disable the unrecognized nls flag
[AROS-Contrib.git] / sqlite3 / select.c
blob033e66900455405bf0d000070f0db8b7a1d3b60f
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 ** $Id$
17 #include "sqliteInt.h"
21 ** Allocate a new Select structure and return a pointer to that
22 ** structure.
24 Select *sqlite3SelectNew(
25 ExprList *pEList, /* which columns to include in the result */
26 SrcList *pSrc, /* the FROM clause -- which tables to scan */
27 Expr *pWhere, /* the WHERE clause */
28 ExprList *pGroupBy, /* the GROUP BY clause */
29 Expr *pHaving, /* the HAVING clause */
30 ExprList *pOrderBy, /* the ORDER BY clause */
31 int isDistinct, /* true if the DISTINCT keyword is present */
32 Expr *pLimit, /* LIMIT value. NULL means not used */
33 Expr *pOffset /* OFFSET value. NULL means no offset */
35 Select *pNew;
36 pNew = sqliteMalloc( sizeof(*pNew) );
37 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */
38 if( pNew==0 ){
39 sqlite3ExprListDelete(pEList);
40 sqlite3SrcListDelete(pSrc);
41 sqlite3ExprDelete(pWhere);
42 sqlite3ExprListDelete(pGroupBy);
43 sqlite3ExprDelete(pHaving);
44 sqlite3ExprListDelete(pOrderBy);
45 sqlite3ExprDelete(pLimit);
46 sqlite3ExprDelete(pOffset);
47 }else{
48 if( pEList==0 ){
49 pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0);
51 pNew->pEList = pEList;
52 pNew->pSrc = pSrc;
53 pNew->pWhere = pWhere;
54 pNew->pGroupBy = pGroupBy;
55 pNew->pHaving = pHaving;
56 pNew->pOrderBy = pOrderBy;
57 pNew->isDistinct = isDistinct;
58 pNew->op = TK_SELECT;
59 pNew->pLimit = pLimit;
60 pNew->pOffset = pOffset;
61 pNew->iLimit = -1;
62 pNew->iOffset = -1;
64 return pNew;
68 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
69 ** type of join. Return an integer constant that expresses that type
70 ** in terms of the following bit values:
72 ** JT_INNER
73 ** JT_OUTER
74 ** JT_NATURAL
75 ** JT_LEFT
76 ** JT_RIGHT
78 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
80 ** If an illegal or unsupported join type is seen, then still return
81 ** a join type, but put an error in the pParse structure.
83 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
84 int jointype = 0;
85 Token *apAll[3];
86 Token *p;
87 static const struct {
88 const char *zKeyword;
89 u8 nChar;
90 u8 code;
91 } keywords[] = {
92 { "natural", 7, JT_NATURAL },
93 { "left", 4, JT_LEFT|JT_OUTER },
94 { "right", 5, JT_RIGHT|JT_OUTER },
95 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
96 { "outer", 5, JT_OUTER },
97 { "inner", 5, JT_INNER },
98 { "cross", 5, JT_INNER },
100 int i, j;
101 apAll[0] = pA;
102 apAll[1] = pB;
103 apAll[2] = pC;
104 for(i=0; i<3 && apAll[i]; i++){
105 p = apAll[i];
106 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
107 if( p->n==keywords[j].nChar
108 && sqlite3StrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){
109 jointype |= keywords[j].code;
110 break;
113 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
114 jointype |= JT_ERROR;
115 break;
119 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
120 (jointype & JT_ERROR)!=0
122 const char *zSp1 = " ";
123 const char *zSp2 = " ";
124 if( pB==0 ){ zSp1++; }
125 if( pC==0 ){ zSp2++; }
126 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
127 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
128 jointype = JT_INNER;
129 }else if( jointype & JT_RIGHT ){
130 sqlite3ErrorMsg(pParse,
131 "RIGHT and FULL OUTER JOINs are not currently supported");
132 jointype = JT_INNER;
134 return jointype;
138 ** Return the index of a column in a table. Return -1 if the column
139 ** is not contained in the table.
141 static int columnIndex(Table *pTab, const char *zCol){
142 int i;
143 for(i=0; i<pTab->nCol; i++){
144 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
146 return -1;
150 ** Set the value of a token to a '\000'-terminated string.
152 static void setToken(Token *p, const char *z){
153 p->z = z;
154 p->n = strlen(z);
155 p->dyn = 0;
160 ** Add a term to the WHERE expression in *ppExpr that requires the
161 ** zCol column to be equal in the two tables pTab1 and pTab2.
163 static void addWhereTerm(
164 const char *zCol, /* Name of the column */
165 const Table *pTab1, /* First table */
166 const char *zAlias1, /* Alias for first table. May be NULL */
167 const Table *pTab2, /* Second table */
168 const char *zAlias2, /* Alias for second table. May be NULL */
169 Expr **ppExpr /* Add the equality term to this expression */
171 Token dummy;
172 Expr *pE1a, *pE1b, *pE1c;
173 Expr *pE2a, *pE2b, *pE2c;
174 Expr *pE;
176 setToken(&dummy, zCol);
177 pE1a = sqlite3Expr(TK_ID, 0, 0, &dummy);
178 pE2a = sqlite3Expr(TK_ID, 0, 0, &dummy);
179 if( zAlias1==0 ){
180 zAlias1 = pTab1->zName;
182 setToken(&dummy, zAlias1);
183 pE1b = sqlite3Expr(TK_ID, 0, 0, &dummy);
184 if( zAlias2==0 ){
185 zAlias2 = pTab2->zName;
187 setToken(&dummy, zAlias2);
188 pE2b = sqlite3Expr(TK_ID, 0, 0, &dummy);
189 pE1c = sqlite3Expr(TK_DOT, pE1b, pE1a, 0);
190 pE2c = sqlite3Expr(TK_DOT, pE2b, pE2a, 0);
191 pE = sqlite3Expr(TK_EQ, pE1c, pE2c, 0);
192 ExprSetProperty(pE, EP_FromJoin);
193 *ppExpr = sqlite3ExprAnd(*ppExpr, pE);
197 ** Set the EP_FromJoin property on all terms of the given expression.
199 ** The EP_FromJoin property is used on terms of an expression to tell
200 ** the LEFT OUTER JOIN processing logic that this term is part of the
201 ** join restriction specified in the ON or USING clause and not a part
202 ** of the more general WHERE clause. These terms are moved over to the
203 ** WHERE clause during join processing but we need to remember that they
204 ** originated in the ON or USING clause.
206 static void setJoinExpr(Expr *p){
207 while( p ){
208 ExprSetProperty(p, EP_FromJoin);
209 setJoinExpr(p->pLeft);
210 p = p->pRight;
215 ** This routine processes the join information for a SELECT statement.
216 ** ON and USING clauses are converted into extra terms of the WHERE clause.
217 ** NATURAL joins also create extra WHERE clause terms.
219 ** The terms of a FROM clause are contained in the Select.pSrc structure.
220 ** The left most table is the first entry in Select.pSrc. The right-most
221 ** table is the last entry. The join operator is held in the entry to
222 ** the left. Thus entry 0 contains the join operator for the join between
223 ** entries 0 and 1. Any ON or USING clauses associated with the join are
224 ** also attached to the left entry.
226 ** This routine returns the number of errors encountered.
228 static int sqliteProcessJoin(Parse *pParse, Select *p){
229 SrcList *pSrc; /* All tables in the FROM clause */
230 int i, j; /* Loop counters */
231 struct SrcList_item *pLeft; /* Left table being joined */
232 struct SrcList_item *pRight; /* Right table being joined */
234 pSrc = p->pSrc;
235 pLeft = &pSrc->a[0];
236 pRight = &pLeft[1];
237 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
238 Table *pLeftTab = pLeft->pTab;
239 Table *pRightTab = pRight->pTab;
241 if( pLeftTab==0 || pRightTab==0 ) continue;
243 /* When the NATURAL keyword is present, add WHERE clause terms for
244 ** every column that the two tables have in common.
246 if( pLeft->jointype & JT_NATURAL ){
247 if( pLeft->pOn || pLeft->pUsing ){
248 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
249 "an ON or USING clause", 0);
250 return 1;
252 for(j=0; j<pLeftTab->nCol; j++){
253 char *zName = pLeftTab->aCol[j].zName;
254 if( columnIndex(pRightTab, zName)>=0 ){
255 addWhereTerm(zName, pLeftTab, pLeft->zAlias,
256 pRightTab, pRight->zAlias, &p->pWhere);
261 /* Disallow both ON and USING clauses in the same join
263 if( pLeft->pOn && pLeft->pUsing ){
264 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
265 "clauses in the same join");
266 return 1;
269 /* Add the ON clause to the end of the WHERE clause, connected by
270 ** an AND operator.
272 if( pLeft->pOn ){
273 setJoinExpr(pLeft->pOn);
274 p->pWhere = sqlite3ExprAnd(p->pWhere, pLeft->pOn);
275 pLeft->pOn = 0;
278 /* Create extra terms on the WHERE clause for each column named
279 ** in the USING clause. Example: If the two tables to be joined are
280 ** A and B and the USING clause names X, Y, and Z, then add this
281 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
282 ** Report an error if any column mentioned in the USING clause is
283 ** not contained in both tables to be joined.
285 if( pLeft->pUsing ){
286 IdList *pList = pLeft->pUsing;
287 for(j=0; j<pList->nId; j++){
288 char *zName = pList->a[j].zName;
289 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
290 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
291 "not present in both tables", zName);
292 return 1;
294 addWhereTerm(zName, pLeftTab, pLeft->zAlias,
295 pRightTab, pRight->zAlias, &p->pWhere);
299 return 0;
303 ** Delete the given Select structure and all of its substructures.
305 void sqlite3SelectDelete(Select *p){
306 if( p==0 ) return;
307 sqlite3ExprListDelete(p->pEList);
308 sqlite3SrcListDelete(p->pSrc);
309 sqlite3ExprDelete(p->pWhere);
310 sqlite3ExprListDelete(p->pGroupBy);
311 sqlite3ExprDelete(p->pHaving);
312 sqlite3ExprListDelete(p->pOrderBy);
313 sqlite3SelectDelete(p->pPrior);
314 sqlite3ExprDelete(p->pLimit);
315 sqlite3ExprDelete(p->pOffset);
316 sqliteFree(p);
320 ** Insert code into "v" that will push the record on the top of the
321 ** stack into the sorter.
323 static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
324 int i;
325 for(i=0; i<pOrderBy->nExpr; i++){
326 sqlite3ExprCode(pParse, pOrderBy->a[i].pExpr);
328 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr, 0);
329 sqlite3VdbeAddOp(v, OP_SortInsert, 0, 0);
333 ** Add code to implement the OFFSET and LIMIT
335 static void codeLimiter(
336 Vdbe *v, /* Generate code into this VM */
337 Select *p, /* The SELECT statement being coded */
338 int iContinue, /* Jump here to skip the current record */
339 int iBreak, /* Jump here to end the loop */
340 int nPop /* Number of times to pop stack when jumping */
342 if( p->iOffset>=0 ){
343 int addr = sqlite3VdbeCurrentAddr(v) + 3;
344 if( nPop>0 ) addr++;
345 sqlite3VdbeAddOp(v, OP_MemIncr, p->iOffset, 0);
346 sqlite3VdbeAddOp(v, OP_IfMemPos, p->iOffset, addr);
347 if( nPop>0 ){
348 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
350 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
351 VdbeComment((v, "# skip OFFSET records"));
353 if( p->iLimit>=0 ){
354 sqlite3VdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
355 VdbeComment((v, "# exit when LIMIT reached"));
360 ** This routine generates the code for the inside of the inner loop
361 ** of a SELECT.
363 ** If srcTab and nColumn are both zero, then the pEList expressions
364 ** are evaluated in order to get the data for this row. If nColumn>0
365 ** then data is pulled from srcTab and pEList is used only to get the
366 ** datatypes for each column.
368 static int selectInnerLoop(
369 Parse *pParse, /* The parser context */
370 Select *p, /* The complete select statement being coded */
371 ExprList *pEList, /* List of values being extracted */
372 int srcTab, /* Pull data from this table */
373 int nColumn, /* Number of columns in the source table */
374 ExprList *pOrderBy, /* If not NULL, sort results using this key */
375 int distinct, /* If >=0, make sure results are distinct */
376 int eDest, /* How to dispose of the results */
377 int iParm, /* An argument to the disposal method */
378 int iContinue, /* Jump here to continue with next row */
379 int iBreak, /* Jump here to break out of the inner loop */
380 char *aff /* affinity string if eDest is SRT_Union */
382 Vdbe *v = pParse->pVdbe;
383 int i;
384 int hasDistinct; /* True if the DISTINCT keyword is present */
386 if( v==0 ) return 0;
387 assert( pEList!=0 );
389 /* If there was a LIMIT clause on the SELECT statement, then do the check
390 ** to see if this row should be output.
392 hasDistinct = distinct>=0 && pEList && pEList->nExpr>0;
393 if( pOrderBy==0 && !hasDistinct ){
394 codeLimiter(v, p, iContinue, iBreak, 0);
397 /* Pull the requested columns.
399 if( nColumn>0 ){
400 for(i=0; i<nColumn; i++){
401 sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
403 }else{
404 nColumn = pEList->nExpr;
405 for(i=0; i<pEList->nExpr; i++){
406 sqlite3ExprCode(pParse, pEList->a[i].pExpr);
410 /* If the DISTINCT keyword was present on the SELECT statement
411 ** and this row has been seen before, then do not make this row
412 ** part of the result.
414 if( hasDistinct ){
415 #if NULL_ALWAYS_DISTINCT
416 sqlite3VdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqlite3VdbeCurrentAddr(v)+7);
417 #endif
418 /* Deliberately leave the affinity string off of the following
419 ** OP_MakeRecord */
420 sqlite3VdbeAddOp(v, OP_MakeRecord, pEList->nExpr * -1, 0);
421 sqlite3VdbeAddOp(v, OP_Distinct, distinct, sqlite3VdbeCurrentAddr(v)+3);
422 sqlite3VdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
423 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
424 VdbeComment((v, "# skip indistinct records"));
425 sqlite3VdbeAddOp(v, OP_IdxInsert, distinct, 0);
426 if( pOrderBy==0 ){
427 codeLimiter(v, p, iContinue, iBreak, nColumn);
431 switch( eDest ){
432 #ifndef SQLITE_OMIT_COMPOUND_SELECT
433 /* In this mode, write each query result to the key of the temporary
434 ** table iParm.
436 case SRT_Union: {
437 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
438 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
439 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
440 break;
443 /* Construct a record from the query result, but instead of
444 ** saving that record, use it as a key to delete elements from
445 ** the temporary table iParm.
447 case SRT_Except: {
448 int addr;
449 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
450 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
451 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
452 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
453 break;
455 #endif
457 /* Store the result as data using a unique key.
459 case SRT_Table:
460 case SRT_TempTable: {
461 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
462 if( pOrderBy ){
463 pushOntoSorter(pParse, v, pOrderBy);
464 }else{
465 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
466 sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
467 sqlite3VdbeAddOp(v, OP_Insert, iParm, 0);
469 break;
472 #ifndef SQLITE_OMIT_SUBQUERY
473 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
474 ** then there should be a single item on the stack. Write this
475 ** item into the set table with bogus data.
477 case SRT_Set: {
478 int addr1 = sqlite3VdbeCurrentAddr(v);
479 int addr2;
481 assert( nColumn==1 );
482 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
483 sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
484 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
485 if( pOrderBy ){
486 pushOntoSorter(pParse, v, pOrderBy);
487 }else{
488 char aff = (iParm>>16)&0xFF;
489 aff = sqlite3CompareAffinity(pEList->a[0].pExpr, aff);
490 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &aff, 1);
491 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
493 sqlite3VdbeChangeP2(v, addr2, sqlite3VdbeCurrentAddr(v));
494 break;
497 /* If this is a scalar select that is part of an expression, then
498 ** store the results in the appropriate memory cell and break out
499 ** of the scan loop.
501 case SRT_Exists:
502 case SRT_Mem: {
503 assert( nColumn==1 );
504 if( pOrderBy ){
505 pushOntoSorter(pParse, v, pOrderBy);
506 }else{
507 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
508 sqlite3VdbeAddOp(v, OP_Goto, 0, iBreak);
510 break;
512 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
514 /* Send the data to the callback function.
516 case SRT_Callback:
517 case SRT_Sorter: {
518 if( pOrderBy ){
519 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
520 pushOntoSorter(pParse, v, pOrderBy);
521 }else{
522 assert( eDest==SRT_Callback );
523 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
525 break;
528 /* Invoke a subroutine to handle the results. The subroutine itself
529 ** is responsible for popping the results off of the stack.
531 case SRT_Subroutine: {
532 if( pOrderBy ){
533 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
534 pushOntoSorter(pParse, v, pOrderBy);
535 }else{
536 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
538 break;
541 #if !defined(SQLITE_OMIT_TRIGGER)
542 /* Discard the results. This is used for SELECT statements inside
543 ** the body of a TRIGGER. The purpose of such selects is to call
544 ** user-defined functions that have side effects. We do not care
545 ** about the actual results of the select.
547 default: {
548 assert( eDest==SRT_Discard );
549 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
550 break;
552 #endif
554 return 0;
558 ** If the inner loop was generated using a non-null pOrderBy argument,
559 ** then the results were placed in a sorter. After the loop is terminated
560 ** we need to run the sorter and output the results. The following
561 ** routine generates the code needed to do that.
563 static void generateSortTail(
564 Parse *pParse, /* The parsing context */
565 Select *p, /* The SELECT statement */
566 Vdbe *v, /* Generate code into this VDBE */
567 int nColumn, /* Number of columns of data */
568 int eDest, /* Write the sorted results here */
569 int iParm /* Optional parameter associated with eDest */
571 int end1 = sqlite3VdbeMakeLabel(v);
572 int end2 = sqlite3VdbeMakeLabel(v);
573 int addr;
574 KeyInfo *pInfo;
575 ExprList *pOrderBy;
576 int nCol, i;
577 sqlite3 *db = pParse->db;
579 if( eDest==SRT_Sorter ) return;
580 pOrderBy = p->pOrderBy;
581 nCol = pOrderBy->nExpr;
582 pInfo = sqliteMalloc( sizeof(*pInfo) + nCol*(sizeof(CollSeq*)+1) );
583 if( pInfo==0 ) return;
584 pInfo->aSortOrder = (char*)&pInfo->aColl[nCol];
585 pInfo->nField = nCol;
586 for(i=0; i<nCol; i++){
587 /* If a collation sequence was specified explicity, then it
588 ** is stored in pOrderBy->a[i].zName. Otherwise, use the default
589 ** collation type for the expression.
591 pInfo->aColl[i] = sqlite3ExprCollSeq(pParse, pOrderBy->a[i].pExpr);
592 if( !pInfo->aColl[i] ){
593 pInfo->aColl[i] = db->pDfltColl;
595 pInfo->aSortOrder[i] = pOrderBy->a[i].sortOrder;
597 sqlite3VdbeOp3(v, OP_Sort, 0, 0, (char*)pInfo, P3_KEYINFO_HANDOFF);
598 addr = sqlite3VdbeAddOp(v, OP_SortNext, 0, end1);
599 codeLimiter(v, p, addr, end2, 1);
600 switch( eDest ){
601 case SRT_Table:
602 case SRT_TempTable: {
603 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
604 sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
605 sqlite3VdbeAddOp(v, OP_Insert, iParm, 0);
606 break;
608 #ifndef SQLITE_OMIT_SUBQUERY
609 case SRT_Set: {
610 assert( nColumn==1 );
611 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
612 sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
613 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
614 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, "n", P3_STATIC);
615 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
616 break;
618 case SRT_Exists:
619 case SRT_Mem: {
620 assert( nColumn==1 );
621 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
622 sqlite3VdbeAddOp(v, OP_Goto, 0, end1);
623 break;
625 #endif
626 case SRT_Callback:
627 case SRT_Subroutine: {
628 int i;
629 sqlite3VdbeAddOp(v, OP_Integer, p->pEList->nExpr, 0);
630 sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
631 for(i=0; i<nColumn; i++){
632 sqlite3VdbeAddOp(v, OP_Column, -1-i, i);
634 if( eDest==SRT_Callback ){
635 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
636 }else{
637 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
639 sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
640 break;
642 default: {
643 /* Do nothing */
644 break;
647 sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
648 sqlite3VdbeResolveLabel(v, end2);
649 sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
650 sqlite3VdbeResolveLabel(v, end1);
651 sqlite3VdbeAddOp(v, OP_SortReset, 0, 0);
655 ** Return a pointer to a string containing the 'declaration type' of the
656 ** expression pExpr. The string may be treated as static by the caller.
658 ** If the declaration type is the exact datatype definition extracted from
659 ** the original CREATE TABLE statement if the expression is a column.
661 ** The declaration type for an expression is either TEXT, NUMERIC or ANY.
662 ** The declaration type for a ROWID field is INTEGER.
664 static const char *columnType(NameContext *pNC, Expr *pExpr){
665 char const *zType;
666 int j;
667 if( pExpr==0 || pNC->pSrcList==0 ) return 0;
669 /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING,
670 ** and LIMIT clauses. But pExpr originates in the result set of a
671 ** SELECT. So pExpr can never contain an AS operator.
673 assert( pExpr->op!=TK_AS );
675 switch( pExpr->op ){
676 case TK_COLUMN: {
677 Table *pTab = 0;
678 int iCol = pExpr->iColumn;
679 while( pNC && !pTab ){
680 SrcList *pTabList = pNC->pSrcList;
681 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
682 if( j<pTabList->nSrc ){
683 pTab = pTabList->a[j].pTab;
684 }else{
685 pNC = pNC->pNext;
688 if( pTab==0 ){
689 /* FIX ME:
690 ** This can occurs if you have something like "SELECT new.x;" inside
691 ** a trigger. In other words, if you reference the special "new"
692 ** table in the result set of a select. We do not have a good way
693 ** to find the actual table type, so call it "TEXT". This is really
694 ** something of a bug, but I do not know how to fix it.
696 ** This code does not produce the correct answer - it just prevents
697 ** a segfault. See ticket #1229.
699 zType = "TEXT";
700 break;
702 assert( pTab );
703 if( iCol<0 ) iCol = pTab->iPKey;
704 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
705 if( iCol<0 ){
706 zType = "INTEGER";
707 }else{
708 zType = pTab->aCol[iCol].zType;
710 break;
712 #ifndef SQLITE_OMIT_SUBQUERY
713 case TK_SELECT: {
714 NameContext sNC;
715 Select *pS = pExpr->pSelect;
716 sNC.pSrcList = pExpr->pSelect->pSrc;
717 sNC.pNext = pNC;
718 zType = columnType(&sNC, pS->pEList->a[0].pExpr);
719 break;
721 #endif
722 default:
723 zType = 0;
726 return zType;
730 ** Generate code that will tell the VDBE the declaration types of columns
731 ** in the result set.
733 static void generateColumnTypes(
734 Parse *pParse, /* Parser context */
735 SrcList *pTabList, /* List of tables */
736 ExprList *pEList /* Expressions defining the result set */
738 Vdbe *v = pParse->pVdbe;
739 int i;
740 NameContext sNC;
741 sNC.pSrcList = pTabList;
742 for(i=0; i<pEList->nExpr; i++){
743 Expr *p = pEList->a[i].pExpr;
744 const char *zType = columnType(&sNC, p);
745 if( zType==0 ) continue;
746 /* The vdbe must make it's own copy of the column-type, in case the
747 ** schema is reset before this virtual machine is deleted.
749 sqlite3VdbeSetColName(v, i+pEList->nExpr, zType, strlen(zType));
754 ** Generate code that will tell the VDBE the names of columns
755 ** in the result set. This information is used to provide the
756 ** azCol[] values in the callback.
758 static void generateColumnNames(
759 Parse *pParse, /* Parser context */
760 SrcList *pTabList, /* List of tables */
761 ExprList *pEList /* Expressions defining the result set */
763 Vdbe *v = pParse->pVdbe;
764 int i, j;
765 sqlite3 *db = pParse->db;
766 int fullNames, shortNames;
768 #ifndef SQLITE_OMIT_EXPLAIN
769 /* If this is an EXPLAIN, skip this step */
770 if( pParse->explain ){
771 return;
773 #endif
775 assert( v!=0 );
776 if( pParse->colNamesSet || v==0 || sqlite3_malloc_failed ) return;
777 pParse->colNamesSet = 1;
778 fullNames = (db->flags & SQLITE_FullColNames)!=0;
779 shortNames = (db->flags & SQLITE_ShortColNames)!=0;
780 sqlite3VdbeSetNumCols(v, pEList->nExpr);
781 for(i=0; i<pEList->nExpr; i++){
782 Expr *p;
783 p = pEList->a[i].pExpr;
784 if( p==0 ) continue;
785 if( pEList->a[i].zName ){
786 char *zName = pEList->a[i].zName;
787 sqlite3VdbeSetColName(v, i, zName, strlen(zName));
788 continue;
790 if( p->op==TK_COLUMN && pTabList ){
791 Table *pTab;
792 char *zCol;
793 int iCol = p->iColumn;
794 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
795 assert( j<pTabList->nSrc );
796 pTab = pTabList->a[j].pTab;
797 if( iCol<0 ) iCol = pTab->iPKey;
798 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
799 if( iCol<0 ){
800 zCol = "rowid";
801 }else{
802 zCol = pTab->aCol[iCol].zName;
804 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
805 sqlite3VdbeSetColName(v, i, p->span.z, p->span.n);
806 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
807 STRPTR zName = NULL;
808 char *zTab;
810 zTab = pTabList->a[j].zAlias;
811 if( fullNames || zTab==0 ) zTab = pTab->zName;
812 sqlite3SetString(&zName, zTab, ".", zCol, 0);
813 sqlite3VdbeSetColName(v, i, zName, P3_DYNAMIC);
814 }else{
815 sqlite3VdbeSetColName(v, i, zCol, strlen(zCol));
817 }else if( p->span.z && p->span.z[0] ){
818 sqlite3VdbeSetColName(v, i, p->span.z, p->span.n);
819 /* sqlite3VdbeCompressSpace(v, addr); */
820 }else{
821 char zName[30];
822 assert( p->op!=TK_COLUMN || pTabList==0 );
823 sprintf(zName, "column%d", i+1);
824 sqlite3VdbeSetColName(v, i, zName, 0);
827 generateColumnTypes(pParse, pTabList, pEList);
830 #ifndef SQLITE_OMIT_COMPOUND_SELECT
832 ** Name of the connection operator, used for error messages.
834 static const char *selectOpName(int id){
835 char *z;
836 switch( id ){
837 case TK_ALL: z = "UNION ALL"; break;
838 case TK_INTERSECT: z = "INTERSECT"; break;
839 case TK_EXCEPT: z = "EXCEPT"; break;
840 default: z = "UNION"; break;
842 return z;
844 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
847 ** Forward declaration
849 static int prepSelectStmt(Parse*, Select*);
852 ** Given a SELECT statement, generate a Table structure that describes
853 ** the result set of that SELECT.
855 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
856 Table *pTab;
857 int i, j;
858 ExprList *pEList;
859 Column *aCol, *pCol;
861 if( prepSelectStmt(pParse, pSelect) ){
862 return 0;
864 if( sqlite3SelectResolve(pParse, pSelect, 0) ){
865 return 0;
867 pTab = sqliteMalloc( sizeof(Table) );
868 if( pTab==0 ){
869 return 0;
871 pTab->nRef = 1;
872 pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
873 pEList = pSelect->pEList;
874 pTab->nCol = pEList->nExpr;
875 assert( pTab->nCol>0 );
876 pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
877 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
878 Expr *p, *pR;
879 char *zType;
880 char *zName;
881 char *zBasename;
882 int cnt;
883 NameContext sNC;
885 /* Get an appropriate name for the column
887 p = pEList->a[i].pExpr;
888 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
889 if( (zName = pEList->a[i].zName)!=0 ){
890 /* If the column contains an "AS <name>" phrase, use <name> as the name */
891 zName = sqliteStrDup(zName);
892 }else if( p->op==TK_DOT
893 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
894 /* For columns of the from A.B use B as the name */
895 zName = sqlite3MPrintf("%T", &pR->token);
896 }else if( p->span.z && p->span.z[0] ){
897 /* Use the original text of the column expression as its name */
898 zName = sqlite3MPrintf("%T", &p->span);
899 }else{
900 /* If all else fails, make up a name */
901 zName = sqlite3MPrintf("column%d", i+1);
903 sqlite3Dequote(zName);
904 if( sqlite3_malloc_failed ){
905 sqliteFree(zName);
906 sqlite3DeleteTable(0, pTab);
907 return 0;
910 /* Make sure the column name is unique. If the name is not unique,
911 ** append a integer to the name so that it becomes unique.
913 zBasename = zName;
914 for(j=cnt=0; j<i; j++){
915 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
916 zName = sqlite3MPrintf("%s:%d", zBasename, ++cnt);
917 j = -1;
918 if( zName==0 ) break;
921 if( zBasename!=zName ){
922 sqliteFree(zBasename);
924 pCol->zName = zName;
926 /* Get the typename, type affinity, and collating sequence for the
927 ** column.
929 memset(&sNC, 0, sizeof(sNC));
930 sNC.pSrcList = pSelect->pSrc;
931 zType = sqliteStrDup(columnType(&sNC, p));
932 pCol->zType = zType;
933 pCol->affinity = sqlite3ExprAffinity(p);
934 pCol->pColl = sqlite3ExprCollSeq(pParse, p);
935 if( !pCol->pColl ){
936 pCol->pColl = pParse->db->pDfltColl;
939 pTab->iPKey = -1;
940 return pTab;
944 ** Prepare a SELECT statement for processing by doing the following
945 ** things:
947 ** (1) Make sure VDBE cursor numbers have been assigned to every
948 ** element of the FROM clause.
950 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
951 ** defines FROM clause. When views appear in the FROM clause,
952 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
953 ** that implements the view. A copy is made of the view's SELECT
954 ** statement so that we can freely modify or delete that statement
955 ** without worrying about messing up the presistent representation
956 ** of the view.
958 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
959 ** on joins and the ON and USING clause of joins.
961 ** (4) Scan the list of columns in the result set (pEList) looking
962 ** for instances of the "*" operator or the TABLE.* operator.
963 ** If found, expand each "*" to be every column in every table
964 ** and TABLE.* to be every column in TABLE.
966 ** Return 0 on success. If there are problems, leave an error message
967 ** in pParse and return non-zero.
969 static int prepSelectStmt(Parse *pParse, Select *p){
970 int i, j, k, rc;
971 SrcList *pTabList;
972 ExprList *pEList;
973 Table *pTab;
974 struct SrcList_item *pFrom;
976 if( p==0 || p->pSrc==0 || sqlite3_malloc_failed ) return 1;
977 pTabList = p->pSrc;
978 pEList = p->pEList;
980 /* Make sure cursor numbers have been assigned to all entries in
981 ** the FROM clause of the SELECT statement.
983 sqlite3SrcListAssignCursors(pParse, p->pSrc);
985 /* Look up every table named in the FROM clause of the select. If
986 ** an entry of the FROM clause is a subquery instead of a table or view,
987 ** then create a transient table structure to describe the subquery.
989 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
990 if( pFrom->pTab!=0 ){
991 /* This statement has already been prepared. There is no need
992 ** to go further. */
993 assert( i==0 );
994 return 0;
996 if( pFrom->zName==0 ){
997 #ifndef SQLITE_OMIT_SUBQUERY
998 /* A sub-query in the FROM clause of a SELECT */
999 assert( pFrom->pSelect!=0 );
1000 if( pFrom->zAlias==0 ){
1001 pFrom->zAlias =
1002 sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect);
1004 assert( pFrom->pTab==0 );
1005 pFrom->pTab = pTab =
1006 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1007 if( pTab==0 ){
1008 return 1;
1010 /* The isTransient flag indicates that the Table structure has been
1011 ** dynamically allocated and may be freed at any time. In other words,
1012 ** pTab is not pointing to a persistent table structure that defines
1013 ** part of the schema. */
1014 pTab->isTransient = 1;
1015 #endif
1016 }else{
1017 /* An ordinary table or view name in the FROM clause */
1018 assert( pFrom->pTab==0 );
1019 pFrom->pTab = pTab =
1020 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
1021 if( pTab==0 ){
1022 return 1;
1024 pTab->nRef++;
1025 #ifndef SQLITE_OMIT_VIEW
1026 if( pTab->pSelect ){
1027 /* We reach here if the named table is a really a view */
1028 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1029 return 1;
1031 /* If pFrom->pSelect!=0 it means we are dealing with a
1032 ** view within a view. The SELECT structure has already been
1033 ** copied by the outer view so we can skip the copy step here
1034 ** in the inner view.
1036 if( pFrom->pSelect==0 ){
1037 pFrom->pSelect = sqlite3SelectDup(pTab->pSelect);
1040 #endif
1044 /* Process NATURAL keywords, and ON and USING clauses of joins.
1046 if( sqliteProcessJoin(pParse, p) ) return 1;
1048 /* For every "*" that occurs in the column list, insert the names of
1049 ** all columns in all tables. And for every TABLE.* insert the names
1050 ** of all columns in TABLE. The parser inserted a special expression
1051 ** with the TK_ALL operator for each "*" that it found in the column list.
1052 ** The following code just has to locate the TK_ALL expressions and expand
1053 ** each one to the list of all columns in all tables.
1055 ** The first loop just checks to see if there are any "*" operators
1056 ** that need expanding.
1058 for(k=0; k<pEList->nExpr; k++){
1059 Expr *pE = pEList->a[k].pExpr;
1060 if( pE->op==TK_ALL ) break;
1061 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1062 && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1064 rc = 0;
1065 if( k<pEList->nExpr ){
1067 ** If we get here it means the result set contains one or more "*"
1068 ** operators that need to be expanded. Loop through each expression
1069 ** in the result set and expand them one by one.
1071 struct ExprList_item *a = pEList->a;
1072 ExprList *pNew = 0;
1073 int flags = pParse->db->flags;
1074 int longNames = (flags & SQLITE_FullColNames)!=0 &&
1075 (flags & SQLITE_ShortColNames)==0;
1077 for(k=0; k<pEList->nExpr; k++){
1078 Expr *pE = a[k].pExpr;
1079 if( pE->op!=TK_ALL &&
1080 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1081 /* This particular expression does not need to be expanded.
1083 pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0);
1084 pNew->a[pNew->nExpr-1].zName = a[k].zName;
1085 a[k].pExpr = 0;
1086 a[k].zName = 0;
1087 }else{
1088 /* This expression is a "*" or a "TABLE.*" and needs to be
1089 ** expanded. */
1090 int tableSeen = 0; /* Set to 1 when TABLE matches */
1091 char *zTName; /* text of name of TABLE */
1092 if( pE->op==TK_DOT && pE->pLeft ){
1093 zTName = sqlite3NameFromToken(&pE->pLeft->token);
1094 }else{
1095 zTName = 0;
1097 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1098 Table *pTab = pFrom->pTab;
1099 char *zTabName = pFrom->zAlias;
1100 if( zTabName==0 || zTabName[0]==0 ){
1101 zTabName = pTab->zName;
1103 if( zTName && (zTabName==0 || zTabName[0]==0 ||
1104 sqlite3StrICmp(zTName, zTabName)!=0) ){
1105 continue;
1107 tableSeen = 1;
1108 for(j=0; j<pTab->nCol; j++){
1109 Expr *pExpr, *pLeft, *pRight;
1110 char *zName = pTab->aCol[j].zName;
1112 if( i>0 ){
1113 struct SrcList_item *pLeft = &pTabList->a[i-1];
1114 if( (pLeft->jointype & JT_NATURAL)!=0 &&
1115 columnIndex(pLeft->pTab, zName)>=0 ){
1116 /* In a NATURAL join, omit the join columns from the
1117 ** table on the right */
1118 continue;
1120 if( sqlite3IdListIndex(pLeft->pUsing, zName)>=0 ){
1121 /* In a join with a USING clause, omit columns in the
1122 ** using clause from the table on the right. */
1123 continue;
1126 pRight = sqlite3Expr(TK_ID, 0, 0, 0);
1127 if( pRight==0 ) break;
1128 setToken(&pRight->token, zName);
1129 if( zTabName && (longNames || pTabList->nSrc>1) ){
1130 pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
1131 pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
1132 if( pExpr==0 ) break;
1133 setToken(&pLeft->token, zTabName);
1134 setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName));
1135 pExpr->span.dyn = 1;
1136 pExpr->token.z = 0;
1137 pExpr->token.n = 0;
1138 pExpr->token.dyn = 0;
1139 }else{
1140 pExpr = pRight;
1141 pExpr->span = pExpr->token;
1143 if( longNames ){
1144 pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span);
1145 }else{
1146 pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token);
1150 if( !tableSeen ){
1151 if( zTName ){
1152 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1153 }else{
1154 sqlite3ErrorMsg(pParse, "no tables specified");
1156 rc = 1;
1158 sqliteFree(zTName);
1161 sqlite3ExprListDelete(pEList);
1162 p->pEList = pNew;
1164 return rc;
1167 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1169 ** This routine associates entries in an ORDER BY expression list with
1170 ** columns in a result. For each ORDER BY expression, the opcode of
1171 ** the top-level node is changed to TK_COLUMN and the iColumn value of
1172 ** the top-level node is filled in with column number and the iTable
1173 ** value of the top-level node is filled with iTable parameter.
1175 ** If there are prior SELECT clauses, they are processed first. A match
1176 ** in an earlier SELECT takes precedence over a later SELECT.
1178 ** Any entry that does not match is flagged as an error. The number
1179 ** of errors is returned.
1181 static int matchOrderbyToColumn(
1182 Parse *pParse, /* A place to leave error messages */
1183 Select *pSelect, /* Match to result columns of this SELECT */
1184 ExprList *pOrderBy, /* The ORDER BY values to match against columns */
1185 int iTable, /* Insert this value in iTable */
1186 int mustComplete /* If TRUE all ORDER BYs must match */
1188 int nErr = 0;
1189 int i, j;
1190 ExprList *pEList;
1192 if( pSelect==0 || pOrderBy==0 ) return 1;
1193 if( mustComplete ){
1194 for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
1196 if( prepSelectStmt(pParse, pSelect) ){
1197 return 1;
1199 if( pSelect->pPrior ){
1200 if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
1201 return 1;
1204 pEList = pSelect->pEList;
1205 for(i=0; i<pOrderBy->nExpr; i++){
1206 Expr *pE = pOrderBy->a[i].pExpr;
1207 int iCol = -1;
1208 if( pOrderBy->a[i].done ) continue;
1209 if( sqlite3ExprIsInteger(pE, &iCol) ){
1210 if( iCol<=0 || iCol>pEList->nExpr ){
1211 sqlite3ErrorMsg(pParse,
1212 "ORDER BY position %d should be between 1 and %d",
1213 iCol, pEList->nExpr);
1214 nErr++;
1215 break;
1217 if( !mustComplete ) continue;
1218 iCol--;
1220 for(j=0; iCol<0 && j<pEList->nExpr; j++){
1221 if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
1222 char *zName, *zLabel;
1223 zName = pEList->a[j].zName;
1224 zLabel = sqlite3NameFromToken(&pE->token);
1225 assert( zLabel!=0 );
1226 if( sqlite3StrICmp(zName, zLabel)==0 ){
1227 iCol = j;
1229 sqliteFree(zLabel);
1231 if( iCol<0 && sqlite3ExprCompare(pE, pEList->a[j].pExpr) ){
1232 iCol = j;
1235 if( iCol>=0 ){
1236 pE->op = TK_COLUMN;
1237 pE->iColumn = iCol;
1238 pE->iTable = iTable;
1239 pE->iAgg = -1;
1240 pOrderBy->a[i].done = 1;
1242 if( iCol<0 && mustComplete ){
1243 sqlite3ErrorMsg(pParse,
1244 "ORDER BY term number %d does not match any result column", i+1);
1245 nErr++;
1246 break;
1249 return nErr;
1251 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
1254 ** Get a VDBE for the given parser context. Create a new one if necessary.
1255 ** If an error occurs, return NULL and leave a message in pParse.
1257 Vdbe *sqlite3GetVdbe(Parse *pParse){
1258 Vdbe *v = pParse->pVdbe;
1259 if( v==0 ){
1260 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1262 return v;
1266 ** Compute the iLimit and iOffset fields of the SELECT based on the
1267 ** pLimit and pOffset expressions. nLimit and nOffset hold the expressions
1268 ** that appear in the original SQL statement after the LIMIT and OFFSET
1269 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1270 ** are the integer memory register numbers for counters used to compute
1271 ** the limit and offset. If there is no limit and/or offset, then
1272 ** iLimit and iOffset are negative.
1274 ** This routine changes the values if iLimit and iOffset only if
1275 ** a limit or offset is defined by nLimit and nOffset. iLimit and
1276 ** iOffset should have been preset to appropriate default values
1277 ** (usually but not always -1) prior to calling this routine.
1278 ** Only if nLimit>=0 or nOffset>0 do the limit registers get
1279 ** redefined. The UNION ALL operator uses this property to force
1280 ** the reuse of the same limit and offset registers across multiple
1281 ** SELECT statements.
1283 static void computeLimitRegisters(Parse *pParse, Select *p){
1285 ** "LIMIT -1" always shows all rows. There is some
1286 ** contraversy about what the correct behavior should be.
1287 ** The current implementation interprets "LIMIT 0" to mean
1288 ** no rows.
1290 if( p->pLimit ){
1291 int iMem = pParse->nMem++;
1292 Vdbe *v = sqlite3GetVdbe(pParse);
1293 if( v==0 ) return;
1294 sqlite3ExprCode(pParse, p->pLimit);
1295 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1296 sqlite3VdbeAddOp(v, OP_Negative, 0, 0);
1297 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 1);
1298 VdbeComment((v, "# LIMIT counter"));
1299 p->iLimit = iMem;
1301 if( p->pOffset ){
1302 int iMem = pParse->nMem++;
1303 Vdbe *v = sqlite3GetVdbe(pParse);
1304 if( v==0 ) return;
1305 sqlite3ExprCode(pParse, p->pOffset);
1306 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1307 sqlite3VdbeAddOp(v, OP_Negative, 0, 0);
1308 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 1);
1309 VdbeComment((v, "# OFFSET counter"));
1310 p->iOffset = iMem;
1315 ** Generate VDBE instructions that will open a transient table that
1316 ** will be used for an index or to store keyed results for a compound
1317 ** select. In other words, open a transient table that needs a
1318 ** KeyInfo structure. The number of columns in the KeyInfo is determined
1319 ** by the result set of the SELECT statement in the second argument.
1321 ** Specifically, this routine is called to open an index table for
1322 ** DISTINCT, UNION, INTERSECT and EXCEPT select statements (but not
1323 ** UNION ALL).
1325 ** The value returned is the address of the OP_OpenTemp instruction.
1327 static int openTempIndex(Parse *pParse, Select *p, int iTab){
1328 KeyInfo *pKeyInfo;
1329 int nColumn;
1330 sqlite3 *db = pParse->db;
1331 int i;
1332 Vdbe *v = pParse->pVdbe;
1333 int addr;
1335 if( prepSelectStmt(pParse, p) ){
1336 return 0;
1338 nColumn = p->pEList->nExpr;
1339 pKeyInfo = sqliteMalloc( sizeof(*pKeyInfo)+nColumn*sizeof(CollSeq*) );
1340 if( pKeyInfo==0 ) return 0;
1341 pKeyInfo->enc = db->enc;
1342 pKeyInfo->nField = nColumn;
1343 for(i=0; i<nColumn; i++){
1344 pKeyInfo->aColl[i] = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1345 if( !pKeyInfo->aColl[i] ){
1346 pKeyInfo->aColl[i] = db->pDfltColl;
1349 addr = sqlite3VdbeOp3(v, OP_OpenTemp, iTab, 0,
1350 (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
1351 return addr;
1354 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1356 ** Add the address "addr" to the set of all OpenTemp opcode addresses
1357 ** that are being accumulated in p->ppOpenTemp.
1359 static int multiSelectOpenTempAddr(Select *p, int addr){
1360 IdList *pList = *p->ppOpenTemp = sqlite3IdListAppend(*p->ppOpenTemp, 0);
1361 if( pList==0 ){
1362 return SQLITE_NOMEM;
1364 pList->a[pList->nId-1].idx = addr;
1365 return SQLITE_OK;
1367 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1369 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1371 ** Return the appropriate collating sequence for the iCol-th column of
1372 ** the result set for the compound-select statement "p". Return NULL if
1373 ** the column has no default collating sequence.
1375 ** The collating sequence for the compound select is taken from the
1376 ** left-most term of the select that has a collating sequence.
1378 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1379 CollSeq *pRet;
1380 if( p->pPrior ){
1381 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1382 }else{
1383 pRet = 0;
1385 if( pRet==0 ){
1386 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1388 return pRet;
1390 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1392 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1394 ** This routine is called to process a query that is really the union
1395 ** or intersection of two or more separate queries.
1397 ** "p" points to the right-most of the two queries. the query on the
1398 ** left is p->pPrior. The left query could also be a compound query
1399 ** in which case this routine will be called recursively.
1401 ** The results of the total query are to be written into a destination
1402 ** of type eDest with parameter iParm.
1404 ** Example 1: Consider a three-way compound SQL statement.
1406 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1408 ** This statement is parsed up as follows:
1410 ** SELECT c FROM t3
1411 ** |
1412 ** `-----> SELECT b FROM t2
1413 ** |
1414 ** `------> SELECT a FROM t1
1416 ** The arrows in the diagram above represent the Select.pPrior pointer.
1417 ** So if this routine is called with p equal to the t3 query, then
1418 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
1420 ** Notice that because of the way SQLite parses compound SELECTs, the
1421 ** individual selects always group from left to right.
1423 static int multiSelect(
1424 Parse *pParse, /* Parsing context */
1425 Select *p, /* The right-most of SELECTs to be coded */
1426 int eDest, /* \___ Store query results as specified */
1427 int iParm, /* / by these two parameters. */
1428 char *aff /* If eDest is SRT_Union, the affinity string */
1430 int rc = SQLITE_OK; /* Success code from a subroutine */
1431 Select *pPrior; /* Another SELECT immediately to our left */
1432 Vdbe *v; /* Generate code to this VDBE */
1433 IdList *pOpenTemp = 0;/* OP_OpenTemp opcodes that need a KeyInfo */
1434 int aAddr[5]; /* Addresses of SetNumColumns operators */
1435 int nAddr = 0; /* Number used */
1436 int nCol; /* Number of columns in the result set */
1438 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
1439 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1441 if( p==0 || p->pPrior==0 ){
1442 rc = 1;
1443 goto multi_select_end;
1445 pPrior = p->pPrior;
1446 if( pPrior->pOrderBy ){
1447 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1448 selectOpName(p->op));
1449 rc = 1;
1450 goto multi_select_end;
1452 if( pPrior->pLimit ){
1453 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1454 selectOpName(p->op));
1455 rc = 1;
1456 goto multi_select_end;
1459 /* Make sure we have a valid query engine. If not, create a new one.
1461 v = sqlite3GetVdbe(pParse);
1462 if( v==0 ){
1463 rc = 1;
1464 goto multi_select_end;
1467 /* If *p this is the right-most select statement, then initialize
1468 ** p->ppOpenTemp to point to pOpenTemp. If *p is not the right most
1469 ** statement then p->ppOpenTemp will have already been initialized
1470 ** by a prior call to this same procedure. Pass along the pOpenTemp
1471 ** pointer to pPrior, the next statement to our left.
1473 if( p->ppOpenTemp==0 ){
1474 p->ppOpenTemp = &pOpenTemp;
1476 pPrior->ppOpenTemp = p->ppOpenTemp;
1478 /* Create the destination temporary table if necessary
1480 if( eDest==SRT_TempTable ){
1481 assert( p->pEList );
1482 sqlite3VdbeAddOp(v, OP_OpenTemp, iParm, 0);
1483 assert( nAddr==0 );
1484 aAddr[nAddr++] = sqlite3VdbeAddOp(v, OP_SetNumColumns, iParm, 0);
1485 eDest = SRT_Table;
1488 /* Generate code for the left and right SELECT statements.
1490 switch( p->op ){
1491 case TK_ALL: {
1492 if( p->pOrderBy==0 ){
1493 assert( !pPrior->pLimit );
1494 pPrior->pLimit = p->pLimit;
1495 pPrior->pOffset = p->pOffset;
1496 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
1497 if( rc ){
1498 goto multi_select_end;
1500 p->pPrior = 0;
1501 p->iLimit = pPrior->iLimit;
1502 p->iOffset = pPrior->iOffset;
1503 p->pLimit = 0;
1504 p->pOffset = 0;
1505 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
1506 p->pPrior = pPrior;
1507 if( rc ){
1508 goto multi_select_end;
1510 break;
1512 /* For UNION ALL ... ORDER BY fall through to the next case */
1514 case TK_EXCEPT:
1515 case TK_UNION: {
1516 int unionTab; /* Cursor number of the temporary table holding result */
1517 int op = 0; /* One of the SRT_ operations to apply to self */
1518 int priorOp; /* The SRT_ operation to apply to prior selects */
1519 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1520 ExprList *pOrderBy; /* The ORDER BY clause for the right SELECT */
1521 int addr;
1523 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
1524 if( eDest==priorOp && p->pOrderBy==0 && !p->pLimit && !p->pOffset ){
1525 /* We can reuse a temporary table generated by a SELECT to our
1526 ** right.
1528 unionTab = iParm;
1529 }else{
1530 /* We will need to create our own temporary table to hold the
1531 ** intermediate results.
1533 unionTab = pParse->nTab++;
1534 if( p->pOrderBy
1535 && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
1536 rc = 1;
1537 goto multi_select_end;
1539 addr = sqlite3VdbeAddOp(v, OP_OpenTemp, unionTab, 0);
1540 if( p->op!=TK_ALL ){
1541 rc = multiSelectOpenTempAddr(p, addr);
1542 if( rc!=SQLITE_OK ){
1543 goto multi_select_end;
1546 assert( nAddr<sizeof(aAddr)/sizeof(aAddr[0]) );
1547 aAddr[nAddr++] = sqlite3VdbeAddOp(v, OP_SetNumColumns, unionTab, 0);
1548 assert( p->pEList );
1551 /* Code the SELECT statements to our left
1553 assert( !pPrior->pOrderBy );
1554 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
1555 if( rc ){
1556 goto multi_select_end;
1559 /* Code the current SELECT statement
1561 switch( p->op ){
1562 case TK_EXCEPT: op = SRT_Except; break;
1563 case TK_UNION: op = SRT_Union; break;
1564 case TK_ALL: op = SRT_Table; break;
1566 p->pPrior = 0;
1567 pOrderBy = p->pOrderBy;
1568 p->pOrderBy = 0;
1569 pLimit = p->pLimit;
1570 p->pLimit = 0;
1571 pOffset = p->pOffset;
1572 p->pOffset = 0;
1573 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
1574 p->pPrior = pPrior;
1575 p->pOrderBy = pOrderBy;
1576 sqlite3ExprDelete(p->pLimit);
1577 p->pLimit = pLimit;
1578 p->pOffset = pOffset;
1579 p->iLimit = -1;
1580 p->iOffset = -1;
1581 if( rc ){
1582 goto multi_select_end;
1586 /* Convert the data in the temporary table into whatever form
1587 ** it is that we currently need.
1589 if( eDest!=priorOp || unionTab!=iParm ){
1590 int iCont, iBreak, iStart;
1591 assert( p->pEList );
1592 if( eDest==SRT_Callback ){
1593 generateColumnNames(pParse, 0, p->pEList);
1595 iBreak = sqlite3VdbeMakeLabel(v);
1596 iCont = sqlite3VdbeMakeLabel(v);
1597 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
1598 computeLimitRegisters(pParse, p);
1599 iStart = sqlite3VdbeCurrentAddr(v);
1600 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1601 p->pOrderBy, -1, eDest, iParm,
1602 iCont, iBreak, 0);
1603 if( rc ){
1604 rc = 1;
1605 goto multi_select_end;
1607 sqlite3VdbeResolveLabel(v, iCont);
1608 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
1609 sqlite3VdbeResolveLabel(v, iBreak);
1610 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
1612 break;
1614 case TK_INTERSECT: {
1615 int tab1, tab2;
1616 int iCont, iBreak, iStart;
1617 Expr *pLimit, *pOffset;
1618 int addr;
1620 /* INTERSECT is different from the others since it requires
1621 ** two temporary tables. Hence it has its own case. Begin
1622 ** by allocating the tables we will need.
1624 tab1 = pParse->nTab++;
1625 tab2 = pParse->nTab++;
1626 if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
1627 rc = 1;
1628 goto multi_select_end;
1631 addr = sqlite3VdbeAddOp(v, OP_OpenTemp, tab1, 0);
1632 rc = multiSelectOpenTempAddr(p, addr);
1633 if( rc!=SQLITE_OK ){
1634 goto multi_select_end;
1636 assert( nAddr<sizeof(aAddr)/sizeof(aAddr[0]) );
1637 aAddr[nAddr++] = sqlite3VdbeAddOp(v, OP_SetNumColumns, tab1, 0);
1638 assert( p->pEList );
1640 /* Code the SELECTs to our left into temporary table "tab1".
1642 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
1643 if( rc ){
1644 goto multi_select_end;
1647 /* Code the current SELECT into temporary table "tab2"
1649 addr = sqlite3VdbeAddOp(v, OP_OpenTemp, tab2, 0);
1650 rc = multiSelectOpenTempAddr(p, addr);
1651 if( rc!=SQLITE_OK ){
1652 goto multi_select_end;
1654 assert( nAddr<sizeof(aAddr)/sizeof(aAddr[0]) );
1655 aAddr[nAddr++] = sqlite3VdbeAddOp(v, OP_SetNumColumns, tab2, 0);
1656 p->pPrior = 0;
1657 pLimit = p->pLimit;
1658 p->pLimit = 0;
1659 pOffset = p->pOffset;
1660 p->pOffset = 0;
1661 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
1662 p->pPrior = pPrior;
1663 sqlite3ExprDelete(p->pLimit);
1664 p->pLimit = pLimit;
1665 p->pOffset = pOffset;
1666 if( rc ){
1667 goto multi_select_end;
1670 /* Generate code to take the intersection of the two temporary
1671 ** tables.
1673 assert( p->pEList );
1674 if( eDest==SRT_Callback ){
1675 generateColumnNames(pParse, 0, p->pEList);
1677 iBreak = sqlite3VdbeMakeLabel(v);
1678 iCont = sqlite3VdbeMakeLabel(v);
1679 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
1680 computeLimitRegisters(pParse, p);
1681 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
1682 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
1683 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1684 p->pOrderBy, -1, eDest, iParm,
1685 iCont, iBreak, 0);
1686 if( rc ){
1687 rc = 1;
1688 goto multi_select_end;
1690 sqlite3VdbeResolveLabel(v, iCont);
1691 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
1692 sqlite3VdbeResolveLabel(v, iBreak);
1693 sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
1694 sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
1695 break;
1699 /* Make sure all SELECTs in the statement have the same number of elements
1700 ** in their result sets.
1702 assert( p->pEList && pPrior->pEList );
1703 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1704 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1705 " do not have the same number of result columns", selectOpName(p->op));
1706 rc = 1;
1707 goto multi_select_end;
1710 /* Set the number of columns in temporary tables
1712 nCol = p->pEList->nExpr;
1713 while( nAddr>0 ){
1714 nAddr--;
1715 sqlite3VdbeChangeP2(v, aAddr[nAddr], nCol);
1718 /* Compute collating sequences used by either the ORDER BY clause or
1719 ** by any temporary tables needed to implement the compound select.
1720 ** Attach the KeyInfo structure to all temporary tables. Invoke the
1721 ** ORDER BY processing if there is an ORDER BY clause.
1723 ** This section is run by the right-most SELECT statement only.
1724 ** SELECT statements to the left always skip this part. The right-most
1725 ** SELECT might also skip this part if it has no ORDER BY clause and
1726 ** no temp tables are required.
1728 if( p->pOrderBy || (pOpenTemp && pOpenTemp->nId>0) ){
1729 int i; /* Loop counter */
1730 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
1732 assert( p->ppOpenTemp == &pOpenTemp );
1733 pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nCol*sizeof(CollSeq*));
1734 if( !pKeyInfo ){
1735 rc = SQLITE_NOMEM;
1736 goto multi_select_end;
1739 pKeyInfo->enc = pParse->db->enc;
1740 pKeyInfo->nField = nCol;
1742 for(i=0; i<nCol; i++){
1743 pKeyInfo->aColl[i] = multiSelectCollSeq(pParse, p, i);
1744 if( !pKeyInfo->aColl[i] ){
1745 pKeyInfo->aColl[i] = pParse->db->pDfltColl;
1749 for(i=0; pOpenTemp && i<pOpenTemp->nId; i++){
1750 int p3type = (i==0?P3_KEYINFO_HANDOFF:P3_KEYINFO);
1751 int addr = pOpenTemp->a[i].idx;
1752 sqlite3VdbeChangeP3(v, addr, (char *)pKeyInfo, p3type);
1755 if( p->pOrderBy ){
1756 struct ExprList_item *pOrderByTerm = p->pOrderBy->a;
1757 for(i=0; i<p->pOrderBy->nExpr; i++, pOrderByTerm++){
1758 Expr *pExpr = pOrderByTerm->pExpr;
1759 char *zName = pOrderByTerm->zName;
1760 assert( pExpr->op==TK_COLUMN && pExpr->iColumn<nCol );
1761 /* assert( !pExpr->pColl ); */
1762 if( zName ){
1763 pExpr->pColl = sqlite3LocateCollSeq(pParse, zName, -1);
1764 }else{
1765 pExpr->pColl = pKeyInfo->aColl[pExpr->iColumn];
1768 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
1771 if( !pOpenTemp ){
1772 /* This happens for UNION ALL ... ORDER BY */
1773 sqliteFree(pKeyInfo);
1777 multi_select_end:
1778 if( pOpenTemp ){
1779 sqlite3IdListDelete(pOpenTemp);
1781 p->ppOpenTemp = 0;
1782 return rc;
1784 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1786 #ifndef SQLITE_OMIT_VIEW
1788 ** Scan through the expression pExpr. Replace every reference to
1789 ** a column in table number iTable with a copy of the iColumn-th
1790 ** entry in pEList. (But leave references to the ROWID column
1791 ** unchanged.)
1793 ** This routine is part of the flattening procedure. A subquery
1794 ** whose result set is defined by pEList appears as entry in the
1795 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
1796 ** FORM clause entry is iTable. This routine make the necessary
1797 ** changes to pExpr so that it refers directly to the source table
1798 ** of the subquery rather the result set of the subquery.
1800 static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */
1801 static void substSelect(Select *, int, ExprList *); /* Forward Decl */
1802 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
1803 if( pExpr==0 ) return;
1804 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
1805 if( pExpr->iColumn<0 ){
1806 pExpr->op = TK_NULL;
1807 }else{
1808 Expr *pNew;
1809 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
1810 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
1811 pNew = pEList->a[pExpr->iColumn].pExpr;
1812 assert( pNew!=0 );
1813 pExpr->op = pNew->op;
1814 assert( pExpr->pLeft==0 );
1815 pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
1816 assert( pExpr->pRight==0 );
1817 pExpr->pRight = sqlite3ExprDup(pNew->pRight);
1818 assert( pExpr->pList==0 );
1819 pExpr->pList = sqlite3ExprListDup(pNew->pList);
1820 pExpr->iTable = pNew->iTable;
1821 pExpr->iColumn = pNew->iColumn;
1822 pExpr->iAgg = pNew->iAgg;
1823 sqlite3TokenCopy(&pExpr->token, &pNew->token);
1824 sqlite3TokenCopy(&pExpr->span, &pNew->span);
1825 pExpr->pSelect = sqlite3SelectDup(pNew->pSelect);
1826 pExpr->flags = pNew->flags;
1828 }else{
1829 substExpr(pExpr->pLeft, iTable, pEList);
1830 substExpr(pExpr->pRight, iTable, pEList);
1831 substSelect(pExpr->pSelect, iTable, pEList);
1832 substExprList(pExpr->pList, iTable, pEList);
1835 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){
1836 int i;
1837 if( pList==0 ) return;
1838 for(i=0; i<pList->nExpr; i++){
1839 substExpr(pList->a[i].pExpr, iTable, pEList);
1842 static void substSelect(Select *p, int iTable, ExprList *pEList){
1843 if( !p ) return;
1844 substExprList(p->pEList, iTable, pEList);
1845 substExprList(p->pGroupBy, iTable, pEList);
1846 substExprList(p->pOrderBy, iTable, pEList);
1847 substExpr(p->pHaving, iTable, pEList);
1848 substExpr(p->pWhere, iTable, pEList);
1850 #endif /* !defined(SQLITE_OMIT_VIEW) */
1852 #ifndef SQLITE_OMIT_VIEW
1854 ** This routine attempts to flatten subqueries in order to speed
1855 ** execution. It returns 1 if it makes changes and 0 if no flattening
1856 ** occurs.
1858 ** To understand the concept of flattening, consider the following
1859 ** query:
1861 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
1863 ** The default way of implementing this query is to execute the
1864 ** subquery first and store the results in a temporary table, then
1865 ** run the outer query on that temporary table. This requires two
1866 ** passes over the data. Furthermore, because the temporary table
1867 ** has no indices, the WHERE clause on the outer query cannot be
1868 ** optimized.
1870 ** This routine attempts to rewrite queries such as the above into
1871 ** a single flat select, like this:
1873 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
1875 ** The code generated for this simpification gives the same result
1876 ** but only has to scan the data once. And because indices might
1877 ** exist on the table t1, a complete scan of the data might be
1878 ** avoided.
1880 ** Flattening is only attempted if all of the following are true:
1882 ** (1) The subquery and the outer query do not both use aggregates.
1884 ** (2) The subquery is not an aggregate or the outer query is not a join.
1886 ** (3) The subquery is not the right operand of a left outer join, or
1887 ** the subquery is not itself a join. (Ticket #306)
1889 ** (4) The subquery is not DISTINCT or the outer query is not a join.
1891 ** (5) The subquery is not DISTINCT or the outer query does not use
1892 ** aggregates.
1894 ** (6) The subquery does not use aggregates or the outer query is not
1895 ** DISTINCT.
1897 ** (7) The subquery has a FROM clause.
1899 ** (8) The subquery does not use LIMIT or the outer query is not a join.
1901 ** (9) The subquery does not use LIMIT or the outer query does not use
1902 ** aggregates.
1904 ** (10) The subquery does not use aggregates or the outer query does not
1905 ** use LIMIT.
1907 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
1909 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
1910 ** subquery has no WHERE clause. (added by ticket #350)
1912 ** In this routine, the "p" parameter is a pointer to the outer query.
1913 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
1914 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
1916 ** If flattening is not attempted, this routine is a no-op and returns 0.
1917 ** If flattening is attempted this routine returns 1.
1919 ** All of the expression analysis must occur on both the outer query and
1920 ** the subquery before this routine runs.
1922 static int flattenSubquery(
1923 Parse *pParse, /* The parsing context */
1924 Select *p, /* The parent or outer SELECT statement */
1925 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
1926 int isAgg, /* True if outer SELECT uses aggregate functions */
1927 int subqueryIsAgg /* True if the subquery uses aggregate functions */
1929 Select *pSub; /* The inner query or "subquery" */
1930 SrcList *pSrc; /* The FROM clause of the outer query */
1931 SrcList *pSubSrc; /* The FROM clause of the subquery */
1932 ExprList *pList; /* The result set of the outer query */
1933 int iParent; /* VDBE cursor number of the pSub result set temp table */
1934 int i; /* Loop counter */
1935 Expr *pWhere; /* The WHERE clause */
1936 struct SrcList_item *pSubitem; /* The subquery */
1938 /* Check to see if flattening is permitted. Return 0 if not.
1940 if( p==0 ) return 0;
1941 pSrc = p->pSrc;
1942 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
1943 pSubitem = &pSrc->a[iFrom];
1944 pSub = pSubitem->pSelect;
1945 assert( pSub!=0 );
1946 if( isAgg && subqueryIsAgg ) return 0;
1947 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;
1948 pSubSrc = pSub->pSrc;
1949 assert( pSubSrc );
1950 if( (pSub->pLimit && p->pLimit) || pSub->pOffset ||
1951 (pSub->pLimit && isAgg) ) return 0;
1952 if( pSubSrc->nSrc==0 ) return 0;
1953 if( pSub->isDistinct && (pSrc->nSrc>1 || isAgg) ){
1954 return 0;
1956 if( p->isDistinct && subqueryIsAgg ) return 0;
1957 if( p->pOrderBy && pSub->pOrderBy ) return 0;
1959 /* Restriction 3: If the subquery is a join, make sure the subquery is
1960 ** not used as the right operand of an outer join. Examples of why this
1961 ** is not allowed:
1963 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
1965 ** If we flatten the above, we would get
1967 ** (t1 LEFT OUTER JOIN t2) JOIN t3
1969 ** which is not at all the same thing.
1971 if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){
1972 return 0;
1975 /* Restriction 12: If the subquery is the right operand of a left outer
1976 ** join, make sure the subquery has no WHERE clause.
1977 ** An examples of why this is not allowed:
1979 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
1981 ** If we flatten the above, we would get
1983 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
1985 ** But the t2.x>0 test will always fail on a NULL row of t2, which
1986 ** effectively converts the OUTER JOIN into an INNER JOIN.
1988 if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0
1989 && pSub->pWhere!=0 ){
1990 return 0;
1993 /* If we reach this point, it means flattening is permitted for the
1994 ** iFrom-th entry of the FROM clause in the outer query.
1997 /* Move all of the FROM elements of the subquery into the
1998 ** the FROM clause of the outer query. Before doing this, remember
1999 ** the cursor number for the original outer query FROM element in
2000 ** iParent. The iParent cursor will never be used. Subsequent code
2001 ** will scan expressions looking for iParent references and replace
2002 ** those references with expressions that resolve to the subquery FROM
2003 ** elements we are now copying in.
2005 iParent = pSubitem->iCursor;
2007 int nSubSrc = pSubSrc->nSrc;
2008 int jointype = pSubitem->jointype;
2010 sqlite3DeleteTable(0, pSubitem->pTab);
2011 sqliteFree(pSubitem->zDatabase);
2012 sqliteFree(pSubitem->zName);
2013 sqliteFree(pSubitem->zAlias);
2014 if( nSubSrc>1 ){
2015 int extra = nSubSrc - 1;
2016 for(i=1; i<nSubSrc; i++){
2017 pSrc = sqlite3SrcListAppend(pSrc, 0, 0);
2019 p->pSrc = pSrc;
2020 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
2021 pSrc->a[i] = pSrc->a[i-extra];
2024 for(i=0; i<nSubSrc; i++){
2025 pSrc->a[i+iFrom] = pSubSrc->a[i];
2026 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2028 pSrc->a[iFrom+nSubSrc-1].jointype = jointype;
2031 /* Now begin substituting subquery result set expressions for
2032 ** references to the iParent in the outer query.
2034 ** Example:
2036 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2037 ** \ \_____________ subquery __________/ /
2038 ** \_____________________ outer query ______________________________/
2040 ** We look at every expression in the outer query and every place we see
2041 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2043 substExprList(p->pEList, iParent, pSub->pEList);
2044 pList = p->pEList;
2045 for(i=0; i<pList->nExpr; i++){
2046 Expr *pExpr;
2047 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2048 pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
2051 if( isAgg ){
2052 substExprList(p->pGroupBy, iParent, pSub->pEList);
2053 substExpr(p->pHaving, iParent, pSub->pEList);
2055 if( pSub->pOrderBy ){
2056 assert( p->pOrderBy==0 );
2057 p->pOrderBy = pSub->pOrderBy;
2058 pSub->pOrderBy = 0;
2059 }else if( p->pOrderBy ){
2060 substExprList(p->pOrderBy, iParent, pSub->pEList);
2062 if( pSub->pWhere ){
2063 pWhere = sqlite3ExprDup(pSub->pWhere);
2064 }else{
2065 pWhere = 0;
2067 if( subqueryIsAgg ){
2068 assert( p->pHaving==0 );
2069 p->pHaving = p->pWhere;
2070 p->pWhere = pWhere;
2071 substExpr(p->pHaving, iParent, pSub->pEList);
2072 p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving));
2073 assert( p->pGroupBy==0 );
2074 p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy);
2075 }else{
2076 substExpr(p->pWhere, iParent, pSub->pEList);
2077 p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere);
2080 /* The flattened query is distinct if either the inner or the
2081 ** outer query is distinct.
2083 p->isDistinct = p->isDistinct || pSub->isDistinct;
2086 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2088 if( pSub->pLimit ){
2089 p->pLimit = pSub->pLimit;
2090 pSub->pLimit = 0;
2093 /* Finially, delete what is left of the subquery and return
2094 ** success.
2096 sqlite3SelectDelete(pSub);
2097 return 1;
2099 #endif /* SQLITE_OMIT_VIEW */
2102 ** Analyze the SELECT statement passed in as an argument to see if it
2103 ** is a simple min() or max() query. If it is and this query can be
2104 ** satisfied using a single seek to the beginning or end of an index,
2105 ** then generate the code for this SELECT and return 1. If this is not a
2106 ** simple min() or max() query, then return 0;
2108 ** A simply min() or max() query looks like this:
2110 ** SELECT min(a) FROM table;
2111 ** SELECT max(a) FROM table;
2113 ** The query may have only a single table in its FROM argument. There
2114 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must
2115 ** be the min() or max() of a single column of the table. The column
2116 ** in the min() or max() function must be indexed.
2118 ** The parameters to this routine are the same as for sqlite3Select().
2119 ** See the header comment on that routine for additional information.
2121 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
2122 Expr *pExpr;
2123 int iCol;
2124 Table *pTab;
2125 Index *pIdx;
2126 int base;
2127 Vdbe *v;
2128 int seekOp;
2129 int cont;
2130 ExprList *pEList, *pList, eList;
2131 struct ExprList_item eListItem;
2132 SrcList *pSrc;
2134 /* Check to see if this query is a simple min() or max() query. Return
2135 ** zero if it is not.
2137 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
2138 pSrc = p->pSrc;
2139 if( pSrc->nSrc!=1 ) return 0;
2140 pEList = p->pEList;
2141 if( pEList->nExpr!=1 ) return 0;
2142 pExpr = pEList->a[0].pExpr;
2143 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2144 pList = pExpr->pList;
2145 if( pList==0 || pList->nExpr!=1 ) return 0;
2146 if( pExpr->token.n!=3 ) return 0;
2147 if( sqlite3StrNICmp(pExpr->token.z,"min",3)==0 ){
2148 seekOp = OP_Rewind;
2149 }else if( sqlite3StrNICmp(pExpr->token.z,"max",3)==0 ){
2150 seekOp = OP_Last;
2151 }else{
2152 return 0;
2154 pExpr = pList->a[0].pExpr;
2155 if( pExpr->op!=TK_COLUMN ) return 0;
2156 iCol = pExpr->iColumn;
2157 pTab = pSrc->a[0].pTab;
2159 /* If we get to here, it means the query is of the correct form.
2160 ** Check to make sure we have an index and make pIdx point to the
2161 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY
2162 ** key column, no index is necessary so set pIdx to NULL. If no
2163 ** usable index is found, return 0.
2165 if( iCol<0 ){
2166 pIdx = 0;
2167 }else{
2168 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
2169 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2170 assert( pIdx->nColumn>=1 );
2171 if( pIdx->aiColumn[0]==iCol && pIdx->keyInfo.aColl[0]==pColl ) break;
2173 if( pIdx==0 ) return 0;
2176 /* Identify column types if we will be using the callback. This
2177 ** step is skipped if the output is going to a table or a memory cell.
2178 ** The column names have already been generated in the calling function.
2180 v = sqlite3GetVdbe(pParse);
2181 if( v==0 ) return 0;
2183 /* If the output is destined for a temporary table, open that table.
2185 if( eDest==SRT_TempTable ){
2186 sqlite3VdbeAddOp(v, OP_OpenTemp, iParm, 0);
2187 sqlite3VdbeAddOp(v, OP_SetNumColumns, iParm, 1);
2190 /* Generating code to find the min or the max. Basically all we have
2191 ** to do is find the first or the last entry in the chosen index. If
2192 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
2193 ** or last entry in the main table.
2195 sqlite3CodeVerifySchema(pParse, pTab->iDb);
2196 base = pSrc->a[0].iCursor;
2197 computeLimitRegisters(pParse, p);
2198 if( pSrc->a[0].pSelect==0 ){
2199 sqlite3OpenTableForReading(v, base, pTab);
2201 cont = sqlite3VdbeMakeLabel(v);
2202 if( pIdx==0 ){
2203 sqlite3VdbeAddOp(v, seekOp, base, 0);
2204 }else{
2205 /* Even though the cursor used to open the index here is closed
2206 ** as soon as a single value has been read from it, allocate it
2207 ** using (pParse->nTab++) to prevent the cursor id from being
2208 ** reused. This is important for statements of the form
2209 ** "INSERT INTO x SELECT max() FROM x".
2211 int iIdx;
2212 iIdx = pParse->nTab++;
2213 sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
2214 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
2215 (char*)&pIdx->keyInfo, P3_KEYINFO);
2216 if( seekOp==OP_Rewind ){
2217 sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2218 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
2219 seekOp = OP_MoveGt;
2221 sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
2222 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
2223 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
2224 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
2226 eList.nExpr = 1;
2227 memset(&eListItem, 0, sizeof(eListItem));
2228 eList.a = &eListItem;
2229 eList.a[0].pExpr = pExpr;
2230 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont, 0);
2231 sqlite3VdbeResolveLabel(v, cont);
2232 sqlite3VdbeAddOp(v, OP_Close, base, 0);
2234 return 1;
2238 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return
2239 ** the number of errors seen.
2241 ** An ORDER BY or GROUP BY is a list of expressions. If any expression
2242 ** is an integer constant, then that expression is replaced by the
2243 ** corresponding entry in the result set.
2245 static int processOrderGroupBy(
2246 NameContext *pNC, /* Name context of the SELECT statement. */
2247 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */
2248 const char *zType /* Either "ORDER" or "GROUP", as appropriate */
2250 int i;
2251 ExprList *pEList = pNC->pEList; /* The result set of the SELECT */
2252 Parse *pParse = pNC->pParse; /* The result set of the SELECT */
2253 assert( pEList );
2255 if( pOrderBy==0 ) return 0;
2256 for(i=0; i<pOrderBy->nExpr; i++){
2257 int iCol;
2258 Expr *pE = pOrderBy->a[i].pExpr;
2259 if( sqlite3ExprIsInteger(pE, &iCol) ){
2260 if( iCol>0 && iCol<=pEList->nExpr ){
2261 sqlite3ExprDelete(pE);
2262 pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr);
2263 }else{
2264 sqlite3ErrorMsg(pParse,
2265 "%s BY column number %d out of range - should be "
2266 "between 1 and %d", zType, iCol, pEList->nExpr);
2267 return 1;
2270 if( sqlite3ExprResolveNames(pNC, pE) ){
2271 return 1;
2273 if( sqlite3ExprIsConstant(pE) ){
2274 sqlite3ErrorMsg(pParse,
2275 "%s BY terms must not be non-integer constants", zType);
2276 return 1;
2279 return 0;
2283 ** This routine resolves any names used in the result set of the
2284 ** supplied SELECT statement. If the SELECT statement being resolved
2285 ** is a sub-select, then pOuterNC is a pointer to the NameContext
2286 ** of the parent SELECT.
2288 int sqlite3SelectResolve(
2289 Parse *pParse, /* The parser context */
2290 Select *p, /* The SELECT statement being coded. */
2291 NameContext *pOuterNC /* The outer name context. May be NULL. */
2293 ExprList *pEList; /* Result set. */
2294 int i; /* For-loop variable used in multiple places */
2295 NameContext sNC; /* Local name-context */
2297 /* If this routine has run before, return immediately. */
2298 if( p->isResolved ){
2299 assert( !pOuterNC );
2300 return SQLITE_OK;
2302 p->isResolved = 1;
2304 /* If there have already been errors, do nothing. */
2305 if( pParse->nErr>0 ){
2306 return SQLITE_ERROR;
2309 /* Prepare the select statement. This call will allocate all cursors
2310 ** required to handle the tables and subqueries in the FROM clause.
2312 if( prepSelectStmt(pParse, p) ){
2313 return SQLITE_ERROR;
2316 /* Resolve the expressions in the LIMIT and OFFSET clauses. These
2317 ** are not allowed to refer to any names, so pass an empty NameContext.
2319 sNC.pParse = pParse;
2320 sNC.hasAgg = 0;
2321 sNC.nErr = 0;
2322 sNC.nRef = 0;
2323 sNC.pEList = 0;
2324 sNC.allowAgg = 0;
2325 sNC.pSrcList = 0;
2326 sNC.pNext = 0;
2327 if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
2328 sqlite3ExprResolveNames(&sNC, p->pOffset) ){
2329 return SQLITE_ERROR;
2332 /* Set up the local name-context to pass to ExprResolveNames() to
2333 ** resolve the expression-list.
2335 sNC.allowAgg = 1;
2336 sNC.pSrcList = p->pSrc;
2337 sNC.pNext = pOuterNC;
2339 /* NameContext.nDepth stores the depth of recursion for this query. For
2340 ** an outer query (e.g. SELECT * FROM sqlite_master) this is 1. For
2341 ** a subquery it is 2. For a subquery of a subquery, 3. And so on.
2342 ** Parse.nMaxDepth is the maximum depth for any subquery resolved so
2343 ** far. This is used to determine the number of aggregate contexts
2344 ** required at runtime.
2346 sNC.nDepth = (pOuterNC?pOuterNC->nDepth+1:1);
2347 if( sNC.nDepth>pParse->nMaxDepth ){
2348 pParse->nMaxDepth = sNC.nDepth;
2351 /* Resolve names in the result set. */
2352 pEList = p->pEList;
2353 if( !pEList ) return SQLITE_ERROR;
2354 for(i=0; i<pEList->nExpr; i++){
2355 Expr *pX = pEList->a[i].pExpr;
2356 if( sqlite3ExprResolveNames(&sNC, pX) ){
2357 return SQLITE_ERROR;
2361 /* If there are no aggregate functions in the result-set, and no GROUP BY
2362 ** expression, do not allow aggregates in any of the other expressions.
2364 assert( !p->isAgg );
2365 if( p->pGroupBy || sNC.hasAgg ){
2366 p->isAgg = 1;
2367 }else{
2368 sNC.allowAgg = 0;
2371 /* If a HAVING clause is present, then there must be a GROUP BY clause.
2373 if( p->pHaving && !p->pGroupBy ){
2374 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
2375 return SQLITE_ERROR;
2378 /* Add the expression list to the name-context before parsing the
2379 ** other expressions in the SELECT statement. This is so that
2380 ** expressions in the WHERE clause (etc.) can refer to expressions by
2381 ** aliases in the result set.
2383 ** Minor point: If this is the case, then the expression will be
2384 ** re-evaluated for each reference to it.
2386 sNC.pEList = p->pEList;
2387 if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
2388 sqlite3ExprResolveNames(&sNC, p->pHaving) ||
2389 processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
2390 processOrderGroupBy(&sNC, p->pGroupBy, "GROUP")
2392 return SQLITE_ERROR;
2395 return SQLITE_OK;
2399 ** An instance of the following struct is used by sqlite3Select()
2400 ** to save aggregate related information from the Parse object
2401 ** at the start of each call and to restore it at the end. See
2402 ** saveAggregateInfo() and restoreAggregateInfo().
2404 struct AggregateInfo {
2405 int nAgg;
2406 AggExpr *aAgg;
2408 typedef struct AggregateInfo AggregateInfo;
2411 ** Copy aggregate related information from the Parse structure
2412 ** into the AggregateInfo structure. Zero the aggregate related
2413 ** values in the Parse struct.
2415 static void saveAggregateInfo(Parse *pParse, AggregateInfo *pInfo){
2416 pInfo->aAgg = pParse->aAgg;
2417 pInfo->nAgg = pParse->nAgg;
2418 pParse->aAgg = 0;
2419 pParse->nAgg = 0;
2423 ** Copy aggregate related information from the AggregateInfo struct
2424 ** back into the Parse structure. The aggregate related information
2425 ** currently stored in the Parse structure is deleted.
2427 static void restoreAggregateInfo(Parse *pParse, AggregateInfo *pInfo){
2428 sqliteFree(pParse->aAgg);
2429 pParse->aAgg = pInfo->aAgg;
2430 pParse->nAgg = pInfo->nAgg;
2434 ** Generate code for the given SELECT statement.
2436 ** The results are distributed in various ways depending on the
2437 ** value of eDest and iParm.
2439 ** eDest Value Result
2440 ** ------------ -------------------------------------------
2441 ** SRT_Callback Invoke the callback for each row of the result.
2443 ** SRT_Mem Store first result in memory cell iParm
2445 ** SRT_Set Store results as keys of table iParm.
2447 ** SRT_Union Store results as a key in a temporary table iParm
2449 ** SRT_Except Remove results from the temporary table iParm.
2451 ** SRT_Table Store results in temporary table iParm
2453 ** The table above is incomplete. Additional eDist value have be added
2454 ** since this comment was written. See the selectInnerLoop() function for
2455 ** a complete listing of the allowed values of eDest and their meanings.
2457 ** This routine returns the number of errors. If any errors are
2458 ** encountered, then an appropriate error message is left in
2459 ** pParse->zErrMsg.
2461 ** This routine does NOT free the Select structure passed in. The
2462 ** calling function needs to do that.
2464 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
2465 ** SELECT is a subquery. This routine may try to combine this SELECT
2466 ** with its parent to form a single flat query. In so doing, it might
2467 ** change the parent query from a non-aggregate to an aggregate query.
2468 ** For that reason, the pParentAgg flag is passed as a pointer, so it
2469 ** can be changed.
2471 ** Example 1: The meaning of the pParent parameter.
2473 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
2474 ** \ \_______ subquery _______/ /
2475 ** \ /
2476 ** \____________________ outer query ___________________/
2478 ** This routine is called for the outer query first. For that call,
2479 ** pParent will be NULL. During the processing of the outer query, this
2480 ** routine is called recursively to handle the subquery. For the recursive
2481 ** call, pParent will point to the outer query. Because the subquery is
2482 ** the second element in a three-way join, the parentTab parameter will
2483 ** be 1 (the 2nd value of a 0-indexed array.)
2485 int sqlite3Select(
2486 Parse *pParse, /* The parser context */
2487 Select *p, /* The SELECT statement being coded. */
2488 int eDest, /* How to dispose of the results */
2489 int iParm, /* A parameter used by the eDest disposal method */
2490 Select *pParent, /* Another SELECT for which this is a sub-query */
2491 int parentTab, /* Index in pParent->pSrc of this query */
2492 int *pParentAgg, /* True if pParent uses aggregate functions */
2493 char *aff /* If eDest is SRT_Union, the affinity string */
2495 int i;
2496 WhereInfo *pWInfo;
2497 Vdbe *v;
2498 int isAgg; /* True for select lists like "count(*)" */
2499 ExprList *pEList; /* List of columns to extract. */
2500 SrcList *pTabList; /* List of tables to select from */
2501 Expr *pWhere; /* The WHERE clause. May be NULL */
2502 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
2503 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
2504 Expr *pHaving; /* The HAVING clause. May be NULL */
2505 int isDistinct; /* True if the DISTINCT keyword is present */
2506 int distinct; /* Table to use for the distinct set */
2507 int rc = 1; /* Value to return from this function */
2508 AggregateInfo sAggInfo;
2510 if( sqlite3_malloc_failed || pParse->nErr || p==0 ) return 1;
2511 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
2513 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2514 /* If there is are a sequence of queries, do the earlier ones first.
2516 if( p->pPrior ){
2517 return multiSelect(pParse, p, eDest, iParm, aff);
2519 #endif
2521 saveAggregateInfo(pParse, &sAggInfo);
2522 pOrderBy = p->pOrderBy;
2523 if( eDest==SRT_Union || eDest==SRT_Except || eDest==SRT_Discard ){
2524 p->pOrderBy = 0;
2526 if( sqlite3SelectResolve(pParse, p, 0) ){
2527 goto select_end;
2529 p->pOrderBy = pOrderBy;
2531 /* Make local copies of the parameters for this query.
2533 pTabList = p->pSrc;
2534 pWhere = p->pWhere;
2535 pGroupBy = p->pGroupBy;
2536 pHaving = p->pHaving;
2537 isAgg = p->isAgg;
2538 isDistinct = p->isDistinct;
2539 pEList = p->pEList;
2540 if( pEList==0 ) goto select_end;
2543 ** Do not even attempt to generate any code if we have already seen
2544 ** errors before this routine starts.
2546 if( pParse->nErr>0 ) goto select_end;
2548 /* If writing to memory or generating a set
2549 ** only a single column may be output.
2551 assert( eDest!=SRT_Exists || pEList->nExpr==1 );
2552 #ifndef SQLITE_OMIT_SUBQUERY
2553 if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
2554 sqlite3ErrorMsg(pParse, "only a single result allowed for "
2555 "a SELECT that is part of an expression");
2556 goto select_end;
2558 #endif
2560 /* ORDER BY is ignored for some destinations.
2562 switch( eDest ){
2563 case SRT_Union:
2564 case SRT_Except:
2565 case SRT_Discard:
2566 pOrderBy = 0;
2567 break;
2568 default:
2569 break;
2572 /* Begin generating code.
2574 v = sqlite3GetVdbe(pParse);
2575 if( v==0 ) goto select_end;
2577 /* Identify column names if we will be using them in a callback. This
2578 ** step is skipped if the output is going to some other destination.
2580 if( eDest==SRT_Callback ){
2581 generateColumnNames(pParse, pTabList, pEList);
2584 /* Generate code for all sub-queries in the FROM clause
2586 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2587 for(i=0; i<pTabList->nSrc; i++){
2588 const char *zSavedAuthContext = 0;
2589 int needRestoreContext;
2591 if( pTabList->a[i].pSelect==0 ) continue;
2592 if( pTabList->a[i].zName!=0 ){
2593 zSavedAuthContext = pParse->zAuthContext;
2594 pParse->zAuthContext = pTabList->a[i].zName;
2595 needRestoreContext = 1;
2596 }else{
2597 needRestoreContext = 0;
2599 sqlite3Select(pParse, pTabList->a[i].pSelect, SRT_TempTable,
2600 pTabList->a[i].iCursor, p, i, &isAgg, 0);
2601 if( needRestoreContext ){
2602 pParse->zAuthContext = zSavedAuthContext;
2604 pTabList = p->pSrc;
2605 pWhere = p->pWhere;
2606 if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){
2607 pOrderBy = p->pOrderBy;
2609 pGroupBy = p->pGroupBy;
2610 pHaving = p->pHaving;
2611 isDistinct = p->isDistinct;
2613 #endif
2615 /* Check for the special case of a min() or max() function by itself
2616 ** in the result set.
2618 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
2619 rc = 0;
2620 goto select_end;
2623 /* Check to see if this is a subquery that can be "flattened" into its parent.
2624 ** If flattening is a possiblity, do so and return immediately.
2626 #ifndef SQLITE_OMIT_VIEW
2627 if( pParent && pParentAgg &&
2628 flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){
2629 if( isAgg ) *pParentAgg = 1;
2630 goto select_end;
2632 #endif
2634 /* If there is an ORDER BY clause, resolve any collation sequences
2635 ** names that have been explicitly specified.
2637 if( pOrderBy ){
2638 for(i=0; i<pOrderBy->nExpr; i++){
2639 if( pOrderBy->a[i].zName ){
2640 pOrderBy->a[i].pExpr->pColl =
2641 sqlite3LocateCollSeq(pParse, pOrderBy->a[i].zName, -1);
2644 if( pParse->nErr ){
2645 goto select_end;
2649 /* Set the limiter.
2651 computeLimitRegisters(pParse, p);
2653 /* If the output is destined for a temporary table, open that table.
2655 if( eDest==SRT_TempTable ){
2656 sqlite3VdbeAddOp(v, OP_OpenTemp, iParm, 0);
2657 sqlite3VdbeAddOp(v, OP_SetNumColumns, iParm, pEList->nExpr);
2660 /* Do an analysis of aggregate expressions.
2662 if( isAgg || pGroupBy ){
2663 NameContext sNC;
2664 memset(&sNC, 0, sizeof(sNC));
2665 sNC.pParse = pParse;
2666 sNC.pSrcList = pTabList;
2668 assert( pParse->nAgg==0 );
2669 isAgg = 1;
2670 for(i=0; i<pEList->nExpr; i++){
2671 if( sqlite3ExprAnalyzeAggregates(&sNC, pEList->a[i].pExpr) ){
2672 goto select_end;
2675 if( pGroupBy ){
2676 for(i=0; i<pGroupBy->nExpr; i++){
2677 if( sqlite3ExprAnalyzeAggregates(&sNC, pGroupBy->a[i].pExpr) ){
2678 goto select_end;
2682 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
2683 goto select_end;
2685 if( pOrderBy ){
2686 for(i=0; i<pOrderBy->nExpr; i++){
2687 if( sqlite3ExprAnalyzeAggregates(&sNC, pOrderBy->a[i].pExpr) ){
2688 goto select_end;
2694 /* Reset the aggregator
2696 if( isAgg ){
2697 int addr = sqlite3VdbeAddOp(v, OP_AggReset, (pGroupBy?0:1), pParse->nAgg);
2698 for(i=0; i<pParse->nAgg; i++){
2699 FuncDef *pFunc;
2700 if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
2701 int nExpr = 0;
2702 #ifdef SQLITE_SSE
2703 Expr *pAggExpr = pParse->aAgg[i].pExpr;
2704 if( pAggExpr && pAggExpr->pList ){
2705 nExpr = pAggExpr->pList->nExpr;
2707 #endif
2708 sqlite3VdbeOp3(v, OP_AggInit, nExpr, i, (char*)pFunc, P3_FUNCDEF);
2711 if( pGroupBy ){
2712 int sz = sizeof(KeyInfo) + pGroupBy->nExpr*sizeof(CollSeq*);
2713 KeyInfo *pKey = (KeyInfo *)sqliteMalloc(sz);
2714 if( 0==pKey ){
2715 goto select_end;
2717 pKey->enc = pParse->db->enc;
2718 pKey->nField = pGroupBy->nExpr;
2719 for(i=0; i<pGroupBy->nExpr; i++){
2720 pKey->aColl[i] = sqlite3ExprCollSeq(pParse, pGroupBy->a[i].pExpr);
2721 if( !pKey->aColl[i] ){
2722 pKey->aColl[i] = pParse->db->pDfltColl;
2725 sqlite3VdbeChangeP3(v, addr, (char *)pKey, P3_KEYINFO_HANDOFF);
2729 /* Initialize the memory cell to NULL for SRT_Mem or 0 for SRT_Exists
2731 if( eDest==SRT_Mem || eDest==SRT_Exists ){
2732 sqlite3VdbeAddOp(v, eDest==SRT_Mem ? OP_Null : OP_Integer, 0, 0);
2733 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
2736 /* Open a temporary table to use for the distinct set.
2738 if( isDistinct ){
2739 distinct = pParse->nTab++;
2740 openTempIndex(pParse, p, distinct);
2741 }else{
2742 distinct = -1;
2745 /* Begin the database scan
2747 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,
2748 pGroupBy ? 0 : &pOrderBy);
2749 if( pWInfo==0 ) goto select_end;
2751 /* Use the standard inner loop if we are not dealing with
2752 ** aggregates
2754 if( !isAgg ){
2755 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
2756 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
2757 goto select_end;
2761 /* If we are dealing with aggregates, then do the special aggregate
2762 ** processing.
2764 else{
2765 AggExpr *pAgg;
2766 int lbl1 = 0;
2767 pParse->fillAgg = 1;
2768 if( pGroupBy ){
2769 for(i=0; i<pGroupBy->nExpr; i++){
2770 sqlite3ExprCode(pParse, pGroupBy->a[i].pExpr);
2772 /* No affinity string is attached to the following OP_MakeRecord
2773 ** because we do not need to do any coercion of datatypes. */
2774 sqlite3VdbeAddOp(v, OP_MakeRecord, pGroupBy->nExpr, 0);
2775 lbl1 = sqlite3VdbeMakeLabel(v);
2776 sqlite3VdbeAddOp(v, OP_AggFocus, 0, lbl1);
2778 for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
2779 if( pAgg->isAgg ) continue;
2780 sqlite3ExprCode(pParse, pAgg->pExpr);
2781 sqlite3VdbeAddOp(v, OP_AggSet, 0, i);
2783 pParse->fillAgg = 0;
2784 if( lbl1<0 ){
2785 sqlite3VdbeResolveLabel(v, lbl1);
2787 for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
2788 Expr *pE;
2789 int nExpr;
2790 FuncDef *pDef;
2791 if( !pAgg->isAgg ) continue;
2792 assert( pAgg->pFunc!=0 );
2793 assert( pAgg->pFunc->xStep!=0 );
2794 pDef = pAgg->pFunc;
2795 pE = pAgg->pExpr;
2796 assert( pE!=0 );
2797 assert( pE->op==TK_AGG_FUNCTION );
2798 nExpr = sqlite3ExprCodeExprList(pParse, pE->pList);
2799 sqlite3VdbeAddOp(v, OP_Integer, i, 0);
2800 if( pDef->needCollSeq ){
2801 CollSeq *pColl = 0;
2802 int j;
2803 for(j=0; !pColl && j<nExpr; j++){
2804 pColl = sqlite3ExprCollSeq(pParse, pE->pList->a[j].pExpr);
2806 if( !pColl ) pColl = pParse->db->pDfltColl;
2807 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
2809 sqlite3VdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_FUNCDEF);
2813 /* End the database scan loop.
2815 sqlite3WhereEnd(pWInfo);
2817 /* If we are processing aggregates, we need to set up a second loop
2818 ** over all of the aggregate values and process them.
2820 if( isAgg ){
2821 int endagg = sqlite3VdbeMakeLabel(v);
2822 int startagg;
2823 startagg = sqlite3VdbeAddOp(v, OP_AggNext, 0, endagg);
2824 if( pHaving ){
2825 sqlite3ExprIfFalse(pParse, pHaving, startagg, 1);
2827 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
2828 iParm, startagg, endagg, aff) ){
2829 goto select_end;
2831 sqlite3VdbeAddOp(v, OP_Goto, 0, startagg);
2832 sqlite3VdbeResolveLabel(v, endagg);
2833 sqlite3VdbeAddOp(v, OP_Noop, 0, 0);
2836 /* If there is an ORDER BY clause, then we need to sort the results
2837 ** and send them to the callback one by one.
2839 if( pOrderBy ){
2840 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
2843 #ifndef SQLITE_OMIT_SUBQUERY
2844 /* If this was a subquery, we have now converted the subquery into a
2845 ** temporary table. So delete the subquery structure from the parent
2846 ** to prevent this subquery from being evaluated again and to force the
2847 ** the use of the temporary table.
2849 if( pParent ){
2850 assert( pParent->pSrc->nSrc>parentTab );
2851 assert( pParent->pSrc->a[parentTab].pSelect==p );
2852 sqlite3SelectDelete(p);
2853 pParent->pSrc->a[parentTab].pSelect = 0;
2855 #endif
2857 /* The SELECT was successfully coded. Set the return code to 0
2858 ** to indicate no errors.
2860 rc = 0;
2862 /* Control jumps to here if an error is encountered above, or upon
2863 ** successful coding of the SELECT.
2865 select_end:
2866 restoreAggregateInfo(pParse, &sAggInfo);
2867 return rc;