r4627 | gill | 2010-12-29 16:29:58 -0700 (Wed, 29 Dec 2010) | 5 lines
[wrffire.git] / wrfv2_fire / dyn_em / module_force_scm.F
blob83c039c987686f65ae9be9f420e61c540f9ebe58
1 MODULE module_force_scm
3 ! AUTHOR: Josh Hacker (NCAR/RAL)
4 ! Forces a single-column (3x3) version of WRF
6 CONTAINS
8    SUBROUTINE force_scm(itimestep, dt, scm_force, dx, num_force_layers       &
9                              , scm_th_adv, scm_qv_adv                        &
10                              , scm_ql_adv                                    &
11                              , scm_wind_adv, scm_vert_adv                    &
12                              , scm_soilT_force, scm_soilQ_force              &
13                              , scm_force_th_largescale                       &
14                              , scm_force_qv_largescale                       &
15                              , scm_force_ql_largescale                       &
16                              , scm_force_wind_largescale                     &
17                              , u_base, v_base, z_base                        &
18                              , z_force, z_force_tend                         &
19                              , u_g, v_g                                      &
20                              , u_g_tend, v_g_tend                            &
21                              , w_subs, w_subs_tend                           &
22                              , th_upstream_x, th_upstream_x_tend             &
23                              , th_upstream_y, th_upstream_y_tend             &
24                              , qv_upstream_x, qv_upstream_x_tend             &
25                              , qv_upstream_y, qv_upstream_y_tend             &
26                              , ql_upstream_x, ql_upstream_x_tend             &
27                              , ql_upstream_y, ql_upstream_y_tend             &
28                              , u_upstream_x, u_upstream_x_tend               &
29                              , u_upstream_y, u_upstream_y_tend               &
30                              , v_upstream_x, v_upstream_x_tend               &
31                              , v_upstream_y, v_upstream_y_tend               &
32                              , tau_x, tau_x_tend                             &
33                              , tau_y, tau_y_tend                             &
34                              ,th_largescale                                  &
35                              ,th_largescale_tend                             &
36                              ,qv_largescale                                  &
37                              ,qv_largescale_tend                             &
38                              ,ql_largescale                                  &
39                              ,ql_largescale_tend                             &
40                              ,u_largescale                                   &
41                              ,u_largescale_tend                              &
42                              ,v_largescale                                   &
43                              ,v_largescale_tend                              &
44                              ,tau_largescale                                 &
45                              ,tau_largescale_tend                            &
46                              , num_force_soil_layers, num_soil_layers        &
47                              , soil_depth_force, zs                          &
48                              , tslb, smois                                   &
49                              , t_soil_forcing_val, t_soil_forcing_tend       &
50                              , q_soil_forcing_val, q_soil_forcing_tend       &
51                              , tau_soil                                      &
52                              , z, z_at_w, th, qv, ql, u, v                   &
53                              , thten, qvten, qlten, uten, vten               &
54                              , ids, ide, jds, jde, kds, kde                  &
55                              , ims, ime, jms, jme, kms, kme                  &
56                              , ips, ipe, jps, jpe, kps, kpe                  &
57                              , kts, kte                                      &
58                             )
60 ! adds forcing to bl tendencies and also to base state/geostrophic winds.
62    USE module_init_utilities, ONLY : interp_0
63    IMPLICIT NONE
66    INTEGER,    INTENT(IN   )                 :: itimestep
67    INTEGER,    INTENT(IN   )                 :: num_force_layers, scm_force
68    REAL,       INTENT(IN   )                 :: dt,dx
69    LOGICAL,    INTENT(IN   )                 :: scm_th_adv, &
70                                                 scm_qv_adv, &
71                                                 scm_ql_adv, &
72                                                 scm_wind_adv, &
73                                                 scm_vert_adv, &
74                                                 scm_soilT_force, &
75                                                 scm_soilQ_force, &
76                                                 scm_force_th_largescale, &
77                                                 scm_force_qv_largescale, &
78                                                 scm_force_ql_largescale, &
79                                                 scm_force_wind_largescale
81    REAL, DIMENSION(ims:ime,kms:kme,jms:jme), INTENT(IN   ) :: z, th, qv, ql
82    REAL, DIMENSION(ims:ime,kms:kme,jms:jme), INTENT(IN   ) :: u, v
83    REAL, DIMENSION(ims:ime,kms:kme,jms:jme), INTENT(IN   ) :: z_at_w
84    REAL, DIMENSION(ims:ime,kms:kme,jms:jme), INTENT(INOUT) :: thten, qvten
85    REAL, DIMENSION(ims:ime,kms:kme,jms:jme), INTENT(INOUT) :: qlten
86    REAL, DIMENSION(ims:ime,kms:kme,jms:jme), INTENT(INOUT) :: uten, vten
87    REAL, DIMENSION( kms:kme ), INTENT(INOUT)               :: u_base, v_base
88    REAL, DIMENSION( kms:kme ), INTENT(INOUT)               :: z_base
89    REAL, DIMENSION(num_force_layers), INTENT (INOUT)       :: z_force
90    REAL, DIMENSION(num_force_layers), INTENT (INOUT)       :: u_g,v_g
92    REAL, DIMENSION(num_force_layers), INTENT (IN) :: z_force_tend
93    REAL, DIMENSION(num_force_layers), INTENT (IN) :: u_g_tend,v_g_tend
94    REAL, DIMENSION(num_force_layers), INTENT (IN) :: w_subs_tend
95    REAL, DIMENSION(num_force_layers), INTENT (IN) :: th_upstream_x_tend
96    REAL, DIMENSION(num_force_layers), INTENT (IN) :: th_upstream_y_tend
97    REAL, DIMENSION(num_force_layers), INTENT (IN) :: qv_upstream_x_tend
98    REAL, DIMENSION(num_force_layers), INTENT (IN) :: qv_upstream_y_tend
99    REAL, DIMENSION(num_force_layers), INTENT (IN) :: ql_upstream_x_tend
100    REAL, DIMENSION(num_force_layers), INTENT (IN) :: ql_upstream_y_tend
101    REAL, DIMENSION(num_force_layers), INTENT (IN) :: u_upstream_x_tend
102    REAL, DIMENSION(num_force_layers), INTENT (IN) :: u_upstream_y_tend
103    REAL, DIMENSION(num_force_layers), INTENT (IN) :: v_upstream_x_tend
104    REAL, DIMENSION(num_force_layers), INTENT (IN) :: v_upstream_y_tend
105    REAL, DIMENSION(num_force_layers), INTENT (IN) :: tau_x_tend
106    REAL, DIMENSION(num_force_layers), INTENT (IN) :: tau_y_tend
108    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: th_upstream_x
109    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: th_upstream_y
110    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: u_upstream_x
111    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: u_upstream_y
112    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: v_upstream_x
113    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: v_upstream_y
114    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: qv_upstream_x
115    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: qv_upstream_y
116    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: ql_upstream_x
117    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: ql_upstream_y
118    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: w_subs
119    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: tau_x
120    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: tau_y
122 ! WA 1/8/10 for large-scale forcing
123    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: th_largescale
124    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: th_largescale_tend
125    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: u_largescale
126    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: u_largescale_tend
127    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: v_largescale
128    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: v_largescale_tend
129    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: qv_largescale
130    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: qv_largescale_tend
131    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: ql_largescale
132    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: ql_largescale_tend
133    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: tau_largescale
134    REAL, DIMENSION(num_force_layers), INTENT (INOUT) :: tau_largescale_tend
136 ! WA 1/3/10 For soil forcing
137    INTEGER,    INTENT(IN   )         :: num_force_soil_layers, num_soil_layers
138    REAL, DIMENSION(ims:ime,num_soil_layers,jms:jme),INTENT(INOUT) :: tslb, smois
139    REAL, DIMENSION(num_force_soil_layers), INTENT (INOUT) :: t_soil_forcing_val
140    REAL, DIMENSION(num_force_soil_layers), INTENT (INOUT) :: t_soil_forcing_tend
141    REAL, DIMENSION(num_force_soil_layers), INTENT (INOUT) :: q_soil_forcing_val
142    REAL, DIMENSION(num_force_soil_layers), INTENT (INOUT) :: q_soil_forcing_tend
143    REAL, DIMENSION(num_force_soil_layers), INTENT (INOUT) :: tau_soil
144    REAL, DIMENSION(num_force_soil_layers), INTENT (IN   ) :: soil_depth_force
145    REAL, DIMENSION(num_soil_layers),       INTENT (IN   ) :: zs        
147    INTEGER,    INTENT(IN   )    ::     ids,ide, jds,jde, kds,kde, &
148                                        ims,ime, jms,jme, kms,kme, &
149                                        ips,ipe, jps,jpe, kps,kpe, &
150                                        kts,kte
151    
152 ! Local
153    INTEGER                      :: i,j,k
154    LOGICAL                      :: debug = .false.
155    REAL                         :: t_x, t_y, qv_x, qv_y, ql_x, ql_y
156    REAL                         :: u_x, u_y, v_x, v_y
157    REAL, DIMENSION(kms:kme)     :: th_adv_tend, qv_adv_tend, ql_adv_tend
158    REAL, DIMENSION(kms:kme)     :: u_adv_tend, v_adv_tend
159    REAL, DIMENSION(kms:kme)     :: dthdz, dudz, dvdz, dqvdz, dqldz
160    REAL                         :: w
161    REAL, DIMENSION(kms:kme)     :: w_dthdz, w_dudz, w_dvdz, w_dqvdz, w_dqldz
162    REAL, DIMENSION(kms:kme)     :: adv_timescale_x, adv_timescale_y
163    CHARACTER*256                :: message
164 ! Large-scale forcing WA 1/8/10
165    REAL                         :: t_ls, qv_ls, ql_ls
166    REAL                         :: u_ls, v_ls
167    REAL, DIMENSION(kms:kme)     :: th_ls_tend, qv_ls_tend, ql_ls_tend
168    REAL, DIMENSION(kms:kme)     :: u_ls_tend, v_ls_tend
169    REAL, DIMENSION(kms:kme)     :: ls_timescale
170 ! Soil forcing WA 1/3/10
171    INTEGER                      :: ks
172    REAL                         :: t_soil, q_soil
173    REAL, DIMENSION(num_soil_layers) :: t_soil_tend, q_soil_tend
174    REAL, DIMENSION(num_soil_layers) :: timescale_soil
176    IF ( scm_force .EQ. 0 ) return
178 ! NOTES
179 ! z is kts:kte
180 ! z_at_w is kms:kme
182      ! this is a good place for checks on the configuration
183      if ( z_force(1) > z(ids,1,jds) ) then
184         CALL wrf_message("First forcing level must be lower than first WRF half-level")
185         WRITE( message , * ) 'z forcing = ',z_force(1), 'z = ',z(ids,1,jds)
186 !       print*,"z forcing = ",z_force(1), "z = ",z(ids,1,jds)
187         CALL wrf_error_fatal( message )
188      endif
190      z_force = z_force + dt*z_force_tend 
191      u_g = u_g + dt*u_g_tend 
192      v_g = v_g + dt*v_g_tend 
193      tau_x = tau_x + dt*tau_x_tend 
194      tau_y = tau_y + dt*tau_y_tend 
195      tau_largescale = tau_largescale + dt*tau_largescale_tend 
197      if ( scm_th_adv ) then
198        th_upstream_x = th_upstream_x + dt*th_upstream_x_tend
199        th_upstream_y = th_upstream_y + dt*th_upstream_y_tend
200      endif
201      if ( scm_qv_adv) then
202        qv_upstream_x = qv_upstream_x + dt*qv_upstream_x_tend
203        qv_upstream_y = qv_upstream_y + dt*qv_upstream_y_tend
204      endif
205      if ( scm_ql_adv) then
206        ql_upstream_x = ql_upstream_x + dt*ql_upstream_x_tend
207        ql_upstream_y = ql_upstream_y + dt*ql_upstream_y_tend
208      endif
209      if ( scm_wind_adv ) then
210        u_upstream_x = u_upstream_x + dt*u_upstream_x_tend
211        u_upstream_y = u_upstream_y + dt*u_upstream_y_tend
212        v_upstream_x = v_upstream_x + dt*v_upstream_x_tend
213        v_upstream_y = v_upstream_y + dt*v_upstream_y_tend
214      endif
215      if ( scm_vert_adv ) then
216        w_subs = w_subs + dt*w_subs_tend
217      endif
219      if ( scm_force_th_largescale ) then
220        th_largescale = th_largescale + dt*th_largescale_tend
221      endif
222      if ( scm_force_qv_largescale) then
223        qv_largescale = qv_largescale + dt*qv_largescale_tend
224      endif
225      if ( scm_force_ql_largescale) then
226        ql_largescale = ql_largescale + dt*ql_largescale_tend
227      endif
228      if ( scm_force_wind_largescale ) then
229        u_largescale = u_largescale + dt*u_largescale_tend
230        v_largescale = v_largescale + dt*v_largescale_tend
231      endif
233      if ( scm_soilT_force ) then
234        t_soil_forcing_val = t_soil_forcing_val + dt*t_soil_forcing_tend
235      endif
236      if ( scm_soilQ_force ) then
237        q_soil_forcing_val = q_soil_forcing_val + dt*q_soil_forcing_tend
238      endif
240 ! 0 everything in case we don't set it later
241      th_adv_tend = 0.0
242      qv_adv_tend = 0.0
243      ql_adv_tend = 0.0
244      u_adv_tend  = 0.0
245      v_adv_tend  = 0.0
246      th_ls_tend = 0.0
247      qv_ls_tend = 0.0
248      ql_ls_tend = 0.0
249      u_ls_tend  = 0.0
250      v_ls_tend  = 0.0
251      w_dthdz     = 0.0
252      w_dqvdz     = 0.0
253      w_dudz      = 0.0
254      w_dvdz      = 0.0
255      adv_timescale_x = 0.0
256      adv_timescale_y = 0.0
257      
258 ! now interpolate forcing to model vertical grid
260 !    if ( debug ) print*,' z u_base v_base '
261      CALL wrf_debug(100,'k z_base  u_base  v_base')
262      do k = kms,kme-1
263        z_base(k) = z(ids,k,jds)
264        u_base(k) = interp_0(u_g,z_force,z_base(k),num_force_layers)
265        v_base(k) = interp_0(v_g,z_force,z_base(k),num_force_layers)
266 !      if ( debug ) print*,z_base(k),u_base(k),v_base(k)
267        WRITE( message, '(i4,3f12.4)' ) k,z_base(k),u_base(k),v_base(k)
268        CALL wrf_debug ( 100, message )
269     enddo
271     if ( scm_th_adv .or. scm_qv_adv .or. scm_wind_adv ) then
272        if ( scm_th_adv ) CALL wrf_debug ( 100, 'k  tau_x  tau_y t_ups_x t_ups_y t_m ' )
273        do k = kms,kme-1
275           u_x = interp_0(u_upstream_x,z_force,z(ids,k,jds),num_force_layers)
276           u_y = interp_0(u_upstream_y,z_force,z(ids,k,jds),num_force_layers)
278           v_x = interp_0(v_upstream_x,z_force,z(ids,k,jds),num_force_layers)
279           v_y = interp_0(v_upstream_y,z_force,z(ids,k,jds),num_force_layers)
281           adv_timescale_x(k) = interp_0(tau_x,z_force,z(ids,k,jds),num_force_layers)
282           adv_timescale_y(k) = interp_0(tau_y,z_force,z(ids,k,jds),num_force_layers)
285 !          tau_u(k) = dx/abs(u(ids,k,jds))
286 !          tau_v(k) = dx/abs(v(ids,k,jds))
287 !          adv_timescale_x(k) = dx/abs(u(ids,k,jds))
288 !          adv_timescale_y(k) = dx/abs(v(ids,k,jds))
290           if ( scm_wind_adv ) then
291              u_adv_tend(k) = (u_x-u(ids,k,jds))/adv_timescale_x(k) + (u_y-u(ids,k,jds))/adv_timescale_y(k)
292              v_adv_tend(k) = (v_x-v(ids,k,jds))/adv_timescale_x(k) + (v_y-v(ids,k,jds))/adv_timescale_y(k)
293           endif
295        enddo
296     endif
299     if ( scm_th_adv ) then
300        if ( th_upstream_x(kms) > 0.) then
301           do k = kms,kme-1
302              t_x = interp_0(th_upstream_x,z_force,z(ids,k,jds),num_force_layers)
303              t_y = interp_0(th_upstream_y,z_force,z(ids,k,jds),num_force_layers)
305              th_adv_tend(k) = (t_x-th(ids,k,jds))/adv_timescale_x(k) + (t_y-th(ids,k,jds))/adv_timescale_y(k)
306              WRITE( message, '(i4,5f12.4)' ) k,adv_timescale_x(k), adv_timescale_y(k), t_x, t_y, th(ids,k,jds)
307              CALL wrf_debug ( 100, message )
308           enddo
309        else ! WA if upstream is empty, use tendency only not value+tend
310           do k = kms,kme-1
311              t_x = interp_0(dt*th_upstream_x_tend,z_force,z(ids,k,jds),num_force_layers)
312              t_y = interp_0(dt*th_upstream_y_tend,z_force,z(ids,k,jds),num_force_layers)
314              th_adv_tend(k) = t_x/adv_timescale_x(k) + t_y/adv_timescale_y(k)
315              WRITE( message, '(i4,5f12.4)' ) k,adv_timescale_x(k), adv_timescale_y(k), t_x, t_y, th(ids,k,jds)
316              CALL wrf_debug ( 100, message )
317           enddo
318        endif
319     endif
320      if (minval(tau_x) < 0) then
321        print*,tau_x
322        stop 'TAU_X'
323      endif
324      if (minval(tau_y) < 0) then
325        print*,z_force
326        print*,tau_y
327        stop 'TAU_Y'
328      endif
330     if ( scm_qv_adv ) then
331        if ( qv_upstream_x(kms) > 0.) then
332           do k = kms,kme-1
333              qv_x = interp_0(qv_upstream_x,z_force,z(ids,k,jds),num_force_layers)
334              qv_y = interp_0(qv_upstream_y,z_force,z(ids,k,jds),num_force_layers)
336              qv_adv_tend(k) = (qv_x-qv(ids,k,jds))/adv_timescale_x(k) + (qv_y-qv(ids,k,jds))/adv_timescale_y(k)
337           enddo
338        else ! WA if upstream is empty, use tendency only not value+tend
339           do k = kms,kme-1
340              qv_x = interp_0(dt*qv_upstream_x_tend,z_force,z(ids,k,jds),num_force_layers)
341              qv_y = interp_0(dt*qv_upstream_y_tend,z_force,z(ids,k,jds),num_force_layers)
343              qv_adv_tend(k) = qv_x/adv_timescale_x(k) + qv_y/adv_timescale_y(k)
344           enddo
345        endif
346     endif
348     if ( scm_ql_adv ) then
349        if ( ql_upstream_x(kms) > 0.) then
350           do k = kms,kme-1
351              ql_x = interp_0(ql_upstream_x,z_force,z(ids,k,jds),num_force_layers)
352              ql_y = interp_0(ql_upstream_y,z_force,z(ids,k,jds),num_force_layers)
354              ql_adv_tend(k) = (ql_x-ql(ids,k,jds))/adv_timescale_x(k) + (ql_y-ql(ids,k,jds))/adv_timescale_y(k)
355           enddo
356        else ! WA if upstream is empty, use tendency only not value+tend
357           do k = kms,kme-1
358              ql_x = interp_0(dt*ql_upstream_x_tend,z_force,z(ids,k,jds),num_force_layers)
359              ql_y = interp_0(dt*ql_upstream_y_tend,z_force,z(ids,k,jds),num_force_layers)
361              ql_adv_tend(k) = ql_x/adv_timescale_x(k) + ql_y/adv_timescale_y(k)
362           enddo
363        endif
364     endif
366     if ( scm_wind_adv ) then
367        if ( u_upstream_x(kms) > -900.) then
368           do k = kms,kme-1
369              u_x = interp_0(u_upstream_x,z_force,z(ids,k,jds),num_force_layers)
370              u_y = interp_0(u_upstream_y,z_force,z(ids,k,jds),num_force_layers)
372              v_x = interp_0(v_upstream_x,z_force,z(ids,k,jds),num_force_layers)
373              v_y = interp_0(v_upstream_y,z_force,z(ids,k,jds),num_force_layers)
375              u_adv_tend(k) = (u_x-u(ids,k,jds))/adv_timescale_x(k) + (u_y-u(ids,k,jds))/adv_timescale_y(k)
376              v_adv_tend(k) = (v_x-v(ids,k,jds))/adv_timescale_x(k) + (v_y-v(ids,k,jds))/adv_timescale_y(k)
377           enddo
378        else ! WA if upstream is empty, use tendency only not value+tend
379           do k = kms,kme-1
380              u_x = interp_0(dt*u_upstream_x_tend,z_force,z(ids,k,jds),num_force_layers)
381              u_y = interp_0(dt*u_upstream_y_tend,z_force,z(ids,k,jds),num_force_layers)
383              v_x = interp_0(dt*v_upstream_x_tend,z_force,z(ids,k,jds),num_force_layers)
384              v_y = interp_0(dt*v_upstream_y_tend,z_force,z(ids,k,jds),num_force_layers)
386              u_adv_tend(k) = u_x/adv_timescale_x(k) + u_y/adv_timescale_y(k)
387              v_adv_tend(k) = v_x/adv_timescale_x(k) + v_y/adv_timescale_y(k)
388           enddo
389        endif
390     endif
392 ! Large scale forcing starts here 1/8/10 WA
394     if ( scm_force_th_largescale .or. scm_force_qv_largescale .or. scm_force_ql_largescale .or. scm_force_wind_largescale ) then
395        do k = kms,kme-1
396           ls_timescale(k) = interp_0(tau_largescale,z_force,z(ids,k,jds),num_force_layers)
397        enddo
398     endif
400     if ( scm_force_th_largescale ) then
401        if ( th_largescale(kms) > 0.) then
402           do k = kms,kme-1
403              t_ls = interp_0(th_largescale,z_force,z(ids,k,jds),num_force_layers)
404              th_ls_tend(k) = (t_ls-th(ids,k,jds))/ls_timescale(k)
405           enddo
406        else ! WA if upstream is empty, use tendency only not value+tend
407           do k = kms,kme-1
408              t_ls = interp_0(dt*th_largescale_tend,z_force,z(ids,k,jds),num_force_layers)
409              th_ls_tend(k) = t_ls/ls_timescale(k)
410           enddo
411        endif
412     endif
414     if ( scm_force_qv_largescale ) then
415        if ( qv_largescale(kms) > 0.) then
416           do k = kms,kme-1
417              qv_ls = interp_0(qv_largescale,z_force,z(ids,k,jds),num_force_layers)
418              qv_ls_tend(k) = (qv_ls-qv(ids,k,jds))/ls_timescale(k)
419           enddo
420        else ! WA if upstream is empty, use tendency only not value+tend
421           do k = kms,kme-1
422              qv_ls = interp_0(dt*qv_largescale_tend,z_force,z(ids,k,jds),num_force_layers)
423              qv_ls_tend(k) = qv_ls/ls_timescale(k)
424           enddo
425        endif
426     endif
428     if ( scm_force_ql_largescale ) then
429        if ( ql_largescale(kms) > 0.) then
430           do k = kms,kme-1
431              ql_ls = interp_0(ql_largescale,z_force,z(ids,k,jds),num_force_layers)
432              ql_ls_tend(k) = (ql_ls-ql(ids,k,jds))/ls_timescale(k)
433           enddo
434        else ! WA if upstream is empty, use tendency only not value+tend
435           do k = kms,kme-1
436              ql_ls = interp_0(dt*ql_largescale_tend,z_force,z(ids,k,jds),num_force_layers)
437              ql_ls_tend(k) = ql_ls/ls_timescale(k)
438           enddo
439        endif
440     endif
442     if ( scm_force_wind_largescale ) then
443        if ( u_largescale(kms) > -900.) then
444           do k = kms,kme-1
445              u_ls = interp_0(u_largescale,z_force,z(ids,k,jds),num_force_layers)
446              v_ls = interp_0(v_largescale,z_force,z(ids,k,jds),num_force_layers)
447              u_ls_tend(k) = (u_ls-u(ids,k,jds))/ls_timescale(k)
448              v_ls_tend(k) = (v_ls-v(ids,k,jds))/ls_timescale(k)
449           enddo
450        else ! WA if upstream is empty, use tendency only not value+tend
451           do k = kms,kme-1
452              u_ls = interp_0(dt*u_largescale_tend,z_force,z(ids,k,jds),num_force_layers)
453              v_ls = interp_0(dt*v_largescale_tend,z_force,z(ids,k,jds),num_force_layers)
454              u_ls_tend(k) = u_ls/ls_timescale(k)
455              v_ls_tend(k) = v_ls/ls_timescale(k)
456           enddo
457        endif
458     endif
460 ! Now do vertical advection.  Note that no large-scale vertical advection
461 ! is implemented at this time, may not make sense anyway (WA).
462 ! loops are set so that the top and bottom (w=0) are handled correctly
463 ! vertical derivatives
464     do k = kms+1,kme-1
465        dthdz(k) = (th(2,k,2)-th(2,k-1,2))/(z(2,k,2)-z(2,k-1,2))
466        dqvdz(k) = (qv(2,k,2)-qv(2,k-1,2))/(z(2,k,2)-z(2,k-1,2))
467        dqldz(k) = (ql(2,k,2)-ql(2,k-1,2))/(z(2,k,2)-z(2,k-1,2))
468        dudz(k)  = (u(2,k,2)-u(2,k-1,2))/(z(2,k,2)-z(2,k-1,2))
469        dvdz(k)  = (v(2,k,2)-v(2,k-1,2))/(z(2,k,2)-z(2,k-1,2))
470     enddo
472 ! w on full levels, then advect
473     if ( scm_vert_adv ) then
474        do k = kms+1,kme-1
475           w = interp_0(w_subs,z_force,z_at_w(ids,k,jds),num_force_layers)
476           w_dthdz(k) = w*dthdz(k)
477           w_dqvdz(k) = w*dqvdz(k)
478           w_dqldz(k) = w*dqldz(k)
479           w_dudz(k)  = w*dudz(k)
480           w_dvdz(k)  = w*dvdz(k)
481        enddo
482     endif
484 ! set tendencies for return
485 ! vertical advection tendencies need to be interpolated back to half levels
486     CALL wrf_debug ( 100, 'j, k, th_adv_ten, qv_adv_ten, u_adv_ten, v_adv_ten')
487     do j = jms,jme
488     do k = kms,kme-1
489     if(j==1) WRITE( message, '(i4,4f12.4)' ) k,th_adv_tend(k),qv_adv_tend(k),u_adv_tend(k),v_adv_tend(k)
490     if(j==1) CALL wrf_debug ( 100, message )
491     do i = ims,ime
492        thten(i,k,j) = thten(i,k,j) + th_adv_tend(k) +              &
493                       0.5*(w_dthdz(k) + w_dthdz(k+1))              &
494                       + th_ls_tend(k)
495        qvten(i,k,j) = qvten(i,k,j) + qv_adv_tend(k) +              &
496                       0.5*(w_dqvdz(k) + w_dqvdz(k+1))              &
497                       + qv_ls_tend(k)
498        qlten(i,k,j) = qlten(i,k,j) + ql_adv_tend(k) +              &
499                       0.5*(w_dqldz(k) + w_dqldz(k+1))              &
500                       + ql_ls_tend(k)
501        uten(i,k,j)  = uten(i,k,j) + u_adv_tend(k) +                &
502                       0.5*(w_dudz(k) + w_dudz(k+1))                &
503                       + u_ls_tend(k)
504        vten(i,k,j)  = vten(i,k,j) + v_adv_tend(k) +                &
505                       0.5*(w_dvdz(k) + w_dvdz(k+1))                &
506                       + v_ls_tend(k)
507     enddo
508     enddo
509     enddo
511 ! soil forcing 1/3/10 WA
512     if ( scm_soilT_force ) then
513        do ks = 1,num_soil_layers
514           t_soil = interp_0(t_soil_forcing_val,soil_depth_force,zs(ks),num_force_soil_layers)
515           timescale_soil(ks) = interp_0(tau_soil,soil_depth_force,zs(ks),num_force_soil_layers)
516           t_soil_tend(ks) = (t_soil-tslb(ids,ks,jds))/timescale_soil(ks)
517        enddo
518        do j = jms,jme
519           do ks = 1,num_soil_layers
520              do i = ims,ime
521                 tslb(ids,ks,jds) = tslb(ids,ks,jds) + t_soil_tend(ks)
522              enddo
523           enddo
524        enddo
525     endif
526     if ( scm_soilQ_force ) then
527        do ks = 1,num_soil_layers
528           q_soil = interp_0(q_soil_forcing_val,soil_depth_force,zs(ks),num_force_soil_layers)
529           timescale_soil(ks) = interp_0(tau_soil,soil_depth_force,zs(ks),num_force_soil_layers)
530           q_soil_tend(ks) = (q_soil-smois(ids,ks,jds))/timescale_soil(ks)
531        enddo
532        do j = jms,jme
533           do ks = 1,num_soil_layers
534              do i = ims,ime
535                 smois(ids,ks,jds) = smois(ids,ks,jds) + q_soil_tend(ks)
536              enddo
537           enddo
538        enddo
539     endif
541     RETURN
543    END SUBROUTINE force_scm
545 END MODULE module_force_scm