Android O SDK.
[android_tools.git] / sdk / build-tools / 26.0.0 / renderscript / clang-include / __clang_cuda_intrinsics.h
blob3df41fa290d3d27e8fed3bcea4dad9adb4884ecd
1 /*===--- __clang_cuda_intrinsics.h - Device-side CUDA intrinsic wrappers ---===
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
21 *===-----------------------------------------------------------------------===
23 #ifndef __CLANG_CUDA_INTRINSICS_H__
24 #define __CLANG_CUDA_INTRINSICS_H__
25 #ifndef __CUDA__
26 #error "This file is for CUDA compilation only."
27 #endif
29 // sm_30 intrinsics: __shfl_{up,down,xor}.
31 #define __SM_30_INTRINSICS_H__
32 #define __SM_30_INTRINSICS_HPP__
34 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
36 #pragma push_macro("__MAKE_SHUFFLES")
37 #define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask) \
38 inline __device__ int __FnName(int __in, int __offset, \
39 int __width = warpSize) { \
40 return __IntIntrinsic(__in, __offset, \
41 ((warpSize - __width) << 8) | (__Mask)); \
42 } \
43 inline __device__ float __FnName(float __in, int __offset, \
44 int __width = warpSize) { \
45 return __FloatIntrinsic(__in, __offset, \
46 ((warpSize - __width) << 8) | (__Mask)); \
47 } \
48 inline __device__ unsigned int __FnName(unsigned int __in, int __offset, \
49 int __width = warpSize) { \
50 return static_cast<unsigned int>( \
51 ::__FnName(static_cast<int>(__in), __offset, __width)); \
52 } \
53 inline __device__ long long __FnName(long long __in, int __offset, \
54 int __width = warpSize) { \
55 struct __Bits { \
56 int __a, __b; \
57 }; \
58 _Static_assert(sizeof(__in) == sizeof(__Bits)); \
59 _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
60 __Bits __tmp; \
61 memcpy(&__in, &__tmp, sizeof(__in)); \
62 __tmp.__a = ::__FnName(__tmp.__a, __offset, __width); \
63 __tmp.__b = ::__FnName(__tmp.__b, __offset, __width); \
64 long long __out; \
65 memcpy(&__out, &__tmp, sizeof(__tmp)); \
66 return __out; \
67 } \
68 inline __device__ unsigned long long __FnName( \
69 unsigned long long __in, int __offset, int __width = warpSize) { \
70 return static_cast<unsigned long long>( \
71 ::__FnName(static_cast<unsigned long long>(__in), __offset, __width)); \
72 } \
73 inline __device__ double __FnName(double __in, int __offset, \
74 int __width = warpSize) { \
75 long long __tmp; \
76 _Static_assert(sizeof(__tmp) == sizeof(__in)); \
77 memcpy(&__tmp, &__in, sizeof(__in)); \
78 __tmp = ::__FnName(__tmp, __offset, __width); \
79 double __out; \
80 memcpy(&__out, &__tmp, sizeof(__out)); \
81 return __out; \
84 __MAKE_SHUFFLES(__shfl, __nvvm_shfl_idx_i32, __nvvm_shfl_idx_f32, 0x1f);
85 // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
86 // maxLane.
87 __MAKE_SHUFFLES(__shfl_up, __nvvm_shfl_up_i32, __nvvm_shfl_up_f32, 0);
88 __MAKE_SHUFFLES(__shfl_down, __nvvm_shfl_down_i32, __nvvm_shfl_down_f32, 0x1f);
89 __MAKE_SHUFFLES(__shfl_xor, __nvvm_shfl_bfly_i32, __nvvm_shfl_bfly_f32, 0x1f);
91 #pragma pop_macro("__MAKE_SHUFFLES")
93 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
95 // sm_32 intrinsics: __ldg and __funnelshift_{l,lc,r,rc}.
97 // Prevent the vanilla sm_32 intrinsics header from being included.
98 #define __SM_32_INTRINSICS_H__
99 #define __SM_32_INTRINSICS_HPP__
101 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
103 inline __device__ char __ldg(const char *ptr) { return __nvvm_ldg_c(ptr); }
104 inline __device__ short __ldg(const short *ptr) { return __nvvm_ldg_s(ptr); }
105 inline __device__ int __ldg(const int *ptr) { return __nvvm_ldg_i(ptr); }
106 inline __device__ long __ldg(const long *ptr) { return __nvvm_ldg_l(ptr); }
107 inline __device__ long long __ldg(const long long *ptr) {
108 return __nvvm_ldg_ll(ptr);
110 inline __device__ unsigned char __ldg(const unsigned char *ptr) {
111 return __nvvm_ldg_uc(ptr);
113 inline __device__ unsigned short __ldg(const unsigned short *ptr) {
114 return __nvvm_ldg_us(ptr);
116 inline __device__ unsigned int __ldg(const unsigned int *ptr) {
117 return __nvvm_ldg_ui(ptr);
119 inline __device__ unsigned long __ldg(const unsigned long *ptr) {
120 return __nvvm_ldg_ul(ptr);
122 inline __device__ unsigned long long __ldg(const unsigned long long *ptr) {
123 return __nvvm_ldg_ull(ptr);
125 inline __device__ float __ldg(const float *ptr) { return __nvvm_ldg_f(ptr); }
126 inline __device__ double __ldg(const double *ptr) { return __nvvm_ldg_d(ptr); }
128 inline __device__ char2 __ldg(const char2 *ptr) {
129 typedef char c2 __attribute__((ext_vector_type(2)));
130 // We can assume that ptr is aligned at least to char2's alignment, but the
131 // load will assume that ptr is aligned to char2's alignment. This is only
132 // safe if alignof(c2) <= alignof(char2).
133 c2 rv = __nvvm_ldg_c2(reinterpret_cast<const c2 *>(ptr));
134 char2 ret;
135 ret.x = rv[0];
136 ret.y = rv[1];
137 return ret;
139 inline __device__ char4 __ldg(const char4 *ptr) {
140 typedef char c4 __attribute__((ext_vector_type(4)));
141 c4 rv = __nvvm_ldg_c4(reinterpret_cast<const c4 *>(ptr));
142 char4 ret;
143 ret.x = rv[0];
144 ret.y = rv[1];
145 ret.z = rv[2];
146 ret.w = rv[3];
147 return ret;
149 inline __device__ short2 __ldg(const short2 *ptr) {
150 typedef short s2 __attribute__((ext_vector_type(2)));
151 s2 rv = __nvvm_ldg_s2(reinterpret_cast<const s2 *>(ptr));
152 short2 ret;
153 ret.x = rv[0];
154 ret.y = rv[1];
155 return ret;
157 inline __device__ short4 __ldg(const short4 *ptr) {
158 typedef short s4 __attribute__((ext_vector_type(4)));
159 s4 rv = __nvvm_ldg_s4(reinterpret_cast<const s4 *>(ptr));
160 short4 ret;
161 ret.x = rv[0];
162 ret.y = rv[1];
163 ret.z = rv[2];
164 ret.w = rv[3];
165 return ret;
167 inline __device__ int2 __ldg(const int2 *ptr) {
168 typedef int i2 __attribute__((ext_vector_type(2)));
169 i2 rv = __nvvm_ldg_i2(reinterpret_cast<const i2 *>(ptr));
170 int2 ret;
171 ret.x = rv[0];
172 ret.y = rv[1];
173 return ret;
175 inline __device__ int4 __ldg(const int4 *ptr) {
176 typedef int i4 __attribute__((ext_vector_type(4)));
177 i4 rv = __nvvm_ldg_i4(reinterpret_cast<const i4 *>(ptr));
178 int4 ret;
179 ret.x = rv[0];
180 ret.y = rv[1];
181 ret.z = rv[2];
182 ret.w = rv[3];
183 return ret;
185 inline __device__ longlong2 __ldg(const longlong2 *ptr) {
186 typedef long long ll2 __attribute__((ext_vector_type(2)));
187 ll2 rv = __nvvm_ldg_ll2(reinterpret_cast<const ll2 *>(ptr));
188 longlong2 ret;
189 ret.x = rv[0];
190 ret.y = rv[1];
191 return ret;
194 inline __device__ uchar2 __ldg(const uchar2 *ptr) {
195 typedef unsigned char uc2 __attribute__((ext_vector_type(2)));
196 uc2 rv = __nvvm_ldg_uc2(reinterpret_cast<const uc2 *>(ptr));
197 uchar2 ret;
198 ret.x = rv[0];
199 ret.y = rv[1];
200 return ret;
202 inline __device__ uchar4 __ldg(const uchar4 *ptr) {
203 typedef unsigned char uc4 __attribute__((ext_vector_type(4)));
204 uc4 rv = __nvvm_ldg_uc4(reinterpret_cast<const uc4 *>(ptr));
205 uchar4 ret;
206 ret.x = rv[0];
207 ret.y = rv[1];
208 ret.z = rv[2];
209 ret.w = rv[3];
210 return ret;
212 inline __device__ ushort2 __ldg(const ushort2 *ptr) {
213 typedef unsigned short us2 __attribute__((ext_vector_type(2)));
214 us2 rv = __nvvm_ldg_us2(reinterpret_cast<const us2 *>(ptr));
215 ushort2 ret;
216 ret.x = rv[0];
217 ret.y = rv[1];
218 return ret;
220 inline __device__ ushort4 __ldg(const ushort4 *ptr) {
221 typedef unsigned short us4 __attribute__((ext_vector_type(4)));
222 us4 rv = __nvvm_ldg_us4(reinterpret_cast<const us4 *>(ptr));
223 ushort4 ret;
224 ret.x = rv[0];
225 ret.y = rv[1];
226 ret.z = rv[2];
227 ret.w = rv[3];
228 return ret;
230 inline __device__ uint2 __ldg(const uint2 *ptr) {
231 typedef unsigned int ui2 __attribute__((ext_vector_type(2)));
232 ui2 rv = __nvvm_ldg_ui2(reinterpret_cast<const ui2 *>(ptr));
233 uint2 ret;
234 ret.x = rv[0];
235 ret.y = rv[1];
236 return ret;
238 inline __device__ uint4 __ldg(const uint4 *ptr) {
239 typedef unsigned int ui4 __attribute__((ext_vector_type(4)));
240 ui4 rv = __nvvm_ldg_ui4(reinterpret_cast<const ui4 *>(ptr));
241 uint4 ret;
242 ret.x = rv[0];
243 ret.y = rv[1];
244 ret.z = rv[2];
245 ret.w = rv[3];
246 return ret;
248 inline __device__ ulonglong2 __ldg(const ulonglong2 *ptr) {
249 typedef unsigned long long ull2 __attribute__((ext_vector_type(2)));
250 ull2 rv = __nvvm_ldg_ull2(reinterpret_cast<const ull2 *>(ptr));
251 ulonglong2 ret;
252 ret.x = rv[0];
253 ret.y = rv[1];
254 return ret;
257 inline __device__ float2 __ldg(const float2 *ptr) {
258 typedef float f2 __attribute__((ext_vector_type(2)));
259 f2 rv = __nvvm_ldg_f2(reinterpret_cast<const f2 *>(ptr));
260 float2 ret;
261 ret.x = rv[0];
262 ret.y = rv[1];
263 return ret;
265 inline __device__ float4 __ldg(const float4 *ptr) {
266 typedef float f4 __attribute__((ext_vector_type(4)));
267 f4 rv = __nvvm_ldg_f4(reinterpret_cast<const f4 *>(ptr));
268 float4 ret;
269 ret.x = rv[0];
270 ret.y = rv[1];
271 ret.z = rv[2];
272 ret.w = rv[3];
273 return ret;
275 inline __device__ double2 __ldg(const double2 *ptr) {
276 typedef double d2 __attribute__((ext_vector_type(2)));
277 d2 rv = __nvvm_ldg_d2(reinterpret_cast<const d2 *>(ptr));
278 double2 ret;
279 ret.x = rv[0];
280 ret.y = rv[1];
281 return ret;
284 // TODO: Implement these as intrinsics, so the backend can work its magic on
285 // these. Alternatively, we could implement these as plain C and try to get
286 // llvm to recognize the relevant patterns.
287 inline __device__ unsigned __funnelshift_l(unsigned low32, unsigned high32,
288 unsigned shiftWidth) {
289 unsigned result;
290 asm("shf.l.wrap.b32 %0, %1, %2, %3;"
291 : "=r"(result)
292 : "r"(low32), "r"(high32), "r"(shiftWidth));
293 return result;
295 inline __device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32,
296 unsigned shiftWidth) {
297 unsigned result;
298 asm("shf.l.clamp.b32 %0, %1, %2, %3;"
299 : "=r"(result)
300 : "r"(low32), "r"(high32), "r"(shiftWidth));
301 return result;
303 inline __device__ unsigned __funnelshift_r(unsigned low32, unsigned high32,
304 unsigned shiftWidth) {
305 unsigned result;
306 asm("shf.r.wrap.b32 %0, %1, %2, %3;"
307 : "=r"(result)
308 : "r"(low32), "r"(high32), "r"(shiftWidth));
309 return result;
311 inline __device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32,
312 unsigned shiftWidth) {
313 unsigned ret;
314 asm("shf.r.clamp.b32 %0, %1, %2, %3;"
315 : "=r"(ret)
316 : "r"(low32), "r"(high32), "r"(shiftWidth));
317 return ret;
320 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
322 #endif // defined(__CLANG_CUDA_INTRINSICS_H__)