Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / sound / pci / hda / hda_codec.c
blob1005a326e67206124c4d7f4e25bc072567de9d92
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/pci.h>
26 #include <linux/mutex.h>
27 #include <sound/core.h>
28 #include "hda_codec.h"
29 #include <sound/asoundef.h>
30 #include <sound/tlv.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33 #include <sound/hda_hwdep.h>
35 #ifdef CONFIG_SND_HDA_POWER_SAVE
36 /* define this option here to hide as static */
37 static int power_save = CONFIG_SND_HDA_POWER_SAVE_DEFAULT;
38 module_param(power_save, int, 0644);
39 MODULE_PARM_DESC(power_save, "Automatic power-saving timeout "
40 "(in second, 0 = disable).");
41 #endif
44 * vendor / preset table
47 struct hda_vendor_id {
48 unsigned int id;
49 const char *name;
52 /* codec vendor labels */
53 static struct hda_vendor_id hda_vendor_ids[] = {
54 { 0x10ec, "Realtek" },
55 { 0x1057, "Motorola" },
56 { 0x1106, "VIA" },
57 { 0x111d, "IDT" },
58 { 0x11d4, "Analog Devices" },
59 { 0x13f6, "C-Media" },
60 { 0x14f1, "Conexant" },
61 { 0x434d, "C-Media" },
62 { 0x8384, "SigmaTel" },
63 {} /* terminator */
66 /* codec presets */
67 #include "hda_patch.h"
70 #ifdef CONFIG_SND_HDA_POWER_SAVE
71 static void hda_power_work(struct work_struct *work);
72 static void hda_keep_power_on(struct hda_codec *codec);
73 #else
74 static inline void hda_keep_power_on(struct hda_codec *codec) {}
75 #endif
77 /**
78 * snd_hda_codec_read - send a command and get the response
79 * @codec: the HDA codec
80 * @nid: NID to send the command
81 * @direct: direct flag
82 * @verb: the verb to send
83 * @parm: the parameter for the verb
85 * Send a single command and read the corresponding response.
87 * Returns the obtained response value, or -1 for an error.
89 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
90 int direct,
91 unsigned int verb, unsigned int parm)
93 unsigned int res;
94 snd_hda_power_up(codec);
95 mutex_lock(&codec->bus->cmd_mutex);
96 if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
97 res = codec->bus->ops.get_response(codec);
98 else
99 res = (unsigned int)-1;
100 mutex_unlock(&codec->bus->cmd_mutex);
101 snd_hda_power_down(codec);
102 return res;
106 * snd_hda_codec_write - send a single command without waiting for response
107 * @codec: the HDA codec
108 * @nid: NID to send the command
109 * @direct: direct flag
110 * @verb: the verb to send
111 * @parm: the parameter for the verb
113 * Send a single command without waiting for response.
115 * Returns 0 if successful, or a negative error code.
117 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
118 unsigned int verb, unsigned int parm)
120 int err;
121 snd_hda_power_up(codec);
122 mutex_lock(&codec->bus->cmd_mutex);
123 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
124 mutex_unlock(&codec->bus->cmd_mutex);
125 snd_hda_power_down(codec);
126 return err;
130 * snd_hda_sequence_write - sequence writes
131 * @codec: the HDA codec
132 * @seq: VERB array to send
134 * Send the commands sequentially from the given array.
135 * The array must be terminated with NID=0.
137 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
139 for (; seq->nid; seq++)
140 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
144 * snd_hda_get_sub_nodes - get the range of sub nodes
145 * @codec: the HDA codec
146 * @nid: NID to parse
147 * @start_id: the pointer to store the start NID
149 * Parse the NID and store the start NID of its sub-nodes.
150 * Returns the number of sub-nodes.
152 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
153 hda_nid_t *start_id)
155 unsigned int parm;
157 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
158 if (parm == -1)
159 return 0;
160 *start_id = (parm >> 16) & 0x7fff;
161 return (int)(parm & 0x7fff);
165 * snd_hda_get_connections - get connection list
166 * @codec: the HDA codec
167 * @nid: NID to parse
168 * @conn_list: connection list array
169 * @max_conns: max. number of connections to store
171 * Parses the connection list of the given widget and stores the list
172 * of NIDs.
174 * Returns the number of connections, or a negative error code.
176 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
177 hda_nid_t *conn_list, int max_conns)
179 unsigned int parm;
180 int i, conn_len, conns;
181 unsigned int shift, num_elems, mask;
182 hda_nid_t prev_nid;
184 snd_assert(conn_list && max_conns > 0, return -EINVAL);
186 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
187 if (parm & AC_CLIST_LONG) {
188 /* long form */
189 shift = 16;
190 num_elems = 2;
191 } else {
192 /* short form */
193 shift = 8;
194 num_elems = 4;
196 conn_len = parm & AC_CLIST_LENGTH;
197 mask = (1 << (shift-1)) - 1;
199 if (!conn_len)
200 return 0; /* no connection */
202 if (conn_len == 1) {
203 /* single connection */
204 parm = snd_hda_codec_read(codec, nid, 0,
205 AC_VERB_GET_CONNECT_LIST, 0);
206 conn_list[0] = parm & mask;
207 return 1;
210 /* multi connection */
211 conns = 0;
212 prev_nid = 0;
213 for (i = 0; i < conn_len; i++) {
214 int range_val;
215 hda_nid_t val, n;
217 if (i % num_elems == 0)
218 parm = snd_hda_codec_read(codec, nid, 0,
219 AC_VERB_GET_CONNECT_LIST, i);
220 range_val = !!(parm & (1 << (shift-1))); /* ranges */
221 val = parm & mask;
222 parm >>= shift;
223 if (range_val) {
224 /* ranges between the previous and this one */
225 if (!prev_nid || prev_nid >= val) {
226 snd_printk(KERN_WARNING "hda_codec: "
227 "invalid dep_range_val %x:%x\n",
228 prev_nid, val);
229 continue;
231 for (n = prev_nid + 1; n <= val; n++) {
232 if (conns >= max_conns) {
233 snd_printk(KERN_ERR
234 "Too many connections\n");
235 return -EINVAL;
237 conn_list[conns++] = n;
239 } else {
240 if (conns >= max_conns) {
241 snd_printk(KERN_ERR "Too many connections\n");
242 return -EINVAL;
244 conn_list[conns++] = val;
246 prev_nid = val;
248 return conns;
253 * snd_hda_queue_unsol_event - add an unsolicited event to queue
254 * @bus: the BUS
255 * @res: unsolicited event (lower 32bit of RIRB entry)
256 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
258 * Adds the given event to the queue. The events are processed in
259 * the workqueue asynchronously. Call this function in the interrupt
260 * hanlder when RIRB receives an unsolicited event.
262 * Returns 0 if successful, or a negative error code.
264 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
266 struct hda_bus_unsolicited *unsol;
267 unsigned int wp;
269 unsol = bus->unsol;
270 if (!unsol)
271 return 0;
273 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
274 unsol->wp = wp;
276 wp <<= 1;
277 unsol->queue[wp] = res;
278 unsol->queue[wp + 1] = res_ex;
280 schedule_work(&unsol->work);
282 return 0;
286 * process queueud unsolicited events
288 static void process_unsol_events(struct work_struct *work)
290 struct hda_bus_unsolicited *unsol =
291 container_of(work, struct hda_bus_unsolicited, work);
292 struct hda_bus *bus = unsol->bus;
293 struct hda_codec *codec;
294 unsigned int rp, caddr, res;
296 while (unsol->rp != unsol->wp) {
297 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
298 unsol->rp = rp;
299 rp <<= 1;
300 res = unsol->queue[rp];
301 caddr = unsol->queue[rp + 1];
302 if (!(caddr & (1 << 4))) /* no unsolicited event? */
303 continue;
304 codec = bus->caddr_tbl[caddr & 0x0f];
305 if (codec && codec->patch_ops.unsol_event)
306 codec->patch_ops.unsol_event(codec, res);
311 * initialize unsolicited queue
313 static int __devinit init_unsol_queue(struct hda_bus *bus)
315 struct hda_bus_unsolicited *unsol;
317 if (bus->unsol) /* already initialized */
318 return 0;
320 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
321 if (!unsol) {
322 snd_printk(KERN_ERR "hda_codec: "
323 "can't allocate unsolicited queue\n");
324 return -ENOMEM;
326 INIT_WORK(&unsol->work, process_unsol_events);
327 unsol->bus = bus;
328 bus->unsol = unsol;
329 return 0;
333 * destructor
335 static void snd_hda_codec_free(struct hda_codec *codec);
337 static int snd_hda_bus_free(struct hda_bus *bus)
339 struct hda_codec *codec, *n;
341 if (!bus)
342 return 0;
343 if (bus->unsol) {
344 flush_scheduled_work();
345 kfree(bus->unsol);
347 list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
348 snd_hda_codec_free(codec);
350 if (bus->ops.private_free)
351 bus->ops.private_free(bus);
352 kfree(bus);
353 return 0;
356 static int snd_hda_bus_dev_free(struct snd_device *device)
358 struct hda_bus *bus = device->device_data;
359 return snd_hda_bus_free(bus);
363 * snd_hda_bus_new - create a HDA bus
364 * @card: the card entry
365 * @temp: the template for hda_bus information
366 * @busp: the pointer to store the created bus instance
368 * Returns 0 if successful, or a negative error code.
370 int __devinit snd_hda_bus_new(struct snd_card *card,
371 const struct hda_bus_template *temp,
372 struct hda_bus **busp)
374 struct hda_bus *bus;
375 int err;
376 static struct snd_device_ops dev_ops = {
377 .dev_free = snd_hda_bus_dev_free,
380 snd_assert(temp, return -EINVAL);
381 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
383 if (busp)
384 *busp = NULL;
386 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
387 if (bus == NULL) {
388 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
389 return -ENOMEM;
392 bus->card = card;
393 bus->private_data = temp->private_data;
394 bus->pci = temp->pci;
395 bus->modelname = temp->modelname;
396 bus->ops = temp->ops;
398 mutex_init(&bus->cmd_mutex);
399 INIT_LIST_HEAD(&bus->codec_list);
401 err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
402 if (err < 0) {
403 snd_hda_bus_free(bus);
404 return err;
406 if (busp)
407 *busp = bus;
408 return 0;
411 #ifdef CONFIG_SND_HDA_GENERIC
412 #define is_generic_config(codec) \
413 (codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
414 #else
415 #define is_generic_config(codec) 0
416 #endif
419 * find a matching codec preset
421 static const struct hda_codec_preset __devinit *
422 find_codec_preset(struct hda_codec *codec)
424 const struct hda_codec_preset **tbl, *preset;
426 if (is_generic_config(codec))
427 return NULL; /* use the generic parser */
429 for (tbl = hda_preset_tables; *tbl; tbl++) {
430 for (preset = *tbl; preset->id; preset++) {
431 u32 mask = preset->mask;
432 if (preset->afg && preset->afg != codec->afg)
433 continue;
434 if (preset->mfg && preset->mfg != codec->mfg)
435 continue;
436 if (!mask)
437 mask = ~0;
438 if (preset->id == (codec->vendor_id & mask) &&
439 (!preset->rev ||
440 preset->rev == codec->revision_id))
441 return preset;
444 return NULL;
448 * snd_hda_get_codec_name - store the codec name
450 void snd_hda_get_codec_name(struct hda_codec *codec,
451 char *name, int namelen)
453 const struct hda_vendor_id *c;
454 const char *vendor = NULL;
455 u16 vendor_id = codec->vendor_id >> 16;
456 char tmp[16];
458 for (c = hda_vendor_ids; c->id; c++) {
459 if (c->id == vendor_id) {
460 vendor = c->name;
461 break;
464 if (!vendor) {
465 sprintf(tmp, "Generic %04x", vendor_id);
466 vendor = tmp;
468 if (codec->preset && codec->preset->name)
469 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
470 else
471 snprintf(name, namelen, "%s ID %x", vendor,
472 codec->vendor_id & 0xffff);
476 * look for an AFG and MFG nodes
478 static void __devinit setup_fg_nodes(struct hda_codec *codec)
480 int i, total_nodes;
481 hda_nid_t nid;
483 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
484 for (i = 0; i < total_nodes; i++, nid++) {
485 unsigned int func;
486 func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
487 switch (func & 0xff) {
488 case AC_GRP_AUDIO_FUNCTION:
489 codec->afg = nid;
490 break;
491 case AC_GRP_MODEM_FUNCTION:
492 codec->mfg = nid;
493 break;
494 default:
495 break;
501 * read widget caps for each widget and store in cache
503 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
505 int i;
506 hda_nid_t nid;
508 codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
509 &codec->start_nid);
510 codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
511 if (!codec->wcaps)
512 return -ENOMEM;
513 nid = codec->start_nid;
514 for (i = 0; i < codec->num_nodes; i++, nid++)
515 codec->wcaps[i] = snd_hda_param_read(codec, nid,
516 AC_PAR_AUDIO_WIDGET_CAP);
517 return 0;
521 static void init_hda_cache(struct hda_cache_rec *cache,
522 unsigned int record_size);
523 static void free_hda_cache(struct hda_cache_rec *cache);
526 * codec destructor
528 static void snd_hda_codec_free(struct hda_codec *codec)
530 if (!codec)
531 return;
532 #ifdef CONFIG_SND_HDA_POWER_SAVE
533 cancel_delayed_work(&codec->power_work);
534 flush_scheduled_work();
535 #endif
536 list_del(&codec->list);
537 codec->bus->caddr_tbl[codec->addr] = NULL;
538 if (codec->patch_ops.free)
539 codec->patch_ops.free(codec);
540 free_hda_cache(&codec->amp_cache);
541 free_hda_cache(&codec->cmd_cache);
542 kfree(codec->wcaps);
543 kfree(codec);
547 * snd_hda_codec_new - create a HDA codec
548 * @bus: the bus to assign
549 * @codec_addr: the codec address
550 * @codecp: the pointer to store the generated codec
552 * Returns 0 if successful, or a negative error code.
554 int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
555 struct hda_codec **codecp)
557 struct hda_codec *codec;
558 char component[13];
559 int err;
561 snd_assert(bus, return -EINVAL);
562 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
564 if (bus->caddr_tbl[codec_addr]) {
565 snd_printk(KERN_ERR "hda_codec: "
566 "address 0x%x is already occupied\n", codec_addr);
567 return -EBUSY;
570 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
571 if (codec == NULL) {
572 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
573 return -ENOMEM;
576 codec->bus = bus;
577 codec->addr = codec_addr;
578 mutex_init(&codec->spdif_mutex);
579 init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info));
580 init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head));
582 #ifdef CONFIG_SND_HDA_POWER_SAVE
583 INIT_DELAYED_WORK(&codec->power_work, hda_power_work);
584 /* snd_hda_codec_new() marks the codec as power-up, and leave it as is.
585 * the caller has to power down appropriatley after initialization
586 * phase.
588 hda_keep_power_on(codec);
589 #endif
591 list_add_tail(&codec->list, &bus->codec_list);
592 bus->caddr_tbl[codec_addr] = codec;
594 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
595 AC_PAR_VENDOR_ID);
596 if (codec->vendor_id == -1)
597 /* read again, hopefully the access method was corrected
598 * in the last read...
600 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
601 AC_PAR_VENDOR_ID);
602 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
603 AC_PAR_SUBSYSTEM_ID);
604 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
605 AC_PAR_REV_ID);
607 setup_fg_nodes(codec);
608 if (!codec->afg && !codec->mfg) {
609 snd_printdd("hda_codec: no AFG or MFG node found\n");
610 snd_hda_codec_free(codec);
611 return -ENODEV;
614 if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
615 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
616 snd_hda_codec_free(codec);
617 return -ENOMEM;
620 if (!codec->subsystem_id) {
621 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
622 codec->subsystem_id =
623 snd_hda_codec_read(codec, nid, 0,
624 AC_VERB_GET_SUBSYSTEM_ID, 0);
627 codec->preset = find_codec_preset(codec);
628 /* audio codec should override the mixer name */
629 if (codec->afg || !*bus->card->mixername)
630 snd_hda_get_codec_name(codec, bus->card->mixername,
631 sizeof(bus->card->mixername));
633 if (is_generic_config(codec)) {
634 err = snd_hda_parse_generic_codec(codec);
635 goto patched;
637 if (codec->preset && codec->preset->patch) {
638 err = codec->preset->patch(codec);
639 goto patched;
642 /* call the default parser */
643 err = snd_hda_parse_generic_codec(codec);
644 if (err < 0)
645 printk(KERN_ERR "hda-codec: No codec parser is available\n");
647 patched:
648 if (err < 0) {
649 snd_hda_codec_free(codec);
650 return err;
653 if (codec->patch_ops.unsol_event)
654 init_unsol_queue(bus);
656 snd_hda_codec_proc_new(codec);
657 #ifdef CONFIG_SND_HDA_HWDEP
658 snd_hda_create_hwdep(codec);
659 #endif
661 sprintf(component, "HDA:%08x", codec->vendor_id);
662 snd_component_add(codec->bus->card, component);
664 if (codecp)
665 *codecp = codec;
666 return 0;
670 * snd_hda_codec_setup_stream - set up the codec for streaming
671 * @codec: the CODEC to set up
672 * @nid: the NID to set up
673 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
674 * @channel_id: channel id to pass, zero based.
675 * @format: stream format.
677 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
678 u32 stream_tag,
679 int channel_id, int format)
681 if (!nid)
682 return;
684 snd_printdd("hda_codec_setup_stream: "
685 "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
686 nid, stream_tag, channel_id, format);
687 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
688 (stream_tag << 4) | channel_id);
689 msleep(1);
690 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
694 * amp access functions
697 /* FIXME: more better hash key? */
698 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
699 #define INFO_AMP_CAPS (1<<0)
700 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
702 /* initialize the hash table */
703 static void __devinit init_hda_cache(struct hda_cache_rec *cache,
704 unsigned int record_size)
706 memset(cache, 0, sizeof(*cache));
707 memset(cache->hash, 0xff, sizeof(cache->hash));
708 cache->record_size = record_size;
711 static void free_hda_cache(struct hda_cache_rec *cache)
713 kfree(cache->buffer);
716 /* query the hash. allocate an entry if not found. */
717 static struct hda_cache_head *get_alloc_hash(struct hda_cache_rec *cache,
718 u32 key)
720 u16 idx = key % (u16)ARRAY_SIZE(cache->hash);
721 u16 cur = cache->hash[idx];
722 struct hda_cache_head *info;
724 while (cur != 0xffff) {
725 info = (struct hda_cache_head *)(cache->buffer +
726 cur * cache->record_size);
727 if (info->key == key)
728 return info;
729 cur = info->next;
732 /* add a new hash entry */
733 if (cache->num_entries >= cache->size) {
734 /* reallocate the array */
735 unsigned int new_size = cache->size + 64;
736 void *new_buffer;
737 new_buffer = kcalloc(new_size, cache->record_size, GFP_KERNEL);
738 if (!new_buffer) {
739 snd_printk(KERN_ERR "hda_codec: "
740 "can't malloc amp_info\n");
741 return NULL;
743 if (cache->buffer) {
744 memcpy(new_buffer, cache->buffer,
745 cache->size * cache->record_size);
746 kfree(cache->buffer);
748 cache->size = new_size;
749 cache->buffer = new_buffer;
751 cur = cache->num_entries++;
752 info = (struct hda_cache_head *)(cache->buffer +
753 cur * cache->record_size);
754 info->key = key;
755 info->val = 0;
756 info->next = cache->hash[idx];
757 cache->hash[idx] = cur;
759 return info;
762 /* query and allocate an amp hash entry */
763 static inline struct hda_amp_info *
764 get_alloc_amp_hash(struct hda_codec *codec, u32 key)
766 return (struct hda_amp_info *)get_alloc_hash(&codec->amp_cache, key);
770 * query AMP capabilities for the given widget and direction
772 u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
774 struct hda_amp_info *info;
776 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
777 if (!info)
778 return 0;
779 if (!(info->head.val & INFO_AMP_CAPS)) {
780 if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
781 nid = codec->afg;
782 info->amp_caps = snd_hda_param_read(codec, nid,
783 direction == HDA_OUTPUT ?
784 AC_PAR_AMP_OUT_CAP :
785 AC_PAR_AMP_IN_CAP);
786 if (info->amp_caps)
787 info->head.val |= INFO_AMP_CAPS;
789 return info->amp_caps;
792 int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
793 unsigned int caps)
795 struct hda_amp_info *info;
797 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, dir, 0));
798 if (!info)
799 return -EINVAL;
800 info->amp_caps = caps;
801 info->head.val |= INFO_AMP_CAPS;
802 return 0;
806 * read the current volume to info
807 * if the cache exists, read the cache value.
809 static unsigned int get_vol_mute(struct hda_codec *codec,
810 struct hda_amp_info *info, hda_nid_t nid,
811 int ch, int direction, int index)
813 u32 val, parm;
815 if (info->head.val & INFO_AMP_VOL(ch))
816 return info->vol[ch];
818 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
819 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
820 parm |= index;
821 val = snd_hda_codec_read(codec, nid, 0,
822 AC_VERB_GET_AMP_GAIN_MUTE, parm);
823 info->vol[ch] = val & 0xff;
824 info->head.val |= INFO_AMP_VOL(ch);
825 return info->vol[ch];
829 * write the current volume in info to the h/w and update the cache
831 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
832 hda_nid_t nid, int ch, int direction, int index,
833 int val)
835 u32 parm;
837 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
838 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
839 parm |= index << AC_AMP_SET_INDEX_SHIFT;
840 parm |= val;
841 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
842 info->vol[ch] = val;
846 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
848 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
849 int direction, int index)
851 struct hda_amp_info *info;
852 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
853 if (!info)
854 return 0;
855 return get_vol_mute(codec, info, nid, ch, direction, index);
859 * update the AMP value, mask = bit mask to set, val = the value
861 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
862 int direction, int idx, int mask, int val)
864 struct hda_amp_info *info;
866 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
867 if (!info)
868 return 0;
869 val &= mask;
870 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
871 if (info->vol[ch] == val)
872 return 0;
873 put_vol_mute(codec, info, nid, ch, direction, idx, val);
874 return 1;
878 * update the AMP stereo with the same mask and value
880 int snd_hda_codec_amp_stereo(struct hda_codec *codec, hda_nid_t nid,
881 int direction, int idx, int mask, int val)
883 int ch, ret = 0;
884 for (ch = 0; ch < 2; ch++)
885 ret |= snd_hda_codec_amp_update(codec, nid, ch, direction,
886 idx, mask, val);
887 return ret;
890 #ifdef SND_HDA_NEEDS_RESUME
891 /* resume the all amp commands from the cache */
892 void snd_hda_codec_resume_amp(struct hda_codec *codec)
894 struct hda_amp_info *buffer = codec->amp_cache.buffer;
895 int i;
897 for (i = 0; i < codec->amp_cache.size; i++, buffer++) {
898 u32 key = buffer->head.key;
899 hda_nid_t nid;
900 unsigned int idx, dir, ch;
901 if (!key)
902 continue;
903 nid = key & 0xff;
904 idx = (key >> 16) & 0xff;
905 dir = (key >> 24) & 0xff;
906 for (ch = 0; ch < 2; ch++) {
907 if (!(buffer->head.val & INFO_AMP_VOL(ch)))
908 continue;
909 put_vol_mute(codec, buffer, nid, ch, dir, idx,
910 buffer->vol[ch]);
914 #endif /* SND_HDA_NEEDS_RESUME */
917 * AMP control callbacks
919 /* retrieve parameters from private_value */
920 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
921 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
922 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
923 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
925 /* volume */
926 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
927 struct snd_ctl_elem_info *uinfo)
929 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
930 u16 nid = get_amp_nid(kcontrol);
931 u8 chs = get_amp_channels(kcontrol);
932 int dir = get_amp_direction(kcontrol);
933 u32 caps;
935 caps = query_amp_caps(codec, nid, dir);
936 /* num steps */
937 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
938 if (!caps) {
939 printk(KERN_WARNING "hda_codec: "
940 "num_steps = 0 for NID=0x%x (ctl = %s)\n", nid,
941 kcontrol->id.name);
942 return -EINVAL;
944 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
945 uinfo->count = chs == 3 ? 2 : 1;
946 uinfo->value.integer.min = 0;
947 uinfo->value.integer.max = caps;
948 return 0;
951 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
952 struct snd_ctl_elem_value *ucontrol)
954 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
955 hda_nid_t nid = get_amp_nid(kcontrol);
956 int chs = get_amp_channels(kcontrol);
957 int dir = get_amp_direction(kcontrol);
958 int idx = get_amp_index(kcontrol);
959 long *valp = ucontrol->value.integer.value;
961 if (chs & 1)
962 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx)
963 & HDA_AMP_VOLMASK;
964 if (chs & 2)
965 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx)
966 & HDA_AMP_VOLMASK;
967 return 0;
970 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
971 struct snd_ctl_elem_value *ucontrol)
973 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
974 hda_nid_t nid = get_amp_nid(kcontrol);
975 int chs = get_amp_channels(kcontrol);
976 int dir = get_amp_direction(kcontrol);
977 int idx = get_amp_index(kcontrol);
978 long *valp = ucontrol->value.integer.value;
979 int change = 0;
981 snd_hda_power_up(codec);
982 if (chs & 1) {
983 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
984 0x7f, *valp);
985 valp++;
987 if (chs & 2)
988 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
989 0x7f, *valp);
990 snd_hda_power_down(codec);
991 return change;
994 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
995 unsigned int size, unsigned int __user *_tlv)
997 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
998 hda_nid_t nid = get_amp_nid(kcontrol);
999 int dir = get_amp_direction(kcontrol);
1000 u32 caps, val1, val2;
1002 if (size < 4 * sizeof(unsigned int))
1003 return -ENOMEM;
1004 caps = query_amp_caps(codec, nid, dir);
1005 val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
1006 val2 = (val2 + 1) * 25;
1007 val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
1008 val1 = ((int)val1) * ((int)val2);
1009 if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
1010 return -EFAULT;
1011 if (put_user(2 * sizeof(unsigned int), _tlv + 1))
1012 return -EFAULT;
1013 if (put_user(val1, _tlv + 2))
1014 return -EFAULT;
1015 if (put_user(val2, _tlv + 3))
1016 return -EFAULT;
1017 return 0;
1021 * set (static) TLV for virtual master volume; recalculated as max 0dB
1023 void snd_hda_set_vmaster_tlv(struct hda_codec *codec, hda_nid_t nid, int dir,
1024 unsigned int *tlv)
1026 u32 caps;
1027 int nums, step;
1029 caps = query_amp_caps(codec, nid, dir);
1030 nums = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
1031 step = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
1032 step = (step + 1) * 25;
1033 tlv[0] = SNDRV_CTL_TLVT_DB_SCALE;
1034 tlv[1] = 2 * sizeof(unsigned int);
1035 tlv[2] = -nums * step;
1036 tlv[3] = step;
1039 /* find a mixer control element with the given name */
1040 struct snd_kcontrol *snd_hda_find_mixer_ctl(struct hda_codec *codec,
1041 const char *name)
1043 struct snd_ctl_elem_id id;
1044 memset(&id, 0, sizeof(id));
1045 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
1046 strcpy(id.name, name);
1047 return snd_ctl_find_id(codec->bus->card, &id);
1050 /* create a virtual master control and add slaves */
1051 int snd_hda_add_vmaster(struct hda_codec *codec, char *name,
1052 unsigned int *tlv, const char **slaves)
1054 struct snd_kcontrol *kctl;
1055 const char **s;
1056 int err;
1058 <<<<<<< HEAD:sound/pci/hda/hda_codec.c
1059 =======
1060 for (s = slaves; *s && !snd_hda_find_mixer_ctl(codec, *s); s++)
1062 if (!*s) {
1063 snd_printdd("No slave found for %s\n", name);
1064 return 0;
1066 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:sound/pci/hda/hda_codec.c
1067 kctl = snd_ctl_make_virtual_master(name, tlv);
1068 if (!kctl)
1069 return -ENOMEM;
1070 err = snd_ctl_add(codec->bus->card, kctl);
1071 if (err < 0)
1072 return err;
1074 for (s = slaves; *s; s++) {
1075 struct snd_kcontrol *sctl;
1077 sctl = snd_hda_find_mixer_ctl(codec, *s);
1078 if (!sctl) {
1079 snd_printdd("Cannot find slave %s, skipped\n", *s);
1080 continue;
1082 err = snd_ctl_add_slave(kctl, sctl);
1083 if (err < 0)
1084 return err;
1086 return 0;
1089 /* switch */
1090 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
1091 struct snd_ctl_elem_info *uinfo)
1093 int chs = get_amp_channels(kcontrol);
1095 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1096 uinfo->count = chs == 3 ? 2 : 1;
1097 uinfo->value.integer.min = 0;
1098 uinfo->value.integer.max = 1;
1099 return 0;
1102 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
1103 struct snd_ctl_elem_value *ucontrol)
1105 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1106 hda_nid_t nid = get_amp_nid(kcontrol);
1107 int chs = get_amp_channels(kcontrol);
1108 int dir = get_amp_direction(kcontrol);
1109 int idx = get_amp_index(kcontrol);
1110 long *valp = ucontrol->value.integer.value;
1112 if (chs & 1)
1113 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
1114 HDA_AMP_MUTE) ? 0 : 1;
1115 if (chs & 2)
1116 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
1117 HDA_AMP_MUTE) ? 0 : 1;
1118 return 0;
1121 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
1122 struct snd_ctl_elem_value *ucontrol)
1124 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1125 hda_nid_t nid = get_amp_nid(kcontrol);
1126 int chs = get_amp_channels(kcontrol);
1127 int dir = get_amp_direction(kcontrol);
1128 int idx = get_amp_index(kcontrol);
1129 long *valp = ucontrol->value.integer.value;
1130 int change = 0;
1132 snd_hda_power_up(codec);
1133 if (chs & 1) {
1134 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
1135 HDA_AMP_MUTE,
1136 *valp ? 0 : HDA_AMP_MUTE);
1137 valp++;
1139 if (chs & 2)
1140 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
1141 HDA_AMP_MUTE,
1142 *valp ? 0 : HDA_AMP_MUTE);
1143 #ifdef CONFIG_SND_HDA_POWER_SAVE
1144 if (codec->patch_ops.check_power_status)
1145 codec->patch_ops.check_power_status(codec, nid);
1146 #endif
1147 snd_hda_power_down(codec);
1148 return change;
1152 * bound volume controls
1154 * bind multiple volumes (# indices, from 0)
1157 #define AMP_VAL_IDX_SHIFT 19
1158 #define AMP_VAL_IDX_MASK (0x0f<<19)
1160 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
1161 struct snd_ctl_elem_value *ucontrol)
1163 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1164 unsigned long pval;
1165 int err;
1167 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1168 pval = kcontrol->private_value;
1169 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
1170 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
1171 kcontrol->private_value = pval;
1172 mutex_unlock(&codec->spdif_mutex);
1173 return err;
1176 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
1177 struct snd_ctl_elem_value *ucontrol)
1179 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1180 unsigned long pval;
1181 int i, indices, err = 0, change = 0;
1183 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1184 pval = kcontrol->private_value;
1185 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
1186 for (i = 0; i < indices; i++) {
1187 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
1188 (i << AMP_VAL_IDX_SHIFT);
1189 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
1190 if (err < 0)
1191 break;
1192 change |= err;
1194 kcontrol->private_value = pval;
1195 mutex_unlock(&codec->spdif_mutex);
1196 return err < 0 ? err : change;
1200 * generic bound volume/swtich controls
1202 int snd_hda_mixer_bind_ctls_info(struct snd_kcontrol *kcontrol,
1203 struct snd_ctl_elem_info *uinfo)
1205 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1206 struct hda_bind_ctls *c;
1207 int err;
1209 <<<<<<< HEAD:sound/pci/hda/hda_codec.c
1210 c = (struct hda_bind_ctls *)kcontrol->private_value;
1211 =======
1212 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:sound/pci/hda/hda_codec.c
1213 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1214 <<<<<<< HEAD:sound/pci/hda/hda_codec.c
1215 =======
1216 c = (struct hda_bind_ctls *)kcontrol->private_value;
1217 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:sound/pci/hda/hda_codec.c
1218 kcontrol->private_value = *c->values;
1219 err = c->ops->info(kcontrol, uinfo);
1220 kcontrol->private_value = (long)c;
1221 mutex_unlock(&codec->spdif_mutex);
1222 return err;
1225 int snd_hda_mixer_bind_ctls_get(struct snd_kcontrol *kcontrol,
1226 struct snd_ctl_elem_value *ucontrol)
1228 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1229 struct hda_bind_ctls *c;
1230 int err;
1232 <<<<<<< HEAD:sound/pci/hda/hda_codec.c
1233 c = (struct hda_bind_ctls *)kcontrol->private_value;
1234 =======
1235 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:sound/pci/hda/hda_codec.c
1236 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1237 <<<<<<< HEAD:sound/pci/hda/hda_codec.c
1238 =======
1239 c = (struct hda_bind_ctls *)kcontrol->private_value;
1240 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:sound/pci/hda/hda_codec.c
1241 kcontrol->private_value = *c->values;
1242 err = c->ops->get(kcontrol, ucontrol);
1243 kcontrol->private_value = (long)c;
1244 mutex_unlock(&codec->spdif_mutex);
1245 return err;
1248 int snd_hda_mixer_bind_ctls_put(struct snd_kcontrol *kcontrol,
1249 struct snd_ctl_elem_value *ucontrol)
1251 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1252 struct hda_bind_ctls *c;
1253 unsigned long *vals;
1254 int err = 0, change = 0;
1256 <<<<<<< HEAD:sound/pci/hda/hda_codec.c
1257 c = (struct hda_bind_ctls *)kcontrol->private_value;
1258 =======
1259 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:sound/pci/hda/hda_codec.c
1260 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1261 <<<<<<< HEAD:sound/pci/hda/hda_codec.c
1262 =======
1263 c = (struct hda_bind_ctls *)kcontrol->private_value;
1264 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:sound/pci/hda/hda_codec.c
1265 for (vals = c->values; *vals; vals++) {
1266 kcontrol->private_value = *vals;
1267 err = c->ops->put(kcontrol, ucontrol);
1268 if (err < 0)
1269 break;
1270 change |= err;
1272 kcontrol->private_value = (long)c;
1273 mutex_unlock(&codec->spdif_mutex);
1274 return err < 0 ? err : change;
1277 int snd_hda_mixer_bind_tlv(struct snd_kcontrol *kcontrol, int op_flag,
1278 unsigned int size, unsigned int __user *tlv)
1280 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1281 struct hda_bind_ctls *c;
1282 int err;
1284 <<<<<<< HEAD:sound/pci/hda/hda_codec.c
1285 c = (struct hda_bind_ctls *)kcontrol->private_value;
1286 =======
1287 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:sound/pci/hda/hda_codec.c
1288 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1289 <<<<<<< HEAD:sound/pci/hda/hda_codec.c
1290 =======
1291 c = (struct hda_bind_ctls *)kcontrol->private_value;
1292 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:sound/pci/hda/hda_codec.c
1293 kcontrol->private_value = *c->values;
1294 err = c->ops->tlv(kcontrol, op_flag, size, tlv);
1295 kcontrol->private_value = (long)c;
1296 mutex_unlock(&codec->spdif_mutex);
1297 return err;
1300 struct hda_ctl_ops snd_hda_bind_vol = {
1301 .info = snd_hda_mixer_amp_volume_info,
1302 .get = snd_hda_mixer_amp_volume_get,
1303 .put = snd_hda_mixer_amp_volume_put,
1304 .tlv = snd_hda_mixer_amp_tlv
1307 struct hda_ctl_ops snd_hda_bind_sw = {
1308 .info = snd_hda_mixer_amp_switch_info,
1309 .get = snd_hda_mixer_amp_switch_get,
1310 .put = snd_hda_mixer_amp_switch_put,
1311 .tlv = snd_hda_mixer_amp_tlv
1315 * SPDIF out controls
1318 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
1319 struct snd_ctl_elem_info *uinfo)
1321 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1322 uinfo->count = 1;
1323 return 0;
1326 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
1327 struct snd_ctl_elem_value *ucontrol)
1329 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1330 IEC958_AES0_NONAUDIO |
1331 IEC958_AES0_CON_EMPHASIS_5015 |
1332 IEC958_AES0_CON_NOT_COPYRIGHT;
1333 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
1334 IEC958_AES1_CON_ORIGINAL;
1335 return 0;
1338 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
1339 struct snd_ctl_elem_value *ucontrol)
1341 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1342 IEC958_AES0_NONAUDIO |
1343 IEC958_AES0_PRO_EMPHASIS_5015;
1344 return 0;
1347 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
1348 struct snd_ctl_elem_value *ucontrol)
1350 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1352 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1353 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1354 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1355 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1357 return 0;
1360 /* convert from SPDIF status bits to HDA SPDIF bits
1361 * bit 0 (DigEn) is always set zero (to be filled later)
1363 static unsigned short convert_from_spdif_status(unsigned int sbits)
1365 unsigned short val = 0;
1367 if (sbits & IEC958_AES0_PROFESSIONAL)
1368 val |= AC_DIG1_PROFESSIONAL;
1369 if (sbits & IEC958_AES0_NONAUDIO)
1370 val |= AC_DIG1_NONAUDIO;
1371 if (sbits & IEC958_AES0_PROFESSIONAL) {
1372 if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
1373 IEC958_AES0_PRO_EMPHASIS_5015)
1374 val |= AC_DIG1_EMPHASIS;
1375 } else {
1376 if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
1377 IEC958_AES0_CON_EMPHASIS_5015)
1378 val |= AC_DIG1_EMPHASIS;
1379 if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1380 val |= AC_DIG1_COPYRIGHT;
1381 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1382 val |= AC_DIG1_LEVEL;
1383 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1385 return val;
1388 /* convert to SPDIF status bits from HDA SPDIF bits
1390 static unsigned int convert_to_spdif_status(unsigned short val)
1392 unsigned int sbits = 0;
1394 if (val & AC_DIG1_NONAUDIO)
1395 sbits |= IEC958_AES0_NONAUDIO;
1396 if (val & AC_DIG1_PROFESSIONAL)
1397 sbits |= IEC958_AES0_PROFESSIONAL;
1398 if (sbits & IEC958_AES0_PROFESSIONAL) {
1399 if (sbits & AC_DIG1_EMPHASIS)
1400 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1401 } else {
1402 if (val & AC_DIG1_EMPHASIS)
1403 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1404 if (!(val & AC_DIG1_COPYRIGHT))
1405 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1406 if (val & AC_DIG1_LEVEL)
1407 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1408 sbits |= val & (0x7f << 8);
1410 return sbits;
1413 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
1414 struct snd_ctl_elem_value *ucontrol)
1416 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1417 hda_nid_t nid = kcontrol->private_value;
1418 unsigned short val;
1419 int change;
1421 mutex_lock(&codec->spdif_mutex);
1422 codec->spdif_status = ucontrol->value.iec958.status[0] |
1423 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1424 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1425 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1426 val = convert_from_spdif_status(codec->spdif_status);
1427 val |= codec->spdif_ctls & 1;
1428 change = codec->spdif_ctls != val;
1429 codec->spdif_ctls = val;
1431 if (change) {
1432 snd_hda_codec_write_cache(codec, nid, 0,
1433 AC_VERB_SET_DIGI_CONVERT_1,
1434 val & 0xff);
1435 snd_hda_codec_write_cache(codec, nid, 0,
1436 AC_VERB_SET_DIGI_CONVERT_2,
1437 val >> 8);
1440 mutex_unlock(&codec->spdif_mutex);
1441 return change;
1444 #define snd_hda_spdif_out_switch_info snd_ctl_boolean_mono_info
1446 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
1447 struct snd_ctl_elem_value *ucontrol)
1449 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1451 ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
1452 return 0;
1455 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
1456 struct snd_ctl_elem_value *ucontrol)
1458 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1459 hda_nid_t nid = kcontrol->private_value;
1460 unsigned short val;
1461 int change;
1463 mutex_lock(&codec->spdif_mutex);
1464 val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
1465 if (ucontrol->value.integer.value[0])
1466 val |= AC_DIG1_ENABLE;
1467 change = codec->spdif_ctls != val;
1468 if (change) {
1469 codec->spdif_ctls = val;
1470 snd_hda_codec_write_cache(codec, nid, 0,
1471 AC_VERB_SET_DIGI_CONVERT_1,
1472 val & 0xff);
1473 /* unmute amp switch (if any) */
1474 if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
1475 (val & AC_DIG1_ENABLE))
1476 snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
1477 HDA_AMP_MUTE, 0);
1479 mutex_unlock(&codec->spdif_mutex);
1480 return change;
1483 static struct snd_kcontrol_new dig_mixes[] = {
1485 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1486 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1487 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1488 .info = snd_hda_spdif_mask_info,
1489 .get = snd_hda_spdif_cmask_get,
1492 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1493 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1494 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1495 .info = snd_hda_spdif_mask_info,
1496 .get = snd_hda_spdif_pmask_get,
1499 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1500 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1501 .info = snd_hda_spdif_mask_info,
1502 .get = snd_hda_spdif_default_get,
1503 .put = snd_hda_spdif_default_put,
1506 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1507 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1508 .info = snd_hda_spdif_out_switch_info,
1509 .get = snd_hda_spdif_out_switch_get,
1510 .put = snd_hda_spdif_out_switch_put,
1512 { } /* end */
1516 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1517 * @codec: the HDA codec
1518 * @nid: audio out widget NID
1520 * Creates controls related with the SPDIF output.
1521 * Called from each patch supporting the SPDIF out.
1523 * Returns 0 if successful, or a negative error code.
1525 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1527 int err;
1528 struct snd_kcontrol *kctl;
1529 struct snd_kcontrol_new *dig_mix;
1531 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1532 kctl = snd_ctl_new1(dig_mix, codec);
1533 kctl->private_value = nid;
1534 err = snd_ctl_add(codec->bus->card, kctl);
1535 if (err < 0)
1536 return err;
1538 codec->spdif_ctls =
1539 snd_hda_codec_read(codec, nid, 0,
1540 AC_VERB_GET_DIGI_CONVERT_1, 0);
1541 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1542 return 0;
1546 * SPDIF input
1549 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1551 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
1552 struct snd_ctl_elem_value *ucontrol)
1554 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1556 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1557 return 0;
1560 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
1561 struct snd_ctl_elem_value *ucontrol)
1563 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1564 hda_nid_t nid = kcontrol->private_value;
1565 unsigned int val = !!ucontrol->value.integer.value[0];
1566 int change;
1568 mutex_lock(&codec->spdif_mutex);
1569 change = codec->spdif_in_enable != val;
1570 if (change) {
1571 codec->spdif_in_enable = val;
1572 snd_hda_codec_write_cache(codec, nid, 0,
1573 AC_VERB_SET_DIGI_CONVERT_1, val);
1575 mutex_unlock(&codec->spdif_mutex);
1576 return change;
1579 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
1580 struct snd_ctl_elem_value *ucontrol)
1582 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1583 hda_nid_t nid = kcontrol->private_value;
1584 unsigned short val;
1585 unsigned int sbits;
1587 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0);
1588 sbits = convert_to_spdif_status(val);
1589 ucontrol->value.iec958.status[0] = sbits;
1590 ucontrol->value.iec958.status[1] = sbits >> 8;
1591 ucontrol->value.iec958.status[2] = sbits >> 16;
1592 ucontrol->value.iec958.status[3] = sbits >> 24;
1593 return 0;
1596 static struct snd_kcontrol_new dig_in_ctls[] = {
1598 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1599 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1600 .info = snd_hda_spdif_in_switch_info,
1601 .get = snd_hda_spdif_in_switch_get,
1602 .put = snd_hda_spdif_in_switch_put,
1605 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1606 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1607 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1608 .info = snd_hda_spdif_mask_info,
1609 .get = snd_hda_spdif_in_status_get,
1611 { } /* end */
1615 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1616 * @codec: the HDA codec
1617 * @nid: audio in widget NID
1619 * Creates controls related with the SPDIF input.
1620 * Called from each patch supporting the SPDIF in.
1622 * Returns 0 if successful, or a negative error code.
1624 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1626 int err;
1627 struct snd_kcontrol *kctl;
1628 struct snd_kcontrol_new *dig_mix;
1630 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1631 kctl = snd_ctl_new1(dig_mix, codec);
1632 kctl->private_value = nid;
1633 err = snd_ctl_add(codec->bus->card, kctl);
1634 if (err < 0)
1635 return err;
1637 codec->spdif_in_enable =
1638 snd_hda_codec_read(codec, nid, 0,
1639 AC_VERB_GET_DIGI_CONVERT_1, 0) &
1640 AC_DIG1_ENABLE;
1641 return 0;
1644 #ifdef SND_HDA_NEEDS_RESUME
1646 * command cache
1649 /* build a 32bit cache key with the widget id and the command parameter */
1650 #define build_cmd_cache_key(nid, verb) ((verb << 8) | nid)
1651 #define get_cmd_cache_nid(key) ((key) & 0xff)
1652 #define get_cmd_cache_cmd(key) (((key) >> 8) & 0xffff)
1655 * snd_hda_codec_write_cache - send a single command with caching
1656 * @codec: the HDA codec
1657 * @nid: NID to send the command
1658 * @direct: direct flag
1659 * @verb: the verb to send
1660 * @parm: the parameter for the verb
1662 * Send a single command without waiting for response.
1664 * Returns 0 if successful, or a negative error code.
1666 int snd_hda_codec_write_cache(struct hda_codec *codec, hda_nid_t nid,
1667 int direct, unsigned int verb, unsigned int parm)
1669 int err;
1670 snd_hda_power_up(codec);
1671 mutex_lock(&codec->bus->cmd_mutex);
1672 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
1673 if (!err) {
1674 struct hda_cache_head *c;
1675 u32 key = build_cmd_cache_key(nid, verb);
1676 c = get_alloc_hash(&codec->cmd_cache, key);
1677 if (c)
1678 c->val = parm;
1680 mutex_unlock(&codec->bus->cmd_mutex);
1681 snd_hda_power_down(codec);
1682 return err;
1685 /* resume the all commands from the cache */
1686 void snd_hda_codec_resume_cache(struct hda_codec *codec)
1688 struct hda_cache_head *buffer = codec->cmd_cache.buffer;
1689 int i;
1691 for (i = 0; i < codec->cmd_cache.size; i++, buffer++) {
1692 u32 key = buffer->key;
1693 if (!key)
1694 continue;
1695 snd_hda_codec_write(codec, get_cmd_cache_nid(key), 0,
1696 get_cmd_cache_cmd(key), buffer->val);
1701 * snd_hda_sequence_write_cache - sequence writes with caching
1702 * @codec: the HDA codec
1703 * @seq: VERB array to send
1705 * Send the commands sequentially from the given array.
1706 * Thte commands are recorded on cache for power-save and resume.
1707 * The array must be terminated with NID=0.
1709 void snd_hda_sequence_write_cache(struct hda_codec *codec,
1710 const struct hda_verb *seq)
1712 for (; seq->nid; seq++)
1713 snd_hda_codec_write_cache(codec, seq->nid, 0, seq->verb,
1714 seq->param);
1716 #endif /* SND_HDA_NEEDS_RESUME */
1719 * set power state of the codec
1721 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1722 unsigned int power_state)
1724 hda_nid_t nid;
1725 int i;
1727 snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1728 power_state);
1729 msleep(10); /* partial workaround for "azx_get_response timeout" */
1731 nid = codec->start_nid;
1732 for (i = 0; i < codec->num_nodes; i++, nid++) {
1733 unsigned int wcaps = get_wcaps(codec, nid);
1734 if (wcaps & AC_WCAP_POWER) {
1735 unsigned int wid_type = (wcaps & AC_WCAP_TYPE) >>
1736 AC_WCAP_TYPE_SHIFT;
1737 if (wid_type == AC_WID_PIN) {
1738 unsigned int pincap;
1740 * don't power down the widget if it controls
1741 * eapd and EAPD_BTLENABLE is set.
1743 pincap = snd_hda_param_read(codec, nid,
1744 AC_PAR_PIN_CAP);
1745 if (pincap & AC_PINCAP_EAPD) {
1746 int eapd = snd_hda_codec_read(codec,
1747 nid, 0,
1748 AC_VERB_GET_EAPD_BTLENABLE, 0);
1749 eapd &= 0x02;
1750 if (power_state == AC_PWRST_D3 && eapd)
1751 continue;
1754 snd_hda_codec_write(codec, nid, 0,
1755 AC_VERB_SET_POWER_STATE,
1756 power_state);
1760 if (power_state == AC_PWRST_D0) {
1761 unsigned long end_time;
1762 int state;
1763 msleep(10);
1764 /* wait until the codec reachs to D0 */
1765 end_time = jiffies + msecs_to_jiffies(500);
1766 do {
1767 state = snd_hda_codec_read(codec, fg, 0,
1768 AC_VERB_GET_POWER_STATE, 0);
1769 if (state == power_state)
1770 break;
1771 msleep(1);
1772 } while (time_after_eq(end_time, jiffies));
1776 #ifdef SND_HDA_NEEDS_RESUME
1778 * call suspend and power-down; used both from PM and power-save
1780 static void hda_call_codec_suspend(struct hda_codec *codec)
1782 if (codec->patch_ops.suspend)
1783 codec->patch_ops.suspend(codec, PMSG_SUSPEND);
1784 hda_set_power_state(codec,
1785 codec->afg ? codec->afg : codec->mfg,
1786 AC_PWRST_D3);
1787 #ifdef CONFIG_SND_HDA_POWER_SAVE
1788 cancel_delayed_work(&codec->power_work);
1789 codec->power_on = 0;
1790 codec->power_transition = 0;
1791 #endif
1795 * kick up codec; used both from PM and power-save
1797 static void hda_call_codec_resume(struct hda_codec *codec)
1799 hda_set_power_state(codec,
1800 codec->afg ? codec->afg : codec->mfg,
1801 AC_PWRST_D0);
1802 if (codec->patch_ops.resume)
1803 codec->patch_ops.resume(codec);
1804 else {
1805 if (codec->patch_ops.init)
1806 codec->patch_ops.init(codec);
1807 snd_hda_codec_resume_amp(codec);
1808 snd_hda_codec_resume_cache(codec);
1811 #endif /* SND_HDA_NEEDS_RESUME */
1815 * snd_hda_build_controls - build mixer controls
1816 * @bus: the BUS
1818 * Creates mixer controls for each codec included in the bus.
1820 * Returns 0 if successful, otherwise a negative error code.
1822 int __devinit snd_hda_build_controls(struct hda_bus *bus)
1824 struct hda_codec *codec;
1826 list_for_each_entry(codec, &bus->codec_list, list) {
1827 int err = 0;
1828 /* fake as if already powered-on */
1829 hda_keep_power_on(codec);
1830 /* then fire up */
1831 hda_set_power_state(codec,
1832 codec->afg ? codec->afg : codec->mfg,
1833 AC_PWRST_D0);
1834 /* continue to initialize... */
1835 if (codec->patch_ops.init)
1836 err = codec->patch_ops.init(codec);
1837 if (!err && codec->patch_ops.build_controls)
1838 err = codec->patch_ops.build_controls(codec);
1839 snd_hda_power_down(codec);
1840 if (err < 0)
1841 return err;
1844 return 0;
1848 * stream formats
1850 struct hda_rate_tbl {
1851 unsigned int hz;
1852 unsigned int alsa_bits;
1853 unsigned int hda_fmt;
1856 static struct hda_rate_tbl rate_bits[] = {
1857 /* rate in Hz, ALSA rate bitmask, HDA format value */
1859 /* autodetected value used in snd_hda_query_supported_pcm */
1860 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1861 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1862 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1863 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1864 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1865 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1866 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1867 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1868 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1869 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1870 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1871 #define AC_PAR_PCM_RATE_BITS 11
1872 /* up to bits 10, 384kHZ isn't supported properly */
1874 /* not autodetected value */
1875 { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1877 { 0 } /* terminator */
1881 * snd_hda_calc_stream_format - calculate format bitset
1882 * @rate: the sample rate
1883 * @channels: the number of channels
1884 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1885 * @maxbps: the max. bps
1887 * Calculate the format bitset from the given rate, channels and th PCM format.
1889 * Return zero if invalid.
1891 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1892 unsigned int channels,
1893 unsigned int format,
1894 unsigned int maxbps)
1896 int i;
1897 unsigned int val = 0;
1899 for (i = 0; rate_bits[i].hz; i++)
1900 if (rate_bits[i].hz == rate) {
1901 val = rate_bits[i].hda_fmt;
1902 break;
1904 if (!rate_bits[i].hz) {
1905 snd_printdd("invalid rate %d\n", rate);
1906 return 0;
1909 if (channels == 0 || channels > 8) {
1910 snd_printdd("invalid channels %d\n", channels);
1911 return 0;
1913 val |= channels - 1;
1915 switch (snd_pcm_format_width(format)) {
1916 case 8: val |= 0x00; break;
1917 case 16: val |= 0x10; break;
1918 case 20:
1919 case 24:
1920 case 32:
1921 if (maxbps >= 32)
1922 val |= 0x40;
1923 else if (maxbps >= 24)
1924 val |= 0x30;
1925 else
1926 val |= 0x20;
1927 break;
1928 default:
1929 snd_printdd("invalid format width %d\n",
1930 snd_pcm_format_width(format));
1931 return 0;
1934 return val;
1938 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1939 * @codec: the HDA codec
1940 * @nid: NID to query
1941 * @ratesp: the pointer to store the detected rate bitflags
1942 * @formatsp: the pointer to store the detected formats
1943 * @bpsp: the pointer to store the detected format widths
1945 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1946 * or @bsps argument is ignored.
1948 * Returns 0 if successful, otherwise a negative error code.
1950 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1951 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1953 int i;
1954 unsigned int val, streams;
1956 val = 0;
1957 if (nid != codec->afg &&
1958 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1959 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1960 if (val == -1)
1961 return -EIO;
1963 if (!val)
1964 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1966 if (ratesp) {
1967 u32 rates = 0;
1968 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
1969 if (val & (1 << i))
1970 rates |= rate_bits[i].alsa_bits;
1972 *ratesp = rates;
1975 if (formatsp || bpsp) {
1976 u64 formats = 0;
1977 unsigned int bps;
1978 unsigned int wcaps;
1980 wcaps = get_wcaps(codec, nid);
1981 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1982 if (streams == -1)
1983 return -EIO;
1984 if (!streams) {
1985 streams = snd_hda_param_read(codec, codec->afg,
1986 AC_PAR_STREAM);
1987 if (streams == -1)
1988 return -EIO;
1991 bps = 0;
1992 if (streams & AC_SUPFMT_PCM) {
1993 if (val & AC_SUPPCM_BITS_8) {
1994 formats |= SNDRV_PCM_FMTBIT_U8;
1995 bps = 8;
1997 if (val & AC_SUPPCM_BITS_16) {
1998 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1999 bps = 16;
2001 if (wcaps & AC_WCAP_DIGITAL) {
2002 if (val & AC_SUPPCM_BITS_32)
2003 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
2004 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
2005 formats |= SNDRV_PCM_FMTBIT_S32_LE;
2006 if (val & AC_SUPPCM_BITS_24)
2007 bps = 24;
2008 else if (val & AC_SUPPCM_BITS_20)
2009 bps = 20;
2010 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
2011 AC_SUPPCM_BITS_32)) {
2012 formats |= SNDRV_PCM_FMTBIT_S32_LE;
2013 if (val & AC_SUPPCM_BITS_32)
2014 bps = 32;
2015 else if (val & AC_SUPPCM_BITS_24)
2016 bps = 24;
2017 else if (val & AC_SUPPCM_BITS_20)
2018 bps = 20;
2021 else if (streams == AC_SUPFMT_FLOAT32) {
2022 /* should be exclusive */
2023 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
2024 bps = 32;
2025 } else if (streams == AC_SUPFMT_AC3) {
2026 /* should be exclusive */
2027 /* temporary hack: we have still no proper support
2028 * for the direct AC3 stream...
2030 formats |= SNDRV_PCM_FMTBIT_U8;
2031 bps = 8;
2033 if (formatsp)
2034 *formatsp = formats;
2035 if (bpsp)
2036 *bpsp = bps;
2039 return 0;
2043 * snd_hda_is_supported_format - check whether the given node supports
2044 * the format val
2046 * Returns 1 if supported, 0 if not.
2048 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
2049 unsigned int format)
2051 int i;
2052 unsigned int val = 0, rate, stream;
2054 if (nid != codec->afg &&
2055 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
2056 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
2057 if (val == -1)
2058 return 0;
2060 if (!val) {
2061 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
2062 if (val == -1)
2063 return 0;
2066 rate = format & 0xff00;
2067 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
2068 if (rate_bits[i].hda_fmt == rate) {
2069 if (val & (1 << i))
2070 break;
2071 return 0;
2073 if (i >= AC_PAR_PCM_RATE_BITS)
2074 return 0;
2076 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
2077 if (stream == -1)
2078 return 0;
2079 if (!stream && nid != codec->afg)
2080 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
2081 if (!stream || stream == -1)
2082 return 0;
2084 if (stream & AC_SUPFMT_PCM) {
2085 switch (format & 0xf0) {
2086 case 0x00:
2087 if (!(val & AC_SUPPCM_BITS_8))
2088 return 0;
2089 break;
2090 case 0x10:
2091 if (!(val & AC_SUPPCM_BITS_16))
2092 return 0;
2093 break;
2094 case 0x20:
2095 if (!(val & AC_SUPPCM_BITS_20))
2096 return 0;
2097 break;
2098 case 0x30:
2099 if (!(val & AC_SUPPCM_BITS_24))
2100 return 0;
2101 break;
2102 case 0x40:
2103 if (!(val & AC_SUPPCM_BITS_32))
2104 return 0;
2105 break;
2106 default:
2107 return 0;
2109 } else {
2110 /* FIXME: check for float32 and AC3? */
2113 return 1;
2117 * PCM stuff
2119 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
2120 struct hda_codec *codec,
2121 struct snd_pcm_substream *substream)
2123 return 0;
2126 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
2127 struct hda_codec *codec,
2128 unsigned int stream_tag,
2129 unsigned int format,
2130 struct snd_pcm_substream *substream)
2132 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
2133 return 0;
2136 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
2137 struct hda_codec *codec,
2138 struct snd_pcm_substream *substream)
2140 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
2141 return 0;
2144 static int __devinit set_pcm_default_values(struct hda_codec *codec,
2145 struct hda_pcm_stream *info)
2147 /* query support PCM information from the given NID */
2148 if (info->nid && (!info->rates || !info->formats)) {
2149 snd_hda_query_supported_pcm(codec, info->nid,
2150 info->rates ? NULL : &info->rates,
2151 info->formats ? NULL : &info->formats,
2152 info->maxbps ? NULL : &info->maxbps);
2154 if (info->ops.open == NULL)
2155 info->ops.open = hda_pcm_default_open_close;
2156 if (info->ops.close == NULL)
2157 info->ops.close = hda_pcm_default_open_close;
2158 if (info->ops.prepare == NULL) {
2159 snd_assert(info->nid, return -EINVAL);
2160 info->ops.prepare = hda_pcm_default_prepare;
2162 if (info->ops.cleanup == NULL) {
2163 snd_assert(info->nid, return -EINVAL);
2164 info->ops.cleanup = hda_pcm_default_cleanup;
2166 return 0;
2170 * snd_hda_build_pcms - build PCM information
2171 * @bus: the BUS
2173 * Create PCM information for each codec included in the bus.
2175 * The build_pcms codec patch is requested to set up codec->num_pcms and
2176 * codec->pcm_info properly. The array is referred by the top-level driver
2177 * to create its PCM instances.
2178 * The allocated codec->pcm_info should be released in codec->patch_ops.free
2179 * callback.
2181 * At least, substreams, channels_min and channels_max must be filled for
2182 * each stream. substreams = 0 indicates that the stream doesn't exist.
2183 * When rates and/or formats are zero, the supported values are queried
2184 * from the given nid. The nid is used also by the default ops.prepare
2185 * and ops.cleanup callbacks.
2187 * The driver needs to call ops.open in its open callback. Similarly,
2188 * ops.close is supposed to be called in the close callback.
2189 * ops.prepare should be called in the prepare or hw_params callback
2190 * with the proper parameters for set up.
2191 * ops.cleanup should be called in hw_free for clean up of streams.
2193 * This function returns 0 if successfull, or a negative error code.
2195 int __devinit snd_hda_build_pcms(struct hda_bus *bus)
2197 struct hda_codec *codec;
2199 list_for_each_entry(codec, &bus->codec_list, list) {
2200 unsigned int pcm, s;
2201 int err;
2202 if (!codec->patch_ops.build_pcms)
2203 continue;
2204 err = codec->patch_ops.build_pcms(codec);
2205 if (err < 0)
2206 return err;
2207 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
2208 for (s = 0; s < 2; s++) {
2209 struct hda_pcm_stream *info;
2210 info = &codec->pcm_info[pcm].stream[s];
2211 if (!info->substreams)
2212 continue;
2213 err = set_pcm_default_values(codec, info);
2214 if (err < 0)
2215 return err;
2219 return 0;
2223 * snd_hda_check_board_config - compare the current codec with the config table
2224 * @codec: the HDA codec
2225 * @num_configs: number of config enums
2226 * @models: array of model name strings
2227 * @tbl: configuration table, terminated by null entries
2229 * Compares the modelname or PCI subsystem id of the current codec with the
2230 * given configuration table. If a matching entry is found, returns its
2231 * config value (supposed to be 0 or positive).
2233 * If no entries are matching, the function returns a negative value.
2235 int snd_hda_check_board_config(struct hda_codec *codec,
2236 int num_configs, const char **models,
2237 const struct snd_pci_quirk *tbl)
2239 if (codec->bus->modelname && models) {
2240 int i;
2241 for (i = 0; i < num_configs; i++) {
2242 if (models[i] &&
2243 !strcmp(codec->bus->modelname, models[i])) {
2244 snd_printd(KERN_INFO "hda_codec: model '%s' is "
2245 "selected\n", models[i]);
2246 return i;
2251 if (!codec->bus->pci || !tbl)
2252 return -1;
2254 tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
2255 if (!tbl)
2256 return -1;
2257 if (tbl->value >= 0 && tbl->value < num_configs) {
2258 #ifdef CONFIG_SND_DEBUG_DETECT
2259 char tmp[10];
2260 const char *model = NULL;
2261 if (models)
2262 model = models[tbl->value];
2263 if (!model) {
2264 sprintf(tmp, "#%d", tbl->value);
2265 model = tmp;
2267 snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
2268 "for config %x:%x (%s)\n",
2269 model, tbl->subvendor, tbl->subdevice,
2270 (tbl->name ? tbl->name : "Unknown device"));
2271 #endif
2272 return tbl->value;
2274 return -1;
2278 * snd_hda_add_new_ctls - create controls from the array
2279 * @codec: the HDA codec
2280 * @knew: the array of struct snd_kcontrol_new
2282 * This helper function creates and add new controls in the given array.
2283 * The array must be terminated with an empty entry as terminator.
2285 * Returns 0 if successful, or a negative error code.
2287 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2289 int err;
2291 for (; knew->name; knew++) {
2292 struct snd_kcontrol *kctl;
2293 kctl = snd_ctl_new1(knew, codec);
2294 if (!kctl)
2295 return -ENOMEM;
2296 err = snd_ctl_add(codec->bus->card, kctl);
2297 if (err < 0) {
2298 if (!codec->addr)
2299 return err;
2300 kctl = snd_ctl_new1(knew, codec);
2301 if (!kctl)
2302 return -ENOMEM;
2303 kctl->id.device = codec->addr;
2304 err = snd_ctl_add(codec->bus->card, kctl);
2305 if (err < 0)
2306 return err;
2309 return 0;
2312 #ifdef CONFIG_SND_HDA_POWER_SAVE
2313 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
2314 unsigned int power_state);
2316 static void hda_power_work(struct work_struct *work)
2318 struct hda_codec *codec =
2319 container_of(work, struct hda_codec, power_work.work);
2321 if (!codec->power_on || codec->power_count) {
2322 codec->power_transition = 0;
2323 return;
2326 hda_call_codec_suspend(codec);
2327 if (codec->bus->ops.pm_notify)
2328 codec->bus->ops.pm_notify(codec);
2331 static void hda_keep_power_on(struct hda_codec *codec)
2333 codec->power_count++;
2334 codec->power_on = 1;
2337 void snd_hda_power_up(struct hda_codec *codec)
2339 codec->power_count++;
2340 if (codec->power_on || codec->power_transition)
2341 return;
2343 codec->power_on = 1;
2344 if (codec->bus->ops.pm_notify)
2345 codec->bus->ops.pm_notify(codec);
2346 hda_call_codec_resume(codec);
2347 cancel_delayed_work(&codec->power_work);
2348 codec->power_transition = 0;
2351 void snd_hda_power_down(struct hda_codec *codec)
2353 --codec->power_count;
2354 if (!codec->power_on || codec->power_count || codec->power_transition)
2355 return;
2356 if (power_save) {
2357 codec->power_transition = 1; /* avoid reentrance */
2358 schedule_delayed_work(&codec->power_work,
2359 msecs_to_jiffies(power_save * 1000));
2363 int snd_hda_check_amp_list_power(struct hda_codec *codec,
2364 struct hda_loopback_check *check,
2365 hda_nid_t nid)
2367 struct hda_amp_list *p;
2368 int ch, v;
2370 if (!check->amplist)
2371 return 0;
2372 for (p = check->amplist; p->nid; p++) {
2373 if (p->nid == nid)
2374 break;
2376 if (!p->nid)
2377 return 0; /* nothing changed */
2379 for (p = check->amplist; p->nid; p++) {
2380 for (ch = 0; ch < 2; ch++) {
2381 v = snd_hda_codec_amp_read(codec, p->nid, ch, p->dir,
2382 p->idx);
2383 if (!(v & HDA_AMP_MUTE) && v > 0) {
2384 if (!check->power_on) {
2385 check->power_on = 1;
2386 snd_hda_power_up(codec);
2388 return 1;
2392 if (check->power_on) {
2393 check->power_on = 0;
2394 snd_hda_power_down(codec);
2396 return 0;
2398 #endif
2401 * Channel mode helper
2403 int snd_hda_ch_mode_info(struct hda_codec *codec,
2404 struct snd_ctl_elem_info *uinfo,
2405 const struct hda_channel_mode *chmode,
2406 int num_chmodes)
2408 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2409 uinfo->count = 1;
2410 uinfo->value.enumerated.items = num_chmodes;
2411 if (uinfo->value.enumerated.item >= num_chmodes)
2412 uinfo->value.enumerated.item = num_chmodes - 1;
2413 sprintf(uinfo->value.enumerated.name, "%dch",
2414 chmode[uinfo->value.enumerated.item].channels);
2415 return 0;
2418 int snd_hda_ch_mode_get(struct hda_codec *codec,
2419 struct snd_ctl_elem_value *ucontrol,
2420 const struct hda_channel_mode *chmode,
2421 int num_chmodes,
2422 int max_channels)
2424 int i;
2426 for (i = 0; i < num_chmodes; i++) {
2427 if (max_channels == chmode[i].channels) {
2428 ucontrol->value.enumerated.item[0] = i;
2429 break;
2432 return 0;
2435 int snd_hda_ch_mode_put(struct hda_codec *codec,
2436 struct snd_ctl_elem_value *ucontrol,
2437 const struct hda_channel_mode *chmode,
2438 int num_chmodes,
2439 int *max_channelsp)
2441 unsigned int mode;
2443 mode = ucontrol->value.enumerated.item[0];
2444 if (mode >= num_chmodes)
2445 return -EINVAL;
2446 if (*max_channelsp == chmode[mode].channels)
2447 return 0;
2448 /* change the current channel setting */
2449 *max_channelsp = chmode[mode].channels;
2450 if (chmode[mode].sequence)
2451 snd_hda_sequence_write_cache(codec, chmode[mode].sequence);
2452 return 1;
2456 * input MUX helper
2458 int snd_hda_input_mux_info(const struct hda_input_mux *imux,
2459 struct snd_ctl_elem_info *uinfo)
2461 unsigned int index;
2463 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2464 uinfo->count = 1;
2465 uinfo->value.enumerated.items = imux->num_items;
2466 if (!imux->num_items)
2467 return 0;
2468 index = uinfo->value.enumerated.item;
2469 if (index >= imux->num_items)
2470 index = imux->num_items - 1;
2471 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
2472 return 0;
2475 int snd_hda_input_mux_put(struct hda_codec *codec,
2476 const struct hda_input_mux *imux,
2477 struct snd_ctl_elem_value *ucontrol,
2478 hda_nid_t nid,
2479 unsigned int *cur_val)
2481 unsigned int idx;
2483 if (!imux->num_items)
2484 return 0;
2485 idx = ucontrol->value.enumerated.item[0];
2486 if (idx >= imux->num_items)
2487 idx = imux->num_items - 1;
2488 if (*cur_val == idx)
2489 return 0;
2490 snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
2491 imux->items[idx].index);
2492 *cur_val = idx;
2493 return 1;
2498 * Multi-channel / digital-out PCM helper functions
2501 /* setup SPDIF output stream */
2502 static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
2503 unsigned int stream_tag, unsigned int format)
2505 /* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
2506 if (codec->spdif_ctls & AC_DIG1_ENABLE)
2507 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
2508 codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
2509 snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
2510 /* turn on again (if needed) */
2511 if (codec->spdif_ctls & AC_DIG1_ENABLE)
2512 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
2513 codec->spdif_ctls & 0xff);
2517 * open the digital out in the exclusive mode
2519 int snd_hda_multi_out_dig_open(struct hda_codec *codec,
2520 struct hda_multi_out *mout)
2522 mutex_lock(&codec->spdif_mutex);
2523 if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
2524 /* already opened as analog dup; reset it once */
2525 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2526 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
2527 mutex_unlock(&codec->spdif_mutex);
2528 return 0;
2531 int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
2532 struct hda_multi_out *mout,
2533 unsigned int stream_tag,
2534 unsigned int format,
2535 struct snd_pcm_substream *substream)
2537 mutex_lock(&codec->spdif_mutex);
2538 setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
2539 mutex_unlock(&codec->spdif_mutex);
2540 return 0;
2544 * release the digital out
2546 int snd_hda_multi_out_dig_close(struct hda_codec *codec,
2547 struct hda_multi_out *mout)
2549 mutex_lock(&codec->spdif_mutex);
2550 mout->dig_out_used = 0;
2551 mutex_unlock(&codec->spdif_mutex);
2552 return 0;
2556 * set up more restrictions for analog out
2558 int snd_hda_multi_out_analog_open(struct hda_codec *codec,
2559 struct hda_multi_out *mout,
2560 struct snd_pcm_substream *substream)
2562 substream->runtime->hw.channels_max = mout->max_channels;
2563 return snd_pcm_hw_constraint_step(substream->runtime, 0,
2564 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
2568 * set up the i/o for analog out
2569 * when the digital out is available, copy the front out to digital out, too.
2571 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
2572 struct hda_multi_out *mout,
2573 unsigned int stream_tag,
2574 unsigned int format,
2575 struct snd_pcm_substream *substream)
2577 hda_nid_t *nids = mout->dac_nids;
2578 int chs = substream->runtime->channels;
2579 int i;
2581 mutex_lock(&codec->spdif_mutex);
2582 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
2583 if (chs == 2 &&
2584 snd_hda_is_supported_format(codec, mout->dig_out_nid,
2585 format) &&
2586 !(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
2587 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
2588 setup_dig_out_stream(codec, mout->dig_out_nid,
2589 stream_tag, format);
2590 } else {
2591 mout->dig_out_used = 0;
2592 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
2593 0, 0, 0);
2596 mutex_unlock(&codec->spdif_mutex);
2598 /* front */
2599 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
2600 0, format);
2601 if (!mout->no_share_stream &&
2602 mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
2603 /* headphone out will just decode front left/right (stereo) */
2604 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
2605 0, format);
2606 /* extra outputs copied from front */
2607 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2608 if (!mout->no_share_stream && mout->extra_out_nid[i])
2609 snd_hda_codec_setup_stream(codec,
2610 mout->extra_out_nid[i],
2611 stream_tag, 0, format);
2613 /* surrounds */
2614 for (i = 1; i < mout->num_dacs; i++) {
2615 if (chs >= (i + 1) * 2) /* independent out */
2616 snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2617 i * 2, format);
2618 else if (!mout->no_share_stream) /* copy front */
2619 snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2620 0, format);
2622 return 0;
2626 * clean up the setting for analog out
2628 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
2629 struct hda_multi_out *mout)
2631 hda_nid_t *nids = mout->dac_nids;
2632 int i;
2634 for (i = 0; i < mout->num_dacs; i++)
2635 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
2636 if (mout->hp_nid)
2637 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
2638 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2639 if (mout->extra_out_nid[i])
2640 snd_hda_codec_setup_stream(codec,
2641 mout->extra_out_nid[i],
2642 0, 0, 0);
2643 mutex_lock(&codec->spdif_mutex);
2644 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2645 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2646 mout->dig_out_used = 0;
2648 mutex_unlock(&codec->spdif_mutex);
2649 return 0;
2653 * Helper for automatic ping configuration
2656 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2658 for (; *list; list++)
2659 if (*list == nid)
2660 return 1;
2661 return 0;
2666 * Sort an associated group of pins according to their sequence numbers.
2668 static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
2669 int num_pins)
2671 int i, j;
2672 short seq;
2673 hda_nid_t nid;
2675 for (i = 0; i < num_pins; i++) {
2676 for (j = i + 1; j < num_pins; j++) {
2677 if (sequences[i] > sequences[j]) {
2678 seq = sequences[i];
2679 sequences[i] = sequences[j];
2680 sequences[j] = seq;
2681 nid = pins[i];
2682 pins[i] = pins[j];
2683 pins[j] = nid;
2691 * Parse all pin widgets and store the useful pin nids to cfg
2693 * The number of line-outs or any primary output is stored in line_outs,
2694 * and the corresponding output pins are assigned to line_out_pins[],
2695 * in the order of front, rear, CLFE, side, ...
2697 * If more extra outputs (speaker and headphone) are found, the pins are
2698 * assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
2699 * is detected, one of speaker of HP pins is assigned as the primary
2700 * output, i.e. to line_out_pins[0]. So, line_outs is always positive
2701 * if any analog output exists.
2703 * The analog input pins are assigned to input_pins array.
2704 * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2705 * respectively.
2707 int snd_hda_parse_pin_def_config(struct hda_codec *codec,
2708 struct auto_pin_cfg *cfg,
2709 hda_nid_t *ignore_nids)
2711 hda_nid_t nid, end_nid;
2712 short seq, assoc_line_out, assoc_speaker;
2713 short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
2714 short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
2715 short sequences_hp[ARRAY_SIZE(cfg->hp_pins)];
2717 memset(cfg, 0, sizeof(*cfg));
2719 memset(sequences_line_out, 0, sizeof(sequences_line_out));
2720 memset(sequences_speaker, 0, sizeof(sequences_speaker));
2721 memset(sequences_hp, 0, sizeof(sequences_hp));
2722 assoc_line_out = assoc_speaker = 0;
2724 end_nid = codec->start_nid + codec->num_nodes;
2725 for (nid = codec->start_nid; nid < end_nid; nid++) {
2726 unsigned int wid_caps = get_wcaps(codec, nid);
2727 unsigned int wid_type =
2728 (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2729 unsigned int def_conf;
2730 short assoc, loc;
2732 /* read all default configuration for pin complex */
2733 if (wid_type != AC_WID_PIN)
2734 continue;
2735 /* ignore the given nids (e.g. pc-beep returns error) */
2736 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2737 continue;
2739 def_conf = snd_hda_codec_read(codec, nid, 0,
2740 AC_VERB_GET_CONFIG_DEFAULT, 0);
2741 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2742 continue;
2743 loc = get_defcfg_location(def_conf);
2744 switch (get_defcfg_device(def_conf)) {
2745 case AC_JACK_LINE_OUT:
2746 seq = get_defcfg_sequence(def_conf);
2747 assoc = get_defcfg_association(def_conf);
2749 if (!(wid_caps & AC_WCAP_STEREO))
2750 if (!cfg->mono_out_pin)
2751 cfg->mono_out_pin = nid;
2752 if (!assoc)
2753 continue;
2754 if (!assoc_line_out)
2755 assoc_line_out = assoc;
2756 else if (assoc_line_out != assoc)
2757 continue;
2758 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2759 continue;
2760 cfg->line_out_pins[cfg->line_outs] = nid;
2761 sequences_line_out[cfg->line_outs] = seq;
2762 cfg->line_outs++;
2763 break;
2764 case AC_JACK_SPEAKER:
2765 seq = get_defcfg_sequence(def_conf);
2766 assoc = get_defcfg_association(def_conf);
2767 if (! assoc)
2768 continue;
2769 if (! assoc_speaker)
2770 assoc_speaker = assoc;
2771 else if (assoc_speaker != assoc)
2772 continue;
2773 if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2774 continue;
2775 cfg->speaker_pins[cfg->speaker_outs] = nid;
2776 sequences_speaker[cfg->speaker_outs] = seq;
2777 cfg->speaker_outs++;
2778 break;
2779 case AC_JACK_HP_OUT:
2780 seq = get_defcfg_sequence(def_conf);
2781 assoc = get_defcfg_association(def_conf);
2782 if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2783 continue;
2784 cfg->hp_pins[cfg->hp_outs] = nid;
2785 sequences_hp[cfg->hp_outs] = (assoc << 4) | seq;
2786 cfg->hp_outs++;
2787 break;
2788 case AC_JACK_MIC_IN: {
2789 int preferred, alt;
2790 if (loc == AC_JACK_LOC_FRONT) {
2791 preferred = AUTO_PIN_FRONT_MIC;
2792 alt = AUTO_PIN_MIC;
2793 } else {
2794 preferred = AUTO_PIN_MIC;
2795 alt = AUTO_PIN_FRONT_MIC;
2797 if (!cfg->input_pins[preferred])
2798 cfg->input_pins[preferred] = nid;
2799 else if (!cfg->input_pins[alt])
2800 cfg->input_pins[alt] = nid;
2801 break;
2803 case AC_JACK_LINE_IN:
2804 if (loc == AC_JACK_LOC_FRONT)
2805 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2806 else
2807 cfg->input_pins[AUTO_PIN_LINE] = nid;
2808 break;
2809 case AC_JACK_CD:
2810 cfg->input_pins[AUTO_PIN_CD] = nid;
2811 break;
2812 case AC_JACK_AUX:
2813 cfg->input_pins[AUTO_PIN_AUX] = nid;
2814 break;
2815 case AC_JACK_SPDIF_OUT:
2816 cfg->dig_out_pin = nid;
2817 break;
2818 case AC_JACK_SPDIF_IN:
2819 cfg->dig_in_pin = nid;
2820 break;
2824 /* sort by sequence */
2825 sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
2826 cfg->line_outs);
2827 sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
2828 cfg->speaker_outs);
2829 sort_pins_by_sequence(cfg->hp_pins, sequences_hp,
2830 cfg->hp_outs);
2832 /* if we have only one mic, make it AUTO_PIN_MIC */
2833 if (!cfg->input_pins[AUTO_PIN_MIC] &&
2834 cfg->input_pins[AUTO_PIN_FRONT_MIC]) {
2835 cfg->input_pins[AUTO_PIN_MIC] =
2836 cfg->input_pins[AUTO_PIN_FRONT_MIC];
2837 cfg->input_pins[AUTO_PIN_FRONT_MIC] = 0;
2839 /* ditto for line-in */
2840 if (!cfg->input_pins[AUTO_PIN_LINE] &&
2841 cfg->input_pins[AUTO_PIN_FRONT_LINE]) {
2842 cfg->input_pins[AUTO_PIN_LINE] =
2843 cfg->input_pins[AUTO_PIN_FRONT_LINE];
2844 cfg->input_pins[AUTO_PIN_FRONT_LINE] = 0;
2848 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2849 * as a primary output
2851 if (!cfg->line_outs) {
2852 if (cfg->speaker_outs) {
2853 cfg->line_outs = cfg->speaker_outs;
2854 memcpy(cfg->line_out_pins, cfg->speaker_pins,
2855 sizeof(cfg->speaker_pins));
2856 cfg->speaker_outs = 0;
2857 memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2858 cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
2859 } else if (cfg->hp_outs) {
2860 cfg->line_outs = cfg->hp_outs;
2861 memcpy(cfg->line_out_pins, cfg->hp_pins,
2862 sizeof(cfg->hp_pins));
2863 cfg->hp_outs = 0;
2864 memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
2865 cfg->line_out_type = AUTO_PIN_HP_OUT;
2869 /* Reorder the surround channels
2870 * ALSA sequence is front/surr/clfe/side
2871 * HDA sequence is:
2872 * 4-ch: front/surr => OK as it is
2873 * 6-ch: front/clfe/surr
2874 * 8-ch: front/clfe/rear/side|fc
2876 switch (cfg->line_outs) {
2877 case 3:
2878 case 4:
2879 nid = cfg->line_out_pins[1];
2880 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2881 cfg->line_out_pins[2] = nid;
2882 break;
2886 * debug prints of the parsed results
2888 snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2889 cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2890 cfg->line_out_pins[2], cfg->line_out_pins[3],
2891 cfg->line_out_pins[4]);
2892 snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2893 cfg->speaker_outs, cfg->speaker_pins[0],
2894 cfg->speaker_pins[1], cfg->speaker_pins[2],
2895 cfg->speaker_pins[3], cfg->speaker_pins[4]);
2896 snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2897 cfg->hp_outs, cfg->hp_pins[0],
2898 cfg->hp_pins[1], cfg->hp_pins[2],
2899 cfg->hp_pins[3], cfg->hp_pins[4]);
2900 snd_printd(" mono: mono_out=0x%x\n", cfg->mono_out_pin);
2901 snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2902 " cd=0x%x, aux=0x%x\n",
2903 cfg->input_pins[AUTO_PIN_MIC],
2904 cfg->input_pins[AUTO_PIN_FRONT_MIC],
2905 cfg->input_pins[AUTO_PIN_LINE],
2906 cfg->input_pins[AUTO_PIN_FRONT_LINE],
2907 cfg->input_pins[AUTO_PIN_CD],
2908 cfg->input_pins[AUTO_PIN_AUX]);
2910 return 0;
2913 /* labels for input pins */
2914 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2915 "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2919 #ifdef CONFIG_PM
2921 * power management
2925 * snd_hda_suspend - suspend the codecs
2926 * @bus: the HDA bus
2927 * @state: suspsend state
2929 * Returns 0 if successful.
2931 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2933 struct hda_codec *codec;
2935 list_for_each_entry(codec, &bus->codec_list, list) {
2936 #ifdef CONFIG_SND_HDA_POWER_SAVE
2937 if (!codec->power_on)
2938 continue;
2939 #endif
2940 hda_call_codec_suspend(codec);
2942 return 0;
2946 * snd_hda_resume - resume the codecs
2947 * @bus: the HDA bus
2948 * @state: resume state
2950 * Returns 0 if successful.
2952 * This fucntion is defined only when POWER_SAVE isn't set.
2953 * In the power-save mode, the codec is resumed dynamically.
2955 int snd_hda_resume(struct hda_bus *bus)
2957 struct hda_codec *codec;
2959 list_for_each_entry(codec, &bus->codec_list, list) {
2960 if (snd_hda_codec_needs_resume(codec))
2961 hda_call_codec_resume(codec);
2963 return 0;
2965 #ifdef CONFIG_SND_HDA_POWER_SAVE
2966 int snd_hda_codecs_inuse(struct hda_bus *bus)
2968 struct hda_codec *codec;
2970 list_for_each_entry(codec, &bus->codec_list, list) {
2971 if (snd_hda_codec_needs_resume(codec))
2972 return 1;
2974 return 0;
2976 #endif
2977 #endif