[python3] Simplify generated wrapper post-processing
[xapian.git] / xapian-core / api / sortable-serialise.cc
blob3c221d1fb9634280e9fc6cd7faed034f315436f1
1 /** @file sortable-serialise.cc
2 * @brief Serialise floating point values to string which sort the same way.
3 */
4 /* Copyright (C) 2007,2009,2015,2016 Olly Betts
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 #include <config.h>
23 #include <xapian/queryparser.h>
25 // Disable these assertions when building the library as these functions are
26 // marked not to throw exceptions in the API headers. In unittest we define
27 // UNITTEST_ASSERT_NOTHROW to set a variable to the exception message and
28 // return, then the harness checks if that variable has been set.
29 #ifndef XAPIAN_UNITTEST
30 # define UNITTEST_ASSERT_NOTHROW(COND,RET)
31 #endif
33 #include <cfloat>
34 #include <cmath>
35 #include <cstring>
37 #include <string>
39 using namespace std;
41 #if FLT_RADIX != 2
42 # error Code currently assumes FLT_RADIX == 2
43 #endif
45 #ifdef _MSC_VER
46 // Disable warning about negating an unsigned type, which we do deliberately.
47 # pragma warning(disable:4146)
48 #endif
50 size_t
51 Xapian::sortable_serialise_(double value, char * buf) XAPIAN_NOEXCEPT
53 double mantissa;
54 int exponent;
56 // Negative infinity.
57 if (value < -DBL_MAX) return 0;
59 mantissa = frexp(value, &exponent);
61 /* Deal with zero specially.
63 * IEEE representation of doubles uses 11 bits for the exponent, with a
64 * bias of 1023. We bias this by subtracting 8, and non-IEEE
65 * representations may allow higher exponents, so allow exponents down to
66 * -2039 - if smaller exponents are possible anywhere, we underflow such
67 * numbers to 0.
69 if (mantissa == 0.0 || exponent < -2039) {
70 *buf = '\x80';
71 return 1;
74 bool negative = (mantissa < 0);
75 if (negative) mantissa = -mantissa;
77 // Infinity, or extremely large non-IEEE representation.
78 if (value > DBL_MAX || exponent > 2055) {
79 if (negative) {
80 // This can only happen with a non-IEEE representation, because
81 // we've already tested for value < -DBL_MAX
82 return 0;
83 } else {
84 memset(buf, '\xff', 9);
85 return 9;
89 // Encoding:
91 // [ 7 | 6 | 5 | 4 3 2 1 0]
92 // Sm Se Le
94 // Sm stores the sign of the mantissa: 1 = positive or zero, 0 = negative.
95 // Se stores the sign of the exponent: Sm for positive/zero, !Sm for neg.
96 // Le stores the length of the exponent: !Se for 3 bits, Se for 11 bits.
97 unsigned char next = (negative ? 0 : 0xe0);
99 // Bias the exponent by 8 so that more small integers get short encodings.
100 exponent -= 8;
101 bool exponent_negative = (exponent < 0);
102 if (exponent_negative) {
103 exponent = -exponent;
104 next ^= 0x60;
107 size_t len = 0;
109 /* We store the exponent in 3 or 11 bits. If the number is negative, we
110 * flip all the bits of the exponent, since larger negative numbers should
111 * sort first.
113 * If the exponent is negative, we flip the bits of the exponent, since
114 * larger negative exponents should sort first (unless the number is
115 * negative, in which case they should sort later).
117 UNITTEST_ASSERT_NOTHROW(exponent >= 0, 0);
118 if (exponent < 8) {
119 next ^= 0x20;
120 next |= static_cast<unsigned char>(exponent << 2);
121 if (negative ^ exponent_negative) next ^= 0x1c;
122 } else {
123 UNITTEST_ASSERT_NOTHROW((exponent >> 11) == 0, 0);
124 // Put the top 5 bits of the exponent into the lower 5 bits of the
125 // first byte:
126 next |= static_cast<unsigned char>(exponent >> 6);
127 if (negative ^ exponent_negative) next ^= 0x1f;
128 buf[len++] = next;
129 // And the lower 6 bits of the exponent go into the upper 6 bits
130 // of the second byte:
131 next = static_cast<unsigned char>(exponent) << 2;
132 if (negative ^ exponent_negative) next ^= 0xfc;
135 // Convert the 52 (or 53) bits of the mantissa into two 32-bit words.
136 mantissa *= 1 << (negative ? 26 : 27);
137 unsigned word1 = static_cast<unsigned>(mantissa);
138 mantissa -= word1;
139 unsigned word2 = static_cast<unsigned>(mantissa * 4294967296.0); // 1<<32
140 // If the number is positive, the first bit will always be set because 0.5
141 // <= mantissa < 1, unless mantissa is zero, which we handle specially
142 // above). If the number is negative, we negate the mantissa instead of
143 // flipping all the bits, so in the case of 0.5, the first bit isn't set
144 // so we need to store it explicitly. But for the cost of one extra
145 // leading bit, we can save several trailing 0xff bytes in lots of common
146 // cases.
147 UNITTEST_ASSERT_NOTHROW(negative || (word1 & (1<<26)), 0);
148 if (negative) {
149 // We negate the mantissa for negative numbers, so that the sort order
150 // is reversed (since larger negative numbers should come first).
151 word1 = -word1;
152 if (word2 != 0) ++word1;
153 word2 = -word2;
156 word1 &= 0x03ffffff;
157 next |= static_cast<unsigned char>(word1 >> 24);
158 buf[len++] = next;
159 buf[len++] = char(word1 >> 16);
160 buf[len++] = char(word1 >> 8);
161 buf[len++] = char(word1);
163 buf[len++] = char(word2 >> 24);
164 buf[len++] = char(word2 >> 16);
165 buf[len++] = char(word2 >> 8);
166 buf[len++] = char(word2);
168 // Finally, we can chop off any trailing zero bytes.
169 while (len > 0 && buf[len - 1] == '\0') {
170 --len;
173 return len;
176 /// Get a number from the character at a given position in a string, returning
177 /// 0 if the string isn't long enough.
178 static inline unsigned char
179 numfromstr(const std::string & str, std::string::size_type pos)
181 return (pos < str.size()) ? static_cast<unsigned char>(str[pos]) : '\0';
184 double
185 Xapian::sortable_unserialise(const std::string & value) XAPIAN_NOEXCEPT
187 // Zero.
188 if (value.size() == 1 && value[0] == '\x80') return 0.0;
190 // Positive infinity.
191 if (value.size() == 9 &&
192 memcmp(value.data(), "\xff\xff\xff\xff\xff\xff\xff\xff\xff", 9) == 0) {
193 #ifdef INFINITY
194 // INFINITY is C99. Oddly, it's of type "float" so sanity check in
195 // case it doesn't cast to double as infinity (apparently some
196 // implementations have this problem).
197 if (double(INFINITY) > HUGE_VAL) return INFINITY;
198 #endif
199 return HUGE_VAL;
202 // Negative infinity.
203 if (value.empty()) {
204 #ifdef INFINITY
205 if (double(INFINITY) > HUGE_VAL) return -INFINITY;
206 #endif
207 return -HUGE_VAL;
210 unsigned char first = numfromstr(value, 0);
211 size_t i = 0;
213 first ^= static_cast<unsigned char>(first & 0xc0) >> 1;
214 bool negative = !(first & 0x80);
215 bool exponent_negative = (first & 0x40);
216 bool explen = !(first & 0x20);
217 int exponent = first & 0x1f;
218 if (!explen) {
219 exponent >>= 2;
220 if (negative ^ exponent_negative) exponent ^= 0x07;
221 } else {
222 first = numfromstr(value, ++i);
223 exponent <<= 6;
224 exponent |= (first >> 2);
225 if (negative ^ exponent_negative) exponent ^= 0x07ff;
228 unsigned word1;
229 word1 = (unsigned(first & 0x03) << 24);
230 word1 |= numfromstr(value, ++i) << 16;
231 word1 |= numfromstr(value, ++i) << 8;
232 word1 |= numfromstr(value, ++i);
234 unsigned word2 = 0;
235 if (i < value.size()) {
236 word2 = numfromstr(value, ++i) << 24;
237 word2 |= numfromstr(value, ++i) << 16;
238 word2 |= numfromstr(value, ++i) << 8;
239 word2 |= numfromstr(value, ++i);
242 if (negative) {
243 word1 = -word1;
244 if (word2 != 0) ++word1;
245 word2 = -word2;
246 UNITTEST_ASSERT_NOTHROW((word1 & 0xf0000000) != 0, 0);
247 word1 &= 0x03ffffff;
249 if (!negative) word1 |= 1<<26;
251 double mantissa = 0;
252 if (word2) mantissa = word2 / 4294967296.0; // 1<<32
253 mantissa += word1;
254 mantissa /= 1 << (negative ? 26 : 27);
256 if (exponent_negative) exponent = -exponent;
257 exponent += 8;
259 if (negative) mantissa = -mantissa;
261 // We use scalbn() since it's equivalent to ldexp() when FLT_RADIX == 2
262 // (which we currently assume), except that ldexp() will set errno if the
263 // result overflows or underflows, which isn't really desirable here.
264 return scalbn(mantissa, exponent);