Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / mm / memcontrol.c
blob0c82670d426dfdf1f186c8624971b8c8d0d1f9b8
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
31 #include <linux/fs.h>
32 #include <linux/seq_file.h>
34 #include <asm/uaccess.h>
36 struct cgroup_subsys mem_cgroup_subsys;
37 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
40 * Statistics for memory cgroup.
42 enum mem_cgroup_stat_index {
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
49 MEM_CGROUP_STAT_NSTATS,
52 struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54 } ____cacheline_aligned_in_smp;
56 struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
61 * For accounting under irq disable, no need for increment preempt count.
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
70 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
81 * per-zone information in memory controller.
84 enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
88 NR_MEM_CGROUP_ZSTAT,
91 struct mem_cgroup_per_zone {
93 * spin_lock to protect the per cgroup LRU
95 spinlock_t lru_lock;
96 struct list_head active_list;
97 struct list_head inactive_list;
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
103 struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
107 struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
122 struct mem_cgroup {
123 struct cgroup_subsys_state css;
125 * the counter to account for memory usage
127 struct res_counter res;
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
132 struct mem_cgroup_lru_info info;
134 int prev_priority; /* for recording reclaim priority */
136 * statistics.
138 struct mem_cgroup_stat stat;
140 <<<<<<< HEAD:mm/memcontrol.c
141 =======
142 static struct mem_cgroup init_mem_cgroup;
143 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
146 * We use the lower bit of the page->page_cgroup pointer as a bit spin
147 <<<<<<< HEAD:mm/memcontrol.c
148 * lock. We need to ensure that page->page_cgroup is atleast two
149 * byte aligned (based on comments from Nick Piggin)
150 =======
151 * lock. We need to ensure that page->page_cgroup is at least two
152 * byte aligned (based on comments from Nick Piggin). But since
153 * bit_spin_lock doesn't actually set that lock bit in a non-debug
154 * uniprocessor kernel, we should avoid setting it here too.
155 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
157 #define PAGE_CGROUP_LOCK_BIT 0x0
158 <<<<<<< HEAD:mm/memcontrol.c
159 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
160 =======
161 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
162 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
163 #else
164 #define PAGE_CGROUP_LOCK 0x0
165 #endif
166 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
169 * A page_cgroup page is associated with every page descriptor. The
170 * page_cgroup helps us identify information about the cgroup
172 struct page_cgroup {
173 struct list_head lru; /* per cgroup LRU list */
174 struct page *page;
175 struct mem_cgroup *mem_cgroup;
176 <<<<<<< HEAD:mm/memcontrol.c
177 atomic_t ref_cnt; /* Helpful when pages move b/w */
178 /* mapped and cached states */
179 int flags;
180 =======
181 int ref_cnt; /* cached, mapped, migrating */
182 int flags;
183 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
185 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
186 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
188 <<<<<<< HEAD:mm/memcontrol.c
189 static inline int page_cgroup_nid(struct page_cgroup *pc)
190 =======
191 static int page_cgroup_nid(struct page_cgroup *pc)
192 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
194 return page_to_nid(pc->page);
197 <<<<<<< HEAD:mm/memcontrol.c
198 static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
199 =======
200 static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
201 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
203 return page_zonenum(pc->page);
206 <<<<<<< HEAD:mm/memcontrol.c
207 enum {
208 MEM_CGROUP_TYPE_UNSPEC = 0,
209 MEM_CGROUP_TYPE_MAPPED,
210 MEM_CGROUP_TYPE_CACHED,
211 MEM_CGROUP_TYPE_ALL,
212 MEM_CGROUP_TYPE_MAX,
215 =======
216 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
217 enum charge_type {
218 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
219 MEM_CGROUP_CHARGE_TYPE_MAPPED,
222 <<<<<<< HEAD:mm/memcontrol.c
224 =======
225 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
227 * Always modified under lru lock. Then, not necessary to preempt_disable()
229 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
230 bool charge)
232 int val = (charge)? 1 : -1;
233 struct mem_cgroup_stat *stat = &mem->stat;
234 <<<<<<< HEAD:mm/memcontrol.c
235 VM_BUG_ON(!irqs_disabled());
236 =======
237 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
239 <<<<<<< HEAD:mm/memcontrol.c
240 =======
241 VM_BUG_ON(!irqs_disabled());
242 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
243 if (flags & PAGE_CGROUP_FLAG_CACHE)
244 <<<<<<< HEAD:mm/memcontrol.c
245 __mem_cgroup_stat_add_safe(stat,
246 MEM_CGROUP_STAT_CACHE, val);
247 =======
248 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
249 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
250 else
251 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
254 <<<<<<< HEAD:mm/memcontrol.c
255 static inline struct mem_cgroup_per_zone *
256 =======
257 static struct mem_cgroup_per_zone *
258 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
259 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
261 <<<<<<< HEAD:mm/memcontrol.c
262 BUG_ON(!mem->info.nodeinfo[nid]);
263 =======
264 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
265 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
268 <<<<<<< HEAD:mm/memcontrol.c
269 static inline struct mem_cgroup_per_zone *
270 =======
271 static struct mem_cgroup_per_zone *
272 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
273 page_cgroup_zoneinfo(struct page_cgroup *pc)
275 struct mem_cgroup *mem = pc->mem_cgroup;
276 int nid = page_cgroup_nid(pc);
277 int zid = page_cgroup_zid(pc);
279 return mem_cgroup_zoneinfo(mem, nid, zid);
282 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
283 enum mem_cgroup_zstat_index idx)
285 int nid, zid;
286 struct mem_cgroup_per_zone *mz;
287 u64 total = 0;
289 for_each_online_node(nid)
290 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
291 mz = mem_cgroup_zoneinfo(mem, nid, zid);
292 total += MEM_CGROUP_ZSTAT(mz, idx);
294 return total;
297 <<<<<<< HEAD:mm/memcontrol.c
298 static struct mem_cgroup init_mem_cgroup;
300 static inline
301 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
302 =======
303 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
304 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
306 return container_of(cgroup_subsys_state(cont,
307 mem_cgroup_subsys_id), struct mem_cgroup,
308 css);
311 <<<<<<< HEAD:mm/memcontrol.c
312 static inline
313 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
314 =======
315 static struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
316 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
318 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
319 struct mem_cgroup, css);
322 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
324 struct mem_cgroup *mem;
326 mem = mem_cgroup_from_task(p);
327 css_get(&mem->css);
328 mm->mem_cgroup = mem;
331 void mm_free_cgroup(struct mm_struct *mm)
333 css_put(&mm->mem_cgroup->css);
336 static inline int page_cgroup_locked(struct page *page)
338 <<<<<<< HEAD:mm/memcontrol.c
339 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
340 &page->page_cgroup);
341 =======
342 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
343 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
346 <<<<<<< HEAD:mm/memcontrol.c
347 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
348 =======
349 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
350 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
352 <<<<<<< HEAD:mm/memcontrol.c
353 int locked;
356 * While resetting the page_cgroup we might not hold the
357 * page_cgroup lock. free_hot_cold_page() is an example
358 * of such a scenario
360 if (pc)
361 VM_BUG_ON(!page_cgroup_locked(page));
362 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
363 page->page_cgroup = ((unsigned long)pc | locked);
364 =======
365 VM_BUG_ON(!page_cgroup_locked(page));
366 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
367 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
370 struct page_cgroup *page_get_page_cgroup(struct page *page)
372 <<<<<<< HEAD:mm/memcontrol.c
373 return (struct page_cgroup *)
374 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
375 =======
376 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
377 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
380 <<<<<<< HEAD:mm/memcontrol.c
381 static void __always_inline lock_page_cgroup(struct page *page)
382 =======
383 static void lock_page_cgroup(struct page *page)
384 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
386 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
387 <<<<<<< HEAD:mm/memcontrol.c
388 VM_BUG_ON(!page_cgroup_locked(page));
391 static void __always_inline unlock_page_cgroup(struct page *page)
393 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
394 =======
395 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
398 <<<<<<< HEAD:mm/memcontrol.c
400 * Tie new page_cgroup to struct page under lock_page_cgroup()
401 * This can fail if the page has been tied to a page_cgroup.
402 * If success, returns 0.
404 static int page_cgroup_assign_new_page_cgroup(struct page *page,
405 struct page_cgroup *pc)
406 =======
407 static int try_lock_page_cgroup(struct page *page)
408 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
410 <<<<<<< HEAD:mm/memcontrol.c
411 int ret = 0;
413 lock_page_cgroup(page);
414 if (!page_get_page_cgroup(page))
415 page_assign_page_cgroup(page, pc);
416 else /* A page is tied to other pc. */
417 ret = 1;
418 unlock_page_cgroup(page);
419 return ret;
420 =======
421 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
422 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
425 <<<<<<< HEAD:mm/memcontrol.c
427 * Clear page->page_cgroup member under lock_page_cgroup().
428 * If given "pc" value is different from one page->page_cgroup,
429 * page->cgroup is not cleared.
430 * Returns a value of page->page_cgroup at lock taken.
431 * A can can detect failure of clearing by following
432 * clear_page_cgroup(page, pc) == pc
435 static struct page_cgroup *clear_page_cgroup(struct page *page,
436 struct page_cgroup *pc)
437 =======
438 static void unlock_page_cgroup(struct page *page)
439 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
441 <<<<<<< HEAD:mm/memcontrol.c
442 struct page_cgroup *ret;
443 /* lock and clear */
444 lock_page_cgroup(page);
445 ret = page_get_page_cgroup(page);
446 if (likely(ret == pc))
447 page_assign_page_cgroup(page, NULL);
448 unlock_page_cgroup(page);
449 return ret;
450 =======
451 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
452 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
455 static void __mem_cgroup_remove_list(struct page_cgroup *pc)
457 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
458 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
460 if (from)
461 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
462 else
463 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
465 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
466 list_del_init(&pc->lru);
469 static void __mem_cgroup_add_list(struct page_cgroup *pc)
471 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
472 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
474 if (!to) {
475 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
476 list_add(&pc->lru, &mz->inactive_list);
477 } else {
478 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
479 list_add(&pc->lru, &mz->active_list);
481 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
484 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
486 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
487 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
489 if (from)
490 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
491 else
492 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
494 if (active) {
495 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
496 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
497 list_move(&pc->lru, &mz->active_list);
498 } else {
499 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
500 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
501 list_move(&pc->lru, &mz->inactive_list);
505 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
507 int ret;
509 task_lock(task);
510 <<<<<<< HEAD:mm/memcontrol.c
511 ret = task->mm && vm_match_cgroup(task->mm, mem);
512 =======
513 ret = task->mm && mm_match_cgroup(task->mm, mem);
514 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
515 task_unlock(task);
516 return ret;
520 * This routine assumes that the appropriate zone's lru lock is already held
522 <<<<<<< HEAD:mm/memcontrol.c
523 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
524 =======
525 void mem_cgroup_move_lists(struct page *page, bool active)
526 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
528 <<<<<<< HEAD:mm/memcontrol.c
529 =======
530 struct page_cgroup *pc;
531 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
532 struct mem_cgroup_per_zone *mz;
533 unsigned long flags;
535 <<<<<<< HEAD:mm/memcontrol.c
536 if (!pc)
537 =======
539 * We cannot lock_page_cgroup while holding zone's lru_lock,
540 * because other holders of lock_page_cgroup can be interrupted
541 * with an attempt to rotate_reclaimable_page. But we cannot
542 * safely get to page_cgroup without it, so just try_lock it:
543 * mem_cgroup_isolate_pages allows for page left on wrong list.
545 if (!try_lock_page_cgroup(page))
546 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
547 return;
549 <<<<<<< HEAD:mm/memcontrol.c
550 mz = page_cgroup_zoneinfo(pc);
551 spin_lock_irqsave(&mz->lru_lock, flags);
552 __mem_cgroup_move_lists(pc, active);
553 spin_unlock_irqrestore(&mz->lru_lock, flags);
554 =======
555 pc = page_get_page_cgroup(page);
556 if (pc) {
557 mz = page_cgroup_zoneinfo(pc);
558 spin_lock_irqsave(&mz->lru_lock, flags);
559 __mem_cgroup_move_lists(pc, active);
560 spin_unlock_irqrestore(&mz->lru_lock, flags);
562 unlock_page_cgroup(page);
563 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
567 * Calculate mapped_ratio under memory controller. This will be used in
568 * vmscan.c for deteremining we have to reclaim mapped pages.
570 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
572 long total, rss;
575 * usage is recorded in bytes. But, here, we assume the number of
576 * physical pages can be represented by "long" on any arch.
578 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
579 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
580 return (int)((rss * 100L) / total);
582 <<<<<<< HEAD:mm/memcontrol.c
583 =======
585 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
587 * This function is called from vmscan.c. In page reclaiming loop. balance
588 * between active and inactive list is calculated. For memory controller
589 * page reclaiming, we should use using mem_cgroup's imbalance rather than
590 * zone's global lru imbalance.
592 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
594 unsigned long active, inactive;
595 /* active and inactive are the number of pages. 'long' is ok.*/
596 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
597 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
598 return (long) (active / (inactive + 1));
602 * prev_priority control...this will be used in memory reclaim path.
604 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
606 return mem->prev_priority;
609 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
611 if (priority < mem->prev_priority)
612 mem->prev_priority = priority;
615 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
617 mem->prev_priority = priority;
621 * Calculate # of pages to be scanned in this priority/zone.
622 * See also vmscan.c
624 * priority starts from "DEF_PRIORITY" and decremented in each loop.
625 * (see include/linux/mmzone.h)
628 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
629 struct zone *zone, int priority)
631 long nr_active;
632 int nid = zone->zone_pgdat->node_id;
633 int zid = zone_idx(zone);
634 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
636 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
637 return (nr_active >> priority);
640 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
641 struct zone *zone, int priority)
643 long nr_inactive;
644 int nid = zone->zone_pgdat->node_id;
645 int zid = zone_idx(zone);
646 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
648 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
649 <<<<<<< HEAD:mm/memcontrol.c
651 =======
652 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
653 return (nr_inactive >> priority);
656 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
657 struct list_head *dst,
658 unsigned long *scanned, int order,
659 int mode, struct zone *z,
660 struct mem_cgroup *mem_cont,
661 int active)
663 unsigned long nr_taken = 0;
664 struct page *page;
665 unsigned long scan;
666 LIST_HEAD(pc_list);
667 struct list_head *src;
668 struct page_cgroup *pc, *tmp;
669 int nid = z->zone_pgdat->node_id;
670 int zid = zone_idx(z);
671 struct mem_cgroup_per_zone *mz;
673 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
674 if (active)
675 src = &mz->active_list;
676 else
677 src = &mz->inactive_list;
680 spin_lock(&mz->lru_lock);
681 scan = 0;
682 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
683 if (scan >= nr_to_scan)
684 break;
685 page = pc->page;
686 <<<<<<< HEAD:mm/memcontrol.c
687 VM_BUG_ON(!pc);
688 =======
689 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
691 if (unlikely(!PageLRU(page)))
692 continue;
694 if (PageActive(page) && !active) {
695 __mem_cgroup_move_lists(pc, true);
696 continue;
698 if (!PageActive(page) && active) {
699 __mem_cgroup_move_lists(pc, false);
700 continue;
703 scan++;
704 list_move(&pc->lru, &pc_list);
706 if (__isolate_lru_page(page, mode) == 0) {
707 list_move(&page->lru, dst);
708 nr_taken++;
712 list_splice(&pc_list, src);
713 spin_unlock(&mz->lru_lock);
715 *scanned = scan;
716 return nr_taken;
720 * Charge the memory controller for page usage.
721 * Return
722 * 0 if the charge was successful
723 * < 0 if the cgroup is over its limit
725 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
726 gfp_t gfp_mask, enum charge_type ctype)
728 struct mem_cgroup *mem;
729 struct page_cgroup *pc;
730 unsigned long flags;
731 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
732 struct mem_cgroup_per_zone *mz;
735 * Should page_cgroup's go to their own slab?
736 * One could optimize the performance of the charging routine
737 * by saving a bit in the page_flags and using it as a lock
738 * to see if the cgroup page already has a page_cgroup associated
739 * with it
741 retry:
742 <<<<<<< HEAD:mm/memcontrol.c
743 if (page) {
744 lock_page_cgroup(page);
745 pc = page_get_page_cgroup(page);
747 * The page_cgroup exists and
748 * the page has already been accounted.
750 if (pc) {
751 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
752 /* this page is under being uncharged ? */
753 unlock_page_cgroup(page);
754 cpu_relax();
755 goto retry;
756 } else {
757 unlock_page_cgroup(page);
758 goto done;
761 =======
762 lock_page_cgroup(page);
763 pc = page_get_page_cgroup(page);
765 * The page_cgroup exists and
766 * the page has already been accounted.
768 if (pc) {
769 VM_BUG_ON(pc->page != page);
770 VM_BUG_ON(pc->ref_cnt <= 0);
772 pc->ref_cnt++;
773 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
774 unlock_page_cgroup(page);
775 <<<<<<< HEAD:mm/memcontrol.c
776 =======
777 goto done;
778 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
780 <<<<<<< HEAD:mm/memcontrol.c
781 =======
782 unlock_page_cgroup(page);
783 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
785 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
786 if (pc == NULL)
787 goto err;
790 * We always charge the cgroup the mm_struct belongs to.
791 * The mm_struct's mem_cgroup changes on task migration if the
792 * thread group leader migrates. It's possible that mm is not
793 * set, if so charge the init_mm (happens for pagecache usage).
795 if (!mm)
796 mm = &init_mm;
798 rcu_read_lock();
799 mem = rcu_dereference(mm->mem_cgroup);
801 <<<<<<< HEAD:mm/memcontrol.c
802 * For every charge from the cgroup, increment reference
803 * count
804 =======
805 * For every charge from the cgroup, increment reference count
806 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
808 css_get(&mem->css);
809 rcu_read_unlock();
811 <<<<<<< HEAD:mm/memcontrol.c
813 * If we created the page_cgroup, we should free it on exceeding
814 * the cgroup limit.
816 =======
817 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
818 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
819 if (!(gfp_mask & __GFP_WAIT))
820 goto out;
822 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
823 continue;
826 <<<<<<< HEAD:mm/memcontrol.c
827 * try_to_free_mem_cgroup_pages() might not give us a full
828 * picture of reclaim. Some pages are reclaimed and might be
829 * moved to swap cache or just unmapped from the cgroup.
830 * Check the limit again to see if the reclaim reduced the
831 * current usage of the cgroup before giving up
833 =======
834 * try_to_free_mem_cgroup_pages() might not give us a full
835 * picture of reclaim. Some pages are reclaimed and might be
836 * moved to swap cache or just unmapped from the cgroup.
837 * Check the limit again to see if the reclaim reduced the
838 * current usage of the cgroup before giving up
840 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
841 if (res_counter_check_under_limit(&mem->res))
842 continue;
844 if (!nr_retries--) {
845 mem_cgroup_out_of_memory(mem, gfp_mask);
846 goto out;
848 congestion_wait(WRITE, HZ/10);
851 <<<<<<< HEAD:mm/memcontrol.c
852 atomic_set(&pc->ref_cnt, 1);
853 =======
854 pc->ref_cnt = 1;
855 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
856 pc->mem_cgroup = mem;
857 pc->page = page;
858 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
859 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
860 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
862 <<<<<<< HEAD:mm/memcontrol.c
863 if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
864 =======
865 lock_page_cgroup(page);
866 if (page_get_page_cgroup(page)) {
867 unlock_page_cgroup(page);
868 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
870 * Another charge has been added to this page already.
871 * We take lock_page_cgroup(page) again and read
872 * page->cgroup, increment refcnt.... just retry is OK.
874 res_counter_uncharge(&mem->res, PAGE_SIZE);
875 css_put(&mem->css);
876 kfree(pc);
877 <<<<<<< HEAD:mm/memcontrol.c
878 if (!page)
879 goto done;
880 =======
881 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
882 goto retry;
884 <<<<<<< HEAD:mm/memcontrol.c
885 =======
886 page_assign_page_cgroup(page, pc);
887 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
889 mz = page_cgroup_zoneinfo(pc);
890 spin_lock_irqsave(&mz->lru_lock, flags);
891 <<<<<<< HEAD:mm/memcontrol.c
892 /* Update statistics vector */
893 =======
894 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
895 __mem_cgroup_add_list(pc);
896 spin_unlock_irqrestore(&mz->lru_lock, flags);
898 <<<<<<< HEAD:mm/memcontrol.c
899 =======
900 unlock_page_cgroup(page);
901 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
902 done:
903 return 0;
904 out:
905 css_put(&mem->css);
906 kfree(pc);
907 err:
908 return -ENOMEM;
911 <<<<<<< HEAD:mm/memcontrol.c
912 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
913 gfp_t gfp_mask)
914 =======
915 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
916 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
918 return mem_cgroup_charge_common(page, mm, gfp_mask,
919 <<<<<<< HEAD:mm/memcontrol.c
920 MEM_CGROUP_CHARGE_TYPE_MAPPED);
921 =======
922 MEM_CGROUP_CHARGE_TYPE_MAPPED);
923 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
926 <<<<<<< HEAD:mm/memcontrol.c
928 * See if the cached pages should be charged at all?
930 =======
931 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
932 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
933 gfp_t gfp_mask)
935 <<<<<<< HEAD:mm/memcontrol.c
936 int ret = 0;
937 =======
938 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
939 if (!mm)
940 mm = &init_mm;
941 <<<<<<< HEAD:mm/memcontrol.c
943 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
944 =======
945 return mem_cgroup_charge_common(page, mm, gfp_mask,
946 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
947 MEM_CGROUP_CHARGE_TYPE_CACHE);
948 <<<<<<< HEAD:mm/memcontrol.c
949 return ret;
950 =======
951 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
955 * Uncharging is always a welcome operation, we never complain, simply
956 <<<<<<< HEAD:mm/memcontrol.c
957 * uncharge. This routine should be called with lock_page_cgroup held
958 =======
959 * uncharge.
960 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
962 <<<<<<< HEAD:mm/memcontrol.c
963 void mem_cgroup_uncharge(struct page_cgroup *pc)
964 =======
965 void mem_cgroup_uncharge_page(struct page *page)
966 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
968 <<<<<<< HEAD:mm/memcontrol.c
969 =======
970 struct page_cgroup *pc;
971 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
972 struct mem_cgroup *mem;
973 struct mem_cgroup_per_zone *mz;
974 <<<<<<< HEAD:mm/memcontrol.c
975 struct page *page;
976 =======
977 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
978 unsigned long flags;
981 * Check if our page_cgroup is valid
983 <<<<<<< HEAD:mm/memcontrol.c
984 =======
985 lock_page_cgroup(page);
986 pc = page_get_page_cgroup(page);
987 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
988 if (!pc)
989 <<<<<<< HEAD:mm/memcontrol.c
990 return;
991 =======
992 goto unlock;
993 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
995 <<<<<<< HEAD:mm/memcontrol.c
996 if (atomic_dec_and_test(&pc->ref_cnt)) {
997 page = pc->page;
998 =======
999 VM_BUG_ON(pc->page != page);
1000 VM_BUG_ON(pc->ref_cnt <= 0);
1002 if (--(pc->ref_cnt) == 0) {
1003 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1004 mz = page_cgroup_zoneinfo(pc);
1005 <<<<<<< HEAD:mm/memcontrol.c
1007 * get page->cgroup and clear it under lock.
1008 * force_empty can drop page->cgroup without checking refcnt.
1010 =======
1011 spin_lock_irqsave(&mz->lru_lock, flags);
1012 __mem_cgroup_remove_list(pc);
1013 spin_unlock_irqrestore(&mz->lru_lock, flags);
1015 page_assign_page_cgroup(page, NULL);
1016 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1017 unlock_page_cgroup(page);
1018 <<<<<<< HEAD:mm/memcontrol.c
1019 if (clear_page_cgroup(page, pc) == pc) {
1020 mem = pc->mem_cgroup;
1021 css_put(&mem->css);
1022 res_counter_uncharge(&mem->res, PAGE_SIZE);
1023 spin_lock_irqsave(&mz->lru_lock, flags);
1024 __mem_cgroup_remove_list(pc);
1025 spin_unlock_irqrestore(&mz->lru_lock, flags);
1026 kfree(pc);
1028 lock_page_cgroup(page);
1029 =======
1031 mem = pc->mem_cgroup;
1032 res_counter_uncharge(&mem->res, PAGE_SIZE);
1033 css_put(&mem->css);
1035 kfree(pc);
1036 return;
1037 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1039 <<<<<<< HEAD:mm/memcontrol.c
1041 =======
1042 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1044 <<<<<<< HEAD:mm/memcontrol.c
1045 void mem_cgroup_uncharge_page(struct page *page)
1047 lock_page_cgroup(page);
1048 mem_cgroup_uncharge(page_get_page_cgroup(page));
1049 =======
1050 unlock:
1051 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1052 unlock_page_cgroup(page);
1056 * Returns non-zero if a page (under migration) has valid page_cgroup member.
1057 * Refcnt of page_cgroup is incremented.
1059 <<<<<<< HEAD:mm/memcontrol.c
1061 =======
1062 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1063 int mem_cgroup_prepare_migration(struct page *page)
1065 struct page_cgroup *pc;
1066 <<<<<<< HEAD:mm/memcontrol.c
1067 int ret = 0;
1068 =======
1070 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1071 lock_page_cgroup(page);
1072 pc = page_get_page_cgroup(page);
1073 <<<<<<< HEAD:mm/memcontrol.c
1074 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
1075 ret = 1;
1076 =======
1077 if (pc)
1078 pc->ref_cnt++;
1079 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1080 unlock_page_cgroup(page);
1081 <<<<<<< HEAD:mm/memcontrol.c
1082 return ret;
1083 =======
1084 return pc != NULL;
1085 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1088 void mem_cgroup_end_migration(struct page *page)
1090 <<<<<<< HEAD:mm/memcontrol.c
1091 struct page_cgroup *pc;
1093 lock_page_cgroup(page);
1094 pc = page_get_page_cgroup(page);
1095 mem_cgroup_uncharge(pc);
1096 unlock_page_cgroup(page);
1097 =======
1098 mem_cgroup_uncharge_page(page);
1099 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1101 <<<<<<< HEAD:mm/memcontrol.c
1102 =======
1104 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1106 <<<<<<< HEAD:mm/memcontrol.c
1107 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
1108 =======
1109 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
1110 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1111 * And no race with uncharge() routines because page_cgroup for *page*
1112 * has extra one reference by mem_cgroup_prepare_migration.
1114 <<<<<<< HEAD:mm/memcontrol.c
1116 =======
1117 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1118 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
1120 struct page_cgroup *pc;
1121 <<<<<<< HEAD:mm/memcontrol.c
1122 struct mem_cgroup *mem;
1123 unsigned long flags;
1124 =======
1125 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1126 struct mem_cgroup_per_zone *mz;
1127 <<<<<<< HEAD:mm/memcontrol.c
1128 retry:
1129 =======
1130 unsigned long flags;
1132 lock_page_cgroup(page);
1133 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1134 pc = page_get_page_cgroup(page);
1135 <<<<<<< HEAD:mm/memcontrol.c
1136 if (!pc)
1137 =======
1138 if (!pc) {
1139 unlock_page_cgroup(page);
1140 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1141 return;
1142 <<<<<<< HEAD:mm/memcontrol.c
1143 mem = pc->mem_cgroup;
1144 =======
1147 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1148 mz = page_cgroup_zoneinfo(pc);
1149 <<<<<<< HEAD:mm/memcontrol.c
1150 if (clear_page_cgroup(page, pc) != pc)
1151 goto retry;
1152 =======
1153 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1154 spin_lock_irqsave(&mz->lru_lock, flags);
1155 <<<<<<< HEAD:mm/memcontrol.c
1157 =======
1158 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1159 __mem_cgroup_remove_list(pc);
1160 spin_unlock_irqrestore(&mz->lru_lock, flags);
1162 <<<<<<< HEAD:mm/memcontrol.c
1163 =======
1164 page_assign_page_cgroup(page, NULL);
1165 unlock_page_cgroup(page);
1167 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1168 pc->page = newpage;
1169 lock_page_cgroup(newpage);
1170 page_assign_page_cgroup(newpage, pc);
1171 <<<<<<< HEAD:mm/memcontrol.c
1172 unlock_page_cgroup(newpage);
1173 =======
1174 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1176 mz = page_cgroup_zoneinfo(pc);
1177 spin_lock_irqsave(&mz->lru_lock, flags);
1178 __mem_cgroup_add_list(pc);
1179 spin_unlock_irqrestore(&mz->lru_lock, flags);
1180 <<<<<<< HEAD:mm/memcontrol.c
1181 return;
1182 =======
1184 unlock_page_cgroup(newpage);
1185 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1189 * This routine traverse page_cgroup in given list and drop them all.
1190 * This routine ignores page_cgroup->ref_cnt.
1191 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1193 #define FORCE_UNCHARGE_BATCH (128)
1194 <<<<<<< HEAD:mm/memcontrol.c
1195 static void
1196 mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1197 =======
1198 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1199 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1200 struct mem_cgroup_per_zone *mz,
1201 int active)
1203 struct page_cgroup *pc;
1204 struct page *page;
1205 <<<<<<< HEAD:mm/memcontrol.c
1206 int count;
1207 =======
1208 int count = FORCE_UNCHARGE_BATCH;
1209 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1210 unsigned long flags;
1211 struct list_head *list;
1213 if (active)
1214 list = &mz->active_list;
1215 else
1216 list = &mz->inactive_list;
1218 <<<<<<< HEAD:mm/memcontrol.c
1219 if (list_empty(list))
1220 return;
1221 retry:
1222 count = FORCE_UNCHARGE_BATCH;
1223 =======
1224 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1225 spin_lock_irqsave(&mz->lru_lock, flags);
1226 <<<<<<< HEAD:mm/memcontrol.c
1228 while (--count && !list_empty(list)) {
1229 =======
1230 while (!list_empty(list)) {
1231 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1232 pc = list_entry(list->prev, struct page_cgroup, lru);
1233 page = pc->page;
1234 <<<<<<< HEAD:mm/memcontrol.c
1235 /* Avoid race with charge */
1236 atomic_set(&pc->ref_cnt, 0);
1237 if (clear_page_cgroup(page, pc) == pc) {
1238 css_put(&mem->css);
1239 res_counter_uncharge(&mem->res, PAGE_SIZE);
1240 __mem_cgroup_remove_list(pc);
1241 kfree(pc);
1242 } else /* being uncharged ? ...do relax */
1243 break;
1244 =======
1245 get_page(page);
1246 spin_unlock_irqrestore(&mz->lru_lock, flags);
1247 mem_cgroup_uncharge_page(page);
1248 put_page(page);
1249 if (--count <= 0) {
1250 count = FORCE_UNCHARGE_BATCH;
1251 cond_resched();
1253 spin_lock_irqsave(&mz->lru_lock, flags);
1254 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1256 spin_unlock_irqrestore(&mz->lru_lock, flags);
1257 <<<<<<< HEAD:mm/memcontrol.c
1258 if (!list_empty(list)) {
1259 cond_resched();
1260 goto retry;
1262 return;
1263 =======
1264 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1268 * make mem_cgroup's charge to be 0 if there is no task.
1269 * This enables deleting this mem_cgroup.
1271 <<<<<<< HEAD:mm/memcontrol.c
1273 int mem_cgroup_force_empty(struct mem_cgroup *mem)
1274 =======
1275 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
1276 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1278 int ret = -EBUSY;
1279 int node, zid;
1280 <<<<<<< HEAD:mm/memcontrol.c
1281 =======
1283 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1284 css_get(&mem->css);
1286 * page reclaim code (kswapd etc..) will move pages between
1287 <<<<<<< HEAD:mm/memcontrol.c
1288 ` * active_list <-> inactive_list while we don't take a lock.
1289 =======
1290 * active_list <-> inactive_list while we don't take a lock.
1291 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1292 * So, we have to do loop here until all lists are empty.
1294 while (mem->res.usage > 0) {
1295 if (atomic_read(&mem->css.cgroup->count) > 0)
1296 goto out;
1297 for_each_node_state(node, N_POSSIBLE)
1298 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1299 struct mem_cgroup_per_zone *mz;
1300 mz = mem_cgroup_zoneinfo(mem, node, zid);
1301 /* drop all page_cgroup in active_list */
1302 mem_cgroup_force_empty_list(mem, mz, 1);
1303 /* drop all page_cgroup in inactive_list */
1304 mem_cgroup_force_empty_list(mem, mz, 0);
1307 ret = 0;
1308 out:
1309 css_put(&mem->css);
1310 return ret;
1313 <<<<<<< HEAD:mm/memcontrol.c
1316 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
1317 =======
1318 static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
1319 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1321 *tmp = memparse(buf, &buf);
1322 if (*buf != '\0')
1323 return -EINVAL;
1326 * Round up the value to the closest page size
1328 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
1329 return 0;
1332 static ssize_t mem_cgroup_read(struct cgroup *cont,
1333 struct cftype *cft, struct file *file,
1334 char __user *userbuf, size_t nbytes, loff_t *ppos)
1336 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
1337 cft->private, userbuf, nbytes, ppos,
1338 NULL);
1341 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1342 struct file *file, const char __user *userbuf,
1343 size_t nbytes, loff_t *ppos)
1345 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
1346 cft->private, userbuf, nbytes, ppos,
1347 mem_cgroup_write_strategy);
1350 static ssize_t mem_force_empty_write(struct cgroup *cont,
1351 struct cftype *cft, struct file *file,
1352 const char __user *userbuf,
1353 size_t nbytes, loff_t *ppos)
1355 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1356 <<<<<<< HEAD:mm/memcontrol.c
1357 int ret;
1358 ret = mem_cgroup_force_empty(mem);
1359 =======
1360 int ret = mem_cgroup_force_empty(mem);
1361 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1362 if (!ret)
1363 ret = nbytes;
1364 return ret;
1368 * Note: This should be removed if cgroup supports write-only file.
1370 <<<<<<< HEAD:mm/memcontrol.c
1372 =======
1373 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1374 static ssize_t mem_force_empty_read(struct cgroup *cont,
1375 struct cftype *cft,
1376 struct file *file, char __user *userbuf,
1377 size_t nbytes, loff_t *ppos)
1379 return -EINVAL;
1382 <<<<<<< HEAD:mm/memcontrol.c
1384 =======
1385 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1386 static const struct mem_cgroup_stat_desc {
1387 const char *msg;
1388 u64 unit;
1389 } mem_cgroup_stat_desc[] = {
1390 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1391 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1394 static int mem_control_stat_show(struct seq_file *m, void *arg)
1396 struct cgroup *cont = m->private;
1397 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1398 struct mem_cgroup_stat *stat = &mem_cont->stat;
1399 int i;
1401 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1402 s64 val;
1404 val = mem_cgroup_read_stat(stat, i);
1405 val *= mem_cgroup_stat_desc[i].unit;
1406 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
1407 (long long)val);
1409 /* showing # of active pages */
1411 unsigned long active, inactive;
1413 inactive = mem_cgroup_get_all_zonestat(mem_cont,
1414 MEM_CGROUP_ZSTAT_INACTIVE);
1415 active = mem_cgroup_get_all_zonestat(mem_cont,
1416 MEM_CGROUP_ZSTAT_ACTIVE);
1417 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
1418 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
1420 return 0;
1423 static const struct file_operations mem_control_stat_file_operations = {
1424 .read = seq_read,
1425 .llseek = seq_lseek,
1426 .release = single_release,
1429 static int mem_control_stat_open(struct inode *unused, struct file *file)
1431 /* XXX __d_cont */
1432 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
1434 file->f_op = &mem_control_stat_file_operations;
1435 return single_open(file, mem_control_stat_show, cont);
1438 <<<<<<< HEAD:mm/memcontrol.c
1441 =======
1442 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1443 static struct cftype mem_cgroup_files[] = {
1445 .name = "usage_in_bytes",
1446 .private = RES_USAGE,
1447 .read = mem_cgroup_read,
1450 .name = "limit_in_bytes",
1451 .private = RES_LIMIT,
1452 .write = mem_cgroup_write,
1453 .read = mem_cgroup_read,
1456 .name = "failcnt",
1457 .private = RES_FAILCNT,
1458 .read = mem_cgroup_read,
1461 .name = "force_empty",
1462 .write = mem_force_empty_write,
1463 .read = mem_force_empty_read,
1466 .name = "stat",
1467 .open = mem_control_stat_open,
1471 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1473 struct mem_cgroup_per_node *pn;
1474 struct mem_cgroup_per_zone *mz;
1475 int zone;
1477 * This routine is called against possible nodes.
1478 * But it's BUG to call kmalloc() against offline node.
1480 * TODO: this routine can waste much memory for nodes which will
1481 * never be onlined. It's better to use memory hotplug callback
1482 * function.
1484 if (node_state(node, N_HIGH_MEMORY))
1485 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1486 else
1487 pn = kmalloc(sizeof(*pn), GFP_KERNEL);
1488 if (!pn)
1489 return 1;
1491 mem->info.nodeinfo[node] = pn;
1492 memset(pn, 0, sizeof(*pn));
1494 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1495 mz = &pn->zoneinfo[zone];
1496 INIT_LIST_HEAD(&mz->active_list);
1497 INIT_LIST_HEAD(&mz->inactive_list);
1498 spin_lock_init(&mz->lru_lock);
1500 return 0;
1503 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1505 kfree(mem->info.nodeinfo[node]);
1508 <<<<<<< HEAD:mm/memcontrol.c
1510 static struct mem_cgroup init_mem_cgroup;
1512 =======
1513 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1514 static struct cgroup_subsys_state *
1515 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1517 struct mem_cgroup *mem;
1518 int node;
1520 if (unlikely((cont->parent) == NULL)) {
1521 mem = &init_mem_cgroup;
1522 init_mm.mem_cgroup = mem;
1523 } else
1524 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1526 if (mem == NULL)
1527 <<<<<<< HEAD:mm/memcontrol.c
1528 return NULL;
1529 =======
1530 return ERR_PTR(-ENOMEM);
1531 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1533 res_counter_init(&mem->res);
1535 memset(&mem->info, 0, sizeof(mem->info));
1537 for_each_node_state(node, N_POSSIBLE)
1538 if (alloc_mem_cgroup_per_zone_info(mem, node))
1539 goto free_out;
1541 return &mem->css;
1542 free_out:
1543 for_each_node_state(node, N_POSSIBLE)
1544 free_mem_cgroup_per_zone_info(mem, node);
1545 if (cont->parent != NULL)
1546 kfree(mem);
1547 <<<<<<< HEAD:mm/memcontrol.c
1548 return NULL;
1549 =======
1550 return ERR_PTR(-ENOMEM);
1551 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1554 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1555 struct cgroup *cont)
1557 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1558 mem_cgroup_force_empty(mem);
1561 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1562 struct cgroup *cont)
1564 int node;
1565 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1567 for_each_node_state(node, N_POSSIBLE)
1568 free_mem_cgroup_per_zone_info(mem, node);
1570 kfree(mem_cgroup_from_cont(cont));
1573 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1574 struct cgroup *cont)
1576 return cgroup_add_files(cont, ss, mem_cgroup_files,
1577 ARRAY_SIZE(mem_cgroup_files));
1580 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1581 struct cgroup *cont,
1582 struct cgroup *old_cont,
1583 struct task_struct *p)
1585 struct mm_struct *mm;
1586 struct mem_cgroup *mem, *old_mem;
1588 mm = get_task_mm(p);
1589 if (mm == NULL)
1590 return;
1592 mem = mem_cgroup_from_cont(cont);
1593 old_mem = mem_cgroup_from_cont(old_cont);
1595 if (mem == old_mem)
1596 goto out;
1599 * Only thread group leaders are allowed to migrate, the mm_struct is
1600 * in effect owned by the leader
1602 if (p->tgid != p->pid)
1603 goto out;
1605 css_get(&mem->css);
1606 rcu_assign_pointer(mm->mem_cgroup, mem);
1607 css_put(&old_mem->css);
1609 out:
1610 mmput(mm);
1611 <<<<<<< HEAD:mm/memcontrol.c
1612 return;
1613 =======
1614 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/memcontrol.c
1617 struct cgroup_subsys mem_cgroup_subsys = {
1618 .name = "memory",
1619 .subsys_id = mem_cgroup_subsys_id,
1620 .create = mem_cgroup_create,
1621 .pre_destroy = mem_cgroup_pre_destroy,
1622 .destroy = mem_cgroup_destroy,
1623 .populate = mem_cgroup_populate,
1624 .attach = mem_cgroup_move_task,
1625 .early_init = 0,