* elf32-spu.c (build_stub): Fix malloc under-allocation.
[binutils.git] / gold / output.h
blob838ca3d4dd6c113bb27df26a6088cfeeda585f55
1 // output.h -- manage the output file for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
26 #include <list>
27 #include <vector>
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
34 namespace gold
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
52 // An abtract class for data which has to go into the output file.
54 class Output_data
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
64 virtual
65 ~Output_data();
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
72 gold_assert(this->is_address_valid_);
73 return this->address_;
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
120 bool
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
124 // Return the required alignment.
125 uint64_t
126 addralign() const
127 { return this->do_addralign(); }
129 // Return whether this has a load address.
130 bool
131 has_load_address() const
132 { return this->do_has_load_address(); }
134 // Return the load address.
135 uint64_t
136 load_address() const
137 { return this->do_load_address(); }
139 // Return whether this is an Output_section.
140 bool
141 is_section() const
142 { return this->do_is_section(); }
144 // Return whether this is an Output_section of the specified type.
145 bool
146 is_section_type(elfcpp::Elf_Word stt) const
147 { return this->do_is_section_type(stt); }
149 // Return whether this is an Output_section with the specified flag
150 // set.
151 bool
152 is_section_flag_set(elfcpp::Elf_Xword shf) const
153 { return this->do_is_section_flag_set(shf); }
155 // Return the output section that this goes in, if there is one.
156 Output_section*
157 output_section()
158 { return this->do_output_section(); }
160 const Output_section*
161 output_section() const
162 { return this->do_output_section(); }
164 // Return the output section index, if there is an output section.
165 unsigned int
166 out_shndx() const
167 { return this->do_out_shndx(); }
169 // Set the output section index, if this is an output section.
170 void
171 set_out_shndx(unsigned int shndx)
172 { this->do_set_out_shndx(shndx); }
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
177 void
178 set_address_and_file_offset(uint64_t addr, off_t off)
180 this->set_address(addr);
181 this->set_file_offset(off);
182 this->finalize_data_size();
185 // Set the address.
186 void
187 set_address(uint64_t addr)
189 gold_assert(!this->is_address_valid_);
190 this->address_ = addr;
191 this->is_address_valid_ = true;
194 // Set the file offset.
195 void
196 set_file_offset(off_t off)
198 gold_assert(!this->is_offset_valid_);
199 this->offset_ = off;
200 this->is_offset_valid_ = true;
203 // Update the data size without finalizing it.
204 void
205 pre_finalize_data_size()
207 if (!this->is_data_size_valid_)
209 // Tell the child class to update the data size.
210 this->update_data_size();
214 // Finalize the data size.
215 void
216 finalize_data_size()
218 if (!this->is_data_size_valid_)
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_);
226 // Set the TLS offset. Called only for SHT_TLS sections.
227 void
228 set_tls_offset(uint64_t tls_base)
229 { this->do_set_tls_offset(tls_base); }
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
233 uint64_t
234 tls_offset() const
235 { return this->do_tls_offset(); }
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
239 void
240 write(Output_file* file)
241 { this->do_write(file); }
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
245 static void
246 layout_complete()
247 { Output_data::allocated_sizes_are_fixed = true; }
249 // Used to check that layout has been done.
250 static bool
251 is_layout_complete()
252 { return Output_data::allocated_sizes_are_fixed; }
254 // Note that a dynamic reloc has been applied to this data.
255 void
256 add_dynamic_reloc()
257 { this->has_dynamic_reloc_ = true; }
259 // Return whether a dynamic reloc has been applied.
260 bool
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_; }
264 // Whether the address is valid.
265 bool
266 is_address_valid() const
267 { return this->is_address_valid_; }
269 // Whether the file offset is valid.
270 bool
271 is_offset_valid() const
272 { return this->is_offset_valid_; }
274 // Whether the data size is valid.
275 bool
276 is_data_size_valid() const
277 { return this->is_data_size_valid_; }
279 // Print information to the map file.
280 void
281 print_to_mapfile(Mapfile* mapfile) const
282 { return this->do_print_to_mapfile(mapfile); }
284 protected:
285 // Functions that child classes may or in some cases must implement.
287 // Write the data to the output file.
288 virtual void
289 do_write(Output_file*) = 0;
291 // Return the required alignment.
292 virtual uint64_t
293 do_addralign() const = 0;
295 // Return whether this has a load address.
296 virtual bool
297 do_has_load_address() const
298 { return false; }
300 // Return the load address.
301 virtual uint64_t
302 do_load_address() const
303 { gold_unreachable(); }
305 // Return whether this is an Output_section.
306 virtual bool
307 do_is_section() const
308 { return false; }
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
312 virtual bool
313 do_is_section_type(elfcpp::Elf_Word) const
314 { return false; }
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
318 virtual bool
319 do_is_section_flag_set(elfcpp::Elf_Xword) const
320 { return false; }
322 // Return the output section, if there is one.
323 virtual Output_section*
324 do_output_section()
325 { return NULL; }
327 virtual const Output_section*
328 do_output_section() const
329 { return NULL; }
331 // Return the output section index, if there is an output section.
332 virtual unsigned int
333 do_out_shndx() const
334 { gold_unreachable(); }
336 // Set the output section index, if this is an output section.
337 virtual void
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
348 virtual void
349 update_data_size()
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
355 virtual void
356 set_final_data_size()
357 { gold_unreachable(); }
359 // A hook for resetting the address and file offset.
360 virtual void
361 do_reset_address_and_file_offset()
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
368 virtual bool
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_ && !this->is_offset_valid_; }
372 // Set the TLS offset. Called only for SHT_TLS sections.
373 virtual void
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
379 virtual uint64_t
380 do_tls_offset() const
381 { gold_unreachable(); }
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
385 virtual void
386 do_print_to_mapfile(Mapfile*) const
387 { gold_unreachable(); }
389 // Functions that child classes may call.
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
394 void
395 mark_address_invalid()
396 { this->is_address_valid_ = false; }
398 // Set the size of the data.
399 void
400 set_data_size(off_t data_size)
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_);
404 this->data_size_ = data_size;
405 this->is_data_size_valid_ = true;
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
410 void
411 fix_data_size()
413 gold_assert(this->is_data_size_valid_);
414 this->is_data_size_fixed_ = true;
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
419 off_t
420 current_data_size_for_child() const
421 { return this->data_size_; }
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
425 void
426 set_current_data_size_for_child(off_t data_size)
428 gold_assert(!this->is_data_size_valid_);
429 this->data_size_ = data_size;
432 // Return default alignment for the target size.
433 static uint64_t
434 default_alignment();
436 // Return default alignment for a specified size--32 or 64.
437 static uint64_t
438 default_alignment_for_size(int size);
440 private:
441 Output_data(const Output_data&);
442 Output_data& operator=(const Output_data&);
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
446 // addresses.
447 static bool allocated_sizes_are_fixed;
449 // Memory address in output file.
450 uint64_t address_;
451 // Size of data in output file.
452 off_t data_size_;
453 // File offset of contents in output file.
454 off_t offset_;
455 // Whether address_ is valid.
456 bool is_address_valid_ : 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_ : 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_ : 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_ : 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_ : 1;
467 // Output the section headers.
469 class Output_section_headers : public Output_data
471 public:
472 Output_section_headers(const Layout*,
473 const Layout::Segment_list*,
474 const Layout::Section_list*,
475 const Layout::Section_list*,
476 const Stringpool*,
477 const Output_section*);
479 protected:
480 // Write the data to the file.
481 void
482 do_write(Output_file*);
484 // Return the required alignment.
485 uint64_t
486 do_addralign() const
487 { return Output_data::default_alignment(); }
489 // Write to a map file.
490 void
491 do_print_to_mapfile(Mapfile* mapfile) const
492 { mapfile->print_output_data(this, _("** section headers")); }
494 // Update the data size.
495 void
496 update_data_size()
497 { this->set_data_size(this->do_size()); }
499 // Set final data size.
500 void
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
504 private:
505 // Write the data to the file with the right size and endianness.
506 template<int size, bool big_endian>
507 void
508 do_sized_write(Output_file*);
510 // Compute data size.
511 off_t
512 do_size() const;
514 const Layout* layout_;
515 const Layout::Segment_list* segment_list_;
516 const Layout::Section_list* section_list_;
517 const Layout::Section_list* unattached_section_list_;
518 const Stringpool* secnamepool_;
519 const Output_section* shstrtab_section_;
522 // Output the segment headers.
524 class Output_segment_headers : public Output_data
526 public:
527 Output_segment_headers(const Layout::Segment_list& segment_list);
529 protected:
530 // Write the data to the file.
531 void
532 do_write(Output_file*);
534 // Return the required alignment.
535 uint64_t
536 do_addralign() const
537 { return Output_data::default_alignment(); }
539 // Write to a map file.
540 void
541 do_print_to_mapfile(Mapfile* mapfile) const
542 { mapfile->print_output_data(this, _("** segment headers")); }
544 // Set final data size.
545 void
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
549 private:
550 // Write the data to the file with the right size and endianness.
551 template<int size, bool big_endian>
552 void
553 do_sized_write(Output_file*);
555 // Compute the current size.
556 off_t
557 do_size() const;
559 const Layout::Segment_list& segment_list_;
562 // Output the ELF file header.
564 class Output_file_header : public Output_data
566 public:
567 Output_file_header(const Target*,
568 const Symbol_table*,
569 const Output_segment_headers*);
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers*,
574 const Output_section* shstrtab);
576 protected:
577 // Write the data to the file.
578 void
579 do_write(Output_file*);
581 // Return the required alignment.
582 uint64_t
583 do_addralign() const
584 { return Output_data::default_alignment(); }
586 // Write to a map file.
587 void
588 do_print_to_mapfile(Mapfile* mapfile) const
589 { mapfile->print_output_data(this, _("** file header")); }
591 // Set final data size.
592 void
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
596 private:
597 // Write the data to the file with the right size and endianness.
598 template<int size, bool big_endian>
599 void
600 do_sized_write(Output_file*);
602 // Return the value to use for the entry address.
603 template<int size>
604 typename elfcpp::Elf_types<size>::Elf_Addr
605 entry();
607 // Compute the current data size.
608 off_t
609 do_size() const;
611 const Target* target_;
612 const Symbol_table* symtab_;
613 const Output_segment_headers* segment_header_;
614 const Output_section_headers* section_header_;
615 const Output_section* shstrtab_;
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
623 class Output_section_data : public Output_data
625 public:
626 Output_section_data(off_t data_size, uint64_t addralign,
627 bool is_data_size_fixed)
628 : Output_data(), output_section_(NULL), addralign_(addralign)
630 this->set_data_size(data_size);
631 if (is_data_size_fixed)
632 this->fix_data_size();
635 Output_section_data(uint64_t addralign)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
639 // Return the output section.
640 Output_section*
641 output_section()
642 { return this->output_section_; }
644 const Output_section*
645 output_section() const
646 { return this->output_section_; }
648 // Record the output section.
649 void
650 set_output_section(Output_section* os);
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
654 bool
655 add_input_section(Relobj* object, unsigned int shndx)
656 { return this->do_add_input_section(object, shndx); }
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
664 bool
665 output_offset(const Relobj* object, unsigned int shndx,
666 section_offset_type offset,
667 section_offset_type* poutput) const
668 { return this->do_output_offset(object, shndx, offset, poutput); }
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
673 bool
674 is_merge_section_for(const Relobj* object, unsigned int shndx) const
675 { return this->do_is_merge_section_for(object, shndx); }
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
679 void
680 write_to_buffer(unsigned char* buffer)
681 { this->do_write_to_buffer(buffer); }
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
685 void
686 print_merge_stats(const char* section_name)
687 { this->do_print_merge_stats(section_name); }
689 protected:
690 // The child class must implement do_write.
692 // The child class may implement specific adjustments to the output
693 // section.
694 virtual void
695 do_adjust_output_section(Output_section*)
698 // May be implemented by child class. Return true if the section
699 // was handled.
700 virtual bool
701 do_add_input_section(Relobj*, unsigned int)
702 { gold_unreachable(); }
704 // The child class may implement output_offset.
705 virtual bool
706 do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 section_offset_type*) const
708 { return false; }
710 // The child class may implement is_merge_section_for.
711 virtual bool
712 do_is_merge_section_for(const Relobj*, unsigned int) const
713 { return false; }
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
717 // implement this.
718 virtual void
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
722 // Print merge statistics.
723 virtual void
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
727 // Return the required alignment.
728 uint64_t
729 do_addralign() const
730 { return this->addralign_; }
732 // Return the output section.
733 Output_section*
734 do_output_section()
735 { return this->output_section_; }
737 const Output_section*
738 do_output_section() const
739 { return this->output_section_; }
741 // Return the section index of the output section.
742 unsigned int
743 do_out_shndx() const;
745 // Set the alignment.
746 void
747 set_addralign(uint64_t addralign);
749 private:
750 // The output section for this section.
751 Output_section* output_section_;
752 // The required alignment.
753 uint64_t addralign_;
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
758 // them.
760 class Output_section_data_build : public Output_section_data
762 public:
763 Output_section_data_build(uint64_t addralign)
764 : Output_section_data(addralign)
767 Output_section_data_build(off_t data_size, uint64_t addralign)
768 : Output_section_data(data_size, addralign, false)
771 // Set the current data size.
772 void
773 set_current_data_size(off_t data_size)
774 { this->set_current_data_size_for_child(data_size); }
776 protected:
777 // Set the final data size.
778 virtual void
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
783 // A simple case of Output_data in which we have constant data to
784 // output.
786 class Output_data_const : public Output_section_data
788 public:
789 Output_data_const(const std::string& data, uint64_t addralign)
790 : Output_section_data(data.size(), addralign, true), data_(data)
793 Output_data_const(const char* p, off_t len, uint64_t addralign)
794 : Output_section_data(len, addralign, true), data_(p, len)
797 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798 : Output_section_data(len, addralign, true),
799 data_(reinterpret_cast<const char*>(p), len)
802 protected:
803 // Write the data to the output file.
804 void
805 do_write(Output_file*);
807 // Write the data to a buffer.
808 void
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->data_.data(), this->data_.size()); }
812 // Write to a map file.
813 void
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _("** fill")); }
817 private:
818 std::string data_;
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
824 class Output_data_const_buffer : public Output_section_data
826 public:
827 Output_data_const_buffer(const unsigned char* p, off_t len,
828 uint64_t addralign, const char* map_name)
829 : Output_section_data(len, addralign, true),
830 p_(p), map_name_(map_name)
833 protected:
834 // Write the data the output file.
835 void
836 do_write(Output_file*);
838 // Write the data to a buffer.
839 void
840 do_write_to_buffer(unsigned char* buffer)
841 { memcpy(buffer, this->p_, this->data_size()); }
843 // Write to a map file.
844 void
845 do_print_to_mapfile(Mapfile* mapfile) const
846 { mapfile->print_output_data(this, _(this->map_name_)); }
848 private:
849 // The data to output.
850 const unsigned char* p_;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_;
856 // A place holder for a fixed amount of data written out via some
857 // other mechanism.
859 class Output_data_fixed_space : public Output_section_data
861 public:
862 Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 const char* map_name)
864 : Output_section_data(data_size, addralign, true),
865 map_name_(map_name)
868 protected:
869 // Write out the data--the actual data must be written out
870 // elsewhere.
871 void
872 do_write(Output_file*)
875 // Write to a map file.
876 void
877 do_print_to_mapfile(Mapfile* mapfile) const
878 { mapfile->print_output_data(this, _(this->map_name_)); }
880 private:
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_;
886 // A place holder for variable sized data written out via some other
887 // mechanism.
889 class Output_data_space : public Output_section_data_build
891 public:
892 explicit Output_data_space(uint64_t addralign, const char* map_name)
893 : Output_section_data_build(addralign),
894 map_name_(map_name)
897 explicit Output_data_space(off_t data_size, uint64_t addralign,
898 const char* map_name)
899 : Output_section_data_build(data_size, addralign),
900 map_name_(map_name)
903 // Set the alignment.
904 void
905 set_space_alignment(uint64_t align)
906 { this->set_addralign(align); }
908 protected:
909 // Write out the data--the actual data must be written out
910 // elsewhere.
911 void
912 do_write(Output_file*)
915 // Write to a map file.
916 void
917 do_print_to_mapfile(Mapfile* mapfile) const
918 { mapfile->print_output_data(this, _(this->map_name_)); }
920 private:
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_;
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
929 class Output_data_zero_fill : public Output_section_data
931 public:
932 Output_data_zero_fill(off_t data_size, uint64_t addralign)
933 : Output_section_data(data_size, addralign, true)
936 protected:
937 // There is no data to write out.
938 void
939 do_write(Output_file*)
942 // Write to a map file.
943 void
944 do_print_to_mapfile(Mapfile* mapfile) const
945 { mapfile->print_output_data(this, "** zero fill"); }
948 // A string table which goes into an output section.
950 class Output_data_strtab : public Output_section_data
952 public:
953 Output_data_strtab(Stringpool* strtab)
954 : Output_section_data(1), strtab_(strtab)
957 protected:
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
960 void
961 update_data_size()
962 { this->set_final_data_size(); }
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
966 void
967 set_final_data_size();
969 // Write out the data.
970 void
971 do_write(Output_file*);
973 // Write the data to a buffer.
974 void
975 do_write_to_buffer(unsigned char* buffer)
976 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
978 // Write to a map file.
979 void
980 do_print_to_mapfile(Mapfile* mapfile) const
981 { mapfile->print_output_data(this, _("** string table")); }
983 private:
984 Stringpool* strtab_;
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
998 template<int sh_type, bool dynamic, int size, bool big_endian>
999 class Output_reloc;
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1008 static const Address invalid_address = static_cast<Address>(0) - 1;
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1012 Output_reloc()
1013 : local_sym_index_(INVALID_CODE)
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1019 // input section.
1021 // A reloc against a global symbol.
1023 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 Address address, bool is_relative, bool is_symbolless);
1026 Output_reloc(Symbol* gsym, unsigned int type,
1027 Sized_relobj<size, big_endian>* relobj,
1028 unsigned int shndx, Address address, bool is_relative,
1029 bool is_symbolless);
1031 // A reloc against a local symbol or local section symbol.
1033 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1034 unsigned int local_sym_index, unsigned int type,
1035 Output_data* od, Address address, bool is_relative,
1036 bool is_symbolless, bool is_section_symbol,
1037 bool use_plt_offset);
1039 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1040 unsigned int local_sym_index, unsigned int type,
1041 unsigned int shndx, Address address, bool is_relative,
1042 bool is_symbolless, bool is_section_symbol,
1043 bool use_plt_offset);
1045 // A reloc against the STT_SECTION symbol of an output section.
1047 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1048 Address address);
1050 Output_reloc(Output_section* os, unsigned int type,
1051 Sized_relobj<size, big_endian>* relobj,
1052 unsigned int shndx, Address address);
1054 // An absolute relocation with no symbol.
1056 Output_reloc(unsigned int type, Output_data* od, Address address);
1058 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1059 unsigned int shndx, Address address);
1061 // A target specific relocation. The target will be called to get
1062 // the symbol index, passing ARG. The type and offset will be set
1063 // as for other relocation types.
1065 Output_reloc(unsigned int type, void* arg, Output_data* od,
1066 Address address);
1068 Output_reloc(unsigned int type, void* arg,
1069 Sized_relobj<size, big_endian>* relobj,
1070 unsigned int shndx, Address address);
1072 // Return the reloc type.
1073 unsigned int
1074 type() const
1075 { return this->type_; }
1077 // Return whether this is a RELATIVE relocation.
1078 bool
1079 is_relative() const
1080 { return this->is_relative_; }
1082 // Return whether this is a relocation which should not use
1083 // a symbol, but which obtains its addend from a symbol.
1084 bool
1085 is_symbolless() const
1086 { return this->is_symbolless_; }
1088 // Return whether this is against a local section symbol.
1089 bool
1090 is_local_section_symbol() const
1092 return (this->local_sym_index_ != GSYM_CODE
1093 && this->local_sym_index_ != SECTION_CODE
1094 && this->local_sym_index_ != INVALID_CODE
1095 && this->local_sym_index_ != TARGET_CODE
1096 && this->is_section_symbol_);
1099 // Return whether this is a target specific relocation.
1100 bool
1101 is_target_specific() const
1102 { return this->local_sym_index_ == TARGET_CODE; }
1104 // Return the argument to pass to the target for a target specific
1105 // relocation.
1106 void*
1107 target_arg() const
1109 gold_assert(this->local_sym_index_ == TARGET_CODE);
1110 return this->u1_.arg;
1113 // For a local section symbol, return the offset of the input
1114 // section within the output section. ADDEND is the addend being
1115 // applied to the input section.
1116 Address
1117 local_section_offset(Addend addend) const;
1119 // Get the value of the symbol referred to by a Rel relocation when
1120 // we are adding the given ADDEND.
1121 Address
1122 symbol_value(Addend addend) const;
1124 // If this relocation is against an input section, return the
1125 // relocatable object containing the input section.
1126 Sized_relobj<size, big_endian>*
1127 get_relobj() const
1129 if (this->shndx_ == INVALID_CODE)
1130 return NULL;
1131 return this->u2_.relobj;
1134 // Write the reloc entry to an output view.
1135 void
1136 write(unsigned char* pov) const;
1138 // Write the offset and info fields to Write_rel.
1139 template<typename Write_rel>
1140 void write_rel(Write_rel*) const;
1142 // This is used when sorting dynamic relocs. Return -1 to sort this
1143 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1145 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1146 const;
1148 // Return whether this reloc should be sorted before the argument
1149 // when sorting dynamic relocs.
1150 bool
1151 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1152 r2) const
1153 { return this->compare(r2) < 0; }
1155 private:
1156 // Record that we need a dynamic symbol index.
1157 void
1158 set_needs_dynsym_index();
1160 // Return the symbol index.
1161 unsigned int
1162 get_symbol_index() const;
1164 // Return the output address.
1165 Address
1166 get_address() const;
1168 // Codes for local_sym_index_.
1169 enum
1171 // Global symbol.
1172 GSYM_CODE = -1U,
1173 // Output section.
1174 SECTION_CODE = -2U,
1175 // Target specific.
1176 TARGET_CODE = -3U,
1177 // Invalid uninitialized entry.
1178 INVALID_CODE = -4U
1181 union
1183 // For a local symbol or local section symbol
1184 // (this->local_sym_index_ >= 0), the object. We will never
1185 // generate a relocation against a local symbol in a dynamic
1186 // object; that doesn't make sense. And our callers will always
1187 // be templatized, so we use Sized_relobj here.
1188 Sized_relobj<size, big_endian>* relobj;
1189 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1190 // symbol. If this is NULL, it indicates a relocation against the
1191 // undefined 0 symbol.
1192 Symbol* gsym;
1193 // For a relocation against an output section
1194 // (this->local_sym_index_ == SECTION_CODE), the output section.
1195 Output_section* os;
1196 // For a target specific relocation, an argument to pass to the
1197 // target.
1198 void* arg;
1199 } u1_;
1200 union
1202 // If this->shndx_ is not INVALID CODE, the object which holds the
1203 // input section being used to specify the reloc address.
1204 Sized_relobj<size, big_endian>* relobj;
1205 // If this->shndx_ is INVALID_CODE, the output data being used to
1206 // specify the reloc address. This may be NULL if the reloc
1207 // address is absolute.
1208 Output_data* od;
1209 } u2_;
1210 // The address offset within the input section or the Output_data.
1211 Address address_;
1212 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1213 // relocation against an output section, or TARGET_CODE for a target
1214 // specific relocation, or INVALID_CODE for an uninitialized value.
1215 // Otherwise, for a local symbol (this->is_section_symbol_ is
1216 // false), the local symbol index. For a local section symbol
1217 // (this->is_section_symbol_ is true), the section index in the
1218 // input file.
1219 unsigned int local_sym_index_;
1220 // The reloc type--a processor specific code.
1221 unsigned int type_ : 28;
1222 // True if the relocation is a RELATIVE relocation.
1223 bool is_relative_ : 1;
1224 // True if the relocation is one which should not use
1225 // a symbol, but which obtains its addend from a symbol.
1226 bool is_symbolless_ : 1;
1227 // True if the relocation is against a section symbol.
1228 bool is_section_symbol_ : 1;
1229 // True if the addend should be the PLT offset. This is used only
1230 // for RELATIVE relocations to local symbols.
1231 // (Used only for RELA, but stored here for space.)
1232 bool use_plt_offset_ : 1;
1233 // If the reloc address is an input section in an object, the
1234 // section index. This is INVALID_CODE if the reloc address is
1235 // specified in some other way.
1236 unsigned int shndx_;
1239 // The SHT_RELA version of Output_reloc<>. This is just derived from
1240 // the SHT_REL version of Output_reloc, but it adds an addend.
1242 template<bool dynamic, int size, bool big_endian>
1243 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1245 public:
1246 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1247 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1249 // An uninitialized entry.
1250 Output_reloc()
1251 : rel_()
1254 // A reloc against a global symbol.
1256 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1257 Address address, Addend addend, bool is_relative,
1258 bool is_symbolless)
1259 : rel_(gsym, type, od, address, is_relative, is_symbolless),
1260 addend_(addend)
1263 Output_reloc(Symbol* gsym, unsigned int type,
1264 Sized_relobj<size, big_endian>* relobj,
1265 unsigned int shndx, Address address, Addend addend,
1266 bool is_relative, bool is_symbolless)
1267 : rel_(gsym, type, relobj, shndx, address, is_relative,
1268 is_symbolless), addend_(addend)
1271 // A reloc against a local symbol.
1273 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1274 unsigned int local_sym_index, unsigned int type,
1275 Output_data* od, Address address,
1276 Addend addend, bool is_relative,
1277 bool is_symbolless, bool is_section_symbol,
1278 bool use_plt_offset)
1279 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1280 is_symbolless, is_section_symbol, use_plt_offset),
1281 addend_(addend)
1284 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1285 unsigned int local_sym_index, unsigned int type,
1286 unsigned int shndx, Address address,
1287 Addend addend, bool is_relative,
1288 bool is_symbolless, bool is_section_symbol,
1289 bool use_plt_offset)
1290 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1291 is_symbolless, is_section_symbol, use_plt_offset),
1292 addend_(addend)
1295 // A reloc against the STT_SECTION symbol of an output section.
1297 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1298 Address address, Addend addend)
1299 : rel_(os, type, od, address), addend_(addend)
1302 Output_reloc(Output_section* os, unsigned int type,
1303 Sized_relobj<size, big_endian>* relobj,
1304 unsigned int shndx, Address address, Addend addend)
1305 : rel_(os, type, relobj, shndx, address), addend_(addend)
1308 // An absolute relocation with no symbol.
1310 Output_reloc(unsigned int type, Output_data* od, Address address,
1311 Addend addend)
1312 : rel_(type, od, address), addend_(addend)
1315 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1316 unsigned int shndx, Address address, Addend addend)
1317 : rel_(type, relobj, shndx, address), addend_(addend)
1320 // A target specific relocation. The target will be called to get
1321 // the symbol index and the addend, passing ARG. The type and
1322 // offset will be set as for other relocation types.
1324 Output_reloc(unsigned int type, void* arg, Output_data* od,
1325 Address address, Addend addend)
1326 : rel_(type, arg, od, address), addend_(addend)
1329 Output_reloc(unsigned int type, void* arg,
1330 Sized_relobj<size, big_endian>* relobj,
1331 unsigned int shndx, Address address, Addend addend)
1332 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1335 // Return whether this is a RELATIVE relocation.
1336 bool
1337 is_relative() const
1338 { return this->rel_.is_relative(); }
1340 // Return whether this is a relocation which should not use
1341 // a symbol, but which obtains its addend from a symbol.
1342 bool
1343 is_symbolless() const
1344 { return this->rel_.is_symbolless(); }
1346 // If this relocation is against an input section, return the
1347 // relocatable object containing the input section.
1348 Sized_relobj<size, big_endian>*
1349 get_relobj() const
1350 { return this->rel_.get_relobj(); }
1352 // Write the reloc entry to an output view.
1353 void
1354 write(unsigned char* pov) const;
1356 // Return whether this reloc should be sorted before the argument
1357 // when sorting dynamic relocs.
1358 bool
1359 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1360 r2) const
1362 int i = this->rel_.compare(r2.rel_);
1363 if (i < 0)
1364 return true;
1365 else if (i > 0)
1366 return false;
1367 else
1368 return this->addend_ < r2.addend_;
1371 private:
1372 // The basic reloc.
1373 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1374 // The addend.
1375 Addend addend_;
1378 // Output_data_reloc_generic is a non-template base class for
1379 // Output_data_reloc_base. This gives the generic code a way to hold
1380 // a pointer to a reloc section.
1382 class Output_data_reloc_generic : public Output_section_data_build
1384 public:
1385 Output_data_reloc_generic(int size, bool sort_relocs)
1386 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1387 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1390 // Return the number of relative relocs in this section.
1391 size_t
1392 relative_reloc_count() const
1393 { return this->relative_reloc_count_; }
1395 // Whether we should sort the relocs.
1396 bool
1397 sort_relocs() const
1398 { return this->sort_relocs_; }
1400 // Add a reloc of type TYPE against the global symbol GSYM. The
1401 // relocation applies to the data at offset ADDRESS within OD.
1402 virtual void
1403 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1404 uint64_t address, uint64_t addend) = 0;
1406 // Add a reloc of type TYPE against the global symbol GSYM. The
1407 // relocation applies to data at offset ADDRESS within section SHNDX
1408 // of object file RELOBJ. OD is the associated output section.
1409 virtual void
1410 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1411 Relobj* relobj, unsigned int shndx, uint64_t address,
1412 uint64_t addend) = 0;
1414 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1415 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1416 // within OD.
1417 virtual void
1418 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1419 unsigned int type, Output_data* od, uint64_t address,
1420 uint64_t addend) = 0;
1422 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1423 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1424 // within section SHNDX of RELOBJ. OD is the associated output
1425 // section.
1426 virtual void
1427 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1428 unsigned int type, Output_data* od, unsigned int shndx,
1429 uint64_t address, uint64_t addend) = 0;
1431 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1432 // output section OS. The relocation applies to the data at offset
1433 // ADDRESS within OD.
1434 virtual void
1435 add_output_section_generic(Output_section *os, unsigned int type,
1436 Output_data* od, uint64_t address,
1437 uint64_t addend) = 0;
1439 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1440 // output section OS. The relocation applies to the data at offset
1441 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1442 // output section.
1443 virtual void
1444 add_output_section_generic(Output_section* os, unsigned int type,
1445 Output_data* od, Relobj* relobj,
1446 unsigned int shndx, uint64_t address,
1447 uint64_t addend) = 0;
1449 protected:
1450 // Note that we've added another relative reloc.
1451 void
1452 bump_relative_reloc_count()
1453 { ++this->relative_reloc_count_; }
1455 private:
1456 // The number of relative relocs added to this section. This is to
1457 // support DT_RELCOUNT.
1458 size_t relative_reloc_count_;
1459 // Whether to sort the relocations when writing them out, to make
1460 // the dynamic linker more efficient.
1461 bool sort_relocs_;
1464 // Output_data_reloc is used to manage a section containing relocs.
1465 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1466 // indicates whether this is a dynamic relocation or a normal
1467 // relocation. Output_data_reloc_base is a base class.
1468 // Output_data_reloc is the real class, which we specialize based on
1469 // the reloc type.
1471 template<int sh_type, bool dynamic, int size, bool big_endian>
1472 class Output_data_reloc_base : public Output_data_reloc_generic
1474 public:
1475 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1476 typedef typename Output_reloc_type::Address Address;
1477 static const int reloc_size =
1478 Reloc_types<sh_type, size, big_endian>::reloc_size;
1480 // Construct the section.
1481 Output_data_reloc_base(bool sort_relocs)
1482 : Output_data_reloc_generic(size, sort_relocs)
1485 protected:
1486 // Write out the data.
1487 void
1488 do_write(Output_file*);
1490 // Set the entry size and the link.
1491 void
1492 do_adjust_output_section(Output_section* os);
1494 // Write to a map file.
1495 void
1496 do_print_to_mapfile(Mapfile* mapfile) const
1498 mapfile->print_output_data(this,
1499 (dynamic
1500 ? _("** dynamic relocs")
1501 : _("** relocs")));
1504 // Add a relocation entry.
1505 void
1506 add(Output_data* od, const Output_reloc_type& reloc)
1508 this->relocs_.push_back(reloc);
1509 this->set_current_data_size(this->relocs_.size() * reloc_size);
1510 if (dynamic)
1511 od->add_dynamic_reloc();
1512 if (reloc.is_relative())
1513 this->bump_relative_reloc_count();
1514 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1515 if (relobj != NULL)
1516 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1519 private:
1520 typedef std::vector<Output_reloc_type> Relocs;
1522 // The class used to sort the relocations.
1523 struct Sort_relocs_comparison
1525 bool
1526 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1527 { return r1.sort_before(r2); }
1530 // The relocations in this section.
1531 Relocs relocs_;
1534 // The class which callers actually create.
1536 template<int sh_type, bool dynamic, int size, bool big_endian>
1537 class Output_data_reloc;
1539 // The SHT_REL version of Output_data_reloc.
1541 template<bool dynamic, int size, bool big_endian>
1542 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1543 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1545 private:
1546 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1547 big_endian> Base;
1549 public:
1550 typedef typename Base::Output_reloc_type Output_reloc_type;
1551 typedef typename Output_reloc_type::Address Address;
1553 Output_data_reloc(bool sr)
1554 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1557 // Add a reloc against a global symbol.
1559 void
1560 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1561 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1563 void
1564 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1565 Sized_relobj<size, big_endian>* relobj,
1566 unsigned int shndx, Address address)
1567 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1568 false, false)); }
1570 void
1571 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1572 uint64_t address, uint64_t addend)
1574 gold_assert(addend == 0);
1575 this->add(od, Output_reloc_type(gsym, type, od,
1576 convert_types<Address, uint64_t>(address),
1577 false, false));
1580 void
1581 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1582 Relobj* relobj, unsigned int shndx, uint64_t address,
1583 uint64_t addend)
1585 gold_assert(addend == 0);
1586 Sized_relobj<size, big_endian>* sized_relobj =
1587 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1588 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1589 convert_types<Address, uint64_t>(address),
1590 false, false));
1593 // Add a RELATIVE reloc against a global symbol. The final relocation
1594 // will not reference the symbol.
1596 void
1597 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1598 Address address)
1599 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1601 void
1602 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1603 Sized_relobj<size, big_endian>* relobj,
1604 unsigned int shndx, Address address)
1606 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1607 true, true));
1610 // Add a global relocation which does not use a symbol for the relocation,
1611 // but which gets its addend from a symbol.
1613 void
1614 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1615 Output_data* od, Address address)
1616 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1618 void
1619 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1620 Output_data* od,
1621 Sized_relobj<size, big_endian>* relobj,
1622 unsigned int shndx, Address address)
1624 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1625 false, true));
1628 // Add a reloc against a local symbol.
1630 void
1631 add_local(Sized_relobj<size, big_endian>* relobj,
1632 unsigned int local_sym_index, unsigned int type,
1633 Output_data* od, Address address)
1635 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1636 address, false, false, false, false));
1639 void
1640 add_local(Sized_relobj<size, big_endian>* relobj,
1641 unsigned int local_sym_index, unsigned int type,
1642 Output_data* od, unsigned int shndx, Address address)
1644 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1645 address, false, false, false, false));
1648 void
1649 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1650 unsigned int type, Output_data* od, uint64_t address,
1651 uint64_t addend)
1653 gold_assert(addend == 0);
1654 Sized_relobj<size, big_endian>* sized_relobj =
1655 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1656 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1657 convert_types<Address, uint64_t>(address),
1658 false, false, false, false));
1661 void
1662 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1663 unsigned int type, Output_data* od, unsigned int shndx,
1664 uint64_t address, uint64_t addend)
1666 gold_assert(addend == 0);
1667 Sized_relobj<size, big_endian>* sized_relobj =
1668 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1669 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1670 convert_types<Address, uint64_t>(address),
1671 false, false, false, false));
1674 // Add a RELATIVE reloc against a local symbol.
1676 void
1677 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1678 unsigned int local_sym_index, unsigned int type,
1679 Output_data* od, Address address)
1681 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1682 address, true, true, false, false));
1685 void
1686 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1687 unsigned int local_sym_index, unsigned int type,
1688 Output_data* od, unsigned int shndx, Address address)
1690 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1691 address, true, true, false, false));
1694 // Add a local relocation which does not use a symbol for the relocation,
1695 // but which gets its addend from a symbol.
1697 void
1698 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1699 unsigned int local_sym_index, unsigned int type,
1700 Output_data* od, Address address)
1702 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1703 address, false, true, false, false));
1706 void
1707 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1708 unsigned int local_sym_index, unsigned int type,
1709 Output_data* od, unsigned int shndx,
1710 Address address)
1712 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1713 address, false, true, false, false));
1716 // Add a reloc against a local section symbol. This will be
1717 // converted into a reloc against the STT_SECTION symbol of the
1718 // output section.
1720 void
1721 add_local_section(Sized_relobj<size, big_endian>* relobj,
1722 unsigned int input_shndx, unsigned int type,
1723 Output_data* od, Address address)
1725 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1726 address, false, false, true, false));
1729 void
1730 add_local_section(Sized_relobj<size, big_endian>* relobj,
1731 unsigned int input_shndx, unsigned int type,
1732 Output_data* od, unsigned int shndx, Address address)
1734 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1735 address, false, false, true, false));
1738 // A reloc against the STT_SECTION symbol of an output section.
1739 // OS is the Output_section that the relocation refers to; OD is
1740 // the Output_data object being relocated.
1742 void
1743 add_output_section(Output_section* os, unsigned int type,
1744 Output_data* od, Address address)
1745 { this->add(od, Output_reloc_type(os, type, od, address)); }
1747 void
1748 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1749 Sized_relobj<size, big_endian>* relobj,
1750 unsigned int shndx, Address address)
1751 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1753 void
1754 add_output_section_generic(Output_section* os, unsigned int type,
1755 Output_data* od, uint64_t address,
1756 uint64_t addend)
1758 gold_assert(addend == 0);
1759 this->add(od, Output_reloc_type(os, type, od,
1760 convert_types<Address, uint64_t>(address)));
1763 void
1764 add_output_section_generic(Output_section* os, unsigned int type,
1765 Output_data* od, Relobj* relobj,
1766 unsigned int shndx, uint64_t address,
1767 uint64_t addend)
1769 gold_assert(addend == 0);
1770 Sized_relobj<size, big_endian>* sized_relobj =
1771 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1772 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1773 convert_types<Address, uint64_t>(address)));
1776 // Add an absolute relocation.
1778 void
1779 add_absolute(unsigned int type, Output_data* od, Address address)
1780 { this->add(od, Output_reloc_type(type, od, address)); }
1782 void
1783 add_absolute(unsigned int type, Output_data* od,
1784 Sized_relobj<size, big_endian>* relobj,
1785 unsigned int shndx, Address address)
1786 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1788 // Add a target specific relocation. A target which calls this must
1789 // define the reloc_symbol_index and reloc_addend virtual functions.
1791 void
1792 add_target_specific(unsigned int type, void* arg, Output_data* od,
1793 Address address)
1794 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1796 void
1797 add_target_specific(unsigned int type, void* arg, Output_data* od,
1798 Sized_relobj<size, big_endian>* relobj,
1799 unsigned int shndx, Address address)
1800 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1803 // The SHT_RELA version of Output_data_reloc.
1805 template<bool dynamic, int size, bool big_endian>
1806 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1807 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1809 private:
1810 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1811 big_endian> Base;
1813 public:
1814 typedef typename Base::Output_reloc_type Output_reloc_type;
1815 typedef typename Output_reloc_type::Address Address;
1816 typedef typename Output_reloc_type::Addend Addend;
1818 Output_data_reloc(bool sr)
1819 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1822 // Add a reloc against a global symbol.
1824 void
1825 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1826 Address address, Addend addend)
1827 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1828 false, false)); }
1830 void
1831 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1832 Sized_relobj<size, big_endian>* relobj,
1833 unsigned int shndx, Address address,
1834 Addend addend)
1835 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1836 addend, false, false)); }
1838 void
1839 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1840 uint64_t address, uint64_t addend)
1842 this->add(od, Output_reloc_type(gsym, type, od,
1843 convert_types<Address, uint64_t>(address),
1844 convert_types<Addend, uint64_t>(addend),
1845 false, false));
1848 void
1849 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1850 Relobj* relobj, unsigned int shndx, uint64_t address,
1851 uint64_t addend)
1853 Sized_relobj<size, big_endian>* sized_relobj =
1854 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1855 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1856 convert_types<Address, uint64_t>(address),
1857 convert_types<Addend, uint64_t>(addend),
1858 false, false));
1861 // Add a RELATIVE reloc against a global symbol. The final output
1862 // relocation will not reference the symbol, but we must keep the symbol
1863 // information long enough to set the addend of the relocation correctly
1864 // when it is written.
1866 void
1867 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1868 Address address, Addend addend)
1869 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1870 true)); }
1872 void
1873 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1874 Sized_relobj<size, big_endian>* relobj,
1875 unsigned int shndx, Address address, Addend addend)
1876 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1877 addend, true, true)); }
1879 // Add a global relocation which does not use a symbol for the relocation,
1880 // but which gets its addend from a symbol.
1882 void
1883 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1884 Address address, Addend addend)
1885 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1886 false, true)); }
1888 void
1889 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1890 Output_data* od,
1891 Sized_relobj<size, big_endian>* relobj,
1892 unsigned int shndx, Address address, Addend addend)
1893 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1894 addend, false, true)); }
1896 // Add a reloc against a local symbol.
1898 void
1899 add_local(Sized_relobj<size, big_endian>* relobj,
1900 unsigned int local_sym_index, unsigned int type,
1901 Output_data* od, Address address, Addend addend)
1903 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1904 addend, false, false, false, false));
1907 void
1908 add_local(Sized_relobj<size, big_endian>* relobj,
1909 unsigned int local_sym_index, unsigned int type,
1910 Output_data* od, unsigned int shndx, Address address,
1911 Addend addend)
1913 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1914 address, addend, false, false, false,
1915 false));
1918 void
1919 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1920 unsigned int type, Output_data* od, uint64_t address,
1921 uint64_t addend)
1923 Sized_relobj<size, big_endian>* sized_relobj =
1924 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1925 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1926 convert_types<Address, uint64_t>(address),
1927 convert_types<Addend, uint64_t>(addend),
1928 false, false, false, false));
1931 void
1932 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1933 unsigned int type, Output_data* od, unsigned int shndx,
1934 uint64_t address, uint64_t addend)
1936 Sized_relobj<size, big_endian>* sized_relobj =
1937 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1938 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1939 convert_types<Address, uint64_t>(address),
1940 convert_types<Addend, uint64_t>(addend),
1941 false, false, false, false));
1944 // Add a RELATIVE reloc against a local symbol.
1946 void
1947 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1948 unsigned int local_sym_index, unsigned int type,
1949 Output_data* od, Address address, Addend addend,
1950 bool use_plt_offset)
1952 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1953 addend, true, true, false,
1954 use_plt_offset));
1957 void
1958 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1959 unsigned int local_sym_index, unsigned int type,
1960 Output_data* od, unsigned int shndx, Address address,
1961 Addend addend, bool use_plt_offset)
1963 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1964 address, addend, true, true, false,
1965 use_plt_offset));
1968 // Add a local relocation which does not use a symbol for the relocation,
1969 // but which gets it's addend from a symbol.
1971 void
1972 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1973 unsigned int local_sym_index, unsigned int type,
1974 Output_data* od, Address address, Addend addend)
1976 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1977 addend, false, true, false, false));
1980 void
1981 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1982 unsigned int local_sym_index, unsigned int type,
1983 Output_data* od, unsigned int shndx,
1984 Address address, Addend addend)
1986 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1987 address, addend, false, true, false,
1988 false));
1991 // Add a reloc against a local section symbol. This will be
1992 // converted into a reloc against the STT_SECTION symbol of the
1993 // output section.
1995 void
1996 add_local_section(Sized_relobj<size, big_endian>* relobj,
1997 unsigned int input_shndx, unsigned int type,
1998 Output_data* od, Address address, Addend addend)
2000 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2001 addend, false, false, true, false));
2004 void
2005 add_local_section(Sized_relobj<size, big_endian>* relobj,
2006 unsigned int input_shndx, unsigned int type,
2007 Output_data* od, unsigned int shndx, Address address,
2008 Addend addend)
2010 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2011 address, addend, false, false, true,
2012 false));
2015 // A reloc against the STT_SECTION symbol of an output section.
2017 void
2018 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2019 Address address, Addend addend)
2020 { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
2022 void
2023 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2024 Sized_relobj<size, big_endian>* relobj,
2025 unsigned int shndx, Address address, Addend addend)
2026 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2027 addend)); }
2029 void
2030 add_output_section_generic(Output_section* os, unsigned int type,
2031 Output_data* od, uint64_t address,
2032 uint64_t addend)
2034 this->add(od, Output_reloc_type(os, type, od,
2035 convert_types<Address, uint64_t>(address),
2036 convert_types<Addend, uint64_t>(addend)));
2039 void
2040 add_output_section_generic(Output_section* os, unsigned int type,
2041 Output_data* od, Relobj* relobj,
2042 unsigned int shndx, uint64_t address,
2043 uint64_t addend)
2045 Sized_relobj<size, big_endian>* sized_relobj =
2046 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2047 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2048 convert_types<Address, uint64_t>(address),
2049 convert_types<Addend, uint64_t>(addend)));
2052 // Add an absolute relocation.
2054 void
2055 add_absolute(unsigned int type, Output_data* od, Address address,
2056 Addend addend)
2057 { this->add(od, Output_reloc_type(type, od, address, addend)); }
2059 void
2060 add_absolute(unsigned int type, Output_data* od,
2061 Sized_relobj<size, big_endian>* relobj,
2062 unsigned int shndx, Address address, Addend addend)
2063 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
2065 // Add a target specific relocation. A target which calls this must
2066 // define the reloc_symbol_index and reloc_addend virtual functions.
2068 void
2069 add_target_specific(unsigned int type, void* arg, Output_data* od,
2070 Address address, Addend addend)
2071 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2073 void
2074 add_target_specific(unsigned int type, void* arg, Output_data* od,
2075 Sized_relobj<size, big_endian>* relobj,
2076 unsigned int shndx, Address address, Addend addend)
2078 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2079 addend));
2083 // Output_relocatable_relocs represents a relocation section in a
2084 // relocatable link. The actual data is written out in the target
2085 // hook relocate_for_relocatable. This just saves space for it.
2087 template<int sh_type, int size, bool big_endian>
2088 class Output_relocatable_relocs : public Output_section_data
2090 public:
2091 Output_relocatable_relocs(Relocatable_relocs* rr)
2092 : Output_section_data(Output_data::default_alignment_for_size(size)),
2093 rr_(rr)
2096 void
2097 set_final_data_size();
2099 // Write out the data. There is nothing to do here.
2100 void
2101 do_write(Output_file*)
2104 // Write to a map file.
2105 void
2106 do_print_to_mapfile(Mapfile* mapfile) const
2107 { mapfile->print_output_data(this, _("** relocs")); }
2109 private:
2110 // The relocs associated with this input section.
2111 Relocatable_relocs* rr_;
2114 // Handle a GROUP section.
2116 template<int size, bool big_endian>
2117 class Output_data_group : public Output_section_data
2119 public:
2120 // The constructor clears *INPUT_SHNDXES.
2121 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2122 section_size_type entry_count,
2123 elfcpp::Elf_Word flags,
2124 std::vector<unsigned int>* input_shndxes);
2126 void
2127 do_write(Output_file*);
2129 // Write to a map file.
2130 void
2131 do_print_to_mapfile(Mapfile* mapfile) const
2132 { mapfile->print_output_data(this, _("** group")); }
2134 // Set final data size.
2135 void
2136 set_final_data_size()
2137 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2139 private:
2140 // The input object.
2141 Sized_relobj_file<size, big_endian>* relobj_;
2142 // The group flag word.
2143 elfcpp::Elf_Word flags_;
2144 // The section indexes of the input sections in this group.
2145 std::vector<unsigned int> input_shndxes_;
2148 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2149 // for one symbol--either a global symbol or a local symbol in an
2150 // object. The target specific code adds entries to the GOT as
2151 // needed. The GOT_SIZE template parameter is the size in bits of a
2152 // GOT entry, typically 32 or 64.
2154 class Output_data_got_base : public Output_section_data_build
2156 public:
2157 Output_data_got_base(uint64_t align)
2158 : Output_section_data_build(align)
2161 Output_data_got_base(off_t data_size, uint64_t align)
2162 : Output_section_data_build(data_size, align)
2165 // Reserve the slot at index I in the GOT.
2166 void
2167 reserve_slot(unsigned int i)
2168 { this->do_reserve_slot(i); }
2170 protected:
2171 // Reserve the slot at index I in the GOT.
2172 virtual void
2173 do_reserve_slot(unsigned int i) = 0;
2176 template<int got_size, bool big_endian>
2177 class Output_data_got : public Output_data_got_base
2179 public:
2180 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2182 Output_data_got()
2183 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2184 entries_(), free_list_()
2187 Output_data_got(off_t data_size)
2188 : Output_data_got_base(data_size,
2189 Output_data::default_alignment_for_size(got_size)),
2190 entries_(), free_list_()
2192 // For an incremental update, we have an existing GOT section.
2193 // Initialize the list of entries and the free list.
2194 this->entries_.resize(data_size / (got_size / 8));
2195 this->free_list_.init(data_size, false);
2198 // Add an entry for a global symbol to the GOT. Return true if this
2199 // is a new GOT entry, false if the symbol was already in the GOT.
2200 bool
2201 add_global(Symbol* gsym, unsigned int got_type);
2203 // Like add_global, but use the PLT offset of the global symbol if
2204 // it has one.
2205 bool
2206 add_global_plt(Symbol* gsym, unsigned int got_type);
2208 // Add an entry for a global symbol to the GOT, and add a dynamic
2209 // relocation of type R_TYPE for the GOT entry.
2210 void
2211 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2212 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2214 // Add a pair of entries for a global symbol to the GOT, and add
2215 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2216 void
2217 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2218 Output_data_reloc_generic* rel_dyn,
2219 unsigned int r_type_1, unsigned int r_type_2);
2221 // Add an entry for a local symbol to the GOT. This returns true if
2222 // this is a new GOT entry, false if the symbol already has a GOT
2223 // entry.
2224 bool
2225 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2227 // Like add_local, but use the PLT offset of the local symbol if it
2228 // has one.
2229 bool
2230 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2232 // Add an entry for a local symbol to the GOT, and add a dynamic
2233 // relocation of type R_TYPE for the GOT entry.
2234 void
2235 add_local_with_rel(Relobj* object, unsigned int sym_index,
2236 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2237 unsigned int r_type);
2239 // Add a pair of entries for a local symbol to the GOT, and add
2240 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2241 void
2242 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2243 unsigned int shndx, unsigned int got_type,
2244 Output_data_reloc_generic* rel_dyn,
2245 unsigned int r_type_1, unsigned int r_type_2);
2247 // Add a constant to the GOT. This returns the offset of the new
2248 // entry from the start of the GOT.
2249 unsigned int
2250 add_constant(Valtype constant)
2252 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2253 return got_offset;
2256 // Reserve a slot in the GOT for a local symbol.
2257 void
2258 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2259 unsigned int got_type);
2261 // Reserve a slot in the GOT for a global symbol.
2262 void
2263 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2265 protected:
2266 // Write out the GOT table.
2267 void
2268 do_write(Output_file*);
2270 // Write to a map file.
2271 void
2272 do_print_to_mapfile(Mapfile* mapfile) const
2273 { mapfile->print_output_data(this, _("** GOT")); }
2275 // Reserve the slot at index I in the GOT.
2276 virtual void
2277 do_reserve_slot(unsigned int i)
2278 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2280 private:
2281 // This POD class holds a single GOT entry.
2282 class Got_entry
2284 public:
2285 // Create a zero entry.
2286 Got_entry()
2287 : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2288 { this->u_.constant = 0; }
2290 // Create a global symbol entry.
2291 Got_entry(Symbol* gsym, bool use_plt_offset)
2292 : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2293 { this->u_.gsym = gsym; }
2295 // Create a local symbol entry.
2296 Got_entry(Relobj* object, unsigned int local_sym_index,
2297 bool use_plt_offset)
2298 : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2300 gold_assert(local_sym_index != GSYM_CODE
2301 && local_sym_index != CONSTANT_CODE
2302 && local_sym_index != RESERVED_CODE
2303 && local_sym_index == this->local_sym_index_);
2304 this->u_.object = object;
2307 // Create a constant entry. The constant is a host value--it will
2308 // be swapped, if necessary, when it is written out.
2309 explicit Got_entry(Valtype constant)
2310 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2311 { this->u_.constant = constant; }
2313 // Write the GOT entry to an output view.
2314 void
2315 write(unsigned char* pov) const;
2317 private:
2318 enum
2320 GSYM_CODE = 0x7fffffff,
2321 CONSTANT_CODE = 0x7ffffffe,
2322 RESERVED_CODE = 0x7ffffffd
2325 union
2327 // For a local symbol, the object.
2328 Relobj* object;
2329 // For a global symbol, the symbol.
2330 Symbol* gsym;
2331 // For a constant, the constant.
2332 Valtype constant;
2333 } u_;
2334 // For a local symbol, the local symbol index. This is GSYM_CODE
2335 // for a global symbol, or CONSTANT_CODE for a constant.
2336 unsigned int local_sym_index_ : 31;
2337 // Whether to use the PLT offset of the symbol if it has one.
2338 bool use_plt_offset_ : 1;
2341 typedef std::vector<Got_entry> Got_entries;
2343 // Create a new GOT entry and return its offset.
2344 unsigned int
2345 add_got_entry(Got_entry got_entry);
2347 // Create a pair of new GOT entries and return the offset of the first.
2348 unsigned int
2349 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2351 // Return the offset into the GOT of GOT entry I.
2352 unsigned int
2353 got_offset(unsigned int i) const
2354 { return i * (got_size / 8); }
2356 // Return the offset into the GOT of the last entry added.
2357 unsigned int
2358 last_got_offset() const
2359 { return this->got_offset(this->entries_.size() - 1); }
2361 // Set the size of the section.
2362 void
2363 set_got_size()
2364 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2366 // The list of GOT entries.
2367 Got_entries entries_;
2369 // List of available regions within the section, for incremental
2370 // update links.
2371 Free_list free_list_;
2374 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2375 // section.
2377 class Output_data_dynamic : public Output_section_data
2379 public:
2380 Output_data_dynamic(Stringpool* pool)
2381 : Output_section_data(Output_data::default_alignment()),
2382 entries_(), pool_(pool)
2385 // Add a new dynamic entry with a fixed numeric value.
2386 void
2387 add_constant(elfcpp::DT tag, unsigned int val)
2388 { this->add_entry(Dynamic_entry(tag, val)); }
2390 // Add a new dynamic entry with the address of output data.
2391 void
2392 add_section_address(elfcpp::DT tag, const Output_data* od)
2393 { this->add_entry(Dynamic_entry(tag, od, false)); }
2395 // Add a new dynamic entry with the address of output data
2396 // plus a constant offset.
2397 void
2398 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2399 unsigned int offset)
2400 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2402 // Add a new dynamic entry with the size of output data.
2403 void
2404 add_section_size(elfcpp::DT tag, const Output_data* od)
2405 { this->add_entry(Dynamic_entry(tag, od, true)); }
2407 // Add a new dynamic entry with the total size of two output datas.
2408 void
2409 add_section_size(elfcpp::DT tag, const Output_data* od,
2410 const Output_data* od2)
2411 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2413 // Add a new dynamic entry with the address of a symbol.
2414 void
2415 add_symbol(elfcpp::DT tag, const Symbol* sym)
2416 { this->add_entry(Dynamic_entry(tag, sym)); }
2418 // Add a new dynamic entry with a string.
2419 void
2420 add_string(elfcpp::DT tag, const char* str)
2421 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2423 void
2424 add_string(elfcpp::DT tag, const std::string& str)
2425 { this->add_string(tag, str.c_str()); }
2427 protected:
2428 // Adjust the output section to set the entry size.
2429 void
2430 do_adjust_output_section(Output_section*);
2432 // Set the final data size.
2433 void
2434 set_final_data_size();
2436 // Write out the dynamic entries.
2437 void
2438 do_write(Output_file*);
2440 // Write to a map file.
2441 void
2442 do_print_to_mapfile(Mapfile* mapfile) const
2443 { mapfile->print_output_data(this, _("** dynamic")); }
2445 private:
2446 // This POD class holds a single dynamic entry.
2447 class Dynamic_entry
2449 public:
2450 // Create an entry with a fixed numeric value.
2451 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2452 : tag_(tag), offset_(DYNAMIC_NUMBER)
2453 { this->u_.val = val; }
2455 // Create an entry with the size or address of a section.
2456 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2457 : tag_(tag),
2458 offset_(section_size
2459 ? DYNAMIC_SECTION_SIZE
2460 : DYNAMIC_SECTION_ADDRESS)
2462 this->u_.od = od;
2463 this->od2 = NULL;
2466 // Create an entry with the size of two sections.
2467 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2468 : tag_(tag),
2469 offset_(DYNAMIC_SECTION_SIZE)
2471 this->u_.od = od;
2472 this->od2 = od2;
2475 // Create an entry with the address of a section plus a constant offset.
2476 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2477 : tag_(tag),
2478 offset_(offset)
2479 { this->u_.od = od; }
2481 // Create an entry with the address of a symbol.
2482 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2483 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2484 { this->u_.sym = sym; }
2486 // Create an entry with a string.
2487 Dynamic_entry(elfcpp::DT tag, const char* str)
2488 : tag_(tag), offset_(DYNAMIC_STRING)
2489 { this->u_.str = str; }
2491 // Return the tag of this entry.
2492 elfcpp::DT
2493 tag() const
2494 { return this->tag_; }
2496 // Write the dynamic entry to an output view.
2497 template<int size, bool big_endian>
2498 void
2499 write(unsigned char* pov, const Stringpool*) const;
2501 private:
2502 // Classification is encoded in the OFFSET field.
2503 enum Classification
2505 // Section address.
2506 DYNAMIC_SECTION_ADDRESS = 0,
2507 // Number.
2508 DYNAMIC_NUMBER = -1U,
2509 // Section size.
2510 DYNAMIC_SECTION_SIZE = -2U,
2511 // Symbol adress.
2512 DYNAMIC_SYMBOL = -3U,
2513 // String.
2514 DYNAMIC_STRING = -4U
2515 // Any other value indicates a section address plus OFFSET.
2518 union
2520 // For DYNAMIC_NUMBER.
2521 unsigned int val;
2522 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2523 const Output_data* od;
2524 // For DYNAMIC_SYMBOL.
2525 const Symbol* sym;
2526 // For DYNAMIC_STRING.
2527 const char* str;
2528 } u_;
2529 // For DYNAMIC_SYMBOL with two sections.
2530 const Output_data* od2;
2531 // The dynamic tag.
2532 elfcpp::DT tag_;
2533 // The type of entry (Classification) or offset within a section.
2534 unsigned int offset_;
2537 // Add an entry to the list.
2538 void
2539 add_entry(const Dynamic_entry& entry)
2540 { this->entries_.push_back(entry); }
2542 // Sized version of write function.
2543 template<int size, bool big_endian>
2544 void
2545 sized_write(Output_file* of);
2547 // The type of the list of entries.
2548 typedef std::vector<Dynamic_entry> Dynamic_entries;
2550 // The entries.
2551 Dynamic_entries entries_;
2552 // The pool used for strings.
2553 Stringpool* pool_;
2556 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2557 // which may be required if the object file has more than
2558 // SHN_LORESERVE sections.
2560 class Output_symtab_xindex : public Output_section_data
2562 public:
2563 Output_symtab_xindex(size_t symcount)
2564 : Output_section_data(symcount * 4, 4, true),
2565 entries_()
2568 // Add an entry: symbol number SYMNDX has section SHNDX.
2569 void
2570 add(unsigned int symndx, unsigned int shndx)
2571 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2573 protected:
2574 void
2575 do_write(Output_file*);
2577 // Write to a map file.
2578 void
2579 do_print_to_mapfile(Mapfile* mapfile) const
2580 { mapfile->print_output_data(this, _("** symtab xindex")); }
2582 private:
2583 template<bool big_endian>
2584 void
2585 endian_do_write(unsigned char*);
2587 // It is likely that most symbols will not require entries. Rather
2588 // than keep a vector for all symbols, we keep pairs of symbol index
2589 // and section index.
2590 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2592 // The entries we need.
2593 Xindex_entries entries_;
2596 // A relaxed input section.
2597 class Output_relaxed_input_section : public Output_section_data_build
2599 public:
2600 // We would like to call relobj->section_addralign(shndx) to get the
2601 // alignment but we do not want the constructor to fail. So callers
2602 // are repsonsible for ensuring that.
2603 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2604 uint64_t addralign)
2605 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2608 // Return the Relobj of this relaxed input section.
2609 Relobj*
2610 relobj() const
2611 { return this->relobj_; }
2613 // Return the section index of this relaxed input section.
2614 unsigned int
2615 shndx() const
2616 { return this->shndx_; }
2618 private:
2619 Relobj* relobj_;
2620 unsigned int shndx_;
2623 // This class describes properties of merge data sections. It is used
2624 // as a key type for maps.
2625 class Merge_section_properties
2627 public:
2628 Merge_section_properties(bool is_string, uint64_t entsize,
2629 uint64_t addralign)
2630 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2633 // Whether this equals to another Merge_section_properties MSP.
2634 bool
2635 eq(const Merge_section_properties& msp) const
2637 return ((this->is_string_ == msp.is_string_)
2638 && (this->entsize_ == msp.entsize_)
2639 && (this->addralign_ == msp.addralign_));
2642 // Compute a hash value for this using 64-bit FNV-1a hash.
2643 size_t
2644 hash_value() const
2646 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2647 uint64_t prime = 1099511628211ULL;
2648 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2649 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2650 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2651 return h;
2654 // Functors for associative containers.
2655 struct equal_to
2657 bool
2658 operator()(const Merge_section_properties& msp1,
2659 const Merge_section_properties& msp2) const
2660 { return msp1.eq(msp2); }
2663 struct hash
2665 size_t
2666 operator()(const Merge_section_properties& msp) const
2667 { return msp.hash_value(); }
2670 private:
2671 // Whether this merge data section is for strings.
2672 bool is_string_;
2673 // Entsize of this merge data section.
2674 uint64_t entsize_;
2675 // Address alignment.
2676 uint64_t addralign_;
2679 // This class is used to speed up look up of special input sections in an
2680 // Output_section.
2682 class Output_section_lookup_maps
2684 public:
2685 Output_section_lookup_maps()
2686 : is_valid_(true), merge_sections_by_properties_(),
2687 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2690 // Whether the maps are valid.
2691 bool
2692 is_valid() const
2693 { return this->is_valid_; }
2695 // Invalidate the maps.
2696 void
2697 invalidate()
2698 { this->is_valid_ = false; }
2700 // Clear the maps.
2701 void
2702 clear()
2704 this->merge_sections_by_properties_.clear();
2705 this->merge_sections_by_id_.clear();
2706 this->relaxed_input_sections_by_id_.clear();
2707 // A cleared map is valid.
2708 this->is_valid_ = true;
2711 // Find a merge section by merge section properties. Return NULL if none
2712 // is found.
2713 Output_merge_base*
2714 find_merge_section(const Merge_section_properties& msp) const
2716 gold_assert(this->is_valid_);
2717 Merge_sections_by_properties::const_iterator p =
2718 this->merge_sections_by_properties_.find(msp);
2719 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2722 // Find a merge section by section ID of a merge input section. Return NULL
2723 // if none is found.
2724 Output_merge_base*
2725 find_merge_section(const Object* object, unsigned int shndx) const
2727 gold_assert(this->is_valid_);
2728 Merge_sections_by_id::const_iterator p =
2729 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2730 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2733 // Add a merge section pointed by POMB with properties MSP.
2734 void
2735 add_merge_section(const Merge_section_properties& msp,
2736 Output_merge_base* pomb)
2738 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2739 std::pair<Merge_sections_by_properties::iterator, bool> result =
2740 this->merge_sections_by_properties_.insert(value);
2741 gold_assert(result.second);
2744 // Add a mapping from a merged input section in OBJECT with index SHNDX
2745 // to a merge output section pointed by POMB.
2746 void
2747 add_merge_input_section(const Object* object, unsigned int shndx,
2748 Output_merge_base* pomb)
2750 Const_section_id csid(object, shndx);
2751 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2752 std::pair<Merge_sections_by_id::iterator, bool> result =
2753 this->merge_sections_by_id_.insert(value);
2754 gold_assert(result.second);
2757 // Find a relaxed input section of OBJECT with index SHNDX.
2758 Output_relaxed_input_section*
2759 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2761 gold_assert(this->is_valid_);
2762 Relaxed_input_sections_by_id::const_iterator p =
2763 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2764 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2767 // Add a relaxed input section pointed by POMB and whose original input
2768 // section is in OBJECT with index SHNDX.
2769 void
2770 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2771 Output_relaxed_input_section* poris)
2773 Const_section_id csid(relobj, shndx);
2774 std::pair<Const_section_id, Output_relaxed_input_section*>
2775 value(csid, poris);
2776 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2777 this->relaxed_input_sections_by_id_.insert(value);
2778 gold_assert(result.second);
2781 private:
2782 typedef Unordered_map<Const_section_id, Output_merge_base*,
2783 Const_section_id_hash>
2784 Merge_sections_by_id;
2786 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2787 Merge_section_properties::hash,
2788 Merge_section_properties::equal_to>
2789 Merge_sections_by_properties;
2791 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2792 Const_section_id_hash>
2793 Relaxed_input_sections_by_id;
2795 // Whether this is valid
2796 bool is_valid_;
2797 // Merge sections by merge section properties.
2798 Merge_sections_by_properties merge_sections_by_properties_;
2799 // Merge sections by section IDs.
2800 Merge_sections_by_id merge_sections_by_id_;
2801 // Relaxed sections by section IDs.
2802 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2805 // This abstract base class defines the interface for the
2806 // types of methods used to fill free space left in an output
2807 // section during an incremental link. These methods are used
2808 // to insert dummy compilation units into debug info so that
2809 // debug info consumers can scan the debug info serially.
2811 class Output_fill
2813 public:
2814 Output_fill()
2815 : is_big_endian_(parameters->target().is_big_endian())
2818 // Return the smallest size chunk of free space that can be
2819 // filled with a dummy compilation unit.
2820 size_t
2821 minimum_hole_size() const
2822 { return this->do_minimum_hole_size(); }
2824 // Write a fill pattern of length LEN at offset OFF in the file.
2825 void
2826 write(Output_file* of, off_t off, size_t len) const
2827 { this->do_write(of, off, len); }
2829 protected:
2830 virtual size_t
2831 do_minimum_hole_size() const = 0;
2833 virtual void
2834 do_write(Output_file* of, off_t off, size_t len) const = 0;
2836 bool
2837 is_big_endian() const
2838 { return this->is_big_endian_; }
2840 private:
2841 bool is_big_endian_;
2844 // Fill method that introduces a dummy compilation unit in
2845 // a .debug_info or .debug_types section.
2847 class Output_fill_debug_info : public Output_fill
2849 public:
2850 Output_fill_debug_info(bool is_debug_types)
2851 : is_debug_types_(is_debug_types)
2854 protected:
2855 virtual size_t
2856 do_minimum_hole_size() const;
2858 virtual void
2859 do_write(Output_file* of, off_t off, size_t len) const;
2861 private:
2862 // Version of the header.
2863 static const int version = 4;
2864 // True if this is a .debug_types section.
2865 bool is_debug_types_;
2868 // Fill method that introduces a dummy compilation unit in
2869 // a .debug_line section.
2871 class Output_fill_debug_line : public Output_fill
2873 public:
2874 Output_fill_debug_line()
2877 protected:
2878 virtual size_t
2879 do_minimum_hole_size() const;
2881 virtual void
2882 do_write(Output_file* of, off_t off, size_t len) const;
2884 private:
2885 // Version of the header. We write a DWARF-3 header because it's smaller
2886 // and many tools have not yet been updated to understand the DWARF-4 header.
2887 static const int version = 3;
2888 // Length of the portion of the header that follows the header_length
2889 // field. This includes the following fields:
2890 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2891 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2892 // The standard_opcode_lengths array is 12 bytes long, and the
2893 // include_directories and filenames fields each contain only a single
2894 // null byte.
2895 static const size_t header_length = 19;
2898 // An output section. We don't expect to have too many output
2899 // sections, so we don't bother to do a template on the size.
2901 class Output_section : public Output_data
2903 public:
2904 // Create an output section, giving the name, type, and flags.
2905 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2906 virtual ~Output_section();
2908 // Add a new input section SHNDX, named NAME, with header SHDR, from
2909 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2910 // which applies to this section, or 0 if none, or -1 if more than
2911 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2912 // in a linker script; in that case we need to keep track of input
2913 // sections associated with an output section. Return the offset
2914 // within the output section.
2915 template<int size, bool big_endian>
2916 off_t
2917 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
2918 unsigned int shndx, const char* name,
2919 const elfcpp::Shdr<size, big_endian>& shdr,
2920 unsigned int reloc_shndx, bool have_sections_script);
2922 // Add generated data POSD to this output section.
2923 void
2924 add_output_section_data(Output_section_data* posd);
2926 // Add a relaxed input section PORIS called NAME to this output section
2927 // with LAYOUT.
2928 void
2929 add_relaxed_input_section(Layout* layout,
2930 Output_relaxed_input_section* poris,
2931 const std::string& name);
2933 // Return the section name.
2934 const char*
2935 name() const
2936 { return this->name_; }
2938 // Return the section type.
2939 elfcpp::Elf_Word
2940 type() const
2941 { return this->type_; }
2943 // Return the section flags.
2944 elfcpp::Elf_Xword
2945 flags() const
2946 { return this->flags_; }
2948 typedef std::map<Section_id, unsigned int> Section_layout_order;
2950 void
2951 update_section_layout(const Section_layout_order* order_map);
2953 // Update the output section flags based on input section flags.
2954 void
2955 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2957 // Return the entsize field.
2958 uint64_t
2959 entsize() const
2960 { return this->entsize_; }
2962 // Set the entsize field.
2963 void
2964 set_entsize(uint64_t v);
2966 // Set the load address.
2967 void
2968 set_load_address(uint64_t load_address)
2970 this->load_address_ = load_address;
2971 this->has_load_address_ = true;
2974 // Set the link field to the output section index of a section.
2975 void
2976 set_link_section(const Output_data* od)
2978 gold_assert(this->link_ == 0
2979 && !this->should_link_to_symtab_
2980 && !this->should_link_to_dynsym_);
2981 this->link_section_ = od;
2984 // Set the link field to a constant.
2985 void
2986 set_link(unsigned int v)
2988 gold_assert(this->link_section_ == NULL
2989 && !this->should_link_to_symtab_
2990 && !this->should_link_to_dynsym_);
2991 this->link_ = v;
2994 // Record that this section should link to the normal symbol table.
2995 void
2996 set_should_link_to_symtab()
2998 gold_assert(this->link_section_ == NULL
2999 && this->link_ == 0
3000 && !this->should_link_to_dynsym_);
3001 this->should_link_to_symtab_ = true;
3004 // Record that this section should link to the dynamic symbol table.
3005 void
3006 set_should_link_to_dynsym()
3008 gold_assert(this->link_section_ == NULL
3009 && this->link_ == 0
3010 && !this->should_link_to_symtab_);
3011 this->should_link_to_dynsym_ = true;
3014 // Return the info field.
3015 unsigned int
3016 info() const
3018 gold_assert(this->info_section_ == NULL
3019 && this->info_symndx_ == NULL);
3020 return this->info_;
3023 // Set the info field to the output section index of a section.
3024 void
3025 set_info_section(const Output_section* os)
3027 gold_assert((this->info_section_ == NULL
3028 || (this->info_section_ == os
3029 && this->info_uses_section_index_))
3030 && this->info_symndx_ == NULL
3031 && this->info_ == 0);
3032 this->info_section_ = os;
3033 this->info_uses_section_index_= true;
3036 // Set the info field to the symbol table index of a symbol.
3037 void
3038 set_info_symndx(const Symbol* sym)
3040 gold_assert(this->info_section_ == NULL
3041 && (this->info_symndx_ == NULL
3042 || this->info_symndx_ == sym)
3043 && this->info_ == 0);
3044 this->info_symndx_ = sym;
3047 // Set the info field to the symbol table index of a section symbol.
3048 void
3049 set_info_section_symndx(const Output_section* os)
3051 gold_assert((this->info_section_ == NULL
3052 || (this->info_section_ == os
3053 && !this->info_uses_section_index_))
3054 && this->info_symndx_ == NULL
3055 && this->info_ == 0);
3056 this->info_section_ = os;
3057 this->info_uses_section_index_ = false;
3060 // Set the info field to a constant.
3061 void
3062 set_info(unsigned int v)
3064 gold_assert(this->info_section_ == NULL
3065 && this->info_symndx_ == NULL
3066 && (this->info_ == 0
3067 || this->info_ == v));
3068 this->info_ = v;
3071 // Set the addralign field.
3072 void
3073 set_addralign(uint64_t v)
3074 { this->addralign_ = v; }
3076 // Whether the output section index has been set.
3077 bool
3078 has_out_shndx() const
3079 { return this->out_shndx_ != -1U; }
3081 // Indicate that we need a symtab index.
3082 void
3083 set_needs_symtab_index()
3084 { this->needs_symtab_index_ = true; }
3086 // Return whether we need a symtab index.
3087 bool
3088 needs_symtab_index() const
3089 { return this->needs_symtab_index_; }
3091 // Get the symtab index.
3092 unsigned int
3093 symtab_index() const
3095 gold_assert(this->symtab_index_ != 0);
3096 return this->symtab_index_;
3099 // Set the symtab index.
3100 void
3101 set_symtab_index(unsigned int index)
3103 gold_assert(index != 0);
3104 this->symtab_index_ = index;
3107 // Indicate that we need a dynsym index.
3108 void
3109 set_needs_dynsym_index()
3110 { this->needs_dynsym_index_ = true; }
3112 // Return whether we need a dynsym index.
3113 bool
3114 needs_dynsym_index() const
3115 { return this->needs_dynsym_index_; }
3117 // Get the dynsym index.
3118 unsigned int
3119 dynsym_index() const
3121 gold_assert(this->dynsym_index_ != 0);
3122 return this->dynsym_index_;
3125 // Set the dynsym index.
3126 void
3127 set_dynsym_index(unsigned int index)
3129 gold_assert(index != 0);
3130 this->dynsym_index_ = index;
3133 // Return whether the input sections sections attachd to this output
3134 // section may require sorting. This is used to handle constructor
3135 // priorities compatibly with GNU ld.
3136 bool
3137 may_sort_attached_input_sections() const
3138 { return this->may_sort_attached_input_sections_; }
3140 // Record that the input sections attached to this output section
3141 // may require sorting.
3142 void
3143 set_may_sort_attached_input_sections()
3144 { this->may_sort_attached_input_sections_ = true; }
3146 // Returns true if input sections must be sorted according to the
3147 // order in which their name appear in the --section-ordering-file.
3148 bool
3149 input_section_order_specified()
3150 { return this->input_section_order_specified_; }
3152 // Record that input sections must be sorted as some of their names
3153 // match the patterns specified through --section-ordering-file.
3154 void
3155 set_input_section_order_specified()
3156 { this->input_section_order_specified_ = true; }
3158 // Return whether the input sections attached to this output section
3159 // require sorting. This is used to handle constructor priorities
3160 // compatibly with GNU ld.
3161 bool
3162 must_sort_attached_input_sections() const
3163 { return this->must_sort_attached_input_sections_; }
3165 // Record that the input sections attached to this output section
3166 // require sorting.
3167 void
3168 set_must_sort_attached_input_sections()
3169 { this->must_sort_attached_input_sections_ = true; }
3171 // Get the order in which this section appears in the PT_LOAD output
3172 // segment.
3173 Output_section_order
3174 order() const
3175 { return this->order_; }
3177 // Set the order for this section.
3178 void
3179 set_order(Output_section_order order)
3180 { this->order_ = order; }
3182 // Return whether this section holds relro data--data which has
3183 // dynamic relocations but which may be marked read-only after the
3184 // dynamic relocations have been completed.
3185 bool
3186 is_relro() const
3187 { return this->is_relro_; }
3189 // Record that this section holds relro data.
3190 void
3191 set_is_relro()
3192 { this->is_relro_ = true; }
3194 // Record that this section does not hold relro data.
3195 void
3196 clear_is_relro()
3197 { this->is_relro_ = false; }
3199 // True if this is a small section: a section which holds small
3200 // variables.
3201 bool
3202 is_small_section() const
3203 { return this->is_small_section_; }
3205 // Record that this is a small section.
3206 void
3207 set_is_small_section()
3208 { this->is_small_section_ = true; }
3210 // True if this is a large section: a section which holds large
3211 // variables.
3212 bool
3213 is_large_section() const
3214 { return this->is_large_section_; }
3216 // Record that this is a large section.
3217 void
3218 set_is_large_section()
3219 { this->is_large_section_ = true; }
3221 // True if this is a large data (not BSS) section.
3222 bool
3223 is_large_data_section()
3224 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3226 // Return whether this section should be written after all the input
3227 // sections are complete.
3228 bool
3229 after_input_sections() const
3230 { return this->after_input_sections_; }
3232 // Record that this section should be written after all the input
3233 // sections are complete.
3234 void
3235 set_after_input_sections()
3236 { this->after_input_sections_ = true; }
3238 // Return whether this section requires postprocessing after all
3239 // relocations have been applied.
3240 bool
3241 requires_postprocessing() const
3242 { return this->requires_postprocessing_; }
3244 // If a section requires postprocessing, return the buffer to use.
3245 unsigned char*
3246 postprocessing_buffer() const
3248 gold_assert(this->postprocessing_buffer_ != NULL);
3249 return this->postprocessing_buffer_;
3252 // If a section requires postprocessing, create the buffer to use.
3253 void
3254 create_postprocessing_buffer();
3256 // If a section requires postprocessing, this is the size of the
3257 // buffer to which relocations should be applied.
3258 off_t
3259 postprocessing_buffer_size() const
3260 { return this->current_data_size_for_child(); }
3262 // Modify the section name. This is only permitted for an
3263 // unallocated section, and only before the size has been finalized.
3264 // Otherwise the name will not get into Layout::namepool_.
3265 void
3266 set_name(const char* newname)
3268 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3269 gold_assert(!this->is_data_size_valid());
3270 this->name_ = newname;
3273 // Return whether the offset OFFSET in the input section SHNDX in
3274 // object OBJECT is being included in the link.
3275 bool
3276 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3277 off_t offset) const;
3279 // Return the offset within the output section of OFFSET relative to
3280 // the start of input section SHNDX in object OBJECT.
3281 section_offset_type
3282 output_offset(const Relobj* object, unsigned int shndx,
3283 section_offset_type offset) const;
3285 // Return the output virtual address of OFFSET relative to the start
3286 // of input section SHNDX in object OBJECT.
3287 uint64_t
3288 output_address(const Relobj* object, unsigned int shndx,
3289 off_t offset) const;
3291 // Look for the merged section for input section SHNDX in object
3292 // OBJECT. If found, return true, and set *ADDR to the address of
3293 // the start of the merged section. This is not necessary the
3294 // output offset corresponding to input offset 0 in the section,
3295 // since the section may be mapped arbitrarily.
3296 bool
3297 find_starting_output_address(const Relobj* object, unsigned int shndx,
3298 uint64_t* addr) const;
3300 // Record that this output section was found in the SECTIONS clause
3301 // of a linker script.
3302 void
3303 set_found_in_sections_clause()
3304 { this->found_in_sections_clause_ = true; }
3306 // Return whether this output section was found in the SECTIONS
3307 // clause of a linker script.
3308 bool
3309 found_in_sections_clause() const
3310 { return this->found_in_sections_clause_; }
3312 // Write the section header into *OPHDR.
3313 template<int size, bool big_endian>
3314 void
3315 write_header(const Layout*, const Stringpool*,
3316 elfcpp::Shdr_write<size, big_endian>*) const;
3318 // The next few calls are for linker script support.
3320 // In some cases we need to keep a list of the input sections
3321 // associated with this output section. We only need the list if we
3322 // might have to change the offsets of the input section within the
3323 // output section after we add the input section. The ordinary
3324 // input sections will be written out when we process the object
3325 // file, and as such we don't need to track them here. We do need
3326 // to track Output_section_data objects here. We store instances of
3327 // this structure in a std::vector, so it must be a POD. There can
3328 // be many instances of this structure, so we use a union to save
3329 // some space.
3330 class Input_section
3332 public:
3333 Input_section()
3334 : shndx_(0), p2align_(0)
3336 this->u1_.data_size = 0;
3337 this->u2_.object = NULL;
3340 // For an ordinary input section.
3341 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3342 uint64_t addralign)
3343 : shndx_(shndx),
3344 p2align_(ffsll(static_cast<long long>(addralign))),
3345 section_order_index_(0)
3347 gold_assert(shndx != OUTPUT_SECTION_CODE
3348 && shndx != MERGE_DATA_SECTION_CODE
3349 && shndx != MERGE_STRING_SECTION_CODE
3350 && shndx != RELAXED_INPUT_SECTION_CODE);
3351 this->u1_.data_size = data_size;
3352 this->u2_.object = object;
3355 // For a non-merge output section.
3356 Input_section(Output_section_data* posd)
3357 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3358 section_order_index_(0)
3360 this->u1_.data_size = 0;
3361 this->u2_.posd = posd;
3364 // For a merge section.
3365 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3366 : shndx_(is_string
3367 ? MERGE_STRING_SECTION_CODE
3368 : MERGE_DATA_SECTION_CODE),
3369 p2align_(0),
3370 section_order_index_(0)
3372 this->u1_.entsize = entsize;
3373 this->u2_.posd = posd;
3376 // For a relaxed input section.
3377 Input_section(Output_relaxed_input_section* psection)
3378 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3379 section_order_index_(0)
3381 this->u1_.data_size = 0;
3382 this->u2_.poris = psection;
3385 unsigned int
3386 section_order_index() const
3388 return this->section_order_index_;
3391 void
3392 set_section_order_index(unsigned int number)
3394 this->section_order_index_ = number;
3397 // The required alignment.
3398 uint64_t
3399 addralign() const
3401 if (this->p2align_ != 0)
3402 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3403 else if (!this->is_input_section())
3404 return this->u2_.posd->addralign();
3405 else
3406 return 0;
3409 // Set the required alignment, which must be either 0 or a power of 2.
3410 // For input sections that are sub-classes of Output_section_data, a
3411 // alignment of zero means asking the underlying object for alignment.
3412 void
3413 set_addralign(uint64_t addralign)
3415 if (addralign == 0)
3416 this->p2align_ = 0;
3417 else
3419 gold_assert((addralign & (addralign - 1)) == 0);
3420 this->p2align_ = ffsll(static_cast<long long>(addralign));
3424 // Return the current required size, without finalization.
3425 off_t
3426 current_data_size() const;
3428 // Return the required size.
3429 off_t
3430 data_size() const;
3432 // Whether this is an input section.
3433 bool
3434 is_input_section() const
3436 return (this->shndx_ != OUTPUT_SECTION_CODE
3437 && this->shndx_ != MERGE_DATA_SECTION_CODE
3438 && this->shndx_ != MERGE_STRING_SECTION_CODE
3439 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3442 // Return whether this is a merge section which matches the
3443 // parameters.
3444 bool
3445 is_merge_section(bool is_string, uint64_t entsize,
3446 uint64_t addralign) const
3448 return (this->shndx_ == (is_string
3449 ? MERGE_STRING_SECTION_CODE
3450 : MERGE_DATA_SECTION_CODE)
3451 && this->u1_.entsize == entsize
3452 && this->addralign() == addralign);
3455 // Return whether this is a merge section for some input section.
3456 bool
3457 is_merge_section() const
3459 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3460 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3463 // Return whether this is a relaxed input section.
3464 bool
3465 is_relaxed_input_section() const
3466 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3468 // Return whether this is a generic Output_section_data.
3469 bool
3470 is_output_section_data() const
3472 return this->shndx_ == OUTPUT_SECTION_CODE;
3475 // Return the object for an input section.
3476 Relobj*
3477 relobj() const;
3479 // Return the input section index for an input section.
3480 unsigned int
3481 shndx() const;
3483 // For non-input-sections, return the associated Output_section_data
3484 // object.
3485 Output_section_data*
3486 output_section_data() const
3488 gold_assert(!this->is_input_section());
3489 return this->u2_.posd;
3492 // For a merge section, return the Output_merge_base pointer.
3493 Output_merge_base*
3494 output_merge_base() const
3496 gold_assert(this->is_merge_section());
3497 return this->u2_.pomb;
3500 // Return the Output_relaxed_input_section object.
3501 Output_relaxed_input_section*
3502 relaxed_input_section() const
3504 gold_assert(this->is_relaxed_input_section());
3505 return this->u2_.poris;
3508 // Set the output section.
3509 void
3510 set_output_section(Output_section* os)
3512 gold_assert(!this->is_input_section());
3513 Output_section_data* posd =
3514 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3515 posd->set_output_section(os);
3518 // Set the address and file offset. This is called during
3519 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3520 // the enclosing section.
3521 void
3522 set_address_and_file_offset(uint64_t address, off_t file_offset,
3523 off_t section_file_offset);
3525 // Reset the address and file offset.
3526 void
3527 reset_address_and_file_offset();
3529 // Finalize the data size.
3530 void
3531 finalize_data_size();
3533 // Add an input section, for SHF_MERGE sections.
3534 bool
3535 add_input_section(Relobj* object, unsigned int shndx)
3537 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3538 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3539 return this->u2_.posd->add_input_section(object, shndx);
3542 // Given an input OBJECT, an input section index SHNDX within that
3543 // object, and an OFFSET relative to the start of that input
3544 // section, return whether or not the output offset is known. If
3545 // this function returns true, it sets *POUTPUT to the offset in
3546 // the output section, relative to the start of the input section
3547 // in the output section. *POUTPUT may be different from OFFSET
3548 // for a merged section.
3549 bool
3550 output_offset(const Relobj* object, unsigned int shndx,
3551 section_offset_type offset,
3552 section_offset_type* poutput) const;
3554 // Return whether this is the merge section for the input section
3555 // SHNDX in OBJECT.
3556 bool
3557 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3559 // Write out the data. This does nothing for an input section.
3560 void
3561 write(Output_file*);
3563 // Write the data to a buffer. This does nothing for an input
3564 // section.
3565 void
3566 write_to_buffer(unsigned char*);
3568 // Print to a map file.
3569 void
3570 print_to_mapfile(Mapfile*) const;
3572 // Print statistics about merge sections to stderr.
3573 void
3574 print_merge_stats(const char* section_name)
3576 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3577 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3578 this->u2_.posd->print_merge_stats(section_name);
3581 private:
3582 // Code values which appear in shndx_. If the value is not one of
3583 // these codes, it is the input section index in the object file.
3584 enum
3586 // An Output_section_data.
3587 OUTPUT_SECTION_CODE = -1U,
3588 // An Output_section_data for an SHF_MERGE section with
3589 // SHF_STRINGS not set.
3590 MERGE_DATA_SECTION_CODE = -2U,
3591 // An Output_section_data for an SHF_MERGE section with
3592 // SHF_STRINGS set.
3593 MERGE_STRING_SECTION_CODE = -3U,
3594 // An Output_section_data for a relaxed input section.
3595 RELAXED_INPUT_SECTION_CODE = -4U
3598 // For an ordinary input section, this is the section index in the
3599 // input file. For an Output_section_data, this is
3600 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3601 // MERGE_STRING_SECTION_CODE.
3602 unsigned int shndx_;
3603 // The required alignment, stored as a power of 2.
3604 unsigned int p2align_;
3605 union
3607 // For an ordinary input section, the section size.
3608 off_t data_size;
3609 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3610 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3611 // entity size.
3612 uint64_t entsize;
3613 } u1_;
3614 union
3616 // For an ordinary input section, the object which holds the
3617 // input section.
3618 Relobj* object;
3619 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3620 // MERGE_STRING_SECTION_CODE, the data.
3621 Output_section_data* posd;
3622 Output_merge_base* pomb;
3623 // For RELAXED_INPUT_SECTION_CODE, the data.
3624 Output_relaxed_input_section* poris;
3625 } u2_;
3626 // The line number of the pattern it matches in the --section-ordering-file
3627 // file. It is 0 if does not match any pattern.
3628 unsigned int section_order_index_;
3631 // Store the list of input sections for this Output_section into the
3632 // list passed in. This removes the input sections, leaving only
3633 // any Output_section_data elements. This returns the size of those
3634 // Output_section_data elements. ADDRESS is the address of this
3635 // output section. FILL is the fill value to use, in case there are
3636 // any spaces between the remaining Output_section_data elements.
3637 uint64_t
3638 get_input_sections(uint64_t address, const std::string& fill,
3639 std::list<Input_section>*);
3641 // Add a script input section. A script input section can either be
3642 // a plain input section or a sub-class of Output_section_data.
3643 void
3644 add_script_input_section(const Input_section& input_section);
3646 // Set the current size of the output section.
3647 void
3648 set_current_data_size(off_t size)
3649 { this->set_current_data_size_for_child(size); }
3651 // End of linker script support.
3653 // Save states before doing section layout.
3654 // This is used for relaxation.
3655 void
3656 save_states();
3658 // Restore states prior to section layout.
3659 void
3660 restore_states();
3662 // Discard states.
3663 void
3664 discard_states();
3666 // Convert existing input sections to relaxed input sections.
3667 void
3668 convert_input_sections_to_relaxed_sections(
3669 const std::vector<Output_relaxed_input_section*>& sections);
3671 // Find a relaxed input section to an input section in OBJECT
3672 // with index SHNDX. Return NULL if none is found.
3673 const Output_relaxed_input_section*
3674 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3676 // Whether section offsets need adjustment due to relaxation.
3677 bool
3678 section_offsets_need_adjustment() const
3679 { return this->section_offsets_need_adjustment_; }
3681 // Set section_offsets_need_adjustment to be true.
3682 void
3683 set_section_offsets_need_adjustment()
3684 { this->section_offsets_need_adjustment_ = true; }
3686 // Adjust section offsets of input sections in this. This is
3687 // requires if relaxation caused some input sections to change sizes.
3688 void
3689 adjust_section_offsets();
3691 // Whether this is a NOLOAD section.
3692 bool
3693 is_noload() const
3694 { return this->is_noload_; }
3696 // Set NOLOAD flag.
3697 void
3698 set_is_noload()
3699 { this->is_noload_ = true; }
3701 // Print merge statistics to stderr.
3702 void
3703 print_merge_stats();
3705 // Set a fixed layout for the section. Used for incremental update links.
3706 void
3707 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3708 uint64_t sh_addralign);
3710 // Return TRUE if the section has a fixed layout.
3711 bool
3712 has_fixed_layout() const
3713 { return this->has_fixed_layout_; }
3715 // Set flag to allow patch space for this section. Used for full
3716 // incremental links.
3717 void
3718 set_is_patch_space_allowed()
3719 { this->is_patch_space_allowed_ = true; }
3721 // Set a fill method to use for free space left in the output section
3722 // during incremental links.
3723 void
3724 set_free_space_fill(Output_fill* free_space_fill)
3726 this->free_space_fill_ = free_space_fill;
3727 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3730 // Reserve space within the fixed layout for the section. Used for
3731 // incremental update links.
3732 void
3733 reserve(uint64_t sh_offset, uint64_t sh_size);
3735 // Allocate space from the free list for the section. Used for
3736 // incremental update links.
3737 off_t
3738 allocate(off_t len, uint64_t addralign);
3740 protected:
3741 // Return the output section--i.e., the object itself.
3742 Output_section*
3743 do_output_section()
3744 { return this; }
3746 const Output_section*
3747 do_output_section() const
3748 { return this; }
3750 // Return the section index in the output file.
3751 unsigned int
3752 do_out_shndx() const
3754 gold_assert(this->out_shndx_ != -1U);
3755 return this->out_shndx_;
3758 // Set the output section index.
3759 void
3760 do_set_out_shndx(unsigned int shndx)
3762 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3763 this->out_shndx_ = shndx;
3766 // Update the data size of the Output_section. For a typical
3767 // Output_section, there is nothing to do, but if there are any
3768 // Output_section_data objects we need to do a trial layout
3769 // here.
3770 virtual void
3771 update_data_size();
3773 // Set the final data size of the Output_section. For a typical
3774 // Output_section, there is nothing to do, but if there are any
3775 // Output_section_data objects we need to set their final addresses
3776 // here.
3777 virtual void
3778 set_final_data_size();
3780 // Reset the address and file offset.
3781 void
3782 do_reset_address_and_file_offset();
3784 // Return true if address and file offset already have reset values. In
3785 // other words, calling reset_address_and_file_offset will not change them.
3786 bool
3787 do_address_and_file_offset_have_reset_values() const;
3789 // Write the data to the file. For a typical Output_section, this
3790 // does nothing: the data is written out by calling Object::Relocate
3791 // on each input object. But if there are any Output_section_data
3792 // objects we do need to write them out here.
3793 virtual void
3794 do_write(Output_file*);
3796 // Return the address alignment--function required by parent class.
3797 uint64_t
3798 do_addralign() const
3799 { return this->addralign_; }
3801 // Return whether there is a load address.
3802 bool
3803 do_has_load_address() const
3804 { return this->has_load_address_; }
3806 // Return the load address.
3807 uint64_t
3808 do_load_address() const
3810 gold_assert(this->has_load_address_);
3811 return this->load_address_;
3814 // Return whether this is an Output_section.
3815 bool
3816 do_is_section() const
3817 { return true; }
3819 // Return whether this is a section of the specified type.
3820 bool
3821 do_is_section_type(elfcpp::Elf_Word type) const
3822 { return this->type_ == type; }
3824 // Return whether the specified section flag is set.
3825 bool
3826 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3827 { return (this->flags_ & flag) != 0; }
3829 // Set the TLS offset. Called only for SHT_TLS sections.
3830 void
3831 do_set_tls_offset(uint64_t tls_base);
3833 // Return the TLS offset, relative to the base of the TLS segment.
3834 // Valid only for SHT_TLS sections.
3835 uint64_t
3836 do_tls_offset() const
3837 { return this->tls_offset_; }
3839 // This may be implemented by a child class.
3840 virtual void
3841 do_finalize_name(Layout*)
3844 // Print to the map file.
3845 virtual void
3846 do_print_to_mapfile(Mapfile*) const;
3848 // Record that this section requires postprocessing after all
3849 // relocations have been applied. This is called by a child class.
3850 void
3851 set_requires_postprocessing()
3853 this->requires_postprocessing_ = true;
3854 this->after_input_sections_ = true;
3857 // Write all the data of an Output_section into the postprocessing
3858 // buffer.
3859 void
3860 write_to_postprocessing_buffer();
3862 typedef std::vector<Input_section> Input_section_list;
3864 // Allow a child class to access the input sections.
3865 const Input_section_list&
3866 input_sections() const
3867 { return this->input_sections_; }
3869 // Whether this always keeps an input section list
3870 bool
3871 always_keeps_input_sections() const
3872 { return this->always_keeps_input_sections_; }
3874 // Always keep an input section list.
3875 void
3876 set_always_keeps_input_sections()
3878 gold_assert(this->current_data_size_for_child() == 0);
3879 this->always_keeps_input_sections_ = true;
3882 private:
3883 // We only save enough information to undo the effects of section layout.
3884 class Checkpoint_output_section
3886 public:
3887 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3888 const Input_section_list& input_sections,
3889 off_t first_input_offset,
3890 bool attached_input_sections_are_sorted)
3891 : addralign_(addralign), flags_(flags),
3892 input_sections_(input_sections),
3893 input_sections_size_(input_sections_.size()),
3894 input_sections_copy_(), first_input_offset_(first_input_offset),
3895 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3898 virtual
3899 ~Checkpoint_output_section()
3902 // Return the address alignment.
3903 uint64_t
3904 addralign() const
3905 { return this->addralign_; }
3907 // Return the section flags.
3908 elfcpp::Elf_Xword
3909 flags() const
3910 { return this->flags_; }
3912 // Return a reference to the input section list copy.
3913 Input_section_list*
3914 input_sections()
3915 { return &this->input_sections_copy_; }
3917 // Return the size of input_sections at the time when checkpoint is
3918 // taken.
3919 size_t
3920 input_sections_size() const
3921 { return this->input_sections_size_; }
3923 // Whether input sections are copied.
3924 bool
3925 input_sections_saved() const
3926 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3928 off_t
3929 first_input_offset() const
3930 { return this->first_input_offset_; }
3932 bool
3933 attached_input_sections_are_sorted() const
3934 { return this->attached_input_sections_are_sorted_; }
3936 // Save input sections.
3937 void
3938 save_input_sections()
3940 this->input_sections_copy_.reserve(this->input_sections_size_);
3941 this->input_sections_copy_.clear();
3942 Input_section_list::const_iterator p = this->input_sections_.begin();
3943 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3944 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3945 this->input_sections_copy_.push_back(*p);
3948 private:
3949 // The section alignment.
3950 uint64_t addralign_;
3951 // The section flags.
3952 elfcpp::Elf_Xword flags_;
3953 // Reference to the input sections to be checkpointed.
3954 const Input_section_list& input_sections_;
3955 // Size of the checkpointed portion of input_sections_;
3956 size_t input_sections_size_;
3957 // Copy of input sections.
3958 Input_section_list input_sections_copy_;
3959 // The offset of the first entry in input_sections_.
3960 off_t first_input_offset_;
3961 // True if the input sections attached to this output section have
3962 // already been sorted.
3963 bool attached_input_sections_are_sorted_;
3966 // This class is used to sort the input sections.
3967 class Input_section_sort_entry;
3969 // This is the sort comparison function for ctors and dtors.
3970 struct Input_section_sort_compare
3972 bool
3973 operator()(const Input_section_sort_entry&,
3974 const Input_section_sort_entry&) const;
3977 // This is the sort comparison function for .init_array and .fini_array.
3978 struct Input_section_sort_init_fini_compare
3980 bool
3981 operator()(const Input_section_sort_entry&,
3982 const Input_section_sort_entry&) const;
3985 // This is the sort comparison function when a section order is specified
3986 // from an input file.
3987 struct Input_section_sort_section_order_index_compare
3989 bool
3990 operator()(const Input_section_sort_entry&,
3991 const Input_section_sort_entry&) const;
3994 // Fill data. This is used to fill in data between input sections.
3995 // It is also used for data statements (BYTE, WORD, etc.) in linker
3996 // scripts. When we have to keep track of the input sections, we
3997 // can use an Output_data_const, but we don't want to have to keep
3998 // track of input sections just to implement fills.
3999 class Fill
4001 public:
4002 Fill(off_t section_offset, off_t length)
4003 : section_offset_(section_offset),
4004 length_(convert_to_section_size_type(length))
4007 // Return section offset.
4008 off_t
4009 section_offset() const
4010 { return this->section_offset_; }
4012 // Return fill length.
4013 section_size_type
4014 length() const
4015 { return this->length_; }
4017 private:
4018 // The offset within the output section.
4019 off_t section_offset_;
4020 // The length of the space to fill.
4021 section_size_type length_;
4024 typedef std::vector<Fill> Fill_list;
4026 // Map used during relaxation of existing sections. This map
4027 // a section id an input section list index. We assume that
4028 // Input_section_list is a vector.
4029 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4031 // Add a new output section by Input_section.
4032 void
4033 add_output_section_data(Input_section*);
4035 // Add an SHF_MERGE input section. Returns true if the section was
4036 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4037 // stores information about the merged input sections.
4038 bool
4039 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4040 uint64_t entsize, uint64_t addralign,
4041 bool keeps_input_sections);
4043 // Add an output SHF_MERGE section POSD to this output section.
4044 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4045 // ENTSIZE is the entity size. This returns the entry added to
4046 // input_sections_.
4047 void
4048 add_output_merge_section(Output_section_data* posd, bool is_string,
4049 uint64_t entsize);
4051 // Sort the attached input sections.
4052 void
4053 sort_attached_input_sections();
4055 // Find the merge section into which an input section with index SHNDX in
4056 // OBJECT has been added. Return NULL if none found.
4057 Output_section_data*
4058 find_merge_section(const Relobj* object, unsigned int shndx) const;
4060 // Build a relaxation map.
4061 void
4062 build_relaxation_map(
4063 const Input_section_list& input_sections,
4064 size_t limit,
4065 Relaxation_map* map) const;
4067 // Convert input sections in an input section list into relaxed sections.
4068 void
4069 convert_input_sections_in_list_to_relaxed_sections(
4070 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4071 const Relaxation_map& map,
4072 Input_section_list* input_sections);
4074 // Build the lookup maps for merge and relaxed input sections.
4075 void
4076 build_lookup_maps() const;
4078 // Most of these fields are only valid after layout.
4080 // The name of the section. This will point into a Stringpool.
4081 const char* name_;
4082 // The section address is in the parent class.
4083 // The section alignment.
4084 uint64_t addralign_;
4085 // The section entry size.
4086 uint64_t entsize_;
4087 // The load address. This is only used when using a linker script
4088 // with a SECTIONS clause. The has_load_address_ field indicates
4089 // whether this field is valid.
4090 uint64_t load_address_;
4091 // The file offset is in the parent class.
4092 // Set the section link field to the index of this section.
4093 const Output_data* link_section_;
4094 // If link_section_ is NULL, this is the link field.
4095 unsigned int link_;
4096 // Set the section info field to the index of this section.
4097 const Output_section* info_section_;
4098 // If info_section_ is NULL, set the info field to the symbol table
4099 // index of this symbol.
4100 const Symbol* info_symndx_;
4101 // If info_section_ and info_symndx_ are NULL, this is the section
4102 // info field.
4103 unsigned int info_;
4104 // The section type.
4105 const elfcpp::Elf_Word type_;
4106 // The section flags.
4107 elfcpp::Elf_Xword flags_;
4108 // The order of this section in the output segment.
4109 Output_section_order order_;
4110 // The section index.
4111 unsigned int out_shndx_;
4112 // If there is a STT_SECTION for this output section in the normal
4113 // symbol table, this is the symbol index. This starts out as zero.
4114 // It is initialized in Layout::finalize() to be the index, or -1U
4115 // if there isn't one.
4116 unsigned int symtab_index_;
4117 // If there is a STT_SECTION for this output section in the dynamic
4118 // symbol table, this is the symbol index. This starts out as zero.
4119 // It is initialized in Layout::finalize() to be the index, or -1U
4120 // if there isn't one.
4121 unsigned int dynsym_index_;
4122 // The input sections. This will be empty in cases where we don't
4123 // need to keep track of them.
4124 Input_section_list input_sections_;
4125 // The offset of the first entry in input_sections_.
4126 off_t first_input_offset_;
4127 // The fill data. This is separate from input_sections_ because we
4128 // often will need fill sections without needing to keep track of
4129 // input sections.
4130 Fill_list fills_;
4131 // If the section requires postprocessing, this buffer holds the
4132 // section contents during relocation.
4133 unsigned char* postprocessing_buffer_;
4134 // Whether this output section needs a STT_SECTION symbol in the
4135 // normal symbol table. This will be true if there is a relocation
4136 // which needs it.
4137 bool needs_symtab_index_ : 1;
4138 // Whether this output section needs a STT_SECTION symbol in the
4139 // dynamic symbol table. This will be true if there is a dynamic
4140 // relocation which needs it.
4141 bool needs_dynsym_index_ : 1;
4142 // Whether the link field of this output section should point to the
4143 // normal symbol table.
4144 bool should_link_to_symtab_ : 1;
4145 // Whether the link field of this output section should point to the
4146 // dynamic symbol table.
4147 bool should_link_to_dynsym_ : 1;
4148 // Whether this section should be written after all the input
4149 // sections are complete.
4150 bool after_input_sections_ : 1;
4151 // Whether this section requires post processing after all
4152 // relocations have been applied.
4153 bool requires_postprocessing_ : 1;
4154 // Whether an input section was mapped to this output section
4155 // because of a SECTIONS clause in a linker script.
4156 bool found_in_sections_clause_ : 1;
4157 // Whether this section has an explicitly specified load address.
4158 bool has_load_address_ : 1;
4159 // True if the info_section_ field means the section index of the
4160 // section, false if it means the symbol index of the corresponding
4161 // section symbol.
4162 bool info_uses_section_index_ : 1;
4163 // True if input sections attached to this output section have to be
4164 // sorted according to a specified order.
4165 bool input_section_order_specified_ : 1;
4166 // True if the input sections attached to this output section may
4167 // need sorting.
4168 bool may_sort_attached_input_sections_ : 1;
4169 // True if the input sections attached to this output section must
4170 // be sorted.
4171 bool must_sort_attached_input_sections_ : 1;
4172 // True if the input sections attached to this output section have
4173 // already been sorted.
4174 bool attached_input_sections_are_sorted_ : 1;
4175 // True if this section holds relro data.
4176 bool is_relro_ : 1;
4177 // True if this is a small section.
4178 bool is_small_section_ : 1;
4179 // True if this is a large section.
4180 bool is_large_section_ : 1;
4181 // Whether code-fills are generated at write.
4182 bool generate_code_fills_at_write_ : 1;
4183 // Whether the entry size field should be zero.
4184 bool is_entsize_zero_ : 1;
4185 // Whether section offsets need adjustment due to relaxation.
4186 bool section_offsets_need_adjustment_ : 1;
4187 // Whether this is a NOLOAD section.
4188 bool is_noload_ : 1;
4189 // Whether this always keeps input section.
4190 bool always_keeps_input_sections_ : 1;
4191 // Whether this section has a fixed layout, for incremental update links.
4192 bool has_fixed_layout_ : 1;
4193 // True if we can add patch space to this section.
4194 bool is_patch_space_allowed_ : 1;
4195 // For SHT_TLS sections, the offset of this section relative to the base
4196 // of the TLS segment.
4197 uint64_t tls_offset_;
4198 // Saved checkpoint.
4199 Checkpoint_output_section* checkpoint_;
4200 // Fast lookup maps for merged and relaxed input sections.
4201 Output_section_lookup_maps* lookup_maps_;
4202 // List of available regions within the section, for incremental
4203 // update links.
4204 Free_list free_list_;
4205 // Method for filling chunks of free space.
4206 Output_fill* free_space_fill_;
4207 // Amount added as patch space for incremental linking.
4208 off_t patch_space_;
4211 // An output segment. PT_LOAD segments are built from collections of
4212 // output sections. Other segments typically point within PT_LOAD
4213 // segments, and are built directly as needed.
4215 // NOTE: We want to use the copy constructor for this class. During
4216 // relaxation, we may try built the segments multiple times. We do
4217 // that by copying the original segment list before lay-out, doing
4218 // a trial lay-out and roll-back to the saved copied if we need to
4219 // to the lay-out again.
4221 class Output_segment
4223 public:
4224 // Create an output segment, specifying the type and flags.
4225 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4227 // Return the virtual address.
4228 uint64_t
4229 vaddr() const
4230 { return this->vaddr_; }
4232 // Return the physical address.
4233 uint64_t
4234 paddr() const
4235 { return this->paddr_; }
4237 // Return the segment type.
4238 elfcpp::Elf_Word
4239 type() const
4240 { return this->type_; }
4242 // Return the segment flags.
4243 elfcpp::Elf_Word
4244 flags() const
4245 { return this->flags_; }
4247 // Return the memory size.
4248 uint64_t
4249 memsz() const
4250 { return this->memsz_; }
4252 // Return the file size.
4253 off_t
4254 filesz() const
4255 { return this->filesz_; }
4257 // Return the file offset.
4258 off_t
4259 offset() const
4260 { return this->offset_; }
4262 // Whether this is a segment created to hold large data sections.
4263 bool
4264 is_large_data_segment() const
4265 { return this->is_large_data_segment_; }
4267 // Record that this is a segment created to hold large data
4268 // sections.
4269 void
4270 set_is_large_data_segment()
4271 { this->is_large_data_segment_ = true; }
4273 // Return the maximum alignment of the Output_data.
4274 uint64_t
4275 maximum_alignment();
4277 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4278 // the segment flags to use.
4279 void
4280 add_output_section_to_load(Layout* layout, Output_section* os,
4281 elfcpp::Elf_Word seg_flags);
4283 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4284 // is the segment flags to use.
4285 void
4286 add_output_section_to_nonload(Output_section* os,
4287 elfcpp::Elf_Word seg_flags);
4289 // Remove an Output_section from this segment. It is an error if it
4290 // is not present.
4291 void
4292 remove_output_section(Output_section* os);
4294 // Add an Output_data (which need not be an Output_section) to the
4295 // start of this segment.
4296 void
4297 add_initial_output_data(Output_data*);
4299 // Return true if this segment has any sections which hold actual
4300 // data, rather than being a BSS section.
4301 bool
4302 has_any_data_sections() const;
4304 // Whether this segment has a dynamic relocs.
4305 bool
4306 has_dynamic_reloc() const;
4308 // Return the address of the first section.
4309 uint64_t
4310 first_section_load_address() const;
4312 // Return whether the addresses have been set already.
4313 bool
4314 are_addresses_set() const
4315 { return this->are_addresses_set_; }
4317 // Set the addresses.
4318 void
4319 set_addresses(uint64_t vaddr, uint64_t paddr)
4321 this->vaddr_ = vaddr;
4322 this->paddr_ = paddr;
4323 this->are_addresses_set_ = true;
4326 // Update the flags for the flags of an output section added to this
4327 // segment.
4328 void
4329 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4331 // The ELF ABI specifies that a PT_TLS segment should always have
4332 // PF_R as the flags.
4333 if (this->type() != elfcpp::PT_TLS)
4334 this->flags_ |= flags;
4337 // Set the segment flags. This is only used if we have a PHDRS
4338 // clause which explicitly specifies the flags.
4339 void
4340 set_flags(elfcpp::Elf_Word flags)
4341 { this->flags_ = flags; }
4343 // Set the address of the segment to ADDR and the offset to *POFF
4344 // and set the addresses and offsets of all contained output
4345 // sections accordingly. Set the section indexes of all contained
4346 // output sections starting with *PSHNDX. If RESET is true, first
4347 // reset the addresses of the contained sections. Return the
4348 // address of the immediately following segment. Update *POFF and
4349 // *PSHNDX. This should only be called for a PT_LOAD segment.
4350 uint64_t
4351 set_section_addresses(Layout*, bool reset, uint64_t addr,
4352 unsigned int* increase_relro, bool* has_relro,
4353 off_t* poff, unsigned int* pshndx);
4355 // Set the minimum alignment of this segment. This may be adjusted
4356 // upward based on the section alignments.
4357 void
4358 set_minimum_p_align(uint64_t align)
4360 if (align > this->min_p_align_)
4361 this->min_p_align_ = align;
4364 // Set the offset of this segment based on the section. This should
4365 // only be called for a non-PT_LOAD segment.
4366 void
4367 set_offset(unsigned int increase);
4369 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4370 void
4371 set_tls_offsets();
4373 // Return the number of output sections.
4374 unsigned int
4375 output_section_count() const;
4377 // Return the section attached to the list segment with the lowest
4378 // load address. This is used when handling a PHDRS clause in a
4379 // linker script.
4380 Output_section*
4381 section_with_lowest_load_address() const;
4383 // Write the segment header into *OPHDR.
4384 template<int size, bool big_endian>
4385 void
4386 write_header(elfcpp::Phdr_write<size, big_endian>*);
4388 // Write the section headers of associated sections into V.
4389 template<int size, bool big_endian>
4390 unsigned char*
4391 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4392 unsigned int* pshndx) const;
4394 // Print the output sections in the map file.
4395 void
4396 print_sections_to_mapfile(Mapfile*) const;
4398 private:
4399 typedef std::vector<Output_data*> Output_data_list;
4401 // Find the maximum alignment in an Output_data_list.
4402 static uint64_t
4403 maximum_alignment_list(const Output_data_list*);
4405 // Return whether the first data section is a relro section.
4406 bool
4407 is_first_section_relro() const;
4409 // Set the section addresses in an Output_data_list.
4410 uint64_t
4411 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4412 uint64_t addr, off_t* poff, unsigned int* pshndx,
4413 bool* in_tls);
4415 // Return the number of Output_sections in an Output_data_list.
4416 unsigned int
4417 output_section_count_list(const Output_data_list*) const;
4419 // Return whether an Output_data_list has a dynamic reloc.
4420 bool
4421 has_dynamic_reloc_list(const Output_data_list*) const;
4423 // Find the section with the lowest load address in an
4424 // Output_data_list.
4425 void
4426 lowest_load_address_in_list(const Output_data_list* pdl,
4427 Output_section** found,
4428 uint64_t* found_lma) const;
4430 // Find the first and last entries by address.
4431 void
4432 find_first_and_last_list(const Output_data_list* pdl,
4433 const Output_data** pfirst,
4434 const Output_data** plast) const;
4436 // Write the section headers in the list into V.
4437 template<int size, bool big_endian>
4438 unsigned char*
4439 write_section_headers_list(const Layout*, const Stringpool*,
4440 const Output_data_list*, unsigned char* v,
4441 unsigned int* pshdx) const;
4443 // Print a section list to the mapfile.
4444 void
4445 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4447 // NOTE: We want to use the copy constructor. Currently, shallow copy
4448 // works for us so we do not need to write our own copy constructor.
4450 // The list of output data attached to this segment.
4451 Output_data_list output_lists_[ORDER_MAX];
4452 // The segment virtual address.
4453 uint64_t vaddr_;
4454 // The segment physical address.
4455 uint64_t paddr_;
4456 // The size of the segment in memory.
4457 uint64_t memsz_;
4458 // The maximum section alignment. The is_max_align_known_ field
4459 // indicates whether this has been finalized.
4460 uint64_t max_align_;
4461 // The required minimum value for the p_align field. This is used
4462 // for PT_LOAD segments. Note that this does not mean that
4463 // addresses should be aligned to this value; it means the p_paddr
4464 // and p_vaddr fields must be congruent modulo this value. For
4465 // non-PT_LOAD segments, the dynamic linker works more efficiently
4466 // if the p_align field has the more conventional value, although it
4467 // can align as needed.
4468 uint64_t min_p_align_;
4469 // The offset of the segment data within the file.
4470 off_t offset_;
4471 // The size of the segment data in the file.
4472 off_t filesz_;
4473 // The segment type;
4474 elfcpp::Elf_Word type_;
4475 // The segment flags.
4476 elfcpp::Elf_Word flags_;
4477 // Whether we have finalized max_align_.
4478 bool is_max_align_known_ : 1;
4479 // Whether vaddr and paddr were set by a linker script.
4480 bool are_addresses_set_ : 1;
4481 // Whether this segment holds large data sections.
4482 bool is_large_data_segment_ : 1;
4485 // This class represents the output file.
4487 class Output_file
4489 public:
4490 Output_file(const char* name);
4492 // Indicate that this is a temporary file which should not be
4493 // output.
4494 void
4495 set_is_temporary()
4496 { this->is_temporary_ = true; }
4498 // Try to open an existing file. Returns false if the file doesn't
4499 // exist, has a size of 0 or can't be mmaped. This method is
4500 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4501 // that file as the base for incremental linking.
4502 bool
4503 open_base_file(const char* base_name, bool writable);
4505 // Open the output file. FILE_SIZE is the final size of the file.
4506 // If the file already exists, it is deleted/truncated. This method
4507 // is thread-unsafe.
4508 void
4509 open(off_t file_size);
4511 // Resize the output file. This method is thread-unsafe.
4512 void
4513 resize(off_t file_size);
4515 // Close the output file (flushing all buffered data) and make sure
4516 // there are no errors. This method is thread-unsafe.
4517 void
4518 close();
4520 // Return the size of this file.
4521 off_t
4522 filesize()
4523 { return this->file_size_; }
4525 // Return the name of this file.
4526 const char*
4527 filename()
4528 { return this->name_; }
4530 // We currently always use mmap which makes the view handling quite
4531 // simple. In the future we may support other approaches.
4533 // Write data to the output file.
4534 void
4535 write(off_t offset, const void* data, size_t len)
4536 { memcpy(this->base_ + offset, data, len); }
4538 // Get a buffer to use to write to the file, given the offset into
4539 // the file and the size.
4540 unsigned char*
4541 get_output_view(off_t start, size_t size)
4543 gold_assert(start >= 0
4544 && start + static_cast<off_t>(size) <= this->file_size_);
4545 return this->base_ + start;
4548 // VIEW must have been returned by get_output_view. Write the
4549 // buffer to the file, passing in the offset and the size.
4550 void
4551 write_output_view(off_t, size_t, unsigned char*)
4554 // Get a read/write buffer. This is used when we want to write part
4555 // of the file, read it in, and write it again.
4556 unsigned char*
4557 get_input_output_view(off_t start, size_t size)
4558 { return this->get_output_view(start, size); }
4560 // Write a read/write buffer back to the file.
4561 void
4562 write_input_output_view(off_t, size_t, unsigned char*)
4565 // Get a read buffer. This is used when we just want to read part
4566 // of the file back it in.
4567 const unsigned char*
4568 get_input_view(off_t start, size_t size)
4569 { return this->get_output_view(start, size); }
4571 // Release a read bfufer.
4572 void
4573 free_input_view(off_t, size_t, const unsigned char*)
4576 private:
4577 // Map the file into memory or, if that fails, allocate anonymous
4578 // memory.
4579 void
4580 map();
4582 // Allocate anonymous memory for the file.
4583 bool
4584 map_anonymous();
4586 // Map the file into memory.
4587 bool
4588 map_no_anonymous(bool);
4590 // Unmap the file from memory (and flush to disk buffers).
4591 void
4592 unmap();
4594 // File name.
4595 const char* name_;
4596 // File descriptor.
4597 int o_;
4598 // File size.
4599 off_t file_size_;
4600 // Base of file mapped into memory.
4601 unsigned char* base_;
4602 // True iff base_ points to a memory buffer rather than an output file.
4603 bool map_is_anonymous_;
4604 // True if base_ was allocated using new rather than mmap.
4605 bool map_is_allocated_;
4606 // True if this is a temporary file which should not be output.
4607 bool is_temporary_;
4610 } // End namespace gold.
4612 #endif // !defined(GOLD_OUTPUT_H)