size)
1921 : tag_(etag),
1922 offset_(section_size
1923 ? DYNAMIC_SECTION_SIZE
1924 : DYNAMIC_SECTION_ADDRESS)
1925 { this->u_.od = od; }
1927 // Create an entry with the address of a section plus a constant offset.
1928 Dynamic_entry(elfcpp::DT etag, const Output_data* od, unsigned int offset)
1929 : tag_(etag),
1930 offset_(offset)
1931 { this->u_.od = od; }
1933 // Create an entry with the address of a symbol.
1934 Dynamic_entry(elfcpp::DT etag, const Symbol* sym)
1935 : tag_(etag), offset_(DYNAMIC_SYMBOL)
1936 { this->u_.sym = sym; }
1938 // Create an entry with a string.
1939 Dynamic_entry(elfcpp::DT etag, const char* str)
1940 : tag_(etag), offset_(DYNAMIC_STRING)
1941 { this->u_.str = str; }
1943 // Return the tag of this entry.
1944 elfcpp::DT
1945 tag() const
1946 { return this->tag_; }
1948 // Write the dynamic entry to an output view.
1949 template<int size, bool big_endian>
1950 void
1951 write(unsigned char* pov, const Stringpool*) const;
1953 private:
1954 // Classification is encoded in the OFFSET field.
1955 enum Classification
1957 // Section address.
1958 DYNAMIC_SECTION_ADDRESS = 0,
1959 // Number.
1960 DYNAMIC_NUMBER = -1U,
1961 // Section size.
1962 DYNAMIC_SECTION_SIZE = -2U,
1963 // Symbol adress.
1964 DYNAMIC_SYMBOL = -3U,
1965 // String.
1966 DYNAMIC_STRING = -4U
1967 // Any other value indicates a section address plus OFFSET.
1970 union
1972 // For DYNAMIC_NUMBER.
1973 unsigned int val;
1974 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
1975 const Output_data* od;
1976 // For DYNAMIC_SYMBOL.
1977 const Symbol* sym;
1978 // For DYNAMIC_STRING.
1979 const char* str;
1980 } u_;
1981 // The dynamic tag.
1982 elfcpp::DT tag_;
1983 // The type of entry (Classification) or offset within a section.
1984 unsigned int offset_;
1987 // Add an entry to the list.
1988 void
1989 add_entry(const Dynamic_entry& entry)
1990 { this->entries_.push_back(entry); }
1992 // Sized version of write function.
1993 template<int size, bool big_endian>
1994 void
1995 sized_write(Output_file* of);
1997 // The type of the list of entries.
1998 typedef std::vector<Dynamic_entry> Dynamic_entries;
2000 // The entries.
2001 Dynamic_entries entries_;
2002 // The pool used for strings.
2003 Stringpool* pool_;
2006 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2007 // which may be required if the object file has more than
2008 // SHN_LORESERVE sections.
2010 class Output_symtab_xindex : public Output_section_data
2012 public:
2013 Output_symtab_xindex(size_t symcount)
2014 : Output_section_data(symcount * 4, 4, true),
2015 entries_()
2018 // Add an entry: symbol number SYMNDX has section SHNDX.
2019 void
2020 add(unsigned int symndx, unsigned int shndx)
2021 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2023 protected:
2024 void
2025 do_write(Output_file*);
2027 // Write to a map file.
2028 void
2029 do_print_to_mapfile(Mapfile* mapfile) const
2030 { mapfile->print_output_data(this, _("** symtab xindex")); }
2032 private:
2033 template<bool big_endian>
2034 void
2035 endian_do_write(unsigned char*);
2037 // It is likely that most symbols will not require entries. Rather
2038 // than keep a vector for all symbols, we keep pairs of symbol index
2039 // and section index.
2040 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2042 // The entries we need.
2043 Xindex_entries entries_;
2046 // A relaxed input section.
2047 class Output_relaxed_input_section : public Output_section_data_build
2049 public:
2050 // We would like to call relobj->section_addralign(shndx) to get the
2051 // alignment but we do not want the constructor to fail. So callers
2052 // are repsonsible for ensuring that.
2053 Output_relaxed_input_section(Relobj* rel_obj, unsigned int sec_shndx,
2054 uint64_t addr_align)
2055 : Output_section_data_build(addr_align), relobj_(rel_obj), shndx_(sec_shndx)
2058 // Return the Relobj of this relaxed input section.
2059 Relobj*
2060 relobj() const
2061 { return this->relobj_; }
2063 // Return the section index of this relaxed input section.
2064 unsigned int
2065 shndx() const
2066 { return this->shndx_; }
2068 private:
2069 Relobj* relobj_;
2070 unsigned int shndx_;
2073 // An output section. We don't expect to have too many output
2074 // sections, so we don't bother to do a template on the size.
2076 class Output_section : public Output_data
2078 public:
2079 // Create an output section, giving the name, type, and flags.
2080 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2081 virtual ~Output_section();
2083 // Add a new input section SHNDX, named NAME, with header SHDR, from
2084 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2085 // which applies to this section, or 0 if none, or -1 if more than
2086 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2087 // in a linker script; in that case we need to keep track of input
2088 // sections associated with an output section. Return the offset
2089 // within the output section.
2090 template<int size, bool big_endian>
2091 off_t
2092 add_input_section(Sized_relobj<size, big_endian>* object, unsigned int shndx,
2093 const char *name,
2094 const elfcpp::Shdr<size, big_endian>& shdr,
2095 unsigned int reloc_shndx, bool have_sections_script);
2097 // Add generated data POSD to this output section.
2098 void
2099 add_output_section_data(Output_section_data* posd);
2101 // Add a relaxed input section PORIS to this output section.
2102 void
2103 add_relaxed_input_section(Output_relaxed_input_section* poris);
2105 // Return the section name.
2106 const char*
2107 name() const
2108 { return this->name_; }
2110 // Return the section type.
2111 elfcpp::Elf_Word
2112 type() const
2113 { return this->type_; }
2115 // Return the section flags.
2116 elfcpp::Elf_Xword
2117 flags() const
2118 { return this->flags_; }
2120 // Update the output section flags based on input section flags.
2121 void
2122 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2124 // Return the entsize field.
2125 uint64_t
2126 entsize() const
2127 { return this->entsize_; }
2129 // Set the entsize field.
2130 void
2131 set_entsize(uint64_t v);
2133 // Set the load address.
2134 void
2135 set_load_address(uint64_t load_addr)
2137 this->load_address_ = load_addr;
2138 this->has_load_address_ = true;
2141 // Set the link field to the output section index of a section.
2142 void
2143 set_link_section(const Output_data* od)
2145 gold_assert(this->link_ == 0
2146 && !this->should_link_to_symtab_
2147 && !this->should_link_to_dynsym_);
2148 this->link_section_ = od;
2151 // Set the link field to a constant.
2152 void
2153 set_link(unsigned int v)
2155 gold_assert(this->link_section_ == NULL
2156 && !this->should_link_to_symtab_
2157 && !this->should_link_to_dynsym_);
2158 this->link_ = v;
2161 // Record that this section should link to the normal symbol table.
2162 void
2163 set_should_link_to_symtab()
2165 gold_assert(this->link_section_ == NULL
2166 && this->link_ == 0
2167 && !this->should_link_to_dynsym_);
2168 this->should_link_to_symtab_ = true;
2171 // Record that this section should link to the dynamic symbol table.
2172 void
2173 set_should_link_to_dynsym()
2175 gold_assert(this->link_section_ == NULL
2176 && this->link_ == 0
2177 && !this->should_link_to_symtab_);
2178 this->should_link_to_dynsym_ = true;
2181 // Return the info field.
2182 unsigned int
2183 info() const
2185 gold_assert(this->info_section_ == NULL
2186 && this->info_symndx_ == NULL);
2187 return this->info_;
2190 // Set the info field to the output section index of a section.
2191 void
2192 set_info_section(const Output_section* os)
2194 gold_assert((this->info_section_ == NULL
2195 || (this->info_section_ == os
2196 && this->info_uses_section_index_))
2197 && this->info_symndx_ == NULL
2198 && this->info_ == 0);
2199 this->info_section_ = os;
2200 this->info_uses_section_index_= true;
2203 // Set the info field to the symbol table index of a symbol.
2204 void
2205 set_info_symndx(const Symbol* sym)
2207 gold_assert(this->info_section_ == NULL
2208 && (this->info_symndx_ == NULL
2209 || this->info_symndx_ == sym)
2210 && this->info_ == 0);
2211 this->info_symndx_ = sym;
2214 // Set the info field to the symbol table index of a section symbol.
2215 void
2216 set_info_section_symndx(const Output_section* os)
2218 gold_assert((this->info_section_ == NULL
2219 || (this->info_section_ == os
2220 && !this->info_uses_section_index_))
2221 && this->info_symndx_ == NULL
2222 && this->info_ == 0);
2223 this->info_section_ = os;
2224 this->info_uses_section_index_ = false;
2227 // Set the info field to a constant.
2228 void
2229 set_info(unsigned int v)
2231 gold_assert(this->info_section_ == NULL
2232 && this->info_symndx_ == NULL
2233 && (this->info_ == 0
2234 || this->info_ == v));
2235 this->info_ = v;
2238 // Set the addralign field.
2239 void
2240 set_addralign(uint64_t v)
2241 { this->addralign_ = v; }
2243 // Whether the output section index has been set.
2244 bool
2245 has_out_shndx() const
2246 { return this->out_shndx_ != -1U; }
2248 // Indicate that we need a symtab index.
2249 void
2250 set_needs_symtab_index()
2251 { this->needs_symtab_index_ = true; }
2253 // Return whether we need a symtab index.
2254 bool
2255 needs_symtab_index() const
2256 { return this->needs_symtab_index_; }
2258 // Get the symtab index.
2259 unsigned int
2260 symtab_index() const
2262 gold_assert(this->symtab_index_ != 0);
2263 return this->symtab_index_;
2266 // Set the symtab index.
2267 void
2268 set_symtab_index(unsigned int index)
2270 gold_assert(index != 0);
2271 this->symtab_index_ = index;
2274 // Indicate that we need a dynsym index.
2275 void
2276 set_needs_dynsym_index()
2277 { this->needs_dynsym_index_ = true; }
2279 // Return whether we need a dynsym index.
2280 bool
2281 needs_dynsym_index() const
2282 { return this->needs_dynsym_index_; }
2284 // Get the dynsym index.
2285 unsigned int
2286 dynsym_index() const
2288 gold_assert(this->dynsym_index_ != 0);
2289 return this->dynsym_index_;
2292 // Set the dynsym index.
2293 void
2294 set_dynsym_index(unsigned int index)
2296 gold_assert(index != 0);
2297 this->dynsym_index_ = index;
2300 // Return whether the input sections sections attachd to this output
2301 // section may require sorting. This is used to handle constructor
2302 // priorities compatibly with GNU ld.
2303 bool
2304 may_sort_attached_input_sections() const
2305 { return this->may_sort_attached_input_sections_; }
2307 // Record that the input sections attached to this output section
2308 // may require sorting.
2309 void
2310 set_may_sort_attached_input_sections()
2311 { this->may_sort_attached_input_sections_ = true; }
2313 // Return whether the input sections attached to this output section
2314 // require sorting. This is used to handle constructor priorities
2315 // compatibly with GNU ld.
2316 bool
2317 must_sort_attached_input_sections() const
2318 { return this->must_sort_attached_input_sections_; }
2320 // Record that the input sections attached to this output section
2321 // require sorting.
2322 void
2323 set_must_sort_attached_input_sections()
2324 { this->must_sort_attached_input_sections_ = true; }
2326 // Return whether this section holds relro data--data which has
2327 // dynamic relocations but which may be marked read-only after the
2328 // dynamic relocations have been completed.
2329 bool
2330 is_relro() const
2331 { return this->is_relro_; }
2333 // Record that this section holds relro data.
2334 void
2335 set_is_relro()
2336 { this->is_relro_ = true; }
2338 // Record that this section does not hold relro data.
2339 void
2340 clear_is_relro()
2341 { this->is_relro_ = false; }
2343 // True if this section holds relro local data--relro data for which
2344 // the dynamic relocations are all RELATIVE relocations.
2345 bool
2346 is_relro_local() const
2347 { return this->is_relro_local_; }
2349 // Record that this section holds relro local data.
2350 void
2351 set_is_relro_local()
2352 { this->is_relro_local_ = true; }
2354 // True if this is a small section: a section which holds small
2355 // variables.
2356 bool
2357 is_small_section() const
2358 { return this->is_small_section_; }
2360 // Record that this is a small section.
2361 void
2362 set_is_small_section()
2363 { this->is_small_section_ = true; }
2365 // True if this is a large section: a section which holds large
2366 // variables.
2367 bool
2368 is_large_section() const
2369 { return this->is_large_section_; }
2371 // Record that this is a large section.
2372 void
2373 set_is_large_section()
2374 { this->is_large_section_ = true; }
2376 // True if this is a large data (not BSS) section.
2377 bool
2378 is_large_data_section()
2379 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
2381 // True if this is the .interp section which goes into the PT_INTERP
2382 // segment.
2383 bool
2384 is_interp() const
2385 { return this->is_interp_; }
2387 // Record that this is the interp section.
2388 void
2389 set_is_interp()
2390 { this->is_interp_ = true; }
2392 // True if this is a section used by the dynamic linker.
2393 bool
2394 is_dynamic_linker_section() const
2395 { return this->is_dynamic_linker_section_; }
2397 // Record that this is a section used by the dynamic linker.
2398 void
2399 set_is_dynamic_linker_section()
2400 { this->is_dynamic_linker_section_ = true; }
2402 // Return whether this section should be written after all the input
2403 // sections are complete.
2404 bool
2405 after_input_sections() const
2406 { return this->after_input_sections_; }
2408 // Record that this section should be written after all the input
2409 // sections are complete.
2410 void
2411 set_after_input_sections()
2412 { this->after_input_sections_ = true; }
2414 // Return whether this section requires postprocessing after all
2415 // relocations have been applied.
2416 bool
2417 requires_postprocessing() const
2418 { return this->requires_postprocessing_; }
2420 // If a section requires postprocessing, return the buffer to use.
2421 unsigned char*
2422 postprocessing_buffer() const
2424 gold_assert(this->postprocessing_buffer_ != NULL);
2425 return this->postprocessing_buffer_;
2428 // If a section requires postprocessing, create the buffer to use.
2429 void
2430 create_postprocessing_buffer();
2432 // If a section requires postprocessing, this is the size of the
2433 // buffer to which relocations should be applied.
2434 off_t
2435 postprocessing_buffer_size() const
2436 { return this->current_data_size_for_child(); }
2438 // Modify the section name. This is only permitted for an
2439 // unallocated section, and only before the size has been finalized.
2440 // Otherwise the name will not get into Layout::namepool_.
2441 void
2442 set_name(const char* newname)
2444 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
2445 gold_assert(!this->is_data_size_valid());
2446 this->name_ = newname;
2449 // Return whether the offset OFFSET in the input section SHNDX in
2450 // object OBJECT is being included in the link.
2451 bool
2452 is_input_address_mapped(const Relobj* object, unsigned int shndx,
2453 off_t offset) const;
2455 // Return the offset within the output section of OFFSET relative to
2456 // the start of input section SHNDX in object OBJECT.
2457 section_offset_type
2458 output_offset(const Relobj* object, unsigned int shndx,
2459 section_offset_type offset) const;
2461 // Return the output virtual address of OFFSET relative to the start
2462 // of input section SHNDX in object OBJECT.
2463 uint64_t
2464 output_address(const Relobj* object, unsigned int shndx,
2465 off_t offset) const;
2467 // Look for the merged section for input section SHNDX in object
2468 // OBJECT. If found, return true, and set *ADDR to the address of
2469 // the start of the merged section. This is not necessary the
2470 // output offset corresponding to input offset 0 in the section,
2471 // since the section may be mapped arbitrarily.
2472 bool
2473 find_starting_output_address(const Relobj* object, unsigned int shndx,
2474 uint64_t* addr) const;
2476 // Record that this output section was found in the SECTIONS clause
2477 // of a linker script.
2478 void
2479 set_found_in_sections_clause()
2480 { this->found_in_sections_clause_ = true; }
2482 // Return whether this output section was found in the SECTIONS
2483 // clause of a linker script.
2484 bool
2485 found_in_sections_clause() const
2486 { return this->found_in_sections_clause_; }
2488 // Write the section header into *OPHDR.
2489 template<int size, bool big_endian>
2490 void
2491 write_header(const Layout*, const Stringpool*,
2492 elfcpp::Shdr_write<size, big_endian>*) const;
2494 // The next few calls are for linker script support.
2496 // We need to export the input sections to linker scripts. Previously
2497 // we export a pair of Relobj pointer and section index. We now need to
2498 // handle relaxed input sections as well. So we use this class.
2499 class Simple_input_section
2501 private:
2502 static const unsigned int invalid_shndx = static_cast<unsigned int>(-1);
2504 public:
2505 Simple_input_section(Relobj *rel_obj, unsigned int sec_shndx)
2506 : shndx_(sec_shndx)
2508 gold_assert(sec_shndx != invalid_shndx);
2509 this->u_.relobj = rel_obj;
2512 Simple_input_section(Output_relaxed_input_section* section)
2513 : shndx_(invalid_shndx)
2514 { this->u_.relaxed_input_section = section; }
2516 // Whether this is a relaxed section.
2517 bool
2518 is_relaxed_input_section() const
2519 { return this->shndx_ == invalid_shndx; }
2521 // Return object of an input section.
2522 Relobj*
2523 relobj() const
2525 return ((this->shndx_ != invalid_shndx)
2526 ? this->u_.relobj
2527 : this->u_.relaxed_input_section->relobj());
2530 // Return index of an input section.
2531 unsigned int
2532 shndx() const
2534 return ((this->shndx_ != invalid_shndx)
2535 ? this->shndx_
2536 : this->u_.relaxed_input_section->shndx());
2539 // Return the Output_relaxed_input_section object of a relaxed section.
2540 Output_relaxed_input_section*
2541 relaxed_input_section() const
2543 gold_assert(this->shndx_ == invalid_shndx);
2544 return this->u_.relaxed_input_section;
2547 private:
2548 // Pointer to either an Relobj or an Output_relaxed_input_section.
2549 union
2551 Relobj* relobj;
2552 Output_relaxed_input_section* relaxed_input_section;
2553 } u_;
2554 // Section index for an non-relaxed section or invalid_shndx for
2555 // a relaxed section.
2556 unsigned int shndx_;
2559 // Store the list of input sections for this Output_section into the
2560 // list passed in. This removes the input sections, leaving only
2561 // any Output_section_data elements. This returns the size of those
2562 // Output_section_data elements. ADDRESS is the address of this
2563 // output section. FILL is the fill value to use, in case there are
2564 // any spaces between the remaining Output_section_data elements.
2565 uint64_t
2566 get_input_sections(uint64_t address, const std::string& fill,
2567 std::list<Simple_input_section>*);
2569 // Add an input section from a script.
2570 void
2571 add_input_section_for_script(const Simple_input_section& input_section,
2572 off_t data_size, uint64_t addralign);
2574 // Set the current size of the output section.
2575 void
2576 set_current_data_size(off_t size)
2577 { this->set_current_data_size_for_child(size); }
2579 // Get the current size of the output section.
2580 off_t
2581 current_data_size() const
2582 { return this->current_data_size_for_child(); }
2584 // End of linker script support.
2586 // Save states before doing section layout.
2587 // This is used for relaxation.
2588 void
2589 save_states();
2591 // Restore states prior to section layout.
2592 void
2593 restore_states();
2595 // Convert existing input sections to relaxed input sections.
2596 void
2597 convert_input_sections_to_relaxed_sections(
2598 const std::vector<Output_relaxed_input_section*>& sections);
2600 // Find a relaxed input section to an input section in OBJECT
2601 // with index SHNDX. Return NULL if none is found.
2602 const Output_section_data*
2603 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
2605 // Print merge statistics to stderr.
2606 void
2607 print_merge_stats();
2609 protected:
2610 // Return the output section--i.e., the object itself.
2611 Output_section*
2612 do_output_section()
2613 { return this; }
2615 // Return the section index in the output file.
2616 unsigned int
2617 do_out_shndx() const
2619 gold_assert(this->out_shndx_ != -1U);
2620 return this->out_shndx_;
2623 // Set the output section index.
2624 void
2625 do_set_out_shndx(unsigned int shndx)
2627 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
2628 this->out_shndx_ = shndx;
2631 // Set the final data size of the Output_section. For a typical
2632 // Output_section, there is nothing to do, but if there are any
2633 // Output_section_data objects we need to set their final addresses
2634 // here.
2635 virtual void
2636 set_final_data_size();
2638 // Reset the address and file offset.
2639 void
2640 do_reset_address_and_file_offset();
2642 // Return true if address and file offset already have reset values. In
2643 // other words, calling reset_address_and_file_offset will not change them.
2644 bool
2645 do_address_and_file_offset_have_reset_values() const;
2647 // Write the data to the file. For a typical Output_section, this
2648 // does nothing: the data is written out by calling Object::Relocate
2649 // on each input object. But if there are any Output_section_data
2650 // objects we do need to write them out here.
2651 virtual void
2652 do_write(Output_file*);
2654 // Return the address alignment--function required by parent class.
2655 uint64_t
2656 do_addralign() const
2657 { return this->addralign_; }
2659 // Return whether there is a load address.
2660 bool
2661 do_has_load_address() const
2662 { return this->has_load_address_; }
2664 // Return the load address.
2665 uint64_t
2666 do_load_address() const
2668 gold_assert(this->has_load_address_);
2669 return this->load_address_;
2672 // Return whether this is an Output_section.
2673 bool
2674 do_is_section() const
2675 { return true; }
2677 // Return whether this is a section of the specified type.
2678 bool
2679 do_is_section_type(elfcpp::Elf_Word sec_type) const
2680 { return this->type_ == sec_type; }
2682 // Return whether the specified section flag is set.
2683 bool
2684 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
2685 { return (this->flags_ & flag) != 0; }
2687 // Set the TLS offset. Called only for SHT_TLS sections.
2688 void
2689 do_set_tls_offset(uint64_t tls_base);
2691 // Return the TLS offset, relative to the base of the TLS segment.
2692 // Valid only for SHT_TLS sections.
2693 uint64_t
2694 do_tls_offset() const
2695 { return this->tls_offset_; }
2697 // This may be implemented by a child class.
2698 virtual void
2699 do_finalize_name(Layout*)
2702 // Print to the map file.
2703 virtual void
2704 do_print_to_mapfile(Mapfile*) const;
2706 // Record that this section requires postprocessing after all
2707 // relocations have been applied. This is called by a child class.
2708 void
2709 set_requires_postprocessing()
2711 this->requires_postprocessing_ = true;
2712 this->after_input_sections_ = true;
2715 // Write all the data of an Output_section into the postprocessing
2716 // buffer.
2717 void
2718 write_to_postprocessing_buffer();
2720 // In some cases we need to keep a list of the input sections
2721 // associated with this output section. We only need the list if we
2722 // might have to change the offsets of the input section within the
2723 // output section after we add the input section. The ordinary
2724 // input sections will be written out when we process the object
2725 // file, and as such we don't need to track them here. We do need
2726 // to track Output_section_data objects here. We store instances of
2727 // this structure in a std::vector, so it must be a POD. There can
2728 // be many instances of this structure, so we use a union to save
2729 // some space.
2730 class Input_section
2732 public:
2733 Input_section()
2734 : shndx_(0), p2align_(0)
2736 this->u1_.data_size = 0;
2737 this->u2_.object = NULL;
2740 // For an ordinary input section.
2741 Input_section(Relobj* object, unsigned int sec_shndx, off_t datasize,
2742 uint64_t addr_align)
2743 : shndx_(sec_shndx),
2744 p2align_(ffsll(static_cast<long long>(addr_align)))
2746 gold_assert(sec_shndx != OUTPUT_SECTION_CODE
2747 && sec_shndx != MERGE_DATA_SECTION_CODE
2748 && sec_shndx != MERGE_STRING_SECTION_CODE
2749 && sec_shndx != RELAXED_INPUT_SECTION_CODE);
2750 this->u1_.data_size = datasize;
2751 this->u2_.object = object;
2754 // For a non-merge output section.
2755 Input_section(Output_section_data* posd)
2756 : shndx_(OUTPUT_SECTION_CODE), p2align_(0)
2758 this->u1_.data_size = 0;
2759 this->u2_.posd = posd;
2762 // For a merge section.
2763 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
2764 : shndx_(is_string
2765 ? MERGE_STRING_SECTION_CODE
2766 : MERGE_DATA_SECTION_CODE),
2767 p2align_(0)
2769 this->u1_.entsize = entsize;
2770 this->u2_.posd = posd;
2773 // For a relaxed input section.
2774 Input_section(Output_relaxed_input_section *psection)
2775 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0)
2777 this->u1_.data_size = 0;
2778 this->u2_.poris = psection;
2781 // The required alignment.
2782 uint64_t
2783 addralign() const
2785 if (!this->is_input_section())
2786 return this->u2_.posd->addralign();
2787 return (this->p2align_ == 0
2789 : static_cast<uint64_t>(1) << (this->p2align_ - 1));
2792 // Return the required size.
2793 off_t
2794 data_size() const;
2796 // Whether this is an input section.
2797 bool
2798 is_input_section() const
2800 return (this->shndx_ != OUTPUT_SECTION_CODE
2801 && this->shndx_ != MERGE_DATA_SECTION_CODE
2802 && this->shndx_ != MERGE_STRING_SECTION_CODE
2803 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
2806 // Return whether this is a merge section which matches the
2807 // parameters.
2808 bool
2809 is_merge_section(bool is_string, uint64_t entsize,
2810 uint64_t addr_align) const
2812 return (this->shndx_ == (is_string
2813 ? MERGE_STRING_SECTION_CODE
2814 : MERGE_DATA_SECTION_CODE)
2815 && this->u1_.entsize == entsize
2816 && this->addralign() == addr_align);
2819 // Return whether this is a relaxed input section.
2820 bool
2821 is_relaxed_input_section() const
2822 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
2824 // Return whether this is a generic Output_section_data.
2825 bool
2826 is_output_section_data() const
2828 return this->shndx_ == OUTPUT_SECTION_CODE;
2831 // Return the object for an input section.
2832 Relobj*
2833 relobj() const
2835 if (this->is_input_section())
2836 return this->u2_.object;
2837 else if (this->is_relaxed_input_section())
2838 return this->u2_.poris->relobj();
2839 else
2840 gold_unreachable();
2843 // Return the input section index for an input section.
2844 unsigned int
2845 shndx() const
2847 if (this->is_input_section())
2848 return this->shndx_;
2849 else if (this->is_relaxed_input_section())
2850 return this->u2_.poris->shndx();
2851 else
2852 gold_unreachable();
2855 // For non-input-sections, return the associated Output_section_data
2856 // object.
2857 Output_section_data*
2858 output_section_data() const
2860 gold_assert(!this->is_input_section());
2861 return this->u2_.posd;
2864 // Return the Output_relaxed_input_section object.
2865 Output_relaxed_input_section*
2866 relaxed_input_section() const
2868 gold_assert(this->is_relaxed_input_section());
2869 return this->u2_.poris;
2872 // Set the output section.
2873 void
2874 set_output_section(Output_section* os)
2876 gold_assert(!this->is_input_section());
2877 Output_section_data *posd =
2878 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
2879 posd->set_output_section(os);
2882 // Set the address and file offset. This is called during
2883 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
2884 // the enclosing section.
2885 void
2886 set_address_and_file_offset(uint64_t address, off_t file_offset,
2887 off_t section_file_offset);
2889 // Reset the address and file offset.
2890 void
2891 reset_address_and_file_offset();
2893 // Finalize the data size.
2894 void
2895 finalize_data_size();
2897 // Add an input section, for SHF_MERGE sections.
2898 bool
2899 add_input_section(Relobj* object, unsigned int sec_shndx)
2901 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
2902 || this->shndx_ == MERGE_STRING_SECTION_CODE);
2903 return this->u2_.posd->add_input_section(object, sec_shndx);
2906 // Given an input OBJECT, an input section index SHNDX within that
2907 // object, and an OFFSET relative to the start of that input
2908 // section, return whether or not the output offset is known. If
2909 // this function returns true, it sets *POUTPUT to the offset in
2910 // the output section, relative to the start of the input section
2911 // in the output section. *POUTPUT may be different from OFFSET
2912 // for a merged section.
2913 bool
2914 output_offset(const Relobj* object, unsigned int shndx,
2915 section_offset_type offset,
2916 section_offset_type *poutput) const;
2918 // Return whether this is the merge section for the input section
2919 // SHNDX in OBJECT.
2920 bool
2921 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
2923 // Write out the data. This does nothing for an input section.
2924 void
2925 write(Output_file*);
2927 // Write the data to a buffer. This does nothing for an input
2928 // section.
2929 void
2930 write_to_buffer(unsigned char*);
2932 // Print to a map file.
2933 void
2934 print_to_mapfile(Mapfile*) const;
2936 // Print statistics about merge sections to stderr.
2937 void
2938 print_merge_stats(const char* section_name)
2940 if (this->shndx_ == MERGE_DATA_SECTION_CODE
2941 || this->shndx_ == MERGE_STRING_SECTION_CODE)
2942 this->u2_.posd->print_merge_stats(section_name);
2945 private:
2946 // Code values which appear in shndx_. If the value is not one of
2947 // these codes, it is the input section index in the object file.
2948 enum
2950 // An Output_section_data.
2951 OUTPUT_SECTION_CODE = -1U,
2952 // An Output_section_data for an SHF_MERGE section with
2953 // SHF_STRINGS not set.
2954 MERGE_DATA_SECTION_CODE = -2U,
2955 // An Output_section_data for an SHF_MERGE section with
2956 // SHF_STRINGS set.
2957 MERGE_STRING_SECTION_CODE = -3U,
2958 // An Output_section_data for a relaxed input section.
2959 RELAXED_INPUT_SECTION_CODE = -4U
2962 // For an ordinary input section, this is the section index in the
2963 // input file. For an Output_section_data, this is
2964 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
2965 // MERGE_STRING_SECTION_CODE.
2966 unsigned int shndx_;
2967 // The required alignment, stored as a power of 2.
2968 unsigned int p2align_;
2969 union
2971 // For an ordinary input section, the section size.
2972 off_t data_size;
2973 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
2974 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
2975 // entity size.
2976 uint64_t entsize;
2977 } u1_;
2978 union
2980 // For an ordinary input section, the object which holds the
2981 // input section.
2982 Relobj* object;
2983 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
2984 // MERGE_STRING_SECTION_CODE, the data.
2985 Output_section_data* posd;
2986 // For RELAXED_INPUT_SECTION_CODE, the data.
2987 Output_relaxed_input_section* poris;
2988 } u2_;
2991 typedef std::vector<Input_section> Input_section_list;
2993 // Allow a child class to access the input sections.
2994 const Input_section_list&
2995 input_sections() const
2996 { return this->input_sections_; }
2998 private:
2999 // We only save enough information to undo the effects of section layout.
3000 class Checkpoint_output_section
3002 public:
3003 Checkpoint_output_section(uint64_t addr_align, elfcpp::Elf_Xword sflags,
3004 const Input_section_list& sinput_sections,
3005 off_t first_input_off,
3006 bool attached_input_sections_sorted)
3007 : addralign_(addr_align), flags_(sflags),
3008 input_sections_(sinput_sections),
3009 input_sections_size_(input_sections_.size()),
3010 input_sections_copy_(), first_input_offset_(first_input_off),
3011 attached_input_sections_are_sorted_(attached_input_sections_sorted)
3014 virtual
3015 ~Checkpoint_output_section()
3018 // Return the address alignment.
3019 uint64_t
3020 addralign() const
3021 { return this->addralign_; }
3023 // Return the section flags.
3024 elfcpp::Elf_Xword
3025 flags() const
3026 { return this->flags_; }
3028 // Return a reference to the input section list copy.
3029 Input_section_list*
3030 input_sections()
3031 { return &this->input_sections_copy_; }
3033 // Return the size of input_sections at the time when checkpoint is
3034 // taken.
3035 size_t
3036 input_sections_size() const
3037 { return this->input_sections_size_; }
3039 // Whether input sections are copied.
3040 bool
3041 input_sections_saved() const
3042 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3044 off_t
3045 first_input_offset() const
3046 { return this->first_input_offset_; }
3048 bool
3049 attached_input_sections_are_sorted() const
3050 { return this->attached_input_sections_are_sorted_; }
3052 // Save input sections.
3053 void
3054 save_input_sections()
3056 this->input_sections_copy_.reserve(this->input_sections_size_);
3057 this->input_sections_copy_.clear();
3058 Input_section_list::const_iterator p = this->input_sections_.begin();
3059 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3060 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3061 this->input_sections_copy_.push_back(*p);
3064 private:
3065 // The section alignment.
3066 uint64_t addralign_;
3067 // The section flags.
3068 elfcpp::Elf_Xword flags_;
3069 // Reference to the input sections to be checkpointed.
3070 const Input_section_list& input_sections_;
3071 // Size of the checkpointed portion of input_sections_;
3072 size_t input_sections_size_;
3073 // Copy of input sections.
3074 Input_section_list input_sections_copy_;
3075 // The offset of the first entry in input_sections_.
3076 off_t first_input_offset_;
3077 // True if the input sections attached to this output section have
3078 // already been sorted.
3079 bool attached_input_sections_are_sorted_;
3082 // This class is used to sort the input sections.
3083 class Input_section_sort_entry;
3085 // This is the sort comparison function.
3086 struct Input_section_sort_compare
3088 bool
3089 operator()(const Input_section_sort_entry&,
3090 const Input_section_sort_entry&) const;
3093 // Fill data. This is used to fill in data between input sections.
3094 // It is also used for data statements (BYTE, WORD, etc.) in linker
3095 // scripts. When we have to keep track of the input sections, we
3096 // can use an Output_data_const, but we don't want to have to keep
3097 // track of input sections just to implement fills.
3098 class Fill
3100 public:
3101 Fill(off_t section_off, off_t len)
3102 : section_offset_(section_off),
3103 length_(convert_to_section_size_type(len))
3106 // Return section offset.
3107 off_t
3108 section_offset() const
3109 { return this->section_offset_; }
3111 // Return fill length.
3112 section_size_type
3113 length() const
3114 { return this->length_; }
3116 private:
3117 // The offset within the output section.
3118 off_t section_offset_;
3119 // The length of the space to fill.
3120 section_size_type length_;
3123 typedef std::vector<Fill> Fill_list;
3125 // This class describes properties of merge data sections. It is used
3126 // as a key type for maps.
3127 class Merge_section_properties
3129 public:
3130 Merge_section_properties(bool is_string, uint64_t entsize,
3131 uint64_t addralign)
3132 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
3135 // Whether this equals to another Merge_section_properties MSP.
3136 bool
3137 eq(const Merge_section_properties& msp) const
3139 return ((this->is_string_ == msp.is_string_)
3140 && (this->entsize_ == msp.entsize_)
3141 && (this->addralign_ == msp.addralign_));
3144 // Compute a hash value for this using 64-bit FNV-1a hash.
3145 size_t
3146 hash_value() const
3148 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
3149 uint64_t prime = 1099511628211ULL;
3150 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
3151 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
3152 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
3153 return h;
3156 // Functors for associative containers.
3157 struct equal_to
3159 bool
3160 operator()(const Merge_section_properties& msp1,
3161 const Merge_section_properties& msp2) const
3162 { return msp1.eq(msp2); }
3165 struct hash
3167 size_t
3168 operator()(const Merge_section_properties& msp) const
3169 { return msp.hash_value(); }
3172 private:
3173 // Whether this merge data section is for strings.
3174 bool is_string_;
3175 // Entsize of this merge data section.
3176 uint64_t entsize_;
3177 // Address alignment.
3178 uint64_t addralign_;
3181 // Map that link Merge_section_properties to Output_merge_base.
3182 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
3183 Merge_section_properties::hash,
3184 Merge_section_properties::equal_to>
3185 Merge_section_by_properties_map;
3187 // Map that link Input_section_specifier to Output_section_data.
3188 typedef Unordered_map<Input_section_specifier, Output_section_data*,
3189 Input_section_specifier::hash,
3190 Input_section_specifier::equal_to>
3191 Output_section_data_by_input_section_map;
3193 // Map used during relaxation of existing sections. This map
3194 // an input section specifier to an input section list index.
3195 // We assume that Input_section_list is a vector.
3196 typedef Unordered_map<Input_section_specifier, size_t,
3197 Input_section_specifier::hash,
3198 Input_section_specifier::equal_to>
3199 Relaxation_map;
3201 // Add a new output section by Input_section.
3202 void
3203 add_output_section_data(Input_section*);
3205 // Add an SHF_MERGE input section. Returns true if the section was
3206 // handled.
3207 bool
3208 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3209 uint64_t entsize, uint64_t addralign);
3211 // Add an output SHF_MERGE section POSD to this output section.
3212 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3213 // ENTSIZE is the entity size. This returns the entry added to
3214 // input_sections_.
3215 void
3216 add_output_merge_section(Output_section_data* posd, bool is_string,
3217 uint64_t entsize);
3219 // Sort the attached input sections.
3220 void
3221 sort_attached_input_sections();
3223 // Find the merge section into which an input section with index SHNDX in
3224 // OBJECT has been added. Return NULL if none found.
3225 Output_section_data*
3226 find_merge_section(const Relobj* object, unsigned int shndx) const;
3228 // Build a relaxation map.
3229 void
3230 build_relaxation_map(
3231 const Input_section_list& input_sections,
3232 size_t limit,
3233 Relaxation_map* map) const;
3235 // Convert input sections in an input section list into relaxed sections.
3236 void
3237 convert_input_sections_in_list_to_relaxed_sections(
3238 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3239 const Relaxation_map& map,
3240 Input_section_list* input_sections);
3242 // Most of these fields are only valid after layout.
3244 // The name of the section. This will point into a Stringpool.
3245 const char* name_;
3246 // The section address is in the parent class.
3247 // The section alignment.
3248 uint64_t addralign_;
3249 // The section entry size.
3250 uint64_t entsize_;
3251 // The load address. This is only used when using a linker script
3252 // with a SECTIONS clause. The has_load_address_ field indicates
3253 // whether this field is valid.
3254 uint64_t load_address_;
3255 // The file offset is in the parent class.
3256 // Set the section link field to the index of this section.
3257 const Output_data* link_section_;
3258 // If link_section_ is NULL, this is the link field.
3259 unsigned int link_;
3260 // Set the section info field to the index of this section.
3261 const Output_section* info_section_;
3262 // If info_section_ is NULL, set the info field to the symbol table
3263 // index of this symbol.
3264 const Symbol* info_symndx_;
3265 // If info_section_ and info_symndx_ are NULL, this is the section
3266 // info field.
3267 unsigned int info_;
3268 // The section type.
3269 const elfcpp::Elf_Word type_;
3270 // The section flags.
3271 elfcpp::Elf_Xword flags_;
3272 // The section index.
3273 unsigned int out_shndx_;
3274 // If there is a STT_SECTION for this output section in the normal
3275 // symbol table, this is the symbol index. This starts out as zero.
3276 // It is initialized in Layout::finalize() to be the index, or -1U
3277 // if there isn't one.
3278 unsigned int symtab_index_;
3279 // If there is a STT_SECTION for this output section in the dynamic
3280 // symbol table, this is the symbol index. This starts out as zero.
3281 // It is initialized in Layout::finalize() to be the index, or -1U
3282 // if there isn't one.
3283 unsigned int dynsym_index_;
3284 // The input sections. This will be empty in cases where we don't
3285 // need to keep track of them.
3286 Input_section_list input_sections_;
3287 // The offset of the first entry in input_sections_.
3288 off_t first_input_offset_;
3289 // The fill data. This is separate from input_sections_ because we
3290 // often will need fill sections without needing to keep track of
3291 // input sections.
3292 Fill_list fills_;
3293 // If the section requires postprocessing, this buffer holds the
3294 // section contents during relocation.
3295 unsigned char* postprocessing_buffer_;
3296 // Whether this output section needs a STT_SECTION symbol in the
3297 // normal symbol table. This will be true if there is a relocation
3298 // which needs it.
3299 bool needs_symtab_index_ : 1;
3300 // Whether this output section needs a STT_SECTION symbol in the
3301 // dynamic symbol table. This will be true if there is a dynamic
3302 // relocation which needs it.
3303 bool needs_dynsym_index_ : 1;
3304 // Whether the link field of this output section should point to the
3305 // normal symbol table.
3306 bool should_link_to_symtab_ : 1;
3307 // Whether the link field of this output section should point to the
3308 // dynamic symbol table.
3309 bool should_link_to_dynsym_ : 1;
3310 // Whether this section should be written after all the input
3311 // sections are complete.
3312 bool after_input_sections_ : 1;
3313 // Whether this section requires post processing after all
3314 // relocations have been applied.
3315 bool requires_postprocessing_ : 1;
3316 // Whether an input section was mapped to this output section
3317 // because of a SECTIONS clause in a linker script.
3318 bool found_in_sections_clause_ : 1;
3319 // Whether this section has an explicitly specified load address.
3320 bool has_load_address_ : 1;
3321 // True if the info_section_ field means the section index of the
3322 // section, false if it means the symbol index of the corresponding
3323 // section symbol.
3324 bool info_uses_section_index_ : 1;
3325 // True if the input sections attached to this output section may
3326 // need sorting.
3327 bool may_sort_attached_input_sections_ : 1;
3328 // True if the input sections attached to this output section must
3329 // be sorted.
3330 bool must_sort_attached_input_sections_ : 1;
3331 // True if the input sections attached to this output section have
3332 // already been sorted.
3333 bool attached_input_sections_are_sorted_ : 1;
3334 // True if this section holds relro data.
3335 bool is_relro_ : 1;
3336 // True if this section holds relro local data.
3337 bool is_relro_local_ : 1;
3338 // True if this is a small section.
3339 bool is_small_section_ : 1;
3340 // True if this is a large section.
3341 bool is_large_section_ : 1;
3342 // True if this is the .interp section going into the PT_INTERP
3343 // segment.
3344 bool is_interp_ : 1;
3345 // True if this is section is read by the dynamic linker.
3346 bool is_dynamic_linker_section_ : 1;
3347 // Whether code-fills are generated at write.
3348 bool generate_code_fills_at_write_ : 1;
3349 // For SHT_TLS sections, the offset of this section relative to the base
3350 // of the TLS segment.
3351 uint64_t tls_offset_;
3352 // Saved checkpoint.
3353 Checkpoint_output_section* checkpoint_;
3354 // Map from input sections to merge sections.
3355 Output_section_data_by_input_section_map merge_section_map_;
3356 // Map from merge section properties to merge_sections;
3357 Merge_section_by_properties_map merge_section_by_properties_map_;
3358 // Map from input sections to relaxed input sections. This is mutable
3359 // because it is updated lazily. We may need to update it in a
3360 // const qualified method.
3361 mutable Output_section_data_by_input_section_map relaxed_input_section_map_;
3362 // Whether relaxed_input_section_map_ is valid.
3363 mutable bool is_relaxed_input_section_map_valid_;
3366 // An output segment. PT_LOAD segments are built from collections of
3367 // output sections. Other segments typically point within PT_LOAD
3368 // segments, and are built directly as needed.
3370 // NOTE: We want to use the copy constructor for this class. During
3371 // relaxation, we may try built the segments multiple times. We do
3372 // that by copying the original segment list before lay-out, doing
3373 // a trial lay-out and roll-back to the saved copied if we need to
3374 // to the lay-out again.
3376 class Output_segment
3378 public:
3379 // Create an output segment, specifying the type and flags.
3380 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
3382 // Return the virtual address.
3383 uint64_t
3384 vaddr() const
3385 { return this->vaddr_; }
3387 // Return the physical address.
3388 uint64_t
3389 paddr() const
3390 { return this->paddr_; }
3392 // Return the segment type.
3393 elfcpp::Elf_Word
3394 type() const
3395 { return this->type_; }
3397 // Return the segment flags.
3398 elfcpp::Elf_Word
3399 flags() const
3400 { return this->flags_; }
3402 // Return the memory size.
3403 uint64_t
3404 memsz() const
3405 { return this->memsz_; }
3407 // Return the file size.
3408 off_t
3409 filesz() const
3410 { return this->filesz_; }
3412 // Return the file offset.
3413 off_t
3414 offset() const
3415 { return this->offset_; }
3417 // Whether this is a segment created to hold large data sections.
3418 bool
3419 is_large_data_segment() const
3420 { return this->is_large_data_segment_; }
3422 // Record that this is a segment created to hold large data
3423 // sections.
3424 void
3425 set_is_large_data_segment()
3426 { this->is_large_data_segment_ = true; }
3428 // Return the maximum alignment of the Output_data.
3429 uint64_t
3430 maximum_alignment();
3432 // Add the Output_section OS to this segment. SEG_FLAGS is the
3433 // segment flags to use. DO_SORT is true if we should sort the
3434 // placement of the input section for more efficient generated code.
3435 void
3436 add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags,
3437 bool do_sort);
3439 // Remove an Output_section from this segment. It is an error if it
3440 // is not present.
3441 void
3442 remove_output_section(Output_section* os);
3444 // Add an Output_data (which is not an Output_section) to the start
3445 // of this segment.
3446 void
3447 add_initial_output_data(Output_data*);
3449 // Return true if this segment has any sections which hold actual
3450 // data, rather than being a BSS section.
3451 bool
3452 has_any_data_sections() const
3453 { return !this->output_data_.empty(); }
3455 // Return the number of dynamic relocations applied to this segment.
3456 unsigned int
3457 dynamic_reloc_count() const;
3459 // Return the address of the first section.
3460 uint64_t
3461 first_section_load_address() const;
3463 // Return whether the addresses have been set already.
3464 bool
3465 are_addresses_set() const
3466 { return this->are_addresses_set_; }
3468 // Set the addresses.
3469 void
3470 set_addresses(uint64_t v_addr, uint64_t p_addr)
3472 this->vaddr_ = v_addr;
3473 this->paddr_ = p_addr;
3474 this->are_addresses_set_ = true;
3477 // Set the segment flags. This is only used if we have a PHDRS
3478 // clause which explicitly specifies the flags.
3479 void
3480 set_flags(elfcpp::Elf_Word seg_flags)
3481 { this->flags_ = seg_flags; }
3483 // Set the address of the segment to ADDR and the offset to *POFF
3484 // and set the addresses and offsets of all contained output
3485 // sections accordingly. Set the section indexes of all contained
3486 // output sections starting with *PSHNDX. If RESET is true, first
3487 // reset the addresses of the contained sections. Return the
3488 // address of the immediately following segment. Update *POFF and
3489 // *PSHNDX. This should only be called for a PT_LOAD segment.
3490 uint64_t
3491 set_section_addresses(const Layout*, bool reset, uint64_t addr, off_t* poff,
3492 unsigned int* pshndx);
3494 // Set the minimum alignment of this segment. This may be adjusted
3495 // upward based on the section alignments.
3496 void
3497 set_minimum_p_align(uint64_t align)
3498 { this->min_p_align_ = align; }
3500 // Set the offset of this segment based on the section. This should
3501 // only be called for a non-PT_LOAD segment.
3502 void
3503 set_offset();
3505 // Set the TLS offsets of the sections contained in the PT_TLS segment.
3506 void
3507 set_tls_offsets();
3509 // Return the number of output sections.
3510 unsigned int
3511 output_section_count() const;
3513 // Return the section attached to the list segment with the lowest
3514 // load address. This is used when handling a PHDRS clause in a
3515 // linker script.
3516 Output_section*
3517 section_with_lowest_load_address() const;
3519 // Write the segment header into *OPHDR.
3520 template<int size, bool big_endian>
3521 void
3522 write_header(elfcpp::Phdr_write<size, big_endian>*);
3524 // Write the section headers of associated sections into V.
3525 template<int size, bool big_endian>
3526 unsigned char*
3527 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
3528 unsigned int* pshndx) const;
3530 // Print the output sections in the map file.
3531 void
3532 print_sections_to_mapfile(Mapfile*) const;
3534 private:
3535 typedef std::list<Output_data*> Output_data_list;
3537 // Find the maximum alignment in an Output_data_list.
3538 static uint64_t
3539 maximum_alignment_list(const Output_data_list*);
3541 // Return whether the first data section is a relro section.
3542 bool
3543 is_first_section_relro() const;
3545 // Set the section addresses in an Output_data_list.
3546 uint64_t
3547 set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
3548 uint64_t addr, off_t* poff, unsigned int* pshndx,
3549 bool* in_tls, bool* in_relro);
3551 // Return the number of Output_sections in an Output_data_list.
3552 unsigned int
3553 output_section_count_list(const Output_data_list*) const;
3555 // Return the number of dynamic relocs in an Output_data_list.
3556 unsigned int
3557 dynamic_reloc_count_list(const Output_data_list*) const;
3559 // Find the section with the lowest load address in an
3560 // Output_data_list.
3561 void
3562 lowest_load_address_in_list(const Output_data_list* pdl,
3563 Output_section** found,
3564 uint64_t* found_lma) const;
3566 // Write the section headers in the list into V.
3567 template<int size, bool big_endian>
3568 unsigned char*
3569 write_section_headers_list(const Layout*, const Stringpool*,
3570 const Output_data_list*, unsigned char* v,
3571 unsigned int* pshdx) const;
3573 // Print a section list to the mapfile.
3574 void
3575 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
3577 // NOTE: We want to use the copy constructor. Currently, shallow copy
3578 // works for us so we do not need to write our own copy constructor.
3580 // The list of output data with contents attached to this segment.
3581 Output_data_list output_data_;
3582 // The list of output data without contents attached to this segment.
3583 Output_data_list output_bss_;
3584 // The segment virtual address.
3585 uint64_t vaddr_;
3586 // The segment physical address.
3587 uint64_t paddr_;
3588 // The size of the segment in memory.
3589 uint64_t memsz_;
3590 // The maximum section alignment. The is_max_align_known_ field
3591 // indicates whether this has been finalized.
3592 uint64_t max_align_;
3593 // The required minimum value for the p_align field. This is used
3594 // for PT_LOAD segments. Note that this does not mean that
3595 // addresses should be aligned to this value; it means the p_paddr
3596 // and p_vaddr fields must be congruent modulo this value. For
3597 // non-PT_LOAD segments, the dynamic linker works more efficiently
3598 // if the p_align field has the more conventional value, although it
3599 // can align as needed.
3600 uint64_t min_p_align_;
3601 // The offset of the segment data within the file.
3602 off_t offset_;
3603 // The size of the segment data in the file.
3604 off_t filesz_;
3605 // The segment type;
3606 elfcpp::Elf_Word type_;
3607 // The segment flags.
3608 elfcpp::Elf_Word flags_;
3609 // Whether we have finalized max_align_.
3610 bool is_max_align_known_ : 1;
3611 // Whether vaddr and paddr were set by a linker script.
3612 bool are_addresses_set_ : 1;
3613 // Whether this segment holds large data sections.
3614 bool is_large_data_segment_ : 1;
3617 // This class represents the output file.
3619 class Output_file
3621 public:
3622 Output_file(const char* name);
3624 // Indicate that this is a temporary file which should not be
3625 // output.
3626 void
3627 set_is_temporary()
3628 { this->is_temporary_ = true; }
3630 // Try to open an existing file. Returns false if the file doesn't
3631 // exist, has a size of 0 or can't be mmaped. This method is
3632 // thread-unsafe.
3633 bool
3634 open_for_modification();
3636 // Open the output file. FILE_SIZE is the final size of the file.
3637 // If the file already exists, it is deleted/truncated. This method
3638 // is thread-unsafe.
3639 void
3640 open(off_t file_size);
3642 // Resize the output file. This method is thread-unsafe.
3643 void
3644 resize(off_t file_size);
3646 // Close the output file (flushing all buffered data) and make sure
3647 // there are no errors. This method is thread-unsafe.
3648 void
3649 close();
3651 // Return the size of this file.
3652 off_t
3653 filesize()
3654 { return this->file_size_; }
3656 // Return the name of this file.
3657 const char*
3658 filename()
3659 { return this->name_; }
3661 // We currently always use mmap which makes the view handling quite
3662 // simple. In the future we may support other approaches.
3664 // Write data to the output file.
3665 void
3666 write(off_t offset, const void* data, size_t len)
3667 { memcpy(this->base_ + offset, data, len); }
3669 // Get a buffer to use to write to the file, given the offset into
3670 // the file and the size.
3671 unsigned char*
3672 get_output_view(off_t start, size_t size)
3674 gold_assert(start >= 0
3675 && start + static_cast<off_t>(size) <= this->file_size_);
3676 return this->base_ + start;
3679 // VIEW must have been returned by get_output_view. Write the
3680 // buffer to the file, passing in the offset and the size.
3681 void
3682 write_output_view(off_t, size_t, unsigned char*)
3685 // Get a read/write buffer. This is used when we want to write part
3686 // of the file, read it in, and write it again.
3687 unsigned char*
3688 get_input_output_view(off_t start, size_t size)
3689 { return this->get_output_view(start, size); }
3691 // Write a read/write buffer back to the file.
3692 void
3693 write_input_output_view(off_t, size_t, unsigned char*)
3696 // Get a read buffer. This is used when we just want to read part
3697 // of the file back it in.
3698 const unsigned char*
3699 get_input_view(off_t start, size_t size)
3700 { return this->get_output_view(start, size); }
3702 // Release a read bfufer.
3703 void
3704 free_input_view(off_t, size_t, const unsigned char*)
3707 private:
3708 // Map the file into memory or, if that fails, allocate anonymous
3709 // memory.
3710 void
3711 map();
3713 // Allocate anonymous memory for the file.
3714 bool
3715 map_anonymous();
3717 // Map the file into memory.
3718 bool
3719 map_no_anonymous();
3721 // Unmap the file from memory (and flush to disk buffers).
3722 void
3723 unmap();
3725 // File name.
3726 const char* name_;
3727 // File descriptor.
3728 int o_;
3729 // File size.
3730 off_t file_size_;
3731 // Base of file mapped into memory.
3732 unsigned char* base_;
3733 // True iff base_ points to a memory buffer rather than an output file.
3734 bool map_is_anonymous_;
3735 // True if this is a temporary file which should not be output.
3736 bool is_temporary_;
3739 } // End namespace gold.
3741 #endif // !defined(GOLD_OUTPUT_H)