Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / arch / mips / au1000 / common / dbdma.c
blob2d739f8895e9161be31ec94b5f2137a4476d2e3b
1 /*
3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
9 * dan@embeddededge.com
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/kernel.h>
34 #include <linux/errno.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/delay.h>
40 #include <linux/interrupt.h>
41 #include <linux/module.h>
42 #include <asm/mach-au1x00/au1000.h>
43 #include <asm/mach-au1x00/au1xxx_dbdma.h>
44 #include <asm/system.h>
47 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
50 * The Descriptor Based DMA supports up to 16 channels.
52 * There are 32 devices defined. We keep an internal structure
53 * of devices using these channels, along with additional
54 * information.
56 * We allocate the descriptors and allow access to them through various
57 * functions. The drivers allocate the data buffers and assign them
58 * to the descriptors.
60 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
62 /* I couldn't find a macro that did this......
64 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
66 static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
67 static int dbdma_initialized=0;
68 static void au1xxx_dbdma_init(void);
70 static dbdev_tab_t dbdev_tab[] = {
71 #ifdef CONFIG_SOC_AU1550
72 /* UARTS */
73 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
74 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
75 { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
76 { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
78 /* EXT DMA */
79 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
80 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
81 { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
82 { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
84 /* USB DEV */
85 { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
86 { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
87 { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
88 { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
89 { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
90 { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
92 /* PSC 0 */
93 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
94 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
96 /* PSC 1 */
97 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
98 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
100 /* PSC 2 */
101 { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
102 { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
104 /* PSC 3 */
105 { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
106 { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
108 { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
109 { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
111 /* MAC 0 */
112 { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
113 { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
115 /* MAC 1 */
116 { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
117 { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
119 #endif /* CONFIG_SOC_AU1550 */
121 #ifdef CONFIG_SOC_AU1200
122 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
123 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
124 { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
125 { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
127 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
128 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
130 { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
131 { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
132 { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
133 { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
135 { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
136 { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
137 { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
138 { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
140 { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
141 { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
143 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
144 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
145 { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
147 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
148 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
149 { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
151 { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
152 { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
153 { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
154 { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
156 { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
158 #endif // CONFIG_SOC_AU1200
160 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
161 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
163 /* Provide 16 user definable device types */
164 <<<<<<< HEAD:arch/mips/au1000/common/dbdma.c
165 { 0, 0, 0, 0, 0, 0, 0 },
166 { 0, 0, 0, 0, 0, 0, 0 },
167 { 0, 0, 0, 0, 0, 0, 0 },
168 { 0, 0, 0, 0, 0, 0, 0 },
169 { 0, 0, 0, 0, 0, 0, 0 },
170 { 0, 0, 0, 0, 0, 0, 0 },
171 { 0, 0, 0, 0, 0, 0, 0 },
172 { 0, 0, 0, 0, 0, 0, 0 },
173 { 0, 0, 0, 0, 0, 0, 0 },
174 { 0, 0, 0, 0, 0, 0, 0 },
175 { 0, 0, 0, 0, 0, 0, 0 },
176 { 0, 0, 0, 0, 0, 0, 0 },
177 { 0, 0, 0, 0, 0, 0, 0 },
178 { 0, 0, 0, 0, 0, 0, 0 },
179 { 0, 0, 0, 0, 0, 0, 0 },
180 { 0, 0, 0, 0, 0, 0, 0 },
181 =======
182 { ~0, 0, 0, 0, 0, 0, 0 },
183 { ~0, 0, 0, 0, 0, 0, 0 },
184 { ~0, 0, 0, 0, 0, 0, 0 },
185 { ~0, 0, 0, 0, 0, 0, 0 },
186 { ~0, 0, 0, 0, 0, 0, 0 },
187 { ~0, 0, 0, 0, 0, 0, 0 },
188 { ~0, 0, 0, 0, 0, 0, 0 },
189 { ~0, 0, 0, 0, 0, 0, 0 },
190 { ~0, 0, 0, 0, 0, 0, 0 },
191 { ~0, 0, 0, 0, 0, 0, 0 },
192 { ~0, 0, 0, 0, 0, 0, 0 },
193 { ~0, 0, 0, 0, 0, 0, 0 },
194 { ~0, 0, 0, 0, 0, 0, 0 },
195 { ~0, 0, 0, 0, 0, 0, 0 },
196 { ~0, 0, 0, 0, 0, 0, 0 },
197 { ~0, 0, 0, 0, 0, 0, 0 },
198 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/mips/au1000/common/dbdma.c
201 #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
203 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
205 static dbdev_tab_t *
206 find_dbdev_id(u32 id)
208 int i;
209 dbdev_tab_t *p;
210 for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
211 p = &dbdev_tab[i];
212 if (p->dev_id == id)
213 return p;
215 return NULL;
218 void * au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
220 return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
222 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
225 au1xxx_ddma_add_device(dbdev_tab_t *dev)
227 u32 ret = 0;
228 dbdev_tab_t *p=NULL;
229 static u16 new_id=0x1000;
231 <<<<<<< HEAD:arch/mips/au1000/common/dbdma.c
232 p = find_dbdev_id(0);
233 =======
234 p = find_dbdev_id(~0);
235 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/mips/au1000/common/dbdma.c
236 if ( NULL != p )
238 memcpy(p, dev, sizeof(dbdev_tab_t));
239 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
240 ret = p->dev_id;
241 new_id++;
242 #if 0
243 printk("add_device: id:%x flags:%x padd:%x\n",
244 p->dev_id, p->dev_flags, p->dev_physaddr );
245 #endif
248 return ret;
250 EXPORT_SYMBOL(au1xxx_ddma_add_device);
252 /* Allocate a channel and return a non-zero descriptor if successful.
255 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
256 void (*callback)(int, void *), void *callparam)
258 unsigned long flags;
259 u32 used, chan, rv;
260 u32 dcp;
261 int i;
262 dbdev_tab_t *stp, *dtp;
263 chan_tab_t *ctp;
264 au1x_dma_chan_t *cp;
266 /* We do the intialization on the first channel allocation.
267 * We have to wait because of the interrupt handler initialization
268 * which can't be done successfully during board set up.
270 if (!dbdma_initialized)
271 au1xxx_dbdma_init();
272 dbdma_initialized = 1;
274 if ((stp = find_dbdev_id(srcid)) == NULL)
275 return 0;
276 if ((dtp = find_dbdev_id(destid)) == NULL)
277 return 0;
279 used = 0;
280 rv = 0;
282 /* Check to see if we can get both channels.
284 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
285 if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
286 (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
287 /* Got source */
288 stp->dev_flags |= DEV_FLAGS_INUSE;
289 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
290 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
291 /* Got destination */
292 dtp->dev_flags |= DEV_FLAGS_INUSE;
294 else {
295 /* Can't get dest. Release src.
297 stp->dev_flags &= ~DEV_FLAGS_INUSE;
298 used++;
301 else {
302 used++;
304 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
306 if (!used) {
307 /* Let's see if we can allocate a channel for it.
309 ctp = NULL;
310 chan = 0;
311 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
312 for (i=0; i<NUM_DBDMA_CHANS; i++) {
313 if (chan_tab_ptr[i] == NULL) {
314 /* If kmalloc fails, it is caught below same
315 * as a channel not available.
317 ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
318 chan_tab_ptr[i] = ctp;
319 break;
322 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
324 if (ctp != NULL) {
325 memset(ctp, 0, sizeof(chan_tab_t));
326 ctp->chan_index = chan = i;
327 dcp = DDMA_CHANNEL_BASE;
328 dcp += (0x0100 * chan);
329 ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
330 cp = (au1x_dma_chan_t *)dcp;
331 ctp->chan_src = stp;
332 ctp->chan_dest = dtp;
333 ctp->chan_callback = callback;
334 ctp->chan_callparam = callparam;
336 /* Initialize channel configuration.
338 i = 0;
339 if (stp->dev_intlevel)
340 i |= DDMA_CFG_SED;
341 if (stp->dev_intpolarity)
342 i |= DDMA_CFG_SP;
343 if (dtp->dev_intlevel)
344 i |= DDMA_CFG_DED;
345 if (dtp->dev_intpolarity)
346 i |= DDMA_CFG_DP;
347 if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
348 (dtp->dev_flags & DEV_FLAGS_SYNC))
349 i |= DDMA_CFG_SYNC;
350 cp->ddma_cfg = i;
351 au_sync();
353 /* Return a non-zero value that can be used to
354 * find the channel information in subsequent
355 * operations.
357 rv = (u32)(&chan_tab_ptr[chan]);
359 else {
360 /* Release devices */
361 stp->dev_flags &= ~DEV_FLAGS_INUSE;
362 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
365 return rv;
367 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
369 /* Set the device width if source or destination is a FIFO.
370 * Should be 8, 16, or 32 bits.
373 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
375 u32 rv;
376 chan_tab_t *ctp;
377 dbdev_tab_t *stp, *dtp;
379 ctp = *((chan_tab_t **)chanid);
380 stp = ctp->chan_src;
381 dtp = ctp->chan_dest;
382 rv = 0;
384 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
385 rv = stp->dev_devwidth;
386 stp->dev_devwidth = bits;
388 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
389 rv = dtp->dev_devwidth;
390 dtp->dev_devwidth = bits;
393 return rv;
395 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
397 /* Allocate a descriptor ring, initializing as much as possible.
400 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
402 int i;
403 u32 desc_base, srcid, destid;
404 u32 cmd0, cmd1, src1, dest1;
405 u32 src0, dest0;
406 chan_tab_t *ctp;
407 dbdev_tab_t *stp, *dtp;
408 au1x_ddma_desc_t *dp;
410 /* I guess we could check this to be within the
411 * range of the table......
413 ctp = *((chan_tab_t **)chanid);
414 stp = ctp->chan_src;
415 dtp = ctp->chan_dest;
417 /* The descriptors must be 32-byte aligned. There is a
418 * possibility the allocation will give us such an address,
419 * and if we try that first we are likely to not waste larger
420 * slabs of memory.
422 desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
423 GFP_KERNEL|GFP_DMA);
424 if (desc_base == 0)
425 return 0;
427 if (desc_base & 0x1f) {
428 /* Lost....do it again, allocate extra, and round
429 * the address base.
431 kfree((const void *)desc_base);
432 i = entries * sizeof(au1x_ddma_desc_t);
433 i += (sizeof(au1x_ddma_desc_t) - 1);
434 if ((desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA)) == 0)
435 return 0;
437 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
439 dp = (au1x_ddma_desc_t *)desc_base;
441 /* Keep track of the base descriptor.
443 ctp->chan_desc_base = dp;
445 /* Initialize the rings with as much information as we know.
447 srcid = stp->dev_id;
448 destid = dtp->dev_id;
450 cmd0 = cmd1 = src1 = dest1 = 0;
451 src0 = dest0 = 0;
453 cmd0 |= DSCR_CMD0_SID(srcid);
454 cmd0 |= DSCR_CMD0_DID(destid);
455 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
456 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
458 /* is it mem to mem transfer? */
459 if(((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
460 ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) {
461 cmd0 |= DSCR_CMD0_MEM;
464 switch (stp->dev_devwidth) {
465 case 8:
466 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
467 break;
468 case 16:
469 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
470 break;
471 case 32:
472 default:
473 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
474 break;
477 switch (dtp->dev_devwidth) {
478 case 8:
479 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
480 break;
481 case 16:
482 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
483 break;
484 case 32:
485 default:
486 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
487 break;
490 /* If the device is marked as an in/out FIFO, ensure it is
491 * set non-coherent.
493 if (stp->dev_flags & DEV_FLAGS_IN)
494 cmd0 |= DSCR_CMD0_SN; /* Source in fifo */
495 if (dtp->dev_flags & DEV_FLAGS_OUT)
496 cmd0 |= DSCR_CMD0_DN; /* Destination out fifo */
498 /* Set up source1. For now, assume no stride and increment.
499 * A channel attribute update can change this later.
501 switch (stp->dev_tsize) {
502 case 1:
503 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
504 break;
505 case 2:
506 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
507 break;
508 case 4:
509 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
510 break;
511 case 8:
512 default:
513 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
514 break;
517 /* If source input is fifo, set static address.
519 if (stp->dev_flags & DEV_FLAGS_IN) {
520 if ( stp->dev_flags & DEV_FLAGS_BURSTABLE )
521 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
522 else
523 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
526 if (stp->dev_physaddr)
527 src0 = stp->dev_physaddr;
529 /* Set up dest1. For now, assume no stride and increment.
530 * A channel attribute update can change this later.
532 switch (dtp->dev_tsize) {
533 case 1:
534 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
535 break;
536 case 2:
537 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
538 break;
539 case 4:
540 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
541 break;
542 case 8:
543 default:
544 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
545 break;
548 /* If destination output is fifo, set static address.
550 if (dtp->dev_flags & DEV_FLAGS_OUT) {
551 if ( dtp->dev_flags & DEV_FLAGS_BURSTABLE )
552 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
553 else
554 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
556 if (dtp->dev_physaddr)
557 dest0 = dtp->dev_physaddr;
559 #if 0
560 printk("did:%x sid:%x cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
561 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, src1, dest0, dest1 );
562 #endif
563 for (i=0; i<entries; i++) {
564 dp->dscr_cmd0 = cmd0;
565 dp->dscr_cmd1 = cmd1;
566 dp->dscr_source0 = src0;
567 dp->dscr_source1 = src1;
568 dp->dscr_dest0 = dest0;
569 dp->dscr_dest1 = dest1;
570 dp->dscr_stat = 0;
571 dp->sw_context = 0;
572 dp->sw_status = 0;
573 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
574 dp++;
577 /* Make last descrptor point to the first.
579 dp--;
580 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
581 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
583 return (u32)(ctp->chan_desc_base);
585 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
587 /* Put a source buffer into the DMA ring.
588 * This updates the source pointer and byte count. Normally used
589 * for memory to fifo transfers.
592 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
594 chan_tab_t *ctp;
595 au1x_ddma_desc_t *dp;
597 /* I guess we could check this to be within the
598 * range of the table......
600 ctp = *((chan_tab_t **)chanid);
602 /* We should have multiple callers for a particular channel,
603 * an interrupt doesn't affect this pointer nor the descriptor,
604 * so no locking should be needed.
606 dp = ctp->put_ptr;
608 /* If the descriptor is valid, we are way ahead of the DMA
609 * engine, so just return an error condition.
611 if (dp->dscr_cmd0 & DSCR_CMD0_V) {
612 return 0;
615 /* Load up buffer address and byte count.
617 dp->dscr_source0 = virt_to_phys(buf);
618 dp->dscr_cmd1 = nbytes;
619 /* Check flags */
620 if (flags & DDMA_FLAGS_IE)
621 dp->dscr_cmd0 |= DSCR_CMD0_IE;
622 if (flags & DDMA_FLAGS_NOIE)
623 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
626 * There is an errata on the Au1200/Au1550 parts that could result
627 * in "stale" data being DMA'd. It has to do with the snoop logic on
628 * the dache eviction buffer. NONCOHERENT_IO is on by default for
629 * these parts. If it is fixedin the future, these dma_cache_inv will
630 * just be nothing more than empty macros. See io.h.
631 * */
632 dma_cache_wback_inv((unsigned long)buf, nbytes);
633 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
634 au_sync();
635 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
636 ctp->chan_ptr->ddma_dbell = 0;
638 /* Get next descriptor pointer.
640 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
642 /* return something not zero.
644 return nbytes;
646 EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
648 /* Put a destination buffer into the DMA ring.
649 * This updates the destination pointer and byte count. Normally used
650 * to place an empty buffer into the ring for fifo to memory transfers.
653 _au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
655 chan_tab_t *ctp;
656 au1x_ddma_desc_t *dp;
658 /* I guess we could check this to be within the
659 * range of the table......
661 ctp = *((chan_tab_t **)chanid);
663 /* We should have multiple callers for a particular channel,
664 * an interrupt doesn't affect this pointer nor the descriptor,
665 * so no locking should be needed.
667 dp = ctp->put_ptr;
669 /* If the descriptor is valid, we are way ahead of the DMA
670 * engine, so just return an error condition.
672 if (dp->dscr_cmd0 & DSCR_CMD0_V)
673 return 0;
675 /* Load up buffer address and byte count */
677 /* Check flags */
678 if (flags & DDMA_FLAGS_IE)
679 dp->dscr_cmd0 |= DSCR_CMD0_IE;
680 if (flags & DDMA_FLAGS_NOIE)
681 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
683 dp->dscr_dest0 = virt_to_phys(buf);
684 dp->dscr_cmd1 = nbytes;
685 #if 0
686 printk("cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
687 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
688 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1 );
689 #endif
691 * There is an errata on the Au1200/Au1550 parts that could result in
692 * "stale" data being DMA'd. It has to do with the snoop logic on the
693 * dache eviction buffer. NONCOHERENT_IO is on by default for these
694 * parts. If it is fixedin the future, these dma_cache_inv will just
695 * be nothing more than empty macros. See io.h.
696 * */
697 dma_cache_inv((unsigned long)buf, nbytes);
698 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
699 au_sync();
700 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
701 ctp->chan_ptr->ddma_dbell = 0;
703 /* Get next descriptor pointer.
705 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
707 /* return something not zero.
709 return nbytes;
711 EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
713 /* Get a destination buffer into the DMA ring.
714 * Normally used to get a full buffer from the ring during fifo
715 * to memory transfers. This does not set the valid bit, you will
716 * have to put another destination buffer to keep the DMA going.
719 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
721 chan_tab_t *ctp;
722 au1x_ddma_desc_t *dp;
723 u32 rv;
725 /* I guess we could check this to be within the
726 * range of the table......
728 ctp = *((chan_tab_t **)chanid);
730 /* We should have multiple callers for a particular channel,
731 * an interrupt doesn't affect this pointer nor the descriptor,
732 * so no locking should be needed.
734 dp = ctp->get_ptr;
736 /* If the descriptor is valid, we are way ahead of the DMA
737 * engine, so just return an error condition.
739 if (dp->dscr_cmd0 & DSCR_CMD0_V)
740 return 0;
742 /* Return buffer address and byte count.
744 *buf = (void *)(phys_to_virt(dp->dscr_dest0));
745 *nbytes = dp->dscr_cmd1;
746 rv = dp->dscr_stat;
748 /* Get next descriptor pointer.
750 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
752 /* return something not zero.
754 return rv;
757 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
759 void
760 au1xxx_dbdma_stop(u32 chanid)
762 chan_tab_t *ctp;
763 au1x_dma_chan_t *cp;
764 int halt_timeout = 0;
766 ctp = *((chan_tab_t **)chanid);
768 cp = ctp->chan_ptr;
769 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
770 au_sync();
771 while (!(cp->ddma_stat & DDMA_STAT_H)) {
772 udelay(1);
773 halt_timeout++;
774 if (halt_timeout > 100) {
775 printk("warning: DMA channel won't halt\n");
776 break;
779 /* clear current desc valid and doorbell */
780 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
781 au_sync();
783 EXPORT_SYMBOL(au1xxx_dbdma_stop);
785 /* Start using the current descriptor pointer. If the dbdma encounters
786 * a not valid descriptor, it will stop. In this case, we can just
787 * continue by adding a buffer to the list and starting again.
789 void
790 au1xxx_dbdma_start(u32 chanid)
792 chan_tab_t *ctp;
793 au1x_dma_chan_t *cp;
795 ctp = *((chan_tab_t **)chanid);
796 cp = ctp->chan_ptr;
797 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
798 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
799 au_sync();
800 cp->ddma_dbell = 0;
801 au_sync();
803 EXPORT_SYMBOL(au1xxx_dbdma_start);
805 void
806 au1xxx_dbdma_reset(u32 chanid)
808 chan_tab_t *ctp;
809 au1x_ddma_desc_t *dp;
811 au1xxx_dbdma_stop(chanid);
813 ctp = *((chan_tab_t **)chanid);
814 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
816 /* Run through the descriptors and reset the valid indicator.
818 dp = ctp->chan_desc_base;
820 do {
821 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
822 /* reset our SW status -- this is used to determine
823 * if a descriptor is in use by upper level SW. Since
824 * posting can reset 'V' bit.
826 dp->sw_status = 0;
827 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
828 } while (dp != ctp->chan_desc_base);
830 EXPORT_SYMBOL(au1xxx_dbdma_reset);
833 au1xxx_get_dma_residue(u32 chanid)
835 chan_tab_t *ctp;
836 au1x_dma_chan_t *cp;
837 u32 rv;
839 ctp = *((chan_tab_t **)chanid);
840 cp = ctp->chan_ptr;
842 /* This is only valid if the channel is stopped.
844 rv = cp->ddma_bytecnt;
845 au_sync();
847 return rv;
850 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
852 void
853 au1xxx_dbdma_chan_free(u32 chanid)
855 chan_tab_t *ctp;
856 dbdev_tab_t *stp, *dtp;
858 ctp = *((chan_tab_t **)chanid);
859 stp = ctp->chan_src;
860 dtp = ctp->chan_dest;
862 au1xxx_dbdma_stop(chanid);
864 kfree((void *)ctp->chan_desc_base);
866 stp->dev_flags &= ~DEV_FLAGS_INUSE;
867 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
868 chan_tab_ptr[ctp->chan_index] = NULL;
870 kfree(ctp);
872 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
874 static irqreturn_t
875 dbdma_interrupt(int irq, void *dev_id)
877 u32 intstat;
878 u32 chan_index;
879 chan_tab_t *ctp;
880 au1x_ddma_desc_t *dp;
881 au1x_dma_chan_t *cp;
883 intstat = dbdma_gptr->ddma_intstat;
884 au_sync();
885 chan_index = __ffs(intstat);
887 ctp = chan_tab_ptr[chan_index];
888 cp = ctp->chan_ptr;
889 dp = ctp->cur_ptr;
891 /* Reset interrupt.
893 cp->ddma_irq = 0;
894 au_sync();
896 if (ctp->chan_callback)
897 (ctp->chan_callback)(irq, ctp->chan_callparam);
899 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
900 return IRQ_RETVAL(1);
903 static void au1xxx_dbdma_init(void)
905 int irq_nr;
907 dbdma_gptr->ddma_config = 0;
908 dbdma_gptr->ddma_throttle = 0;
909 dbdma_gptr->ddma_inten = 0xffff;
910 au_sync();
912 #if defined(CONFIG_SOC_AU1550)
913 irq_nr = AU1550_DDMA_INT;
914 #elif defined(CONFIG_SOC_AU1200)
915 irq_nr = AU1200_DDMA_INT;
916 #else
917 #error Unknown Au1x00 SOC
918 #endif
920 if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
921 "Au1xxx dbdma", (void *)dbdma_gptr))
922 printk("Can't get 1550 dbdma irq");
925 void
926 au1xxx_dbdma_dump(u32 chanid)
928 chan_tab_t *ctp;
929 au1x_ddma_desc_t *dp;
930 dbdev_tab_t *stp, *dtp;
931 au1x_dma_chan_t *cp;
932 u32 i = 0;
934 ctp = *((chan_tab_t **)chanid);
935 stp = ctp->chan_src;
936 dtp = ctp->chan_dest;
937 cp = ctp->chan_ptr;
939 printk("Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
940 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab);
941 printk("desc base %x, get %x, put %x, cur %x\n",
942 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
943 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
945 printk("dbdma chan %x\n", (u32)cp);
946 printk("cfg %08x, desptr %08x, statptr %08x\n",
947 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
948 printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
949 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt);
952 /* Run through the descriptors
954 dp = ctp->chan_desc_base;
956 do {
957 printk("Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
958 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
959 printk("src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
960 dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
961 printk("stat %08x, nxtptr %08x\n",
962 dp->dscr_stat, dp->dscr_nxtptr);
963 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
964 } while (dp != ctp->chan_desc_base);
967 /* Put a descriptor into the DMA ring.
968 * This updates the source/destination pointers and byte count.
971 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr )
973 chan_tab_t *ctp;
974 au1x_ddma_desc_t *dp;
975 u32 nbytes=0;
977 /* I guess we could check this to be within the
978 * range of the table......
980 ctp = *((chan_tab_t **)chanid);
982 /* We should have multiple callers for a particular channel,
983 * an interrupt doesn't affect this pointer nor the descriptor,
984 * so no locking should be needed.
986 dp = ctp->put_ptr;
988 /* If the descriptor is valid, we are way ahead of the DMA
989 * engine, so just return an error condition.
991 if (dp->dscr_cmd0 & DSCR_CMD0_V)
992 return 0;
994 /* Load up buffer addresses and byte count.
996 dp->dscr_dest0 = dscr->dscr_dest0;
997 dp->dscr_source0 = dscr->dscr_source0;
998 dp->dscr_dest1 = dscr->dscr_dest1;
999 dp->dscr_source1 = dscr->dscr_source1;
1000 dp->dscr_cmd1 = dscr->dscr_cmd1;
1001 nbytes = dscr->dscr_cmd1;
1002 /* Allow the caller to specifiy if an interrupt is generated */
1003 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
1004 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
1005 ctp->chan_ptr->ddma_dbell = 0;
1007 /* Get next descriptor pointer.
1009 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
1011 /* return something not zero.
1013 return nbytes;
1016 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */