fix vector drawing issue.
[xy_vsfilter.git] / src / subtitles / Rasterizer.cpp
blobd5d02e02bfb9ca24924357c8163076098dcbdc18
1 /*
2 * Copyright (C) 2003-2006 Gabest
3 * http://www.gabest.org
5 * This Program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2, or (at your option)
8 * any later version.
10 * This Program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with GNU Make; see the file COPYING. If not, write to
17 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
18 * http://www.gnu.org/copyleft/gpl.html
22 #include "stdafx.h"
23 #include <string.h>
24 #include <math.h>
25 #include <vector>
26 #include <algorithm>
27 #include "Rasterizer.h"
28 #include "SeparableFilter.h"
29 #include "xy_logger.h"
30 #include <boost/flyweight/key_value.hpp>
32 #ifndef _MAX /* avoid collision with common (nonconforming) macros */
33 #define _MAX (max)
34 #define _MIN (min)
35 #define _IMPL_MAX max
36 #define _IMPL_MIN min
37 #else
38 #define _IMPL_MAX _MAX
39 #define _IMPL_MIN _MIN
40 #endif
43 //NOTE: signed or unsigned affects the result seriously
44 #define COMBINE_AYUV(a, y, u, v) ((((((((int)(a))<<8)|y)<<8)|u)<<8)|v)
46 #define SPLIT_AYUV(color, a, y, u, v) do { \
47 *(v)=(color)&0xff; \
48 *(u)=((color)>>8) &0xff; \
49 *(y)=((color)>>16)&0xff;\
50 *(a)=((color)>>24)&0xff;\
51 } while(0)
53 class ass_synth_priv
55 public:
56 static const int VOLUME_BITS = 22;//should not exceed 32-8, and better not exceed 31-8
58 ass_synth_priv(const double sigma);
59 ass_synth_priv(const ass_synth_priv& priv);
61 ~ass_synth_priv();
62 int generate_tables(double sigma);
64 int g_r;
65 int g_w;
67 unsigned *g;
68 unsigned *gt2;
70 double sigma;
73 struct ass_synth_priv_key
75 const double& operator()(const ass_synth_priv& x)const
77 return x.sigma;
81 struct ass_tmp_buf
83 public:
84 ass_tmp_buf(size_t size);
85 ass_tmp_buf(const ass_tmp_buf& buf);
86 ~ass_tmp_buf();
87 size_t size;
88 unsigned *tmp;
91 struct ass_tmp_buf_get_size
93 const size_t& operator()(const ass_tmp_buf& buf)const
95 return buf.size;
99 static const unsigned int maxcolor = 255;
100 static const unsigned base = 256;
102 ass_synth_priv::ass_synth_priv(const double sigma)
104 g_r = 0;
105 g_w = 0;
107 g = NULL;
108 gt2 = NULL;
110 this->sigma = 0;
111 generate_tables(sigma);
114 ass_synth_priv::ass_synth_priv(const ass_synth_priv& priv):g_r(priv.g_r),g_w(priv.g_w),sigma(priv.sigma)
116 if (this->g_w > 0 && this != &priv) {
117 this->g = (unsigned*)realloc(this->g, this->g_w * sizeof(unsigned));
118 this->gt2 = (unsigned*)realloc(this->gt2, 256 * this->g_w * sizeof(unsigned));
119 //if (this->g == null || this->gt2 == null) {
120 // return -1;
122 memcpy(g, priv.g, this->g_w * sizeof(unsigned));
123 memcpy(gt2, priv.gt2, 256 * this->g_w * sizeof(unsigned));
127 ass_synth_priv::~ass_synth_priv()
129 free(g); g=NULL;
130 free(gt2); gt2=NULL;
133 int ass_synth_priv::generate_tables(double sigma)
135 const int TARGET_VOLUME = 1<<VOLUME_BITS;
136 const int MAX_VOLUME_ERROR = VOLUME_BITS>=22 ? 16 : 1;
138 double a = -1 / (sigma * sigma * 2);
139 double exp_a = exp(a);
141 double volume_factor = 0;
142 double volume_start = 0, volume_end = 0;
143 unsigned volume;
145 if (this->sigma == sigma)
146 return 0;
147 else
148 this->sigma = sigma;
150 this->g_w = (int)ceil(sigma*3) | 1;
151 this->g_r = this->g_w / 2;
153 if (this->g_w > 0) {
154 this->g = (unsigned*)realloc(this->g, this->g_w * sizeof(unsigned));
155 this->gt2 = (unsigned*)realloc(this->gt2, 256 * this->g_w * sizeof(unsigned));
156 if (this->g == NULL || this->gt2 == NULL) {
157 return -1;
161 if (this->g_w > 0) {
162 volume_start = 0;
164 double exp_0 = 1.0;
165 double exp_1 = exp_a;
166 double exp_2 = exp_1 * exp_1;
167 volume_start += exp_0;
168 for(int i=0;i<this->g_r;++i)
170 exp_0 *= exp_1;
171 exp_1 *= exp_2;
172 volume_start += exp_0;
173 volume_start += exp_0;
175 //euqivalent:
176 // for (i = 0; i < this->g_w; ++i) {
177 // volume_start += exp(a * (i - this->g_r) * (i - this->g_r));
178 // }
180 volume_end = (TARGET_VOLUME+g_w)/volume_start;
181 volume_start = (TARGET_VOLUME-g_w)/volume_start;
183 volume = 0;
184 while( volume_start+0.000001<volume_end )
186 volume_factor = (volume_start+volume_end)*0.5;
187 volume = 0;
189 exp_0 = volume_factor;
190 exp_1 = exp_a;
191 exp_2 = exp_1 * exp_1;
193 volume = static_cast<int>(exp_0+.5);
194 this->g[this->g_r] = volume;
196 unsigned* p_left = this->g+this->g_r-1;
197 unsigned* p_right= this->g+this->g_r+1;
198 for(int i=0; i<this->g_r;++i,p_left--,p_right++)
200 exp_0 *= exp_1;
201 exp_1 *= exp_2;
202 *p_left = static_cast<int>(exp_0+.5);
203 *p_right = *p_left;
204 volume += (*p_left<<1);
206 //equivalent:
207 // for (i = 0; i < this->g_w; ++i) {
208 // this->g[i] = (unsigned) ( exp(a * (i - this->g_r) * (i - this->g_r))* volume_factor + .5 );
209 // volume += this->g[i];
210 // }
212 // volume don't have to be equal to TARGET_VOLUME,
213 // even if volume=TARGET_VOLUME+MAX_VOLUME_ERROR,
214 // max error introducing in later blur operation,
215 // which is (dot_product(g_w, pixel))/TARGET_VOLUME with pixel<256,
216 // would not exceed (MAX_VOLUME_ERROR*256)/TARGET_VOLUME,
217 // as long as MAX_VOLUME_ERROR/TARGET_VOLUME is small enough, error introduced would be kept in safe range
219 // NOTE: when it comes to rounding, no matter how small the error is,
220 // it may result a different rounding output
221 if( volume>=TARGET_VOLUME && volume< (TARGET_VOLUME+MAX_VOLUME_ERROR) )
222 break;
223 else if(volume < TARGET_VOLUME)
225 volume_start = volume_factor;
227 else if(volume >= TARGET_VOLUME+MAX_VOLUME_ERROR)
229 volume_end = volume_factor;
232 if(volume==0)
234 volume_factor = volume_end;
236 exp_0 = volume_factor;
237 exp_1 = exp_a;
238 exp_2 = exp_1 * exp_1;
240 volume = static_cast<int>(exp_0+.5);
241 this->g[this->g_r] = volume;
243 unsigned* p_left = this->g+this->g_r-1;
244 unsigned* p_right= this->g+this->g_r+1;
245 for(int i=0; i<this->g_r;++i,p_left--,p_right++)
247 exp_0 *= exp_1;
248 exp_1 *= exp_2;
249 *p_left = static_cast<int>(exp_0+.5);
250 *p_right = *p_left;
251 volume += (*p_left<<1);
253 //equivalent:
254 // for (i = 0; i < this->g_w; ++i) {
255 // this->g[i] = (unsigned) ( exp(a * (i - this->g_r) * (i - this->g_r))* volume_factor + .5 );
256 // volume += this->g[i];
257 // }
260 // gauss table:
261 for (int mx = 0; mx < this->g_w; mx++) {
262 int last_mul = 0;
263 unsigned *p_gt2 = this->gt2 + mx;
264 *p_gt2 = 0;
265 for (int i = 1; i < 256; i++) {
266 last_mul = last_mul+this->g[mx];
267 p_gt2 += this->g_w;
268 *p_gt2 = last_mul;
269 //equivalent:
270 // this->gt2[this->g_w * i+ mx] = this->g[mx] * i;
274 return 0;
277 ass_tmp_buf::ass_tmp_buf(size_t size)
279 tmp = (unsigned *)malloc(size * sizeof(unsigned));
280 this->size = size;
283 ass_tmp_buf::ass_tmp_buf(const ass_tmp_buf& buf)
284 :size(buf.size)
286 tmp = (unsigned *)malloc(size * sizeof(unsigned));
289 ass_tmp_buf::~ass_tmp_buf()
291 free(tmp);
295 * \brief gaussian blur. an fast pure c implementation from libass.
297 static void ass_gauss_blur(unsigned char *buffer, unsigned *tmp2,
298 int width, int height, int stride, const unsigned *m2,
299 int r, int mwidth)
302 int x, y;
304 unsigned char *s = buffer;
305 unsigned *t = tmp2 + 1;
306 for (y = 0; y < height; y++) {
307 memset(t - 1, 0, (width + 1) * sizeof(*t));
308 x = 0;
309 if(x < r)//in case that r < 0
311 const int src = s[x];
312 if (src) {
313 register unsigned *dstp = t + x - r;
314 int mx;
315 const unsigned *m3 = m2 + src * mwidth;
316 unsigned sum = 0;
317 for (mx = mwidth-1; mx >= r - x ; mx--) {
318 sum += m3[mx];
319 dstp[mx] += sum;
324 for (x = 1; x < r; x++) {
325 const int src = s[x];
326 if (src) {
327 register unsigned *dstp = t + x - r;
328 int mx;
329 const unsigned *m3 = m2 + src * mwidth;
330 for (mx = r - x; mx < mwidth; mx++) {
331 dstp[mx] += m3[mx];
336 for (; x < width - r; x++) {
337 const int src = s[x];
338 if (src) {
339 register unsigned *dstp = t + x - r;
340 int mx;
341 const unsigned *m3 = m2 + src * mwidth;
342 for (mx = 0; mx < mwidth; mx++) {
343 dstp[mx] += m3[mx];
348 for (; x < width-1; x++) {
349 const int src = s[x];
350 if (src) {
351 register unsigned *dstp = t + x - r;
352 int mx;
353 const int x2 = r + width - x;
354 const unsigned *m3 = m2 + src * mwidth;
355 for (mx = 0; mx < x2; mx++) {
356 dstp[mx] += m3[mx];
360 if(x==width-1) //important: x==width-1 failed, if r==0
362 const int src = s[x];
363 if (src) {
364 register unsigned *dstp = t + x - r;
365 int mx;
366 const int x2 = r + width - x;
367 const unsigned *m3 = m2 + src * mwidth;
368 unsigned sum = 0;
369 for (mx = 0; mx < x2; mx++) {
370 sum += m3[mx];
371 dstp[mx] += sum;
376 s += stride;
377 t += width + 1;
380 t = tmp2;
381 for (x = 0; x < width; x++) {
382 y = 0;
383 if(y < r)//in case that r<0
385 unsigned *srcp = t + y * (width + 1) + 1;
386 int src = *srcp;
387 if (src) {
388 register unsigned *dstp = srcp - 1 + (mwidth -r +y)*(width + 1);
389 const int src2 = (src + (1<<(ass_synth_priv::VOLUME_BITS-1))) >> ass_synth_priv::VOLUME_BITS;
390 const unsigned *m3 = m2 + src2 * mwidth;
391 unsigned sum = 0;
392 int mx;
393 *srcp = (1<<(ass_synth_priv::VOLUME_BITS-1));
394 for (mx = mwidth-1; mx >=r - y ; mx--) {
395 sum += m3[mx];
396 *dstp += sum;
397 dstp -= width + 1;
401 for (y = 1; y < r; y++) {
402 unsigned *srcp = t + y * (width + 1) + 1;
403 int src = *srcp;
404 if (src) {
405 register unsigned *dstp = srcp - 1 + width + 1;
406 const int src2 = (src + (1<<(ass_synth_priv::VOLUME_BITS-1))) >> ass_synth_priv::VOLUME_BITS;
407 const unsigned *m3 = m2 + src2 * mwidth;
409 int mx;
410 *srcp = (1<<(ass_synth_priv::VOLUME_BITS-1));
411 for (mx = r - y; mx < mwidth; mx++) {
412 *dstp += m3[mx];
413 dstp += width + 1;
417 for (; y < height - r; y++) {
418 unsigned *srcp = t + y * (width + 1) + 1;
419 int src = *srcp;
420 if (src) {
421 register unsigned *dstp = srcp - 1 - r * (width + 1);
422 const int src2 = (src + (1<<(ass_synth_priv::VOLUME_BITS-1))) >> ass_synth_priv::VOLUME_BITS;
423 const unsigned *m3 = m2 + src2 * mwidth;
425 int mx;
426 *srcp = (1<<(ass_synth_priv::VOLUME_BITS-1));
427 for (mx = 0; mx < mwidth; mx++) {
428 *dstp += m3[mx];
429 dstp += width + 1;
433 for (; y < height-1; y++) {
434 unsigned *srcp = t + y * (width + 1) + 1;
435 int src = *srcp;
436 if (src) {
437 const int y2 = r + height - y;
438 register unsigned *dstp = srcp - 1 - r * (width + 1);
439 const int src2 = (src + (1<<(ass_synth_priv::VOLUME_BITS-1))) >> ass_synth_priv::VOLUME_BITS;
440 const unsigned *m3 = m2 + src2 * mwidth;
442 int mx;
443 *srcp = (1<<(ass_synth_priv::VOLUME_BITS-1));
444 for (mx = 0; mx < y2; mx++) {
445 *dstp += m3[mx];
446 dstp += width + 1;
450 if(y == height - 1)//important: y == height - 1 failed if r==0
452 unsigned *srcp = t + y * (width + 1) + 1;
453 int src = *srcp;
454 if (src) {
455 const int y2 = r + height - y;
456 register unsigned *dstp = srcp - 1 - r * (width + 1);
457 const int src2 = (src + (1<<(ass_synth_priv::VOLUME_BITS-1))) >> ass_synth_priv::VOLUME_BITS;
458 const unsigned *m3 = m2 + src2 * mwidth;
459 unsigned sum = 0;
460 int mx;
461 *srcp = (1<<(ass_synth_priv::VOLUME_BITS-1));
462 for (mx = 0; mx < y2; mx++) {
463 sum += m3[mx];
464 *dstp += sum;
465 dstp += width + 1;
469 t++;
472 t = tmp2;
473 s = buffer;
474 for (y = 0; y < height; y++) {
475 for (x = 0; x < width; x++) {
476 s[x] = t[x] >> ass_synth_priv::VOLUME_BITS;
478 s += stride;
479 t += width + 1;
484 * \brief blur with [[1,2,1]. [2,4,2], [1,2,1]] kernel.
486 static void be_blur(unsigned char *buf, unsigned *tmp_base, int w, int h, int stride)
488 WORD *col_pix_buf_base = reinterpret_cast<WORD*>(xy_malloc(w*sizeof(WORD)));
489 WORD *col_sum_buf_base = reinterpret_cast<WORD*>(xy_malloc(w*sizeof(WORD)));
490 if(!col_sum_buf_base || !col_pix_buf_base)
492 //ToDo: error handling
493 return;
495 memset(col_pix_buf_base, 0, w*sizeof(WORD));
496 memset(col_sum_buf_base, 0, w*sizeof(WORD));
497 WORD *col_pix_buf = col_pix_buf_base-2;//for aligment;
498 WORD *col_sum_buf = col_sum_buf_base-2;//for aligment;
500 int y = 0;
501 unsigned char *src=buf+y*stride;
503 int x = 2;
504 int old_pix = src[x-1];
505 int old_sum = old_pix + src[x-2];
506 for ( ; x < w; x++) {
507 int temp1 = src[x];
508 int temp2 = old_pix + temp1;
509 old_pix = temp1;
510 temp1 = old_sum + temp2;
511 old_sum = temp2;
512 col_pix_buf[x] = temp1;
516 int y = 1;
517 unsigned char *src=buf+y*stride;
520 int x = 2;
521 int old_pix = src[x-1];
522 int old_sum = old_pix + src[x-2];
523 for ( ; x < w; x++) {
524 int temp1 = src[x];
525 int temp2 = old_pix + temp1;
526 old_pix = temp1;
527 temp1 = old_sum + temp2;
528 old_sum = temp2;
530 temp2 = col_pix_buf[x] + temp1;
531 col_pix_buf[x] = temp1;
532 //dst[x-1] = (col_sum_buf[x] + temp2) >> 4;
533 col_sum_buf[x] = temp2;
537 //__m128i round = _mm_set1_epi16(8);
538 for (int y = 2; y < h; y++) {
539 unsigned char *src=buf+y*stride;
540 unsigned char *dst=buf+(y-1)*stride;
543 int x = 2;
544 __m128i old_pix_128 = _mm_cvtsi32_si128(src[1]);
545 __m128i old_sum_128 = _mm_cvtsi32_si128(src[0]+src[1]);
546 for ( ; x < ((w-2)&(~7)); x+=8) {
547 __m128i new_pix = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src+x));
548 new_pix = _mm_unpacklo_epi8(new_pix, _mm_setzero_si128());
549 __m128i temp = _mm_slli_si128(new_pix,2);
550 temp = _mm_add_epi16(temp, old_pix_128);
551 temp = _mm_add_epi16(temp, new_pix);
552 old_pix_128 = _mm_srli_si128(new_pix,14);
554 new_pix = _mm_slli_si128(temp,2);
555 new_pix = _mm_add_epi16(new_pix, old_sum_128);
556 new_pix = _mm_add_epi16(new_pix, temp);
557 old_sum_128 = _mm_srli_si128(temp, 14);
559 __m128i old_col_pix = _mm_loadu_si128( reinterpret_cast<const __m128i*>(col_pix_buf+x) );
560 __m128i old_col_sum = _mm_loadu_si128( reinterpret_cast<const __m128i*>(col_sum_buf+x) );
561 _mm_storeu_si128( reinterpret_cast<__m128i*>(col_pix_buf+x), new_pix );
562 temp = _mm_add_epi16(new_pix, old_col_pix);
563 _mm_storeu_si128( reinterpret_cast<__m128i*>(col_sum_buf+x), temp );
565 old_col_sum = _mm_add_epi16(old_col_sum, temp);
566 //old_col_sum = _mm_add_epi16(old_col_sum, round);
567 old_col_sum = _mm_srli_epi16(old_col_sum, 4);
568 old_col_sum = _mm_packus_epi16(old_col_sum, old_col_sum);
569 _mm_storel_epi64( reinterpret_cast<__m128i*>(dst+x-1), old_col_sum );
571 int old_pix = src[x-1];
572 int old_sum = old_pix + src[x-2];
573 for ( ; x < w; x++) {
574 int temp1 = src[x];
575 int temp2 = old_pix + temp1;
576 old_pix = temp1;
577 temp1 = old_sum + temp2;
578 old_sum = temp2;
580 temp2 = col_pix_buf[x] + temp1;
581 col_pix_buf[x] = temp1;
582 dst[x-1] = (col_sum_buf[x] + temp2) >> 4;
583 col_sum_buf[x] = temp2;
587 xy_free(col_sum_buf_base);
588 xy_free(col_pix_buf_base);
591 static void Bilinear(unsigned char *buf, int w, int h, int stride, int x_factor, int y_factor)
593 WORD *col_pix_buf_base = reinterpret_cast<WORD*>(xy_malloc(w*sizeof(WORD)));
594 if(!col_pix_buf_base)
596 //ToDo: error handling
597 return;
599 memset(col_pix_buf_base, 0, w*sizeof(WORD));
601 for (int y = 0; y < h; y++){
602 unsigned char *src=buf+y*stride;
604 WORD *col_pix_buf = col_pix_buf_base;
605 int last=0;
606 for(int x = 0; x < w; x++)
608 int temp1 = src[x];
609 int temp2 = temp1*x_factor;
610 temp1 <<= 3;
611 temp1 -= temp2;
612 temp1 += last;
613 last = temp2;
615 temp2 = temp1*y_factor;
616 temp1 <<= 3;
617 temp1 -= temp2;
618 temp1 += col_pix_buf[x];
619 src[x] = ((temp1+32)>>6);
620 col_pix_buf[x] = temp2;
623 xy_free(col_pix_buf_base);
626 bool Rasterizer::Rasterize(const ScanLineData& scan_line_data, int xsub, int ysub, SharedPtrOverlay overlay)
628 using namespace ::boost::flyweights;
630 if(!overlay)
632 return false;
634 overlay->CleanUp();
636 if(!scan_line_data.mWidth || !scan_line_data.mHeight)
638 return true;
640 xsub &= 7;
641 ysub &= 7;
642 //xsub = ysub = 0;
643 int width = scan_line_data.mWidth + xsub;
644 int height = scan_line_data.mHeight + ysub;
645 overlay->mOffsetX = scan_line_data.mPathOffsetX - xsub;
646 overlay->mOffsetY = scan_line_data.mPathOffsetY - ysub;
647 int wide_border = (scan_line_data.mWideBorder+7)&~7;
648 overlay->mfWideOutlineEmpty = scan_line_data.mWideOutline.empty();
649 if(!overlay->mfWideOutlineEmpty)
651 width += 2*wide_border ;
652 height += 2*wide_border ;
653 xsub += wide_border ;
654 ysub += wide_border ;
655 overlay->mOffsetX -= wide_border;
656 overlay->mOffsetY -= wide_border;
659 overlay->mWidth = width;
660 overlay->mHeight = height;
661 overlay->mOverlayWidth = ((width+7)>>3) + 1;
662 overlay->mOverlayHeight = ((height+7)>>3) + 1;
663 overlay->mOverlayPitch = (overlay->mOverlayWidth+15)&~15;
665 overlay->mpOverlayBuffer.base = (byte*)xy_malloc(2 * overlay->mOverlayPitch * overlay->mOverlayHeight);
666 memset(overlay->mpOverlayBuffer.base, 0, 2 * overlay->mOverlayPitch * overlay->mOverlayHeight);
667 overlay->mpOverlayBuffer.body = overlay->mpOverlayBuffer.base;
668 overlay->mpOverlayBuffer.border = overlay->mpOverlayBuffer.base + overlay->mOverlayPitch * overlay->mOverlayHeight;
670 // Are we doing a border?
671 const ScanLineData::tSpanBuffer* pOutline[2] = {&(scan_line_data.mOutline), &(scan_line_data.mWideOutline)};
672 for(int i = countof(pOutline)-1; i >= 0; i--)
674 ScanLineData::tSpanBuffer::const_iterator it = pOutline[i]->begin();
675 ScanLineData::tSpanBuffer::const_iterator itEnd = pOutline[i]->end();
676 byte* plan_selected = i==0 ? overlay->mpOverlayBuffer.body : overlay->mpOverlayBuffer.border;
677 int pitch = overlay->mOverlayPitch;
678 for(; it!=itEnd; ++it)
680 int y = (int)(((*it).first >> 32) - 0x40000000 + ysub);
681 int x1 = (int)(((*it).first & 0xffffffff) - 0x40000000 + xsub);
682 int x2 = (int)(((*it).second & 0xffffffff) - 0x40000000 + xsub);
683 if(x2 > x1)
685 int first = x1>>3;
686 int last = (x2-1)>>3;
687 byte* dst = plan_selected + (pitch*(y>>3) + first);
688 if(first == last)
689 *dst += x2-x1;
690 else
692 *dst += ((first+1)<<3) - x1;
693 dst += 1;
694 while(++first < last)
696 *dst += 0x08;
697 dst += 1;
699 *dst += x2 - (last<<3);
705 return true;
708 // @return: true if actually a blur operation has done, or else false and output is leave unset.
709 bool Rasterizer::Blur(const Overlay& input_overlay, int fBlur, double fGaussianBlur,
710 SharedPtrOverlay output_overlay)
712 using namespace ::boost::flyweights;
714 if(!output_overlay)
716 return false;
718 output_overlay->CleanUp();
720 output_overlay->mOffsetX = input_overlay.mOffsetX;
721 output_overlay->mOffsetY = input_overlay.mOffsetY;
722 output_overlay->mWidth = input_overlay.mWidth;
723 output_overlay->mHeight = input_overlay.mHeight;
724 output_overlay->mOverlayWidth = input_overlay.mOverlayWidth;
725 output_overlay->mOverlayHeight = input_overlay.mOverlayHeight;
726 output_overlay->mfWideOutlineEmpty = input_overlay.mfWideOutlineEmpty;
728 int bluradjust = 0;
729 if(fBlur || fGaussianBlur > 0.1)
731 if (fGaussianBlur > 0)
732 bluradjust += (int)(fGaussianBlur*3*8 + 0.5) | 1;
733 if (fBlur)
734 bluradjust += 8;
735 // Expand the buffer a bit when we're blurring, since that can also widen the borders a bit
736 bluradjust = (bluradjust+7)&~7;
738 output_overlay->mOffsetX -= bluradjust;
739 output_overlay->mOffsetY -= bluradjust;
740 output_overlay->mWidth += (bluradjust<<1);
741 output_overlay->mHeight += (bluradjust<<1);
742 output_overlay->mOverlayWidth += (bluradjust>>2);
743 output_overlay->mOverlayHeight += (bluradjust>>2);
745 else
747 return false;
750 output_overlay->mOverlayPitch = (output_overlay->mOverlayWidth+15)&~15;
752 output_overlay->mpOverlayBuffer.base = (byte*)xy_malloc(2 * output_overlay->mOverlayPitch * output_overlay->mOverlayHeight);
753 memset(output_overlay->mpOverlayBuffer.base, 0, 2 * output_overlay->mOverlayPitch * output_overlay->mOverlayHeight);
754 output_overlay->mpOverlayBuffer.body = output_overlay->mpOverlayBuffer.base;
755 output_overlay->mpOverlayBuffer.border = output_overlay->mpOverlayBuffer.base + output_overlay->mOverlayPitch * output_overlay->mOverlayHeight;
757 //copy buffer
758 for(int i = 1; i >= 0; i--)
760 byte* plan_selected = i==0 ? output_overlay->mpOverlayBuffer.body : output_overlay->mpOverlayBuffer.border;
761 const byte* plan_input = i==0 ? input_overlay.mpOverlayBuffer.body : input_overlay.mpOverlayBuffer.border;
763 plan_selected += (bluradjust>>3) + (bluradjust>>3)*output_overlay->mOverlayPitch;
764 for (int j=0;j<input_overlay.mOverlayHeight;j++)
766 memcpy(plan_selected, plan_input, input_overlay.mOverlayPitch);
767 plan_selected += output_overlay->mOverlayPitch;
768 plan_input += input_overlay.mOverlayPitch;
772 ass_tmp_buf tmp_buf( max((output_overlay->mOverlayPitch+1)*(output_overlay->mOverlayHeight+1),0) );
773 //flyweight<key_value<int, ass_tmp_buf, ass_tmp_buf_get_size>, no_locking> tmp_buf((overlay->mOverlayWidth+1)*(overlay->mOverlayPitch+1));
774 // Do some gaussian blur magic
775 if (fGaussianBlur > 0.1)//(fGaussianBlur > 0) return true even if fGaussianBlur very small
777 byte* plan_selected= output_overlay->mfWideOutlineEmpty ? output_overlay->mpOverlayBuffer.body : output_overlay->mpOverlayBuffer.border;
778 flyweight<key_value<double, ass_synth_priv, ass_synth_priv_key>, no_locking> fw_priv_blur(fGaussianBlur);
779 const ass_synth_priv& priv_blur = fw_priv_blur.get();
780 if (output_overlay->mOverlayWidth>=priv_blur.g_w && output_overlay->mOverlayHeight>=priv_blur.g_w)
782 ass_gauss_blur(plan_selected, tmp_buf.tmp, output_overlay->mOverlayWidth, output_overlay->mOverlayHeight, output_overlay->mOverlayPitch,
783 priv_blur.gt2, priv_blur.g_r, priv_blur.g_w);
787 for (int pass = 0; pass < fBlur; pass++)
789 if(output_overlay->mOverlayWidth >= 3 && output_overlay->mOverlayHeight >= 3)
791 int pitch = output_overlay->mOverlayPitch;
792 byte* plan_selected= output_overlay->mfWideOutlineEmpty ? output_overlay->mpOverlayBuffer.body : output_overlay->mpOverlayBuffer.border;
793 be_blur(plan_selected, tmp_buf.tmp, output_overlay->mOverlayWidth, output_overlay->mOverlayHeight, pitch);
796 return true;
799 ///////////////////////////////////////////////////////////////////////////
801 static __forceinline void pixmix(DWORD *dst, DWORD color, DWORD alpha)
803 int a = alpha;
804 // Make sure both a and ia are in range 1..256 for the >>8 operations below to be correct
805 int ia = 256-a;
806 a+=1;
807 *dst = ((((*dst&0x00ff00ff)*ia + (color&0x00ff00ff)*a)&0xff00ff00)>>8)
808 | ((((*dst&0x0000ff00)*ia + (color&0x0000ff00)*a)&0x00ff0000)>>8)
809 | ((((*dst>>8)&0x00ff0000)*ia)&0xff000000);
812 static __forceinline void pixmix2(DWORD *dst, DWORD color, DWORD shapealpha, DWORD clipalpha)
814 int a = (((shapealpha)*(clipalpha)*(color>>24))>>12)&0xff;
815 int ia = 256-a;
816 a+=1;
817 *dst = ((((*dst&0x00ff00ff)*ia + (color&0x00ff00ff)*a)&0xff00ff00)>>8)
818 | ((((*dst&0x0000ff00)*ia + (color&0x0000ff00)*a)&0x00ff0000)>>8)
819 | ((((*dst>>8)&0x00ff0000)*ia)&0xff000000);
822 #include <xmmintrin.h>
823 #include <emmintrin.h>
825 static __forceinline void pixmix_sse2(DWORD* dst, DWORD color, DWORD alpha)
827 // alpha = (((alpha) * (color>>24)) >> 6) & 0xff;
828 color &= 0xffffff;
829 __m128i zero = _mm_setzero_si128();
830 __m128i a = _mm_set1_epi32(((alpha+1) << 16) | (0x100 - alpha));
831 __m128i d = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*dst), zero);
832 __m128i s = _mm_unpacklo_epi8(_mm_cvtsi32_si128(color), zero);
833 __m128i r = _mm_unpacklo_epi16(d, s);
834 r = _mm_madd_epi16(r, a);
835 r = _mm_srli_epi32(r, 8);
836 r = _mm_packs_epi32(r, r);
837 r = _mm_packus_epi16(r, r);
838 *dst = (DWORD)_mm_cvtsi128_si32(r);
841 static __forceinline void pixmix2_sse2(DWORD* dst, DWORD color, DWORD shapealpha, DWORD clipalpha)
843 int alpha = (((shapealpha)*(clipalpha)*(color>>24))>>12)&0xff;
844 color &= 0xffffff;
845 __m128i zero = _mm_setzero_si128();
846 __m128i a = _mm_set1_epi32(((alpha+1) << 16) | (0x100 - alpha));
847 __m128i d = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*dst), zero);
848 __m128i s = _mm_unpacklo_epi8(_mm_cvtsi32_si128(color), zero);
849 __m128i r = _mm_unpacklo_epi16(d, s);
850 r = _mm_madd_epi16(r, a);
851 r = _mm_srli_epi32(r, 8);
852 r = _mm_packs_epi32(r, r);
853 r = _mm_packus_epi16(r, r);
854 *dst = (DWORD)_mm_cvtsi128_si32(r);
857 #include <mmintrin.h>
859 // Calculate a - b clamping to 0 instead of underflowing
860 static __forceinline DWORD safe_subtract(DWORD a, DWORD b)
862 __m64 ap = _mm_cvtsi32_si64(a);
863 __m64 bp = _mm_cvtsi32_si64(b);
864 __m64 rp = _mm_subs_pu16(ap, bp);
865 DWORD r = (DWORD)_mm_cvtsi64_si32(rp);
866 _mm_empty();
867 return r;
868 //return (b > a) ? 0 : a - b;
871 /***
872 * No aligned requirement
875 void AlphaBlt(byte* pY,
876 const byte* pAlphaMask,
877 const byte Y,
878 int h, int w, int src_stride, int dst_stride)
880 __m128i zero = _mm_setzero_si128();
881 __m128i s = _mm_set1_epi16(Y); //s = c 0 c 0 c 0 c 0 c 0 c 0 c 0 c 0
883 if( w>16 )//IMPORTANT! The result of the following code is undefined with w<15.
885 for( ; h>0; h--, pAlphaMask += src_stride, pY += dst_stride )
887 const BYTE* sa = pAlphaMask;
888 BYTE* dy = pY;
889 const BYTE* dy_first_mod16 = reinterpret_cast<BYTE*>((reinterpret_cast<int>(pY)+15)&~15); //IMPORTANT! w must >= 15
890 const BYTE* dy_end_mod16 = reinterpret_cast<BYTE*>(reinterpret_cast<int>(pY+w)&~15);
891 const BYTE* dy_end = pY + w;
893 for(;dy < dy_first_mod16; sa++, dy++)
895 *dy = (*dy * (256 - *sa)+ Y*(*sa+1))>>8;
897 for(; dy < dy_end_mod16; sa+=8, dy+=16)
899 __m128i a = _mm_loadl_epi64((__m128i*)sa);
902 __m128i d = _mm_load_si128((__m128i*)dy);
904 //__m128i ones = _mm_cmpeq_epi32(zero,zero); //ones = ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
905 //__m128i ia = _mm_xor_si128(a,ones); //ia = ~a
906 //ia = _mm_unpacklo_epi8(ia,zero); //ia = ~a0 0 ~a1 0 ~a2 0 ~a3 0 ~a4 0 ~a5 0 ~a6 0 ~a7 0
907 a = _mm_unpacklo_epi8(a,zero); //a= a0 0 a1 0 a2 0 a3 0 a4 0 a5 0 a6 0 a7 0
908 __m128i ones = _mm_set1_epi16(256); //ones = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
909 __m128i ia = _mm_sub_epi16(ones, a); //ia = 256-a0 ... 256-a7
910 ones = _mm_srli_epi16(ones, 8);
911 a = _mm_add_epi16(a, ones); //a= 1+a0 ... 1+a7
913 __m128i dl = _mm_unpacklo_epi8(d,zero); //d = b0 0 b1 0 b2 0 b3 0 b4 0 b5 0 b6 0 b7 0
914 __m128i sl = _mm_mullo_epi16(s,a); //sl = c0*a0 c1*a1 ... c7*a7
916 dl = _mm_mullo_epi16(dl,ia); //d = b0*~a0 b1*~a1 ... b7*~a7
918 dl = _mm_add_epi16(dl,sl); //d = d + sl
919 dl = _mm_srli_epi16(dl, 8); //d = d>>8
921 sa += 8;
922 a = _mm_loadl_epi64((__m128i*)sa);
924 a = _mm_unpacklo_epi8(a,zero);
925 ones = _mm_slli_epi16(ones, 8);
926 ia = _mm_sub_epi16(ones, a);
927 ones = _mm_srli_epi16(ones, 8);
928 a = _mm_add_epi16(a,ones);
930 d = _mm_unpackhi_epi8(d,zero);
931 sl = _mm_mullo_epi16(s,a);
932 d = _mm_mullo_epi16(d,ia);
933 d = _mm_add_epi16(d,sl);
934 d = _mm_srli_epi16(d, 8);
936 dl = _mm_packus_epi16(dl,d);
938 _mm_store_si128((__m128i*)dy, dl);
940 for(;dy < dy_end; sa++, dy++)
942 *dy = (*dy * (256 - *sa)+ Y*(*sa+1))>>8;
946 else
948 for( ; h>0; h--, pAlphaMask += src_stride, pY += dst_stride )
950 const BYTE* sa = pAlphaMask;
951 BYTE* dy = pY;
952 const BYTE* dy_end = pY + w;
954 for(;dy < dy_end; sa++, dy++)
956 *dy = (*dy * (256 - *sa)+ Y*(*sa+1))>>8;
960 //__asm emms;
963 /***
964 * No aligned requirement
967 void AlphaBlt(byte* pY,
968 const byte alpha,
969 const byte Y,
970 int h, int w, int dst_stride)
972 int yPremul = Y*(alpha+1);
973 int dstAlpha = 0x100 - alpha;
974 if( w>32 )//IMPORTANT! The result of the following code is undefined with w<15.
976 __m128i zero = _mm_setzero_si128();
977 __m128i s = _mm_set1_epi16(yPremul); //s = c 0 c 0 c 0 c 0 c 0 c 0 c 0 c 0
978 __m128i ia = _mm_set1_epi16(dstAlpha);
979 for( ; h>0; h--, pY += dst_stride )
981 BYTE* dy = pY;
982 const BYTE* dy_first_mod16 = reinterpret_cast<BYTE*>((reinterpret_cast<int>(pY)+15)&~15); //IMPORTANT! w must >= 15
983 const BYTE* dy_end_mod16 = reinterpret_cast<BYTE*>(reinterpret_cast<int>(pY+w)&~15);
984 const BYTE* dy_end = pY + w;
986 for(;dy < dy_first_mod16; dy++)
988 *dy = (*dy * dstAlpha + yPremul)>>8;
990 for(; dy < dy_end_mod16; dy+=16)
993 __m128i d = _mm_load_si128(reinterpret_cast<const __m128i*>(dy));
994 __m128i dl = _mm_unpacklo_epi8(d,zero); //d = b0 0 b1 0 b2 0 b3 0 b4 0 b5 0 b6 0 b7 0
996 dl = _mm_mullo_epi16(dl,ia); //d = b0*~a0 b1*~a1 ... b7*~a7
997 dl = _mm_adds_epu16(dl,s); //d = d + s
998 dl = _mm_srli_epi16(dl, 8); //d = d>>8
1000 d = _mm_unpackhi_epi8(d,zero);
1001 d = _mm_mullo_epi16(d,ia);
1002 d = _mm_adds_epu16(d,s);
1003 d = _mm_srli_epi16(d, 8);
1005 dl = _mm_packus_epi16(dl,d);
1007 _mm_store_si128(reinterpret_cast<__m128i*>(dy), dl);
1009 for(;dy < dy_end; dy++)
1011 *dy = (*dy * dstAlpha + yPremul)>>8;
1015 else
1017 for( ; h>0; h--, pY += dst_stride )
1019 BYTE* dy = pY;
1020 const BYTE* dy_end = pY + w;
1022 for(;dy < dy_end; dy++)
1024 *dy = (*dy * dstAlpha + yPremul)>>8;
1028 //__asm emms;
1031 /***
1032 * No aligned requirement
1035 void AlphaBltC(byte* pY,
1036 const byte alpha,
1037 const byte Y,
1038 int h, int w, int dst_stride)
1040 int yPremul = Y*(alpha+1);
1041 int dstAlpha = 0x100 - alpha;
1043 for( ; h>0; h--, pY += dst_stride )
1045 BYTE* dy = pY;
1046 const BYTE* dy_end = pY + w;
1048 for(;dy < dy_end; dy++)
1050 *dy = (*dy * dstAlpha + yPremul)>>8;
1055 // For CPUID usage in Rasterizer::Draw
1056 #include "../dsutil/vd.h"
1058 static const __int64 _00ff00ff00ff00ff = 0x00ff00ff00ff00ffi64;
1060 // Render a subpicture onto a surface.
1061 // spd is the surface to render on.
1062 // clipRect is a rectangular clip region to render inside.
1063 // pAlphaMask is an alpha clipping mask.
1064 // xsub and ysub ???
1065 // switchpts seems to be an array of fill colours interlaced with coordinates.
1066 // switchpts[i*2] contains a colour and switchpts[i*2+1] contains the coordinate to use that colour from
1067 // fBody tells whether to render the body of the subs.
1068 // fBorder tells whether to render the border of the subs.
1069 SharedPtrByte Rasterizer::CompositeAlphaMask(SubPicDesc& spd, SharedPtrOverlay overlay, const CRect& clipRect, byte* pAlphaMask,
1070 int xsub, int ysub, const DWORD* switchpts, bool fBody, bool fBorder,
1071 CRect *outputDirtyRect)
1073 //fix me: check and log error
1074 SharedPtrByte result;
1075 *outputDirtyRect = CRect(0, 0, 0, 0);
1076 if(!switchpts || !fBody && !fBorder) return(result);
1078 // clip
1079 // Limit drawn area to intersection of rendering surface and rectangular clip area
1080 CRect r(0, 0, spd.w, spd.h);
1081 r &= clipRect;
1082 // Remember that all subtitle coordinates are specified in 1/8 pixels
1083 // (x+4)>>3 rounds to nearest whole pixel.
1084 // ??? What is xsub, ysub, mOffsetX and mOffsetY ?
1085 int x = (xsub + overlay->mOffsetX + 4)>>3;
1086 int y = (ysub + overlay->mOffsetY + 4)>>3;
1087 int w = overlay->mOverlayWidth;
1088 int h = overlay->mOverlayHeight;
1089 int xo = 0, yo = 0;
1090 // Again, limiting?
1091 if(x < r.left) {xo = r.left-x; w -= r.left-x; x = r.left;}
1092 if(y < r.top) {yo = r.top-y; h -= r.top-y; y = r.top;}
1093 if(x+w > r.right) w = r.right-x;
1094 if(y+h > r.bottom) h = r.bottom-y;
1095 // Check if there's actually anything to render
1096 if(w <= 0 || h <= 0) return(result);
1097 outputDirtyRect->SetRect(x, y, x+w, y+h);
1098 *outputDirtyRect &= CRect(0, 0, spd.w, spd.h);
1100 bool fSingleColor = (switchpts[1]==0xffffffff);
1102 // draw
1103 // Grab the first colour
1104 DWORD color = switchpts[0];
1105 byte* s_base = (byte*)xy_malloc(overlay->mOverlayPitch * overlay->mOverlayHeight);
1107 if(fSingleColor)
1109 overlay->FillAlphaMash(s_base, fBody, fBorder, xo, yo, w, h,
1110 pAlphaMask==NULL ? NULL : pAlphaMask + spd.w * y + x, spd.w,
1111 color>>24 );
1113 else
1115 int last_x = xo;
1116 const DWORD *sw = switchpts;
1117 while( last_x<w+xo )
1119 byte alpha = sw[0]>>24;
1120 while( sw[3]<w+xo && (sw[2]>>24)==alpha )
1122 sw += 2;
1124 int new_x = sw[3] < w+xo ? sw[3] : w+xo;
1125 overlay->FillAlphaMash(s_base, fBody, fBorder,
1126 last_x, yo, new_x-last_x, h,
1127 pAlphaMask==NULL ? NULL : pAlphaMask + spd.w * y + x + last_x - xo, spd.w,
1128 alpha );
1129 last_x = new_x;
1130 sw += 2;
1133 result.reset( s_base, xy_free );
1134 return result;
1137 CRect Rasterizer::Draw(SubPicDesc& spd, SharedPtrOverlay overlay, const CRect& clipRect, byte* pAlphaMask,
1138 int xsub, int ysub, const DWORD* switchpts, bool fBody, bool fBorder)
1140 CRect bbox(0,0,0,0);
1141 if(!switchpts || !fBody && !fBorder) return(bbox);
1143 // clip
1144 // Limit drawn area to intersection of rendering surface and rectangular clip area
1145 CRect r(0, 0, spd.w, spd.h);
1146 r &= clipRect;
1147 // Remember that all subtitle coordinates are specified in 1/8 pixels
1148 // (x+4)>>3 rounds to nearest whole pixel.
1149 // ??? What is xsub, ysub, mOffsetX and mOffsetY ?
1150 int overlayPitch = overlay->mOverlayPitch;
1151 int x = (xsub + overlay->mOffsetX + 4)>>3;
1152 int y = (ysub + overlay->mOffsetY + 4)>>3;
1153 int w = overlay->mOverlayWidth;
1154 int h = overlay->mOverlayHeight;
1155 int xo = 0, yo = 0;
1156 // Again, limiting?
1157 if(x < r.left) {xo = r.left-x; w -= r.left-x; x = r.left;}
1158 if(y < r.top) {yo = r.top-y; h -= r.top-y; y = r.top;}
1159 if(x+w > r.right) w = r.right-x;
1160 if(y+h > r.bottom) h = r.bottom-y;
1161 // Check if there's actually anything to render
1162 if(w <= 0 || h <= 0) return(bbox);
1164 // CPUID from VDub
1165 bool fSSE2 = !!(g_cpuid.m_flags & CCpuID::sse2);
1166 bool fSingleColor = (switchpts[1]==0xffffffff);
1167 bool AYUV_PLANAR = (spd.type==MSP_AYUV_PLANAR);
1168 int draw_method = 0;
1169 if(fSingleColor)
1170 draw_method |= DM::SINGLE_COLOR;
1171 if(fSSE2)
1172 draw_method |= DM::SSE2;
1173 if(AYUV_PLANAR)
1174 draw_method |= DM::AYUV_PLANAR;
1176 // draw
1177 // Grab the first colour
1178 DWORD color = switchpts[0];
1179 SharedPtrByte s_base = CompositeAlphaMask(spd, overlay, clipRect, pAlphaMask, xsub, ysub, switchpts,
1180 fBody, fBorder, &bbox);
1181 const byte* s = s_base.get() + overlay->mOverlayPitch*yo + xo;
1183 // How would this differ from src?
1184 unsigned long* dst = (unsigned long *)(((char *)spd.bits + spd.pitch * y) + ((x*spd.bpp)>>3));
1186 // Every remaining line in the bitmap to be rendered...
1187 switch(draw_method)
1189 case DM::SINGLE_COLOR | DM::SSE2 | 0*DM::AYUV_PLANAR :
1191 while(h--)
1193 for(int wt=0; wt<w; ++wt)
1194 // The <<6 is due to pixmix expecting the alpha parameter to be
1195 // the multiplication of two 6-bit unsigned numbers but we
1196 // only have one here. (No alpha mask.)
1197 pixmix_sse2(&dst[wt], color, s[wt]);
1198 s += overlayPitch;
1199 dst = (unsigned long *)((char *)dst + spd.pitch);
1202 break;
1203 case DM::SINGLE_COLOR | 0*DM::SSE2 | 0*DM::AYUV_PLANAR :
1205 while(h--)
1207 for(int wt=0; wt<w; ++wt)
1208 pixmix(&dst[wt], color, s[wt]);
1209 s += overlayPitch;
1210 dst = (unsigned long *)((char *)dst + spd.pitch);
1213 break;
1214 case 0*DM::SINGLE_COLOR | DM::SSE2 | 0*DM::AYUV_PLANAR :
1216 while(h--)
1218 const DWORD *sw = switchpts;
1219 for(int wt=0; wt<w; ++wt)
1221 // xo is the offset (usually negative) we have moved into the image
1222 // So if we have passed the switchpoint (?) switch to another colour
1223 // (So switchpts stores both colours *and* coordinates?)
1224 if(wt+xo >= sw[1]) {while(wt+xo >= sw[1]) sw += 2; color = sw[-2];}
1225 pixmix_sse2(&dst[wt], color, s[wt]);
1227 s += overlayPitch;
1228 dst = (unsigned long *)((char *)dst + spd.pitch);
1231 break;
1232 case 0*DM::SINGLE_COLOR | 0*DM::SSE2 | 0*DM::AYUV_PLANAR :
1234 while(h--)
1236 const DWORD *sw = switchpts;
1237 for(int wt=0; wt<w; ++wt)
1239 if(wt+xo >= sw[1]) {while(wt+xo >= sw[1]) sw += 2; color = sw[-2];}
1240 pixmix(&dst[wt], color, s[wt]);
1242 s += overlayPitch;
1243 dst = (unsigned long *)((char *)dst + spd.pitch);
1246 break;
1247 case DM::SINGLE_COLOR | DM::SSE2 | DM::AYUV_PLANAR :
1249 unsigned char* dst_A = (unsigned char*)dst;
1250 unsigned char* dst_Y = dst_A + spd.pitch*spd.h;
1251 unsigned char* dst_U = dst_Y + spd.pitch*spd.h;
1252 unsigned char* dst_V = dst_U + spd.pitch*spd.h;
1254 AlphaBlt(dst_Y, s, ((color)>>16)&0xff, h, w, overlayPitch, spd.pitch);
1255 AlphaBlt(dst_U, s, ((color)>>8)&0xff, h, w, overlayPitch, spd.pitch);
1256 AlphaBlt(dst_V, s, ((color))&0xff, h, w, overlayPitch, spd.pitch);
1257 AlphaBlt(dst_A, s, 0, h, w, overlayPitch, spd.pitch);
1259 break;
1260 case 0*DM::SINGLE_COLOR | DM::SSE2 | DM::AYUV_PLANAR :
1262 unsigned char* dst_A = (unsigned char*)dst;
1263 unsigned char* dst_Y = dst_A + spd.pitch*spd.h;
1264 unsigned char* dst_U = dst_Y + spd.pitch*spd.h;
1265 unsigned char* dst_V = dst_U + spd.pitch*spd.h;
1267 const DWORD *sw = switchpts;
1268 int last_x = xo;
1269 color = sw[0];
1270 while(last_x<w+xo)
1272 int new_x = sw[3] < w+xo ? sw[3] : w+xo;
1273 color = sw[0];
1274 sw += 2;
1275 AlphaBlt(dst_Y, s + last_x - xo, (color>>16)&0xff, h, new_x-last_x, overlayPitch, spd.pitch);
1276 AlphaBlt(dst_U, s + last_x - xo, (color>>8)&0xff, h, new_x-last_x, overlayPitch, spd.pitch);
1277 AlphaBlt(dst_V, s + last_x - xo, (color)&0xff, h, new_x-last_x, overlayPitch, spd.pitch);
1278 AlphaBlt(dst_A, s + last_x - xo, 0, h, new_x-last_x, overlayPitch, spd.pitch);
1280 dst_A += new_x - last_x;
1281 dst_Y += new_x - last_x;
1282 dst_U += new_x - last_x;
1283 dst_V += new_x - last_x;
1284 last_x = new_x;
1287 break;
1288 case DM::SINGLE_COLOR | 0*DM::SSE2 | DM::AYUV_PLANAR :
1290 // char * debug_dst=(char*)dst;int h2 = h;
1291 // XY_DO_ONCE( xy_logger::write_file("G:\\b2_rt", (char*)&color, sizeof(color)) );
1292 // XY_DO_ONCE( xy_logger::write_file("G:\\b2_rt", debug_dst, (h2-1)*spd.pitch) );
1293 // debug_dst += spd.pitch*spd.h;
1294 // XY_DO_ONCE( xy_logger::write_file("G:\\b2_rt", debug_dst, (h2-1)*spd.pitch) );
1295 // debug_dst += spd.pitch*spd.h;
1296 // XY_DO_ONCE( xy_logger::write_file("G:\\b2_rt", debug_dst, (h2-1)*spd.pitch) );
1297 // debug_dst += spd.pitch*spd.h;
1298 // XY_DO_ONCE( xy_logger::write_file("G:\\b2_rt", debug_dst, (h2-1)*spd.pitch) );
1299 // debug_dst=(char*)dst;
1301 unsigned char* dst_A = (unsigned char*)dst;
1302 unsigned char* dst_Y = dst_A + spd.pitch*spd.h;
1303 unsigned char* dst_U = dst_Y + spd.pitch*spd.h;
1304 unsigned char* dst_V = dst_U + spd.pitch*spd.h;
1305 while(h--)
1307 for(int wt=0; wt<w; ++wt)
1309 DWORD temp = COMBINE_AYUV(dst_A[wt], dst_Y[wt], dst_U[wt], dst_V[wt]);
1310 pixmix(&temp, color, s[wt]);
1311 SPLIT_AYUV(temp, dst_A+wt, dst_Y+wt, dst_U+wt, dst_V+wt);
1313 s += overlayPitch;
1314 dst_A += spd.pitch;
1315 dst_Y += spd.pitch;
1316 dst_U += spd.pitch;
1317 dst_V += spd.pitch;
1319 // XY_DO_ONCE( xy_logger::write_file("G:\\a2_rt", debug_dst, (h2-1)*spd.pitch) );
1320 // debug_dst += spd.pitch*spd.h;
1321 // XY_DO_ONCE( xy_logger::write_file("G:\\a2_rt", debug_dst, (h2-1)*spd.pitch) );
1322 // debug_dst += spd.pitch*spd.h;
1323 // XY_DO_ONCE( xy_logger::write_file("G:\\a2_rt", debug_dst, (h2-1)*spd.pitch) );
1324 // debug_dst += spd.pitch*spd.h;
1325 // XY_DO_ONCE( xy_logger::write_file("G:\\a2_rt", debug_dst, (h2-1)*spd.pitch) );
1327 break;
1328 case 0*DM::SINGLE_COLOR | 0*DM::SSE2 | DM::AYUV_PLANAR :
1330 unsigned char* dst_A = (unsigned char*)dst;
1331 unsigned char* dst_Y = dst_A + spd.pitch*spd.h;
1332 unsigned char* dst_U = dst_Y + spd.pitch*spd.h;
1333 unsigned char* dst_V = dst_U + spd.pitch*spd.h;
1334 while(h--)
1336 const DWORD *sw = switchpts;
1337 for(int wt=0; wt<w; ++wt)
1339 if(wt+xo >= sw[1]) {while(wt+xo >= sw[1]) sw += 2; color = sw[-2];}
1340 DWORD temp = COMBINE_AYUV(dst_A[wt], dst_Y[wt], dst_U[wt], dst_V[wt]);
1341 pixmix(&temp, color, (s[wt]*(color>>24))>>8);
1342 SPLIT_AYUV(temp, dst_A+wt, dst_Y+wt, dst_U+wt, dst_V+wt);
1344 s += overlayPitch;
1345 dst_A += spd.pitch;
1346 dst_Y += spd.pitch;
1347 dst_U += spd.pitch;
1348 dst_V += spd.pitch;
1351 break;
1353 // Remember to EMMS!
1354 // Rendering fails in funny ways if we don't do this.
1355 _mm_empty();
1356 return bbox;
1359 CRect Rasterizer::Draw( SubPicDesc& spd, DrawItem& draw_item )
1361 return Draw(spd, draw_item.overlay, draw_item.clip_rect, draw_item.alpha_mask.get(),
1362 draw_item.xsub, draw_item.ysub, draw_item.switchpts, draw_item.fBody, draw_item.fBorder);
1365 DrawItem* Rasterizer::CreateDrawItem( SubPicDesc& spd, SharedPtrOverlay overlay, const CRect& clipRect, SharedArrayByte pAlphaMask, int xsub, int ysub, const DWORD* switchpts, bool fBody, bool fBorder )
1367 DrawItem* result = new DrawItem();
1368 result->overlay = overlay;
1369 result->clip_rect = clipRect;
1370 result->alpha_mask = pAlphaMask;
1371 result->xsub = xsub;
1372 result->ysub = ysub;
1374 memcpy(result->switchpts, switchpts, sizeof(result->switchpts));
1375 result->fBody = fBody;
1376 result->fBorder = fBorder;
1377 return result;
1380 CRect Rasterizer::DryDraw( SubPicDesc& spd, SharedPtrOverlay overlay, const CRect& clipRect, byte* pAlphaMask, int xsub, int ysub, const DWORD* switchpts, bool fBody, bool fBorder )
1382 CRect bbox(0, 0, 0, 0);
1383 if(!switchpts || !fBody && !fBorder) return(bbox);
1385 // clip
1386 // Limit drawn area to intersection of rendering surface and rectangular clip area
1387 CRect r(0, 0, spd.w, spd.h);
1388 r &= clipRect;
1389 // Remember that all subtitle coordinates are specified in 1/8 pixels
1390 // (x+4)>>3 rounds to nearest whole pixel.
1391 // ??? What is xsub, ysub, mOffsetX and mOffsetY ?
1392 int overlayPitch = overlay->mOverlayPitch;
1393 int x = (xsub + overlay->mOffsetX + 4)>>3;
1394 int y = (ysub + overlay->mOffsetY + 4)>>3;
1395 int w = overlay->mOverlayWidth;
1396 int h = overlay->mOverlayHeight;
1397 int xo = 0, yo = 0;
1398 // Again, limiting?
1399 if(x < r.left) {xo = r.left-x; w -= r.left-x; x = r.left;}
1400 if(y < r.top) {yo = r.top-y; h -= r.top-y; y = r.top;}
1401 if(x+w > r.right) w = r.right-x;
1402 if(y+h > r.bottom) h = r.bottom-y;
1403 // Check if there's actually anything to render
1404 if(w <= 0 || h <= 0) return(bbox);
1405 bbox.SetRect(x, y, x+w, y+h);
1406 bbox &= CRect(0, 0, spd.w, spd.h);
1408 return bbox;
1411 CRect Rasterizer::DryDraw( SubPicDesc& spd, DrawItem& draw_item )
1413 return DryDraw(spd, draw_item.overlay, draw_item.clip_rect, draw_item.alpha_mask.get(),
1414 draw_item.xsub, draw_item.ysub, draw_item.switchpts, draw_item.fBody, draw_item.fBorder);
1417 void Rasterizer::FillSolidRect(SubPicDesc& spd, int x, int y, int nWidth, int nHeight, DWORD argb)
1419 bool fSSE2 = !!(g_cpuid.m_flags & CCpuID::sse2);
1420 bool AYUV_PLANAR = (spd.type==MSP_AYUV_PLANAR);
1421 int draw_method = 0;
1422 if(fSSE2)
1423 draw_method |= DM::SSE2;
1424 if(AYUV_PLANAR)
1425 draw_method |= DM::AYUV_PLANAR;
1427 switch (draw_method)
1429 case DM::SSE2 | 0*DM::AYUV_PLANAR :
1431 for (int wy=y; wy<y+nHeight; wy++) {
1432 DWORD* dst = (DWORD*)((BYTE*)spd.bits + spd.pitch * wy) + x;
1433 for(int wt=0; wt<nWidth; ++wt) {
1434 pixmix_sse2(&dst[wt], argb, argb>>24);
1438 break;
1439 case 0*DM::SSE2 | 0*DM::AYUV_PLANAR :
1441 for (int wy=y; wy<y+nHeight; wy++) {
1442 DWORD* dst = (DWORD*)((BYTE*)spd.bits + spd.pitch * wy) + x;
1443 for(int wt=0; wt<nWidth; ++wt) {
1444 pixmix(&dst[wt], argb, argb>>24);
1448 break;
1449 case DM::SSE2 | DM::AYUV_PLANAR :
1451 BYTE* dst = reinterpret_cast<BYTE*>(spd.bits) + spd.pitch * y + x;
1452 BYTE* dst_A = dst;
1453 BYTE* dst_Y = dst_A + spd.pitch*spd.h;
1454 BYTE* dst_U = dst_Y + spd.pitch*spd.h;
1455 BYTE* dst_V = dst_U + spd.pitch*spd.h;
1456 AlphaBlt(dst_Y, argb>>24, ((argb)>>16)&0xff, nHeight, nWidth, spd.pitch);
1457 AlphaBlt(dst_U, argb>>24, ((argb)>>8)&0xff, nHeight, nWidth, spd.pitch);
1458 AlphaBlt(dst_V, argb>>24, ((argb))&0xff, nHeight, nWidth, spd.pitch);
1459 AlphaBlt(dst_A, argb>>24, 0, nHeight, nWidth, spd.pitch);
1461 break;
1462 case 0*DM::SSE2 | DM::AYUV_PLANAR :
1464 BYTE* dst = reinterpret_cast<BYTE*>(spd.bits) + spd.pitch * y + x;
1465 BYTE* dst_A = dst;
1466 BYTE* dst_Y = dst_A + spd.pitch*spd.h;
1467 BYTE* dst_U = dst_Y + spd.pitch*spd.h;
1468 BYTE* dst_V = dst_U + spd.pitch*spd.h;
1469 AlphaBltC(dst_Y, argb>>24, ((argb)>>16)&0xff, nHeight, nWidth, spd.pitch);
1470 AlphaBltC(dst_U, argb>>24, ((argb)>>8)&0xff, nHeight, nWidth, spd.pitch);
1471 AlphaBltC(dst_V, argb>>24, ((argb))&0xff, nHeight, nWidth, spd.pitch);
1472 AlphaBltC(dst_A, argb>>24, 0, nHeight, nWidth, spd.pitch);
1474 break;
1476 _mm_empty();
1479 ///////////////////////////////////////////////////////////////
1481 // Overlay
1483 void Overlay::_DoFillAlphaMash(byte* outputAlphaMask, const byte* pBody, const byte* pBorder, int x, int y, int w, int h, const byte* pAlphaMask, int pitch, DWORD color_alpha )
1485 pBody = pBody!=NULL ? pBody + y*mOverlayPitch + x: NULL;
1486 pBorder = pBorder!=NULL ? pBorder + y*mOverlayPitch + x: NULL;
1487 byte* dst = outputAlphaMask + y*mOverlayPitch + x;
1489 const int x0 = ((reinterpret_cast<int>(dst)+3)&~3) - reinterpret_cast<int>(dst) < w ?
1490 ((reinterpret_cast<int>(dst)+3)&~3) - reinterpret_cast<int>(dst) : w; //IMPORTANT! Should not exceed w.
1491 const int x00 = ((reinterpret_cast<int>(dst)+15)&~15) - reinterpret_cast<int>(dst) < w ?
1492 ((reinterpret_cast<int>(dst)+15)&~15) - reinterpret_cast<int>(dst) : w;//IMPORTANT! Should not exceed w.
1493 const int x_end00 = ((reinterpret_cast<int>(dst)+w)&~15) - reinterpret_cast<int>(dst);
1494 const int x_end0 = ((reinterpret_cast<int>(dst)+w)&~3) - reinterpret_cast<int>(dst);
1495 const int x_end = w;
1497 __m64 color_alpha_64 = _mm_set1_pi16(color_alpha);
1498 __m128i color_alpha_128 = _mm_set1_epi16(color_alpha);
1500 if(pAlphaMask==NULL && pBody!=NULL && pBorder!=NULL)
1503 __asm
1505 mov eax, color_alpha
1506 movd XMM3, eax
1507 punpcklwd XMM3, XMM3
1508 pshufd XMM3, XMM3, 0
1511 while(h--)
1513 int j=0;
1514 for( ; j<x0; j++ )
1516 int temp = pBorder[j]-pBody[j];
1517 temp = temp<0 ? 0 : temp;
1518 dst[j] = (temp * color_alpha)>>6;
1520 for( ;j<x00;j+=4 )
1522 __m64 border = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pBorder+j));
1523 __m64 body = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pBody+j));
1524 border = _mm_subs_pu8(border, body);
1525 __m64 zero = _mm_setzero_si64();
1526 border = _mm_unpacklo_pi8(border, zero);
1527 border = _mm_mullo_pi16(border, color_alpha_64);
1528 border = _mm_srli_pi16(border, 6);
1529 border = _mm_packs_pu16(border,border);
1530 *reinterpret_cast<int*>(dst+j) = _mm_cvtsi64_si32(border);
1532 __m128i zero = _mm_setzero_si128();
1533 for( ;j<x_end00;j+=16)
1535 __m128i border = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pBorder+j));
1536 __m128i body = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pBody+j));
1537 border = _mm_subs_epu8(border,body);
1538 __m128i srchi = border;
1539 border = _mm_unpacklo_epi8(border, zero);
1540 srchi = _mm_unpackhi_epi8(srchi, zero);
1541 border = _mm_mullo_epi16(border, color_alpha_128);
1542 srchi = _mm_mullo_epi16(srchi, color_alpha_128);
1543 border = _mm_srli_epi16(border, 6);
1544 srchi = _mm_srli_epi16(srchi, 6);
1545 border = _mm_packus_epi16(border, srchi);
1546 _mm_storeu_si128(reinterpret_cast<__m128i*>(dst+j), border);
1548 for( ;j<x_end0;j+=4)
1550 __m64 border = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pBorder+j));
1551 __m64 body = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pBody+j));
1552 border = _mm_subs_pu8(border, body);
1553 __m64 zero = _mm_setzero_si64();
1554 border = _mm_unpacklo_pi8(border, zero);
1555 border = _mm_mullo_pi16(border, color_alpha_64);
1556 border = _mm_srli_pi16(border, 6);
1557 border = _mm_packs_pu16(border,border);
1558 *reinterpret_cast<int*>(dst+j) = _mm_cvtsi64_si32(border);
1560 for( ;j<x_end;j++)
1562 int temp = pBorder[j]-pBody[j];
1563 temp = temp<0 ? 0 : temp;
1564 dst[j] = (temp * color_alpha)>>6;
1566 pBody += mOverlayPitch;
1567 pBorder += mOverlayPitch;
1568 //pAlphaMask += pitch;
1569 dst += mOverlayPitch;
1572 else if( ((pBody==NULL) + (pBorder==NULL))==1 && pAlphaMask==NULL)
1574 const BYTE* src1 = pBody!=NULL ? pBody : pBorder;
1575 while(h--)
1577 int j=0;
1578 for( ; j<x0; j++ )
1580 dst[j] = (src1[j] * color_alpha)>>6;
1582 for( ;j<x00;j+=4 )
1584 __m64 src = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(src1+j));
1585 __m64 zero = _mm_setzero_si64();
1586 src = _mm_unpacklo_pi8(src, zero);
1587 src = _mm_mullo_pi16(src, color_alpha_64);
1588 src = _mm_srli_pi16(src, 6);
1589 src = _mm_packs_pu16(src,src);
1590 *reinterpret_cast<int*>(dst+j) = _mm_cvtsi64_si32(src);
1592 __m128i zero = _mm_setzero_si128();
1593 for( ;j<x_end00;j+=16)
1595 __m128i src = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src1+j));
1596 __m128i srchi = src;
1597 src = _mm_unpacklo_epi8(src, zero);
1598 srchi = _mm_unpackhi_epi8(srchi, zero);
1599 src = _mm_mullo_epi16(src, color_alpha_128);
1600 srchi = _mm_mullo_epi16(srchi, color_alpha_128);
1601 src = _mm_srli_epi16(src, 6);
1602 srchi = _mm_srli_epi16(srchi, 6);
1603 src = _mm_packus_epi16(src, srchi);
1604 _mm_storeu_si128(reinterpret_cast<__m128i*>(dst+j), src);
1606 for( ;j<x_end0;j+=4)
1608 __m64 src = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(src1+j));
1609 __m64 zero = _mm_setzero_si64();
1610 src = _mm_unpacklo_pi8(src, zero);
1611 src = _mm_mullo_pi16(src, color_alpha_64);
1612 src = _mm_srli_pi16(src, 6);
1613 src = _mm_packs_pu16(src,src);
1614 *reinterpret_cast<int*>(dst+j) = _mm_cvtsi64_si32(src);
1616 for( ;j<x_end;j++)
1618 dst[j] = (src1[j] * color_alpha)>>6;
1620 src1 += mOverlayPitch;
1621 //pAlphaMask += pitch;
1622 dst += mOverlayPitch;
1625 else if( ((pBody==NULL) + (pBorder==NULL))==1 && pAlphaMask!=NULL)
1627 const BYTE* src1 = pBody!=NULL ? pBody : pBorder;
1628 while(h--)
1630 int j=0;
1631 for( ; j<x0; j++ )
1633 dst[j] = (src1[j] * pAlphaMask[j] * color_alpha)>>12;
1635 for( ;j<x00;j+=4 )
1637 __m64 src = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(src1+j));
1638 __m64 mask = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pAlphaMask+j));
1639 __m64 zero = _mm_setzero_si64();
1640 src = _mm_unpacklo_pi8(src, zero);
1641 src = _mm_mullo_pi16(src, color_alpha_64);
1642 mask = _mm_unpacklo_pi8(zero, mask); //important!
1643 src = _mm_mulhi_pi16(src, mask); //important!
1644 src = _mm_srli_pi16(src, 12+8-16); //important!
1645 src = _mm_packs_pu16(src,src);
1646 *reinterpret_cast<int*>(dst+j) = _mm_cvtsi64_si32(src);
1648 __m128i zero = _mm_setzero_si128();
1649 for( ;j<x_end00;j+=16)
1651 __m128i src = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src1+j));
1652 __m128i mask = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pAlphaMask+j));
1653 __m128i srchi = src;
1654 __m128i maskhi = mask;
1655 src = _mm_unpacklo_epi8(src, zero);
1656 srchi = _mm_unpackhi_epi8(srchi, zero);
1657 mask = _mm_unpacklo_epi8(zero, mask); //important!
1658 maskhi = _mm_unpackhi_epi8(zero, maskhi);
1659 src = _mm_mullo_epi16(src, color_alpha_128);
1660 srchi = _mm_mullo_epi16(srchi, color_alpha_128);
1661 src = _mm_mulhi_epu16(src, mask); //important!
1662 srchi = _mm_mulhi_epu16(srchi, maskhi);
1663 src = _mm_srli_epi16(src, 12+8-16); //important!
1664 srchi = _mm_srli_epi16(srchi, 12+8-16);
1665 src = _mm_packus_epi16(src, srchi);
1666 _mm_storeu_si128(reinterpret_cast<__m128i*>(dst+j), src);
1668 for( ;j<x_end0;j+=4)
1670 __m64 src = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(src1+j));
1671 __m64 mask = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pAlphaMask+j));
1672 __m64 zero = _mm_setzero_si64();
1673 src = _mm_unpacklo_pi8(src, zero);
1674 src = _mm_mullo_pi16(src, color_alpha_64);
1675 mask = _mm_unpacklo_pi8(zero, mask); //important!
1676 src = _mm_mulhi_pi16(src, mask); //important!
1677 src = _mm_srli_pi16(src, 12+8-16); //important!
1678 src = _mm_packs_pu16(src,src);
1679 *reinterpret_cast<int*>(dst+j) = _mm_cvtsi64_si32(src);
1681 for( ;j<x_end;j++)
1683 dst[j] = (src1[j] * pAlphaMask[j] * color_alpha)>>12;
1685 src1 += mOverlayPitch;
1686 pAlphaMask += pitch;
1687 dst += mOverlayPitch;
1690 else if( pAlphaMask!=NULL && pBody!=NULL && pBorder!=NULL )
1692 while(h--)
1694 int j=0;
1695 for( ; j<x0; j++ )
1697 int temp = pBorder[j]-pBody[j];
1698 temp = temp<0 ? 0 : temp;
1699 dst[j] = (temp * pAlphaMask[j] * color_alpha)>>12;
1701 for( ;j<x00;j+=4 )
1703 __m64 border = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pBorder+j));
1704 __m64 body = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pBody+j));
1705 border = _mm_subs_pu8(border, body);
1706 __m64 mask = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pAlphaMask+j));
1707 __m64 zero = _mm_setzero_si64();
1708 border = _mm_unpacklo_pi8(border, zero);
1709 border = _mm_mullo_pi16(border, color_alpha_64);
1710 mask = _mm_unpacklo_pi8(zero, mask); //important!
1711 border = _mm_mulhi_pi16(border, mask); //important!
1712 border = _mm_srli_pi16(border, 12+8-16); //important!
1713 border = _mm_packs_pu16(border,border);
1714 *reinterpret_cast<int*>(dst+j) = _mm_cvtsi64_si32(border);
1716 __m128i zero = _mm_setzero_si128();
1717 for( ;j<x_end00;j+=16)
1719 __m128i border = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pBorder+j));
1720 __m128i body = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pBody+j));
1721 border = _mm_subs_epu8(border,body);
1723 __m128i mask = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pAlphaMask+j));
1724 __m128i srchi = border;
1725 __m128i maskhi = mask;
1726 border = _mm_unpacklo_epi8(border, zero);
1727 srchi = _mm_unpackhi_epi8(srchi, zero);
1728 mask = _mm_unpacklo_epi8(zero, mask); //important!
1729 maskhi = _mm_unpackhi_epi8(zero, maskhi);
1730 border = _mm_mullo_epi16(border, color_alpha_128);
1731 srchi = _mm_mullo_epi16(srchi, color_alpha_128);
1732 border = _mm_mulhi_epu16(border, mask); //important!
1733 srchi = _mm_mulhi_epu16(srchi, maskhi);
1734 border = _mm_srli_epi16(border, 12+8-16); //important!
1735 srchi = _mm_srli_epi16(srchi, 12+8-16);
1736 border = _mm_packus_epi16(border, srchi);
1737 _mm_storeu_si128(reinterpret_cast<__m128i*>(dst+j), border);
1739 for( ;j<x_end0;j+=4)
1741 __m64 border = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pBorder+j));
1742 __m64 body = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pBody+j));
1743 border = _mm_subs_pu8(border, body);
1744 __m64 mask = _mm_cvtsi32_si64(*reinterpret_cast<const int*>(pAlphaMask+j));
1745 __m64 zero = _mm_setzero_si64();
1746 border = _mm_unpacklo_pi8(border, zero);
1747 border = _mm_mullo_pi16(border, color_alpha_64);
1748 mask = _mm_unpacklo_pi8(zero, mask); //important!
1749 border = _mm_mulhi_pi16(border, mask); //important!
1750 border = _mm_srli_pi16(border, 12+8-16); //important!
1751 border = _mm_packs_pu16(border,border);
1752 *reinterpret_cast<int*>(dst+j) = _mm_cvtsi64_si32(border);
1754 for( ;j<x_end;j++)
1756 int temp = pBorder[j]-pBody[j];
1757 temp = temp<0 ? 0 : temp;
1758 dst[j] = (temp * pAlphaMask[j] * color_alpha)>>12;
1760 pBody += mOverlayPitch;
1761 pBorder += mOverlayPitch;
1762 pAlphaMask += pitch;
1763 dst += mOverlayPitch;
1766 else
1768 //should NOT happen!
1769 ASSERT(0);
1773 void Overlay::FillAlphaMash( byte* outputAlphaMask, bool fBody, bool fBorder, int x, int y, int w, int h, const byte* pAlphaMask, int pitch, DWORD color_alpha)
1775 if(!fBorder && fBody && pAlphaMask==NULL)
1777 _DoFillAlphaMash(outputAlphaMask, mpOverlayBuffer.body, NULL, x, y, w, h, pAlphaMask, pitch, color_alpha);
1779 else if(/*fBorder &&*/ fBody && pAlphaMask==NULL)
1781 _DoFillAlphaMash(outputAlphaMask, NULL, mpOverlayBuffer.border, x, y, w, h, pAlphaMask, pitch, color_alpha);
1783 else if(!fBody && fBorder /* pAlphaMask==NULL or not*/)
1785 _DoFillAlphaMash(outputAlphaMask, mpOverlayBuffer.body, mpOverlayBuffer.border, x, y, w, h, pAlphaMask, pitch, color_alpha);
1787 else if(!fBorder && fBody && pAlphaMask!=NULL)
1789 _DoFillAlphaMash(outputAlphaMask, mpOverlayBuffer.body, NULL, x, y, w, h, pAlphaMask, pitch, color_alpha);
1791 else if(fBorder && fBody && pAlphaMask!=NULL)
1793 _DoFillAlphaMash(outputAlphaMask, NULL, mpOverlayBuffer.border, x, y, w, h, pAlphaMask, pitch, color_alpha);
1795 else
1797 //should NOT happen
1798 ASSERT(0);
1802 Overlay* Overlay::GetSubpixelVariance(unsigned int xshift, unsigned int yshift)
1804 Overlay* overlay = new Overlay();
1805 if(!overlay)
1807 return NULL;
1809 xshift &= 7;
1810 yshift &= 7;
1812 overlay->mOffsetX = mOffsetX - xshift;
1813 overlay->mOffsetY = mOffsetY - yshift;
1814 overlay->mWidth = mWidth + xshift;
1815 overlay->mHeight = mHeight + yshift;
1817 overlay->mOverlayWidth = ((overlay->mWidth+7)>>3) + 1;
1818 overlay->mOverlayHeight = ((overlay->mHeight + 7)>>3) + 1;
1819 overlay->mOverlayPitch = (overlay->mOverlayWidth+15)&~15;
1821 overlay->mpOverlayBuffer.base = reinterpret_cast<byte*>(xy_malloc(2 * overlay->mOverlayPitch * overlay->mOverlayHeight));
1822 overlay->mpOverlayBuffer.body = overlay->mpOverlayBuffer.base;
1823 overlay->mpOverlayBuffer.border = overlay->mpOverlayBuffer.base + overlay->mOverlayPitch * overlay->mOverlayHeight;
1825 overlay->mfWideOutlineEmpty = mfWideOutlineEmpty;
1827 if(overlay->mOverlayWidth==mOverlayWidth && overlay->mOverlayHeight==mOverlayHeight)
1828 memcpy(overlay->mpOverlayBuffer.base, mpOverlayBuffer.base, 2 * mOverlayPitch * mOverlayHeight);
1829 else
1831 memset(overlay->mpOverlayBuffer.base, 0, 2 * overlay->mOverlayPitch * overlay->mOverlayHeight);
1832 byte* dst = overlay->mpOverlayBuffer.body;
1833 const byte* src = mpOverlayBuffer.body;
1834 for (int i=0;i<mOverlayHeight;i++)
1836 memcpy(dst, src, mOverlayPitch);
1837 dst += overlay->mOverlayPitch;
1838 src += mOverlayPitch;
1840 dst = overlay->mpOverlayBuffer.border;
1841 src = mpOverlayBuffer.border;
1842 for (int i=0;i<mOverlayHeight;i++)
1844 memcpy(dst, src, mOverlayPitch);
1845 dst += overlay->mOverlayPitch;
1846 src += mOverlayPitch;
1849 //not equal
1850 // Bilinear(overlay->mpOverlayBuffer.base, overlay->mOverlayWidth, 2*overlay->mOverlayHeight, overlay->mOverlayPitch, xshift, yshift);
1851 Bilinear(overlay->mpOverlayBuffer.body, overlay->mOverlayWidth, overlay->mOverlayHeight, overlay->mOverlayPitch, xshift, yshift);
1852 Bilinear(overlay->mpOverlayBuffer.border, overlay->mOverlayWidth, overlay->mOverlayHeight, overlay->mOverlayPitch, xshift, yshift);
1853 return overlay;
1856 ///////////////////////////////////////////////////////////////
1858 // PathData
1860 PathData::PathData():mpPathTypes(NULL), mpPathPoints(NULL), mPathPoints(0)
1864 PathData::PathData( const PathData& src ):mPathPoints(src.mPathPoints)
1866 //TODO: deal with the case that src.mPathPoints<0
1867 if(mPathPoints>0)
1869 mpPathTypes = static_cast<BYTE*>(malloc(mPathPoints * sizeof(BYTE)));
1870 mpPathPoints = static_cast<POINT*>(malloc(mPathPoints * sizeof(POINT)));
1872 if(mPathPoints>0)
1874 memcpy(mpPathTypes, src.mpPathTypes, mPathPoints*sizeof(BYTE));
1875 memcpy(mpPathPoints, src.mpPathPoints, mPathPoints*sizeof(POINT));
1879 const PathData& PathData::operator=( const PathData& src )
1881 if(this!=&src)
1883 if(mPathPoints!=src.mPathPoints && src.mPathPoints>0)
1885 mPathPoints = src.mPathPoints;
1886 delete[] mpPathTypes;
1887 delete[] mpPathPoints;
1888 mpPathTypes = static_cast<BYTE*>(malloc(mPathPoints * sizeof(BYTE)));
1889 mpPathPoints = static_cast<POINT*>(malloc(mPathPoints * sizeof(POINT)));//better than realloc
1891 if(src.mPathPoints>0)
1893 memcpy(mpPathTypes, src.mpPathTypes, mPathPoints*sizeof(BYTE));
1894 memcpy(mpPathPoints, src.mpPathPoints, mPathPoints*sizeof(POINT));
1897 return *this;
1900 PathData::~PathData()
1902 _TrashPath();
1905 void PathData::_TrashPath()
1907 delete [] mpPathTypes;
1908 delete [] mpPathPoints;
1909 mpPathTypes = NULL;
1910 mpPathPoints = NULL;
1911 mPathPoints = 0;
1914 bool PathData::BeginPath(HDC hdc)
1916 _TrashPath();
1917 return !!::BeginPath(hdc);
1920 bool PathData::EndPath(HDC hdc)
1922 ::CloseFigure(hdc);
1923 if(::EndPath(hdc))
1925 mPathPoints = GetPath(hdc, NULL, NULL, 0);
1926 if(!mPathPoints)
1927 return true;
1928 mpPathTypes = (BYTE*)malloc(sizeof(BYTE) * mPathPoints);
1929 mpPathPoints = (POINT*)malloc(sizeof(POINT) * mPathPoints);
1930 if(mPathPoints == GetPath(hdc, mpPathPoints, mpPathTypes, mPathPoints))
1931 return true;
1933 ::AbortPath(hdc);
1934 return false;
1937 bool PathData::PartialBeginPath(HDC hdc, bool bClearPath)
1939 if(bClearPath)
1940 _TrashPath();
1941 return !!::BeginPath(hdc);
1944 bool PathData::PartialEndPath(HDC hdc, long dx, long dy)
1946 ::CloseFigure(hdc);
1947 if(::EndPath(hdc))
1949 int nPoints;
1950 BYTE* pNewTypes;
1951 POINT* pNewPoints;
1952 nPoints = GetPath(hdc, NULL, NULL, 0);
1953 if(!nPoints)
1954 return true;
1955 pNewTypes = (BYTE*)realloc(mpPathTypes, (mPathPoints + nPoints) * sizeof(BYTE));
1956 pNewPoints = (POINT*)realloc(mpPathPoints, (mPathPoints + nPoints) * sizeof(POINT));
1957 if(pNewTypes)
1958 mpPathTypes = pNewTypes;
1959 if(pNewPoints)
1960 mpPathPoints = pNewPoints;
1961 BYTE* pTypes = new BYTE[nPoints];
1962 POINT* pPoints = new POINT[nPoints];
1963 if(pNewTypes && pNewPoints && nPoints == GetPath(hdc, pPoints, pTypes, nPoints))
1965 for(int i = 0; i < nPoints; ++i)
1967 mpPathPoints[mPathPoints + i].x = pPoints[i].x + dx;
1968 mpPathPoints[mPathPoints + i].y = pPoints[i].y + dy;
1969 mpPathTypes[mPathPoints + i] = pTypes[i];
1971 mPathPoints += nPoints;
1972 delete[] pTypes;
1973 delete[] pPoints;
1974 return true;
1976 else
1977 DebugBreak();
1978 delete[] pTypes;
1979 delete[] pPoints;
1981 ::AbortPath(hdc);
1982 return false;
1985 //////////////////////////////////////////////////////////////////////////
1987 // ScanLineData
1989 ScanLineData::ScanLineData():mPathOffsetX(0),mPathOffsetY(0)
1993 ScanLineData::~ScanLineData()
1997 void ScanLineData::_ReallocEdgeBuffer(int edges)
1999 mEdgeHeapSize = edges;
2000 mpEdgeBuffer = (Edge*)realloc(mpEdgeBuffer, sizeof(Edge)*edges);
2003 void ScanLineData::_EvaluateBezier(const PathData& path_data, int ptbase, bool fBSpline)
2005 const POINT* pt0 = path_data.mpPathPoints + ptbase;
2006 const POINT* pt1 = path_data.mpPathPoints + ptbase + 1;
2007 const POINT* pt2 = path_data.mpPathPoints + ptbase + 2;
2008 const POINT* pt3 = path_data.mpPathPoints + ptbase + 3;
2009 double x0 = pt0->x;
2010 double x1 = pt1->x;
2011 double x2 = pt2->x;
2012 double x3 = pt3->x;
2013 double y0 = pt0->y;
2014 double y1 = pt1->y;
2015 double y2 = pt2->y;
2016 double y3 = pt3->y;
2017 double cx3, cx2, cx1, cx0, cy3, cy2, cy1, cy0;
2018 if(fBSpline)
2020 // 1 [-1 +3 -3 +1]
2021 // - * [+3 -6 +3 0]
2022 // 6 [-3 0 +3 0]
2023 // [+1 +4 +1 0]
2024 double _1div6 = 1.0/6.0;
2025 cx3 = _1div6*(- x0+3*x1-3*x2+x3);
2026 cx2 = _1div6*( 3*x0-6*x1+3*x2);
2027 cx1 = _1div6*(-3*x0 +3*x2);
2028 cx0 = _1div6*( x0+4*x1+1*x2);
2029 cy3 = _1div6*(- y0+3*y1-3*y2+y3);
2030 cy2 = _1div6*( 3*y0-6*y1+3*y2);
2031 cy1 = _1div6*(-3*y0 +3*y2);
2032 cy0 = _1div6*( y0+4*y1+1*y2);
2034 else // bezier
2036 // [-1 +3 -3 +1]
2037 // [+3 -6 +3 0]
2038 // [-3 +3 0 0]
2039 // [+1 0 0 0]
2040 cx3 = - x0+3*x1-3*x2+x3;
2041 cx2 = 3*x0-6*x1+3*x2;
2042 cx1 = -3*x0+3*x1;
2043 cx0 = x0;
2044 cy3 = - y0+3*y1-3*y2+y3;
2045 cy2 = 3*y0-6*y1+3*y2;
2046 cy1 = -3*y0+3*y1;
2047 cy0 = y0;
2050 // This equation is from Graphics Gems I.
2052 // The idea is that since we're approximating a cubic curve with lines,
2053 // any error we incur is due to the curvature of the line, which we can
2054 // estimate by calculating the maximum acceleration of the curve. For
2055 // a cubic, the acceleration (second derivative) is a line, meaning that
2056 // the absolute maximum acceleration must occur at either the beginning
2057 // (|c2|) or the end (|c2+c3|). Our bounds here are a little more
2058 // conservative than that, but that's okay.
2060 // If the acceleration of the parametric formula is zero (c2 = c3 = 0),
2061 // that component of the curve is linear and does not incur any error.
2062 // If a=0 for both X and Y, the curve is a line segment and we can
2063 // use a step size of 1.
2064 double maxaccel1 = fabs(2*cy2) + fabs(6*cy3);
2065 double maxaccel2 = fabs(2*cx2) + fabs(6*cx3);
2066 double maxaccel = maxaccel1 > maxaccel2 ? maxaccel1 : maxaccel2;
2067 double h = 1.0;
2068 if(maxaccel > 8.0) h = sqrt(8.0 / maxaccel);
2069 if(!fFirstSet) {firstp.x = (LONG)cx0; firstp.y = (LONG)cy0; lastp = firstp; fFirstSet = true;}
2070 for(double t = 0; t < 1.0; t += h)
2072 double x = cx0 + t*(cx1 + t*(cx2 + t*cx3));
2073 double y = cy0 + t*(cy1 + t*(cy2 + t*cy3));
2074 _EvaluateLine(lastp.x, lastp.y, (int)x, (int)y);
2076 double x = cx0 + cx1 + cx2 + cx3;
2077 double y = cy0 + cy1 + cy2 + cy3;
2078 _EvaluateLine(lastp.x, lastp.y, (int)x, (int)y);
2081 void ScanLineData::_EvaluateLine(const PathData& path_data, int pt1idx, int pt2idx)
2083 const POINT* pt1 = path_data.mpPathPoints + pt1idx;
2084 const POINT* pt2 = path_data.mpPathPoints + pt2idx;
2085 _EvaluateLine(pt1->x, pt1->y, pt2->x, pt2->y);
2088 void ScanLineData::_EvaluateLine(int x0, int y0, int x1, int y1)
2090 if(lastp.x != x0 || lastp.y != y0)
2092 _EvaluateLine(lastp.x, lastp.y, x0, y0);
2094 if(!fFirstSet) {firstp.x = x0; firstp.y = y0; fFirstSet = true;}
2095 lastp.x = x1;
2096 lastp.y = y1;
2097 if(y1 > y0) // down
2099 __int64 xacc = (__int64)x0 << 13;
2100 // prestep y0 down
2101 int dy = y1 - y0;
2102 int y = ((y0 + 3)&~7) + 4;
2103 int iy = y >> 3;
2104 y1 = (y1 - 5) >> 3;
2105 if(iy <= y1)
2107 __int64 invslope = (__int64(x1 - x0) << 16) / dy;
2108 while(mEdgeNext + y1 + 1 - iy > mEdgeHeapSize)
2109 _ReallocEdgeBuffer(mEdgeHeapSize*2);
2110 xacc += (invslope * (y - y0)) >> 3;
2111 while(iy <= y1)
2113 int ix = (int)((xacc + 32768) >> 16);
2114 mpEdgeBuffer[mEdgeNext].next = mpScanBuffer[iy];
2115 mpEdgeBuffer[mEdgeNext].posandflag = ix*2 + 1;
2116 mpScanBuffer[iy] = mEdgeNext++;
2117 ++iy;
2118 xacc += invslope;
2122 else if(y1 < y0) // up
2124 __int64 xacc = (__int64)x1 << 13;
2125 // prestep y1 down
2126 int dy = y0 - y1;
2127 int y = ((y1 + 3)&~7) + 4;
2128 int iy = y >> 3;
2129 y0 = (y0 - 5) >> 3;
2130 if(iy <= y0)
2132 __int64 invslope = (__int64(x0 - x1) << 16) / dy;
2133 while(mEdgeNext + y0 + 1 - iy > mEdgeHeapSize)
2134 _ReallocEdgeBuffer(mEdgeHeapSize*2);
2135 xacc += (invslope * (y - y1)) >> 3;
2136 while(iy <= y0)
2138 int ix = (int)((xacc + 32768) >> 16);
2139 mpEdgeBuffer[mEdgeNext].next = mpScanBuffer[iy];
2140 mpEdgeBuffer[mEdgeNext].posandflag = ix*2;
2141 mpScanBuffer[iy] = mEdgeNext++;
2142 ++iy;
2143 xacc += invslope;
2149 bool ScanLineData::ScanConvert(SharedPtrPathData path_data)
2151 int lastmoveto = -1;
2152 int i;
2153 // Drop any outlines we may have.
2154 mOutline.clear();
2155 mWideOutline.clear();
2156 mWideBorder = 0;
2157 // Determine bounding box
2158 if(!path_data->mPathPoints)
2160 mPathOffsetX = mPathOffsetY = 0;
2161 mWidth = mHeight = 0;
2162 return 0;
2164 int minx = INT_MAX;
2165 int miny = INT_MAX;
2166 int maxx = INT_MIN;
2167 int maxy = INT_MIN;
2168 for(i=0; i<path_data->mPathPoints; ++i)
2170 int ix = path_data->mpPathPoints[i].x;
2171 int iy = path_data->mpPathPoints[i].y;
2172 if(ix < minx) minx = ix;
2173 if(ix > maxx) maxx = ix;
2174 if(iy < miny) miny = iy;
2175 if(iy > maxy) maxy = iy;
2177 minx = (minx >> 3) & ~7;
2178 miny = (miny >> 3) & ~7;
2179 maxx = (maxx + 7) >> 3;
2180 maxy = (maxy + 7) >> 3;
2181 for(i=0; i<path_data->mPathPoints; ++i)
2183 path_data->mpPathPoints[i].x -= minx*8;
2184 path_data->mpPathPoints[i].y -= miny*8;
2186 if(minx > maxx || miny > maxy)
2188 mWidth = mHeight = 0;
2189 mPathOffsetX = mPathOffsetY = 0;
2190 path_data->_TrashPath();
2191 return true;
2193 mWidth = maxx + 1 - minx;
2194 mHeight = maxy + 1 - miny;
2195 mPathOffsetX = minx;
2196 mPathOffsetY = miny;
2197 // Initialize edge buffer. We use edge 0 as a sentinel.
2198 mEdgeNext = 1;
2199 mEdgeHeapSize = 2048;
2200 mpEdgeBuffer = (Edge*)malloc(sizeof(Edge)*mEdgeHeapSize);
2201 // Initialize scanline list.
2202 mpScanBuffer = new unsigned int[mHeight];
2203 memset(mpScanBuffer, 0, mHeight*sizeof(unsigned int));
2204 // Scan convert the outline. Yuck, Bezier curves....
2205 // Unfortunately, Windows 95/98 GDI has a bad habit of giving us text
2206 // paths with all but the first figure left open, so we can't rely
2207 // on the PT_CLOSEFIGURE flag being used appropriately.
2208 fFirstSet = false;
2209 firstp.x = firstp.y = 0;
2210 lastp.x = lastp.y = 0;
2211 for(i=0; i<path_data->mPathPoints; ++i)
2213 BYTE t = path_data->mpPathTypes[i] & ~PT_CLOSEFIGURE;
2214 switch(t)
2216 case PT_MOVETO:
2217 if(lastmoveto >= 0 && firstp != lastp)
2218 _EvaluateLine(lastp.x, lastp.y, firstp.x, firstp.y);
2219 lastmoveto = i;
2220 fFirstSet = false;
2221 lastp = path_data->mpPathPoints[i];
2222 break;
2223 case PT_MOVETONC:
2224 break;
2225 case PT_LINETO:
2226 if(path_data->mPathPoints - (i-1) >= 2) _EvaluateLine(*path_data, i-1, i);
2227 break;
2228 case PT_BEZIERTO:
2229 if(path_data->mPathPoints - (i-1) >= 4) _EvaluateBezier(*path_data, i-1, false);
2230 i += 2;
2231 break;
2232 case PT_BSPLINETO:
2233 if(path_data->mPathPoints - (i-1) >= 4) _EvaluateBezier(*path_data, i-1, true);
2234 i += 2;
2235 break;
2236 case PT_BSPLINEPATCHTO:
2237 if(path_data->mPathPoints - (i-3) >= 4) _EvaluateBezier(*path_data, i-3, true);
2238 break;
2241 if(lastmoveto >= 0 && firstp != lastp)
2242 _EvaluateLine(lastp.x, lastp.y, firstp.x, firstp.y);
2243 // Free the path since we don't need it anymore.
2244 path_data->_TrashPath();
2245 // Convert the edges to spans. We couldn't do this before because some of
2246 // the regions may have winding numbers >+1 and it would have been a pain
2247 // to try to adjust the spans on the fly. We use one heap to detangle
2248 // a scanline's worth of edges from the singly-linked lists, and another
2249 // to collect the actual scans.
2250 std::vector<int> heap;
2251 mOutline.reserve(mEdgeNext / 2);
2252 __int64 y = 0;
2253 for(y=0; y<mHeight; ++y)
2255 int count = 0;
2256 // Detangle scanline into edge heap.
2257 for(unsigned ptr = (unsigned)(mpScanBuffer[y]&0xffffffff); ptr; ptr = mpEdgeBuffer[ptr].next)
2259 heap.push_back(mpEdgeBuffer[ptr].posandflag);
2261 // Sort edge heap. Note that we conveniently made the opening edges
2262 // one more than closing edges at the same spot, so we won't have any
2263 // problems with abutting spans.
2264 std::sort(heap.begin(), heap.end()/*begin() + heap.size()*/);
2265 // Process edges and add spans. Since we only check for a non-zero
2266 // winding number, it doesn't matter which way the outlines go!
2267 std::vector<int>::iterator itX1 = heap.begin();
2268 std::vector<int>::iterator itX2 = heap.end(); // begin() + heap.size();
2269 int x1, x2;
2270 for(; itX1 != itX2; ++itX1)
2272 int x = *itX1;
2273 if(!count)
2274 x1 = (x>>1);
2275 if(x&1)
2276 ++count;
2277 else
2278 --count;
2279 if(!count)
2281 x2 = (x>>1);
2282 if(x2>x1)
2283 mOutline.push_back(std::pair<__int64,__int64>((y<<32)+x1+0x4000000040000000i64, (y<<32)+x2+0x4000000040000000i64)); // G: damn Avery, this is evil! :)
2286 heap.clear();
2288 // Dump the edge and scan buffers, since we no longer need them.
2289 free(mpEdgeBuffer);
2290 delete [] mpScanBuffer;
2291 // All done!
2292 return true;
2295 using namespace std;
2297 void ScanLineData::_OverlapRegion(tSpanBuffer& dst, tSpanBuffer& src, int dx, int dy)
2299 tSpanBuffer temp;
2300 temp.reserve(dst.size() + src.size());
2301 dst.swap(temp);
2302 tSpanBuffer::iterator itA = temp.begin();
2303 tSpanBuffer::iterator itAE = temp.end();
2304 tSpanBuffer::iterator itB = src.begin();
2305 tSpanBuffer::iterator itBE = src.end();
2306 // Don't worry -- even if dy<0 this will still work! // G: hehe, the evil twin :)
2307 unsigned __int64 offset1 = (((__int64)dy)<<32) - dx;
2308 unsigned __int64 offset2 = (((__int64)dy)<<32) + dx;
2309 while(itA != itAE && itB != itBE)
2311 if((*itB).first + offset1 < (*itA).first)
2313 // B span is earlier. Use it.
2314 unsigned __int64 x1 = (*itB).first + offset1;
2315 unsigned __int64 x2 = (*itB).second + offset2;
2316 ++itB;
2317 // B spans don't overlap, so begin merge loop with A first.
2318 for(;;)
2320 // If we run out of A spans or the A span doesn't overlap,
2321 // then the next B span can't either (because B spans don't
2322 // overlap) and we exit.
2323 if(itA == itAE || (*itA).first > x2)
2324 break;
2325 do {x2 = _MAX(x2, (*itA++).second);}
2326 while(itA != itAE && (*itA).first <= x2);
2327 // If we run out of B spans or the B span doesn't overlap,
2328 // then the next A span can't either (because A spans don't
2329 // overlap) and we exit.
2330 if(itB == itBE || (*itB).first + offset1 > x2)
2331 break;
2332 do {x2 = _MAX(x2, (*itB++).second + offset2);}
2333 while(itB != itBE && (*itB).first + offset1 <= x2);
2335 // Flush span.
2336 dst.push_back(tSpan(x1, x2));
2338 else
2340 // A span is earlier. Use it.
2341 unsigned __int64 x1 = (*itA).first;
2342 unsigned __int64 x2 = (*itA).second;
2343 ++itA;
2344 // A spans don't overlap, so begin merge loop with B first.
2345 for(;;)
2347 // If we run out of B spans or the B span doesn't overlap,
2348 // then the next A span can't either (because A spans don't
2349 // overlap) and we exit.
2350 if(itB == itBE || (*itB).first + offset1 > x2)
2351 break;
2352 do {x2 = _MAX(x2, (*itB++).second + offset2);}
2353 while(itB != itBE && (*itB).first + offset1 <= x2);
2354 // If we run out of A spans or the A span doesn't overlap,
2355 // then the next B span can't either (because B spans don't
2356 // overlap) and we exit.
2357 if(itA == itAE || (*itA).first > x2)
2358 break;
2359 do {x2 = _MAX(x2, (*itA++).second);}
2360 while(itA != itAE && (*itA).first <= x2);
2362 // Flush span.
2363 dst.push_back(tSpan(x1, x2));
2366 // Copy over leftover spans.
2367 while(itA != itAE)
2368 dst.push_back(*itA++);
2369 while(itB != itBE)
2371 dst.push_back(tSpan((*itB).first + offset1, (*itB).second + offset2));
2372 ++itB;
2376 bool ScanLineData::CreateWidenedRegion(int rx, int ry)
2378 if(rx < 0) rx = 0;
2379 if(ry < 0) ry = 0;
2380 mWideBorder = max(rx,ry);
2381 if (ry > 0)
2383 // Do a half circle.
2384 // _OverlapRegion mirrors this so both halves are done.
2385 for(int y = -ry; y <= ry; ++y)
2387 int x = (int)(0.5 + sqrt(float(ry*ry - y*y)) * float(rx)/float(ry));
2388 _OverlapRegion(mWideOutline, mOutline, x, y);
2391 else if (ry == 0 && rx > 0)
2393 // There are artifacts if we don't make at least two overlaps of the line, even at same Y coord
2394 _OverlapRegion(mWideOutline, mOutline, rx, 0);
2395 _OverlapRegion(mWideOutline, mOutline, rx, 0);
2397 return true;
2400 void ScanLineData::DeleteOutlines()
2402 mWideOutline.clear();
2403 mOutline.clear();