oleaut32: Fix parsing of hex numbers with 'e' in the string by moving
[wine/wine64.git] / dlls / oleaut32 / variant.c
blob5ea767fa4fa2fb37d76b68081a3edfc756716493
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
8 * The alorithm for conversion from Julian days to day/month/year is based on
9 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
10 * Copyright 1994-7 Regents of the University of California
12 * This library is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
17 * This library is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with this library; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
27 #include "config.h"
29 #include <string.h>
30 #include <stdlib.h>
31 #include <stdarg.h>
33 #define COBJMACROS
34 #define NONAMELESSUNION
35 #define NONAMELESSSTRUCT
37 #include "windef.h"
38 #include "winbase.h"
39 #include "wine/unicode.h"
40 #include "winerror.h"
41 #include "variant.h"
42 #include "wine/debug.h"
44 WINE_DEFAULT_DEBUG_CHANNEL(variant);
46 const char* wine_vtypes[VT_CLSID+1] =
48 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
49 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
50 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
51 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
52 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
53 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
54 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
55 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
56 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
59 const char* wine_vflags[16] =
61 "",
62 "|VT_VECTOR",
63 "|VT_ARRAY",
64 "|VT_VECTOR|VT_ARRAY",
65 "|VT_BYREF",
66 "|VT_VECTOR|VT_ARRAY",
67 "|VT_ARRAY|VT_BYREF",
68 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
69 "|VT_HARDTYPE",
70 "|VT_VECTOR|VT_HARDTYPE",
71 "|VT_ARRAY|VT_HARDTYPE",
72 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
73 "|VT_BYREF|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
75 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
76 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
79 /* Convert a variant from one type to another */
80 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
81 VARIANTARG* ps, VARTYPE vt)
83 HRESULT res = DISP_E_TYPEMISMATCH;
84 VARTYPE vtFrom = V_TYPE(ps);
85 DWORD dwFlags = 0;
87 TRACE("(%p->(%s%s),0x%08lx,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
88 debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
89 debugstr_vt(vt), debugstr_vf(vt));
91 if (vt == VT_BSTR || vtFrom == VT_BSTR)
93 /* All flags passed to low level function are only used for
94 * changing to or from strings. Map these here.
96 if (wFlags & VARIANT_LOCALBOOL)
97 dwFlags |= VAR_LOCALBOOL;
98 if (wFlags & VARIANT_CALENDAR_HIJRI)
99 dwFlags |= VAR_CALENDAR_HIJRI;
100 if (wFlags & VARIANT_CALENDAR_THAI)
101 dwFlags |= VAR_CALENDAR_THAI;
102 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
103 dwFlags |= VAR_CALENDAR_GREGORIAN;
104 if (wFlags & VARIANT_NOUSEROVERRIDE)
105 dwFlags |= LOCALE_NOUSEROVERRIDE;
106 if (wFlags & VARIANT_USE_NLS)
107 dwFlags |= LOCALE_USE_NLS;
110 /* Map int/uint to i4/ui4 */
111 if (vt == VT_INT)
112 vt = VT_I4;
113 else if (vt == VT_UINT)
114 vt = VT_UI4;
116 if (vtFrom == VT_INT)
117 vtFrom = VT_I4;
118 else if (vtFrom == VT_UINT)
119 vtFrom = VT_UI4;
121 if (vt == vtFrom)
122 return VariantCopy(pd, ps);
124 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
126 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
127 * accessing the default object property.
129 return DISP_E_TYPEMISMATCH;
132 switch (vt)
134 case VT_EMPTY:
135 if (vtFrom == VT_NULL)
136 return DISP_E_TYPEMISMATCH;
137 /* ... Fall through */
138 case VT_NULL:
139 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
141 res = VariantClear( pd );
142 if (vt == VT_NULL && SUCCEEDED(res))
143 V_VT(pd) = VT_NULL;
145 return res;
147 case VT_I1:
148 switch (vtFrom)
150 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
151 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
152 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
153 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
154 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
155 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
156 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
157 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
158 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
159 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
160 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
161 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
162 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
163 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
164 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
165 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
167 break;
169 case VT_I2:
170 switch (vtFrom)
172 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
173 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
174 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
175 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
176 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
177 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
178 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
179 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
180 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
181 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
182 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
183 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
184 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
185 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
186 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
187 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
189 break;
191 case VT_I4:
192 switch (vtFrom)
194 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
195 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
196 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
197 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
198 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
199 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
200 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
201 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
202 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
203 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
204 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
205 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
206 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
207 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
208 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
209 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
211 break;
213 case VT_UI1:
214 switch (vtFrom)
216 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
217 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
218 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
219 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
220 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
221 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
222 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
223 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
224 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
225 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
226 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
227 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
228 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
229 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
230 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
231 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
233 break;
235 case VT_UI2:
236 switch (vtFrom)
238 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
239 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
240 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
241 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
242 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
243 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
244 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
245 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
246 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
247 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
248 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
249 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
250 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
251 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
252 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
253 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
255 break;
257 case VT_UI4:
258 switch (vtFrom)
260 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
261 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
262 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
263 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
264 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
265 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
266 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
267 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
268 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
269 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
270 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
271 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
272 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
273 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
274 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
275 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
277 break;
279 case VT_UI8:
280 switch (vtFrom)
282 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
283 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
284 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
285 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
286 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
287 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
288 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
289 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
290 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
291 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
292 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
293 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
294 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
295 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
296 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
297 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
299 break;
301 case VT_I8:
302 switch (vtFrom)
304 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
305 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
306 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
307 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
308 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
309 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
310 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
311 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
312 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
313 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
314 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
315 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
316 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
317 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
318 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
319 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
321 break;
323 case VT_R4:
324 switch (vtFrom)
326 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
327 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
328 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
329 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
330 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
331 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
332 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
333 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
334 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
335 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
336 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
337 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
338 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
339 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
340 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
341 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
343 break;
345 case VT_R8:
346 switch (vtFrom)
348 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
349 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
350 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
351 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
352 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
353 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
354 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
355 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
356 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
357 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
358 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
359 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
360 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
361 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
362 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
363 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
365 break;
367 case VT_DATE:
368 switch (vtFrom)
370 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
371 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
372 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
373 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
374 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
375 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
376 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
377 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
378 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
379 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
380 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
381 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
382 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
383 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
384 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
385 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
387 break;
389 case VT_BOOL:
390 switch (vtFrom)
392 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
393 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
394 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
395 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
396 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
397 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
398 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
399 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
400 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
401 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
402 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
403 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
404 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
405 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
406 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
407 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
409 break;
411 case VT_BSTR:
412 switch (vtFrom)
414 case VT_EMPTY:
415 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
416 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
417 case VT_BOOL:
418 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
419 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
420 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
421 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
422 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
423 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
424 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
425 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
426 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
427 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
428 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
429 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
430 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
431 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
432 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
434 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
436 break;
438 case VT_CY:
439 switch (vtFrom)
441 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
442 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
443 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
444 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
445 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
446 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
447 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
448 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
449 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
450 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
451 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
452 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
453 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
454 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
455 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
456 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
458 break;
460 case VT_DECIMAL:
461 switch (vtFrom)
463 case VT_EMPTY:
464 case VT_BOOL:
465 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
466 DEC_HI32(&V_DECIMAL(pd)) = 0;
467 DEC_MID32(&V_DECIMAL(pd)) = 0;
468 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
469 * VT_NULL and VT_EMPTY always give a 0 value.
471 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
472 return S_OK;
473 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
474 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
475 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
476 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
477 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
478 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
479 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
480 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
481 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
482 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
483 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
484 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
485 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
486 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
488 break;
490 case VT_UNKNOWN:
491 switch (vtFrom)
493 case VT_DISPATCH:
494 if (V_DISPATCH(ps) == NULL)
495 V_UNKNOWN(pd) = NULL;
496 else
497 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
498 break;
500 break;
502 case VT_DISPATCH:
503 switch (vtFrom)
505 case VT_UNKNOWN:
506 if (V_UNKNOWN(ps) == NULL)
507 V_DISPATCH(pd) = NULL;
508 else
509 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
510 break;
512 break;
514 case VT_RECORD:
515 break;
517 return res;
520 /* Coerce to/from an array */
521 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
523 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
524 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
526 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
527 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps));
529 if (V_VT(ps) == vt)
530 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
532 return DISP_E_TYPEMISMATCH;
535 /******************************************************************************
536 * Check if a variants type is valid.
538 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
540 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
542 vt &= VT_TYPEMASK;
544 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
546 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
548 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
549 return DISP_E_BADVARTYPE;
550 if (vt != (VARTYPE)15)
551 return S_OK;
554 return DISP_E_BADVARTYPE;
557 /******************************************************************************
558 * VariantInit [OLEAUT32.8]
560 * Initialise a variant.
562 * PARAMS
563 * pVarg [O] Variant to initialise
565 * RETURNS
566 * Nothing.
568 * NOTES
569 * This function simply sets the type of the variant to VT_EMPTY. It does not
570 * free any existing value, use VariantClear() for that.
572 void WINAPI VariantInit(VARIANTARG* pVarg)
574 TRACE("(%p)\n", pVarg);
576 V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
579 /******************************************************************************
580 * VariantClear [OLEAUT32.9]
582 * Clear a variant.
584 * PARAMS
585 * pVarg [I/O] Variant to clear
587 * RETURNS
588 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
589 * Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type.
591 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
593 HRESULT hres = S_OK;
595 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
597 hres = VARIANT_ValidateType(V_VT(pVarg));
599 if (SUCCEEDED(hres))
601 if (!V_ISBYREF(pVarg))
603 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
605 if (V_ARRAY(pVarg))
606 hres = SafeArrayDestroy(V_ARRAY(pVarg));
608 else if (V_VT(pVarg) == VT_BSTR)
610 if (V_BSTR(pVarg))
611 SysFreeString(V_BSTR(pVarg));
613 else if (V_VT(pVarg) == VT_RECORD)
615 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
616 if (pBr->pRecInfo)
618 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
619 IRecordInfo_Release(pBr->pRecInfo);
622 else if (V_VT(pVarg) == VT_DISPATCH ||
623 V_VT(pVarg) == VT_UNKNOWN)
625 if (V_UNKNOWN(pVarg))
626 IUnknown_Release(V_UNKNOWN(pVarg));
629 V_VT(pVarg) = VT_EMPTY;
631 return hres;
634 /******************************************************************************
635 * Copy an IRecordInfo object contained in a variant.
637 static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
639 HRESULT hres = S_OK;
641 if (pBr->pRecInfo)
643 ULONG ulSize;
645 hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
646 if (SUCCEEDED(hres))
648 PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
649 if (!pvRecord)
650 hres = E_OUTOFMEMORY;
651 else
653 memcpy(pvRecord, pBr->pvRecord, ulSize);
654 pBr->pvRecord = pvRecord;
656 hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
657 if (SUCCEEDED(hres))
658 IRecordInfo_AddRef(pBr->pRecInfo);
662 else if (pBr->pvRecord)
663 hres = E_INVALIDARG;
664 return hres;
667 /******************************************************************************
668 * VariantCopy [OLEAUT32.10]
670 * Copy a variant.
672 * PARAMS
673 * pvargDest [O] Destination for copy
674 * pvargSrc [I] Source variant to copy
676 * RETURNS
677 * Success: S_OK. pvargDest contains a copy of pvargSrc.
678 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
679 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
680 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
681 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
683 * NOTES
684 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
685 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
686 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
687 * fails, so does this function.
688 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
689 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
690 * is copied rather than just any pointers to it.
691 * - For by-value object types the object pointer is copied and the objects
692 * reference count increased using IUnknown_AddRef().
693 * - For all by-reference types, only the referencing pointer is copied.
695 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
697 HRESULT hres = S_OK;
699 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
700 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
701 debugstr_VF(pvargSrc));
703 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
704 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
705 return DISP_E_BADVARTYPE;
707 if (pvargSrc != pvargDest &&
708 SUCCEEDED(hres = VariantClear(pvargDest)))
710 *pvargDest = *pvargSrc; /* Shallow copy the value */
712 if (!V_ISBYREF(pvargSrc))
714 if (V_ISARRAY(pvargSrc))
716 if (V_ARRAY(pvargSrc))
717 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
719 else if (V_VT(pvargSrc) == VT_BSTR)
721 if (V_BSTR(pvargSrc))
723 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
724 if (!V_BSTR(pvargDest))
726 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc)));
727 hres = E_OUTOFMEMORY;
731 else if (V_VT(pvargSrc) == VT_RECORD)
733 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
735 else if (V_VT(pvargSrc) == VT_DISPATCH ||
736 V_VT(pvargSrc) == VT_UNKNOWN)
738 if (V_UNKNOWN(pvargSrc))
739 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
743 return hres;
746 /* Return the byte size of a variants data */
747 static inline size_t VARIANT_DataSize(const VARIANT* pv)
749 switch (V_TYPE(pv))
751 case VT_I1:
752 case VT_UI1: return sizeof(BYTE);
753 case VT_I2:
754 case VT_UI2: return sizeof(SHORT);
755 case VT_INT:
756 case VT_UINT:
757 case VT_I4:
758 case VT_UI4: return sizeof(LONG);
759 case VT_I8:
760 case VT_UI8: return sizeof(LONGLONG);
761 case VT_R4: return sizeof(float);
762 case VT_R8: return sizeof(double);
763 case VT_DATE: return sizeof(DATE);
764 case VT_BOOL: return sizeof(VARIANT_BOOL);
765 case VT_DISPATCH:
766 case VT_UNKNOWN:
767 case VT_BSTR: return sizeof(void*);
768 case VT_CY: return sizeof(CY);
769 case VT_ERROR: return sizeof(SCODE);
771 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
772 return 0;
775 /******************************************************************************
776 * VariantCopyInd [OLEAUT32.11]
778 * Copy a variant, dereferencing it it is by-reference.
780 * PARAMS
781 * pvargDest [O] Destination for copy
782 * pvargSrc [I] Source variant to copy
784 * RETURNS
785 * Success: S_OK. pvargDest contains a copy of pvargSrc.
786 * Failure: An HRESULT error code indicating the error.
788 * NOTES
789 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
790 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
791 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
792 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
793 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
795 * NOTES
796 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
797 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
798 * value.
799 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
800 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
801 * to it. If clearing pvargDest fails, so does this function.
803 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
805 VARIANTARG vTmp, *pSrc = pvargSrc;
806 VARTYPE vt;
807 HRESULT hres = S_OK;
809 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
810 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
811 debugstr_VF(pvargSrc));
813 if (!V_ISBYREF(pvargSrc))
814 return VariantCopy(pvargDest, pvargSrc);
816 /* Argument checking is more lax than VariantCopy()... */
817 vt = V_TYPE(pvargSrc);
818 if (V_ISARRAY(pvargSrc) ||
819 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
820 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
822 /* OK */
824 else
825 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
827 if (pvargSrc == pvargDest)
829 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
830 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
832 vTmp = *pvargSrc;
833 pSrc = &vTmp;
834 V_VT(pvargDest) = VT_EMPTY;
836 else
838 /* Copy into another variant. Free the variant in pvargDest */
839 if (FAILED(hres = VariantClear(pvargDest)))
841 TRACE("VariantClear() of destination failed\n");
842 return hres;
846 if (V_ISARRAY(pSrc))
848 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
849 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
851 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
853 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
854 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
856 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
858 V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
859 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
861 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
862 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
864 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
865 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
866 if (*V_UNKNOWNREF(pSrc))
867 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
869 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
871 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
872 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
873 hres = E_INVALIDARG; /* Don't dereference more than one level */
874 else
875 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
877 /* Use the dereferenced variants type value, not VT_VARIANT */
878 goto VariantCopyInd_Return;
880 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
882 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
883 sizeof(DECIMAL) - sizeof(USHORT));
885 else
887 /* Copy the pointed to data into this variant */
888 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
891 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
893 VariantCopyInd_Return:
895 if (pSrc != pvargSrc)
896 VariantClear(pSrc);
898 TRACE("returning 0x%08lx, %p->(%s%s)\n", hres, pvargDest,
899 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
900 return hres;
903 /******************************************************************************
904 * VariantChangeType [OLEAUT32.12]
906 * Change the type of a variant.
908 * PARAMS
909 * pvargDest [O] Destination for the converted variant
910 * pvargSrc [O] Source variant to change the type of
911 * wFlags [I] VARIANT_ flags from "oleauto.h"
912 * vt [I] Variant type to change pvargSrc into
914 * RETURNS
915 * Success: S_OK. pvargDest contains the converted value.
916 * Failure: An HRESULT error code describing the failure.
918 * NOTES
919 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
920 * See VariantChangeTypeEx.
922 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
923 USHORT wFlags, VARTYPE vt)
925 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
928 /******************************************************************************
929 * VariantChangeTypeEx [OLEAUT32.147]
931 * Change the type of a variant.
933 * PARAMS
934 * pvargDest [O] Destination for the converted variant
935 * pvargSrc [O] Source variant to change the type of
936 * lcid [I] LCID for the conversion
937 * wFlags [I] VARIANT_ flags from "oleauto.h"
938 * vt [I] Variant type to change pvargSrc into
940 * RETURNS
941 * Success: S_OK. pvargDest contains the converted value.
942 * Failure: An HRESULT error code describing the failure.
944 * NOTES
945 * pvargDest and pvargSrc can point to the same variant to perform an in-place
946 * conversion. If the conversion is successful, pvargSrc will be freed.
948 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
949 LCID lcid, USHORT wFlags, VARTYPE vt)
951 HRESULT res = S_OK;
953 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%04x,%s%s)\n", pvargDest,
954 debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
955 debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
956 debugstr_vt(vt), debugstr_vf(vt));
958 if (vt == VT_CLSID)
959 res = DISP_E_BADVARTYPE;
960 else
962 res = VARIANT_ValidateType(V_VT(pvargSrc));
964 if (SUCCEEDED(res))
966 res = VARIANT_ValidateType(vt);
968 if (SUCCEEDED(res))
970 VARIANTARG vTmp, vSrcDeref;
972 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
973 res = DISP_E_TYPEMISMATCH;
974 else
976 V_VT(&vTmp) = VT_EMPTY;
977 V_VT(&vSrcDeref) = VT_EMPTY;
978 VariantClear(&vTmp);
979 VariantClear(&vSrcDeref);
982 if (SUCCEEDED(res))
984 res = VariantCopyInd(&vSrcDeref, pvargSrc);
985 if (SUCCEEDED(res))
987 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
988 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
989 else
990 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
992 if (SUCCEEDED(res)) {
993 V_VT(&vTmp) = vt;
994 VariantCopy(pvargDest, &vTmp);
996 VariantClear(&vTmp);
997 VariantClear(&vSrcDeref);
1004 TRACE("returning 0x%08lx, %p->(%s%s)\n", res, pvargDest,
1005 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
1006 return res;
1009 /* Date Conversions */
1011 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1013 /* Convert a VT_DATE value to a Julian Date */
1014 static inline int VARIANT_JulianFromDate(int dateIn)
1016 int julianDays = dateIn;
1018 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1019 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1020 return julianDays;
1023 /* Convert a Julian Date to a VT_DATE value */
1024 static inline int VARIANT_DateFromJulian(int dateIn)
1026 int julianDays = dateIn;
1028 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1029 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1030 return julianDays;
1033 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1034 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1036 int j, i, l, n;
1038 l = jd + 68569;
1039 n = l * 4 / 146097;
1040 l -= (n * 146097 + 3) / 4;
1041 i = (4000 * (l + 1)) / 1461001;
1042 l += 31 - (i * 1461) / 4;
1043 j = (l * 80) / 2447;
1044 *day = l - (j * 2447) / 80;
1045 l = j / 11;
1046 *month = (j + 2) - (12 * l);
1047 *year = 100 * (n - 49) + i + l;
1050 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1051 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1053 int m12 = (month - 14) / 12;
1055 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1056 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1059 /* Macros for accessing DOS format date/time fields */
1060 #define DOS_YEAR(x) (1980 + (x >> 9))
1061 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1062 #define DOS_DAY(x) (x & 0x1f)
1063 #define DOS_HOUR(x) (x >> 11)
1064 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1065 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1066 /* Create a DOS format date/time */
1067 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1068 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1070 /* Roll a date forwards or backwards to correct it */
1071 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1073 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1075 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1076 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1078 /* Years < 100 are treated as 1900 + year */
1079 if (lpUd->st.wYear < 100)
1080 lpUd->st.wYear += 1900;
1082 if (!lpUd->st.wMonth)
1084 /* Roll back to December of the previous year */
1085 lpUd->st.wMonth = 12;
1086 lpUd->st.wYear--;
1088 else while (lpUd->st.wMonth > 12)
1090 /* Roll forward the correct number of months */
1091 lpUd->st.wYear++;
1092 lpUd->st.wMonth -= 12;
1095 if (lpUd->st.wYear > 9999 || lpUd->st.wHour > 23 ||
1096 lpUd->st.wMinute > 59 || lpUd->st.wSecond > 59)
1097 return E_INVALIDARG; /* Invalid values */
1099 if (!lpUd->st.wDay)
1101 /* Roll back the date one day */
1102 if (lpUd->st.wMonth == 1)
1104 /* Roll back to December 31 of the previous year */
1105 lpUd->st.wDay = 31;
1106 lpUd->st.wMonth = 12;
1107 lpUd->st.wYear--;
1109 else
1111 lpUd->st.wMonth--; /* Previous month */
1112 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1113 lpUd->st.wDay = 29; /* Februaury has 29 days on leap years */
1114 else
1115 lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */
1118 else if (lpUd->st.wDay > 28)
1120 int rollForward = 0;
1122 /* Possibly need to roll the date forward */
1123 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1124 rollForward = lpUd->st.wDay - 29; /* Februaury has 29 days on leap years */
1125 else
1126 rollForward = lpUd->st.wDay - days[lpUd->st.wMonth];
1128 if (rollForward > 0)
1130 lpUd->st.wDay = rollForward;
1131 lpUd->st.wMonth++;
1132 if (lpUd->st.wMonth > 12)
1134 lpUd->st.wMonth = 1; /* Roll forward into January of the next year */
1135 lpUd->st.wYear++;
1139 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1140 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1141 return S_OK;
1144 /**********************************************************************
1145 * DosDateTimeToVariantTime [OLEAUT32.14]
1147 * Convert a Dos format date and time into variant VT_DATE format.
1149 * PARAMS
1150 * wDosDate [I] Dos format date
1151 * wDosTime [I] Dos format time
1152 * pDateOut [O] Destination for VT_DATE format
1154 * RETURNS
1155 * Success: TRUE. pDateOut contains the converted time.
1156 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1158 * NOTES
1159 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1160 * - Dos format times are accurate to only 2 second precision.
1161 * - The format of a Dos Date is:
1162 *| Bits Values Meaning
1163 *| ---- ------ -------
1164 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1165 *| the days in the month rolls forward the extra days.
1166 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1167 *| year. 13-15 are invalid.
1168 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1169 * - The format of a Dos Time is:
1170 *| Bits Values Meaning
1171 *| ---- ------ -------
1172 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1173 *| 5-10 0-59 Minutes. 60-63 are invalid.
1174 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1176 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1177 double *pDateOut)
1179 UDATE ud;
1181 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1182 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1183 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1184 pDateOut);
1186 ud.st.wYear = DOS_YEAR(wDosDate);
1187 ud.st.wMonth = DOS_MONTH(wDosDate);
1188 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1189 return FALSE;
1190 ud.st.wDay = DOS_DAY(wDosDate);
1191 ud.st.wHour = DOS_HOUR(wDosTime);
1192 ud.st.wMinute = DOS_MINUTE(wDosTime);
1193 ud.st.wSecond = DOS_SECOND(wDosTime);
1194 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1196 return !VarDateFromUdate(&ud, 0, pDateOut);
1199 /**********************************************************************
1200 * VariantTimeToDosDateTime [OLEAUT32.13]
1202 * Convert a variant format date into a Dos format date and time.
1204 * dateIn [I] VT_DATE time format
1205 * pwDosDate [O] Destination for Dos format date
1206 * pwDosTime [O] Destination for Dos format time
1208 * RETURNS
1209 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1210 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1212 * NOTES
1213 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1215 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1217 UDATE ud;
1219 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1221 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1222 return FALSE;
1224 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1225 return FALSE;
1227 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1228 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1230 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1231 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1232 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1233 return TRUE;
1236 /***********************************************************************
1237 * SystemTimeToVariantTime [OLEAUT32.184]
1239 * Convert a System format date and time into variant VT_DATE format.
1241 * PARAMS
1242 * lpSt [I] System format date and time
1243 * pDateOut [O] Destination for VT_DATE format date
1245 * RETURNS
1246 * Success: TRUE. *pDateOut contains the converted value.
1247 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1249 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1251 UDATE ud;
1253 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1254 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1256 if (lpSt->wMonth > 12)
1257 return FALSE;
1259 memcpy(&ud.st, lpSt, sizeof(ud.st));
1260 return !VarDateFromUdate(&ud, 0, pDateOut);
1263 /***********************************************************************
1264 * VariantTimeToSystemTime [OLEAUT32.185]
1266 * Convert a variant VT_DATE into a System format date and time.
1268 * PARAMS
1269 * datein [I] Variant VT_DATE format date
1270 * lpSt [O] Destination for System format date and time
1272 * RETURNS
1273 * Success: TRUE. *lpSt contains the converted value.
1274 * Failure: FALSE, if dateIn is too large or small.
1276 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1278 UDATE ud;
1280 TRACE("(%g,%p)\n", dateIn, lpSt);
1282 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1283 return FALSE;
1285 memcpy(lpSt, &ud.st, sizeof(ud.st));
1286 return TRUE;
1289 /***********************************************************************
1290 * VarDateFromUdateEx [OLEAUT32.319]
1292 * Convert an unpacked format date and time to a variant VT_DATE.
1294 * PARAMS
1295 * pUdateIn [I] Unpacked format date and time to convert
1296 * lcid [I] Locale identifier for the conversion
1297 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1298 * pDateOut [O] Destination for variant VT_DATE.
1300 * RETURNS
1301 * Success: S_OK. *pDateOut contains the converted value.
1302 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1304 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1306 UDATE ud;
1307 double dateVal;
1309 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08lx,0x%08lx,%p)\n", pUdateIn,
1310 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1311 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1312 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1313 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1315 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1316 FIXME("lcid possibly not handled, treating as en-us\n");
1318 memcpy(&ud, pUdateIn, sizeof(ud));
1320 if (dwFlags & VAR_VALIDDATE)
1321 WARN("Ignoring VAR_VALIDDATE\n");
1323 if (FAILED(VARIANT_RollUdate(&ud)))
1324 return E_INVALIDARG;
1326 /* Date */
1327 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1329 /* Time */
1330 dateVal += ud.st.wHour / 24.0;
1331 dateVal += ud.st.wMinute / 1440.0;
1332 dateVal += ud.st.wSecond / 86400.0;
1333 dateVal += ud.st.wMilliseconds / 86400000.0;
1335 TRACE("Returning %g\n", dateVal);
1336 *pDateOut = dateVal;
1337 return S_OK;
1340 /***********************************************************************
1341 * VarDateFromUdate [OLEAUT32.330]
1343 * Convert an unpacked format date and time to a variant VT_DATE.
1345 * PARAMS
1346 * pUdateIn [I] Unpacked format date and time to convert
1347 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1348 * pDateOut [O] Destination for variant VT_DATE.
1350 * RETURNS
1351 * Success: S_OK. *pDateOut contains the converted value.
1352 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1354 * NOTES
1355 * This function uses the United States English locale for the conversion. Use
1356 * VarDateFromUdateEx() for alternate locales.
1358 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1360 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1362 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1365 /***********************************************************************
1366 * VarUdateFromDate [OLEAUT32.331]
1368 * Convert a variant VT_DATE into an unpacked format date and time.
1370 * PARAMS
1371 * datein [I] Variant VT_DATE format date
1372 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1373 * lpUdate [O] Destination for unpacked format date and time
1375 * RETURNS
1376 * Success: S_OK. *lpUdate contains the converted value.
1377 * Failure: E_INVALIDARG, if dateIn is too large or small.
1379 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1381 /* Cumulative totals of days per month */
1382 static const USHORT cumulativeDays[] =
1384 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1386 double datePart, timePart;
1387 int julianDays;
1389 TRACE("(%g,0x%08lx,%p)\n", dateIn, dwFlags, lpUdate);
1391 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1392 return E_INVALIDARG;
1394 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1395 /* Compensate for int truncation (always downwards) */
1396 timePart = dateIn - datePart + 0.00000000001;
1397 if (timePart >= 1.0)
1398 timePart -= 0.00000000001;
1400 /* Date */
1401 julianDays = VARIANT_JulianFromDate(dateIn);
1402 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1403 &lpUdate->st.wDay);
1405 datePart = (datePart + 1.5) / 7.0;
1406 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1407 if (lpUdate->st.wDayOfWeek == 0)
1408 lpUdate->st.wDayOfWeek = 5;
1409 else if (lpUdate->st.wDayOfWeek == 1)
1410 lpUdate->st.wDayOfWeek = 6;
1411 else
1412 lpUdate->st.wDayOfWeek -= 2;
1414 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1415 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1416 else
1417 lpUdate->wDayOfYear = 0;
1419 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1420 lpUdate->wDayOfYear += lpUdate->st.wDay;
1422 /* Time */
1423 timePart *= 24.0;
1424 lpUdate->st.wHour = timePart;
1425 timePart -= lpUdate->st.wHour;
1426 timePart *= 60.0;
1427 lpUdate->st.wMinute = timePart;
1428 timePart -= lpUdate->st.wMinute;
1429 timePart *= 60.0;
1430 lpUdate->st.wSecond = timePart;
1431 timePart -= lpUdate->st.wSecond;
1432 lpUdate->st.wMilliseconds = 0;
1433 if (timePart > 0.5)
1435 /* Round the milliseconds, adjusting the time/date forward if needed */
1436 if (lpUdate->st.wSecond < 59)
1437 lpUdate->st.wSecond++;
1438 else
1440 lpUdate->st.wSecond = 0;
1441 if (lpUdate->st.wMinute < 59)
1442 lpUdate->st.wMinute++;
1443 else
1445 lpUdate->st.wMinute = 0;
1446 if (lpUdate->st.wHour < 23)
1447 lpUdate->st.wHour++;
1448 else
1450 lpUdate->st.wHour = 0;
1451 /* Roll over a whole day */
1452 if (++lpUdate->st.wDay > 28)
1453 VARIANT_RollUdate(lpUdate);
1458 return S_OK;
1461 #define GET_NUMBER_TEXT(fld,name) \
1462 buff[0] = 0; \
1463 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1464 WARN("buffer too small for " #fld "\n"); \
1465 else \
1466 if (buff[0]) lpChars->name = buff[0]; \
1467 TRACE("lcid 0x%lx, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1469 /* Get the valid number characters for an lcid */
1470 void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1472 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1473 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1474 WCHAR buff[4];
1476 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1477 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1478 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1479 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1480 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeperator);
1481 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1482 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeperator);
1484 /* Local currency symbols are often 2 characters */
1485 lpChars->cCurrencyLocal2 = '\0';
1486 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1488 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1489 case 2: lpChars->cCurrencyLocal = buff[0];
1490 break;
1491 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1493 TRACE("lcid 0x%lx, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1494 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1497 /* Number Parsing States */
1498 #define B_PROCESSING_EXPONENT 0x1
1499 #define B_NEGATIVE_EXPONENT 0x2
1500 #define B_EXPONENT_START 0x4
1501 #define B_INEXACT_ZEROS 0x8
1502 #define B_LEADING_ZERO 0x10
1503 #define B_PROCESSING_HEX 0x20
1504 #define B_PROCESSING_OCT 0x40
1506 /**********************************************************************
1507 * VarParseNumFromStr [OLEAUT32.46]
1509 * Parse a string containing a number into a NUMPARSE structure.
1511 * PARAMS
1512 * lpszStr [I] String to parse number from
1513 * lcid [I] Locale Id for the conversion
1514 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1515 * pNumprs [I/O] Destination for parsed number
1516 * rgbDig [O] Destination for digits read in
1518 * RETURNS
1519 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1520 * the number.
1521 * Failure: E_INVALIDARG, if any parameter is invalid.
1522 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1523 * incorrectly.
1524 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1526 * NOTES
1527 * pNumprs must have the following fields set:
1528 * cDig: Set to the size of rgbDig.
1529 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1530 * from "oleauto.h".
1532 * FIXME
1533 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1534 * numerals, so this has not been implemented.
1536 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1537 NUMPARSE *pNumprs, BYTE *rgbDig)
1539 VARIANT_NUMBER_CHARS chars;
1540 BYTE rgbTmp[1024];
1541 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1542 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1543 int cchUsed = 0;
1545 TRACE("(%s,%ld,0x%08lx,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1547 if (!pNumprs || !rgbDig)
1548 return E_INVALIDARG;
1550 if (pNumprs->cDig < iMaxDigits)
1551 iMaxDigits = pNumprs->cDig;
1553 pNumprs->cDig = 0;
1554 pNumprs->dwOutFlags = 0;
1555 pNumprs->cchUsed = 0;
1556 pNumprs->nBaseShift = 0;
1557 pNumprs->nPwr10 = 0;
1559 if (!lpszStr)
1560 return DISP_E_TYPEMISMATCH;
1562 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1564 /* First consume all the leading symbols and space from the string */
1565 while (1)
1567 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1569 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1572 cchUsed++;
1573 lpszStr++;
1574 } while (isspaceW(*lpszStr));
1576 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1577 *lpszStr == chars.cPositiveSymbol &&
1578 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1580 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1581 cchUsed++;
1582 lpszStr++;
1584 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1585 *lpszStr == chars.cNegativeSymbol &&
1586 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1588 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1589 cchUsed++;
1590 lpszStr++;
1592 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1593 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1594 *lpszStr == chars.cCurrencyLocal &&
1595 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1597 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1598 cchUsed++;
1599 lpszStr++;
1600 /* Only accept currency characters */
1601 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1602 chars.cDigitSeperator = chars.cCurrencyDigitSeperator;
1604 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1605 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1607 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1608 cchUsed++;
1609 lpszStr++;
1611 else
1612 break;
1615 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1617 /* Only accept non-currency characters */
1618 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1619 chars.cCurrencyDigitSeperator = chars.cDigitSeperator;
1622 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1623 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1625 dwState |= B_PROCESSING_HEX;
1626 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1627 cchUsed=cchUsed+2;
1628 lpszStr=lpszStr+2;
1630 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1631 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1633 dwState |= B_PROCESSING_OCT;
1634 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1635 cchUsed=cchUsed+2;
1636 lpszStr=lpszStr+2;
1639 /* Strip Leading zeros */
1640 while (*lpszStr == '0')
1642 dwState |= B_LEADING_ZERO;
1643 cchUsed++;
1644 lpszStr++;
1647 while (*lpszStr)
1649 if (isdigitW(*lpszStr))
1651 if (dwState & B_PROCESSING_EXPONENT)
1653 int exponentSize = 0;
1654 if (dwState & B_EXPONENT_START)
1656 if (!isdigitW(*lpszStr))
1657 break; /* No exponent digits - invalid */
1658 while (*lpszStr == '0')
1660 /* Skip leading zero's in the exponent */
1661 cchUsed++;
1662 lpszStr++;
1666 while (isdigitW(*lpszStr))
1668 exponentSize *= 10;
1669 exponentSize += *lpszStr - '0';
1670 cchUsed++;
1671 lpszStr++;
1673 if (dwState & B_NEGATIVE_EXPONENT)
1674 exponentSize = -exponentSize;
1675 /* Add the exponent into the powers of 10 */
1676 pNumprs->nPwr10 += exponentSize;
1677 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1678 lpszStr--; /* back up to allow processing of next char */
1680 else
1682 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1683 && !(dwState & B_PROCESSING_OCT))
1685 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1687 if (*lpszStr != '0')
1688 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1690 /* This digit can't be represented, but count it in nPwr10 */
1691 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1692 pNumprs->nPwr10--;
1693 else
1694 pNumprs->nPwr10++;
1696 else
1698 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1699 return DISP_E_TYPEMISMATCH;
1702 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1703 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1705 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1707 pNumprs->cDig++;
1708 cchUsed++;
1711 else if (*lpszStr == chars.cDigitSeperator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1713 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1714 cchUsed++;
1716 else if (*lpszStr == chars.cDecimalPoint &&
1717 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1718 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1720 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1721 cchUsed++;
1723 /* If we have no digits so far, skip leading zeros */
1724 if (!pNumprs->cDig)
1726 while (lpszStr[1] == '0')
1728 dwState |= B_LEADING_ZERO;
1729 cchUsed++;
1730 lpszStr++;
1731 pNumprs->nPwr10--;
1735 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1736 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1737 dwState & B_PROCESSING_HEX)
1739 if (pNumprs->cDig >= iMaxDigits)
1741 return DISP_E_OVERFLOW;
1743 else
1745 if (*lpszStr >= 'a')
1746 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1747 else
1748 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1750 pNumprs->cDig++;
1751 cchUsed++;
1753 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1754 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1755 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1757 dwState |= B_PROCESSING_EXPONENT;
1758 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1759 cchUsed++;
1761 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1763 cchUsed++; /* Ignore positive exponent */
1765 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1767 dwState |= B_NEGATIVE_EXPONENT;
1768 cchUsed++;
1770 else
1771 break; /* Stop at an unrecognised character */
1773 lpszStr++;
1776 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1778 /* Ensure a 0 on its own gets stored */
1779 pNumprs->cDig = 1;
1780 rgbTmp[0] = 0;
1783 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1785 pNumprs->cchUsed = cchUsed;
1786 WARN("didn't completely parse exponent\n");
1787 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1790 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1792 if (dwState & B_INEXACT_ZEROS)
1793 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1794 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1796 /* copy all of the digits into the output digit buffer */
1797 /* this is exactly what windows does although it also returns */
1798 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1799 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1801 if (dwState & B_PROCESSING_HEX) {
1802 /* hex numbers have always the same format */
1803 pNumprs->nPwr10=0;
1804 pNumprs->nBaseShift=4;
1805 } else {
1806 if (dwState & B_PROCESSING_OCT) {
1807 /* oct numbers have always the same format */
1808 pNumprs->nPwr10=0;
1809 pNumprs->nBaseShift=3;
1810 } else {
1811 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1813 pNumprs->nPwr10++;
1814 pNumprs->cDig--;
1818 } else
1820 /* Remove trailing zeros from the last (whole number or decimal) part */
1821 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1823 pNumprs->nPwr10++;
1824 pNumprs->cDig--;
1828 if (pNumprs->cDig <= iMaxDigits)
1829 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1830 else
1831 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1833 /* Copy the digits we processed into rgbDig */
1834 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1836 /* Consume any trailing symbols and space */
1837 while (1)
1839 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1841 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1844 cchUsed++;
1845 lpszStr++;
1846 } while (isspaceW(*lpszStr));
1848 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1849 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1850 *lpszStr == chars.cPositiveSymbol)
1852 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1853 cchUsed++;
1854 lpszStr++;
1856 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1857 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1858 *lpszStr == chars.cNegativeSymbol)
1860 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1861 cchUsed++;
1862 lpszStr++;
1864 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1865 pNumprs->dwOutFlags & NUMPRS_PARENS)
1867 cchUsed++;
1868 lpszStr++;
1869 pNumprs->dwOutFlags |= NUMPRS_NEG;
1871 else
1872 break;
1875 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1877 pNumprs->cchUsed = cchUsed;
1878 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1881 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1882 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1884 if (!pNumprs->cDig)
1885 return DISP_E_TYPEMISMATCH; /* No Number found */
1887 pNumprs->cchUsed = cchUsed;
1888 return S_OK;
1891 /* VTBIT flags indicating an integer value */
1892 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1893 /* VTBIT flags indicating a real number value */
1894 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1896 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1897 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1898 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1899 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1901 /**********************************************************************
1902 * VarNumFromParseNum [OLEAUT32.47]
1904 * Convert a NUMPARSE structure into a numeric Variant type.
1906 * PARAMS
1907 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1908 * rgbDig [I] Source for the numbers digits
1909 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1910 * pVarDst [O] Destination for the converted Variant value.
1912 * RETURNS
1913 * Success: S_OK. pVarDst contains the converted value.
1914 * Failure: E_INVALIDARG, if any parameter is invalid.
1915 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1917 * NOTES
1918 * - The smallest favoured type present in dwVtBits that can represent the
1919 * number in pNumprs without losing precision is used.
1920 * - Signed types are preferrred over unsigned types of the same size.
1921 * - Preferred types in order are: integer, float, double, currency then decimal.
1922 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1923 * for details of the rounding method.
1924 * - pVarDst is not cleared before the result is stored in it.
1925 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1926 * design?): If some other VTBIT's for integers are specified together
1927 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1928 * the number to the smallest requested integer truncating this way the
1929 * number. Wine dosn't implement this "feature" (yet?).
1931 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1932 ULONG dwVtBits, VARIANT *pVarDst)
1934 /* Scale factors and limits for double arithmetic */
1935 static const double dblMultipliers[11] = {
1936 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1937 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1939 static const double dblMinimums[11] = {
1940 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1941 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1942 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1944 static const double dblMaximums[11] = {
1945 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1946 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1947 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1950 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
1952 TRACE("(%p,%p,0x%lx,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
1954 if (pNumprs->nBaseShift)
1956 /* nBaseShift indicates a hex or octal number */
1957 ULONG64 ul64 = 0;
1958 LONG64 l64;
1959 int i;
1961 /* Convert the hex or octal number string into a UI64 */
1962 for (i = 0; i < pNumprs->cDig; i++)
1964 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
1966 TRACE("Overflow multiplying digits\n");
1967 return DISP_E_OVERFLOW;
1969 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
1972 /* also make a negative representation */
1973 l64=-ul64;
1975 /* Try signed and unsigned types in size order */
1976 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
1978 V_VT(pVarDst) = VT_I1;
1979 V_I1(pVarDst) = ul64;
1980 return S_OK;
1982 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
1984 V_VT(pVarDst) = VT_UI1;
1985 V_UI1(pVarDst) = ul64;
1986 return S_OK;
1988 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
1990 V_VT(pVarDst) = VT_I2;
1991 V_I2(pVarDst) = ul64;
1992 return S_OK;
1994 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
1996 V_VT(pVarDst) = VT_UI2;
1997 V_UI2(pVarDst) = ul64;
1998 return S_OK;
2000 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2002 V_VT(pVarDst) = VT_I4;
2003 V_I4(pVarDst) = ul64;
2004 return S_OK;
2006 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2008 V_VT(pVarDst) = VT_UI4;
2009 V_UI4(pVarDst) = ul64;
2010 return S_OK;
2012 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2014 V_VT(pVarDst) = VT_I8;
2015 V_I8(pVarDst) = ul64;
2016 return S_OK;
2018 else if (dwVtBits & VTBIT_UI8)
2020 V_VT(pVarDst) = VT_UI8;
2021 V_UI8(pVarDst) = ul64;
2022 return S_OK;
2024 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2026 V_VT(pVarDst) = VT_DECIMAL;
2027 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2028 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2029 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2030 return S_OK;
2032 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2034 V_VT(pVarDst) = VT_R4;
2035 if (ul64 <= I4_MAX)
2036 V_R4(pVarDst) = ul64;
2037 else
2038 V_R4(pVarDst) = l64;
2039 return S_OK;
2041 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2043 V_VT(pVarDst) = VT_R8;
2044 if (ul64 <= I4_MAX)
2045 V_R8(pVarDst) = ul64;
2046 else
2047 V_R8(pVarDst) = l64;
2048 return S_OK;
2051 TRACE("Overflow: possible return types: 0x%lx, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2052 return DISP_E_OVERFLOW;
2055 /* Count the number of relevant fractional and whole digits stored,
2056 * And compute the divisor/multiplier to scale the number by.
2058 if (pNumprs->nPwr10 < 0)
2060 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2062 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2063 wholeNumberDigits = 0;
2064 fractionalDigits = pNumprs->cDig;
2065 divisor10 = -pNumprs->nPwr10;
2067 else
2069 /* An exactly represented real number e.g. 1.024 */
2070 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2071 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2072 divisor10 = pNumprs->cDig - wholeNumberDigits;
2075 else if (pNumprs->nPwr10 == 0)
2077 /* An exactly represented whole number e.g. 1024 */
2078 wholeNumberDigits = pNumprs->cDig;
2079 fractionalDigits = 0;
2081 else /* pNumprs->nPwr10 > 0 */
2083 /* A whole number followed by nPwr10 0's e.g. 102400 */
2084 wholeNumberDigits = pNumprs->cDig;
2085 fractionalDigits = 0;
2086 multiplier10 = pNumprs->nPwr10;
2089 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d ", pNumprs->cDig,
2090 pNumprs->nPwr10, wholeNumberDigits, fractionalDigits);
2091 TRACE("mult %d; div %d\n", multiplier10, divisor10);
2093 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2094 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2096 /* We have one or more integer output choices, and either:
2097 * 1) An integer input value, or
2098 * 2) A real number input value but no floating output choices.
2099 * Alternately, we have a DECIMAL output available and an integer input.
2101 * So, place the integer value into pVarDst, using the smallest type
2102 * possible and preferring signed over unsigned types.
2104 BOOL bOverflow = FALSE, bNegative;
2105 ULONG64 ul64 = 0;
2106 int i;
2108 /* Convert the integer part of the number into a UI8 */
2109 for (i = 0; i < wholeNumberDigits; i++)
2111 if (ul64 > (UI8_MAX / 10 - rgbDig[i]))
2113 TRACE("Overflow multiplying digits\n");
2114 bOverflow = TRUE;
2115 break;
2117 ul64 = ul64 * 10 + rgbDig[i];
2120 /* Account for the scale of the number */
2121 if (!bOverflow && multiplier10)
2123 for (i = 0; i < multiplier10; i++)
2125 if (ul64 > (UI8_MAX / 10))
2127 TRACE("Overflow scaling number\n");
2128 bOverflow = TRUE;
2129 break;
2131 ul64 = ul64 * 10;
2135 /* If we have any fractional digits, round the value.
2136 * Note we don't have to do this if divisor10 is < 1,
2137 * because this means the fractional part must be < 0.5
2139 if (!bOverflow && fractionalDigits && divisor10 > 0)
2141 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2142 BOOL bAdjust = FALSE;
2144 TRACE("first decimal value is %d\n", *fracDig);
2146 if (*fracDig > 5)
2147 bAdjust = TRUE; /* > 0.5 */
2148 else if (*fracDig == 5)
2150 for (i = 1; i < fractionalDigits; i++)
2152 if (fracDig[i])
2154 bAdjust = TRUE; /* > 0.5 */
2155 break;
2158 /* If exactly 0.5, round only odd values */
2159 if (i == fractionalDigits && (ul64 & 1))
2160 bAdjust = TRUE;
2163 if (bAdjust)
2165 if (ul64 == UI8_MAX)
2167 TRACE("Overflow after rounding\n");
2168 bOverflow = TRUE;
2170 ul64++;
2174 /* Zero is not a negative number */
2175 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE;
2177 TRACE("Integer value is %lld, bNeg %d\n", ul64, bNegative);
2179 /* For negative integers, try the signed types in size order */
2180 if (!bOverflow && bNegative)
2182 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2184 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2186 V_VT(pVarDst) = VT_I1;
2187 V_I1(pVarDst) = -ul64;
2188 return S_OK;
2190 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2192 V_VT(pVarDst) = VT_I2;
2193 V_I2(pVarDst) = -ul64;
2194 return S_OK;
2196 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2198 V_VT(pVarDst) = VT_I4;
2199 V_I4(pVarDst) = -ul64;
2200 return S_OK;
2202 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2204 V_VT(pVarDst) = VT_I8;
2205 V_I8(pVarDst) = -ul64;
2206 return S_OK;
2208 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2210 /* Decimal is only output choice left - fast path */
2211 V_VT(pVarDst) = VT_DECIMAL;
2212 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2213 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2214 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2215 return S_OK;
2219 else if (!bOverflow)
2221 /* For positive integers, try signed then unsigned types in size order */
2222 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2224 V_VT(pVarDst) = VT_I1;
2225 V_I1(pVarDst) = ul64;
2226 return S_OK;
2228 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2230 V_VT(pVarDst) = VT_UI1;
2231 V_UI1(pVarDst) = ul64;
2232 return S_OK;
2234 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2236 V_VT(pVarDst) = VT_I2;
2237 V_I2(pVarDst) = ul64;
2238 return S_OK;
2240 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2242 V_VT(pVarDst) = VT_UI2;
2243 V_UI2(pVarDst) = ul64;
2244 return S_OK;
2246 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2248 V_VT(pVarDst) = VT_I4;
2249 V_I4(pVarDst) = ul64;
2250 return S_OK;
2252 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2254 V_VT(pVarDst) = VT_UI4;
2255 V_UI4(pVarDst) = ul64;
2256 return S_OK;
2258 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2260 V_VT(pVarDst) = VT_I8;
2261 V_I8(pVarDst) = ul64;
2262 return S_OK;
2264 else if (dwVtBits & VTBIT_UI8)
2266 V_VT(pVarDst) = VT_UI8;
2267 V_UI8(pVarDst) = ul64;
2268 return S_OK;
2270 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2272 /* Decimal is only output choice left - fast path */
2273 V_VT(pVarDst) = VT_DECIMAL;
2274 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2275 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2276 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2277 return S_OK;
2282 if (dwVtBits & REAL_VTBITS)
2284 /* Try to put the number into a float or real */
2285 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2286 double whole = 0.0;
2287 int i;
2289 /* Convert the number into a double */
2290 for (i = 0; i < pNumprs->cDig; i++)
2291 whole = whole * 10.0 + rgbDig[i];
2293 TRACE("Whole double value is %16.16g\n", whole);
2295 /* Account for the scale */
2296 while (multiplier10 > 10)
2298 if (whole > dblMaximums[10])
2300 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2301 bOverflow = TRUE;
2302 break;
2304 whole = whole * dblMultipliers[10];
2305 multiplier10 -= 10;
2307 if (multiplier10)
2309 if (whole > dblMaximums[multiplier10])
2311 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2312 bOverflow = TRUE;
2314 else
2315 whole = whole * dblMultipliers[multiplier10];
2318 TRACE("Scaled double value is %16.16g\n", whole);
2320 while (divisor10 > 10)
2322 if (whole < dblMinimums[10] && whole != 0)
2324 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2325 bOverflow = TRUE;
2326 break;
2328 whole = whole / dblMultipliers[10];
2329 divisor10 -= 10;
2331 if (divisor10)
2333 if (whole < dblMinimums[divisor10] && whole != 0)
2335 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2336 bOverflow = TRUE;
2338 else
2339 whole = whole / dblMultipliers[divisor10];
2341 if (!bOverflow)
2342 TRACE("Final double value is %16.16g\n", whole);
2344 if (dwVtBits & VTBIT_R4 &&
2345 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2347 TRACE("Set R4 to final value\n");
2348 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2349 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2350 return S_OK;
2353 if (dwVtBits & VTBIT_R8)
2355 TRACE("Set R8 to final value\n");
2356 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2357 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2358 return S_OK;
2361 if (dwVtBits & VTBIT_CY)
2363 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2365 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2366 TRACE("Set CY to final value\n");
2367 return S_OK;
2369 TRACE("Value Overflows CY\n");
2373 if (dwVtBits & VTBIT_DECIMAL)
2375 int i;
2376 ULONG carry;
2377 ULONG64 tmp;
2378 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2380 DECIMAL_SETZERO(*pDec);
2381 DEC_LO32(pDec) = 0;
2383 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2384 DEC_SIGN(pDec) = DECIMAL_NEG;
2385 else
2386 DEC_SIGN(pDec) = DECIMAL_POS;
2388 /* Factor the significant digits */
2389 for (i = 0; i < pNumprs->cDig; i++)
2391 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2392 carry = (ULONG)(tmp >> 32);
2393 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2394 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2395 carry = (ULONG)(tmp >> 32);
2396 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2397 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2398 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2400 if (tmp >> 32 & UI4_MAX)
2402 VarNumFromParseNum_DecOverflow:
2403 TRACE("Overflow\n");
2404 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2405 return DISP_E_OVERFLOW;
2409 /* Account for the scale of the number */
2410 while (multiplier10 > 0)
2412 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2413 carry = (ULONG)(tmp >> 32);
2414 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2415 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2416 carry = (ULONG)(tmp >> 32);
2417 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2418 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2419 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2421 if (tmp >> 32 & UI4_MAX)
2422 goto VarNumFromParseNum_DecOverflow;
2423 multiplier10--;
2425 DEC_SCALE(pDec) = divisor10;
2427 V_VT(pVarDst) = VT_DECIMAL;
2428 return S_OK;
2430 return DISP_E_OVERFLOW; /* No more output choices */
2433 /**********************************************************************
2434 * VarCat [OLEAUT32.318]
2436 * Concatenates one variant onto another.
2438 * PARAMS
2439 * left [I] First variant
2440 * right [I] Second variant
2441 * result [O] Result variant
2443 * RETURNS
2444 * Success: S_OK.
2445 * Failure: An HRESULT error code indicating the error.
2447 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2449 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2450 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
2452 /* Should we VariantClear out? */
2453 /* Can we handle array, vector, by ref etc. */
2454 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL &&
2455 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2457 V_VT(out) = VT_NULL;
2458 return S_OK;
2461 if (V_VT(left) == VT_BSTR && V_VT(right) == VT_BSTR)
2463 V_VT(out) = VT_BSTR;
2464 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2465 return S_OK;
2467 if (V_VT(left) == VT_BSTR) {
2468 VARIANT bstrvar;
2469 HRESULT hres;
2471 V_VT(out) = VT_BSTR;
2472 VariantInit(&bstrvar);
2473 hres = VariantChangeTypeEx(&bstrvar,right,0,0,VT_BSTR);
2474 if (hres) {
2475 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2476 return hres;
2478 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar), &V_BSTR(out));
2479 return S_OK;
2481 if (V_VT(right) == VT_BSTR) {
2482 VARIANT bstrvar;
2483 HRESULT hres;
2485 V_VT(out) = VT_BSTR;
2486 VariantInit(&bstrvar);
2487 hres = VariantChangeTypeEx(&bstrvar,left,0,0,VT_BSTR);
2488 if (hres) {
2489 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2490 return hres;
2492 VarBstrCat (V_BSTR(&bstrvar), V_BSTR(right), &V_BSTR(out));
2493 return S_OK;
2495 FIXME ("types %d / %d not supported\n",V_VT(left)&VT_TYPEMASK, V_VT(right)&VT_TYPEMASK);
2496 return S_OK;
2499 /* Wrapper around VariantChangeTypeEx() which permits changing a
2500 variant with VT_RESERVED flag set. Needed by VarCmp. */
2501 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2502 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2504 HRESULT res;
2505 VARTYPE flags;
2507 flags = V_VT(pvargSrc) & ~VT_TYPEMASK;
2508 V_VT(pvargSrc) &= ~VT_RESERVED;
2509 res = VariantChangeTypeEx(pvargDest,pvargSrc,lcid,wFlags,vt);
2510 V_VT(pvargSrc) |= flags;
2512 return res;
2515 /**********************************************************************
2516 * VarCmp [OLEAUT32.176]
2518 * Compare two variants.
2520 * PARAMS
2521 * left [I] First variant
2522 * right [I] Second variant
2523 * lcid [I] LCID (locale identifier) for the comparison
2524 * flags [I] Flags to be used in the comparision:
2525 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2526 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2528 * RETURNS
2529 * VARCMP_LT: left variant is less than right variant.
2530 * VARCMP_EQ: input variants are equal.
2531 * VARCMP_LT: left variant is greater than right variant.
2532 * VARCMP_NULL: either one of the input variants is NULL.
2533 * Failure: An HRESULT error code indicating the error.
2535 * NOTES
2536 * Native VarCmp up to and including WinXP dosn't like as input variants
2537 * I1, UI2, VT_UI4, UI8 and UINT. INT is accepted only as left variant.
2539 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2540 * an ERROR variant will trigger an error.
2542 * Both input variants can have VT_RESERVED flag set which is ignored
2543 * unless one and only one of the variants is a BSTR and the other one
2544 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2545 * different meaning:
2546 * - BSTR and other: BSTR is always greater than the other variant.
2547 * - BSTR|VT_RESERVED and other: a string comparision is performed.
2548 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2549 * comparision will take place else the BSTR is always greater.
2550 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2551 * variant is ignored and the return value depends only on the sign
2552 * of the BSTR if it is a number else the BSTR is always greater. A
2553 * positive BSTR is greater, a negative one is smaller than the other
2554 * variant.
2556 * SEE
2557 * VarBstrCmp for the lcid and flags usage.
2559 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2561 VARTYPE lvt, rvt, vt;
2562 VARIANT rv,lv;
2563 DWORD xmask;
2564 HRESULT rc;
2566 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%08lx)\n", left, debugstr_VT(left),
2567 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
2569 lvt = V_VT(left) & VT_TYPEMASK;
2570 rvt = V_VT(right) & VT_TYPEMASK;
2571 xmask = (1 << lvt) | (1 << rvt);
2573 /* If we have any flag set except VT_RESERVED bail out.
2574 Same for the left input variant type > VT_INT and for the
2575 right input variant type > VT_I8. Yes, VT_INT is only supported
2576 as left variant. Go figure */
2577 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2578 lvt > VT_INT || rvt > VT_I8) {
2579 return DISP_E_BADVARTYPE;
2582 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2583 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2584 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2585 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2586 return DISP_E_TYPEMISMATCH;
2588 /* If both variants are VT_ERROR return VARCMP_EQ */
2589 if (xmask == VTBIT_ERROR)
2590 return VARCMP_EQ;
2591 else if (xmask & VTBIT_ERROR)
2592 return DISP_E_TYPEMISMATCH;
2594 if (xmask & VTBIT_NULL)
2595 return VARCMP_NULL;
2597 VariantInit(&lv);
2598 VariantInit(&rv);
2600 /* Two BSTRs, ignore VT_RESERVED */
2601 if (xmask == VTBIT_BSTR)
2602 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2604 /* A BSTR and an other variant; we have to take care of VT_RESERVED */
2605 if (xmask & VTBIT_BSTR) {
2606 VARIANT *bstrv, *nonbv;
2607 VARTYPE nonbvt;
2608 int swap = 0;
2610 /* Swap the variants so the BSTR is always on the left */
2611 if (lvt == VT_BSTR) {
2612 bstrv = left;
2613 nonbv = right;
2614 nonbvt = rvt;
2615 } else {
2616 swap = 1;
2617 bstrv = right;
2618 nonbv = left;
2619 nonbvt = lvt;
2622 /* BSTR and EMPTY: ignore VT_RESERVED */
2623 if (nonbvt == VT_EMPTY)
2624 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2625 else {
2626 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2627 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2629 if (!breserv && !nreserv)
2630 /* No VT_RESERVED set ==> BSTR always greater */
2631 rc = VARCMP_GT;
2632 else if (breserv && !nreserv) {
2633 /* BSTR has VT_RESERVED set. Do a string comparision */
2634 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2635 if (FAILED(rc))
2636 return rc;
2637 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2638 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2639 /* Non NULL nor empty BSTR */
2640 /* If the BSTR is not a number the BSTR is greater */
2641 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2642 if (FAILED(rc))
2643 rc = VARCMP_GT;
2644 else if (breserv && nreserv)
2645 /* FIXME: This is strange: with both VT_RESERVED set it
2646 looks like the result depends only on the sign of
2647 the BSTR number */
2648 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2649 else
2650 /* Numeric comparision, will be handled below.
2651 VARCMP_NULL used only to break out. */
2652 rc = VARCMP_NULL;
2653 VariantClear(&lv);
2654 VariantClear(&rv);
2655 } else
2656 /* Empty or NULL BSTR */
2657 rc = VARCMP_GT;
2659 /* Fixup the return code if we swapped left and right */
2660 if (swap) {
2661 if (rc == VARCMP_GT)
2662 rc = VARCMP_LT;
2663 else if (rc == VARCMP_LT)
2664 rc = VARCMP_GT;
2666 if (rc != VARCMP_NULL)
2667 return rc;
2670 if (xmask & VTBIT_DECIMAL)
2671 vt = VT_DECIMAL;
2672 else if (xmask & VTBIT_BSTR)
2673 vt = VT_R8;
2674 else if (xmask & VTBIT_R4)
2675 vt = VT_R4;
2676 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2677 vt = VT_R8;
2678 else if (xmask & VTBIT_CY)
2679 vt = VT_CY;
2680 else
2681 /* default to I8 */
2682 vt = VT_I8;
2684 /* Coerce the variants */
2685 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2686 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2687 /* Overflow, change to R8 */
2688 vt = VT_R8;
2689 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2691 if (FAILED(rc))
2692 return rc;
2693 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2694 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2695 /* Overflow, change to R8 */
2696 vt = VT_R8;
2697 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2698 if (FAILED(rc))
2699 return rc;
2700 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2702 if (FAILED(rc))
2703 return rc;
2705 #define _VARCMP(a,b) \
2706 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2708 switch (vt) {
2709 case VT_CY:
2710 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2711 case VT_DECIMAL:
2712 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2713 case VT_I8:
2714 return _VARCMP(V_I8(&lv), V_I8(&rv));
2715 case VT_R4:
2716 return _VARCMP(V_R4(&lv), V_R4(&rv));
2717 case VT_R8:
2718 return _VARCMP(V_R8(&lv), V_R8(&rv));
2719 default:
2720 /* We should never get here */
2721 return E_FAIL;
2723 #undef _VARCMP
2726 /**********************************************************************
2727 * VarAnd [OLEAUT32.142]
2729 * Computes the logical AND of two variants.
2731 * PARAMS
2732 * left [I] First variant
2733 * right [I] Second variant
2734 * result [O] Result variant
2736 * RETURNS
2737 * Success: S_OK.
2738 * Failure: An HRESULT error code indicating the error.
2740 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2742 HRESULT rc = E_FAIL;
2744 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2745 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2747 if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL &&
2748 (V_VT(right)&VT_TYPEMASK) == VT_BOOL) {
2750 V_VT(result) = VT_BOOL;
2751 if (V_BOOL(left) && V_BOOL(right)) {
2752 V_BOOL(result) = VARIANT_TRUE;
2753 } else {
2754 V_BOOL(result) = VARIANT_FALSE;
2756 rc = S_OK;
2758 } else {
2759 /* Integers */
2760 BOOL lOk = TRUE;
2761 BOOL rOk = TRUE;
2762 LONGLONG lVal = -1;
2763 LONGLONG rVal = -1;
2764 LONGLONG res = -1;
2765 int resT = 0; /* Testing has shown I2 & I2 == I2, all else
2766 becomes I4, even unsigned ints (incl. UI2) */
2768 lOk = TRUE;
2769 switch (V_VT(left)&VT_TYPEMASK) {
2770 case VT_I1 : lVal = V_I1(left); resT=VT_I4; break;
2771 case VT_I2 : lVal = V_I2(left); resT=VT_I2; break;
2772 case VT_I4 :
2773 case VT_INT : lVal = V_I4(left); resT=VT_I4; break;
2774 case VT_UI1 : lVal = V_UI1(left); resT=VT_I4; break;
2775 case VT_UI2 : lVal = V_UI2(left); resT=VT_I4; break;
2776 case VT_UI4 :
2777 case VT_UINT : lVal = V_UI4(left); resT=VT_I4; break;
2778 case VT_BOOL : rVal = V_BOOL(left); resT=VT_I4; break;
2779 default: lOk = FALSE;
2782 rOk = TRUE;
2783 switch (V_VT(right)&VT_TYPEMASK) {
2784 case VT_I1 : rVal = V_I1(right); resT=VT_I4; break;
2785 case VT_I2 : rVal = V_I2(right); resT=max(VT_I2, resT); break;
2786 case VT_I4 :
2787 case VT_INT : rVal = V_I4(right); resT=VT_I4; break;
2788 case VT_UI1 : rVal = V_UI1(right); resT=VT_I4; break;
2789 case VT_UI2 : rVal = V_UI2(right); resT=VT_I4; break;
2790 case VT_UI4 :
2791 case VT_UINT : rVal = V_UI4(right); resT=VT_I4; break;
2792 case VT_BOOL : rVal = V_BOOL(right); resT=VT_I4; break;
2793 default: rOk = FALSE;
2796 if (lOk && rOk) {
2797 res = (lVal & rVal);
2798 V_VT(result) = resT;
2799 switch (resT) {
2800 case VT_I2 : V_I2(result) = res; break;
2801 case VT_I4 : V_I4(result) = res; break;
2802 default:
2803 FIXME("Unexpected result variant type %x\n", resT);
2804 V_I4(result) = res;
2806 rc = S_OK;
2808 } else {
2809 FIXME("VarAnd stub\n");
2813 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2814 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2815 return rc;
2818 /**********************************************************************
2819 * VarAdd [OLEAUT32.141]
2821 * Add two variants.
2823 * PARAMS
2824 * left [I] First variant
2825 * right [I] Second variant
2826 * result [O] Result variant
2828 * RETURNS
2829 * Success: S_OK.
2830 * Failure: An HRESULT error code indicating the error.
2832 * NOTES
2833 * Native VarAdd up to and including WinXP dosn't like as input variants
2834 * I1, UI2, UI4, UI8, INT and UINT.
2836 * Native VarAdd dosn't check for NULL in/out pointers and crashes. We do the
2837 * same here.
2839 * FIXME
2840 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
2841 * case.
2843 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2845 HRESULT hres;
2846 VARTYPE lvt, rvt, resvt, tvt;
2847 VARIANT lv, rv, tv;
2848 double r8res;
2850 /* Variant priority for coercion. Sorted from lowest to highest.
2851 VT_ERROR shows an invalid input variant type. */
2852 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
2853 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
2854 vt_ERROR };
2855 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
2856 VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
2857 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
2858 VT_NULL, VT_ERROR };
2860 /* Mapping for coercion from input variant to priority of result variant. */
2861 static VARTYPE coerce[] = {
2862 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
2863 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
2864 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
2865 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
2866 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
2867 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
2868 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
2869 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
2872 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2873 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
2874 result);
2876 VariantInit(&lv);
2877 VariantInit(&rv);
2878 VariantInit(&tv);
2879 lvt = V_VT(left)&VT_TYPEMASK;
2880 rvt = V_VT(right)&VT_TYPEMASK;
2882 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
2883 Same for any input variant type > VT_I8 */
2884 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
2885 lvt > VT_I8 || rvt > VT_I8) {
2886 hres = DISP_E_BADVARTYPE;
2887 goto end;
2890 /* Determine the variant type to coerce to. */
2891 if (coerce[lvt] > coerce[rvt]) {
2892 resvt = prio2vt[coerce[lvt]];
2893 tvt = prio2vt[coerce[rvt]];
2894 } else {
2895 resvt = prio2vt[coerce[rvt]];
2896 tvt = prio2vt[coerce[lvt]];
2899 /* Special cases where the result variant type is defined by both
2900 input variants and not only that with the highest priority */
2901 if (resvt == VT_BSTR) {
2902 if (tvt == VT_EMPTY || tvt == VT_BSTR)
2903 resvt = VT_BSTR;
2904 else
2905 resvt = VT_R8;
2907 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
2908 resvt = VT_R8;
2910 /* For overflow detection use the biggest compatible type for the
2911 addition */
2912 switch (resvt) {
2913 case VT_ERROR:
2914 hres = DISP_E_BADVARTYPE;
2915 goto end;
2916 case VT_NULL:
2917 hres = S_OK;
2918 V_VT(result) = VT_NULL;
2919 goto end;
2920 case VT_DISPATCH:
2921 FIXME("cannot handle variant type VT_DISPATCH\n");
2922 hres = DISP_E_TYPEMISMATCH;
2923 goto end;
2924 case VT_EMPTY:
2925 resvt = VT_I2;
2926 /* Fall through */
2927 case VT_UI1:
2928 case VT_I2:
2929 case VT_I4:
2930 case VT_I8:
2931 tvt = VT_I8;
2932 break;
2933 case VT_DATE:
2934 case VT_R4:
2935 tvt = VT_R8;
2936 break;
2937 default:
2938 tvt = resvt;
2941 /* Now coerce the variants */
2942 hres = VariantChangeType(&lv, left, 0, tvt);
2943 if (FAILED(hres))
2944 goto end;
2945 hres = VariantChangeType(&rv, right, 0, tvt);
2946 if (FAILED(hres))
2947 goto end;
2949 /* Do the math */
2950 hres = S_OK;
2951 V_VT(result) = resvt;
2952 switch (tvt) {
2953 case VT_DECIMAL:
2954 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
2955 &V_DECIMAL(result));
2956 goto end;
2957 case VT_CY:
2958 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
2959 goto end;
2960 case VT_BSTR:
2961 /* We do not add those, we concatenate them. */
2962 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
2963 goto end;
2964 case VT_I8:
2965 /* Overflow detection */
2966 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
2967 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
2968 V_VT(result) = VT_R8;
2969 V_R8(result) = r8res;
2970 goto end;
2971 } else {
2972 V_VT(&tv) = tvt;
2973 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
2975 break;
2976 case VT_R8:
2977 V_VT(&tv) = tvt;
2978 /* FIXME: overflow detection */
2979 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
2980 break;
2981 default:
2982 ERR("We shouldn't get here! tvt = %d!\n", tvt);
2983 break;
2985 if (resvt != tvt) {
2986 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
2987 /* Overflow! Change to the vartype with the next higher priority.
2988 With one exception: I4 ==> R8 even if it would fit in I8 */
2989 if (resvt == VT_I4)
2990 resvt = VT_R8;
2991 else
2992 resvt = prio2vt[coerce[resvt] + 1];
2993 hres = VariantChangeType(result, &tv, 0, resvt);
2995 } else
2996 hres = VariantCopy(result, &tv);
2998 end:
2999 if (hres != S_OK) {
3000 V_VT(result) = VT_EMPTY;
3001 V_I4(result) = 0; /* No V_EMPTY */
3003 VariantClear(&lv);
3004 VariantClear(&rv);
3005 VariantClear(&tv);
3006 TRACE("returning 0x%8lx (variant type %s)\n", hres, debugstr_VT(result));
3007 return hres;
3010 /**********************************************************************
3011 * VarMul [OLEAUT32.156]
3013 * Multiply two variants.
3015 * PARAMS
3016 * left [I] First variant
3017 * right [I] Second variant
3018 * result [O] Result variant
3020 * RETURNS
3021 * Success: S_OK.
3022 * Failure: An HRESULT error code indicating the error.
3024 * NOTES
3025 * Native VarMul up to and including WinXP dosn't like as input variants
3026 * I1, UI2, UI4, UI8, INT and UINT. But it can multiply apples with oranges.
3028 * Native VarMul dosn't check for NULL in/out pointers and crashes. We do the
3029 * same here.
3031 * FIXME
3032 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3033 * case.
3035 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3037 HRESULT hres;
3038 VARTYPE lvt, rvt, resvt, tvt;
3039 VARIANT lv, rv, tv;
3040 double r8res;
3042 /* Variant priority for coercion. Sorted from lowest to highest.
3043 VT_ERROR shows an invalid input variant type. */
3044 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3045 vt_DECIMAL, vt_NULL, vt_ERROR };
3046 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3047 VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3048 VT_DECIMAL, VT_NULL, VT_ERROR };
3050 /* Mapping for coercion from input variant to priority of result variant. */
3051 static VARTYPE coerce[] = {
3052 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3053 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3054 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3055 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3056 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3057 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3058 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3059 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3062 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3063 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
3064 result);
3066 VariantInit(&lv);
3067 VariantInit(&rv);
3068 VariantInit(&tv);
3069 lvt = V_VT(left)&VT_TYPEMASK;
3070 rvt = V_VT(right)&VT_TYPEMASK;
3072 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3073 Same for any input variant type > VT_I8 */
3074 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3075 lvt > VT_I8 || rvt > VT_I8) {
3076 hres = DISP_E_BADVARTYPE;
3077 goto end;
3080 /* Determine the variant type to coerce to. */
3081 if (coerce[lvt] > coerce[rvt]) {
3082 resvt = prio2vt[coerce[lvt]];
3083 tvt = prio2vt[coerce[rvt]];
3084 } else {
3085 resvt = prio2vt[coerce[rvt]];
3086 tvt = prio2vt[coerce[lvt]];
3089 /* Special cases where the result variant type is defined by both
3090 input variants and not only that with the highest priority */
3091 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3092 resvt = VT_R8;
3093 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3094 resvt = VT_I2;
3096 /* For overflow detection use the biggest compatible type for the
3097 multiplication */
3098 switch (resvt) {
3099 case VT_ERROR:
3100 hres = DISP_E_BADVARTYPE;
3101 goto end;
3102 case VT_NULL:
3103 hres = S_OK;
3104 V_VT(result) = VT_NULL;
3105 goto end;
3106 case VT_UI1:
3107 case VT_I2:
3108 case VT_I4:
3109 case VT_I8:
3110 tvt = VT_I8;
3111 break;
3112 case VT_R4:
3113 tvt = VT_R8;
3114 break;
3115 default:
3116 tvt = resvt;
3119 /* Now coerce the variants */
3120 hres = VariantChangeType(&lv, left, 0, tvt);
3121 if (FAILED(hres))
3122 goto end;
3123 hres = VariantChangeType(&rv, right, 0, tvt);
3124 if (FAILED(hres))
3125 goto end;
3127 /* Do the math */
3128 hres = S_OK;
3129 V_VT(&tv) = tvt;
3130 V_VT(result) = resvt;
3131 switch (tvt) {
3132 case VT_DECIMAL:
3133 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3134 &V_DECIMAL(result));
3135 goto end;
3136 case VT_CY:
3137 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3138 goto end;
3139 case VT_I8:
3140 /* Overflow detection */
3141 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3142 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3143 V_VT(result) = VT_R8;
3144 V_R8(result) = r8res;
3145 goto end;
3146 } else
3147 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3148 break;
3149 case VT_R8:
3150 /* FIXME: overflow detection */
3151 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3152 break;
3153 default:
3154 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3155 break;
3157 if (resvt != tvt) {
3158 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3159 /* Overflow! Change to the vartype with the next higher priority.
3160 With one exception: I4 ==> R8 even if it would fit in I8 */
3161 if (resvt == VT_I4)
3162 resvt = VT_R8;
3163 else
3164 resvt = prio2vt[coerce[resvt] + 1];
3166 } else
3167 hres = VariantCopy(result, &tv);
3169 end:
3170 if (hres != S_OK) {
3171 V_VT(result) = VT_EMPTY;
3172 V_I4(result) = 0; /* No V_EMPTY */
3174 VariantClear(&lv);
3175 VariantClear(&rv);
3176 VariantClear(&tv);
3177 TRACE("returning 0x%8lx (variant type %s)\n", hres, debugstr_VT(result));
3178 return hres;
3181 /**********************************************************************
3182 * VarDiv [OLEAUT32.143]
3184 * Divides one variant with another.
3186 * PARAMS
3187 * left [I] First variant
3188 * right [I] Second variant
3189 * result [O] Result variant
3191 * RETURNS
3192 * Success: S_OK.
3193 * Failure: An HRESULT error code indicating the error.
3195 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3197 HRESULT rc = E_FAIL;
3198 VARTYPE lvt,rvt,resvt;
3199 VARIANT lv,rv;
3200 BOOL found;
3202 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3203 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3205 VariantInit(&lv);VariantInit(&rv);
3206 lvt = V_VT(left)&VT_TYPEMASK;
3207 rvt = V_VT(right)&VT_TYPEMASK;
3208 found = FALSE;resvt = VT_VOID;
3209 if (((1<<lvt) | (1<<rvt)) & (VTBIT_R4|VTBIT_R8|VTBIT_CY)) {
3210 found = TRUE;
3211 resvt = VT_R8;
3213 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_DECIMAL))) {
3214 found = TRUE;
3215 resvt = VT_DECIMAL;
3217 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_INT|VTBIT_UINT))) {
3218 found = TRUE;
3219 resvt = VT_I4;
3221 if (!found) {
3222 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
3223 return E_FAIL;
3225 rc = VariantChangeType(&lv, left, 0, resvt);
3226 if (FAILED(rc)) {
3227 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
3228 return rc;
3230 rc = VariantChangeType(&rv, right, 0, resvt);
3231 if (FAILED(rc)) {
3232 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
3233 return rc;
3235 switch (resvt) {
3236 case VT_R8:
3237 if (V_R8(&rv) == 0) return DISP_E_DIVBYZERO;
3238 V_VT(result) = resvt;
3239 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3240 rc = S_OK;
3241 break;
3242 case VT_DECIMAL:
3243 rc = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3244 V_VT(result) = resvt;
3245 break;
3246 case VT_I4:
3247 if (V_I4(&rv) == 0) return DISP_E_DIVBYZERO;
3248 V_VT(result) = resvt;
3249 V_I4(result) = V_I4(&lv) / V_I4(&rv);
3250 rc = S_OK;
3251 break;
3253 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
3254 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3255 return rc;
3258 /**********************************************************************
3259 * VarSub [OLEAUT32.159]
3261 * Subtract two variants.
3263 * PARAMS
3264 * left [I] First variant
3265 * right [I] Second variant
3266 * result [O] Result variant
3268 * RETURNS
3269 * Success: S_OK.
3270 * Failure: An HRESULT error code indicating the error.
3272 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3274 HRESULT rc = E_FAIL;
3275 VARTYPE lvt,rvt,resvt;
3276 VARIANT lv,rv;
3277 BOOL found;
3279 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3280 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3282 VariantInit(&lv);VariantInit(&rv);
3283 lvt = V_VT(left)&VT_TYPEMASK;
3284 rvt = V_VT(right)&VT_TYPEMASK;
3285 found = FALSE;resvt = VT_VOID;
3286 if (((1<<lvt) | (1<<rvt)) & (VTBIT_DATE|VTBIT_R4|VTBIT_R8)) {
3287 found = TRUE;
3288 resvt = VT_R8;
3290 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_DECIMAL))) {
3291 found = TRUE;
3292 resvt = VT_DECIMAL;
3294 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_INT|VTBIT_UINT))) {
3295 found = TRUE;
3296 resvt = VT_I4;
3298 if (!found) {
3299 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
3300 return E_FAIL;
3302 rc = VariantChangeType(&lv, left, 0, resvt);
3303 if (FAILED(rc)) {
3304 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
3305 return rc;
3307 rc = VariantChangeType(&rv, right, 0, resvt);
3308 if (FAILED(rc)) {
3309 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
3310 return rc;
3312 switch (resvt) {
3313 case VT_R8:
3314 V_VT(result) = resvt;
3315 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3316 rc = S_OK;
3317 break;
3318 case VT_DECIMAL:
3319 rc = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3320 V_VT(result) = resvt;
3321 break;
3322 case VT_I4:
3323 V_VT(result) = resvt;
3324 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3325 rc = S_OK;
3326 break;
3328 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
3329 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3330 return rc;
3333 /**********************************************************************
3334 * VarOr [OLEAUT32.157]
3336 * Perform a logical or (OR) operation on two variants.
3338 * PARAMS
3339 * pVarLeft [I] First variant
3340 * pVarRight [I] Variant to OR with pVarLeft
3341 * pVarOut [O] Destination for OR result
3343 * RETURNS
3344 * Success: S_OK. pVarOut contains the result of the operation with its type
3345 * taken from the table listed under VarXor().
3346 * Failure: An HRESULT error code indicating the error.
3348 * NOTES
3349 * See the Notes section of VarXor() for further information.
3351 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3353 VARTYPE vt = VT_I4;
3354 VARIANT varLeft, varRight, varStr;
3355 HRESULT hRet;
3357 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3358 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3359 debugstr_VF(pVarRight), pVarOut);
3361 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3362 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3363 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
3364 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
3365 return DISP_E_BADVARTYPE;
3367 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
3369 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3371 /* NULL OR Zero is NULL, NULL OR value is value */
3372 if (V_VT(pVarLeft) == VT_NULL)
3373 pVarLeft = pVarRight; /* point to the non-NULL var */
3375 V_VT(pVarOut) = VT_NULL;
3376 V_I4(pVarOut) = 0;
3378 switch (V_VT(pVarLeft))
3380 case VT_DATE: case VT_R8:
3381 if (V_R8(pVarLeft))
3382 goto VarOr_AsEmpty;
3383 return S_OK;
3384 case VT_BOOL:
3385 if (V_BOOL(pVarLeft))
3386 *pVarOut = *pVarLeft;
3387 return S_OK;
3388 case VT_I2: case VT_UI2:
3389 if (V_I2(pVarLeft))
3390 goto VarOr_AsEmpty;
3391 return S_OK;
3392 case VT_I1:
3393 if (V_I1(pVarLeft))
3394 goto VarOr_AsEmpty;
3395 return S_OK;
3396 case VT_UI1:
3397 if (V_UI1(pVarLeft))
3398 *pVarOut = *pVarLeft;
3399 return S_OK;
3400 case VT_R4:
3401 if (V_R4(pVarLeft))
3402 goto VarOr_AsEmpty;
3403 return S_OK;
3404 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
3405 if (V_I4(pVarLeft))
3406 goto VarOr_AsEmpty;
3407 return S_OK;
3408 case VT_CY:
3409 if (V_CY(pVarLeft).int64)
3410 goto VarOr_AsEmpty;
3411 return S_OK;
3412 case VT_I8: case VT_UI8:
3413 if (V_I8(pVarLeft))
3414 goto VarOr_AsEmpty;
3415 return S_OK;
3416 case VT_DECIMAL:
3417 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
3418 goto VarOr_AsEmpty;
3419 return S_OK;
3420 case VT_BSTR:
3422 VARIANT_BOOL b;
3424 if (!V_BSTR(pVarLeft))
3425 return DISP_E_BADVARTYPE;
3427 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3428 if (SUCCEEDED(hRet) && b)
3430 V_VT(pVarOut) = VT_BOOL;
3431 V_BOOL(pVarOut) = b;
3433 return hRet;
3435 case VT_NULL: case VT_EMPTY:
3436 V_VT(pVarOut) = VT_NULL;
3437 return S_OK;
3438 default:
3439 return DISP_E_BADVARTYPE;
3443 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
3445 if (V_VT(pVarLeft) == VT_EMPTY)
3446 pVarLeft = pVarRight; /* point to the non-EMPTY var */
3448 VarOr_AsEmpty:
3449 /* Since one argument is empty (0), OR'ing it with the other simply
3450 * gives the others value (as 0|x => x). So just convert the other
3451 * argument to the required result type.
3453 switch (V_VT(pVarLeft))
3455 case VT_BSTR:
3456 if (!V_BSTR(pVarLeft))
3457 return DISP_E_BADVARTYPE;
3459 hRet = VariantCopy(&varStr, pVarLeft);
3460 if (FAILED(hRet))
3461 goto VarOr_Exit;
3462 pVarLeft = &varStr;
3463 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3464 if (FAILED(hRet))
3465 goto VarOr_Exit;
3466 /* Fall Through ... */
3467 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
3468 V_VT(pVarOut) = VT_I2;
3469 break;
3470 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
3471 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
3472 case VT_INT: case VT_UINT: case VT_UI8:
3473 V_VT(pVarOut) = VT_I4;
3474 break;
3475 case VT_I8:
3476 V_VT(pVarOut) = VT_I8;
3477 break;
3478 default:
3479 return DISP_E_BADVARTYPE;
3481 hRet = VariantCopy(&varLeft, pVarLeft);
3482 if (FAILED(hRet))
3483 goto VarOr_Exit;
3484 pVarLeft = &varLeft;
3485 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
3486 goto VarOr_Exit;
3489 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
3491 V_VT(pVarOut) = VT_BOOL;
3492 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
3493 return S_OK;
3496 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
3498 V_VT(pVarOut) = VT_UI1;
3499 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
3500 return S_OK;
3503 if (V_VT(pVarLeft) == VT_BSTR)
3505 hRet = VariantCopy(&varStr, pVarLeft);
3506 if (FAILED(hRet))
3507 goto VarOr_Exit;
3508 pVarLeft = &varStr;
3509 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3510 if (FAILED(hRet))
3511 goto VarOr_Exit;
3514 if (V_VT(pVarLeft) == VT_BOOL &&
3515 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
3517 vt = VT_BOOL;
3519 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
3520 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
3521 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
3522 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
3524 vt = VT_I2;
3526 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
3528 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3529 return DISP_E_TYPEMISMATCH;
3530 vt = VT_I8;
3533 hRet = VariantCopy(&varLeft, pVarLeft);
3534 if (FAILED(hRet))
3535 goto VarOr_Exit;
3537 hRet = VariantCopy(&varRight, pVarRight);
3538 if (FAILED(hRet))
3539 goto VarOr_Exit;
3541 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3542 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3543 else
3545 double d;
3547 if (V_VT(&varLeft) == VT_BSTR &&
3548 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
3549 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
3550 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
3551 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3552 if (FAILED(hRet))
3553 goto VarOr_Exit;
3556 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
3557 V_VT(&varRight) = VT_I4; /* Don't overflow */
3558 else
3560 double d;
3562 if (V_VT(&varRight) == VT_BSTR &&
3563 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
3564 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
3565 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
3566 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
3567 if (FAILED(hRet))
3568 goto VarOr_Exit;
3571 V_VT(pVarOut) = vt;
3572 if (vt == VT_I8)
3574 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
3576 else if (vt == VT_I4)
3578 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
3580 else
3582 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
3585 VarOr_Exit:
3586 VariantClear(&varStr);
3587 VariantClear(&varLeft);
3588 VariantClear(&varRight);
3589 return hRet;
3592 /**********************************************************************
3593 * VarAbs [OLEAUT32.168]
3595 * Convert a variant to its absolute value.
3597 * PARAMS
3598 * pVarIn [I] Source variant
3599 * pVarOut [O] Destination for converted value
3601 * RETURNS
3602 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
3603 * Failure: An HRESULT error code indicating the error.
3605 * NOTES
3606 * - This function does not process by-reference variants.
3607 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3608 * according to the following table:
3609 *| Input Type Output Type
3610 *| ---------- -----------
3611 *| VT_BOOL VT_I2
3612 *| VT_BSTR VT_R8
3613 *| (All others) Unchanged
3615 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
3617 VARIANT varIn;
3618 HRESULT hRet = S_OK;
3620 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3621 debugstr_VF(pVarIn), pVarOut);
3623 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
3624 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
3625 V_VT(pVarIn) == VT_ERROR)
3626 return DISP_E_TYPEMISMATCH;
3628 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
3630 #define ABS_CASE(typ,min) \
3631 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
3632 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
3633 break
3635 switch (V_VT(pVarIn))
3637 ABS_CASE(I1,I1_MIN);
3638 case VT_BOOL:
3639 V_VT(pVarOut) = VT_I2;
3640 /* BOOL->I2, Fall through ... */
3641 ABS_CASE(I2,I2_MIN);
3642 case VT_INT:
3643 ABS_CASE(I4,I4_MIN);
3644 ABS_CASE(I8,I8_MIN);
3645 ABS_CASE(R4,R4_MIN);
3646 case VT_BSTR:
3647 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3648 if (FAILED(hRet))
3649 break;
3650 V_VT(pVarOut) = VT_R8;
3651 pVarIn = &varIn;
3652 /* Fall through ... */
3653 case VT_DATE:
3654 ABS_CASE(R8,R8_MIN);
3655 case VT_CY:
3656 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
3657 break;
3658 case VT_DECIMAL:
3659 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
3660 break;
3661 case VT_UI1:
3662 case VT_UI2:
3663 case VT_UINT:
3664 case VT_UI4:
3665 case VT_UI8:
3666 /* No-Op */
3667 break;
3668 case VT_EMPTY:
3669 V_VT(pVarOut) = VT_I2;
3670 case VT_NULL:
3671 V_I2(pVarOut) = 0;
3672 break;
3673 default:
3674 hRet = DISP_E_BADVARTYPE;
3677 return hRet;
3680 /**********************************************************************
3681 * VarFix [OLEAUT32.169]
3683 * Truncate a variants value to a whole number.
3685 * PARAMS
3686 * pVarIn [I] Source variant
3687 * pVarOut [O] Destination for converted value
3689 * RETURNS
3690 * Success: S_OK. pVarOut contains the converted value.
3691 * Failure: An HRESULT error code indicating the error.
3693 * NOTES
3694 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3695 * according to the following table:
3696 *| Input Type Output Type
3697 *| ---------- -----------
3698 *| VT_BOOL VT_I2
3699 *| VT_EMPTY VT_I2
3700 *| VT_BSTR VT_R8
3701 *| All Others Unchanged
3702 * - The difference between this function and VarInt() is that VarInt() rounds
3703 * negative numbers away from 0, while this function rounds them towards zero.
3705 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
3707 HRESULT hRet = S_OK;
3709 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3710 debugstr_VF(pVarIn), pVarOut);
3712 V_VT(pVarOut) = V_VT(pVarIn);
3714 switch (V_VT(pVarIn))
3716 case VT_UI1:
3717 V_UI1(pVarOut) = V_UI1(pVarIn);
3718 break;
3719 case VT_BOOL:
3720 V_VT(pVarOut) = VT_I2;
3721 /* Fall through */
3722 case VT_I2:
3723 V_I2(pVarOut) = V_I2(pVarIn);
3724 break;
3725 case VT_I4:
3726 V_I4(pVarOut) = V_I4(pVarIn);
3727 break;
3728 case VT_I8:
3729 V_I8(pVarOut) = V_I8(pVarIn);
3730 break;
3731 case VT_R4:
3732 if (V_R4(pVarIn) < 0.0f)
3733 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
3734 else
3735 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3736 break;
3737 case VT_BSTR:
3738 V_VT(pVarOut) = VT_R8;
3739 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3740 pVarIn = pVarOut;
3741 /* Fall through */
3742 case VT_DATE:
3743 case VT_R8:
3744 if (V_R8(pVarIn) < 0.0)
3745 V_R8(pVarOut) = ceil(V_R8(pVarIn));
3746 else
3747 V_R8(pVarOut) = floor(V_R8(pVarIn));
3748 break;
3749 case VT_CY:
3750 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
3751 break;
3752 case VT_DECIMAL:
3753 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3754 break;
3755 case VT_EMPTY:
3756 V_VT(pVarOut) = VT_I2;
3757 V_I2(pVarOut) = 0;
3758 break;
3759 case VT_NULL:
3760 /* No-Op */
3761 break;
3762 default:
3763 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3764 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3765 hRet = DISP_E_BADVARTYPE;
3766 else
3767 hRet = DISP_E_TYPEMISMATCH;
3769 if (FAILED(hRet))
3770 V_VT(pVarOut) = VT_EMPTY;
3772 return hRet;
3775 /**********************************************************************
3776 * VarInt [OLEAUT32.172]
3778 * Truncate a variants value to a whole number.
3780 * PARAMS
3781 * pVarIn [I] Source variant
3782 * pVarOut [O] Destination for converted value
3784 * RETURNS
3785 * Success: S_OK. pVarOut contains the converted value.
3786 * Failure: An HRESULT error code indicating the error.
3788 * NOTES
3789 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3790 * according to the following table:
3791 *| Input Type Output Type
3792 *| ---------- -----------
3793 *| VT_BOOL VT_I2
3794 *| VT_EMPTY VT_I2
3795 *| VT_BSTR VT_R8
3796 *| All Others Unchanged
3797 * - The difference between this function and VarFix() is that VarFix() rounds
3798 * negative numbers towards 0, while this function rounds them away from zero.
3800 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
3802 HRESULT hRet = S_OK;
3804 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3805 debugstr_VF(pVarIn), pVarOut);
3807 V_VT(pVarOut) = V_VT(pVarIn);
3809 switch (V_VT(pVarIn))
3811 case VT_R4:
3812 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3813 break;
3814 case VT_BSTR:
3815 V_VT(pVarOut) = VT_R8;
3816 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3817 pVarIn = pVarOut;
3818 /* Fall through */
3819 case VT_DATE:
3820 case VT_R8:
3821 V_R8(pVarOut) = floor(V_R8(pVarIn));
3822 break;
3823 case VT_CY:
3824 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
3825 break;
3826 case VT_DECIMAL:
3827 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3828 break;
3829 default:
3830 return VarFix(pVarIn, pVarOut);
3833 return hRet;
3836 /**********************************************************************
3837 * VarXor [OLEAUT32.167]
3839 * Perform a logical exclusive-or (XOR) operation on two variants.
3841 * PARAMS
3842 * pVarLeft [I] First variant
3843 * pVarRight [I] Variant to XOR with pVarLeft
3844 * pVarOut [O] Destination for XOR result
3846 * RETURNS
3847 * Success: S_OK. pVarOut contains the result of the operation with its type
3848 * taken from the table below).
3849 * Failure: An HRESULT error code indicating the error.
3851 * NOTES
3852 * - Neither pVarLeft or pVarRight are modified by this function.
3853 * - This function does not process by-reference variants.
3854 * - Input types of VT_BSTR may be numeric strings or boolean text.
3855 * - The type of result stored in pVarOut depends on the types of pVarLeft
3856 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
3857 * or VT_NULL if the function succeeds.
3858 * - Type promotion is inconsistent and as a result certain combinations of
3859 * values will return DISP_E_OVERFLOW even when they could be represented.
3860 * This matches the behaviour of native oleaut32.
3862 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3864 VARTYPE vt;
3865 VARIANT varLeft, varRight;
3866 double d;
3867 HRESULT hRet;
3869 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3870 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3871 debugstr_VF(pVarRight), pVarOut);
3873 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3874 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
3875 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
3876 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3877 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
3878 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
3879 return DISP_E_BADVARTYPE;
3881 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3883 /* NULL XOR anything valid is NULL */
3884 V_VT(pVarOut) = VT_NULL;
3885 return S_OK;
3888 /* Copy our inputs so we don't disturb anything */
3889 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
3891 hRet = VariantCopy(&varLeft, pVarLeft);
3892 if (FAILED(hRet))
3893 goto VarXor_Exit;
3895 hRet = VariantCopy(&varRight, pVarRight);
3896 if (FAILED(hRet))
3897 goto VarXor_Exit;
3899 /* Try any strings first as numbers, then as VT_BOOL */
3900 if (V_VT(&varLeft) == VT_BSTR)
3902 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
3903 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
3904 FAILED(hRet) ? VT_BOOL : VT_I4);
3905 if (FAILED(hRet))
3906 goto VarXor_Exit;
3909 if (V_VT(&varRight) == VT_BSTR)
3911 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
3912 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
3913 FAILED(hRet) ? VT_BOOL : VT_I4);
3914 if (FAILED(hRet))
3915 goto VarXor_Exit;
3918 /* Determine the result type */
3919 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
3921 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3922 return DISP_E_TYPEMISMATCH;
3923 vt = VT_I8;
3925 else
3927 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
3929 case (VT_BOOL << 16) | VT_BOOL:
3930 vt = VT_BOOL;
3931 break;
3932 case (VT_UI1 << 16) | VT_UI1:
3933 vt = VT_UI1;
3934 break;
3935 case (VT_EMPTY << 16) | VT_EMPTY:
3936 case (VT_EMPTY << 16) | VT_UI1:
3937 case (VT_EMPTY << 16) | VT_I2:
3938 case (VT_EMPTY << 16) | VT_BOOL:
3939 case (VT_UI1 << 16) | VT_EMPTY:
3940 case (VT_UI1 << 16) | VT_I2:
3941 case (VT_UI1 << 16) | VT_BOOL:
3942 case (VT_I2 << 16) | VT_EMPTY:
3943 case (VT_I2 << 16) | VT_UI1:
3944 case (VT_I2 << 16) | VT_I2:
3945 case (VT_I2 << 16) | VT_BOOL:
3946 case (VT_BOOL << 16) | VT_EMPTY:
3947 case (VT_BOOL << 16) | VT_UI1:
3948 case (VT_BOOL << 16) | VT_I2:
3949 vt = VT_I2;
3950 break;
3951 default:
3952 vt = VT_I4;
3953 break;
3957 /* VT_UI4 does not overflow */
3958 if (vt != VT_I8)
3960 if (V_VT(&varLeft) == VT_UI4)
3961 V_VT(&varLeft) = VT_I4;
3962 if (V_VT(&varRight) == VT_UI4)
3963 V_VT(&varRight) = VT_I4;
3966 /* Convert our input copies to the result type */
3967 if (V_VT(&varLeft) != vt)
3968 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3969 if (FAILED(hRet))
3970 goto VarXor_Exit;
3972 if (V_VT(&varRight) != vt)
3973 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
3974 if (FAILED(hRet))
3975 goto VarXor_Exit;
3977 V_VT(pVarOut) = vt;
3979 /* Calculate the result */
3980 switch (vt)
3982 case VT_I8:
3983 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
3984 break;
3985 case VT_I4:
3986 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
3987 break;
3988 case VT_BOOL:
3989 case VT_I2:
3990 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
3991 break;
3992 case VT_UI1:
3993 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
3994 break;
3997 VarXor_Exit:
3998 VariantClear(&varLeft);
3999 VariantClear(&varRight);
4000 return hRet;
4003 /**********************************************************************
4004 * VarEqv [OLEAUT32.172]
4006 * Determine if two variants contain the same value.
4008 * PARAMS
4009 * pVarLeft [I] First variant to compare
4010 * pVarRight [I] Variant to compare to pVarLeft
4011 * pVarOut [O] Destination for comparison result
4013 * RETURNS
4014 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4015 * if equivalent or non-zero otherwise.
4016 * Failure: An HRESULT error code indicating the error.
4018 * NOTES
4019 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4020 * the result.
4022 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4024 HRESULT hRet;
4026 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
4027 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
4028 debugstr_VF(pVarRight), pVarOut);
4030 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4031 if (SUCCEEDED(hRet))
4033 if (V_VT(pVarOut) == VT_I8)
4034 V_I8(pVarOut) = ~V_I8(pVarOut);
4035 else
4036 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4038 return hRet;
4041 /**********************************************************************
4042 * VarNeg [OLEAUT32.173]
4044 * Negate the value of a variant.
4046 * PARAMS
4047 * pVarIn [I] Source variant
4048 * pVarOut [O] Destination for converted value
4050 * RETURNS
4051 * Success: S_OK. pVarOut contains the converted value.
4052 * Failure: An HRESULT error code indicating the error.
4054 * NOTES
4055 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4056 * according to the following table:
4057 *| Input Type Output Type
4058 *| ---------- -----------
4059 *| VT_EMPTY VT_I2
4060 *| VT_UI1 VT_I2
4061 *| VT_BOOL VT_I2
4062 *| VT_BSTR VT_R8
4063 *| All Others Unchanged (unless promoted)
4064 * - Where the negated value of a variant does not fit in its base type, the type
4065 * is promoted according to the following table:
4066 *| Input Type Promoted To
4067 *| ---------- -----------
4068 *| VT_I2 VT_I4
4069 *| VT_I4 VT_R8
4070 *| VT_I8 VT_R8
4071 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4072 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4073 * for types which are not valid. Since this is in contravention of the
4074 * meaning of those error codes and unlikely to be relied on by applications,
4075 * this implementation returns errors consistent with the other high level
4076 * variant math functions.
4078 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4080 HRESULT hRet = S_OK;
4082 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4083 debugstr_VF(pVarIn), pVarOut);
4085 V_VT(pVarOut) = V_VT(pVarIn);
4087 switch (V_VT(pVarIn))
4089 case VT_UI1:
4090 V_VT(pVarOut) = VT_I2;
4091 V_I2(pVarOut) = -V_UI1(pVarIn);
4092 break;
4093 case VT_BOOL:
4094 V_VT(pVarOut) = VT_I2;
4095 /* Fall through */
4096 case VT_I2:
4097 if (V_I2(pVarIn) == I2_MIN)
4099 V_VT(pVarOut) = VT_I4;
4100 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4102 else
4103 V_I2(pVarOut) = -V_I2(pVarIn);
4104 break;
4105 case VT_I4:
4106 if (V_I4(pVarIn) == I4_MIN)
4108 V_VT(pVarOut) = VT_R8;
4109 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4111 else
4112 V_I4(pVarOut) = -V_I4(pVarIn);
4113 break;
4114 case VT_I8:
4115 if (V_I8(pVarIn) == I8_MIN)
4117 V_VT(pVarOut) = VT_R8;
4118 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4119 V_R8(pVarOut) *= -1.0;
4121 else
4122 V_I8(pVarOut) = -V_I8(pVarIn);
4123 break;
4124 case VT_R4:
4125 V_R4(pVarOut) = -V_R4(pVarIn);
4126 break;
4127 case VT_DATE:
4128 case VT_R8:
4129 V_R8(pVarOut) = -V_R8(pVarIn);
4130 break;
4131 case VT_CY:
4132 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4133 break;
4134 case VT_DECIMAL:
4135 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4136 break;
4137 case VT_BSTR:
4138 V_VT(pVarOut) = VT_R8;
4139 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4140 V_R8(pVarOut) = -V_R8(pVarOut);
4141 break;
4142 case VT_EMPTY:
4143 V_VT(pVarOut) = VT_I2;
4144 V_I2(pVarOut) = 0;
4145 break;
4146 case VT_NULL:
4147 /* No-Op */
4148 break;
4149 default:
4150 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4151 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4152 hRet = DISP_E_BADVARTYPE;
4153 else
4154 hRet = DISP_E_TYPEMISMATCH;
4156 if (FAILED(hRet))
4157 V_VT(pVarOut) = VT_EMPTY;
4159 return hRet;
4162 /**********************************************************************
4163 * VarNot [OLEAUT32.174]
4165 * Perform a not operation on a variant.
4167 * PARAMS
4168 * pVarIn [I] Source variant
4169 * pVarOut [O] Destination for converted value
4171 * RETURNS
4172 * Success: S_OK. pVarOut contains the converted value.
4173 * Failure: An HRESULT error code indicating the error.
4175 * NOTES
4176 * - Strictly speaking, this function performs a bitwise ones complement
4177 * on the variants value (after possibly converting to VT_I4, see below).
4178 * This only behaves like a boolean not operation if the value in
4179 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4180 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4181 * before calling this function.
4182 * - This function does not process by-reference variants.
4183 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4184 * according to the following table:
4185 *| Input Type Output Type
4186 *| ---------- -----------
4187 *| VT_EMPTY VT_I2
4188 *| VT_R4 VT_I4
4189 *| VT_R8 VT_I4
4190 *| VT_BSTR VT_I4
4191 *| VT_DECIMAL VT_I4
4192 *| VT_CY VT_I4
4193 *| (All others) Unchanged
4195 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4197 VARIANT varIn;
4198 HRESULT hRet = S_OK;
4200 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4201 debugstr_VF(pVarIn), pVarOut);
4203 V_VT(pVarOut) = V_VT(pVarIn);
4205 switch (V_VT(pVarIn))
4207 case VT_I1:
4208 V_I4(pVarOut) = ~V_I1(pVarIn);
4209 V_VT(pVarOut) = VT_I4;
4210 break;
4211 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
4212 case VT_BOOL:
4213 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
4214 case VT_UI2:
4215 V_I4(pVarOut) = ~V_UI2(pVarIn);
4216 V_VT(pVarOut) = VT_I4;
4217 break;
4218 case VT_DECIMAL:
4219 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
4220 if (FAILED(hRet))
4221 break;
4222 pVarIn = &varIn;
4223 /* Fall through ... */
4224 case VT_INT:
4225 V_VT(pVarOut) = VT_I4;
4226 /* Fall through ... */
4227 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
4228 case VT_UINT:
4229 case VT_UI4:
4230 V_I4(pVarOut) = ~V_UI4(pVarIn);
4231 V_VT(pVarOut) = VT_I4;
4232 break;
4233 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
4234 case VT_UI8:
4235 V_I4(pVarOut) = ~V_UI8(pVarIn);
4236 V_VT(pVarOut) = VT_I4;
4237 break;
4238 case VT_R4:
4239 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
4240 V_I4(pVarOut) = ~V_I4(pVarOut);
4241 V_VT(pVarOut) = VT_I4;
4242 break;
4243 case VT_BSTR:
4244 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4245 if (FAILED(hRet))
4246 break;
4247 pVarIn = &varIn;
4248 /* Fall through ... */
4249 case VT_DATE:
4250 case VT_R8:
4251 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
4252 V_I4(pVarOut) = ~V_I4(pVarOut);
4253 V_VT(pVarOut) = VT_I4;
4254 break;
4255 case VT_CY:
4256 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
4257 V_I4(pVarOut) = ~V_I4(pVarOut);
4258 V_VT(pVarOut) = VT_I4;
4259 break;
4260 case VT_EMPTY:
4261 V_I2(pVarOut) = ~0;
4262 V_VT(pVarOut) = VT_I2;
4263 break;
4264 case VT_NULL:
4265 /* No-Op */
4266 break;
4267 default:
4268 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4269 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4270 hRet = DISP_E_BADVARTYPE;
4271 else
4272 hRet = DISP_E_TYPEMISMATCH;
4274 if (FAILED(hRet))
4275 V_VT(pVarOut) = VT_EMPTY;
4277 return hRet;
4280 /**********************************************************************
4281 * VarRound [OLEAUT32.175]
4283 * Perform a round operation on a variant.
4285 * PARAMS
4286 * pVarIn [I] Source variant
4287 * deci [I] Number of decimals to round to
4288 * pVarOut [O] Destination for converted value
4290 * RETURNS
4291 * Success: S_OK. pVarOut contains the converted value.
4292 * Failure: An HRESULT error code indicating the error.
4294 * NOTES
4295 * - Floating point values are rounded to the desired number of decimals.
4296 * - Some integer types are just copied to the return variable.
4297 * - Some other integer types are not handled and fail.
4299 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
4301 VARIANT varIn;
4302 HRESULT hRet = S_OK;
4303 float factor;
4305 TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci);
4307 switch (V_VT(pVarIn))
4309 /* cases that fail on windows */
4310 case VT_I1:
4311 case VT_I8:
4312 case VT_UI2:
4313 case VT_UI4:
4314 hRet = DISP_E_BADVARTYPE;
4315 break;
4317 /* cases just copying in to out */
4318 case VT_UI1:
4319 V_VT(pVarOut) = V_VT(pVarIn);
4320 V_UI1(pVarOut) = V_UI1(pVarIn);
4321 break;
4322 case VT_I2:
4323 V_VT(pVarOut) = V_VT(pVarIn);
4324 V_I2(pVarOut) = V_I2(pVarIn);
4325 break;
4326 case VT_I4:
4327 V_VT(pVarOut) = V_VT(pVarIn);
4328 V_I4(pVarOut) = V_I4(pVarIn);
4329 break;
4330 case VT_NULL:
4331 V_VT(pVarOut) = V_VT(pVarIn);
4332 /* value unchanged */
4333 break;
4335 /* cases that change type */
4336 case VT_EMPTY:
4337 V_VT(pVarOut) = VT_I2;
4338 V_I2(pVarOut) = 0;
4339 break;
4340 case VT_BOOL:
4341 V_VT(pVarOut) = VT_I2;
4342 V_I2(pVarOut) = V_BOOL(pVarIn);
4343 break;
4344 case VT_BSTR:
4345 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4346 if (FAILED(hRet))
4347 break;
4348 V_VT(&varIn)=VT_R8;
4349 pVarIn = &varIn;
4350 /* Fall through ... */
4352 /* cases we need to do math */
4353 case VT_R8:
4354 if (V_R8(pVarIn)>0) {
4355 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4356 } else {
4357 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4359 V_VT(pVarOut) = V_VT(pVarIn);
4360 break;
4361 case VT_R4:
4362 if (V_R4(pVarIn)>0) {
4363 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4364 } else {
4365 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4367 V_VT(pVarOut) = V_VT(pVarIn);
4368 break;
4369 case VT_DATE:
4370 if (V_DATE(pVarIn)>0) {
4371 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4372 } else {
4373 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4375 V_VT(pVarOut) = V_VT(pVarIn);
4376 break;
4377 case VT_CY:
4378 if (deci>3)
4379 factor=1;
4380 else
4381 factor=pow(10, 4-deci);
4383 if (V_CY(pVarIn).int64>0) {
4384 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
4385 } else {
4386 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
4388 V_VT(pVarOut) = V_VT(pVarIn);
4389 break;
4391 /* cases we don't know yet */
4392 default:
4393 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
4394 V_VT(pVarIn) & VT_TYPEMASK, deci);
4395 hRet = DISP_E_BADVARTYPE;
4398 if (FAILED(hRet))
4399 V_VT(pVarOut) = VT_EMPTY;
4401 TRACE("returning 0x%08lx (%s%s),%f\n", hRet, debugstr_VT(pVarOut),
4402 debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) :
4403 (V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0);
4405 return hRet;
4408 /**********************************************************************
4409 * VarIdiv [OLEAUT32.153]
4411 * Converts input variants to integers and divides them.
4413 * PARAMS
4414 * left [I] Left hand variant
4415 * right [I] Right hand variant
4416 * result [O] Destination for quotient
4418 * RETURNS
4419 * Success: S_OK. result contains the quotient.
4420 * Failure: An HRESULT error code indicating the error.
4422 * NOTES
4423 * If either expression is null, null is returned, as per MSDN
4425 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4427 VARIANT lv, rv;
4428 HRESULT hr;
4430 VariantInit(&lv);
4431 VariantInit(&rv);
4433 if ((V_VT(left) == VT_NULL) || (V_VT(right) == VT_NULL)) {
4434 hr = VariantChangeType(result, result, 0, VT_NULL);
4435 if (FAILED(hr)) {
4436 /* This should never happen */
4437 FIXME("Failed to convert return value to VT_NULL.\n");
4438 return hr;
4440 return S_OK;
4443 hr = VariantChangeType(&lv, left, 0, VT_I4);
4444 if (FAILED(hr)) {
4445 return hr;
4447 hr = VariantChangeType(&rv, right, 0, VT_I4);
4448 if (FAILED(hr)) {
4449 return hr;
4452 hr = VarDiv(&lv, &rv, result);
4453 return hr;
4457 /**********************************************************************
4458 * VarMod [OLEAUT32.155]
4460 * Perform the modulus operation of the right hand variant on the left
4462 * PARAMS
4463 * left [I] Left hand variant
4464 * right [I] Right hand variant
4465 * result [O] Destination for converted value
4467 * RETURNS
4468 * Success: S_OK. result contains the remainder.
4469 * Failure: An HRESULT error code indicating the error.
4471 * NOTE:
4472 * If an error occurs the type of result will be modified but the value will not be.
4473 * Doesn't support arrays or any special flags yet.
4475 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4477 BOOL lOk = TRUE;
4478 BOOL rOk = TRUE;
4479 HRESULT rc = E_FAIL;
4480 int resT = 0;
4481 VARIANT lv,rv;
4483 VariantInit(&lv);
4484 VariantInit(&rv);
4486 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
4487 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
4489 /* check for invalid inputs */
4490 lOk = TRUE;
4491 switch (V_VT(left) & VT_TYPEMASK) {
4492 case VT_BOOL :
4493 case VT_I1 :
4494 case VT_I2 :
4495 case VT_I4 :
4496 case VT_I8 :
4497 case VT_INT :
4498 case VT_UI1 :
4499 case VT_UI2 :
4500 case VT_UI4 :
4501 case VT_UI8 :
4502 case VT_UINT :
4503 case VT_R4 :
4504 case VT_R8 :
4505 case VT_CY :
4506 case VT_EMPTY:
4507 case VT_DATE :
4508 case VT_BSTR :
4509 break;
4510 case VT_VARIANT:
4511 case VT_UNKNOWN:
4512 V_VT(result) = VT_EMPTY;
4513 return DISP_E_TYPEMISMATCH;
4514 case VT_DECIMAL:
4515 V_VT(result) = VT_EMPTY;
4516 return DISP_E_OVERFLOW;
4517 case VT_ERROR:
4518 return DISP_E_TYPEMISMATCH;
4519 case VT_RECORD:
4520 V_VT(result) = VT_EMPTY;
4521 return DISP_E_TYPEMISMATCH;
4522 case VT_NULL:
4523 break;
4524 default:
4525 V_VT(result) = VT_EMPTY;
4526 return DISP_E_BADVARTYPE;
4530 rOk = TRUE;
4531 switch (V_VT(right) & VT_TYPEMASK) {
4532 case VT_BOOL :
4533 case VT_I1 :
4534 case VT_I2 :
4535 case VT_I4 :
4536 case VT_I8 :
4537 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
4539 V_VT(result) = VT_EMPTY;
4540 return DISP_E_TYPEMISMATCH;
4542 case VT_INT :
4543 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
4545 V_VT(result) = VT_EMPTY;
4546 return DISP_E_TYPEMISMATCH;
4548 case VT_UI1 :
4549 case VT_UI2 :
4550 case VT_UI4 :
4551 case VT_UI8 :
4552 case VT_UINT :
4553 case VT_R4 :
4554 case VT_R8 :
4555 case VT_CY :
4556 if(V_VT(left) == VT_EMPTY)
4558 V_VT(result) = VT_I4;
4559 return S_OK;
4561 case VT_EMPTY:
4562 case VT_DATE :
4563 case VT_BSTR:
4564 if(V_VT(left) == VT_NULL)
4566 V_VT(result) = VT_NULL;
4567 return S_OK;
4569 break;
4571 case VT_VOID:
4572 V_VT(result) = VT_EMPTY;
4573 return DISP_E_BADVARTYPE;
4574 case VT_NULL:
4575 if(V_VT(left) == VT_VOID)
4577 V_VT(result) = VT_EMPTY;
4578 return DISP_E_BADVARTYPE;
4579 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
4580 lOk)
4582 V_VT(result) = VT_NULL;
4583 return S_OK;
4584 } else
4586 V_VT(result) = VT_NULL;
4587 return DISP_E_BADVARTYPE;
4589 case VT_VARIANT:
4590 case VT_UNKNOWN:
4591 V_VT(result) = VT_EMPTY;
4592 return DISP_E_TYPEMISMATCH;
4593 case VT_DECIMAL:
4594 if(V_VT(left) == VT_ERROR)
4596 V_VT(result) = VT_EMPTY;
4597 return DISP_E_TYPEMISMATCH;
4598 } else
4600 V_VT(result) = VT_EMPTY;
4601 return DISP_E_OVERFLOW;
4603 case VT_ERROR:
4604 return DISP_E_TYPEMISMATCH;
4605 case VT_RECORD:
4606 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
4608 V_VT(result) = VT_EMPTY;
4609 return DISP_E_BADVARTYPE;
4610 } else
4612 V_VT(result) = VT_EMPTY;
4613 return DISP_E_TYPEMISMATCH;
4615 default:
4616 V_VT(result) = VT_EMPTY;
4617 return DISP_E_BADVARTYPE;
4620 /* determine the result type */
4621 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
4622 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4623 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
4624 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
4625 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4626 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4627 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
4628 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4629 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4630 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
4631 else resT = VT_I4; /* most outputs are I4 */
4633 /* convert to I8 for the modulo */
4634 rc = VariantChangeType(&lv, left, 0, VT_I8);
4635 if(FAILED(rc))
4637 FIXME("Could not convert left type %d to %d? rc == 0x%lX\n", V_VT(left), VT_I8, rc);
4638 return rc;
4641 rc = VariantChangeType(&rv, right, 0, VT_I8);
4642 if(FAILED(rc))
4644 FIXME("Could not convert right type %d to %d? rc == 0x%lX\n", V_VT(right), VT_I8, rc);
4645 return rc;
4648 /* if right is zero set VT_EMPTY and return divide by zero */
4649 if(V_I8(&rv) == 0)
4651 V_VT(result) = VT_EMPTY;
4652 return DISP_E_DIVBYZERO;
4655 /* perform the modulo operation */
4656 V_VT(result) = VT_I8;
4657 V_I8(result) = V_I8(&lv) % V_I8(&rv);
4659 TRACE("V_I8(left) == %ld, V_I8(right) == %ld, V_I8(result) == %ld\n", (long)V_I8(&lv), (long)V_I8(&rv), (long)V_I8(result));
4661 /* convert left and right to the destination type */
4662 rc = VariantChangeType(result, result, 0, resT);
4663 if(FAILED(rc))
4665 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
4666 return rc;
4669 return S_OK;
4672 /**********************************************************************
4673 * VarPow [OLEAUT32.158]
4675 * Computes the power of one variant to another variant.
4677 * PARAMS
4678 * left [I] First variant
4679 * right [I] Second variant
4680 * result [O] Result variant
4682 * RETURNS
4683 * Success: S_OK.
4684 * Failure: An HRESULT error code indicating the error.
4686 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4688 HRESULT hr;
4689 VARIANT dl,dr;
4691 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
4692 right, debugstr_VT(right), debugstr_VF(right), result);
4694 hr = VariantChangeType(&dl,left,0,VT_R8);
4695 if (!SUCCEEDED(hr)) {
4696 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
4697 return E_FAIL;
4699 hr = VariantChangeType(&dr,right,0,VT_R8);
4700 if (!SUCCEEDED(hr)) {
4701 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
4702 return E_FAIL;
4704 V_VT(result) = VT_R8;
4705 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
4706 return S_OK;