4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The alorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
40 #include "wine/unicode.h"
43 #include "wine/debug.h"
45 WINE_DEFAULT_DEBUG_CHANNEL(variant
);
47 const char* wine_vtypes
[VT_CLSID
+1] =
49 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
50 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
51 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
52 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
53 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
54 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
55 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
56 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
57 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
60 const char* wine_vflags
[16] =
65 "|VT_VECTOR|VT_ARRAY",
67 "|VT_VECTOR|VT_ARRAY",
69 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
71 "|VT_VECTOR|VT_HARDTYPE",
72 "|VT_ARRAY|VT_HARDTYPE",
73 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
74 "|VT_BYREF|VT_HARDTYPE",
75 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
76 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
77 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
80 /* Convert a variant from one type to another */
81 static inline HRESULT
VARIANT_Coerce(VARIANTARG
* pd
, LCID lcid
, USHORT wFlags
,
82 VARIANTARG
* ps
, VARTYPE vt
)
84 HRESULT res
= DISP_E_TYPEMISMATCH
;
85 VARTYPE vtFrom
= V_TYPE(ps
);
88 TRACE("(%p->(%s%s),0x%08lx,0x%04x,%p->(%s%s),%s%s)\n", pd
, debugstr_VT(pd
),
89 debugstr_VF(pd
), lcid
, wFlags
, ps
, debugstr_VT(ps
), debugstr_VF(ps
),
90 debugstr_vt(vt
), debugstr_vf(vt
));
92 if (vt
== VT_BSTR
|| vtFrom
== VT_BSTR
)
94 /* All flags passed to low level function are only used for
95 * changing to or from strings. Map these here.
97 if (wFlags
& VARIANT_LOCALBOOL
)
98 dwFlags
|= VAR_LOCALBOOL
;
99 if (wFlags
& VARIANT_CALENDAR_HIJRI
)
100 dwFlags
|= VAR_CALENDAR_HIJRI
;
101 if (wFlags
& VARIANT_CALENDAR_THAI
)
102 dwFlags
|= VAR_CALENDAR_THAI
;
103 if (wFlags
& VARIANT_CALENDAR_GREGORIAN
)
104 dwFlags
|= VAR_CALENDAR_GREGORIAN
;
105 if (wFlags
& VARIANT_NOUSEROVERRIDE
)
106 dwFlags
|= LOCALE_NOUSEROVERRIDE
;
107 if (wFlags
& VARIANT_USE_NLS
)
108 dwFlags
|= LOCALE_USE_NLS
;
111 /* Map int/uint to i4/ui4 */
114 else if (vt
== VT_UINT
)
117 if (vtFrom
== VT_INT
)
119 else if (vtFrom
== VT_UINT
)
123 return VariantCopy(pd
, ps
);
125 if (wFlags
& VARIANT_NOVALUEPROP
&& vtFrom
== VT_DISPATCH
&& vt
!= VT_UNKNOWN
)
127 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
128 * accessing the default object property.
130 return DISP_E_TYPEMISMATCH
;
136 if (vtFrom
== VT_NULL
)
137 return DISP_E_TYPEMISMATCH
;
138 /* ... Fall through */
140 if (vtFrom
<= VT_UINT
&& vtFrom
!= (VARTYPE
)15 && vtFrom
!= VT_ERROR
)
142 res
= VariantClear( pd
);
143 if (vt
== VT_NULL
&& SUCCEEDED(res
))
151 case VT_EMPTY
: V_I1(pd
) = 0; return S_OK
;
152 case VT_I2
: return VarI1FromI2(V_I2(ps
), &V_I1(pd
));
153 case VT_I4
: return VarI1FromI4(V_I4(ps
), &V_I1(pd
));
154 case VT_UI1
: V_I1(pd
) = V_UI1(ps
); return S_OK
;
155 case VT_UI2
: return VarI1FromUI2(V_UI2(ps
), &V_I1(pd
));
156 case VT_UI4
: return VarI1FromUI4(V_UI4(ps
), &V_I1(pd
));
157 case VT_I8
: return VarI1FromI8(V_I8(ps
), &V_I1(pd
));
158 case VT_UI8
: return VarI1FromUI8(V_UI8(ps
), &V_I1(pd
));
159 case VT_R4
: return VarI1FromR4(V_R4(ps
), &V_I1(pd
));
160 case VT_R8
: return VarI1FromR8(V_R8(ps
), &V_I1(pd
));
161 case VT_DATE
: return VarI1FromDate(V_DATE(ps
), &V_I1(pd
));
162 case VT_BOOL
: return VarI1FromBool(V_BOOL(ps
), &V_I1(pd
));
163 case VT_CY
: return VarI1FromCy(V_CY(ps
), &V_I1(pd
));
164 case VT_DECIMAL
: return VarI1FromDec(&V_DECIMAL(ps
), &V_I1(pd
) );
165 case VT_DISPATCH
: return VarI1FromDisp(V_DISPATCH(ps
), lcid
, &V_I1(pd
) );
166 case VT_BSTR
: return VarI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I1(pd
) );
173 case VT_EMPTY
: V_I2(pd
) = 0; return S_OK
;
174 case VT_I1
: return VarI2FromI1(V_I1(ps
), &V_I2(pd
));
175 case VT_I4
: return VarI2FromI4(V_I4(ps
), &V_I2(pd
));
176 case VT_UI1
: return VarI2FromUI1(V_UI1(ps
), &V_I2(pd
));
177 case VT_UI2
: V_I2(pd
) = V_UI2(ps
); return S_OK
;
178 case VT_UI4
: return VarI2FromUI4(V_UI4(ps
), &V_I2(pd
));
179 case VT_I8
: return VarI2FromI8(V_I8(ps
), &V_I2(pd
));
180 case VT_UI8
: return VarI2FromUI8(V_UI8(ps
), &V_I2(pd
));
181 case VT_R4
: return VarI2FromR4(V_R4(ps
), &V_I2(pd
));
182 case VT_R8
: return VarI2FromR8(V_R8(ps
), &V_I2(pd
));
183 case VT_DATE
: return VarI2FromDate(V_DATE(ps
), &V_I2(pd
));
184 case VT_BOOL
: return VarI2FromBool(V_BOOL(ps
), &V_I2(pd
));
185 case VT_CY
: return VarI2FromCy(V_CY(ps
), &V_I2(pd
));
186 case VT_DECIMAL
: return VarI2FromDec(&V_DECIMAL(ps
), &V_I2(pd
));
187 case VT_DISPATCH
: return VarI2FromDisp(V_DISPATCH(ps
), lcid
, &V_I2(pd
));
188 case VT_BSTR
: return VarI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I2(pd
));
195 case VT_EMPTY
: V_I4(pd
) = 0; return S_OK
;
196 case VT_I1
: return VarI4FromI1(V_I1(ps
), &V_I4(pd
));
197 case VT_I2
: return VarI4FromI2(V_I2(ps
), &V_I4(pd
));
198 case VT_UI1
: return VarI4FromUI1(V_UI1(ps
), &V_I4(pd
));
199 case VT_UI2
: return VarI4FromUI2(V_UI2(ps
), &V_I4(pd
));
200 case VT_UI4
: V_I4(pd
) = V_UI4(ps
); return S_OK
;
201 case VT_I8
: return VarI4FromI8(V_I8(ps
), &V_I4(pd
));
202 case VT_UI8
: return VarI4FromUI8(V_UI8(ps
), &V_I4(pd
));
203 case VT_R4
: return VarI4FromR4(V_R4(ps
), &V_I4(pd
));
204 case VT_R8
: return VarI4FromR8(V_R8(ps
), &V_I4(pd
));
205 case VT_DATE
: return VarI4FromDate(V_DATE(ps
), &V_I4(pd
));
206 case VT_BOOL
: return VarI4FromBool(V_BOOL(ps
), &V_I4(pd
));
207 case VT_CY
: return VarI4FromCy(V_CY(ps
), &V_I4(pd
));
208 case VT_DECIMAL
: return VarI4FromDec(&V_DECIMAL(ps
), &V_I4(pd
));
209 case VT_DISPATCH
: return VarI4FromDisp(V_DISPATCH(ps
), lcid
, &V_I4(pd
));
210 case VT_BSTR
: return VarI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I4(pd
));
217 case VT_EMPTY
: V_UI1(pd
) = 0; return S_OK
;
218 case VT_I1
: V_UI1(pd
) = V_I1(ps
); return S_OK
;
219 case VT_I2
: return VarUI1FromI2(V_I2(ps
), &V_UI1(pd
));
220 case VT_I4
: return VarUI1FromI4(V_I4(ps
), &V_UI1(pd
));
221 case VT_UI2
: return VarUI1FromUI2(V_UI2(ps
), &V_UI1(pd
));
222 case VT_UI4
: return VarUI1FromUI4(V_UI4(ps
), &V_UI1(pd
));
223 case VT_I8
: return VarUI1FromI8(V_I8(ps
), &V_UI1(pd
));
224 case VT_UI8
: return VarUI1FromUI8(V_UI8(ps
), &V_UI1(pd
));
225 case VT_R4
: return VarUI1FromR4(V_R4(ps
), &V_UI1(pd
));
226 case VT_R8
: return VarUI1FromR8(V_R8(ps
), &V_UI1(pd
));
227 case VT_DATE
: return VarUI1FromDate(V_DATE(ps
), &V_UI1(pd
));
228 case VT_BOOL
: return VarUI1FromBool(V_BOOL(ps
), &V_UI1(pd
));
229 case VT_CY
: return VarUI1FromCy(V_CY(ps
), &V_UI1(pd
));
230 case VT_DECIMAL
: return VarUI1FromDec(&V_DECIMAL(ps
), &V_UI1(pd
));
231 case VT_DISPATCH
: return VarUI1FromDisp(V_DISPATCH(ps
), lcid
, &V_UI1(pd
));
232 case VT_BSTR
: return VarUI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI1(pd
));
239 case VT_EMPTY
: V_UI2(pd
) = 0; return S_OK
;
240 case VT_I1
: return VarUI2FromI1(V_I1(ps
), &V_UI2(pd
));
241 case VT_I2
: V_UI2(pd
) = V_I2(ps
); return S_OK
;
242 case VT_I4
: return VarUI2FromI4(V_I4(ps
), &V_UI2(pd
));
243 case VT_UI1
: return VarUI2FromUI1(V_UI1(ps
), &V_UI2(pd
));
244 case VT_UI4
: return VarUI2FromUI4(V_UI4(ps
), &V_UI2(pd
));
245 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
246 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
247 case VT_R4
: return VarUI2FromR4(V_R4(ps
), &V_UI2(pd
));
248 case VT_R8
: return VarUI2FromR8(V_R8(ps
), &V_UI2(pd
));
249 case VT_DATE
: return VarUI2FromDate(V_DATE(ps
), &V_UI2(pd
));
250 case VT_BOOL
: return VarUI2FromBool(V_BOOL(ps
), &V_UI2(pd
));
251 case VT_CY
: return VarUI2FromCy(V_CY(ps
), &V_UI2(pd
));
252 case VT_DECIMAL
: return VarUI2FromDec(&V_DECIMAL(ps
), &V_UI2(pd
));
253 case VT_DISPATCH
: return VarUI2FromDisp(V_DISPATCH(ps
), lcid
, &V_UI2(pd
));
254 case VT_BSTR
: return VarUI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI2(pd
));
261 case VT_EMPTY
: V_UI4(pd
) = 0; return S_OK
;
262 case VT_I1
: return VarUI4FromI1(V_I1(ps
), &V_UI4(pd
));
263 case VT_I2
: return VarUI4FromI2(V_I2(ps
), &V_UI4(pd
));
264 case VT_I4
: V_UI4(pd
) = V_I4(ps
); return S_OK
;
265 case VT_UI1
: return VarUI4FromUI1(V_UI1(ps
), &V_UI4(pd
));
266 case VT_UI2
: return VarUI4FromUI2(V_UI2(ps
), &V_UI4(pd
));
267 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
268 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
269 case VT_R4
: return VarUI4FromR4(V_R4(ps
), &V_UI4(pd
));
270 case VT_R8
: return VarUI4FromR8(V_R8(ps
), &V_UI4(pd
));
271 case VT_DATE
: return VarUI4FromDate(V_DATE(ps
), &V_UI4(pd
));
272 case VT_BOOL
: return VarUI4FromBool(V_BOOL(ps
), &V_UI4(pd
));
273 case VT_CY
: return VarUI4FromCy(V_CY(ps
), &V_UI4(pd
));
274 case VT_DECIMAL
: return VarUI4FromDec(&V_DECIMAL(ps
), &V_UI4(pd
));
275 case VT_DISPATCH
: return VarUI4FromDisp(V_DISPATCH(ps
), lcid
, &V_UI4(pd
));
276 case VT_BSTR
: return VarUI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI4(pd
));
283 case VT_EMPTY
: V_UI8(pd
) = 0; return S_OK
;
284 case VT_I4
: if (V_I4(ps
) < 0) return DISP_E_OVERFLOW
; V_UI8(pd
) = V_I4(ps
); return S_OK
;
285 case VT_I1
: return VarUI8FromI1(V_I1(ps
), &V_UI8(pd
));
286 case VT_I2
: return VarUI8FromI2(V_I2(ps
), &V_UI8(pd
));
287 case VT_UI1
: return VarUI8FromUI1(V_UI1(ps
), &V_UI8(pd
));
288 case VT_UI2
: return VarUI8FromUI2(V_UI2(ps
), &V_UI8(pd
));
289 case VT_UI4
: return VarUI8FromUI4(V_UI4(ps
), &V_UI8(pd
));
290 case VT_I8
: V_UI8(pd
) = V_I8(ps
); return S_OK
;
291 case VT_R4
: return VarUI8FromR4(V_R4(ps
), &V_UI8(pd
));
292 case VT_R8
: return VarUI8FromR8(V_R8(ps
), &V_UI8(pd
));
293 case VT_DATE
: return VarUI8FromDate(V_DATE(ps
), &V_UI8(pd
));
294 case VT_BOOL
: return VarUI8FromBool(V_BOOL(ps
), &V_UI8(pd
));
295 case VT_CY
: return VarUI8FromCy(V_CY(ps
), &V_UI8(pd
));
296 case VT_DECIMAL
: return VarUI8FromDec(&V_DECIMAL(ps
), &V_UI8(pd
));
297 case VT_DISPATCH
: return VarUI8FromDisp(V_DISPATCH(ps
), lcid
, &V_UI8(pd
));
298 case VT_BSTR
: return VarUI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI8(pd
));
305 case VT_EMPTY
: V_I8(pd
) = 0; return S_OK
;
306 case VT_I4
: V_I8(pd
) = V_I4(ps
); return S_OK
;
307 case VT_I1
: return VarI8FromI1(V_I1(ps
), &V_I8(pd
));
308 case VT_I2
: return VarI8FromI2(V_I2(ps
), &V_I8(pd
));
309 case VT_UI1
: return VarI8FromUI1(V_UI1(ps
), &V_I8(pd
));
310 case VT_UI2
: return VarI8FromUI2(V_UI2(ps
), &V_I8(pd
));
311 case VT_UI4
: return VarI8FromUI4(V_UI4(ps
), &V_I8(pd
));
312 case VT_UI8
: V_I8(pd
) = V_UI8(ps
); return S_OK
;
313 case VT_R4
: return VarI8FromR4(V_R4(ps
), &V_I8(pd
));
314 case VT_R8
: return VarI8FromR8(V_R8(ps
), &V_I8(pd
));
315 case VT_DATE
: return VarI8FromDate(V_DATE(ps
), &V_I8(pd
));
316 case VT_BOOL
: return VarI8FromBool(V_BOOL(ps
), &V_I8(pd
));
317 case VT_CY
: return VarI8FromCy(V_CY(ps
), &V_I8(pd
));
318 case VT_DECIMAL
: return VarI8FromDec(&V_DECIMAL(ps
), &V_I8(pd
));
319 case VT_DISPATCH
: return VarI8FromDisp(V_DISPATCH(ps
), lcid
, &V_I8(pd
));
320 case VT_BSTR
: return VarI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I8(pd
));
327 case VT_EMPTY
: V_R4(pd
) = 0.0f
; return S_OK
;
328 case VT_I1
: return VarR4FromI1(V_I1(ps
), &V_R4(pd
));
329 case VT_I2
: return VarR4FromI2(V_I2(ps
), &V_R4(pd
));
330 case VT_I4
: return VarR4FromI4(V_I4(ps
), &V_R4(pd
));
331 case VT_UI1
: return VarR4FromUI1(V_UI1(ps
), &V_R4(pd
));
332 case VT_UI2
: return VarR4FromUI2(V_UI2(ps
), &V_R4(pd
));
333 case VT_UI4
: return VarR4FromUI4(V_UI4(ps
), &V_R4(pd
));
334 case VT_I8
: return VarR4FromI8(V_I8(ps
), &V_R4(pd
));
335 case VT_UI8
: return VarR4FromUI8(V_UI8(ps
), &V_R4(pd
));
336 case VT_R8
: return VarR4FromR8(V_R8(ps
), &V_R4(pd
));
337 case VT_DATE
: return VarR4FromDate(V_DATE(ps
), &V_R4(pd
));
338 case VT_BOOL
: return VarR4FromBool(V_BOOL(ps
), &V_R4(pd
));
339 case VT_CY
: return VarR4FromCy(V_CY(ps
), &V_R4(pd
));
340 case VT_DECIMAL
: return VarR4FromDec(&V_DECIMAL(ps
), &V_R4(pd
));
341 case VT_DISPATCH
: return VarR4FromDisp(V_DISPATCH(ps
), lcid
, &V_R4(pd
));
342 case VT_BSTR
: return VarR4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R4(pd
));
349 case VT_EMPTY
: V_R8(pd
) = 0.0; return S_OK
;
350 case VT_I1
: return VarR8FromI1(V_I1(ps
), &V_R8(pd
));
351 case VT_I2
: return VarR8FromI2(V_I2(ps
), &V_R8(pd
));
352 case VT_I4
: return VarR8FromI4(V_I4(ps
), &V_R8(pd
));
353 case VT_UI1
: return VarR8FromUI1(V_UI1(ps
), &V_R8(pd
));
354 case VT_UI2
: return VarR8FromUI2(V_UI2(ps
), &V_R8(pd
));
355 case VT_UI4
: return VarR8FromUI4(V_UI4(ps
), &V_R8(pd
));
356 case VT_I8
: return VarR8FromI8(V_I8(ps
), &V_R8(pd
));
357 case VT_UI8
: return VarR8FromUI8(V_UI8(ps
), &V_R8(pd
));
358 case VT_R4
: return VarR8FromR4(V_R4(ps
), &V_R8(pd
));
359 case VT_DATE
: return VarR8FromDate(V_DATE(ps
), &V_R8(pd
));
360 case VT_BOOL
: return VarR8FromBool(V_BOOL(ps
), &V_R8(pd
));
361 case VT_CY
: return VarR8FromCy(V_CY(ps
), &V_R8(pd
));
362 case VT_DECIMAL
: return VarR8FromDec(&V_DECIMAL(ps
), &V_R8(pd
));
363 case VT_DISPATCH
: return VarR8FromDisp(V_DISPATCH(ps
), lcid
, &V_R8(pd
));
364 case VT_BSTR
: return VarR8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R8(pd
));
371 case VT_EMPTY
: V_DATE(pd
) = 0.0; return S_OK
;
372 case VT_I1
: return VarDateFromI1(V_I1(ps
), &V_DATE(pd
));
373 case VT_I2
: return VarDateFromI2(V_I2(ps
), &V_DATE(pd
));
374 case VT_I4
: return VarDateFromI4(V_I4(ps
), &V_DATE(pd
));
375 case VT_UI1
: return VarDateFromUI1(V_UI1(ps
), &V_DATE(pd
));
376 case VT_UI2
: return VarDateFromUI2(V_UI2(ps
), &V_DATE(pd
));
377 case VT_UI4
: return VarDateFromUI4(V_UI4(ps
), &V_DATE(pd
));
378 case VT_I8
: return VarDateFromI8(V_I8(ps
), &V_DATE(pd
));
379 case VT_UI8
: return VarDateFromUI8(V_UI8(ps
), &V_DATE(pd
));
380 case VT_R4
: return VarDateFromR4(V_R4(ps
), &V_DATE(pd
));
381 case VT_R8
: return VarDateFromR8(V_R8(ps
), &V_DATE(pd
));
382 case VT_BOOL
: return VarDateFromBool(V_BOOL(ps
), &V_DATE(pd
));
383 case VT_CY
: return VarDateFromCy(V_CY(ps
), &V_DATE(pd
));
384 case VT_DECIMAL
: return VarDateFromDec(&V_DECIMAL(ps
), &V_DATE(pd
));
385 case VT_DISPATCH
: return VarDateFromDisp(V_DISPATCH(ps
), lcid
, &V_DATE(pd
));
386 case VT_BSTR
: return VarDateFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DATE(pd
));
393 case VT_EMPTY
: V_BOOL(pd
) = 0; return S_OK
;
394 case VT_I1
: return VarBoolFromI1(V_I1(ps
), &V_BOOL(pd
));
395 case VT_I2
: return VarBoolFromI2(V_I2(ps
), &V_BOOL(pd
));
396 case VT_I4
: return VarBoolFromI4(V_I4(ps
), &V_BOOL(pd
));
397 case VT_UI1
: return VarBoolFromUI1(V_UI1(ps
), &V_BOOL(pd
));
398 case VT_UI2
: return VarBoolFromUI2(V_UI2(ps
), &V_BOOL(pd
));
399 case VT_UI4
: return VarBoolFromUI4(V_UI4(ps
), &V_BOOL(pd
));
400 case VT_I8
: return VarBoolFromI8(V_I8(ps
), &V_BOOL(pd
));
401 case VT_UI8
: return VarBoolFromUI8(V_UI8(ps
), &V_BOOL(pd
));
402 case VT_R4
: return VarBoolFromR4(V_R4(ps
), &V_BOOL(pd
));
403 case VT_R8
: return VarBoolFromR8(V_R8(ps
), &V_BOOL(pd
));
404 case VT_DATE
: return VarBoolFromDate(V_DATE(ps
), &V_BOOL(pd
));
405 case VT_CY
: return VarBoolFromCy(V_CY(ps
), &V_BOOL(pd
));
406 case VT_DECIMAL
: return VarBoolFromDec(&V_DECIMAL(ps
), &V_BOOL(pd
));
407 case VT_DISPATCH
: return VarBoolFromDisp(V_DISPATCH(ps
), lcid
, &V_BOOL(pd
));
408 case VT_BSTR
: return VarBoolFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_BOOL(pd
));
416 V_BSTR(pd
) = SysAllocStringLen(NULL
, 0);
417 return V_BSTR(pd
) ? S_OK
: E_OUTOFMEMORY
;
419 if (wFlags
& (VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
))
420 return VarBstrFromBool(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
421 return VarBstrFromI2(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
422 case VT_I1
: return VarBstrFromI1(V_I1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
423 case VT_I2
: return VarBstrFromI2(V_I2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
424 case VT_I4
: return VarBstrFromI4(V_I4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
425 case VT_UI1
: return VarBstrFromUI1(V_UI1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
426 case VT_UI2
: return VarBstrFromUI2(V_UI2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
427 case VT_UI4
: return VarBstrFromUI4(V_UI4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
428 case VT_I8
: return VarBstrFromI8(V_I8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
429 case VT_UI8
: return VarBstrFromUI8(V_UI8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
430 case VT_R4
: return VarBstrFromR4(V_R4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
431 case VT_R8
: return VarBstrFromR8(V_R8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
432 case VT_DATE
: return VarBstrFromDate(V_DATE(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
433 case VT_CY
: return VarBstrFromCy(V_CY(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
434 case VT_DECIMAL
: return VarBstrFromDec(&V_DECIMAL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
435 case VT_DISPATCH
: return VarBstrFromDisp(V_DISPATCH(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
442 case VT_EMPTY
: V_CY(pd
).int64
= 0; return S_OK
;
443 case VT_I1
: return VarCyFromI1(V_I1(ps
), &V_CY(pd
));
444 case VT_I2
: return VarCyFromI2(V_I2(ps
), &V_CY(pd
));
445 case VT_I4
: return VarCyFromI4(V_I4(ps
), &V_CY(pd
));
446 case VT_UI1
: return VarCyFromUI1(V_UI1(ps
), &V_CY(pd
));
447 case VT_UI2
: return VarCyFromUI2(V_UI2(ps
), &V_CY(pd
));
448 case VT_UI4
: return VarCyFromUI4(V_UI4(ps
), &V_CY(pd
));
449 case VT_I8
: return VarCyFromI8(V_I8(ps
), &V_CY(pd
));
450 case VT_UI8
: return VarCyFromUI8(V_UI8(ps
), &V_CY(pd
));
451 case VT_R4
: return VarCyFromR4(V_R4(ps
), &V_CY(pd
));
452 case VT_R8
: return VarCyFromR8(V_R8(ps
), &V_CY(pd
));
453 case VT_DATE
: return VarCyFromDate(V_DATE(ps
), &V_CY(pd
));
454 case VT_BOOL
: return VarCyFromBool(V_BOOL(ps
), &V_CY(pd
));
455 case VT_DECIMAL
: return VarCyFromDec(&V_DECIMAL(ps
), &V_CY(pd
));
456 case VT_DISPATCH
: return VarCyFromDisp(V_DISPATCH(ps
), lcid
, &V_CY(pd
));
457 case VT_BSTR
: return VarCyFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_CY(pd
));
466 DEC_SIGNSCALE(&V_DECIMAL(pd
)) = SIGNSCALE(DECIMAL_POS
,0);
467 DEC_HI32(&V_DECIMAL(pd
)) = 0;
468 DEC_MID32(&V_DECIMAL(pd
)) = 0;
469 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
470 * VT_NULL and VT_EMPTY always give a 0 value.
472 DEC_LO32(&V_DECIMAL(pd
)) = vtFrom
== VT_BOOL
&& V_BOOL(ps
) ? 1 : 0;
474 case VT_I1
: return VarDecFromI1(V_I1(ps
), &V_DECIMAL(pd
));
475 case VT_I2
: return VarDecFromI2(V_I2(ps
), &V_DECIMAL(pd
));
476 case VT_I4
: return VarDecFromI4(V_I4(ps
), &V_DECIMAL(pd
));
477 case VT_UI1
: return VarDecFromUI1(V_UI1(ps
), &V_DECIMAL(pd
));
478 case VT_UI2
: return VarDecFromUI2(V_UI2(ps
), &V_DECIMAL(pd
));
479 case VT_UI4
: return VarDecFromUI4(V_UI4(ps
), &V_DECIMAL(pd
));
480 case VT_I8
: return VarDecFromI8(V_I8(ps
), &V_DECIMAL(pd
));
481 case VT_UI8
: return VarDecFromUI8(V_UI8(ps
), &V_DECIMAL(pd
));
482 case VT_R4
: return VarDecFromR4(V_R4(ps
), &V_DECIMAL(pd
));
483 case VT_R8
: return VarDecFromR8(V_R8(ps
), &V_DECIMAL(pd
));
484 case VT_DATE
: return VarDecFromDate(V_DATE(ps
), &V_DECIMAL(pd
));
485 case VT_CY
: return VarDecFromCy(V_CY(ps
), &V_DECIMAL(pd
));
486 case VT_DISPATCH
: return VarDecFromDisp(V_DISPATCH(ps
), lcid
, &V_DECIMAL(pd
));
487 case VT_BSTR
: return VarDecFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DECIMAL(pd
));
495 if (V_DISPATCH(ps
) == NULL
)
496 V_UNKNOWN(pd
) = NULL
;
498 res
= IDispatch_QueryInterface(V_DISPATCH(ps
), &IID_IUnknown
, (LPVOID
*)&V_UNKNOWN(pd
));
507 if (V_UNKNOWN(ps
) == NULL
)
508 V_DISPATCH(pd
) = NULL
;
510 res
= IUnknown_QueryInterface(V_UNKNOWN(ps
), &IID_IDispatch
, (LPVOID
*)&V_DISPATCH(pd
));
521 /* Coerce to/from an array */
522 static inline HRESULT
VARIANT_CoerceArray(VARIANTARG
* pd
, VARIANTARG
* ps
, VARTYPE vt
)
524 if (vt
== VT_BSTR
&& V_VT(ps
) == (VT_ARRAY
|VT_UI1
))
525 return BstrFromVector(V_ARRAY(ps
), &V_BSTR(pd
));
527 if (V_VT(ps
) == VT_BSTR
&& vt
== (VT_ARRAY
|VT_UI1
))
528 return VectorFromBstr(V_BSTR(ps
), &V_ARRAY(ps
));
531 return SafeArrayCopy(V_ARRAY(ps
), &V_ARRAY(pd
));
533 return DISP_E_TYPEMISMATCH
;
536 /******************************************************************************
537 * Check if a variants type is valid.
539 static inline HRESULT
VARIANT_ValidateType(VARTYPE vt
)
541 VARTYPE vtExtra
= vt
& VT_EXTRA_TYPE
;
545 if (!(vtExtra
& (VT_VECTOR
|VT_RESERVED
)))
547 if (vt
< VT_VOID
|| vt
== VT_RECORD
|| vt
== VT_CLSID
)
549 if ((vtExtra
& (VT_BYREF
|VT_ARRAY
)) && vt
<= VT_NULL
)
550 return DISP_E_BADVARTYPE
;
551 if (vt
!= (VARTYPE
)15)
555 return DISP_E_BADVARTYPE
;
558 /******************************************************************************
559 * VariantInit [OLEAUT32.8]
561 * Initialise a variant.
564 * pVarg [O] Variant to initialise
570 * This function simply sets the type of the variant to VT_EMPTY. It does not
571 * free any existing value, use VariantClear() for that.
573 void WINAPI
VariantInit(VARIANTARG
* pVarg
)
575 TRACE("(%p)\n", pVarg
);
577 V_VT(pVarg
) = VT_EMPTY
; /* Native doesn't set any other fields */
580 /******************************************************************************
581 * VariantClear [OLEAUT32.9]
586 * pVarg [I/O] Variant to clear
589 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
590 * Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type.
592 HRESULT WINAPI
VariantClear(VARIANTARG
* pVarg
)
596 TRACE("(%p->(%s%s))\n", pVarg
, debugstr_VT(pVarg
), debugstr_VF(pVarg
));
598 hres
= VARIANT_ValidateType(V_VT(pVarg
));
602 if (!V_ISBYREF(pVarg
))
604 if (V_ISARRAY(pVarg
) || V_VT(pVarg
) == VT_SAFEARRAY
)
607 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
609 else if (V_VT(pVarg
) == VT_BSTR
)
612 SysFreeString(V_BSTR(pVarg
));
614 else if (V_VT(pVarg
) == VT_RECORD
)
616 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
619 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
620 IRecordInfo_Release(pBr
->pRecInfo
);
623 else if (V_VT(pVarg
) == VT_DISPATCH
||
624 V_VT(pVarg
) == VT_UNKNOWN
)
626 if (V_UNKNOWN(pVarg
))
627 IUnknown_Release(V_UNKNOWN(pVarg
));
630 V_VT(pVarg
) = VT_EMPTY
;
635 /******************************************************************************
636 * Copy an IRecordInfo object contained in a variant.
638 static HRESULT
VARIANT_CopyIRecordInfo(struct __tagBRECORD
* pBr
)
646 hres
= IRecordInfo_GetSize(pBr
->pRecInfo
, &ulSize
);
649 PVOID pvRecord
= HeapAlloc(GetProcessHeap(), 0, ulSize
);
651 hres
= E_OUTOFMEMORY
;
654 memcpy(pvRecord
, pBr
->pvRecord
, ulSize
);
655 pBr
->pvRecord
= pvRecord
;
657 hres
= IRecordInfo_RecordCopy(pBr
->pRecInfo
, pvRecord
, pvRecord
);
659 IRecordInfo_AddRef(pBr
->pRecInfo
);
663 else if (pBr
->pvRecord
)
668 /******************************************************************************
669 * VariantCopy [OLEAUT32.10]
674 * pvargDest [O] Destination for copy
675 * pvargSrc [I] Source variant to copy
678 * Success: S_OK. pvargDest contains a copy of pvargSrc.
679 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
680 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
681 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
682 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
685 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
686 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
687 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
688 * fails, so does this function.
689 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
690 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
691 * is copied rather than just any pointers to it.
692 * - For by-value object types the object pointer is copied and the objects
693 * reference count increased using IUnknown_AddRef().
694 * - For all by-reference types, only the referencing pointer is copied.
696 HRESULT WINAPI
VariantCopy(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
)
700 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest
, debugstr_VT(pvargDest
),
701 debugstr_VF(pvargDest
), pvargSrc
, debugstr_VT(pvargSrc
),
702 debugstr_VF(pvargSrc
));
704 if (V_TYPE(pvargSrc
) == VT_CLSID
|| /* VT_CLSID is a special case */
705 FAILED(VARIANT_ValidateType(V_VT(pvargSrc
))))
706 return DISP_E_BADVARTYPE
;
708 if (pvargSrc
!= pvargDest
&&
709 SUCCEEDED(hres
= VariantClear(pvargDest
)))
711 *pvargDest
= *pvargSrc
; /* Shallow copy the value */
713 if (!V_ISBYREF(pvargSrc
))
715 if (V_ISARRAY(pvargSrc
))
717 if (V_ARRAY(pvargSrc
))
718 hres
= SafeArrayCopy(V_ARRAY(pvargSrc
), &V_ARRAY(pvargDest
));
720 else if (V_VT(pvargSrc
) == VT_BSTR
)
722 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc
), SysStringByteLen(V_BSTR(pvargSrc
)));
723 if (!V_BSTR(pvargDest
))
725 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc
)));
726 hres
= E_OUTOFMEMORY
;
729 else if (V_VT(pvargSrc
) == VT_RECORD
)
731 hres
= VARIANT_CopyIRecordInfo(&V_UNION(pvargDest
,brecVal
));
733 else if (V_VT(pvargSrc
) == VT_DISPATCH
||
734 V_VT(pvargSrc
) == VT_UNKNOWN
)
736 if (V_UNKNOWN(pvargSrc
))
737 IUnknown_AddRef(V_UNKNOWN(pvargSrc
));
744 /* Return the byte size of a variants data */
745 static inline size_t VARIANT_DataSize(const VARIANT
* pv
)
750 case VT_UI1
: return sizeof(BYTE
);
752 case VT_UI2
: return sizeof(SHORT
);
756 case VT_UI4
: return sizeof(LONG
);
758 case VT_UI8
: return sizeof(LONGLONG
);
759 case VT_R4
: return sizeof(float);
760 case VT_R8
: return sizeof(double);
761 case VT_DATE
: return sizeof(DATE
);
762 case VT_BOOL
: return sizeof(VARIANT_BOOL
);
765 case VT_BSTR
: return sizeof(void*);
766 case VT_CY
: return sizeof(CY
);
767 case VT_ERROR
: return sizeof(SCODE
);
769 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv
), debugstr_VF(pv
));
773 /******************************************************************************
774 * VariantCopyInd [OLEAUT32.11]
776 * Copy a variant, dereferencing it it is by-reference.
779 * pvargDest [O] Destination for copy
780 * pvargSrc [I] Source variant to copy
783 * Success: S_OK. pvargDest contains a copy of pvargSrc.
784 * Failure: An HRESULT error code indicating the error.
787 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
788 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
789 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
790 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
791 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
794 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
795 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
797 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
798 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
799 * to it. If clearing pvargDest fails, so does this function.
801 HRESULT WINAPI
VariantCopyInd(VARIANT
* pvargDest
, VARIANTARG
* pvargSrc
)
803 VARIANTARG vTmp
, *pSrc
= pvargSrc
;
807 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest
, debugstr_VT(pvargDest
),
808 debugstr_VF(pvargDest
), pvargSrc
, debugstr_VT(pvargSrc
),
809 debugstr_VF(pvargSrc
));
811 if (!V_ISBYREF(pvargSrc
))
812 return VariantCopy(pvargDest
, pvargSrc
);
814 /* Argument checking is more lax than VariantCopy()... */
815 vt
= V_TYPE(pvargSrc
);
816 if (V_ISARRAY(pvargSrc
) ||
817 (vt
> VT_NULL
&& vt
!= (VARTYPE
)15 && vt
< VT_VOID
&&
818 !(V_VT(pvargSrc
) & (VT_VECTOR
|VT_RESERVED
))))
823 return E_INVALIDARG
; /* ...And the return value for invalid types differs too */
825 if (pvargSrc
== pvargDest
)
827 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
828 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
832 V_VT(pvargDest
) = VT_EMPTY
;
836 /* Copy into another variant. Free the variant in pvargDest */
837 if (FAILED(hres
= VariantClear(pvargDest
)))
839 TRACE("VariantClear() of destination failed\n");
846 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
847 hres
= SafeArrayCopy(*V_ARRAYREF(pSrc
), &V_ARRAY(pvargDest
));
849 else if (V_VT(pSrc
) == (VT_BSTR
|VT_BYREF
))
851 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
852 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc
), SysStringByteLen(*V_BSTRREF(pSrc
)));
854 else if (V_VT(pSrc
) == (VT_RECORD
|VT_BYREF
))
856 V_UNION(pvargDest
,brecVal
) = V_UNION(pvargSrc
,brecVal
);
857 hres
= VARIANT_CopyIRecordInfo(&V_UNION(pvargDest
,brecVal
));
859 else if (V_VT(pSrc
) == (VT_DISPATCH
|VT_BYREF
) ||
860 V_VT(pSrc
) == (VT_UNKNOWN
|VT_BYREF
))
862 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
863 V_UNKNOWN(pvargDest
) = *V_UNKNOWNREF(pSrc
);
864 if (*V_UNKNOWNREF(pSrc
))
865 IUnknown_AddRef(*V_UNKNOWNREF(pSrc
));
867 else if (V_VT(pSrc
) == (VT_VARIANT
|VT_BYREF
))
869 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
870 if (V_VT(V_VARIANTREF(pSrc
)) == (VT_VARIANT
|VT_BYREF
))
871 hres
= E_INVALIDARG
; /* Don't dereference more than one level */
873 hres
= VariantCopyInd(pvargDest
, V_VARIANTREF(pSrc
));
875 /* Use the dereferenced variants type value, not VT_VARIANT */
876 goto VariantCopyInd_Return
;
878 else if (V_VT(pSrc
) == (VT_DECIMAL
|VT_BYREF
))
880 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest
)), &DEC_SCALE(V_DECIMALREF(pSrc
)),
881 sizeof(DECIMAL
) - sizeof(USHORT
));
885 /* Copy the pointed to data into this variant */
886 memcpy(&V_BYREF(pvargDest
), V_BYREF(pSrc
), VARIANT_DataSize(pSrc
));
889 V_VT(pvargDest
) = V_VT(pSrc
) & ~VT_BYREF
;
891 VariantCopyInd_Return
:
893 if (pSrc
!= pvargSrc
)
896 TRACE("returning 0x%08lx, %p->(%s%s)\n", hres
, pvargDest
,
897 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
));
901 /******************************************************************************
902 * VariantChangeType [OLEAUT32.12]
904 * Change the type of a variant.
907 * pvargDest [O] Destination for the converted variant
908 * pvargSrc [O] Source variant to change the type of
909 * wFlags [I] VARIANT_ flags from "oleauto.h"
910 * vt [I] Variant type to change pvargSrc into
913 * Success: S_OK. pvargDest contains the converted value.
914 * Failure: An HRESULT error code describing the failure.
917 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
918 * See VariantChangeTypeEx.
920 HRESULT WINAPI
VariantChangeType(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
921 USHORT wFlags
, VARTYPE vt
)
923 return VariantChangeTypeEx( pvargDest
, pvargSrc
, LOCALE_USER_DEFAULT
, wFlags
, vt
);
926 /******************************************************************************
927 * VariantChangeTypeEx [OLEAUT32.147]
929 * Change the type of a variant.
932 * pvargDest [O] Destination for the converted variant
933 * pvargSrc [O] Source variant to change the type of
934 * lcid [I] LCID for the conversion
935 * wFlags [I] VARIANT_ flags from "oleauto.h"
936 * vt [I] Variant type to change pvargSrc into
939 * Success: S_OK. pvargDest contains the converted value.
940 * Failure: An HRESULT error code describing the failure.
943 * pvargDest and pvargSrc can point to the same variant to perform an in-place
944 * conversion. If the conversion is successful, pvargSrc will be freed.
946 HRESULT WINAPI
VariantChangeTypeEx(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
947 LCID lcid
, USHORT wFlags
, VARTYPE vt
)
951 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%04x,%s%s)\n", pvargDest
,
952 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
), pvargSrc
,
953 debugstr_VT(pvargSrc
), debugstr_VF(pvargSrc
), lcid
, wFlags
,
954 debugstr_vt(vt
), debugstr_vf(vt
));
957 res
= DISP_E_BADVARTYPE
;
960 res
= VARIANT_ValidateType(V_VT(pvargSrc
));
964 res
= VARIANT_ValidateType(vt
);
968 VARIANTARG vTmp
, vSrcDeref
;
970 if(V_ISBYREF(pvargSrc
) && !V_BYREF(pvargSrc
))
971 res
= DISP_E_TYPEMISMATCH
;
974 V_VT(&vTmp
) = VT_EMPTY
;
975 V_VT(&vSrcDeref
) = VT_EMPTY
;
977 VariantClear(&vSrcDeref
);
982 res
= VariantCopyInd(&vSrcDeref
, pvargSrc
);
985 if (V_ISARRAY(&vSrcDeref
) || (vt
& VT_ARRAY
))
986 res
= VARIANT_CoerceArray(&vTmp
, &vSrcDeref
, vt
);
988 res
= VARIANT_Coerce(&vTmp
, lcid
, wFlags
, &vSrcDeref
, vt
);
990 if (SUCCEEDED(res
)) {
992 VariantCopy(pvargDest
, &vTmp
);
995 VariantClear(&vSrcDeref
);
1002 TRACE("returning 0x%08lx, %p->(%s%s)\n", res
, pvargDest
,
1003 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
));
1007 /* Date Conversions */
1009 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1011 /* Convert a VT_DATE value to a Julian Date */
1012 static inline int VARIANT_JulianFromDate(int dateIn
)
1014 int julianDays
= dateIn
;
1016 julianDays
-= DATE_MIN
; /* Convert to + days from 1 Jan 100 AD */
1017 julianDays
+= 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1021 /* Convert a Julian Date to a VT_DATE value */
1022 static inline int VARIANT_DateFromJulian(int dateIn
)
1024 int julianDays
= dateIn
;
1026 julianDays
-= 1757585; /* Convert to + days from 1 Jan 100 AD */
1027 julianDays
+= DATE_MIN
; /* Convert to +/- days from 1 Jan 1899 AD */
1031 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1032 static inline void VARIANT_DMYFromJulian(int jd
, USHORT
*year
, USHORT
*month
, USHORT
*day
)
1038 l
-= (n
* 146097 + 3) / 4;
1039 i
= (4000 * (l
+ 1)) / 1461001;
1040 l
+= 31 - (i
* 1461) / 4;
1041 j
= (l
* 80) / 2447;
1042 *day
= l
- (j
* 2447) / 80;
1044 *month
= (j
+ 2) - (12 * l
);
1045 *year
= 100 * (n
- 49) + i
+ l
;
1048 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1049 static inline double VARIANT_JulianFromDMY(USHORT year
, USHORT month
, USHORT day
)
1051 int m12
= (month
- 14) / 12;
1053 return ((1461 * (year
+ 4800 + m12
)) / 4 + (367 * (month
- 2 - 12 * m12
)) / 12 -
1054 (3 * ((year
+ 4900 + m12
) / 100)) / 4 + day
- 32075);
1057 /* Macros for accessing DOS format date/time fields */
1058 #define DOS_YEAR(x) (1980 + (x >> 9))
1059 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1060 #define DOS_DAY(x) (x & 0x1f)
1061 #define DOS_HOUR(x) (x >> 11)
1062 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1063 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1064 /* Create a DOS format date/time */
1065 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1066 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1068 /* Roll a date forwards or backwards to correct it */
1069 static HRESULT
VARIANT_RollUdate(UDATE
*lpUd
)
1071 static const BYTE days
[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1073 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd
->st
.wDay
, lpUd
->st
.wMonth
,
1074 lpUd
->st
.wYear
, lpUd
->st
.wHour
, lpUd
->st
.wMinute
, lpUd
->st
.wSecond
);
1076 /* Years < 100 are treated as 1900 + year */
1077 if (lpUd
->st
.wYear
< 100)
1078 lpUd
->st
.wYear
+= 1900;
1080 if (!lpUd
->st
.wMonth
)
1082 /* Roll back to December of the previous year */
1083 lpUd
->st
.wMonth
= 12;
1086 else while (lpUd
->st
.wMonth
> 12)
1088 /* Roll forward the correct number of months */
1090 lpUd
->st
.wMonth
-= 12;
1093 if (lpUd
->st
.wYear
> 9999 || lpUd
->st
.wHour
> 23 ||
1094 lpUd
->st
.wMinute
> 59 || lpUd
->st
.wSecond
> 59)
1095 return E_INVALIDARG
; /* Invalid values */
1099 /* Roll back the date one day */
1100 if (lpUd
->st
.wMonth
== 1)
1102 /* Roll back to December 31 of the previous year */
1104 lpUd
->st
.wMonth
= 12;
1109 lpUd
->st
.wMonth
--; /* Previous month */
1110 if (lpUd
->st
.wMonth
== 2 && IsLeapYear(lpUd
->st
.wYear
))
1111 lpUd
->st
.wDay
= 29; /* Februaury has 29 days on leap years */
1113 lpUd
->st
.wDay
= days
[lpUd
->st
.wMonth
]; /* Last day of the month */
1116 else if (lpUd
->st
.wDay
> 28)
1118 int rollForward
= 0;
1120 /* Possibly need to roll the date forward */
1121 if (lpUd
->st
.wMonth
== 2 && IsLeapYear(lpUd
->st
.wYear
))
1122 rollForward
= lpUd
->st
.wDay
- 29; /* Februaury has 29 days on leap years */
1124 rollForward
= lpUd
->st
.wDay
- days
[lpUd
->st
.wMonth
];
1126 if (rollForward
> 0)
1128 lpUd
->st
.wDay
= rollForward
;
1130 if (lpUd
->st
.wMonth
> 12)
1132 lpUd
->st
.wMonth
= 1; /* Roll forward into January of the next year */
1137 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd
->st
.wDay
, lpUd
->st
.wMonth
,
1138 lpUd
->st
.wYear
, lpUd
->st
.wHour
, lpUd
->st
.wMinute
, lpUd
->st
.wSecond
);
1142 /**********************************************************************
1143 * DosDateTimeToVariantTime [OLEAUT32.14]
1145 * Convert a Dos format date and time into variant VT_DATE format.
1148 * wDosDate [I] Dos format date
1149 * wDosTime [I] Dos format time
1150 * pDateOut [O] Destination for VT_DATE format
1153 * Success: TRUE. pDateOut contains the converted time.
1154 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1157 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1158 * - Dos format times are accurate to only 2 second precision.
1159 * - The format of a Dos Date is:
1160 *| Bits Values Meaning
1161 *| ---- ------ -------
1162 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1163 *| the days in the month rolls forward the extra days.
1164 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1165 *| year. 13-15 are invalid.
1166 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1167 * - The format of a Dos Time is:
1168 *| Bits Values Meaning
1169 *| ---- ------ -------
1170 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1171 *| 5-10 0-59 Minutes. 60-63 are invalid.
1172 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1174 INT WINAPI
DosDateTimeToVariantTime(USHORT wDosDate
, USHORT wDosTime
,
1179 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1180 wDosDate
, DOS_YEAR(wDosDate
), DOS_MONTH(wDosDate
), DOS_DAY(wDosDate
),
1181 wDosTime
, DOS_HOUR(wDosTime
), DOS_MINUTE(wDosTime
), DOS_SECOND(wDosTime
),
1184 ud
.st
.wYear
= DOS_YEAR(wDosDate
);
1185 ud
.st
.wMonth
= DOS_MONTH(wDosDate
);
1186 if (ud
.st
.wYear
> 2099 || ud
.st
.wMonth
> 12)
1188 ud
.st
.wDay
= DOS_DAY(wDosDate
);
1189 ud
.st
.wHour
= DOS_HOUR(wDosTime
);
1190 ud
.st
.wMinute
= DOS_MINUTE(wDosTime
);
1191 ud
.st
.wSecond
= DOS_SECOND(wDosTime
);
1192 ud
.st
.wDayOfWeek
= ud
.st
.wMilliseconds
= 0;
1194 return !VarDateFromUdate(&ud
, 0, pDateOut
);
1197 /**********************************************************************
1198 * VariantTimeToDosDateTime [OLEAUT32.13]
1200 * Convert a variant format date into a Dos format date and time.
1202 * dateIn [I] VT_DATE time format
1203 * pwDosDate [O] Destination for Dos format date
1204 * pwDosTime [O] Destination for Dos format time
1207 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1208 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1211 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1213 INT WINAPI
VariantTimeToDosDateTime(double dateIn
, USHORT
*pwDosDate
, USHORT
*pwDosTime
)
1217 TRACE("(%g,%p,%p)\n", dateIn
, pwDosDate
, pwDosTime
);
1219 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1222 if (ud
.st
.wYear
< 1980 || ud
.st
.wYear
> 2099)
1225 *pwDosDate
= DOS_DATE(ud
.st
.wDay
, ud
.st
.wMonth
, ud
.st
.wYear
);
1226 *pwDosTime
= DOS_TIME(ud
.st
.wHour
, ud
.st
.wMinute
, ud
.st
.wSecond
);
1228 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1229 *pwDosDate
, DOS_YEAR(*pwDosDate
), DOS_MONTH(*pwDosDate
), DOS_DAY(*pwDosDate
),
1230 *pwDosTime
, DOS_HOUR(*pwDosTime
), DOS_MINUTE(*pwDosTime
), DOS_SECOND(*pwDosTime
));
1234 /***********************************************************************
1235 * SystemTimeToVariantTime [OLEAUT32.184]
1237 * Convert a System format date and time into variant VT_DATE format.
1240 * lpSt [I] System format date and time
1241 * pDateOut [O] Destination for VT_DATE format date
1244 * Success: TRUE. *pDateOut contains the converted value.
1245 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1247 INT WINAPI
SystemTimeToVariantTime(LPSYSTEMTIME lpSt
, double *pDateOut
)
1251 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt
, lpSt
->wDay
, lpSt
->wMonth
,
1252 lpSt
->wYear
, lpSt
->wHour
, lpSt
->wMinute
, lpSt
->wSecond
, pDateOut
);
1254 if (lpSt
->wMonth
> 12)
1257 memcpy(&ud
.st
, lpSt
, sizeof(ud
.st
));
1258 return !VarDateFromUdate(&ud
, 0, pDateOut
);
1261 /***********************************************************************
1262 * VariantTimeToSystemTime [OLEAUT32.185]
1264 * Convert a variant VT_DATE into a System format date and time.
1267 * datein [I] Variant VT_DATE format date
1268 * lpSt [O] Destination for System format date and time
1271 * Success: TRUE. *lpSt contains the converted value.
1272 * Failure: FALSE, if dateIn is too large or small.
1274 INT WINAPI
VariantTimeToSystemTime(double dateIn
, LPSYSTEMTIME lpSt
)
1278 TRACE("(%g,%p)\n", dateIn
, lpSt
);
1280 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1283 memcpy(lpSt
, &ud
.st
, sizeof(ud
.st
));
1287 /***********************************************************************
1288 * VarDateFromUdateEx [OLEAUT32.319]
1290 * Convert an unpacked format date and time to a variant VT_DATE.
1293 * pUdateIn [I] Unpacked format date and time to convert
1294 * lcid [I] Locale identifier for the conversion
1295 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1296 * pDateOut [O] Destination for variant VT_DATE.
1299 * Success: S_OK. *pDateOut contains the converted value.
1300 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1302 HRESULT WINAPI
VarDateFromUdateEx(UDATE
*pUdateIn
, LCID lcid
, ULONG dwFlags
, DATE
*pDateOut
)
1307 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08lx,0x%08lx,%p)\n", pUdateIn
,
1308 pUdateIn
->st
.wMonth
, pUdateIn
->st
.wDay
, pUdateIn
->st
.wYear
,
1309 pUdateIn
->st
.wHour
, pUdateIn
->st
.wMinute
, pUdateIn
->st
.wSecond
,
1310 pUdateIn
->st
.wMilliseconds
, pUdateIn
->st
.wDayOfWeek
,
1311 pUdateIn
->wDayOfYear
, lcid
, dwFlags
, pDateOut
);
1313 if (lcid
!= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
))
1314 FIXME("lcid possibly not handled, treating as en-us\n");
1316 memcpy(&ud
, pUdateIn
, sizeof(ud
));
1318 if (dwFlags
& VAR_VALIDDATE
)
1319 WARN("Ignoring VAR_VALIDDATE\n");
1321 if (FAILED(VARIANT_RollUdate(&ud
)))
1322 return E_INVALIDARG
;
1325 dateVal
= VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud
.st
.wYear
, ud
.st
.wMonth
, ud
.st
.wDay
));
1328 dateVal
+= ud
.st
.wHour
/ 24.0;
1329 dateVal
+= ud
.st
.wMinute
/ 1440.0;
1330 dateVal
+= ud
.st
.wSecond
/ 86400.0;
1331 dateVal
+= ud
.st
.wMilliseconds
/ 86400000.0;
1333 TRACE("Returning %g\n", dateVal
);
1334 *pDateOut
= dateVal
;
1338 /***********************************************************************
1339 * VarDateFromUdate [OLEAUT32.330]
1341 * Convert an unpacked format date and time to a variant VT_DATE.
1344 * pUdateIn [I] Unpacked format date and time to convert
1345 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1346 * pDateOut [O] Destination for variant VT_DATE.
1349 * Success: S_OK. *pDateOut contains the converted value.
1350 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1353 * This function uses the United States English locale for the conversion. Use
1354 * VarDateFromUdateEx() for alternate locales.
1356 HRESULT WINAPI
VarDateFromUdate(UDATE
*pUdateIn
, ULONG dwFlags
, DATE
*pDateOut
)
1358 LCID lcid
= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
);
1360 return VarDateFromUdateEx(pUdateIn
, lcid
, dwFlags
, pDateOut
);
1363 /***********************************************************************
1364 * VarUdateFromDate [OLEAUT32.331]
1366 * Convert a variant VT_DATE into an unpacked format date and time.
1369 * datein [I] Variant VT_DATE format date
1370 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1371 * lpUdate [O] Destination for unpacked format date and time
1374 * Success: S_OK. *lpUdate contains the converted value.
1375 * Failure: E_INVALIDARG, if dateIn is too large or small.
1377 HRESULT WINAPI
VarUdateFromDate(DATE dateIn
, ULONG dwFlags
, UDATE
*lpUdate
)
1379 /* Cumulative totals of days per month */
1380 static const USHORT cumulativeDays
[] =
1382 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1384 double datePart
, timePart
;
1387 TRACE("(%g,0x%08lx,%p)\n", dateIn
, dwFlags
, lpUdate
);
1389 if (dateIn
<= (DATE_MIN
- 1.0) || dateIn
>= (DATE_MAX
+ 1.0))
1390 return E_INVALIDARG
;
1392 datePart
= dateIn
< 0.0 ? ceil(dateIn
) : floor(dateIn
);
1393 /* Compensate for int truncation (always downwards) */
1394 timePart
= dateIn
- datePart
+ 0.00000000001;
1395 if (timePart
>= 1.0)
1396 timePart
-= 0.00000000001;
1399 julianDays
= VARIANT_JulianFromDate(dateIn
);
1400 VARIANT_DMYFromJulian(julianDays
, &lpUdate
->st
.wYear
, &lpUdate
->st
.wMonth
,
1403 datePart
= (datePart
+ 1.5) / 7.0;
1404 lpUdate
->st
.wDayOfWeek
= (datePart
- floor(datePart
)) * 7;
1405 if (lpUdate
->st
.wDayOfWeek
== 0)
1406 lpUdate
->st
.wDayOfWeek
= 5;
1407 else if (lpUdate
->st
.wDayOfWeek
== 1)
1408 lpUdate
->st
.wDayOfWeek
= 6;
1410 lpUdate
->st
.wDayOfWeek
-= 2;
1412 if (lpUdate
->st
.wMonth
> 2 && IsLeapYear(lpUdate
->st
.wYear
))
1413 lpUdate
->wDayOfYear
= 1; /* After February, in a leap year */
1415 lpUdate
->wDayOfYear
= 0;
1417 lpUdate
->wDayOfYear
+= cumulativeDays
[lpUdate
->st
.wMonth
];
1418 lpUdate
->wDayOfYear
+= lpUdate
->st
.wDay
;
1422 lpUdate
->st
.wHour
= timePart
;
1423 timePart
-= lpUdate
->st
.wHour
;
1425 lpUdate
->st
.wMinute
= timePart
;
1426 timePart
-= lpUdate
->st
.wMinute
;
1428 lpUdate
->st
.wSecond
= timePart
;
1429 timePart
-= lpUdate
->st
.wSecond
;
1430 lpUdate
->st
.wMilliseconds
= 0;
1433 /* Round the milliseconds, adjusting the time/date forward if needed */
1434 if (lpUdate
->st
.wSecond
< 59)
1435 lpUdate
->st
.wSecond
++;
1438 lpUdate
->st
.wSecond
= 0;
1439 if (lpUdate
->st
.wMinute
< 59)
1440 lpUdate
->st
.wMinute
++;
1443 lpUdate
->st
.wMinute
= 0;
1444 if (lpUdate
->st
.wHour
< 23)
1445 lpUdate
->st
.wHour
++;
1448 lpUdate
->st
.wHour
= 0;
1449 /* Roll over a whole day */
1450 if (++lpUdate
->st
.wDay
> 28)
1451 VARIANT_RollUdate(lpUdate
);
1459 #define GET_NUMBER_TEXT(fld,name) \
1461 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1462 WARN("buffer too small for " #fld "\n"); \
1464 if (buff[0]) lpChars->name = buff[0]; \
1465 TRACE("lcid 0x%lx, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1467 /* Get the valid number characters for an lcid */
1468 void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS
*lpChars
, LCID lcid
, DWORD dwFlags
)
1470 static const VARIANT_NUMBER_CHARS defaultChars
= { '-','+','.',',','$',0,'.',',' };
1471 LCTYPE lctype
= dwFlags
& LOCALE_NOUSEROVERRIDE
;
1474 memcpy(lpChars
, &defaultChars
, sizeof(defaultChars
));
1475 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN
, cNegativeSymbol
);
1476 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN
, cPositiveSymbol
);
1477 GET_NUMBER_TEXT(LOCALE_SDECIMAL
, cDecimalPoint
);
1478 GET_NUMBER_TEXT(LOCALE_STHOUSAND
, cDigitSeperator
);
1479 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP
, cCurrencyDecimalPoint
);
1480 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP
, cCurrencyDigitSeperator
);
1482 /* Local currency symbols are often 2 characters */
1483 lpChars
->cCurrencyLocal2
= '\0';
1484 switch(GetLocaleInfoW(lcid
, lctype
|LOCALE_SCURRENCY
, buff
, sizeof(buff
)/sizeof(WCHAR
)))
1486 case 3: lpChars
->cCurrencyLocal2
= buff
[1]; /* Fall through */
1487 case 2: lpChars
->cCurrencyLocal
= buff
[0];
1489 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1491 TRACE("lcid 0x%lx, cCurrencyLocal =%d,%d '%c','%c'\n", lcid
, lpChars
->cCurrencyLocal
,
1492 lpChars
->cCurrencyLocal2
, lpChars
->cCurrencyLocal
, lpChars
->cCurrencyLocal2
);
1495 /* Number Parsing States */
1496 #define B_PROCESSING_EXPONENT 0x1
1497 #define B_NEGATIVE_EXPONENT 0x2
1498 #define B_EXPONENT_START 0x4
1499 #define B_INEXACT_ZEROS 0x8
1500 #define B_LEADING_ZERO 0x10
1501 #define B_PROCESSING_HEX 0x20
1502 #define B_PROCESSING_OCT 0x40
1504 /**********************************************************************
1505 * VarParseNumFromStr [OLEAUT32.46]
1507 * Parse a string containing a number into a NUMPARSE structure.
1510 * lpszStr [I] String to parse number from
1511 * lcid [I] Locale Id for the conversion
1512 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1513 * pNumprs [I/O] Destination for parsed number
1514 * rgbDig [O] Destination for digits read in
1517 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1519 * Failure: E_INVALIDARG, if any parameter is invalid.
1520 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1522 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1525 * pNumprs must have the following fields set:
1526 * cDig: Set to the size of rgbDig.
1527 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1531 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1532 * numerals, so this has not been implemented.
1534 HRESULT WINAPI
VarParseNumFromStr(OLECHAR
*lpszStr
, LCID lcid
, ULONG dwFlags
,
1535 NUMPARSE
*pNumprs
, BYTE
*rgbDig
)
1537 VARIANT_NUMBER_CHARS chars
;
1539 DWORD dwState
= B_EXPONENT_START
|B_INEXACT_ZEROS
;
1540 int iMaxDigits
= sizeof(rgbTmp
) / sizeof(BYTE
);
1543 TRACE("(%s,%ld,0x%08lx,%p,%p)\n", debugstr_w(lpszStr
), lcid
, dwFlags
, pNumprs
, rgbDig
);
1545 if (!pNumprs
|| !rgbDig
)
1546 return E_INVALIDARG
;
1548 if (pNumprs
->cDig
< iMaxDigits
)
1549 iMaxDigits
= pNumprs
->cDig
;
1552 pNumprs
->dwOutFlags
= 0;
1553 pNumprs
->cchUsed
= 0;
1554 pNumprs
->nBaseShift
= 0;
1555 pNumprs
->nPwr10
= 0;
1558 return DISP_E_TYPEMISMATCH
;
1560 VARIANT_GetLocalisedNumberChars(&chars
, lcid
, dwFlags
);
1562 /* First consume all the leading symbols and space from the string */
1565 if (pNumprs
->dwInFlags
& NUMPRS_LEADING_WHITE
&& isspaceW(*lpszStr
))
1567 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_WHITE
;
1572 } while (isspaceW(*lpszStr
));
1574 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_PLUS
&&
1575 *lpszStr
== chars
.cPositiveSymbol
&&
1576 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
))
1578 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_PLUS
;
1582 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_MINUS
&&
1583 *lpszStr
== chars
.cNegativeSymbol
&&
1584 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
))
1586 pNumprs
->dwOutFlags
|= (NUMPRS_LEADING_MINUS
|NUMPRS_NEG
);
1590 else if (pNumprs
->dwInFlags
& NUMPRS_CURRENCY
&&
1591 !(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
) &&
1592 *lpszStr
== chars
.cCurrencyLocal
&&
1593 (!chars
.cCurrencyLocal2
|| lpszStr
[1] == chars
.cCurrencyLocal2
))
1595 pNumprs
->dwOutFlags
|= NUMPRS_CURRENCY
;
1598 /* Only accept currency characters */
1599 chars
.cDecimalPoint
= chars
.cCurrencyDecimalPoint
;
1600 chars
.cDigitSeperator
= chars
.cCurrencyDigitSeperator
;
1602 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== '(' &&
1603 !(pNumprs
->dwOutFlags
& NUMPRS_PARENS
))
1605 pNumprs
->dwOutFlags
|= NUMPRS_PARENS
;
1613 if (!(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
))
1615 /* Only accept non-currency characters */
1616 chars
.cCurrencyDecimalPoint
= chars
.cDecimalPoint
;
1617 chars
.cCurrencyDigitSeperator
= chars
.cDigitSeperator
;
1620 if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'H' || *(lpszStr
+1) == 'h')) &&
1621 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1623 dwState
|= B_PROCESSING_HEX
;
1624 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1628 else if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'O' || *(lpszStr
+1) == 'o')) &&
1629 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1631 dwState
|= B_PROCESSING_OCT
;
1632 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1637 /* Strip Leading zeros */
1638 while (*lpszStr
== '0')
1640 dwState
|= B_LEADING_ZERO
;
1647 if (isdigitW(*lpszStr
))
1649 if (dwState
& B_PROCESSING_EXPONENT
)
1651 int exponentSize
= 0;
1652 if (dwState
& B_EXPONENT_START
)
1654 if (!isdigitW(*lpszStr
))
1655 break; /* No exponent digits - invalid */
1656 while (*lpszStr
== '0')
1658 /* Skip leading zero's in the exponent */
1664 while (isdigitW(*lpszStr
))
1667 exponentSize
+= *lpszStr
- '0';
1671 if (dwState
& B_NEGATIVE_EXPONENT
)
1672 exponentSize
= -exponentSize
;
1673 /* Add the exponent into the powers of 10 */
1674 pNumprs
->nPwr10
+= exponentSize
;
1675 dwState
&= ~(B_PROCESSING_EXPONENT
|B_EXPONENT_START
);
1676 lpszStr
--; /* back up to allow processing of next char */
1680 if ((pNumprs
->cDig
>= iMaxDigits
) && !(dwState
& B_PROCESSING_HEX
)
1681 && !(dwState
& B_PROCESSING_OCT
))
1683 pNumprs
->dwOutFlags
|= NUMPRS_INEXACT
;
1685 if (*lpszStr
!= '0')
1686 dwState
&= ~B_INEXACT_ZEROS
; /* Inexact number with non-trailing zeros */
1688 /* This digit can't be represented, but count it in nPwr10 */
1689 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1696 if ((dwState
& B_PROCESSING_OCT
) && ((*lpszStr
== '8') || (*lpszStr
== '9'))) {
1697 return DISP_E_TYPEMISMATCH
;
1700 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1701 pNumprs
->nPwr10
--; /* Count decimal points in nPwr10 */
1703 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- '0';
1709 else if (*lpszStr
== chars
.cDigitSeperator
&& pNumprs
->dwInFlags
& NUMPRS_THOUSANDS
)
1711 pNumprs
->dwOutFlags
|= NUMPRS_THOUSANDS
;
1714 else if (*lpszStr
== chars
.cDecimalPoint
&&
1715 pNumprs
->dwInFlags
& NUMPRS_DECIMAL
&&
1716 !(pNumprs
->dwOutFlags
& (NUMPRS_DECIMAL
|NUMPRS_EXPONENT
)))
1718 pNumprs
->dwOutFlags
|= NUMPRS_DECIMAL
;
1721 /* If we have no digits so far, skip leading zeros */
1724 while (lpszStr
[1] == '0')
1726 dwState
|= B_LEADING_ZERO
;
1733 else if (((*lpszStr
>= 'a' && *lpszStr
<= 'f') ||
1734 (*lpszStr
>= 'A' && *lpszStr
<= 'F')) &&
1735 dwState
& B_PROCESSING_HEX
)
1737 if (pNumprs
->cDig
>= iMaxDigits
)
1739 return DISP_E_OVERFLOW
;
1743 if (*lpszStr
>= 'a')
1744 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'a' + 10;
1746 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'A' + 10;
1751 else if ((*lpszStr
== 'e' || *lpszStr
== 'E') &&
1752 pNumprs
->dwInFlags
& NUMPRS_EXPONENT
&&
1753 !(pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
))
1755 dwState
|= B_PROCESSING_EXPONENT
;
1756 pNumprs
->dwOutFlags
|= NUMPRS_EXPONENT
;
1759 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cPositiveSymbol
)
1761 cchUsed
++; /* Ignore positive exponent */
1763 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cNegativeSymbol
)
1765 dwState
|= B_NEGATIVE_EXPONENT
;
1769 break; /* Stop at an unrecognised character */
1774 if (!pNumprs
->cDig
&& dwState
& B_LEADING_ZERO
)
1776 /* Ensure a 0 on its own gets stored */
1781 if (pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
&& dwState
& B_PROCESSING_EXPONENT
)
1783 pNumprs
->cchUsed
= cchUsed
;
1784 WARN("didn't completely parse exponent\n");
1785 return DISP_E_TYPEMISMATCH
; /* Failed to completely parse the exponent */
1788 if (pNumprs
->dwOutFlags
& NUMPRS_INEXACT
)
1790 if (dwState
& B_INEXACT_ZEROS
)
1791 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* All zeros doesn't set NUMPRS_INEXACT */
1792 } else if(pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1794 /* copy all of the digits into the output digit buffer */
1795 /* this is exactly what windows does although it also returns */
1796 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1797 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1799 if (dwState
& B_PROCESSING_HEX
) {
1800 /* hex numbers have always the same format */
1802 pNumprs
->nBaseShift
=4;
1804 if (dwState
& B_PROCESSING_OCT
) {
1805 /* oct numbers have always the same format */
1807 pNumprs
->nBaseShift
=3;
1809 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1818 /* Remove trailing zeros from the last (whole number or decimal) part */
1819 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1826 if (pNumprs
->cDig
<= iMaxDigits
)
1827 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* Ignore stripped zeros for NUMPRS_INEXACT */
1829 pNumprs
->cDig
= iMaxDigits
; /* Only return iMaxDigits worth of digits */
1831 /* Copy the digits we processed into rgbDig */
1832 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1834 /* Consume any trailing symbols and space */
1837 if ((pNumprs
->dwInFlags
& NUMPRS_TRAILING_WHITE
) && isspaceW(*lpszStr
))
1839 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_WHITE
;
1844 } while (isspaceW(*lpszStr
));
1846 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_PLUS
&&
1847 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
) &&
1848 *lpszStr
== chars
.cPositiveSymbol
)
1850 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_PLUS
;
1854 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_MINUS
&&
1855 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
) &&
1856 *lpszStr
== chars
.cNegativeSymbol
)
1858 pNumprs
->dwOutFlags
|= (NUMPRS_TRAILING_MINUS
|NUMPRS_NEG
);
1862 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== ')' &&
1863 pNumprs
->dwOutFlags
& NUMPRS_PARENS
)
1867 pNumprs
->dwOutFlags
|= NUMPRS_NEG
;
1873 if (pNumprs
->dwOutFlags
& NUMPRS_PARENS
&& !(pNumprs
->dwOutFlags
& NUMPRS_NEG
))
1875 pNumprs
->cchUsed
= cchUsed
;
1876 return DISP_E_TYPEMISMATCH
; /* Opening parenthesis not matched */
1879 if (pNumprs
->dwInFlags
& NUMPRS_USE_ALL
&& *lpszStr
!= '\0')
1880 return DISP_E_TYPEMISMATCH
; /* Not all chars were consumed */
1883 return DISP_E_TYPEMISMATCH
; /* No Number found */
1885 pNumprs
->cchUsed
= cchUsed
;
1889 /* VTBIT flags indicating an integer value */
1890 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1891 /* VTBIT flags indicating a real number value */
1892 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1894 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1895 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1896 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1897 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1899 /**********************************************************************
1900 * VarNumFromParseNum [OLEAUT32.47]
1902 * Convert a NUMPARSE structure into a numeric Variant type.
1905 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1906 * rgbDig [I] Source for the numbers digits
1907 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1908 * pVarDst [O] Destination for the converted Variant value.
1911 * Success: S_OK. pVarDst contains the converted value.
1912 * Failure: E_INVALIDARG, if any parameter is invalid.
1913 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1916 * - The smallest favoured type present in dwVtBits that can represent the
1917 * number in pNumprs without losing precision is used.
1918 * - Signed types are preferrred over unsigned types of the same size.
1919 * - Preferred types in order are: integer, float, double, currency then decimal.
1920 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1921 * for details of the rounding method.
1922 * - pVarDst is not cleared before the result is stored in it.
1923 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1924 * design?): If some other VTBIT's for integers are specified together
1925 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1926 * the number to the smallest requested integer truncating this way the
1927 * number. Wine dosn't implement this "feature" (yet?).
1929 HRESULT WINAPI
VarNumFromParseNum(NUMPARSE
*pNumprs
, BYTE
*rgbDig
,
1930 ULONG dwVtBits
, VARIANT
*pVarDst
)
1932 /* Scale factors and limits for double arithmetic */
1933 static const double dblMultipliers
[11] = {
1934 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1935 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1937 static const double dblMinimums
[11] = {
1938 R8_MIN
, R8_MIN
*10.0, R8_MIN
*100.0, R8_MIN
*1000.0, R8_MIN
*10000.0,
1939 R8_MIN
*100000.0, R8_MIN
*1000000.0, R8_MIN
*10000000.0,
1940 R8_MIN
*100000000.0, R8_MIN
*1000000000.0, R8_MIN
*10000000000.0
1942 static const double dblMaximums
[11] = {
1943 R8_MAX
, R8_MAX
/10.0, R8_MAX
/100.0, R8_MAX
/1000.0, R8_MAX
/10000.0,
1944 R8_MAX
/100000.0, R8_MAX
/1000000.0, R8_MAX
/10000000.0,
1945 R8_MAX
/100000000.0, R8_MAX
/1000000000.0, R8_MAX
/10000000000.0
1948 int wholeNumberDigits
, fractionalDigits
, divisor10
= 0, multiplier10
= 0;
1950 TRACE("(%p,%p,0x%lx,%p)\n", pNumprs
, rgbDig
, dwVtBits
, pVarDst
);
1952 if (pNumprs
->nBaseShift
)
1954 /* nBaseShift indicates a hex or octal number */
1959 /* Convert the hex or octal number string into a UI64 */
1960 for (i
= 0; i
< pNumprs
->cDig
; i
++)
1962 if (ul64
> ((UI8_MAX
>>pNumprs
->nBaseShift
) - rgbDig
[i
]))
1964 TRACE("Overflow multiplying digits\n");
1965 return DISP_E_OVERFLOW
;
1967 ul64
= (ul64
<<pNumprs
->nBaseShift
) + rgbDig
[i
];
1970 /* also make a negative representation */
1973 /* Try signed and unsigned types in size order */
1974 if (dwVtBits
& VTBIT_I1
&& FITS_AS_I1(ul64
))
1976 V_VT(pVarDst
) = VT_I1
;
1977 V_I1(pVarDst
) = ul64
;
1980 else if (dwVtBits
& VTBIT_UI1
&& FITS_AS_I1(ul64
))
1982 V_VT(pVarDst
) = VT_UI1
;
1983 V_UI1(pVarDst
) = ul64
;
1986 else if (dwVtBits
& VTBIT_I2
&& FITS_AS_I2(ul64
))
1988 V_VT(pVarDst
) = VT_I2
;
1989 V_I2(pVarDst
) = ul64
;
1992 else if (dwVtBits
& VTBIT_UI2
&& FITS_AS_I2(ul64
))
1994 V_VT(pVarDst
) = VT_UI2
;
1995 V_UI2(pVarDst
) = ul64
;
1998 else if (dwVtBits
& VTBIT_I4
&& FITS_AS_I4(ul64
))
2000 V_VT(pVarDst
) = VT_I4
;
2001 V_I4(pVarDst
) = ul64
;
2004 else if (dwVtBits
& VTBIT_UI4
&& FITS_AS_I4(ul64
))
2006 V_VT(pVarDst
) = VT_UI4
;
2007 V_UI4(pVarDst
) = ul64
;
2010 else if (dwVtBits
& VTBIT_I8
&& ((ul64
<= I8_MAX
)||(l64
>=I8_MIN
)))
2012 V_VT(pVarDst
) = VT_I8
;
2013 V_I8(pVarDst
) = ul64
;
2016 else if (dwVtBits
& VTBIT_UI8
)
2018 V_VT(pVarDst
) = VT_UI8
;
2019 V_UI8(pVarDst
) = ul64
;
2022 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2024 V_VT(pVarDst
) = VT_DECIMAL
;
2025 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2026 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2027 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2030 else if (dwVtBits
& VTBIT_R4
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2032 V_VT(pVarDst
) = VT_R4
;
2034 V_R4(pVarDst
) = ul64
;
2036 V_R4(pVarDst
) = l64
;
2039 else if (dwVtBits
& VTBIT_R8
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2041 V_VT(pVarDst
) = VT_R8
;
2043 V_R8(pVarDst
) = ul64
;
2045 V_R8(pVarDst
) = l64
;
2049 TRACE("Overflow: possible return types: 0x%lx, value: %s\n", dwVtBits
, wine_dbgstr_longlong(ul64
));
2050 return DISP_E_OVERFLOW
;
2053 /* Count the number of relevant fractional and whole digits stored,
2054 * And compute the divisor/multiplier to scale the number by.
2056 if (pNumprs
->nPwr10
< 0)
2058 if (-pNumprs
->nPwr10
>= pNumprs
->cDig
)
2060 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2061 wholeNumberDigits
= 0;
2062 fractionalDigits
= pNumprs
->cDig
;
2063 divisor10
= -pNumprs
->nPwr10
;
2067 /* An exactly represented real number e.g. 1.024 */
2068 wholeNumberDigits
= pNumprs
->cDig
+ pNumprs
->nPwr10
;
2069 fractionalDigits
= pNumprs
->cDig
- wholeNumberDigits
;
2070 divisor10
= pNumprs
->cDig
- wholeNumberDigits
;
2073 else if (pNumprs
->nPwr10
== 0)
2075 /* An exactly represented whole number e.g. 1024 */
2076 wholeNumberDigits
= pNumprs
->cDig
;
2077 fractionalDigits
= 0;
2079 else /* pNumprs->nPwr10 > 0 */
2081 /* A whole number followed by nPwr10 0's e.g. 102400 */
2082 wholeNumberDigits
= pNumprs
->cDig
;
2083 fractionalDigits
= 0;
2084 multiplier10
= pNumprs
->nPwr10
;
2087 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d ", pNumprs
->cDig
,
2088 pNumprs
->nPwr10
, wholeNumberDigits
, fractionalDigits
);
2089 TRACE("mult %d; div %d\n", multiplier10
, divisor10
);
2091 if (dwVtBits
& (INTEGER_VTBITS
|VTBIT_DECIMAL
) &&
2092 (!fractionalDigits
|| !(dwVtBits
& (REAL_VTBITS
|VTBIT_CY
|VTBIT_DECIMAL
))))
2094 /* We have one or more integer output choices, and either:
2095 * 1) An integer input value, or
2096 * 2) A real number input value but no floating output choices.
2097 * Alternately, we have a DECIMAL output available and an integer input.
2099 * So, place the integer value into pVarDst, using the smallest type
2100 * possible and preferring signed over unsigned types.
2102 BOOL bOverflow
= FALSE
, bNegative
;
2106 /* Convert the integer part of the number into a UI8 */
2107 for (i
= 0; i
< wholeNumberDigits
; i
++)
2109 if (ul64
> (UI8_MAX
/ 10 - rgbDig
[i
]))
2111 TRACE("Overflow multiplying digits\n");
2115 ul64
= ul64
* 10 + rgbDig
[i
];
2118 /* Account for the scale of the number */
2119 if (!bOverflow
&& multiplier10
)
2121 for (i
= 0; i
< multiplier10
; i
++)
2123 if (ul64
> (UI8_MAX
/ 10))
2125 TRACE("Overflow scaling number\n");
2133 /* If we have any fractional digits, round the value.
2134 * Note we don't have to do this if divisor10 is < 1,
2135 * because this means the fractional part must be < 0.5
2137 if (!bOverflow
&& fractionalDigits
&& divisor10
> 0)
2139 const BYTE
* fracDig
= rgbDig
+ wholeNumberDigits
;
2140 BOOL bAdjust
= FALSE
;
2142 TRACE("first decimal value is %d\n", *fracDig
);
2145 bAdjust
= TRUE
; /* > 0.5 */
2146 else if (*fracDig
== 5)
2148 for (i
= 1; i
< fractionalDigits
; i
++)
2152 bAdjust
= TRUE
; /* > 0.5 */
2156 /* If exactly 0.5, round only odd values */
2157 if (i
== fractionalDigits
&& (ul64
& 1))
2163 if (ul64
== UI8_MAX
)
2165 TRACE("Overflow after rounding\n");
2172 /* Zero is not a negative number */
2173 bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
&& ul64
? TRUE
: FALSE
;
2175 TRACE("Integer value is %lld, bNeg %d\n", ul64
, bNegative
);
2177 /* For negative integers, try the signed types in size order */
2178 if (!bOverflow
&& bNegative
)
2180 if (dwVtBits
& (VTBIT_I1
|VTBIT_I2
|VTBIT_I4
|VTBIT_I8
))
2182 if (dwVtBits
& VTBIT_I1
&& ul64
<= -I1_MIN
)
2184 V_VT(pVarDst
) = VT_I1
;
2185 V_I1(pVarDst
) = -ul64
;
2188 else if (dwVtBits
& VTBIT_I2
&& ul64
<= -I2_MIN
)
2190 V_VT(pVarDst
) = VT_I2
;
2191 V_I2(pVarDst
) = -ul64
;
2194 else if (dwVtBits
& VTBIT_I4
&& ul64
<= -((LONGLONG
)I4_MIN
))
2196 V_VT(pVarDst
) = VT_I4
;
2197 V_I4(pVarDst
) = -ul64
;
2200 else if (dwVtBits
& VTBIT_I8
&& ul64
<= (ULONGLONG
)I8_MAX
+ 1)
2202 V_VT(pVarDst
) = VT_I8
;
2203 V_I8(pVarDst
) = -ul64
;
2206 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2208 /* Decimal is only output choice left - fast path */
2209 V_VT(pVarDst
) = VT_DECIMAL
;
2210 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_NEG
,0);
2211 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2212 DEC_LO64(&V_DECIMAL(pVarDst
)) = -ul64
;
2217 else if (!bOverflow
)
2219 /* For positive integers, try signed then unsigned types in size order */
2220 if (dwVtBits
& VTBIT_I1
&& ul64
<= I1_MAX
)
2222 V_VT(pVarDst
) = VT_I1
;
2223 V_I1(pVarDst
) = ul64
;
2226 else if (dwVtBits
& VTBIT_UI1
&& ul64
<= UI1_MAX
)
2228 V_VT(pVarDst
) = VT_UI1
;
2229 V_UI1(pVarDst
) = ul64
;
2232 else if (dwVtBits
& VTBIT_I2
&& ul64
<= I2_MAX
)
2234 V_VT(pVarDst
) = VT_I2
;
2235 V_I2(pVarDst
) = ul64
;
2238 else if (dwVtBits
& VTBIT_UI2
&& ul64
<= UI2_MAX
)
2240 V_VT(pVarDst
) = VT_UI2
;
2241 V_UI2(pVarDst
) = ul64
;
2244 else if (dwVtBits
& VTBIT_I4
&& ul64
<= I4_MAX
)
2246 V_VT(pVarDst
) = VT_I4
;
2247 V_I4(pVarDst
) = ul64
;
2250 else if (dwVtBits
& VTBIT_UI4
&& ul64
<= UI4_MAX
)
2252 V_VT(pVarDst
) = VT_UI4
;
2253 V_UI4(pVarDst
) = ul64
;
2256 else if (dwVtBits
& VTBIT_I8
&& ul64
<= I8_MAX
)
2258 V_VT(pVarDst
) = VT_I8
;
2259 V_I8(pVarDst
) = ul64
;
2262 else if (dwVtBits
& VTBIT_UI8
)
2264 V_VT(pVarDst
) = VT_UI8
;
2265 V_UI8(pVarDst
) = ul64
;
2268 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2270 /* Decimal is only output choice left - fast path */
2271 V_VT(pVarDst
) = VT_DECIMAL
;
2272 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2273 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2274 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2280 if (dwVtBits
& REAL_VTBITS
)
2282 /* Try to put the number into a float or real */
2283 BOOL bOverflow
= FALSE
, bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
;
2287 /* Convert the number into a double */
2288 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2289 whole
= whole
* 10.0 + rgbDig
[i
];
2291 TRACE("Whole double value is %16.16g\n", whole
);
2293 /* Account for the scale */
2294 while (multiplier10
> 10)
2296 if (whole
> dblMaximums
[10])
2298 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2302 whole
= whole
* dblMultipliers
[10];
2307 if (whole
> dblMaximums
[multiplier10
])
2309 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2313 whole
= whole
* dblMultipliers
[multiplier10
];
2316 TRACE("Scaled double value is %16.16g\n", whole
);
2318 while (divisor10
> 10)
2320 if (whole
< dblMinimums
[10] && whole
!= 0)
2322 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
); /* Underflow */
2326 whole
= whole
/ dblMultipliers
[10];
2331 if (whole
< dblMinimums
[divisor10
] && whole
!= 0)
2333 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
); /* Underflow */
2337 whole
= whole
/ dblMultipliers
[divisor10
];
2340 TRACE("Final double value is %16.16g\n", whole
);
2342 if (dwVtBits
& VTBIT_R4
&&
2343 ((whole
<= R4_MAX
&& whole
>= R4_MIN
) || whole
== 0.0))
2345 TRACE("Set R4 to final value\n");
2346 V_VT(pVarDst
) = VT_R4
; /* Fits into a float */
2347 V_R4(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2351 if (dwVtBits
& VTBIT_R8
)
2353 TRACE("Set R8 to final value\n");
2354 V_VT(pVarDst
) = VT_R8
; /* Fits into a double */
2355 V_R8(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2359 if (dwVtBits
& VTBIT_CY
)
2361 if (SUCCEEDED(VarCyFromR8(bNegative
? -whole
: whole
, &V_CY(pVarDst
))))
2363 V_VT(pVarDst
) = VT_CY
; /* Fits into a currency */
2364 TRACE("Set CY to final value\n");
2367 TRACE("Value Overflows CY\n");
2371 if (dwVtBits
& VTBIT_DECIMAL
)
2376 DECIMAL
* pDec
= &V_DECIMAL(pVarDst
);
2378 DECIMAL_SETZERO(*pDec
);
2381 if (pNumprs
->dwOutFlags
& NUMPRS_NEG
)
2382 DEC_SIGN(pDec
) = DECIMAL_NEG
;
2384 DEC_SIGN(pDec
) = DECIMAL_POS
;
2386 /* Factor the significant digits */
2387 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2389 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10 + rgbDig
[i
];
2390 carry
= (ULONG
)(tmp
>> 32);
2391 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2392 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2393 carry
= (ULONG
)(tmp
>> 32);
2394 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2395 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2396 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2398 if (tmp
>> 32 & UI4_MAX
)
2400 VarNumFromParseNum_DecOverflow
:
2401 TRACE("Overflow\n");
2402 DEC_LO32(pDec
) = DEC_MID32(pDec
) = DEC_HI32(pDec
) = UI4_MAX
;
2403 return DISP_E_OVERFLOW
;
2407 /* Account for the scale of the number */
2408 while (multiplier10
> 0)
2410 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10;
2411 carry
= (ULONG
)(tmp
>> 32);
2412 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2413 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2414 carry
= (ULONG
)(tmp
>> 32);
2415 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2416 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2417 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2419 if (tmp
>> 32 & UI4_MAX
)
2420 goto VarNumFromParseNum_DecOverflow
;
2423 DEC_SCALE(pDec
) = divisor10
;
2425 V_VT(pVarDst
) = VT_DECIMAL
;
2428 return DISP_E_OVERFLOW
; /* No more output choices */
2431 /**********************************************************************
2432 * VarCat [OLEAUT32.318]
2434 * Concatenates one variant onto another.
2437 * left [I] First variant
2438 * right [I] Second variant
2439 * result [O] Result variant
2443 * Failure: An HRESULT error code indicating the error.
2445 HRESULT WINAPI
VarCat(LPVARIANT left
, LPVARIANT right
, LPVARIANT out
)
2447 VARTYPE leftvt
,rightvt
,resultvt
;
2449 static const WCHAR str_true
[] = {'T','r','u','e','\0'};
2450 static const WCHAR str_false
[] = {'F','a','l','s','e','\0'};
2451 static const WCHAR sz_empty
[] = {'\0'};
2452 leftvt
= V_VT(left
);
2453 rightvt
= V_VT(right
);
2455 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
2456 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), out
);
2458 /* when both left and right are NULL the result is NULL */
2459 if (leftvt
== VT_NULL
&& rightvt
== VT_NULL
)
2461 V_VT(out
) = VT_NULL
;
2466 resultvt
= VT_EMPTY
;
2468 /* There are many special case for errors and return types */
2469 if (leftvt
== VT_VARIANT
&& (rightvt
== VT_ERROR
||
2470 rightvt
== VT_DATE
|| rightvt
== VT_DECIMAL
))
2471 hres
= DISP_E_TYPEMISMATCH
;
2472 else if ((leftvt
== VT_I2
|| leftvt
== VT_I4
||
2473 leftvt
== VT_R4
|| leftvt
== VT_R8
||
2474 leftvt
== VT_CY
|| leftvt
== VT_BOOL
||
2475 leftvt
== VT_BSTR
|| leftvt
== VT_I1
||
2476 leftvt
== VT_UI1
|| leftvt
== VT_UI2
||
2477 leftvt
== VT_UI4
|| leftvt
== VT_I8
||
2478 leftvt
== VT_UI8
|| leftvt
== VT_INT
||
2479 leftvt
== VT_UINT
|| leftvt
== VT_EMPTY
||
2480 leftvt
== VT_NULL
|| leftvt
== VT_DATE
||
2481 leftvt
== VT_DECIMAL
)
2483 (rightvt
== VT_I2
|| rightvt
== VT_I4
||
2484 rightvt
== VT_R4
|| rightvt
== VT_R8
||
2485 rightvt
== VT_CY
|| rightvt
== VT_BOOL
||
2486 rightvt
== VT_BSTR
|| rightvt
== VT_I1
||
2487 rightvt
== VT_UI1
|| rightvt
== VT_UI2
||
2488 rightvt
== VT_UI4
|| rightvt
== VT_I8
||
2489 rightvt
== VT_UI8
|| rightvt
== VT_INT
||
2490 rightvt
== VT_UINT
|| rightvt
== VT_EMPTY
||
2491 rightvt
== VT_NULL
|| rightvt
== VT_DATE
||
2492 rightvt
== VT_DECIMAL
))
2494 else if (rightvt
== VT_ERROR
&& leftvt
< VT_VOID
)
2495 hres
= DISP_E_TYPEMISMATCH
;
2496 else if (leftvt
== VT_ERROR
&& (rightvt
== VT_DATE
||
2497 rightvt
== VT_ERROR
|| rightvt
== VT_DECIMAL
))
2498 hres
= DISP_E_TYPEMISMATCH
;
2499 else if (rightvt
== VT_DATE
|| rightvt
== VT_ERROR
||
2500 rightvt
== VT_DECIMAL
)
2501 hres
= DISP_E_BADVARTYPE
;
2502 else if (leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
2503 hres
= DISP_E_TYPEMISMATCH
;
2504 else if (leftvt
== VT_VARIANT
)
2505 hres
= DISP_E_TYPEMISMATCH
;
2506 else if (rightvt
== VT_VARIANT
&& (leftvt
== VT_EMPTY
||
2507 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2508 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2509 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2510 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2511 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2512 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2513 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2514 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2515 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2516 hres
= DISP_E_TYPEMISMATCH
;
2518 hres
= DISP_E_BADVARTYPE
;
2520 /* if resutl type is not S_OK, then no need to go further */
2523 V_VT(out
) = resultvt
;
2526 /* Else proceed with formatting inputs to strings */
2529 VARIANT bstrvar_left
, bstrvar_right
;
2530 V_VT(out
) = VT_BSTR
;
2532 VariantInit(&bstrvar_left
);
2533 VariantInit(&bstrvar_right
);
2535 /* Convert left side variant to string */
2536 if (leftvt
!= VT_BSTR
)
2538 if (leftvt
== VT_BOOL
)
2540 /* Bools are handled as True/False strings instead of 0/-1 as in MSDN */
2541 V_VT(&bstrvar_left
) = VT_BSTR
;
2542 if (V_BOOL(left
) == TRUE
)
2543 V_BSTR(&bstrvar_left
) = SysAllocString(str_true
);
2545 V_BSTR(&bstrvar_left
) = SysAllocString(str_false
);
2547 /* Fill with empty string for later concat with right side */
2548 else if (leftvt
== VT_NULL
)
2550 V_VT(&bstrvar_left
) = VT_BSTR
;
2551 V_BSTR(&bstrvar_left
) = SysAllocString(sz_empty
);
2555 hres
= VariantChangeTypeEx(&bstrvar_left
,left
,0,0,VT_BSTR
);
2557 VariantClear(&bstrvar_left
);
2558 VariantClear(&bstrvar_right
);
2559 if (leftvt
== VT_NULL
&& (rightvt
== VT_EMPTY
||
2560 rightvt
== VT_NULL
|| rightvt
== VT_I2
||
2561 rightvt
== VT_I4
|| rightvt
== VT_R4
||
2562 rightvt
== VT_R8
|| rightvt
== VT_CY
||
2563 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
2564 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
2565 rightvt
== VT_I1
|| rightvt
== VT_UI1
||
2566 rightvt
== VT_UI2
|| rightvt
== VT_UI4
||
2567 rightvt
== VT_I8
|| rightvt
== VT_UI8
||
2568 rightvt
== VT_INT
|| rightvt
== VT_UINT
))
2569 return DISP_E_BADVARTYPE
;
2575 /* convert right side variant to string */
2576 if (rightvt
!= VT_BSTR
)
2578 if (rightvt
== VT_BOOL
)
2580 /* Bools are handled as True/False strings instead of 0/-1 as in MSDN */
2581 V_VT(&bstrvar_right
) = VT_BSTR
;
2582 if (V_BOOL(right
) == TRUE
)
2583 V_BSTR(&bstrvar_right
) = SysAllocString(str_true
);
2585 V_BSTR(&bstrvar_right
) = SysAllocString(str_false
);
2587 /* Fill with empty string for later concat with right side */
2588 else if (rightvt
== VT_NULL
)
2590 V_VT(&bstrvar_right
) = VT_BSTR
;
2591 V_BSTR(&bstrvar_right
) = SysAllocString(sz_empty
);
2595 hres
= VariantChangeTypeEx(&bstrvar_right
,right
,0,0,VT_BSTR
);
2597 VariantClear(&bstrvar_left
);
2598 VariantClear(&bstrvar_right
);
2599 if (rightvt
== VT_NULL
&& (leftvt
== VT_EMPTY
||
2600 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2601 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2602 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2603 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2604 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2605 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2606 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2607 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2608 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2609 return DISP_E_BADVARTYPE
;
2615 /* Concat the resulting strings together */
2616 if (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
)
2617 VarBstrCat (V_BSTR(left
), V_BSTR(right
), &V_BSTR(out
));
2618 else if (leftvt
!= VT_BSTR
&& rightvt
!= VT_BSTR
)
2619 VarBstrCat (V_BSTR(&bstrvar_left
), V_BSTR(&bstrvar_right
), &V_BSTR(out
));
2620 else if (leftvt
!= VT_BSTR
&& rightvt
== VT_BSTR
)
2621 VarBstrCat (V_BSTR(&bstrvar_left
), V_BSTR(right
), &V_BSTR(out
));
2622 else if (leftvt
== VT_BSTR
&& rightvt
!= VT_BSTR
)
2623 VarBstrCat (V_BSTR(left
), V_BSTR(&bstrvar_right
), &V_BSTR(out
));
2625 VariantClear(&bstrvar_left
);
2626 VariantClear(&bstrvar_right
);
2632 /* Wrapper around VariantChangeTypeEx() which permits changing a
2633 variant with VT_RESERVED flag set. Needed by VarCmp. */
2634 static HRESULT
_VarChangeTypeExWrap (VARIANTARG
* pvargDest
,
2635 VARIANTARG
* pvargSrc
, LCID lcid
, USHORT wFlags
, VARTYPE vt
)
2640 flags
= V_VT(pvargSrc
) & ~VT_TYPEMASK
;
2641 V_VT(pvargSrc
) &= ~VT_RESERVED
;
2642 res
= VariantChangeTypeEx(pvargDest
,pvargSrc
,lcid
,wFlags
,vt
);
2643 V_VT(pvargSrc
) |= flags
;
2648 /**********************************************************************
2649 * VarCmp [OLEAUT32.176]
2651 * Compare two variants.
2654 * left [I] First variant
2655 * right [I] Second variant
2656 * lcid [I] LCID (locale identifier) for the comparison
2657 * flags [I] Flags to be used in the comparision:
2658 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2659 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2662 * VARCMP_LT: left variant is less than right variant.
2663 * VARCMP_EQ: input variants are equal.
2664 * VARCMP_GT: left variant is greater than right variant.
2665 * VARCMP_NULL: either one of the input variants is NULL.
2666 * Failure: An HRESULT error code indicating the error.
2669 * Native VarCmp up to and including WinXP dosn't like as input variants
2670 * I1, UI2, VT_UI4, UI8 and UINT. INT is accepted only as left variant.
2672 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2673 * an ERROR variant will trigger an error.
2675 * Both input variants can have VT_RESERVED flag set which is ignored
2676 * unless one and only one of the variants is a BSTR and the other one
2677 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2678 * different meaning:
2679 * - BSTR and other: BSTR is always greater than the other variant.
2680 * - BSTR|VT_RESERVED and other: a string comparision is performed.
2681 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2682 * comparision will take place else the BSTR is always greater.
2683 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2684 * variant is ignored and the return value depends only on the sign
2685 * of the BSTR if it is a number else the BSTR is always greater. A
2686 * positive BSTR is greater, a negative one is smaller than the other
2690 * VarBstrCmp for the lcid and flags usage.
2692 HRESULT WINAPI
VarCmp(LPVARIANT left
, LPVARIANT right
, LCID lcid
, DWORD flags
)
2694 VARTYPE lvt
, rvt
, vt
;
2699 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%08lx)\n", left
, debugstr_VT(left
),
2700 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), lcid
, flags
);
2702 lvt
= V_VT(left
) & VT_TYPEMASK
;
2703 rvt
= V_VT(right
) & VT_TYPEMASK
;
2704 xmask
= (1 << lvt
) | (1 << rvt
);
2706 /* If we have any flag set except VT_RESERVED bail out.
2707 Same for the left input variant type > VT_INT and for the
2708 right input variant type > VT_I8. Yes, VT_INT is only supported
2709 as left variant. Go figure */
2710 if (((V_VT(left
) | V_VT(right
)) & ~VT_TYPEMASK
& ~VT_RESERVED
) ||
2711 lvt
> VT_INT
|| rvt
> VT_I8
) {
2712 return DISP_E_BADVARTYPE
;
2715 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2716 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2717 if (rvt
== VT_INT
|| xmask
& (VTBIT_I1
| VTBIT_UI2
| VTBIT_UI4
| VTBIT_UI8
|
2718 VTBIT_DISPATCH
| VTBIT_VARIANT
| VTBIT_UNKNOWN
| VTBIT_15
))
2719 return DISP_E_TYPEMISMATCH
;
2721 /* If both variants are VT_ERROR return VARCMP_EQ */
2722 if (xmask
== VTBIT_ERROR
)
2724 else if (xmask
& VTBIT_ERROR
)
2725 return DISP_E_TYPEMISMATCH
;
2727 if (xmask
& VTBIT_NULL
)
2733 /* Two BSTRs, ignore VT_RESERVED */
2734 if (xmask
== VTBIT_BSTR
)
2735 return VarBstrCmp(V_BSTR(left
), V_BSTR(right
), lcid
, flags
);
2737 /* A BSTR and an other variant; we have to take care of VT_RESERVED */
2738 if (xmask
& VTBIT_BSTR
) {
2739 VARIANT
*bstrv
, *nonbv
;
2743 /* Swap the variants so the BSTR is always on the left */
2744 if (lvt
== VT_BSTR
) {
2755 /* BSTR and EMPTY: ignore VT_RESERVED */
2756 if (nonbvt
== VT_EMPTY
)
2757 rc
= (!V_BSTR(bstrv
) || !*V_BSTR(bstrv
)) ? VARCMP_EQ
: VARCMP_GT
;
2759 VARTYPE breserv
= V_VT(bstrv
) & ~VT_TYPEMASK
;
2760 VARTYPE nreserv
= V_VT(nonbv
) & ~VT_TYPEMASK
;
2762 if (!breserv
&& !nreserv
)
2763 /* No VT_RESERVED set ==> BSTR always greater */
2765 else if (breserv
&& !nreserv
) {
2766 /* BSTR has VT_RESERVED set. Do a string comparision */
2767 rc
= VariantChangeTypeEx(&rv
,nonbv
,lcid
,0,VT_BSTR
);
2770 rc
= VarBstrCmp(V_BSTR(bstrv
), V_BSTR(&rv
), lcid
, flags
);
2771 } else if (V_BSTR(bstrv
) && *V_BSTR(bstrv
)) {
2772 /* Non NULL nor empty BSTR */
2773 /* If the BSTR is not a number the BSTR is greater */
2774 rc
= _VarChangeTypeExWrap(&lv
,bstrv
,lcid
,0,VT_R8
);
2777 else if (breserv
&& nreserv
)
2778 /* FIXME: This is strange: with both VT_RESERVED set it
2779 looks like the result depends only on the sign of
2781 rc
= (V_R8(&lv
) >= 0) ? VARCMP_GT
: VARCMP_LT
;
2783 /* Numeric comparision, will be handled below.
2784 VARCMP_NULL used only to break out. */
2789 /* Empty or NULL BSTR */
2792 /* Fixup the return code if we swapped left and right */
2794 if (rc
== VARCMP_GT
)
2796 else if (rc
== VARCMP_LT
)
2799 if (rc
!= VARCMP_NULL
)
2803 if (xmask
& VTBIT_DECIMAL
)
2805 else if (xmask
& VTBIT_BSTR
)
2807 else if (xmask
& VTBIT_R4
)
2809 else if (xmask
& (VTBIT_R8
| VTBIT_DATE
))
2811 else if (xmask
& VTBIT_CY
)
2817 /* Coerce the variants */
2818 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2819 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2820 /* Overflow, change to R8 */
2822 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2826 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2827 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2828 /* Overflow, change to R8 */
2830 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2833 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2838 #define _VARCMP(a,b) \
2839 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2843 return VarCyCmp(V_CY(&lv
), V_CY(&rv
));
2845 return VarDecCmp(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
));
2847 return _VARCMP(V_I8(&lv
), V_I8(&rv
));
2849 return _VARCMP(V_R4(&lv
), V_R4(&rv
));
2851 return _VARCMP(V_R8(&lv
), V_R8(&rv
));
2853 /* We should never get here */
2859 /**********************************************************************
2860 * VarAnd [OLEAUT32.142]
2862 * Computes the logical AND of two variants.
2865 * left [I] First variant
2866 * right [I] Second variant
2867 * result [O] Result variant
2871 * Failure: An HRESULT error code indicating the error.
2873 HRESULT WINAPI
VarAnd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
2875 HRESULT rc
= E_FAIL
;
2877 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
2878 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
2880 if ((V_VT(left
)&VT_TYPEMASK
) == VT_BOOL
&&
2881 (V_VT(right
)&VT_TYPEMASK
) == VT_BOOL
) {
2883 V_VT(result
) = VT_BOOL
;
2884 if (V_BOOL(left
) && V_BOOL(right
)) {
2885 V_BOOL(result
) = VARIANT_TRUE
;
2887 V_BOOL(result
) = VARIANT_FALSE
;
2898 int resT
= 0; /* Testing has shown I2 & I2 == I2, all else
2899 becomes I4, even unsigned ints (incl. UI2) */
2902 switch (V_VT(left
)&VT_TYPEMASK
) {
2903 case VT_I1
: lVal
= V_I1(left
); resT
=VT_I4
; break;
2904 case VT_I2
: lVal
= V_I2(left
); resT
=VT_I2
; break;
2906 case VT_INT
: lVal
= V_I4(left
); resT
=VT_I4
; break;
2907 case VT_UI1
: lVal
= V_UI1(left
); resT
=VT_I4
; break;
2908 case VT_UI2
: lVal
= V_UI2(left
); resT
=VT_I4
; break;
2910 case VT_UINT
: lVal
= V_UI4(left
); resT
=VT_I4
; break;
2911 case VT_BOOL
: rVal
= V_BOOL(left
); resT
=VT_I4
; break;
2912 default: lOk
= FALSE
;
2916 switch (V_VT(right
)&VT_TYPEMASK
) {
2917 case VT_I1
: rVal
= V_I1(right
); resT
=VT_I4
; break;
2918 case VT_I2
: rVal
= V_I2(right
); resT
=max(VT_I2
, resT
); break;
2920 case VT_INT
: rVal
= V_I4(right
); resT
=VT_I4
; break;
2921 case VT_UI1
: rVal
= V_UI1(right
); resT
=VT_I4
; break;
2922 case VT_UI2
: rVal
= V_UI2(right
); resT
=VT_I4
; break;
2924 case VT_UINT
: rVal
= V_UI4(right
); resT
=VT_I4
; break;
2925 case VT_BOOL
: rVal
= V_BOOL(right
); resT
=VT_I4
; break;
2926 default: rOk
= FALSE
;
2930 res
= (lVal
& rVal
);
2931 V_VT(result
) = resT
;
2933 case VT_I2
: V_I2(result
) = res
; break;
2934 case VT_I4
: V_I4(result
) = res
; break;
2936 FIXME("Unexpected result variant type %x\n", resT
);
2942 FIXME("VarAnd stub\n");
2946 TRACE("returning 0x%8lx (%s%s),%ld\n", rc
, debugstr_VT(result
),
2947 debugstr_VF(result
), V_VT(result
) == VT_I4
? V_I4(result
) : V_I2(result
));
2951 /**********************************************************************
2952 * VarAdd [OLEAUT32.141]
2957 * left [I] First variant
2958 * right [I] Second variant
2959 * result [O] Result variant
2963 * Failure: An HRESULT error code indicating the error.
2966 * Native VarAdd up to and including WinXP dosn't like as input variants
2967 * I1, UI2, UI4, UI8, INT and UINT.
2969 * Native VarAdd dosn't check for NULL in/out pointers and crashes. We do the
2973 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
2976 HRESULT WINAPI
VarAdd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
2979 VARTYPE lvt
, rvt
, resvt
, tvt
;
2983 /* Variant priority for coercion. Sorted from lowest to highest.
2984 VT_ERROR shows an invalid input variant type. */
2985 enum coerceprio
{ vt_EMPTY
, vt_UI1
, vt_I2
, vt_I4
, vt_I8
, vt_BSTR
,vt_R4
,
2986 vt_R8
, vt_CY
, vt_DATE
, vt_DECIMAL
, vt_DISPATCH
, vt_NULL
,
2988 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
2989 VARTYPE prio2vt
[] = { VT_EMPTY
, VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_BSTR
, VT_R4
,
2990 VT_R8
, VT_CY
, VT_DATE
, VT_DECIMAL
, VT_DISPATCH
,
2991 VT_NULL
, VT_ERROR
};
2993 /* Mapping for coercion from input variant to priority of result variant. */
2994 static VARTYPE coerce
[] = {
2995 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
2996 vt_EMPTY
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
2997 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
2998 vt_R8
, vt_CY
, vt_DATE
, vt_BSTR
, vt_DISPATCH
,
2999 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3000 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3001 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3002 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3005 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3006 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
),
3012 lvt
= V_VT(left
)&VT_TYPEMASK
;
3013 rvt
= V_VT(right
)&VT_TYPEMASK
;
3015 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3016 Same for any input variant type > VT_I8 */
3017 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3018 lvt
> VT_I8
|| rvt
> VT_I8
) {
3019 hres
= DISP_E_BADVARTYPE
;
3023 /* Determine the variant type to coerce to. */
3024 if (coerce
[lvt
] > coerce
[rvt
]) {
3025 resvt
= prio2vt
[coerce
[lvt
]];
3026 tvt
= prio2vt
[coerce
[rvt
]];
3028 resvt
= prio2vt
[coerce
[rvt
]];
3029 tvt
= prio2vt
[coerce
[lvt
]];
3032 /* Special cases where the result variant type is defined by both
3033 input variants and not only that with the highest priority */
3034 if (resvt
== VT_BSTR
) {
3035 if (tvt
== VT_EMPTY
|| tvt
== VT_BSTR
)
3040 if (resvt
== VT_R4
&& (tvt
== VT_BSTR
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3043 /* For overflow detection use the biggest compatible type for the
3047 hres
= DISP_E_BADVARTYPE
;
3051 V_VT(result
) = VT_NULL
;
3054 FIXME("cannot handle variant type VT_DISPATCH\n");
3055 hres
= DISP_E_TYPEMISMATCH
;
3074 /* Now coerce the variants */
3075 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3078 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3084 V_VT(result
) = resvt
;
3087 hres
= VarDecAdd(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3088 &V_DECIMAL(result
));
3091 hres
= VarCyAdd(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3094 /* We do not add those, we concatenate them. */
3095 hres
= VarBstrCat(V_BSTR(&lv
), V_BSTR(&rv
), &V_BSTR(result
));
3098 /* Overflow detection */
3099 r8res
= (double)V_I8(&lv
) + (double)V_I8(&rv
);
3100 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3101 V_VT(result
) = VT_R8
;
3102 V_R8(result
) = r8res
;
3106 V_I8(&tv
) = V_I8(&lv
) + V_I8(&rv
);
3111 /* FIXME: overflow detection */
3112 V_R8(&tv
) = V_R8(&lv
) + V_R8(&rv
);
3115 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3119 if ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3120 /* Overflow! Change to the vartype with the next higher priority.
3121 With one exception: I4 ==> R8 even if it would fit in I8 */
3125 resvt
= prio2vt
[coerce
[resvt
] + 1];
3126 hres
= VariantChangeType(result
, &tv
, 0, resvt
);
3129 hres
= VariantCopy(result
, &tv
);
3133 V_VT(result
) = VT_EMPTY
;
3134 V_I4(result
) = 0; /* No V_EMPTY */
3139 TRACE("returning 0x%8lx (variant type %s)\n", hres
, debugstr_VT(result
));
3143 /**********************************************************************
3144 * VarMul [OLEAUT32.156]
3146 * Multiply two variants.
3149 * left [I] First variant
3150 * right [I] Second variant
3151 * result [O] Result variant
3155 * Failure: An HRESULT error code indicating the error.
3158 * Native VarMul up to and including WinXP dosn't like as input variants
3159 * I1, UI2, UI4, UI8, INT and UINT. But it can multiply apples with oranges.
3161 * Native VarMul dosn't check for NULL in/out pointers and crashes. We do the
3165 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3168 HRESULT WINAPI
VarMul(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3171 VARTYPE lvt
, rvt
, resvt
, tvt
;
3175 /* Variant priority for coercion. Sorted from lowest to highest.
3176 VT_ERROR shows an invalid input variant type. */
3177 enum coerceprio
{ vt_UI1
= 0, vt_I2
, vt_I4
, vt_I8
, vt_CY
, vt_R4
, vt_R8
,
3178 vt_DECIMAL
, vt_NULL
, vt_ERROR
};
3179 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3180 VARTYPE prio2vt
[] = { VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_CY
, VT_R4
, VT_R8
,
3181 VT_DECIMAL
, VT_NULL
, VT_ERROR
};
3183 /* Mapping for coercion from input variant to priority of result variant. */
3184 static VARTYPE coerce
[] = {
3185 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3186 vt_UI1
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3187 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3188 vt_R8
, vt_CY
, vt_R8
, vt_R8
, vt_ERROR
,
3189 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3190 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3191 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3192 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3195 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3196 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
),
3202 lvt
= V_VT(left
)&VT_TYPEMASK
;
3203 rvt
= V_VT(right
)&VT_TYPEMASK
;
3205 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3206 Same for any input variant type > VT_I8 */
3207 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3208 lvt
> VT_I8
|| rvt
> VT_I8
) {
3209 hres
= DISP_E_BADVARTYPE
;
3213 /* Determine the variant type to coerce to. */
3214 if (coerce
[lvt
] > coerce
[rvt
]) {
3215 resvt
= prio2vt
[coerce
[lvt
]];
3216 tvt
= prio2vt
[coerce
[rvt
]];
3218 resvt
= prio2vt
[coerce
[rvt
]];
3219 tvt
= prio2vt
[coerce
[lvt
]];
3222 /* Special cases where the result variant type is defined by both
3223 input variants and not only that with the highest priority */
3224 if (resvt
== VT_R4
&& (tvt
== VT_CY
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3226 if (lvt
== VT_EMPTY
&& rvt
== VT_EMPTY
)
3229 /* For overflow detection use the biggest compatible type for the
3233 hres
= DISP_E_BADVARTYPE
;
3237 V_VT(result
) = VT_NULL
;
3252 /* Now coerce the variants */
3253 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3256 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3263 V_VT(result
) = resvt
;
3266 hres
= VarDecMul(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3267 &V_DECIMAL(result
));
3270 hres
= VarCyMul(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3273 /* Overflow detection */
3274 r8res
= (double)V_I8(&lv
) * (double)V_I8(&rv
);
3275 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3276 V_VT(result
) = VT_R8
;
3277 V_R8(result
) = r8res
;
3280 V_I8(&tv
) = V_I8(&lv
) * V_I8(&rv
);
3283 /* FIXME: overflow detection */
3284 V_R8(&tv
) = V_R8(&lv
) * V_R8(&rv
);
3287 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3291 while ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3292 /* Overflow! Change to the vartype with the next higher priority.
3293 With one exception: I4 ==> R8 even if it would fit in I8 */
3297 resvt
= prio2vt
[coerce
[resvt
] + 1];
3300 hres
= VariantCopy(result
, &tv
);
3304 V_VT(result
) = VT_EMPTY
;
3305 V_I4(result
) = 0; /* No V_EMPTY */
3310 TRACE("returning 0x%8lx (variant type %s)\n", hres
, debugstr_VT(result
));
3314 /**********************************************************************
3315 * VarDiv [OLEAUT32.143]
3317 * Divides one variant with another.
3320 * left [I] First variant
3321 * right [I] Second variant
3322 * result [O] Result variant
3326 * Failure: An HRESULT error code indicating the error.
3328 HRESULT WINAPI
VarDiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3330 HRESULT rc
= E_FAIL
;
3331 VARTYPE lvt
,rvt
,resvt
;
3335 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3336 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
3338 VariantInit(&lv
);VariantInit(&rv
);
3339 lvt
= V_VT(left
)&VT_TYPEMASK
;
3340 rvt
= V_VT(right
)&VT_TYPEMASK
;
3341 found
= FALSE
;resvt
= VT_VOID
;
3342 if (((1<<lvt
) | (1<<rvt
)) & (VTBIT_R4
|VTBIT_R8
|VTBIT_CY
)) {
3346 if (!found
&& (((1<<lvt
) | (1<<rvt
)) & (VTBIT_DECIMAL
))) {
3350 if (!found
&& (((1<<lvt
) | (1<<rvt
)) & (VTBIT_I1
|VTBIT_I2
|VTBIT_UI1
|VTBIT_UI2
|VTBIT_I4
|VTBIT_UI4
|VTBIT_INT
|VTBIT_UINT
))) {
3355 FIXME("can't expand vt %d vs %d to a target type.\n",lvt
,rvt
);
3358 rc
= VariantChangeType(&lv
, left
, 0, resvt
);
3360 FIXME("Could not convert 0x%x to %d?\n",V_VT(left
),resvt
);
3363 rc
= VariantChangeType(&rv
, right
, 0, resvt
);
3365 FIXME("Could not convert 0x%x to %d?\n",V_VT(right
),resvt
);
3370 if (V_R8(&rv
) == 0) return DISP_E_DIVBYZERO
;
3371 V_VT(result
) = resvt
;
3372 V_R8(result
) = V_R8(&lv
) / V_R8(&rv
);
3376 rc
= VarDecDiv(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3377 V_VT(result
) = resvt
;
3380 if (V_I4(&rv
) == 0) return DISP_E_DIVBYZERO
;
3381 V_VT(result
) = resvt
;
3382 V_I4(result
) = V_I4(&lv
) / V_I4(&rv
);
3386 TRACE("returning 0x%8lx (%s%s),%g\n", rc
, debugstr_VT(result
),
3387 debugstr_VF(result
), V_VT(result
) == VT_R8
? V_R8(result
) : (double)V_I4(result
));
3391 /**********************************************************************
3392 * VarSub [OLEAUT32.159]
3394 * Subtract two variants.
3397 * left [I] First variant
3398 * right [I] Second variant
3399 * result [O] Result variant
3403 * Failure: An HRESULT error code indicating the error.
3405 HRESULT WINAPI
VarSub(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3407 HRESULT hres
= S_OK
;
3408 VARTYPE resvt
= VT_EMPTY
;
3409 VARTYPE leftvt
,rightvt
;
3410 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3413 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3414 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
3416 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3417 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3418 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3419 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3421 if (leftExtraFlags
!= rightExtraFlags
)
3422 return DISP_E_BADVARTYPE
;
3423 ExtraFlags
= leftExtraFlags
;
3425 /* determine return type and return code */
3426 /* All extra flags produce errors */
3427 if (ExtraFlags
== (VT_VECTOR
|VT_BYREF
|VT_RESERVED
) ||
3428 ExtraFlags
== (VT_VECTOR
|VT_RESERVED
) ||
3429 ExtraFlags
== (VT_VECTOR
|VT_BYREF
) ||
3430 ExtraFlags
== (VT_BYREF
|VT_RESERVED
) ||
3431 ExtraFlags
== VT_VECTOR
||
3432 ExtraFlags
== VT_BYREF
||
3433 ExtraFlags
== VT_RESERVED
)
3434 return DISP_E_BADVARTYPE
;
3435 else if (ExtraFlags
>= VT_ARRAY
)
3436 return DISP_E_TYPEMISMATCH
;
3437 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3438 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3439 else if (leftvt
== VT_CLSID
|| rightvt
== VT_CLSID
||
3440 leftvt
== VT_VARIANT
|| rightvt
== VT_VARIANT
||
3441 leftvt
== VT_I1
|| rightvt
== VT_I1
||
3442 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
3443 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
3444 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
3445 leftvt
== VT_INT
|| rightvt
== VT_INT
||
3446 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3447 leftvt
== VT_UNKNOWN
|| rightvt
== VT_UNKNOWN
||
3448 leftvt
== VT_RECORD
|| rightvt
== VT_RECORD
)
3450 if (leftvt
== VT_RECORD
&& rightvt
== VT_I8
)
3451 return DISP_E_TYPEMISMATCH
;
3452 else if (leftvt
< VT_UI1
&& rightvt
== VT_RECORD
)
3453 return DISP_E_TYPEMISMATCH
;
3454 else if (leftvt
>= VT_UI1
&& rightvt
== VT_RECORD
)
3455 return DISP_E_TYPEMISMATCH
;
3456 else if (leftvt
== VT_RECORD
&& rightvt
<= VT_UI1
)
3457 return DISP_E_TYPEMISMATCH
;
3458 else if (leftvt
== VT_RECORD
&& rightvt
> VT_UI1
)
3459 return DISP_E_BADVARTYPE
;
3461 return DISP_E_BADVARTYPE
;
3463 /* The following flags/types are invalid for left variant */
3464 else if (!((leftvt
<= VT_LPWSTR
|| leftvt
== VT_RECORD
||
3465 leftvt
== VT_CLSID
) && leftvt
!= (VARTYPE
)15 /* undefined vt */ &&
3466 (leftvt
< VT_VOID
|| leftvt
> VT_LPWSTR
)))
3467 return DISP_E_BADVARTYPE
;
3468 /* The following flags/types are invalid for right variant */
3469 else if (!((rightvt
<= VT_LPWSTR
|| rightvt
== VT_RECORD
||
3470 rightvt
== VT_CLSID
) && rightvt
!= (VARTYPE
)15 /* undefined vt */ &&
3471 (rightvt
< VT_VOID
|| rightvt
> VT_LPWSTR
)))
3472 return DISP_E_BADVARTYPE
;
3473 else if ((leftvt
== VT_NULL
&& rightvt
== VT_DISPATCH
) ||
3474 (leftvt
== VT_DISPATCH
&& rightvt
== VT_NULL
))
3476 else if (leftvt
== VT_DISPATCH
|| rightvt
== VT_DISPATCH
||
3477 leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
3478 return DISP_E_TYPEMISMATCH
;
3479 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3481 else if ((leftvt
== VT_EMPTY
&& rightvt
== VT_BSTR
) ||
3482 (leftvt
== VT_DATE
&& rightvt
== VT_DATE
) ||
3483 (leftvt
== VT_BSTR
&& rightvt
== VT_EMPTY
) ||
3484 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
3486 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3488 else if (leftvt
== VT_DATE
|| rightvt
== VT_DATE
)
3490 else if (leftvt
== VT_CY
|| rightvt
== VT_CY
)
3492 else if (leftvt
== VT_R8
|| rightvt
== VT_R8
)
3494 else if (leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3496 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3498 if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
3499 leftvt
== VT_I8
|| rightvt
== VT_I8
)
3504 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
3506 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
)
3508 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
3509 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3510 (leftvt
== VT_EMPTY
&& rightvt
== VT_EMPTY
))
3512 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3515 return DISP_E_TYPEMISMATCH
;
3520 /* coerce to the result type */
3521 if (leftvt
== VT_BSTR
&& rightvt
== VT_DATE
)
3522 hres
= VariantChangeType(&lv
, left
, 0, VT_R8
);
3524 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3531 if (leftvt
== VT_DATE
&& rightvt
== VT_BSTR
)
3532 hres
= VariantChangeType(&rv
, right
, 0, VT_R8
);
3534 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3543 V_VT(result
) = resvt
;
3549 V_DATE(result
) = V_DATE(&lv
) - V_DATE(&rv
);
3552 hres
= VarCySub(V_CY(&lv
), V_CY(&rv
), &(V_CY(result
)));
3555 V_R4(result
) = V_R4(&lv
) - V_R4(&rv
);
3558 V_I8(result
) = V_I8(&lv
) - V_I8(&rv
);
3561 V_I4(result
) = V_I4(&lv
) - V_I4(&rv
);
3564 V_I2(result
) = V_I2(&lv
) - V_I2(&rv
);
3567 V_I1(result
) = V_I1(&lv
) - V_I1(&rv
);
3570 V_UI1(result
) = V_UI2(&lv
) - V_UI1(&rv
);
3573 V_R8(result
) = V_R8(&lv
) - V_R8(&rv
);
3576 hres
= VarDecSub(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3587 /**********************************************************************
3588 * VarOr [OLEAUT32.157]
3590 * Perform a logical or (OR) operation on two variants.
3593 * pVarLeft [I] First variant
3594 * pVarRight [I] Variant to OR with pVarLeft
3595 * pVarOut [O] Destination for OR result
3598 * Success: S_OK. pVarOut contains the result of the operation with its type
3599 * taken from the table listed under VarXor().
3600 * Failure: An HRESULT error code indicating the error.
3603 * See the Notes section of VarXor() for further information.
3605 HRESULT WINAPI
VarOr(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
3608 VARIANT varLeft
, varRight
, varStr
;
3611 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
3612 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
3613 debugstr_VF(pVarRight
), pVarOut
);
3615 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
3616 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
3617 V_VT(pVarLeft
) == VT_DISPATCH
|| V_VT(pVarRight
) == VT_DISPATCH
||
3618 V_VT(pVarLeft
) == VT_RECORD
|| V_VT(pVarRight
) == VT_RECORD
)
3619 return DISP_E_BADVARTYPE
;
3621 V_VT(&varLeft
) = V_VT(&varRight
) = V_VT(&varStr
) = VT_EMPTY
;
3623 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
3625 /* NULL OR Zero is NULL, NULL OR value is value */
3626 if (V_VT(pVarLeft
) == VT_NULL
)
3627 pVarLeft
= pVarRight
; /* point to the non-NULL var */
3629 V_VT(pVarOut
) = VT_NULL
;
3632 switch (V_VT(pVarLeft
))
3634 case VT_DATE
: case VT_R8
:
3639 if (V_BOOL(pVarLeft
))
3640 *pVarOut
= *pVarLeft
;
3642 case VT_I2
: case VT_UI2
:
3651 if (V_UI1(pVarLeft
))
3652 *pVarOut
= *pVarLeft
;
3658 case VT_I4
: case VT_UI4
: case VT_INT
: case VT_UINT
:
3663 if (V_CY(pVarLeft
).int64
)
3666 case VT_I8
: case VT_UI8
:
3671 if (DEC_HI32(&V_DECIMAL(pVarLeft
)) || DEC_LO64(&V_DECIMAL(pVarLeft
)))
3678 if (!V_BSTR(pVarLeft
))
3679 return DISP_E_BADVARTYPE
;
3681 hRet
= VarBoolFromStr(V_BSTR(pVarLeft
), LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
3682 if (SUCCEEDED(hRet
) && b
)
3684 V_VT(pVarOut
) = VT_BOOL
;
3685 V_BOOL(pVarOut
) = b
;
3689 case VT_NULL
: case VT_EMPTY
:
3690 V_VT(pVarOut
) = VT_NULL
;
3693 return DISP_E_BADVARTYPE
;
3697 if (V_VT(pVarLeft
) == VT_EMPTY
|| V_VT(pVarRight
) == VT_EMPTY
)
3699 if (V_VT(pVarLeft
) == VT_EMPTY
)
3700 pVarLeft
= pVarRight
; /* point to the non-EMPTY var */
3703 /* Since one argument is empty (0), OR'ing it with the other simply
3704 * gives the others value (as 0|x => x). So just convert the other
3705 * argument to the required result type.
3707 switch (V_VT(pVarLeft
))
3710 if (!V_BSTR(pVarLeft
))
3711 return DISP_E_BADVARTYPE
;
3713 hRet
= VariantCopy(&varStr
, pVarLeft
);
3717 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
3720 /* Fall Through ... */
3721 case VT_EMPTY
: case VT_UI1
: case VT_BOOL
: case VT_I2
:
3722 V_VT(pVarOut
) = VT_I2
;
3724 case VT_DATE
: case VT_CY
: case VT_DECIMAL
: case VT_R4
: case VT_R8
:
3725 case VT_I1
: case VT_UI2
: case VT_I4
: case VT_UI4
:
3726 case VT_INT
: case VT_UINT
: case VT_UI8
:
3727 V_VT(pVarOut
) = VT_I4
;
3730 V_VT(pVarOut
) = VT_I8
;
3733 return DISP_E_BADVARTYPE
;
3735 hRet
= VariantCopy(&varLeft
, pVarLeft
);
3738 pVarLeft
= &varLeft
;
3739 hRet
= VariantChangeType(pVarOut
, pVarLeft
, 0, V_VT(pVarOut
));
3743 if (V_VT(pVarLeft
) == VT_BOOL
&& V_VT(pVarRight
) == VT_BOOL
)
3745 V_VT(pVarOut
) = VT_BOOL
;
3746 V_BOOL(pVarOut
) = V_BOOL(pVarLeft
) | V_BOOL(pVarRight
);
3750 if (V_VT(pVarLeft
) == VT_UI1
&& V_VT(pVarRight
) == VT_UI1
)
3752 V_VT(pVarOut
) = VT_UI1
;
3753 V_UI1(pVarOut
) = V_UI1(pVarLeft
) | V_UI1(pVarRight
);
3757 if (V_VT(pVarLeft
) == VT_BSTR
)
3759 hRet
= VariantCopy(&varStr
, pVarLeft
);
3763 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
3768 if (V_VT(pVarLeft
) == VT_BOOL
&&
3769 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_BSTR
))
3773 else if ((V_VT(pVarLeft
) == VT_BOOL
|| V_VT(pVarLeft
) == VT_UI1
||
3774 V_VT(pVarLeft
) == VT_I2
|| V_VT(pVarLeft
) == VT_BSTR
) &&
3775 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_UI1
||
3776 V_VT(pVarRight
) == VT_I2
|| V_VT(pVarRight
) == VT_BSTR
))
3780 else if (V_VT(pVarLeft
) == VT_I8
|| V_VT(pVarRight
) == VT_I8
)
3782 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
3783 return DISP_E_TYPEMISMATCH
;
3787 hRet
= VariantCopy(&varLeft
, pVarLeft
);
3791 hRet
= VariantCopy(&varRight
, pVarRight
);
3795 if (vt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
3796 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
3801 if (V_VT(&varLeft
) == VT_BSTR
&&
3802 FAILED(VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
)))
3803 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
, VT_BOOL
);
3804 if (SUCCEEDED(hRet
) && V_VT(&varLeft
) != vt
)
3805 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
3810 if (vt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
3811 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
3816 if (V_VT(&varRight
) == VT_BSTR
&&
3817 FAILED(VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
)))
3818 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
, VT_BOOL
);
3819 if (SUCCEEDED(hRet
) && V_VT(&varRight
) != vt
)
3820 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
3828 V_I8(pVarOut
) = V_I8(&varLeft
) | V_I8(&varRight
);
3830 else if (vt
== VT_I4
)
3832 V_I4(pVarOut
) = V_I4(&varLeft
) | V_I4(&varRight
);
3836 V_I2(pVarOut
) = V_I2(&varLeft
) | V_I2(&varRight
);
3840 VariantClear(&varStr
);
3841 VariantClear(&varLeft
);
3842 VariantClear(&varRight
);
3846 /**********************************************************************
3847 * VarAbs [OLEAUT32.168]
3849 * Convert a variant to its absolute value.
3852 * pVarIn [I] Source variant
3853 * pVarOut [O] Destination for converted value
3856 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
3857 * Failure: An HRESULT error code indicating the error.
3860 * - This function does not process by-reference variants.
3861 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3862 * according to the following table:
3863 *| Input Type Output Type
3864 *| ---------- -----------
3867 *| (All others) Unchanged
3869 HRESULT WINAPI
VarAbs(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
3872 HRESULT hRet
= S_OK
;
3874 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
3875 debugstr_VF(pVarIn
), pVarOut
);
3877 if (V_ISARRAY(pVarIn
) || V_VT(pVarIn
) == VT_UNKNOWN
||
3878 V_VT(pVarIn
) == VT_DISPATCH
|| V_VT(pVarIn
) == VT_RECORD
||
3879 V_VT(pVarIn
) == VT_ERROR
)
3880 return DISP_E_TYPEMISMATCH
;
3882 *pVarOut
= *pVarIn
; /* Shallow copy the value, and invert it if needed */
3884 #define ABS_CASE(typ,min) \
3885 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
3886 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
3889 switch (V_VT(pVarIn
))
3891 ABS_CASE(I1
,I1_MIN
);
3893 V_VT(pVarOut
) = VT_I2
;
3894 /* BOOL->I2, Fall through ... */
3895 ABS_CASE(I2
,I2_MIN
);
3897 ABS_CASE(I4
,I4_MIN
);
3898 ABS_CASE(I8
,I8_MIN
);
3899 ABS_CASE(R4
,R4_MIN
);
3901 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
3904 V_VT(pVarOut
) = VT_R8
;
3906 /* Fall through ... */
3908 ABS_CASE(R8
,R8_MIN
);
3910 hRet
= VarCyAbs(V_CY(pVarIn
), & V_CY(pVarOut
));
3913 DEC_SIGN(&V_DECIMAL(pVarOut
)) &= ~DECIMAL_NEG
;
3923 V_VT(pVarOut
) = VT_I2
;
3928 hRet
= DISP_E_BADVARTYPE
;
3934 /**********************************************************************
3935 * VarFix [OLEAUT32.169]
3937 * Truncate a variants value to a whole number.
3940 * pVarIn [I] Source variant
3941 * pVarOut [O] Destination for converted value
3944 * Success: S_OK. pVarOut contains the converted value.
3945 * Failure: An HRESULT error code indicating the error.
3948 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3949 * according to the following table:
3950 *| Input Type Output Type
3951 *| ---------- -----------
3955 *| All Others Unchanged
3956 * - The difference between this function and VarInt() is that VarInt() rounds
3957 * negative numbers away from 0, while this function rounds them towards zero.
3959 HRESULT WINAPI
VarFix(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
3961 HRESULT hRet
= S_OK
;
3963 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
3964 debugstr_VF(pVarIn
), pVarOut
);
3966 V_VT(pVarOut
) = V_VT(pVarIn
);
3968 switch (V_VT(pVarIn
))
3971 V_UI1(pVarOut
) = V_UI1(pVarIn
);
3974 V_VT(pVarOut
) = VT_I2
;
3977 V_I2(pVarOut
) = V_I2(pVarIn
);
3980 V_I4(pVarOut
) = V_I4(pVarIn
);
3983 V_I8(pVarOut
) = V_I8(pVarIn
);
3986 if (V_R4(pVarIn
) < 0.0f
)
3987 V_R4(pVarOut
) = (float)ceil(V_R4(pVarIn
));
3989 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
3992 V_VT(pVarOut
) = VT_R8
;
3993 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
3998 if (V_R8(pVarIn
) < 0.0)
3999 V_R8(pVarOut
) = ceil(V_R8(pVarIn
));
4001 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4004 hRet
= VarCyFix(V_CY(pVarIn
), &V_CY(pVarOut
));
4007 hRet
= VarDecFix(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4010 V_VT(pVarOut
) = VT_I2
;
4017 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4018 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4019 hRet
= DISP_E_BADVARTYPE
;
4021 hRet
= DISP_E_TYPEMISMATCH
;
4024 V_VT(pVarOut
) = VT_EMPTY
;
4029 /**********************************************************************
4030 * VarInt [OLEAUT32.172]
4032 * Truncate a variants value to a whole number.
4035 * pVarIn [I] Source variant
4036 * pVarOut [O] Destination for converted value
4039 * Success: S_OK. pVarOut contains the converted value.
4040 * Failure: An HRESULT error code indicating the error.
4043 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4044 * according to the following table:
4045 *| Input Type Output Type
4046 *| ---------- -----------
4050 *| All Others Unchanged
4051 * - The difference between this function and VarFix() is that VarFix() rounds
4052 * negative numbers towards 0, while this function rounds them away from zero.
4054 HRESULT WINAPI
VarInt(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4056 HRESULT hRet
= S_OK
;
4058 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4059 debugstr_VF(pVarIn
), pVarOut
);
4061 V_VT(pVarOut
) = V_VT(pVarIn
);
4063 switch (V_VT(pVarIn
))
4066 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4069 V_VT(pVarOut
) = VT_R8
;
4070 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4075 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4078 hRet
= VarCyInt(V_CY(pVarIn
), &V_CY(pVarOut
));
4081 hRet
= VarDecInt(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4084 return VarFix(pVarIn
, pVarOut
);
4090 /**********************************************************************
4091 * VarXor [OLEAUT32.167]
4093 * Perform a logical exclusive-or (XOR) operation on two variants.
4096 * pVarLeft [I] First variant
4097 * pVarRight [I] Variant to XOR with pVarLeft
4098 * pVarOut [O] Destination for XOR result
4101 * Success: S_OK. pVarOut contains the result of the operation with its type
4102 * taken from the table below).
4103 * Failure: An HRESULT error code indicating the error.
4106 * - Neither pVarLeft or pVarRight are modified by this function.
4107 * - This function does not process by-reference variants.
4108 * - Input types of VT_BSTR may be numeric strings or boolean text.
4109 * - The type of result stored in pVarOut depends on the types of pVarLeft
4110 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4111 * or VT_NULL if the function succeeds.
4112 * - Type promotion is inconsistent and as a result certain combinations of
4113 * values will return DISP_E_OVERFLOW even when they could be represented.
4114 * This matches the behaviour of native oleaut32.
4116 HRESULT WINAPI
VarXor(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4119 VARIANT varLeft
, varRight
;
4123 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4124 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4125 debugstr_VF(pVarRight
), pVarOut
);
4127 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4128 V_VT(pVarLeft
) > VT_UINT
|| V_VT(pVarRight
) > VT_UINT
||
4129 V_VT(pVarLeft
) == VT_VARIANT
|| V_VT(pVarRight
) == VT_VARIANT
||
4130 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4131 V_VT(pVarLeft
) == (VARTYPE
)15 || V_VT(pVarRight
) == (VARTYPE
)15 ||
4132 V_VT(pVarLeft
) == VT_ERROR
|| V_VT(pVarRight
) == VT_ERROR
)
4133 return DISP_E_BADVARTYPE
;
4135 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4137 /* NULL XOR anything valid is NULL */
4138 V_VT(pVarOut
) = VT_NULL
;
4142 /* Copy our inputs so we don't disturb anything */
4143 V_VT(&varLeft
) = V_VT(&varRight
) = VT_EMPTY
;
4145 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4149 hRet
= VariantCopy(&varRight
, pVarRight
);
4153 /* Try any strings first as numbers, then as VT_BOOL */
4154 if (V_VT(&varLeft
) == VT_BSTR
)
4156 hRet
= VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
);
4157 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
,
4158 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4163 if (V_VT(&varRight
) == VT_BSTR
)
4165 hRet
= VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
);
4166 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
,
4167 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4172 /* Determine the result type */
4173 if (V_VT(&varLeft
) == VT_I8
|| V_VT(&varRight
) == VT_I8
)
4175 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4176 return DISP_E_TYPEMISMATCH
;
4181 switch ((V_VT(&varLeft
) << 16) | V_VT(&varRight
))
4183 case (VT_BOOL
<< 16) | VT_BOOL
:
4186 case (VT_UI1
<< 16) | VT_UI1
:
4189 case (VT_EMPTY
<< 16) | VT_EMPTY
:
4190 case (VT_EMPTY
<< 16) | VT_UI1
:
4191 case (VT_EMPTY
<< 16) | VT_I2
:
4192 case (VT_EMPTY
<< 16) | VT_BOOL
:
4193 case (VT_UI1
<< 16) | VT_EMPTY
:
4194 case (VT_UI1
<< 16) | VT_I2
:
4195 case (VT_UI1
<< 16) | VT_BOOL
:
4196 case (VT_I2
<< 16) | VT_EMPTY
:
4197 case (VT_I2
<< 16) | VT_UI1
:
4198 case (VT_I2
<< 16) | VT_I2
:
4199 case (VT_I2
<< 16) | VT_BOOL
:
4200 case (VT_BOOL
<< 16) | VT_EMPTY
:
4201 case (VT_BOOL
<< 16) | VT_UI1
:
4202 case (VT_BOOL
<< 16) | VT_I2
:
4211 /* VT_UI4 does not overflow */
4214 if (V_VT(&varLeft
) == VT_UI4
)
4215 V_VT(&varLeft
) = VT_I4
;
4216 if (V_VT(&varRight
) == VT_UI4
)
4217 V_VT(&varRight
) = VT_I4
;
4220 /* Convert our input copies to the result type */
4221 if (V_VT(&varLeft
) != vt
)
4222 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4226 if (V_VT(&varRight
) != vt
)
4227 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4233 /* Calculate the result */
4237 V_I8(pVarOut
) = V_I8(&varLeft
) ^ V_I8(&varRight
);
4240 V_I4(pVarOut
) = V_I4(&varLeft
) ^ V_I4(&varRight
);
4244 V_I2(pVarOut
) = V_I2(&varLeft
) ^ V_I2(&varRight
);
4247 V_UI1(pVarOut
) = V_UI1(&varLeft
) ^ V_UI1(&varRight
);
4252 VariantClear(&varLeft
);
4253 VariantClear(&varRight
);
4257 /**********************************************************************
4258 * VarEqv [OLEAUT32.172]
4260 * Determine if two variants contain the same value.
4263 * pVarLeft [I] First variant to compare
4264 * pVarRight [I] Variant to compare to pVarLeft
4265 * pVarOut [O] Destination for comparison result
4268 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4269 * if equivalent or non-zero otherwise.
4270 * Failure: An HRESULT error code indicating the error.
4273 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4276 HRESULT WINAPI
VarEqv(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4280 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4281 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4282 debugstr_VF(pVarRight
), pVarOut
);
4284 hRet
= VarXor(pVarLeft
, pVarRight
, pVarOut
);
4285 if (SUCCEEDED(hRet
))
4287 if (V_VT(pVarOut
) == VT_I8
)
4288 V_I8(pVarOut
) = ~V_I8(pVarOut
);
4290 V_UI4(pVarOut
) = ~V_UI4(pVarOut
);
4295 /**********************************************************************
4296 * VarNeg [OLEAUT32.173]
4298 * Negate the value of a variant.
4301 * pVarIn [I] Source variant
4302 * pVarOut [O] Destination for converted value
4305 * Success: S_OK. pVarOut contains the converted value.
4306 * Failure: An HRESULT error code indicating the error.
4309 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4310 * according to the following table:
4311 *| Input Type Output Type
4312 *| ---------- -----------
4317 *| All Others Unchanged (unless promoted)
4318 * - Where the negated value of a variant does not fit in its base type, the type
4319 * is promoted according to the following table:
4320 *| Input Type Promoted To
4321 *| ---------- -----------
4325 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4326 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4327 * for types which are not valid. Since this is in contravention of the
4328 * meaning of those error codes and unlikely to be relied on by applications,
4329 * this implementation returns errors consistent with the other high level
4330 * variant math functions.
4332 HRESULT WINAPI
VarNeg(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4334 HRESULT hRet
= S_OK
;
4336 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4337 debugstr_VF(pVarIn
), pVarOut
);
4339 V_VT(pVarOut
) = V_VT(pVarIn
);
4341 switch (V_VT(pVarIn
))
4344 V_VT(pVarOut
) = VT_I2
;
4345 V_I2(pVarOut
) = -V_UI1(pVarIn
);
4348 V_VT(pVarOut
) = VT_I2
;
4351 if (V_I2(pVarIn
) == I2_MIN
)
4353 V_VT(pVarOut
) = VT_I4
;
4354 V_I4(pVarOut
) = -(int)V_I2(pVarIn
);
4357 V_I2(pVarOut
) = -V_I2(pVarIn
);
4360 if (V_I4(pVarIn
) == I4_MIN
)
4362 V_VT(pVarOut
) = VT_R8
;
4363 V_R8(pVarOut
) = -(double)V_I4(pVarIn
);
4366 V_I4(pVarOut
) = -V_I4(pVarIn
);
4369 if (V_I8(pVarIn
) == I8_MIN
)
4371 V_VT(pVarOut
) = VT_R8
;
4372 hRet
= VarR8FromI8(V_I8(pVarIn
), &V_R8(pVarOut
));
4373 V_R8(pVarOut
) *= -1.0;
4376 V_I8(pVarOut
) = -V_I8(pVarIn
);
4379 V_R4(pVarOut
) = -V_R4(pVarIn
);
4383 V_R8(pVarOut
) = -V_R8(pVarIn
);
4386 hRet
= VarCyNeg(V_CY(pVarIn
), &V_CY(pVarOut
));
4389 hRet
= VarDecNeg(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4392 V_VT(pVarOut
) = VT_R8
;
4393 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4394 V_R8(pVarOut
) = -V_R8(pVarOut
);
4397 V_VT(pVarOut
) = VT_I2
;
4404 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4405 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4406 hRet
= DISP_E_BADVARTYPE
;
4408 hRet
= DISP_E_TYPEMISMATCH
;
4411 V_VT(pVarOut
) = VT_EMPTY
;
4416 /**********************************************************************
4417 * VarNot [OLEAUT32.174]
4419 * Perform a not operation on a variant.
4422 * pVarIn [I] Source variant
4423 * pVarOut [O] Destination for converted value
4426 * Success: S_OK. pVarOut contains the converted value.
4427 * Failure: An HRESULT error code indicating the error.
4430 * - Strictly speaking, this function performs a bitwise ones complement
4431 * on the variants value (after possibly converting to VT_I4, see below).
4432 * This only behaves like a boolean not operation if the value in
4433 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4434 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4435 * before calling this function.
4436 * - This function does not process by-reference variants.
4437 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4438 * according to the following table:
4439 *| Input Type Output Type
4440 *| ---------- -----------
4447 *| (All others) Unchanged
4449 HRESULT WINAPI
VarNot(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4452 HRESULT hRet
= S_OK
;
4454 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4455 debugstr_VF(pVarIn
), pVarOut
);
4457 V_VT(pVarOut
) = V_VT(pVarIn
);
4459 switch (V_VT(pVarIn
))
4462 V_I4(pVarOut
) = ~V_I1(pVarIn
);
4463 V_VT(pVarOut
) = VT_I4
;
4465 case VT_UI1
: V_UI1(pVarOut
) = ~V_UI1(pVarIn
); break;
4467 case VT_I2
: V_I2(pVarOut
) = ~V_I2(pVarIn
); break;
4469 V_I4(pVarOut
) = ~V_UI2(pVarIn
);
4470 V_VT(pVarOut
) = VT_I4
;
4473 hRet
= VarI4FromDec(&V_DECIMAL(pVarIn
), &V_I4(&varIn
));
4477 /* Fall through ... */
4479 V_VT(pVarOut
) = VT_I4
;
4480 /* Fall through ... */
4481 case VT_I4
: V_I4(pVarOut
) = ~V_I4(pVarIn
); break;
4484 V_I4(pVarOut
) = ~V_UI4(pVarIn
);
4485 V_VT(pVarOut
) = VT_I4
;
4487 case VT_I8
: V_I8(pVarOut
) = ~V_I8(pVarIn
); break;
4489 V_I4(pVarOut
) = ~V_UI8(pVarIn
);
4490 V_VT(pVarOut
) = VT_I4
;
4493 hRet
= VarI4FromR4(V_R4(pVarIn
), &V_I4(pVarOut
));
4494 V_I4(pVarOut
) = ~V_I4(pVarOut
);
4495 V_VT(pVarOut
) = VT_I4
;
4498 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
4502 /* Fall through ... */
4505 hRet
= VarI4FromR8(V_R8(pVarIn
), &V_I4(pVarOut
));
4506 V_I4(pVarOut
) = ~V_I4(pVarOut
);
4507 V_VT(pVarOut
) = VT_I4
;
4510 hRet
= VarI4FromCy(V_CY(pVarIn
), &V_I4(pVarOut
));
4511 V_I4(pVarOut
) = ~V_I4(pVarOut
);
4512 V_VT(pVarOut
) = VT_I4
;
4516 V_VT(pVarOut
) = VT_I2
;
4522 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4523 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4524 hRet
= DISP_E_BADVARTYPE
;
4526 hRet
= DISP_E_TYPEMISMATCH
;
4529 V_VT(pVarOut
) = VT_EMPTY
;
4534 /**********************************************************************
4535 * VarRound [OLEAUT32.175]
4537 * Perform a round operation on a variant.
4540 * pVarIn [I] Source variant
4541 * deci [I] Number of decimals to round to
4542 * pVarOut [O] Destination for converted value
4545 * Success: S_OK. pVarOut contains the converted value.
4546 * Failure: An HRESULT error code indicating the error.
4549 * - Floating point values are rounded to the desired number of decimals.
4550 * - Some integer types are just copied to the return variable.
4551 * - Some other integer types are not handled and fail.
4553 HRESULT WINAPI
VarRound(LPVARIANT pVarIn
, int deci
, LPVARIANT pVarOut
)
4556 HRESULT hRet
= S_OK
;
4559 TRACE("(%p->(%s%s),%d)\n", pVarIn
, debugstr_VT(pVarIn
), debugstr_VF(pVarIn
), deci
);
4561 switch (V_VT(pVarIn
))
4563 /* cases that fail on windows */
4568 hRet
= DISP_E_BADVARTYPE
;
4571 /* cases just copying in to out */
4573 V_VT(pVarOut
) = V_VT(pVarIn
);
4574 V_UI1(pVarOut
) = V_UI1(pVarIn
);
4577 V_VT(pVarOut
) = V_VT(pVarIn
);
4578 V_I2(pVarOut
) = V_I2(pVarIn
);
4581 V_VT(pVarOut
) = V_VT(pVarIn
);
4582 V_I4(pVarOut
) = V_I4(pVarIn
);
4585 V_VT(pVarOut
) = V_VT(pVarIn
);
4586 /* value unchanged */
4589 /* cases that change type */
4591 V_VT(pVarOut
) = VT_I2
;
4595 V_VT(pVarOut
) = VT_I2
;
4596 V_I2(pVarOut
) = V_BOOL(pVarIn
);
4599 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
4604 /* Fall through ... */
4606 /* cases we need to do math */
4608 if (V_R8(pVarIn
)>0) {
4609 V_R8(pVarOut
)=floor(V_R8(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
4611 V_R8(pVarOut
)=ceil(V_R8(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
4613 V_VT(pVarOut
) = V_VT(pVarIn
);
4616 if (V_R4(pVarIn
)>0) {
4617 V_R4(pVarOut
)=floor(V_R4(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
4619 V_R4(pVarOut
)=ceil(V_R4(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
4621 V_VT(pVarOut
) = V_VT(pVarIn
);
4624 if (V_DATE(pVarIn
)>0) {
4625 V_DATE(pVarOut
)=floor(V_DATE(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
4627 V_DATE(pVarOut
)=ceil(V_DATE(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
4629 V_VT(pVarOut
) = V_VT(pVarIn
);
4635 factor
=pow(10, 4-deci
);
4637 if (V_CY(pVarIn
).int64
>0) {
4638 V_CY(pVarOut
).int64
=floor(V_CY(pVarIn
).int64
/factor
)*factor
;
4640 V_CY(pVarOut
).int64
=ceil(V_CY(pVarIn
).int64
/factor
)*factor
;
4642 V_VT(pVarOut
) = V_VT(pVarIn
);
4645 /* cases we don't know yet */
4647 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
4648 V_VT(pVarIn
) & VT_TYPEMASK
, deci
);
4649 hRet
= DISP_E_BADVARTYPE
;
4653 V_VT(pVarOut
) = VT_EMPTY
;
4655 TRACE("returning 0x%08lx (%s%s),%f\n", hRet
, debugstr_VT(pVarOut
),
4656 debugstr_VF(pVarOut
), (V_VT(pVarOut
) == VT_R4
) ? V_R4(pVarOut
) :
4657 (V_VT(pVarOut
) == VT_R8
) ? V_R8(pVarOut
) : 0);
4662 /**********************************************************************
4663 * VarIdiv [OLEAUT32.153]
4665 * Converts input variants to integers and divides them.
4668 * left [I] Left hand variant
4669 * right [I] Right hand variant
4670 * result [O] Destination for quotient
4673 * Success: S_OK. result contains the quotient.
4674 * Failure: An HRESULT error code indicating the error.
4677 * If either expression is null, null is returned, as per MSDN
4679 HRESULT WINAPI
VarIdiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
4687 if ((V_VT(left
) == VT_NULL
) || (V_VT(right
) == VT_NULL
)) {
4688 hr
= VariantChangeType(result
, result
, 0, VT_NULL
);
4690 /* This should never happen */
4691 FIXME("Failed to convert return value to VT_NULL.\n");
4697 hr
= VariantChangeType(&lv
, left
, 0, VT_I4
);
4701 hr
= VariantChangeType(&rv
, right
, 0, VT_I4
);
4706 hr
= VarDiv(&lv
, &rv
, result
);
4711 /**********************************************************************
4712 * VarMod [OLEAUT32.155]
4714 * Perform the modulus operation of the right hand variant on the left
4717 * left [I] Left hand variant
4718 * right [I] Right hand variant
4719 * result [O] Destination for converted value
4722 * Success: S_OK. result contains the remainder.
4723 * Failure: An HRESULT error code indicating the error.
4726 * If an error occurs the type of result will be modified but the value will not be.
4727 * Doesn't support arrays or any special flags yet.
4729 HRESULT WINAPI
VarMod(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
4733 HRESULT rc
= E_FAIL
;
4740 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
4741 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
4743 /* check for invalid inputs */
4745 switch (V_VT(left
) & VT_TYPEMASK
) {
4766 V_VT(result
) = VT_EMPTY
;
4767 return DISP_E_TYPEMISMATCH
;
4769 V_VT(result
) = VT_EMPTY
;
4770 return E_INVALIDARG
;
4772 return DISP_E_TYPEMISMATCH
;
4774 V_VT(result
) = VT_EMPTY
;
4775 return DISP_E_TYPEMISMATCH
;
4779 V_VT(result
) = VT_EMPTY
;
4780 return DISP_E_BADVARTYPE
;
4785 switch (V_VT(right
) & VT_TYPEMASK
) {
4791 if((V_VT(left
) == VT_INT
) && (V_VT(right
) == VT_I8
))
4793 V_VT(result
) = VT_EMPTY
;
4794 return DISP_E_TYPEMISMATCH
;
4797 if((V_VT(right
) == VT_INT
) && (V_VT(left
) == VT_I8
))
4799 V_VT(result
) = VT_EMPTY
;
4800 return DISP_E_TYPEMISMATCH
;
4810 if(V_VT(left
) == VT_EMPTY
)
4812 V_VT(result
) = VT_I4
;
4818 if(V_VT(left
) == VT_NULL
)
4820 V_VT(result
) = VT_NULL
;
4826 V_VT(result
) = VT_EMPTY
;
4827 return DISP_E_BADVARTYPE
;
4829 if(V_VT(left
) == VT_VOID
)
4831 V_VT(result
) = VT_EMPTY
;
4832 return DISP_E_BADVARTYPE
;
4833 } else if((V_VT(left
) == VT_NULL
) || (V_VT(left
) == VT_EMPTY
) || (V_VT(left
) == VT_ERROR
) ||
4836 V_VT(result
) = VT_NULL
;
4840 V_VT(result
) = VT_NULL
;
4841 return DISP_E_BADVARTYPE
;
4845 V_VT(result
) = VT_EMPTY
;
4846 return DISP_E_TYPEMISMATCH
;
4848 if(V_VT(left
) == VT_ERROR
)
4850 V_VT(result
) = VT_EMPTY
;
4851 return DISP_E_TYPEMISMATCH
;
4854 V_VT(result
) = VT_EMPTY
;
4855 return E_INVALIDARG
;
4858 return DISP_E_TYPEMISMATCH
;
4860 if((V_VT(left
) == 15) || ((V_VT(left
) >= 24) && (V_VT(left
) <= 35)) || !lOk
)
4862 V_VT(result
) = VT_EMPTY
;
4863 return DISP_E_BADVARTYPE
;
4866 V_VT(result
) = VT_EMPTY
;
4867 return DISP_E_TYPEMISMATCH
;
4870 V_VT(result
) = VT_EMPTY
;
4871 return DISP_E_BADVARTYPE
;
4874 /* determine the result type */
4875 if((V_VT(left
) == VT_I8
) || (V_VT(right
) == VT_I8
)) resT
= VT_I8
;
4876 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
4877 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_UI1
)) resT
= VT_UI1
;
4878 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
4879 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
4880 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
4881 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
4882 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
4883 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
4884 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
4885 else resT
= VT_I4
; /* most outputs are I4 */
4887 /* convert to I8 for the modulo */
4888 rc
= VariantChangeType(&lv
, left
, 0, VT_I8
);
4891 FIXME("Could not convert left type %d to %d? rc == 0x%lX\n", V_VT(left
), VT_I8
, rc
);
4895 rc
= VariantChangeType(&rv
, right
, 0, VT_I8
);
4898 FIXME("Could not convert right type %d to %d? rc == 0x%lX\n", V_VT(right
), VT_I8
, rc
);
4902 /* if right is zero set VT_EMPTY and return divide by zero */
4905 V_VT(result
) = VT_EMPTY
;
4906 return DISP_E_DIVBYZERO
;
4909 /* perform the modulo operation */
4910 V_VT(result
) = VT_I8
;
4911 V_I8(result
) = V_I8(&lv
) % V_I8(&rv
);
4913 TRACE("V_I8(left) == %ld, V_I8(right) == %ld, V_I8(result) == %ld\n", (long)V_I8(&lv
), (long)V_I8(&rv
), (long)V_I8(result
));
4915 /* convert left and right to the destination type */
4916 rc
= VariantChangeType(result
, result
, 0, resT
);
4919 FIXME("Could not convert 0x%x to %d?\n", V_VT(result
), resT
);
4926 /**********************************************************************
4927 * VarPow [OLEAUT32.158]
4929 * Computes the power of one variant to another variant.
4932 * left [I] First variant
4933 * right [I] Second variant
4934 * result [O] Result variant
4938 * Failure: An HRESULT error code indicating the error.
4940 HRESULT WINAPI
VarPow(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
4945 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
), debugstr_VF(left
),
4946 right
, debugstr_VT(right
), debugstr_VF(right
), result
);
4948 hr
= VariantChangeType(&dl
,left
,0,VT_R8
);
4949 if (!SUCCEEDED(hr
)) {
4950 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
4953 hr
= VariantChangeType(&dr
,right
,0,VT_R8
);
4954 if (!SUCCEEDED(hr
)) {
4955 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
4958 V_VT(result
) = VT_R8
;
4959 V_R8(result
) = pow(V_R8(&dl
),V_R8(&dr
));