Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / fs / xfs / xfs_iget.c
blobd58a3d19d86830096bb30469e6c4842520f14e94
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_utils.h"
43 * Look up an inode by number in the given file system.
44 * The inode is looked up in the cache held in each AG.
45 * If the inode is found in the cache, attach it to the provided
46 * vnode.
48 * If it is not in core, read it in from the file system's device,
49 * add it to the cache and attach the provided vnode.
51 * The inode is locked according to the value of the lock_flags parameter.
52 * This flag parameter indicates how and if the inode's IO lock and inode lock
53 * should be taken.
55 * mp -- the mount point structure for the current file system. It points
56 * to the inode hash table.
57 * tp -- a pointer to the current transaction if there is one. This is
58 * simply passed through to the xfs_iread() call.
59 * ino -- the number of the inode desired. This is the unique identifier
60 * within the file system for the inode being requested.
61 * lock_flags -- flags indicating how to lock the inode. See the comment
62 * for xfs_ilock() for a list of valid values.
63 * bno -- the block number starting the buffer containing the inode,
64 * if known (as by bulkstat), else 0.
66 STATIC int
67 xfs_iget_core(
68 struct inode *inode,
69 xfs_mount_t *mp,
70 xfs_trans_t *tp,
71 xfs_ino_t ino,
72 uint flags,
73 uint lock_flags,
74 xfs_inode_t **ipp,
75 xfs_daddr_t bno)
77 struct inode *old_inode;
78 xfs_inode_t *ip;
79 xfs_inode_t *iq;
80 int error;
81 xfs_icluster_t *icl, *new_icl = NULL;
82 unsigned long first_index, mask;
83 xfs_perag_t *pag;
84 xfs_agino_t agino;
86 /* the radix tree exists only in inode capable AGs */
87 if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
88 return EINVAL;
90 /* get the perag structure and ensure that it's inode capable */
91 pag = xfs_get_perag(mp, ino);
92 if (!pag->pagi_inodeok)
93 return EINVAL;
94 ASSERT(pag->pag_ici_init);
95 agino = XFS_INO_TO_AGINO(mp, ino);
97 again:
98 read_lock(&pag->pag_ici_lock);
99 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
101 if (ip != NULL) {
103 * If INEW is set this inode is being set up
104 * we need to pause and try again.
106 if (xfs_iflags_test(ip, XFS_INEW)) {
107 read_unlock(&pag->pag_ici_lock);
108 delay(1);
109 XFS_STATS_INC(xs_ig_frecycle);
111 goto again;
114 old_inode = ip->i_vnode;
115 if (old_inode == NULL) {
117 * If IRECLAIM is set this inode is
118 * on its way out of the system,
119 * we need to pause and try again.
121 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
122 read_unlock(&pag->pag_ici_lock);
123 delay(1);
124 XFS_STATS_INC(xs_ig_frecycle);
126 goto again;
128 ASSERT(xfs_iflags_test(ip, XFS_IRECLAIMABLE));
131 * If lookup is racing with unlink, then we
132 * should return an error immediately so we
133 * don't remove it from the reclaim list and
134 * potentially leak the inode.
136 if ((ip->i_d.di_mode == 0) &&
137 !(flags & XFS_IGET_CREATE)) {
138 read_unlock(&pag->pag_ici_lock);
139 xfs_put_perag(mp, pag);
140 return ENOENT;
143 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
145 XFS_STATS_INC(xs_ig_found);
146 xfs_iflags_clear(ip, XFS_IRECLAIMABLE);
147 read_unlock(&pag->pag_ici_lock);
149 XFS_MOUNT_ILOCK(mp);
150 list_del_init(&ip->i_reclaim);
151 XFS_MOUNT_IUNLOCK(mp);
153 goto finish_inode;
155 } else if (inode != old_inode) {
156 /* The inode is being torn down, pause and
157 * try again.
159 if (old_inode->i_state & (I_FREEING | I_CLEAR)) {
160 read_unlock(&pag->pag_ici_lock);
161 delay(1);
162 XFS_STATS_INC(xs_ig_frecycle);
164 goto again;
166 /* Chances are the other vnode (the one in the inode) is being torn
167 * down right now, and we landed on top of it. Question is, what do
168 * we do? Unhook the old inode and hook up the new one?
170 cmn_err(CE_PANIC,
171 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
172 old_inode, inode);
176 * Inode cache hit
178 read_unlock(&pag->pag_ici_lock);
179 XFS_STATS_INC(xs_ig_found);
181 finish_inode:
182 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
183 xfs_put_perag(mp, pag);
184 return ENOENT;
187 if (lock_flags != 0)
188 xfs_ilock(ip, lock_flags);
190 xfs_iflags_clear(ip, XFS_ISTALE);
191 xfs_itrace_exit_tag(ip, "xfs_iget.found");
192 goto return_ip;
196 * Inode cache miss
198 read_unlock(&pag->pag_ici_lock);
199 XFS_STATS_INC(xs_ig_missed);
202 * Read the disk inode attributes into a new inode structure and get
203 * a new vnode for it. This should also initialize i_ino and i_mount.
205 error = xfs_iread(mp, tp, ino, &ip, bno,
206 (flags & XFS_IGET_BULKSTAT) ? XFS_IMAP_BULKSTAT : 0);
207 if (error) {
208 xfs_put_perag(mp, pag);
209 return error;
212 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
215 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
216 "xfsino", ip->i_ino);
217 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
218 init_waitqueue_head(&ip->i_ipin_wait);
219 atomic_set(&ip->i_pincount, 0);
220 initnsema(&ip->i_flock, 1, "xfsfino");
222 if (lock_flags)
223 xfs_ilock(ip, lock_flags);
225 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
226 xfs_idestroy(ip);
227 xfs_put_perag(mp, pag);
228 return ENOENT;
232 * This is a bit messy - we preallocate everything we _might_
233 * need before we pick up the ici lock. That way we don't have to
234 * juggle locks and go all the way back to the start.
236 new_icl = kmem_zone_alloc(xfs_icluster_zone, KM_SLEEP);
237 if (radix_tree_preload(GFP_KERNEL)) {
238 <<<<<<< HEAD:fs/xfs/xfs_iget.c
239 =======
240 xfs_idestroy(ip);
241 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:fs/xfs/xfs_iget.c
242 delay(1);
243 goto again;
245 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
246 first_index = agino & mask;
247 write_lock(&pag->pag_ici_lock);
250 * Find the cluster if it exists
252 icl = NULL;
253 if (radix_tree_gang_lookup(&pag->pag_ici_root, (void**)&iq,
254 first_index, 1)) {
255 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) == first_index)
256 icl = iq->i_cluster;
260 * insert the new inode
262 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
263 if (unlikely(error)) {
264 BUG_ON(error != -EEXIST);
265 write_unlock(&pag->pag_ici_lock);
266 radix_tree_preload_end();
267 xfs_idestroy(ip);
268 XFS_STATS_INC(xs_ig_dup);
269 goto again;
273 * These values _must_ be set before releasing ihlock!
275 ip->i_udquot = ip->i_gdquot = NULL;
276 xfs_iflags_set(ip, XFS_INEW);
278 ASSERT(ip->i_cluster == NULL);
280 if (!icl) {
281 spin_lock_init(&new_icl->icl_lock);
282 INIT_HLIST_HEAD(&new_icl->icl_inodes);
283 icl = new_icl;
284 new_icl = NULL;
285 } else {
286 ASSERT(!hlist_empty(&icl->icl_inodes));
288 spin_lock(&icl->icl_lock);
289 hlist_add_head(&ip->i_cnode, &icl->icl_inodes);
290 ip->i_cluster = icl;
291 spin_unlock(&icl->icl_lock);
293 write_unlock(&pag->pag_ici_lock);
294 radix_tree_preload_end();
295 if (new_icl)
296 kmem_zone_free(xfs_icluster_zone, new_icl);
299 * Link ip to its mount and thread it on the mount's inode list.
301 XFS_MOUNT_ILOCK(mp);
302 if ((iq = mp->m_inodes)) {
303 ASSERT(iq->i_mprev->i_mnext == iq);
304 ip->i_mprev = iq->i_mprev;
305 iq->i_mprev->i_mnext = ip;
306 iq->i_mprev = ip;
307 ip->i_mnext = iq;
308 } else {
309 ip->i_mnext = ip;
310 ip->i_mprev = ip;
312 mp->m_inodes = ip;
314 XFS_MOUNT_IUNLOCK(mp);
315 xfs_put_perag(mp, pag);
317 return_ip:
318 ASSERT(ip->i_df.if_ext_max ==
319 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
321 xfs_iflags_set(ip, XFS_IMODIFIED);
322 *ipp = ip;
325 * If we have a real type for an on-disk inode, we can set ops(&unlock)
326 * now. If it's a new inode being created, xfs_ialloc will handle it.
328 xfs_initialize_vnode(mp, inode, ip);
329 return 0;
334 * The 'normal' internal xfs_iget, if needed it will
335 * 'allocate', or 'get', the vnode.
338 xfs_iget(
339 xfs_mount_t *mp,
340 xfs_trans_t *tp,
341 xfs_ino_t ino,
342 uint flags,
343 uint lock_flags,
344 xfs_inode_t **ipp,
345 xfs_daddr_t bno)
347 struct inode *inode;
348 xfs_inode_t *ip;
349 int error;
351 XFS_STATS_INC(xs_ig_attempts);
353 retry:
354 inode = iget_locked(mp->m_super, ino);
355 if (!inode)
356 /* If we got no inode we are out of memory */
357 return ENOMEM;
359 if (inode->i_state & I_NEW) {
360 XFS_STATS_INC(vn_active);
361 XFS_STATS_INC(vn_alloc);
363 error = xfs_iget_core(inode, mp, tp, ino, flags,
364 lock_flags, ipp, bno);
365 if (error) {
366 make_bad_inode(inode);
367 if (inode->i_state & I_NEW)
368 unlock_new_inode(inode);
369 iput(inode);
371 return error;
375 * If the inode is not fully constructed due to
376 * filehandle mismatches wait for the inode to go
377 * away and try again.
379 * iget_locked will call __wait_on_freeing_inode
380 * to wait for the inode to go away.
382 if (is_bad_inode(inode)) {
383 iput(inode);
384 delay(1);
385 goto retry;
388 ip = XFS_I(inode);
389 if (!ip) {
390 iput(inode);
391 delay(1);
392 goto retry;
395 if (lock_flags != 0)
396 xfs_ilock(ip, lock_flags);
397 XFS_STATS_INC(xs_ig_found);
398 *ipp = ip;
399 return 0;
403 * Look for the inode corresponding to the given ino in the hash table.
404 * If it is there and its i_transp pointer matches tp, return it.
405 * Otherwise, return NULL.
407 xfs_inode_t *
408 xfs_inode_incore(xfs_mount_t *mp,
409 xfs_ino_t ino,
410 xfs_trans_t *tp)
412 xfs_inode_t *ip;
413 xfs_perag_t *pag;
415 pag = xfs_get_perag(mp, ino);
416 read_lock(&pag->pag_ici_lock);
417 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
418 read_unlock(&pag->pag_ici_lock);
419 xfs_put_perag(mp, pag);
421 /* the returned inode must match the transaction */
422 if (ip && (ip->i_transp != tp))
423 return NULL;
424 return ip;
428 * Decrement reference count of an inode structure and unlock it.
430 * ip -- the inode being released
431 * lock_flags -- this parameter indicates the inode's locks to be
432 * to be released. See the comment on xfs_iunlock() for a list
433 * of valid values.
435 void
436 xfs_iput(xfs_inode_t *ip,
437 uint lock_flags)
439 xfs_itrace_entry(ip);
440 xfs_iunlock(ip, lock_flags);
441 IRELE(ip);
445 * Special iput for brand-new inodes that are still locked
447 void
448 xfs_iput_new(xfs_inode_t *ip,
449 uint lock_flags)
451 struct inode *inode = ip->i_vnode;
453 xfs_itrace_entry(ip);
455 if ((ip->i_d.di_mode == 0)) {
456 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
457 make_bad_inode(inode);
459 if (inode->i_state & I_NEW)
460 unlock_new_inode(inode);
461 if (lock_flags)
462 xfs_iunlock(ip, lock_flags);
463 IRELE(ip);
468 * This routine embodies the part of the reclaim code that pulls
469 * the inode from the inode hash table and the mount structure's
470 * inode list.
471 * This should only be called from xfs_reclaim().
473 void
474 xfs_ireclaim(xfs_inode_t *ip)
477 * Remove from old hash list and mount list.
479 XFS_STATS_INC(xs_ig_reclaims);
481 xfs_iextract(ip);
484 * Here we do a spurious inode lock in order to coordinate with
485 * xfs_sync(). This is because xfs_sync() references the inodes
486 * in the mount list without taking references on the corresponding
487 * vnodes. We make that OK here by ensuring that we wait until
488 * the inode is unlocked in xfs_sync() before we go ahead and
489 * free it. We get both the regular lock and the io lock because
490 * the xfs_sync() code may need to drop the regular one but will
491 * still hold the io lock.
493 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
496 * Release dquots (and their references) if any. An inode may escape
497 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
499 XFS_QM_DQDETACH(ip->i_mount, ip);
502 * Pull our behavior descriptor from the vnode chain.
504 if (ip->i_vnode) {
505 ip->i_vnode->i_private = NULL;
506 ip->i_vnode = NULL;
510 * Free all memory associated with the inode.
512 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
513 xfs_idestroy(ip);
517 * This routine removes an about-to-be-destroyed inode from
518 * all of the lists in which it is located with the exception
519 * of the behavior chain.
521 void
522 xfs_iextract(
523 xfs_inode_t *ip)
525 xfs_mount_t *mp = ip->i_mount;
526 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
527 xfs_inode_t *iq;
529 write_lock(&pag->pag_ici_lock);
530 radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
531 write_unlock(&pag->pag_ici_lock);
532 xfs_put_perag(mp, pag);
535 * Remove from cluster list
537 mp = ip->i_mount;
538 spin_lock(&ip->i_cluster->icl_lock);
539 hlist_del(&ip->i_cnode);
540 spin_unlock(&ip->i_cluster->icl_lock);
542 /* was last inode in cluster? */
543 if (hlist_empty(&ip->i_cluster->icl_inodes))
544 kmem_zone_free(xfs_icluster_zone, ip->i_cluster);
547 * Remove from mount's inode list.
549 XFS_MOUNT_ILOCK(mp);
550 ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
551 iq = ip->i_mnext;
552 iq->i_mprev = ip->i_mprev;
553 ip->i_mprev->i_mnext = iq;
556 * Fix up the head pointer if it points to the inode being deleted.
558 if (mp->m_inodes == ip) {
559 if (ip == iq) {
560 mp->m_inodes = NULL;
561 } else {
562 mp->m_inodes = iq;
566 /* Deal with the deleted inodes list */
567 list_del_init(&ip->i_reclaim);
569 mp->m_ireclaims++;
570 XFS_MOUNT_IUNLOCK(mp);
574 * This is a wrapper routine around the xfs_ilock() routine
575 * used to centralize some grungy code. It is used in places
576 * that wish to lock the inode solely for reading the extents.
577 * The reason these places can't just call xfs_ilock(SHARED)
578 * is that the inode lock also guards to bringing in of the
579 * extents from disk for a file in b-tree format. If the inode
580 * is in b-tree format, then we need to lock the inode exclusively
581 * until the extents are read in. Locking it exclusively all
582 * the time would limit our parallelism unnecessarily, though.
583 * What we do instead is check to see if the extents have been
584 * read in yet, and only lock the inode exclusively if they
585 * have not.
587 * The function returns a value which should be given to the
588 * corresponding xfs_iunlock_map_shared(). This value is
589 * the mode in which the lock was actually taken.
591 uint
592 xfs_ilock_map_shared(
593 xfs_inode_t *ip)
595 uint lock_mode;
597 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
598 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
599 lock_mode = XFS_ILOCK_EXCL;
600 } else {
601 lock_mode = XFS_ILOCK_SHARED;
604 xfs_ilock(ip, lock_mode);
606 return lock_mode;
610 * This is simply the unlock routine to go with xfs_ilock_map_shared().
611 * All it does is call xfs_iunlock() with the given lock_mode.
613 void
614 xfs_iunlock_map_shared(
615 xfs_inode_t *ip,
616 unsigned int lock_mode)
618 xfs_iunlock(ip, lock_mode);
622 * The xfs inode contains 2 locks: a multi-reader lock called the
623 * i_iolock and a multi-reader lock called the i_lock. This routine
624 * allows either or both of the locks to be obtained.
626 * The 2 locks should always be ordered so that the IO lock is
627 * obtained first in order to prevent deadlock.
629 * ip -- the inode being locked
630 * lock_flags -- this parameter indicates the inode's locks
631 * to be locked. It can be:
632 * XFS_IOLOCK_SHARED,
633 * XFS_IOLOCK_EXCL,
634 * XFS_ILOCK_SHARED,
635 * XFS_ILOCK_EXCL,
636 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
637 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
638 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
639 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
641 void
642 xfs_ilock(xfs_inode_t *ip,
643 uint lock_flags)
646 * You can't set both SHARED and EXCL for the same lock,
647 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
648 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
650 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
651 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
652 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
653 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
654 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
656 if (lock_flags & XFS_IOLOCK_EXCL) {
657 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
658 } else if (lock_flags & XFS_IOLOCK_SHARED) {
659 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
661 if (lock_flags & XFS_ILOCK_EXCL) {
662 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
663 } else if (lock_flags & XFS_ILOCK_SHARED) {
664 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
666 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
670 * This is just like xfs_ilock(), except that the caller
671 * is guaranteed not to sleep. It returns 1 if it gets
672 * the requested locks and 0 otherwise. If the IO lock is
673 * obtained but the inode lock cannot be, then the IO lock
674 * is dropped before returning.
676 * ip -- the inode being locked
677 * lock_flags -- this parameter indicates the inode's locks to be
678 * to be locked. See the comment for xfs_ilock() for a list
679 * of valid values.
683 xfs_ilock_nowait(xfs_inode_t *ip,
684 uint lock_flags)
686 int iolocked;
687 int ilocked;
690 * You can't set both SHARED and EXCL for the same lock,
691 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
692 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
694 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
695 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
696 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
697 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
698 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
700 iolocked = 0;
701 if (lock_flags & XFS_IOLOCK_EXCL) {
702 iolocked = mrtryupdate(&ip->i_iolock);
703 if (!iolocked) {
704 return 0;
706 } else if (lock_flags & XFS_IOLOCK_SHARED) {
707 iolocked = mrtryaccess(&ip->i_iolock);
708 if (!iolocked) {
709 return 0;
712 if (lock_flags & XFS_ILOCK_EXCL) {
713 ilocked = mrtryupdate(&ip->i_lock);
714 if (!ilocked) {
715 if (iolocked) {
716 mrunlock(&ip->i_iolock);
718 return 0;
720 } else if (lock_flags & XFS_ILOCK_SHARED) {
721 ilocked = mrtryaccess(&ip->i_lock);
722 if (!ilocked) {
723 if (iolocked) {
724 mrunlock(&ip->i_iolock);
726 return 0;
729 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
730 return 1;
734 * xfs_iunlock() is used to drop the inode locks acquired with
735 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
736 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
737 * that we know which locks to drop.
739 * ip -- the inode being unlocked
740 * lock_flags -- this parameter indicates the inode's locks to be
741 * to be unlocked. See the comment for xfs_ilock() for a list
742 * of valid values for this parameter.
745 void
746 xfs_iunlock(xfs_inode_t *ip,
747 uint lock_flags)
750 * You can't set both SHARED and EXCL for the same lock,
751 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
752 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
754 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
755 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
756 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
757 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
758 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
759 XFS_LOCK_DEP_MASK)) == 0);
760 ASSERT(lock_flags != 0);
762 if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
763 ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) ||
764 (ismrlocked(&ip->i_iolock, MR_ACCESS)));
765 ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) ||
766 (ismrlocked(&ip->i_iolock, MR_UPDATE)));
767 mrunlock(&ip->i_iolock);
770 if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
771 ASSERT(!(lock_flags & XFS_ILOCK_SHARED) ||
772 (ismrlocked(&ip->i_lock, MR_ACCESS)));
773 ASSERT(!(lock_flags & XFS_ILOCK_EXCL) ||
774 (ismrlocked(&ip->i_lock, MR_UPDATE)));
775 mrunlock(&ip->i_lock);
778 * Let the AIL know that this item has been unlocked in case
779 * it is in the AIL and anyone is waiting on it. Don't do
780 * this if the caller has asked us not to.
782 if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) &&
783 ip->i_itemp != NULL) {
784 xfs_trans_unlocked_item(ip->i_mount,
785 (xfs_log_item_t*)(ip->i_itemp));
788 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
792 * give up write locks. the i/o lock cannot be held nested
793 * if it is being demoted.
795 void
796 xfs_ilock_demote(xfs_inode_t *ip,
797 uint lock_flags)
799 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
800 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
802 if (lock_flags & XFS_ILOCK_EXCL) {
803 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
804 mrdemote(&ip->i_lock);
806 if (lock_flags & XFS_IOLOCK_EXCL) {
807 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
808 mrdemote(&ip->i_iolock);
813 * The following three routines simply manage the i_flock
814 * semaphore embedded in the inode. This semaphore synchronizes
815 * processes attempting to flush the in-core inode back to disk.
817 void
818 xfs_iflock(xfs_inode_t *ip)
820 psema(&(ip->i_flock), PINOD|PLTWAIT);
824 xfs_iflock_nowait(xfs_inode_t *ip)
826 return (cpsema(&(ip->i_flock)));
829 void
830 xfs_ifunlock(xfs_inode_t *ip)
832 ASSERT(issemalocked(&(ip->i_flock)));
833 vsema(&(ip->i_flock));