3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/kernel.h>
34 #include <linux/errno.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/delay.h>
40 #include <linux/interrupt.h>
41 #include <linux/module.h>
42 #include <asm/mach-au1x00/au1000.h>
43 #include <asm/mach-au1x00/au1xxx_dbdma.h>
44 #include <asm/system.h>
47 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
50 * The Descriptor Based DMA supports up to 16 channels.
52 * There are 32 devices defined. We keep an internal structure
53 * of devices using these channels, along with additional
56 * We allocate the descriptors and allow access to them through various
57 * functions. The drivers allocate the data buffers and assign them
60 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock
);
62 /* I couldn't find a macro that did this......
64 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
66 static dbdma_global_t
*dbdma_gptr
= (dbdma_global_t
*)DDMA_GLOBAL_BASE
;
67 static int dbdma_initialized
=0;
68 static void au1xxx_dbdma_init(void);
70 static dbdev_tab_t dbdev_tab
[] = {
71 #ifdef CONFIG_SOC_AU1550
73 { DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
74 { DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
75 { DSCR_CMD0_UART3_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11400004, 0, 0 },
76 { DSCR_CMD0_UART3_RX
, DEV_FLAGS_IN
, 0, 8, 0x11400000, 0, 0 },
79 { DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
80 { DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
81 { DSCR_CMD0_DMA_REQ2
, 0, 0, 0, 0x00000000, 0, 0 },
82 { DSCR_CMD0_DMA_REQ3
, 0, 0, 0, 0x00000000, 0, 0 },
85 { DSCR_CMD0_USBDEV_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10200000, 0, 0 },
86 { DSCR_CMD0_USBDEV_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10200004, 0, 0 },
87 { DSCR_CMD0_USBDEV_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10200008, 0, 0 },
88 { DSCR_CMD0_USBDEV_TX2
, DEV_FLAGS_OUT
, 4, 8, 0x1020000c, 0, 0 },
89 { DSCR_CMD0_USBDEV_RX3
, DEV_FLAGS_IN
, 4, 8, 0x10200010, 0, 0 },
90 { DSCR_CMD0_USBDEV_RX4
, DEV_FLAGS_IN
, 4, 8, 0x10200014, 0, 0 },
93 { DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11a0001c, 0, 0 },
94 { DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x11a0001c, 0, 0 },
97 { DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11b0001c, 0, 0 },
98 { DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x11b0001c, 0, 0 },
101 { DSCR_CMD0_PSC2_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10a0001c, 0, 0 },
102 { DSCR_CMD0_PSC2_RX
, DEV_FLAGS_IN
, 0, 0, 0x10a0001c, 0, 0 },
105 { DSCR_CMD0_PSC3_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10b0001c, 0, 0 },
106 { DSCR_CMD0_PSC3_RX
, DEV_FLAGS_IN
, 0, 0, 0x10b0001c, 0, 0 },
108 { DSCR_CMD0_PCI_WRITE
, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
109 { DSCR_CMD0_NAND_FLASH
, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
112 { DSCR_CMD0_MAC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
113 { DSCR_CMD0_MAC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
116 { DSCR_CMD0_MAC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
117 { DSCR_CMD0_MAC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
119 #endif /* CONFIG_SOC_AU1550 */
121 #ifdef CONFIG_SOC_AU1200
122 { DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
123 { DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
124 { DSCR_CMD0_UART1_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11200004, 0, 0 },
125 { DSCR_CMD0_UART1_RX
, DEV_FLAGS_IN
, 0, 8, 0x11200000, 0, 0 },
127 { DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
128 { DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
130 { DSCR_CMD0_MAE_BE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
131 { DSCR_CMD0_MAE_FE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
132 { DSCR_CMD0_MAE_BOTH
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
133 { DSCR_CMD0_LCD
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
135 { DSCR_CMD0_SDMS_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10600000, 0, 0 },
136 { DSCR_CMD0_SDMS_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10600004, 0, 0 },
137 { DSCR_CMD0_SDMS_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10680000, 0, 0 },
138 { DSCR_CMD0_SDMS_RX1
, DEV_FLAGS_IN
, 4, 8, 0x10680004, 0, 0 },
140 { DSCR_CMD0_AES_RX
, DEV_FLAGS_IN
, 4, 32, 0x10300008, 0, 0 },
141 { DSCR_CMD0_AES_TX
, DEV_FLAGS_OUT
, 4, 32, 0x10300004, 0, 0 },
143 { DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11a0001c, 0, 0 },
144 { DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 16, 0x11a0001c, 0, 0 },
145 { DSCR_CMD0_PSC0_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
147 { DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11b0001c, 0, 0 },
148 { DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 16, 0x11b0001c, 0, 0 },
149 { DSCR_CMD0_PSC1_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
151 { DSCR_CMD0_CIM_RXA
, DEV_FLAGS_IN
, 0, 32, 0x14004020, 0, 0 },
152 { DSCR_CMD0_CIM_RXB
, DEV_FLAGS_IN
, 0, 32, 0x14004040, 0, 0 },
153 { DSCR_CMD0_CIM_RXC
, DEV_FLAGS_IN
, 0, 32, 0x14004060, 0, 0 },
154 { DSCR_CMD0_CIM_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
156 { DSCR_CMD0_NAND_FLASH
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
158 #endif // CONFIG_SOC_AU1200
160 { DSCR_CMD0_THROTTLE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
161 { DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
163 /* Provide 16 user definable device types */
164 <<<<<<< HEAD
:arch
/mips
/au1000
/common
/dbdma
.c
165 { 0, 0, 0, 0, 0, 0, 0 },
166 { 0, 0, 0, 0, 0, 0, 0 },
167 { 0, 0, 0, 0, 0, 0, 0 },
168 { 0, 0, 0, 0, 0, 0, 0 },
169 { 0, 0, 0, 0, 0, 0, 0 },
170 { 0, 0, 0, 0, 0, 0, 0 },
171 { 0, 0, 0, 0, 0, 0, 0 },
172 { 0, 0, 0, 0, 0, 0, 0 },
173 { 0, 0, 0, 0, 0, 0, 0 },
174 { 0, 0, 0, 0, 0, 0, 0 },
175 { 0, 0, 0, 0, 0, 0, 0 },
176 { 0, 0, 0, 0, 0, 0, 0 },
177 { 0, 0, 0, 0, 0, 0, 0 },
178 { 0, 0, 0, 0, 0, 0, 0 },
179 { 0, 0, 0, 0, 0, 0, 0 },
180 { 0, 0, 0, 0, 0, 0, 0 },
182 { ~0, 0, 0, 0, 0, 0, 0 },
183 { ~0, 0, 0, 0, 0, 0, 0 },
184 { ~0, 0, 0, 0, 0, 0, 0 },
185 { ~0, 0, 0, 0, 0, 0, 0 },
186 { ~0, 0, 0, 0, 0, 0, 0 },
187 { ~0, 0, 0, 0, 0, 0, 0 },
188 { ~0, 0, 0, 0, 0, 0, 0 },
189 { ~0, 0, 0, 0, 0, 0, 0 },
190 { ~0, 0, 0, 0, 0, 0, 0 },
191 { ~0, 0, 0, 0, 0, 0, 0 },
192 { ~0, 0, 0, 0, 0, 0, 0 },
193 { ~0, 0, 0, 0, 0, 0, 0 },
194 { ~0, 0, 0, 0, 0, 0, 0 },
195 { ~0, 0, 0, 0, 0, 0, 0 },
196 { ~0, 0, 0, 0, 0, 0, 0 },
197 { ~0, 0, 0, 0, 0, 0, 0 },
198 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:arch
/mips
/au1000
/common
/dbdma
.c
201 #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
203 static chan_tab_t
*chan_tab_ptr
[NUM_DBDMA_CHANS
];
206 find_dbdev_id(u32 id
)
210 for (i
= 0; i
< DBDEV_TAB_SIZE
; ++i
) {
218 void * au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t
*dp
)
220 return phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
222 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt
);
225 au1xxx_ddma_add_device(dbdev_tab_t
*dev
)
229 static u16 new_id
=0x1000;
231 <<<<<<< HEAD
:arch
/mips
/au1000
/common
/dbdma
.c
232 p
= find_dbdev_id(0);
234 p
= find_dbdev_id(~0);
235 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:arch
/mips
/au1000
/common
/dbdma
.c
238 memcpy(p
, dev
, sizeof(dbdev_tab_t
));
239 p
->dev_id
= DSCR_DEV2CUSTOM_ID(new_id
, dev
->dev_id
);
243 printk("add_device: id:%x flags:%x padd:%x\n",
244 p
->dev_id
, p
->dev_flags
, p
->dev_physaddr
);
250 EXPORT_SYMBOL(au1xxx_ddma_add_device
);
252 /* Allocate a channel and return a non-zero descriptor if successful.
255 au1xxx_dbdma_chan_alloc(u32 srcid
, u32 destid
,
256 void (*callback
)(int, void *), void *callparam
)
262 dbdev_tab_t
*stp
, *dtp
;
266 /* We do the intialization on the first channel allocation.
267 * We have to wait because of the interrupt handler initialization
268 * which can't be done successfully during board set up.
270 if (!dbdma_initialized
)
272 dbdma_initialized
= 1;
274 if ((stp
= find_dbdev_id(srcid
)) == NULL
)
276 if ((dtp
= find_dbdev_id(destid
)) == NULL
)
282 /* Check to see if we can get both channels.
284 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
285 if (!(stp
->dev_flags
& DEV_FLAGS_INUSE
) ||
286 (stp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
288 stp
->dev_flags
|= DEV_FLAGS_INUSE
;
289 if (!(dtp
->dev_flags
& DEV_FLAGS_INUSE
) ||
290 (dtp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
291 /* Got destination */
292 dtp
->dev_flags
|= DEV_FLAGS_INUSE
;
295 /* Can't get dest. Release src.
297 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
304 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
307 /* Let's see if we can allocate a channel for it.
311 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
312 for (i
=0; i
<NUM_DBDMA_CHANS
; i
++) {
313 if (chan_tab_ptr
[i
] == NULL
) {
314 /* If kmalloc fails, it is caught below same
315 * as a channel not available.
317 ctp
= kmalloc(sizeof(chan_tab_t
), GFP_ATOMIC
);
318 chan_tab_ptr
[i
] = ctp
;
322 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
325 memset(ctp
, 0, sizeof(chan_tab_t
));
326 ctp
->chan_index
= chan
= i
;
327 dcp
= DDMA_CHANNEL_BASE
;
328 dcp
+= (0x0100 * chan
);
329 ctp
->chan_ptr
= (au1x_dma_chan_t
*)dcp
;
330 cp
= (au1x_dma_chan_t
*)dcp
;
332 ctp
->chan_dest
= dtp
;
333 ctp
->chan_callback
= callback
;
334 ctp
->chan_callparam
= callparam
;
336 /* Initialize channel configuration.
339 if (stp
->dev_intlevel
)
341 if (stp
->dev_intpolarity
)
343 if (dtp
->dev_intlevel
)
345 if (dtp
->dev_intpolarity
)
347 if ((stp
->dev_flags
& DEV_FLAGS_SYNC
) ||
348 (dtp
->dev_flags
& DEV_FLAGS_SYNC
))
353 /* Return a non-zero value that can be used to
354 * find the channel information in subsequent
357 rv
= (u32
)(&chan_tab_ptr
[chan
]);
360 /* Release devices */
361 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
362 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
367 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc
);
369 /* Set the device width if source or destination is a FIFO.
370 * Should be 8, 16, or 32 bits.
373 au1xxx_dbdma_set_devwidth(u32 chanid
, int bits
)
377 dbdev_tab_t
*stp
, *dtp
;
379 ctp
= *((chan_tab_t
**)chanid
);
381 dtp
= ctp
->chan_dest
;
384 if (stp
->dev_flags
& DEV_FLAGS_IN
) { /* Source in fifo */
385 rv
= stp
->dev_devwidth
;
386 stp
->dev_devwidth
= bits
;
388 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) { /* Destination out fifo */
389 rv
= dtp
->dev_devwidth
;
390 dtp
->dev_devwidth
= bits
;
395 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth
);
397 /* Allocate a descriptor ring, initializing as much as possible.
400 au1xxx_dbdma_ring_alloc(u32 chanid
, int entries
)
403 u32 desc_base
, srcid
, destid
;
404 u32 cmd0
, cmd1
, src1
, dest1
;
407 dbdev_tab_t
*stp
, *dtp
;
408 au1x_ddma_desc_t
*dp
;
410 /* I guess we could check this to be within the
411 * range of the table......
413 ctp
= *((chan_tab_t
**)chanid
);
415 dtp
= ctp
->chan_dest
;
417 /* The descriptors must be 32-byte aligned. There is a
418 * possibility the allocation will give us such an address,
419 * and if we try that first we are likely to not waste larger
422 desc_base
= (u32
)kmalloc(entries
* sizeof(au1x_ddma_desc_t
),
427 if (desc_base
& 0x1f) {
428 /* Lost....do it again, allocate extra, and round
431 kfree((const void *)desc_base
);
432 i
= entries
* sizeof(au1x_ddma_desc_t
);
433 i
+= (sizeof(au1x_ddma_desc_t
) - 1);
434 if ((desc_base
= (u32
)kmalloc(i
, GFP_KERNEL
|GFP_DMA
)) == 0)
437 desc_base
= ALIGN_ADDR(desc_base
, sizeof(au1x_ddma_desc_t
));
439 dp
= (au1x_ddma_desc_t
*)desc_base
;
441 /* Keep track of the base descriptor.
443 ctp
->chan_desc_base
= dp
;
445 /* Initialize the rings with as much information as we know.
448 destid
= dtp
->dev_id
;
450 cmd0
= cmd1
= src1
= dest1
= 0;
453 cmd0
|= DSCR_CMD0_SID(srcid
);
454 cmd0
|= DSCR_CMD0_DID(destid
);
455 cmd0
|= DSCR_CMD0_IE
| DSCR_CMD0_CV
;
456 cmd0
|= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE
);
458 /* is it mem to mem transfer? */
459 if(((DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_THROTTLE
) || (DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_ALWAYS
)) &&
460 ((DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_THROTTLE
) || (DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_ALWAYS
))) {
461 cmd0
|= DSCR_CMD0_MEM
;
464 switch (stp
->dev_devwidth
) {
466 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_BYTE
);
469 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD
);
473 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_WORD
);
477 switch (dtp
->dev_devwidth
) {
479 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_BYTE
);
482 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD
);
486 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_WORD
);
490 /* If the device is marked as an in/out FIFO, ensure it is
493 if (stp
->dev_flags
& DEV_FLAGS_IN
)
494 cmd0
|= DSCR_CMD0_SN
; /* Source in fifo */
495 if (dtp
->dev_flags
& DEV_FLAGS_OUT
)
496 cmd0
|= DSCR_CMD0_DN
; /* Destination out fifo */
498 /* Set up source1. For now, assume no stride and increment.
499 * A channel attribute update can change this later.
501 switch (stp
->dev_tsize
) {
503 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE1
);
506 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE2
);
509 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE4
);
513 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE8
);
517 /* If source input is fifo, set static address.
519 if (stp
->dev_flags
& DEV_FLAGS_IN
) {
520 if ( stp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
521 src1
|= DSCR_SRC1_SAM(DSCR_xAM_BURST
);
523 src1
|= DSCR_SRC1_SAM(DSCR_xAM_STATIC
);
526 if (stp
->dev_physaddr
)
527 src0
= stp
->dev_physaddr
;
529 /* Set up dest1. For now, assume no stride and increment.
530 * A channel attribute update can change this later.
532 switch (dtp
->dev_tsize
) {
534 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE1
);
537 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE2
);
540 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE4
);
544 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE8
);
548 /* If destination output is fifo, set static address.
550 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) {
551 if ( dtp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
552 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_BURST
);
554 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_STATIC
);
556 if (dtp
->dev_physaddr
)
557 dest0
= dtp
->dev_physaddr
;
560 printk("did:%x sid:%x cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
561 dtp
->dev_id
, stp
->dev_id
, cmd0
, cmd1
, src0
, src1
, dest0
, dest1
);
563 for (i
=0; i
<entries
; i
++) {
564 dp
->dscr_cmd0
= cmd0
;
565 dp
->dscr_cmd1
= cmd1
;
566 dp
->dscr_source0
= src0
;
567 dp
->dscr_source1
= src1
;
568 dp
->dscr_dest0
= dest0
;
569 dp
->dscr_dest1
= dest1
;
573 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(dp
+ 1));
577 /* Make last descrptor point to the first.
580 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(ctp
->chan_desc_base
));
581 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
583 return (u32
)(ctp
->chan_desc_base
);
585 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc
);
587 /* Put a source buffer into the DMA ring.
588 * This updates the source pointer and byte count. Normally used
589 * for memory to fifo transfers.
592 _au1xxx_dbdma_put_source(u32 chanid
, void *buf
, int nbytes
, u32 flags
)
595 au1x_ddma_desc_t
*dp
;
597 /* I guess we could check this to be within the
598 * range of the table......
600 ctp
= *((chan_tab_t
**)chanid
);
602 /* We should have multiple callers for a particular channel,
603 * an interrupt doesn't affect this pointer nor the descriptor,
604 * so no locking should be needed.
608 /* If the descriptor is valid, we are way ahead of the DMA
609 * engine, so just return an error condition.
611 if (dp
->dscr_cmd0
& DSCR_CMD0_V
) {
615 /* Load up buffer address and byte count.
617 dp
->dscr_source0
= virt_to_phys(buf
);
618 dp
->dscr_cmd1
= nbytes
;
620 if (flags
& DDMA_FLAGS_IE
)
621 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
622 if (flags
& DDMA_FLAGS_NOIE
)
623 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
626 * There is an errata on the Au1200/Au1550 parts that could result
627 * in "stale" data being DMA'd. It has to do with the snoop logic on
628 * the dache eviction buffer. NONCOHERENT_IO is on by default for
629 * these parts. If it is fixedin the future, these dma_cache_inv will
630 * just be nothing more than empty macros. See io.h.
632 dma_cache_wback_inv((unsigned long)buf
, nbytes
);
633 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
635 dma_cache_wback_inv((unsigned long)dp
, sizeof(dp
));
636 ctp
->chan_ptr
->ddma_dbell
= 0;
638 /* Get next descriptor pointer.
640 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
642 /* return something not zero.
646 EXPORT_SYMBOL(_au1xxx_dbdma_put_source
);
648 /* Put a destination buffer into the DMA ring.
649 * This updates the destination pointer and byte count. Normally used
650 * to place an empty buffer into the ring for fifo to memory transfers.
653 _au1xxx_dbdma_put_dest(u32 chanid
, void *buf
, int nbytes
, u32 flags
)
656 au1x_ddma_desc_t
*dp
;
658 /* I guess we could check this to be within the
659 * range of the table......
661 ctp
= *((chan_tab_t
**)chanid
);
663 /* We should have multiple callers for a particular channel,
664 * an interrupt doesn't affect this pointer nor the descriptor,
665 * so no locking should be needed.
669 /* If the descriptor is valid, we are way ahead of the DMA
670 * engine, so just return an error condition.
672 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
675 /* Load up buffer address and byte count */
678 if (flags
& DDMA_FLAGS_IE
)
679 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
680 if (flags
& DDMA_FLAGS_NOIE
)
681 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
683 dp
->dscr_dest0
= virt_to_phys(buf
);
684 dp
->dscr_cmd1
= nbytes
;
686 printk("cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
687 dp
->dscr_cmd0
, dp
->dscr_cmd1
, dp
->dscr_source0
,
688 dp
->dscr_source1
, dp
->dscr_dest0
, dp
->dscr_dest1
);
691 * There is an errata on the Au1200/Au1550 parts that could result in
692 * "stale" data being DMA'd. It has to do with the snoop logic on the
693 * dache eviction buffer. NONCOHERENT_IO is on by default for these
694 * parts. If it is fixedin the future, these dma_cache_inv will just
695 * be nothing more than empty macros. See io.h.
697 dma_cache_inv((unsigned long)buf
, nbytes
);
698 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
700 dma_cache_wback_inv((unsigned long)dp
, sizeof(dp
));
701 ctp
->chan_ptr
->ddma_dbell
= 0;
703 /* Get next descriptor pointer.
705 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
707 /* return something not zero.
711 EXPORT_SYMBOL(_au1xxx_dbdma_put_dest
);
713 /* Get a destination buffer into the DMA ring.
714 * Normally used to get a full buffer from the ring during fifo
715 * to memory transfers. This does not set the valid bit, you will
716 * have to put another destination buffer to keep the DMA going.
719 au1xxx_dbdma_get_dest(u32 chanid
, void **buf
, int *nbytes
)
722 au1x_ddma_desc_t
*dp
;
725 /* I guess we could check this to be within the
726 * range of the table......
728 ctp
= *((chan_tab_t
**)chanid
);
730 /* We should have multiple callers for a particular channel,
731 * an interrupt doesn't affect this pointer nor the descriptor,
732 * so no locking should be needed.
736 /* If the descriptor is valid, we are way ahead of the DMA
737 * engine, so just return an error condition.
739 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
742 /* Return buffer address and byte count.
744 *buf
= (void *)(phys_to_virt(dp
->dscr_dest0
));
745 *nbytes
= dp
->dscr_cmd1
;
748 /* Get next descriptor pointer.
750 ctp
->get_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
752 /* return something not zero.
757 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest
);
760 au1xxx_dbdma_stop(u32 chanid
)
764 int halt_timeout
= 0;
766 ctp
= *((chan_tab_t
**)chanid
);
769 cp
->ddma_cfg
&= ~DDMA_CFG_EN
; /* Disable channel */
771 while (!(cp
->ddma_stat
& DDMA_STAT_H
)) {
774 if (halt_timeout
> 100) {
775 printk("warning: DMA channel won't halt\n");
779 /* clear current desc valid and doorbell */
780 cp
->ddma_stat
|= (DDMA_STAT_DB
| DDMA_STAT_V
);
783 EXPORT_SYMBOL(au1xxx_dbdma_stop
);
785 /* Start using the current descriptor pointer. If the dbdma encounters
786 * a not valid descriptor, it will stop. In this case, we can just
787 * continue by adding a buffer to the list and starting again.
790 au1xxx_dbdma_start(u32 chanid
)
795 ctp
= *((chan_tab_t
**)chanid
);
797 cp
->ddma_desptr
= virt_to_phys(ctp
->cur_ptr
);
798 cp
->ddma_cfg
|= DDMA_CFG_EN
; /* Enable channel */
803 EXPORT_SYMBOL(au1xxx_dbdma_start
);
806 au1xxx_dbdma_reset(u32 chanid
)
809 au1x_ddma_desc_t
*dp
;
811 au1xxx_dbdma_stop(chanid
);
813 ctp
= *((chan_tab_t
**)chanid
);
814 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
816 /* Run through the descriptors and reset the valid indicator.
818 dp
= ctp
->chan_desc_base
;
821 dp
->dscr_cmd0
&= ~DSCR_CMD0_V
;
822 /* reset our SW status -- this is used to determine
823 * if a descriptor is in use by upper level SW. Since
824 * posting can reset 'V' bit.
827 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
828 } while (dp
!= ctp
->chan_desc_base
);
830 EXPORT_SYMBOL(au1xxx_dbdma_reset
);
833 au1xxx_get_dma_residue(u32 chanid
)
839 ctp
= *((chan_tab_t
**)chanid
);
842 /* This is only valid if the channel is stopped.
844 rv
= cp
->ddma_bytecnt
;
850 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue
);
853 au1xxx_dbdma_chan_free(u32 chanid
)
856 dbdev_tab_t
*stp
, *dtp
;
858 ctp
= *((chan_tab_t
**)chanid
);
860 dtp
= ctp
->chan_dest
;
862 au1xxx_dbdma_stop(chanid
);
864 kfree((void *)ctp
->chan_desc_base
);
866 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
867 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
868 chan_tab_ptr
[ctp
->chan_index
] = NULL
;
872 EXPORT_SYMBOL(au1xxx_dbdma_chan_free
);
875 dbdma_interrupt(int irq
, void *dev_id
)
880 au1x_ddma_desc_t
*dp
;
883 intstat
= dbdma_gptr
->ddma_intstat
;
885 chan_index
= __ffs(intstat
);
887 ctp
= chan_tab_ptr
[chan_index
];
896 if (ctp
->chan_callback
)
897 (ctp
->chan_callback
)(irq
, ctp
->chan_callparam
);
899 ctp
->cur_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
900 return IRQ_RETVAL(1);
903 static void au1xxx_dbdma_init(void)
907 dbdma_gptr
->ddma_config
= 0;
908 dbdma_gptr
->ddma_throttle
= 0;
909 dbdma_gptr
->ddma_inten
= 0xffff;
912 #if defined(CONFIG_SOC_AU1550)
913 irq_nr
= AU1550_DDMA_INT
;
914 #elif defined(CONFIG_SOC_AU1200)
915 irq_nr
= AU1200_DDMA_INT
;
917 #error Unknown Au1x00 SOC
920 if (request_irq(irq_nr
, dbdma_interrupt
, IRQF_DISABLED
,
921 "Au1xxx dbdma", (void *)dbdma_gptr
))
922 printk("Can't get 1550 dbdma irq");
926 au1xxx_dbdma_dump(u32 chanid
)
929 au1x_ddma_desc_t
*dp
;
930 dbdev_tab_t
*stp
, *dtp
;
934 ctp
= *((chan_tab_t
**)chanid
);
936 dtp
= ctp
->chan_dest
;
939 printk("Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
940 (u32
)ctp
, (u32
)stp
, stp
- dbdev_tab
, (u32
)dtp
, dtp
- dbdev_tab
);
941 printk("desc base %x, get %x, put %x, cur %x\n",
942 (u32
)(ctp
->chan_desc_base
), (u32
)(ctp
->get_ptr
),
943 (u32
)(ctp
->put_ptr
), (u32
)(ctp
->cur_ptr
));
945 printk("dbdma chan %x\n", (u32
)cp
);
946 printk("cfg %08x, desptr %08x, statptr %08x\n",
947 cp
->ddma_cfg
, cp
->ddma_desptr
, cp
->ddma_statptr
);
948 printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
949 cp
->ddma_dbell
, cp
->ddma_irq
, cp
->ddma_stat
, cp
->ddma_bytecnt
);
952 /* Run through the descriptors
954 dp
= ctp
->chan_desc_base
;
957 printk("Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
958 i
++, (u32
)dp
, dp
->dscr_cmd0
, dp
->dscr_cmd1
);
959 printk("src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
960 dp
->dscr_source0
, dp
->dscr_source1
, dp
->dscr_dest0
, dp
->dscr_dest1
);
961 printk("stat %08x, nxtptr %08x\n",
962 dp
->dscr_stat
, dp
->dscr_nxtptr
);
963 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
964 } while (dp
!= ctp
->chan_desc_base
);
967 /* Put a descriptor into the DMA ring.
968 * This updates the source/destination pointers and byte count.
971 au1xxx_dbdma_put_dscr(u32 chanid
, au1x_ddma_desc_t
*dscr
)
974 au1x_ddma_desc_t
*dp
;
977 /* I guess we could check this to be within the
978 * range of the table......
980 ctp
= *((chan_tab_t
**)chanid
);
982 /* We should have multiple callers for a particular channel,
983 * an interrupt doesn't affect this pointer nor the descriptor,
984 * so no locking should be needed.
988 /* If the descriptor is valid, we are way ahead of the DMA
989 * engine, so just return an error condition.
991 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
994 /* Load up buffer addresses and byte count.
996 dp
->dscr_dest0
= dscr
->dscr_dest0
;
997 dp
->dscr_source0
= dscr
->dscr_source0
;
998 dp
->dscr_dest1
= dscr
->dscr_dest1
;
999 dp
->dscr_source1
= dscr
->dscr_source1
;
1000 dp
->dscr_cmd1
= dscr
->dscr_cmd1
;
1001 nbytes
= dscr
->dscr_cmd1
;
1002 /* Allow the caller to specifiy if an interrupt is generated */
1003 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
1004 dp
->dscr_cmd0
|= dscr
->dscr_cmd0
| DSCR_CMD0_V
;
1005 ctp
->chan_ptr
->ddma_dbell
= 0;
1007 /* Get next descriptor pointer.
1009 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
1011 /* return something not zero.
1016 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */