wine/debug.h: Added wine_dbgstr_variant and wine_dbgstr_vt implementations.
[wine/wine-gecko.git] / dlls / oleaut32 / variant.c
blob21d19410b3ee26378072300e0016a69d393695c2
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include "config.h"
30 #include <string.h>
31 #include <stdlib.h>
32 #include <stdarg.h>
34 #define COBJMACROS
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
38 #include "windef.h"
39 #include "winbase.h"
40 #include "wine/unicode.h"
41 #include "winerror.h"
42 #include "variant.h"
43 #include "resource.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
47 static const char * const variant_types[] =
49 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
50 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
51 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
52 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
53 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
54 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
55 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
56 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
57 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID",
58 "VT_VERSIONED_STREAM"
61 static const char * const variant_flags[16] =
63 "",
64 "|VT_VECTOR",
65 "|VT_ARRAY",
66 "|VT_VECTOR|VT_ARRAY",
67 "|VT_BYREF",
68 "|VT_VECTOR|VT_ARRAY",
69 "|VT_ARRAY|VT_BYREF",
70 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
71 "|VT_RESERVED",
72 "|VT_VECTOR|VT_RESERVED",
73 "|VT_ARRAY|VT_RESERVED",
74 "|VT_VECTOR|VT_ARRAY|VT_RESERVED",
75 "|VT_BYREF|VT_RESERVED",
76 "|VT_VECTOR|VT_ARRAY|VT_RESERVED",
77 "|VT_ARRAY|VT_BYREF|VT_RESERVED",
78 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_RESERVED",
81 const char *debugstr_vt(VARTYPE vt)
83 return wine_dbgstr_vt(vt);
86 const char *debugstr_variant(const VARIANT *v)
88 return wine_dbgstr_variant(v);
91 /* Convert a variant from one type to another */
92 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
93 VARIANTARG* ps, VARTYPE vt)
95 HRESULT res = DISP_E_TYPEMISMATCH;
96 VARTYPE vtFrom = V_TYPE(ps);
97 DWORD dwFlags = 0;
99 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
100 debugstr_variant(ps), debugstr_vt(vt));
102 if (vt == VT_BSTR || vtFrom == VT_BSTR)
104 /* All flags passed to low level function are only used for
105 * changing to or from strings. Map these here.
107 if (wFlags & VARIANT_LOCALBOOL)
108 dwFlags |= VAR_LOCALBOOL;
109 if (wFlags & VARIANT_CALENDAR_HIJRI)
110 dwFlags |= VAR_CALENDAR_HIJRI;
111 if (wFlags & VARIANT_CALENDAR_THAI)
112 dwFlags |= VAR_CALENDAR_THAI;
113 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
114 dwFlags |= VAR_CALENDAR_GREGORIAN;
115 if (wFlags & VARIANT_NOUSEROVERRIDE)
116 dwFlags |= LOCALE_NOUSEROVERRIDE;
117 if (wFlags & VARIANT_USE_NLS)
118 dwFlags |= LOCALE_USE_NLS;
121 /* Map int/uint to i4/ui4 */
122 if (vt == VT_INT)
123 vt = VT_I4;
124 else if (vt == VT_UINT)
125 vt = VT_UI4;
127 if (vtFrom == VT_INT)
128 vtFrom = VT_I4;
129 else if (vtFrom == VT_UINT)
130 vtFrom = VT_UI4;
132 if (vt == vtFrom)
133 return VariantCopy(pd, ps);
135 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
137 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
138 * accessing the default object property.
140 return DISP_E_TYPEMISMATCH;
143 switch (vt)
145 case VT_EMPTY:
146 if (vtFrom == VT_NULL)
147 return DISP_E_TYPEMISMATCH;
148 /* ... Fall through */
149 case VT_NULL:
150 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
152 res = VariantClear( pd );
153 if (vt == VT_NULL && SUCCEEDED(res))
154 V_VT(pd) = VT_NULL;
156 return res;
158 case VT_I1:
159 switch (vtFrom)
161 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
162 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
163 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
164 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
165 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
166 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
167 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
168 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
169 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
170 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
171 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
172 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
173 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
174 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
175 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
176 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
178 break;
180 case VT_I2:
181 switch (vtFrom)
183 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
184 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
185 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
186 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
187 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
188 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
189 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
190 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
191 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
192 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
193 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
194 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
195 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
196 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
197 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
198 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
200 break;
202 case VT_I4:
203 switch (vtFrom)
205 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
206 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
207 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
208 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
209 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
210 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
211 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
212 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
213 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
214 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
215 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
216 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
217 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
218 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
219 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
220 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
222 break;
224 case VT_UI1:
225 switch (vtFrom)
227 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
228 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
229 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
230 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
231 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
232 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
233 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
234 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
235 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
236 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
237 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
238 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
239 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
240 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
241 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
242 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
244 break;
246 case VT_UI2:
247 switch (vtFrom)
249 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
250 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
251 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
252 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
253 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
254 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
255 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
256 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
257 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
258 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
259 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
260 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
261 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
262 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
263 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
264 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
266 break;
268 case VT_UI4:
269 switch (vtFrom)
271 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
272 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
273 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
274 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
275 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
276 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
277 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
278 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
279 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
280 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
281 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
282 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
283 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
284 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
285 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
286 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
288 break;
290 case VT_UI8:
291 switch (vtFrom)
293 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
294 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
295 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
296 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
297 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
298 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
299 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
300 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
301 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
302 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
303 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
304 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
305 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
306 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
307 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
308 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
310 break;
312 case VT_I8:
313 switch (vtFrom)
315 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
316 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
317 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
318 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
319 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
320 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
321 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
322 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
323 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
324 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
325 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
326 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
327 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
328 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
329 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
330 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
332 break;
334 case VT_R4:
335 switch (vtFrom)
337 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
338 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
339 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
340 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
341 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
342 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
343 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
344 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
345 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
346 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
347 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
348 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
349 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
350 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
351 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
352 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
354 break;
356 case VT_R8:
357 switch (vtFrom)
359 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
360 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
361 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
362 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
363 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
364 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
365 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
366 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
367 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
368 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
369 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
370 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
371 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
372 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
373 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
374 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
376 break;
378 case VT_DATE:
379 switch (vtFrom)
381 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
382 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
383 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
384 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
385 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
386 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
387 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
388 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
389 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
390 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
391 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
392 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
393 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
394 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
395 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
396 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
398 break;
400 case VT_BOOL:
401 switch (vtFrom)
403 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
404 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
405 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
406 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
407 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
408 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
409 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
410 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
411 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
412 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
413 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
414 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
415 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
416 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
417 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
418 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
420 break;
422 case VT_BSTR:
423 switch (vtFrom)
425 case VT_EMPTY:
426 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
427 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
428 case VT_BOOL:
429 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
430 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
431 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
432 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
434 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
435 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
436 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
437 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
438 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
439 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
440 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
441 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
442 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
443 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
444 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
445 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
447 break;
449 case VT_CY:
450 switch (vtFrom)
452 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
453 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
454 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
455 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
456 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
457 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
458 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
459 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
460 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
461 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
462 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
463 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
464 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
465 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
466 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
467 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
469 break;
471 case VT_DECIMAL:
472 switch (vtFrom)
474 case VT_EMPTY:
475 case VT_BOOL:
476 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
477 DEC_HI32(&V_DECIMAL(pd)) = 0;
478 DEC_MID32(&V_DECIMAL(pd)) = 0;
479 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
480 * VT_NULL and VT_EMPTY always give a 0 value.
482 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
483 return S_OK;
484 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
485 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
486 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
487 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
488 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
489 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
490 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
491 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
492 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
493 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
494 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
495 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
496 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
497 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
499 break;
501 case VT_UNKNOWN:
502 switch (vtFrom)
504 case VT_DISPATCH:
505 if (V_DISPATCH(ps) == NULL)
506 V_UNKNOWN(pd) = NULL;
507 else
508 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
509 break;
511 break;
513 case VT_DISPATCH:
514 switch (vtFrom)
516 case VT_UNKNOWN:
517 if (V_UNKNOWN(ps) == NULL)
518 V_DISPATCH(pd) = NULL;
519 else
520 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
521 break;
523 break;
525 case VT_RECORD:
526 break;
528 return res;
531 /* Coerce to/from an array */
532 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
534 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
535 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
537 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
538 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
540 if (V_VT(ps) == vt)
541 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
543 return DISP_E_TYPEMISMATCH;
546 /******************************************************************************
547 * Check if a variants type is valid.
549 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
551 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
553 vt &= VT_TYPEMASK;
555 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
557 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
559 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
560 return DISP_E_BADVARTYPE;
561 if (vt != (VARTYPE)15)
562 return S_OK;
565 return DISP_E_BADVARTYPE;
568 /******************************************************************************
569 * VariantInit [OLEAUT32.8]
571 * Initialise a variant.
573 * PARAMS
574 * pVarg [O] Variant to initialise
576 * RETURNS
577 * Nothing.
579 * NOTES
580 * This function simply sets the type of the variant to VT_EMPTY. It does not
581 * free any existing value, use VariantClear() for that.
583 void WINAPI VariantInit(VARIANTARG* pVarg)
585 TRACE("(%p)\n", pVarg);
587 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
588 V_VT(pVarg) = VT_EMPTY;
591 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
593 HRESULT hres;
595 TRACE("(%s)\n", debugstr_variant(pVarg));
597 hres = VARIANT_ValidateType(V_VT(pVarg));
598 if (FAILED(hres))
599 return hres;
601 switch (V_VT(pVarg))
603 case VT_DISPATCH:
604 case VT_UNKNOWN:
605 if (V_UNKNOWN(pVarg))
606 IUnknown_Release(V_UNKNOWN(pVarg));
607 break;
608 case VT_UNKNOWN | VT_BYREF:
609 case VT_DISPATCH | VT_BYREF:
610 if(*V_UNKNOWNREF(pVarg))
611 IUnknown_Release(*V_UNKNOWNREF(pVarg));
612 break;
613 case VT_BSTR:
614 SysFreeString(V_BSTR(pVarg));
615 break;
616 case VT_BSTR | VT_BYREF:
617 SysFreeString(*V_BSTRREF(pVarg));
618 break;
619 case VT_VARIANT | VT_BYREF:
620 VariantClear(V_VARIANTREF(pVarg));
621 break;
622 case VT_RECORD:
623 case VT_RECORD | VT_BYREF:
625 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
626 if (pBr->pRecInfo)
628 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
629 IRecordInfo_Release(pBr->pRecInfo);
631 break;
633 default:
634 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
636 if (V_ISBYREF(pVarg))
638 if (*V_ARRAYREF(pVarg))
639 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
641 else if (V_ARRAY(pVarg))
642 hres = SafeArrayDestroy(V_ARRAY(pVarg));
644 break;
647 V_VT(pVarg) = VT_EMPTY;
648 return hres;
651 /******************************************************************************
652 * VariantClear [OLEAUT32.9]
654 * Clear a variant.
656 * PARAMS
657 * pVarg [I/O] Variant to clear
659 * RETURNS
660 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
661 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
663 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
665 HRESULT hres;
667 TRACE("(%s)\n", debugstr_variant(pVarg));
669 hres = VARIANT_ValidateType(V_VT(pVarg));
671 if (SUCCEEDED(hres))
673 if (!V_ISBYREF(pVarg))
675 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
677 hres = SafeArrayDestroy(V_ARRAY(pVarg));
679 else if (V_VT(pVarg) == VT_BSTR)
681 SysFreeString(V_BSTR(pVarg));
683 else if (V_VT(pVarg) == VT_RECORD)
685 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
686 if (pBr->pRecInfo)
688 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
689 IRecordInfo_Release(pBr->pRecInfo);
692 else if (V_VT(pVarg) == VT_DISPATCH ||
693 V_VT(pVarg) == VT_UNKNOWN)
695 if (V_UNKNOWN(pVarg))
696 IUnknown_Release(V_UNKNOWN(pVarg));
699 V_VT(pVarg) = VT_EMPTY;
701 return hres;
704 /******************************************************************************
705 * Copy an IRecordInfo object contained in a variant.
707 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
709 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
710 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
711 HRESULT hr = S_OK;
712 ULONG size;
714 if (!src_rec->pRecInfo)
716 if (src_rec->pvRecord) return E_INVALIDARG;
717 return S_OK;
720 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
721 if (FAILED(hr)) return hr;
723 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
724 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
725 could free it later. */
726 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
727 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
729 dest_rec->pRecInfo = src_rec->pRecInfo;
730 IRecordInfo_AddRef(src_rec->pRecInfo);
732 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
735 /******************************************************************************
736 * VariantCopy [OLEAUT32.10]
738 * Copy a variant.
740 * PARAMS
741 * pvargDest [O] Destination for copy
742 * pvargSrc [I] Source variant to copy
744 * RETURNS
745 * Success: S_OK. pvargDest contains a copy of pvargSrc.
746 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
747 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
748 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
749 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
751 * NOTES
752 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
753 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
754 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
755 * fails, so does this function.
756 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
757 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
758 * is copied rather than just any pointers to it.
759 * - For by-value object types the object pointer is copied and the objects
760 * reference count increased using IUnknown_AddRef().
761 * - For all by-reference types, only the referencing pointer is copied.
763 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
765 HRESULT hres = S_OK;
767 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
769 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
770 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
771 return DISP_E_BADVARTYPE;
773 if (pvargSrc != pvargDest &&
774 SUCCEEDED(hres = VariantClear(pvargDest)))
776 *pvargDest = *pvargSrc; /* Shallow copy the value */
778 if (!V_ISBYREF(pvargSrc))
780 switch (V_VT(pvargSrc))
782 case VT_BSTR:
783 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
784 if (!V_BSTR(pvargDest))
785 hres = E_OUTOFMEMORY;
786 break;
787 case VT_RECORD:
788 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
789 break;
790 case VT_DISPATCH:
791 case VT_UNKNOWN:
792 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
793 if (V_UNKNOWN(pvargSrc))
794 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
795 break;
796 default:
797 if (V_ISARRAY(pvargSrc))
798 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
802 return hres;
805 /* Return the byte size of a variants data */
806 static inline size_t VARIANT_DataSize(const VARIANT* pv)
808 switch (V_TYPE(pv))
810 case VT_I1:
811 case VT_UI1: return sizeof(BYTE);
812 case VT_I2:
813 case VT_UI2: return sizeof(SHORT);
814 case VT_INT:
815 case VT_UINT:
816 case VT_I4:
817 case VT_UI4: return sizeof(LONG);
818 case VT_I8:
819 case VT_UI8: return sizeof(LONGLONG);
820 case VT_R4: return sizeof(float);
821 case VT_R8: return sizeof(double);
822 case VT_DATE: return sizeof(DATE);
823 case VT_BOOL: return sizeof(VARIANT_BOOL);
824 case VT_DISPATCH:
825 case VT_UNKNOWN:
826 case VT_BSTR: return sizeof(void*);
827 case VT_CY: return sizeof(CY);
828 case VT_ERROR: return sizeof(SCODE);
830 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
831 return 0;
834 /******************************************************************************
835 * VariantCopyInd [OLEAUT32.11]
837 * Copy a variant, dereferencing it if it is by-reference.
839 * PARAMS
840 * pvargDest [O] Destination for copy
841 * pvargSrc [I] Source variant to copy
843 * RETURNS
844 * Success: S_OK. pvargDest contains a copy of pvargSrc.
845 * Failure: An HRESULT error code indicating the error.
847 * NOTES
848 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
849 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
850 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
851 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
852 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
854 * NOTES
855 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
856 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
857 * value.
858 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
859 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
860 * to it. If clearing pvargDest fails, so does this function.
862 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
864 VARIANTARG vTmp, *pSrc = pvargSrc;
865 VARTYPE vt;
866 HRESULT hres = S_OK;
868 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
870 if (!V_ISBYREF(pvargSrc))
871 return VariantCopy(pvargDest, pvargSrc);
873 /* Argument checking is more lax than VariantCopy()... */
874 vt = V_TYPE(pvargSrc);
875 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
876 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
877 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
879 /* OK */
881 else
882 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
884 if (pvargSrc == pvargDest)
886 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
887 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
889 vTmp = *pvargSrc;
890 pSrc = &vTmp;
891 V_VT(pvargDest) = VT_EMPTY;
893 else
895 /* Copy into another variant. Free the variant in pvargDest */
896 if (FAILED(hres = VariantClear(pvargDest)))
898 TRACE("VariantClear() of destination failed\n");
899 return hres;
903 if (V_ISARRAY(pSrc))
905 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
906 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
908 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
910 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
911 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
913 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
915 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
917 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
918 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
920 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
921 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
922 if (*V_UNKNOWNREF(pSrc))
923 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
925 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
927 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
928 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
929 hres = E_INVALIDARG; /* Don't dereference more than one level */
930 else
931 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
933 /* Use the dereferenced variants type value, not VT_VARIANT */
934 goto VariantCopyInd_Return;
936 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
938 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
939 sizeof(DECIMAL) - sizeof(USHORT));
941 else
943 /* Copy the pointed to data into this variant */
944 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
947 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
949 VariantCopyInd_Return:
951 if (pSrc != pvargSrc)
952 VariantClear(pSrc);
954 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
955 return hres;
958 /******************************************************************************
959 * VariantChangeType [OLEAUT32.12]
961 * Change the type of a variant.
963 * PARAMS
964 * pvargDest [O] Destination for the converted variant
965 * pvargSrc [O] Source variant to change the type of
966 * wFlags [I] VARIANT_ flags from "oleauto.h"
967 * vt [I] Variant type to change pvargSrc into
969 * RETURNS
970 * Success: S_OK. pvargDest contains the converted value.
971 * Failure: An HRESULT error code describing the failure.
973 * NOTES
974 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
975 * See VariantChangeTypeEx.
977 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
978 USHORT wFlags, VARTYPE vt)
980 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
983 /******************************************************************************
984 * VariantChangeTypeEx [OLEAUT32.147]
986 * Change the type of a variant.
988 * PARAMS
989 * pvargDest [O] Destination for the converted variant
990 * pvargSrc [O] Source variant to change the type of
991 * lcid [I] LCID for the conversion
992 * wFlags [I] VARIANT_ flags from "oleauto.h"
993 * vt [I] Variant type to change pvargSrc into
995 * RETURNS
996 * Success: S_OK. pvargDest contains the converted value.
997 * Failure: An HRESULT error code describing the failure.
999 * NOTES
1000 * pvargDest and pvargSrc can point to the same variant to perform an in-place
1001 * conversion. If the conversion is successful, pvargSrc will be freed.
1003 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
1004 LCID lcid, USHORT wFlags, VARTYPE vt)
1006 HRESULT res = S_OK;
1008 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
1009 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
1011 if (vt == VT_CLSID)
1012 res = DISP_E_BADVARTYPE;
1013 else
1015 res = VARIANT_ValidateType(V_VT(pvargSrc));
1017 if (SUCCEEDED(res))
1019 res = VARIANT_ValidateType(vt);
1021 if (SUCCEEDED(res))
1023 VARIANTARG vTmp, vSrcDeref;
1025 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1026 res = DISP_E_TYPEMISMATCH;
1027 else
1029 V_VT(&vTmp) = VT_EMPTY;
1030 V_VT(&vSrcDeref) = VT_EMPTY;
1031 VariantClear(&vTmp);
1032 VariantClear(&vSrcDeref);
1035 if (SUCCEEDED(res))
1037 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1038 if (SUCCEEDED(res))
1040 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1041 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1042 else
1043 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1045 if (SUCCEEDED(res)) {
1046 V_VT(&vTmp) = vt;
1047 res = VariantCopy(pvargDest, &vTmp);
1049 VariantClear(&vTmp);
1050 VariantClear(&vSrcDeref);
1057 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1058 return res;
1061 /* Date Conversions */
1063 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1065 /* Convert a VT_DATE value to a Julian Date */
1066 static inline int VARIANT_JulianFromDate(int dateIn)
1068 int julianDays = dateIn;
1070 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1071 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1072 return julianDays;
1075 /* Convert a Julian Date to a VT_DATE value */
1076 static inline int VARIANT_DateFromJulian(int dateIn)
1078 int julianDays = dateIn;
1080 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1081 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1082 return julianDays;
1085 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1086 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1088 int j, i, l, n;
1090 l = jd + 68569;
1091 n = l * 4 / 146097;
1092 l -= (n * 146097 + 3) / 4;
1093 i = (4000 * (l + 1)) / 1461001;
1094 l += 31 - (i * 1461) / 4;
1095 j = (l * 80) / 2447;
1096 *day = l - (j * 2447) / 80;
1097 l = j / 11;
1098 *month = (j + 2) - (12 * l);
1099 *year = 100 * (n - 49) + i + l;
1102 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1103 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1105 int m12 = (month - 14) / 12;
1107 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1108 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1111 /* Macros for accessing DOS format date/time fields */
1112 #define DOS_YEAR(x) (1980 + (x >> 9))
1113 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1114 #define DOS_DAY(x) (x & 0x1f)
1115 #define DOS_HOUR(x) (x >> 11)
1116 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1117 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1118 /* Create a DOS format date/time */
1119 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1120 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1122 /* Roll a date forwards or backwards to correct it */
1123 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1125 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1126 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1128 /* interpret values signed */
1129 iYear = lpUd->st.wYear;
1130 iMonth = lpUd->st.wMonth;
1131 iDay = lpUd->st.wDay;
1132 iHour = lpUd->st.wHour;
1133 iMinute = lpUd->st.wMinute;
1134 iSecond = lpUd->st.wSecond;
1136 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1137 iYear, iHour, iMinute, iSecond);
1139 if (iYear > 9999 || iYear < -9999)
1140 return E_INVALIDARG; /* Invalid value */
1141 /* Year 0 to 29 are treated as 2000 + year */
1142 if (iYear >= 0 && iYear < 30)
1143 iYear += 2000;
1144 /* Remaining years < 100 are treated as 1900 + year */
1145 else if (iYear >= 30 && iYear < 100)
1146 iYear += 1900;
1148 iMinute += iSecond / 60;
1149 iSecond = iSecond % 60;
1150 iHour += iMinute / 60;
1151 iMinute = iMinute % 60;
1152 iDay += iHour / 24;
1153 iHour = iHour % 24;
1154 iYear += iMonth / 12;
1155 iMonth = iMonth % 12;
1156 if (iMonth<=0) {iMonth+=12; iYear--;}
1157 while (iDay > days[iMonth])
1159 if (iMonth == 2 && IsLeapYear(iYear))
1160 iDay -= 29;
1161 else
1162 iDay -= days[iMonth];
1163 iMonth++;
1164 iYear += iMonth / 12;
1165 iMonth = iMonth % 12;
1167 while (iDay <= 0)
1169 iMonth--;
1170 if (iMonth<=0) {iMonth+=12; iYear--;}
1171 if (iMonth == 2 && IsLeapYear(iYear))
1172 iDay += 29;
1173 else
1174 iDay += days[iMonth];
1177 if (iSecond<0){iSecond+=60; iMinute--;}
1178 if (iMinute<0){iMinute+=60; iHour--;}
1179 if (iHour<0) {iHour+=24; iDay--;}
1180 if (iYear<=0) iYear+=2000;
1182 lpUd->st.wYear = iYear;
1183 lpUd->st.wMonth = iMonth;
1184 lpUd->st.wDay = iDay;
1185 lpUd->st.wHour = iHour;
1186 lpUd->st.wMinute = iMinute;
1187 lpUd->st.wSecond = iSecond;
1189 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1190 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1191 return S_OK;
1194 /**********************************************************************
1195 * DosDateTimeToVariantTime [OLEAUT32.14]
1197 * Convert a Dos format date and time into variant VT_DATE format.
1199 * PARAMS
1200 * wDosDate [I] Dos format date
1201 * wDosTime [I] Dos format time
1202 * pDateOut [O] Destination for VT_DATE format
1204 * RETURNS
1205 * Success: TRUE. pDateOut contains the converted time.
1206 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1208 * NOTES
1209 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1210 * - Dos format times are accurate to only 2 second precision.
1211 * - The format of a Dos Date is:
1212 *| Bits Values Meaning
1213 *| ---- ------ -------
1214 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1215 *| the days in the month rolls forward the extra days.
1216 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1217 *| year. 13-15 are invalid.
1218 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1219 * - The format of a Dos Time is:
1220 *| Bits Values Meaning
1221 *| ---- ------ -------
1222 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1223 *| 5-10 0-59 Minutes. 60-63 are invalid.
1224 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1226 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1227 double *pDateOut)
1229 UDATE ud;
1231 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1232 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1233 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1234 pDateOut);
1236 ud.st.wYear = DOS_YEAR(wDosDate);
1237 ud.st.wMonth = DOS_MONTH(wDosDate);
1238 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1239 return FALSE;
1240 ud.st.wDay = DOS_DAY(wDosDate);
1241 ud.st.wHour = DOS_HOUR(wDosTime);
1242 ud.st.wMinute = DOS_MINUTE(wDosTime);
1243 ud.st.wSecond = DOS_SECOND(wDosTime);
1244 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1245 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1246 return FALSE; /* Invalid values in Dos*/
1248 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1251 /**********************************************************************
1252 * VariantTimeToDosDateTime [OLEAUT32.13]
1254 * Convert a variant format date into a Dos format date and time.
1256 * dateIn [I] VT_DATE time format
1257 * pwDosDate [O] Destination for Dos format date
1258 * pwDosTime [O] Destination for Dos format time
1260 * RETURNS
1261 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1262 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1264 * NOTES
1265 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1267 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1269 UDATE ud;
1271 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1273 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1274 return FALSE;
1276 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1277 return FALSE;
1279 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1280 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1282 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1283 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1284 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1285 return TRUE;
1288 /***********************************************************************
1289 * SystemTimeToVariantTime [OLEAUT32.184]
1291 * Convert a System format date and time into variant VT_DATE format.
1293 * PARAMS
1294 * lpSt [I] System format date and time
1295 * pDateOut [O] Destination for VT_DATE format date
1297 * RETURNS
1298 * Success: TRUE. *pDateOut contains the converted value.
1299 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1301 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1303 UDATE ud;
1305 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1306 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1308 if (lpSt->wMonth > 12)
1309 return FALSE;
1310 if (lpSt->wDay > 31)
1311 return FALSE;
1312 if ((short)lpSt->wYear < 0)
1313 return FALSE;
1315 ud.st = *lpSt;
1316 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1319 /***********************************************************************
1320 * VariantTimeToSystemTime [OLEAUT32.185]
1322 * Convert a variant VT_DATE into a System format date and time.
1324 * PARAMS
1325 * datein [I] Variant VT_DATE format date
1326 * lpSt [O] Destination for System format date and time
1328 * RETURNS
1329 * Success: TRUE. *lpSt contains the converted value.
1330 * Failure: FALSE, if dateIn is too large or small.
1332 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1334 UDATE ud;
1336 TRACE("(%g,%p)\n", dateIn, lpSt);
1338 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1339 return FALSE;
1341 *lpSt = ud.st;
1342 return TRUE;
1345 /***********************************************************************
1346 * VarDateFromUdateEx [OLEAUT32.319]
1348 * Convert an unpacked format date and time to a variant VT_DATE.
1350 * PARAMS
1351 * pUdateIn [I] Unpacked format date and time to convert
1352 * lcid [I] Locale identifier for the conversion
1353 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1354 * pDateOut [O] Destination for variant VT_DATE.
1356 * RETURNS
1357 * Success: S_OK. *pDateOut contains the converted value.
1358 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1360 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1362 UDATE ud;
1363 double dateVal, dateSign;
1365 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1366 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1367 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1368 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1369 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1371 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1372 FIXME("lcid possibly not handled, treating as en-us\n");
1374 ud = *pUdateIn;
1376 if (dwFlags & VAR_VALIDDATE)
1377 WARN("Ignoring VAR_VALIDDATE\n");
1379 if (FAILED(VARIANT_RollUdate(&ud)))
1380 return E_INVALIDARG;
1382 /* Date */
1383 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1385 /* Sign */
1386 dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1388 /* Time */
1389 dateVal += ud.st.wHour / 24.0 * dateSign;
1390 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1391 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1393 TRACE("Returning %g\n", dateVal);
1394 *pDateOut = dateVal;
1395 return S_OK;
1398 /***********************************************************************
1399 * VarDateFromUdate [OLEAUT32.330]
1401 * Convert an unpacked format date and time to a variant VT_DATE.
1403 * PARAMS
1404 * pUdateIn [I] Unpacked format date and time to convert
1405 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1406 * pDateOut [O] Destination for variant VT_DATE.
1408 * RETURNS
1409 * Success: S_OK. *pDateOut contains the converted value.
1410 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1412 * NOTES
1413 * This function uses the United States English locale for the conversion. Use
1414 * VarDateFromUdateEx() for alternate locales.
1416 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1418 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1420 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1423 /***********************************************************************
1424 * VarUdateFromDate [OLEAUT32.331]
1426 * Convert a variant VT_DATE into an unpacked format date and time.
1428 * PARAMS
1429 * datein [I] Variant VT_DATE format date
1430 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1431 * lpUdate [O] Destination for unpacked format date and time
1433 * RETURNS
1434 * Success: S_OK. *lpUdate contains the converted value.
1435 * Failure: E_INVALIDARG, if dateIn is too large or small.
1437 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1439 /* Cumulative totals of days per month */
1440 static const USHORT cumulativeDays[] =
1442 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1444 double datePart, timePart;
1445 int julianDays;
1447 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1449 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1450 return E_INVALIDARG;
1452 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1453 /* Compensate for int truncation (always downwards) */
1454 timePart = fabs(dateIn - datePart) + 0.00000000001;
1455 if (timePart >= 1.0)
1456 timePart -= 0.00000000001;
1458 /* Date */
1459 julianDays = VARIANT_JulianFromDate(dateIn);
1460 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1461 &lpUdate->st.wDay);
1463 datePart = (datePart + 1.5) / 7.0;
1464 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1465 if (lpUdate->st.wDayOfWeek == 0)
1466 lpUdate->st.wDayOfWeek = 5;
1467 else if (lpUdate->st.wDayOfWeek == 1)
1468 lpUdate->st.wDayOfWeek = 6;
1469 else
1470 lpUdate->st.wDayOfWeek -= 2;
1472 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1473 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1474 else
1475 lpUdate->wDayOfYear = 0;
1477 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1478 lpUdate->wDayOfYear += lpUdate->st.wDay;
1480 /* Time */
1481 timePart *= 24.0;
1482 lpUdate->st.wHour = timePart;
1483 timePart -= lpUdate->st.wHour;
1484 timePart *= 60.0;
1485 lpUdate->st.wMinute = timePart;
1486 timePart -= lpUdate->st.wMinute;
1487 timePart *= 60.0;
1488 lpUdate->st.wSecond = timePart;
1489 timePart -= lpUdate->st.wSecond;
1490 lpUdate->st.wMilliseconds = 0;
1491 if (timePart > 0.5)
1493 /* Round the milliseconds, adjusting the time/date forward if needed */
1494 if (lpUdate->st.wSecond < 59)
1495 lpUdate->st.wSecond++;
1496 else
1498 lpUdate->st.wSecond = 0;
1499 if (lpUdate->st.wMinute < 59)
1500 lpUdate->st.wMinute++;
1501 else
1503 lpUdate->st.wMinute = 0;
1504 if (lpUdate->st.wHour < 23)
1505 lpUdate->st.wHour++;
1506 else
1508 lpUdate->st.wHour = 0;
1509 /* Roll over a whole day */
1510 if (++lpUdate->st.wDay > 28)
1511 VARIANT_RollUdate(lpUdate);
1516 return S_OK;
1519 #define GET_NUMBER_TEXT(fld,name) \
1520 buff[0] = 0; \
1521 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1522 WARN("buffer too small for " #fld "\n"); \
1523 else \
1524 if (buff[0]) lpChars->name = buff[0]; \
1525 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1527 /* Get the valid number characters for an lcid */
1528 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1530 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1531 static CRITICAL_SECTION csLastChars = { NULL, -1, 0, 0, 0, 0 };
1532 static VARIANT_NUMBER_CHARS lastChars;
1533 static LCID lastLcid = -1;
1534 static DWORD lastFlags = 0;
1535 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1536 WCHAR buff[4];
1538 /* To make caching thread-safe, a critical section is needed */
1539 EnterCriticalSection(&csLastChars);
1541 /* Asking for default locale entries is very expensive: It is a registry
1542 server call. So cache one locally, as Microsoft does it too */
1543 if(lcid == lastLcid && dwFlags == lastFlags)
1545 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1546 LeaveCriticalSection(&csLastChars);
1547 return;
1550 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1551 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1552 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1553 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1554 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1555 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1556 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1558 /* Local currency symbols are often 2 characters */
1559 lpChars->cCurrencyLocal2 = '\0';
1560 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1562 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1563 case 2: lpChars->cCurrencyLocal = buff[0];
1564 break;
1565 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1567 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1568 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1570 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1571 lastLcid = lcid;
1572 lastFlags = dwFlags;
1573 LeaveCriticalSection(&csLastChars);
1576 /* Number Parsing States */
1577 #define B_PROCESSING_EXPONENT 0x1
1578 #define B_NEGATIVE_EXPONENT 0x2
1579 #define B_EXPONENT_START 0x4
1580 #define B_INEXACT_ZEROS 0x8
1581 #define B_LEADING_ZERO 0x10
1582 #define B_PROCESSING_HEX 0x20
1583 #define B_PROCESSING_OCT 0x40
1585 /**********************************************************************
1586 * VarParseNumFromStr [OLEAUT32.46]
1588 * Parse a string containing a number into a NUMPARSE structure.
1590 * PARAMS
1591 * lpszStr [I] String to parse number from
1592 * lcid [I] Locale Id for the conversion
1593 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1594 * pNumprs [I/O] Destination for parsed number
1595 * rgbDig [O] Destination for digits read in
1597 * RETURNS
1598 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1599 * the number.
1600 * Failure: E_INVALIDARG, if any parameter is invalid.
1601 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1602 * incorrectly.
1603 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1605 * NOTES
1606 * pNumprs must have the following fields set:
1607 * cDig: Set to the size of rgbDig.
1608 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1609 * from "oleauto.h".
1611 * FIXME
1612 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1613 * numerals, so this has not been implemented.
1615 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1616 NUMPARSE *pNumprs, BYTE *rgbDig)
1618 VARIANT_NUMBER_CHARS chars;
1619 BYTE rgbTmp[1024];
1620 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1621 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1622 int cchUsed = 0;
1624 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1626 if (!pNumprs || !rgbDig)
1627 return E_INVALIDARG;
1629 if (pNumprs->cDig < iMaxDigits)
1630 iMaxDigits = pNumprs->cDig;
1632 pNumprs->cDig = 0;
1633 pNumprs->dwOutFlags = 0;
1634 pNumprs->cchUsed = 0;
1635 pNumprs->nBaseShift = 0;
1636 pNumprs->nPwr10 = 0;
1638 if (!lpszStr)
1639 return DISP_E_TYPEMISMATCH;
1641 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1643 /* First consume all the leading symbols and space from the string */
1644 while (1)
1646 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1648 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1651 cchUsed++;
1652 lpszStr++;
1653 } while (isspaceW(*lpszStr));
1655 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1656 *lpszStr == chars.cPositiveSymbol &&
1657 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1659 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1660 cchUsed++;
1661 lpszStr++;
1663 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1664 *lpszStr == chars.cNegativeSymbol &&
1665 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1667 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1668 cchUsed++;
1669 lpszStr++;
1671 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1672 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1673 *lpszStr == chars.cCurrencyLocal &&
1674 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1676 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1677 cchUsed++;
1678 lpszStr++;
1679 /* Only accept currency characters */
1680 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1681 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1683 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1684 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1686 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1687 cchUsed++;
1688 lpszStr++;
1690 else
1691 break;
1694 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1696 /* Only accept non-currency characters */
1697 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1698 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1701 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1702 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1704 dwState |= B_PROCESSING_HEX;
1705 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1706 cchUsed=cchUsed+2;
1707 lpszStr=lpszStr+2;
1709 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1710 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1712 dwState |= B_PROCESSING_OCT;
1713 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1714 cchUsed=cchUsed+2;
1715 lpszStr=lpszStr+2;
1718 /* Strip Leading zeros */
1719 while (*lpszStr == '0')
1721 dwState |= B_LEADING_ZERO;
1722 cchUsed++;
1723 lpszStr++;
1726 while (*lpszStr)
1728 if (isdigitW(*lpszStr))
1730 if (dwState & B_PROCESSING_EXPONENT)
1732 int exponentSize = 0;
1733 if (dwState & B_EXPONENT_START)
1735 if (!isdigitW(*lpszStr))
1736 break; /* No exponent digits - invalid */
1737 while (*lpszStr == '0')
1739 /* Skip leading zero's in the exponent */
1740 cchUsed++;
1741 lpszStr++;
1745 while (isdigitW(*lpszStr))
1747 exponentSize *= 10;
1748 exponentSize += *lpszStr - '0';
1749 cchUsed++;
1750 lpszStr++;
1752 if (dwState & B_NEGATIVE_EXPONENT)
1753 exponentSize = -exponentSize;
1754 /* Add the exponent into the powers of 10 */
1755 pNumprs->nPwr10 += exponentSize;
1756 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1757 lpszStr--; /* back up to allow processing of next char */
1759 else
1761 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1762 && !(dwState & B_PROCESSING_OCT))
1764 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1766 if (*lpszStr != '0')
1767 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1769 /* This digit can't be represented, but count it in nPwr10 */
1770 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1771 pNumprs->nPwr10--;
1772 else
1773 pNumprs->nPwr10++;
1775 else
1777 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1778 return DISP_E_TYPEMISMATCH;
1781 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1782 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1784 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1786 pNumprs->cDig++;
1787 cchUsed++;
1790 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1792 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1793 cchUsed++;
1795 else if (*lpszStr == chars.cDecimalPoint &&
1796 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1797 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1799 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1800 cchUsed++;
1802 /* If we have no digits so far, skip leading zeros */
1803 if (!pNumprs->cDig)
1805 while (lpszStr[1] == '0')
1807 dwState |= B_LEADING_ZERO;
1808 cchUsed++;
1809 lpszStr++;
1810 pNumprs->nPwr10--;
1814 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1815 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1816 dwState & B_PROCESSING_HEX)
1818 if (pNumprs->cDig >= iMaxDigits)
1820 return DISP_E_OVERFLOW;
1822 else
1824 if (*lpszStr >= 'a')
1825 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1826 else
1827 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1829 pNumprs->cDig++;
1830 cchUsed++;
1832 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1833 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1834 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1836 dwState |= B_PROCESSING_EXPONENT;
1837 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1838 cchUsed++;
1840 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1842 cchUsed++; /* Ignore positive exponent */
1844 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1846 dwState |= B_NEGATIVE_EXPONENT;
1847 cchUsed++;
1849 else
1850 break; /* Stop at an unrecognised character */
1852 lpszStr++;
1855 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1857 /* Ensure a 0 on its own gets stored */
1858 pNumprs->cDig = 1;
1859 rgbTmp[0] = 0;
1862 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1864 pNumprs->cchUsed = cchUsed;
1865 WARN("didn't completely parse exponent\n");
1866 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1869 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1871 if (dwState & B_INEXACT_ZEROS)
1872 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1873 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1875 /* copy all of the digits into the output digit buffer */
1876 /* this is exactly what windows does although it also returns */
1877 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1878 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1880 if (dwState & B_PROCESSING_HEX) {
1881 /* hex numbers have always the same format */
1882 pNumprs->nPwr10=0;
1883 pNumprs->nBaseShift=4;
1884 } else {
1885 if (dwState & B_PROCESSING_OCT) {
1886 /* oct numbers have always the same format */
1887 pNumprs->nPwr10=0;
1888 pNumprs->nBaseShift=3;
1889 } else {
1890 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1892 pNumprs->nPwr10++;
1893 pNumprs->cDig--;
1897 } else
1899 /* Remove trailing zeros from the last (whole number or decimal) part */
1900 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1902 pNumprs->nPwr10++;
1903 pNumprs->cDig--;
1907 if (pNumprs->cDig <= iMaxDigits)
1908 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1909 else
1910 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1912 /* Copy the digits we processed into rgbDig */
1913 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1915 /* Consume any trailing symbols and space */
1916 while (1)
1918 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1920 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1923 cchUsed++;
1924 lpszStr++;
1925 } while (isspaceW(*lpszStr));
1927 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1928 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1929 *lpszStr == chars.cPositiveSymbol)
1931 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1932 cchUsed++;
1933 lpszStr++;
1935 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1936 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1937 *lpszStr == chars.cNegativeSymbol)
1939 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1940 cchUsed++;
1941 lpszStr++;
1943 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1944 pNumprs->dwOutFlags & NUMPRS_PARENS)
1946 cchUsed++;
1947 lpszStr++;
1948 pNumprs->dwOutFlags |= NUMPRS_NEG;
1950 else
1951 break;
1954 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1956 pNumprs->cchUsed = cchUsed;
1957 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1960 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1961 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1963 if (!pNumprs->cDig)
1964 return DISP_E_TYPEMISMATCH; /* No Number found */
1966 pNumprs->cchUsed = cchUsed;
1967 return S_OK;
1970 /* VTBIT flags indicating an integer value */
1971 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1972 /* VTBIT flags indicating a real number value */
1973 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1975 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1976 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1977 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1978 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1980 /**********************************************************************
1981 * VarNumFromParseNum [OLEAUT32.47]
1983 * Convert a NUMPARSE structure into a numeric Variant type.
1985 * PARAMS
1986 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1987 * rgbDig [I] Source for the numbers digits
1988 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1989 * pVarDst [O] Destination for the converted Variant value.
1991 * RETURNS
1992 * Success: S_OK. pVarDst contains the converted value.
1993 * Failure: E_INVALIDARG, if any parameter is invalid.
1994 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1996 * NOTES
1997 * - The smallest favoured type present in dwVtBits that can represent the
1998 * number in pNumprs without losing precision is used.
1999 * - Signed types are preferred over unsigned types of the same size.
2000 * - Preferred types in order are: integer, float, double, currency then decimal.
2001 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
2002 * for details of the rounding method.
2003 * - pVarDst is not cleared before the result is stored in it.
2004 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2005 * design?): If some other VTBIT's for integers are specified together
2006 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2007 * the number to the smallest requested integer truncating this way the
2008 * number. Wine doesn't implement this "feature" (yet?).
2010 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
2011 ULONG dwVtBits, VARIANT *pVarDst)
2013 /* Scale factors and limits for double arithmetic */
2014 static const double dblMultipliers[11] = {
2015 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2016 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2018 static const double dblMinimums[11] = {
2019 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2020 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2021 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2023 static const double dblMaximums[11] = {
2024 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2025 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2026 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2029 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2031 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2033 if (pNumprs->nBaseShift)
2035 /* nBaseShift indicates a hex or octal number */
2036 ULONG64 ul64 = 0;
2037 LONG64 l64;
2038 int i;
2040 /* Convert the hex or octal number string into a UI64 */
2041 for (i = 0; i < pNumprs->cDig; i++)
2043 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2045 TRACE("Overflow multiplying digits\n");
2046 return DISP_E_OVERFLOW;
2048 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2051 /* also make a negative representation */
2052 l64=-ul64;
2054 /* Try signed and unsigned types in size order */
2055 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2057 V_VT(pVarDst) = VT_I1;
2058 V_I1(pVarDst) = ul64;
2059 return S_OK;
2061 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2063 V_VT(pVarDst) = VT_UI1;
2064 V_UI1(pVarDst) = ul64;
2065 return S_OK;
2067 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2069 V_VT(pVarDst) = VT_I2;
2070 V_I2(pVarDst) = ul64;
2071 return S_OK;
2073 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2075 V_VT(pVarDst) = VT_UI2;
2076 V_UI2(pVarDst) = ul64;
2077 return S_OK;
2079 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2081 V_VT(pVarDst) = VT_I4;
2082 V_I4(pVarDst) = ul64;
2083 return S_OK;
2085 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2087 V_VT(pVarDst) = VT_UI4;
2088 V_UI4(pVarDst) = ul64;
2089 return S_OK;
2091 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2093 V_VT(pVarDst) = VT_I8;
2094 V_I8(pVarDst) = ul64;
2095 return S_OK;
2097 else if (dwVtBits & VTBIT_UI8)
2099 V_VT(pVarDst) = VT_UI8;
2100 V_UI8(pVarDst) = ul64;
2101 return S_OK;
2103 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2105 V_VT(pVarDst) = VT_DECIMAL;
2106 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2107 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2108 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2109 return S_OK;
2111 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2113 V_VT(pVarDst) = VT_R4;
2114 if (ul64 <= I4_MAX)
2115 V_R4(pVarDst) = ul64;
2116 else
2117 V_R4(pVarDst) = l64;
2118 return S_OK;
2120 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2122 V_VT(pVarDst) = VT_R8;
2123 if (ul64 <= I4_MAX)
2124 V_R8(pVarDst) = ul64;
2125 else
2126 V_R8(pVarDst) = l64;
2127 return S_OK;
2130 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2131 return DISP_E_OVERFLOW;
2134 /* Count the number of relevant fractional and whole digits stored,
2135 * And compute the divisor/multiplier to scale the number by.
2137 if (pNumprs->nPwr10 < 0)
2139 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2141 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2142 wholeNumberDigits = 0;
2143 fractionalDigits = pNumprs->cDig;
2144 divisor10 = -pNumprs->nPwr10;
2146 else
2148 /* An exactly represented real number e.g. 1.024 */
2149 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2150 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2151 divisor10 = pNumprs->cDig - wholeNumberDigits;
2154 else if (pNumprs->nPwr10 == 0)
2156 /* An exactly represented whole number e.g. 1024 */
2157 wholeNumberDigits = pNumprs->cDig;
2158 fractionalDigits = 0;
2160 else /* pNumprs->nPwr10 > 0 */
2162 /* A whole number followed by nPwr10 0's e.g. 102400 */
2163 wholeNumberDigits = pNumprs->cDig;
2164 fractionalDigits = 0;
2165 multiplier10 = pNumprs->nPwr10;
2168 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2169 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2170 multiplier10, divisor10);
2172 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2173 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2175 /* We have one or more integer output choices, and either:
2176 * 1) An integer input value, or
2177 * 2) A real number input value but no floating output choices.
2178 * Alternately, we have a DECIMAL output available and an integer input.
2180 * So, place the integer value into pVarDst, using the smallest type
2181 * possible and preferring signed over unsigned types.
2183 BOOL bOverflow = FALSE, bNegative;
2184 ULONG64 ul64 = 0;
2185 int i;
2187 /* Convert the integer part of the number into a UI8 */
2188 for (i = 0; i < wholeNumberDigits; i++)
2190 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2192 TRACE("Overflow multiplying digits\n");
2193 bOverflow = TRUE;
2194 break;
2196 ul64 = ul64 * 10 + rgbDig[i];
2199 /* Account for the scale of the number */
2200 if (!bOverflow && multiplier10)
2202 for (i = 0; i < multiplier10; i++)
2204 if (ul64 > (UI8_MAX / 10))
2206 TRACE("Overflow scaling number\n");
2207 bOverflow = TRUE;
2208 break;
2210 ul64 = ul64 * 10;
2214 /* If we have any fractional digits, round the value.
2215 * Note we don't have to do this if divisor10 is < 1,
2216 * because this means the fractional part must be < 0.5
2218 if (!bOverflow && fractionalDigits && divisor10 > 0)
2220 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2221 BOOL bAdjust = FALSE;
2223 TRACE("first decimal value is %d\n", *fracDig);
2225 if (*fracDig > 5)
2226 bAdjust = TRUE; /* > 0.5 */
2227 else if (*fracDig == 5)
2229 for (i = 1; i < fractionalDigits; i++)
2231 if (fracDig[i])
2233 bAdjust = TRUE; /* > 0.5 */
2234 break;
2237 /* If exactly 0.5, round only odd values */
2238 if (i == fractionalDigits && (ul64 & 1))
2239 bAdjust = TRUE;
2242 if (bAdjust)
2244 if (ul64 == UI8_MAX)
2246 TRACE("Overflow after rounding\n");
2247 bOverflow = TRUE;
2249 ul64++;
2253 /* Zero is not a negative number */
2254 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2256 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2258 /* For negative integers, try the signed types in size order */
2259 if (!bOverflow && bNegative)
2261 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2263 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2265 V_VT(pVarDst) = VT_I1;
2266 V_I1(pVarDst) = -ul64;
2267 return S_OK;
2269 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2271 V_VT(pVarDst) = VT_I2;
2272 V_I2(pVarDst) = -ul64;
2273 return S_OK;
2275 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2277 V_VT(pVarDst) = VT_I4;
2278 V_I4(pVarDst) = -ul64;
2279 return S_OK;
2281 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2283 V_VT(pVarDst) = VT_I8;
2284 V_I8(pVarDst) = -ul64;
2285 return S_OK;
2287 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2289 /* Decimal is only output choice left - fast path */
2290 V_VT(pVarDst) = VT_DECIMAL;
2291 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2292 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2293 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2294 return S_OK;
2298 else if (!bOverflow)
2300 /* For positive integers, try signed then unsigned types in size order */
2301 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2303 V_VT(pVarDst) = VT_I1;
2304 V_I1(pVarDst) = ul64;
2305 return S_OK;
2307 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2309 V_VT(pVarDst) = VT_UI1;
2310 V_UI1(pVarDst) = ul64;
2311 return S_OK;
2313 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2315 V_VT(pVarDst) = VT_I2;
2316 V_I2(pVarDst) = ul64;
2317 return S_OK;
2319 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2321 V_VT(pVarDst) = VT_UI2;
2322 V_UI2(pVarDst) = ul64;
2323 return S_OK;
2325 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2327 V_VT(pVarDst) = VT_I4;
2328 V_I4(pVarDst) = ul64;
2329 return S_OK;
2331 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2333 V_VT(pVarDst) = VT_UI4;
2334 V_UI4(pVarDst) = ul64;
2335 return S_OK;
2337 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2339 V_VT(pVarDst) = VT_I8;
2340 V_I8(pVarDst) = ul64;
2341 return S_OK;
2343 else if (dwVtBits & VTBIT_UI8)
2345 V_VT(pVarDst) = VT_UI8;
2346 V_UI8(pVarDst) = ul64;
2347 return S_OK;
2349 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2351 /* Decimal is only output choice left - fast path */
2352 V_VT(pVarDst) = VT_DECIMAL;
2353 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2354 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2355 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2356 return S_OK;
2361 if (dwVtBits & REAL_VTBITS)
2363 /* Try to put the number into a float or real */
2364 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2365 double whole = 0.0;
2366 int i;
2368 /* Convert the number into a double */
2369 for (i = 0; i < pNumprs->cDig; i++)
2370 whole = whole * 10.0 + rgbDig[i];
2372 TRACE("Whole double value is %16.16g\n", whole);
2374 /* Account for the scale */
2375 while (multiplier10 > 10)
2377 if (whole > dblMaximums[10])
2379 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2380 bOverflow = TRUE;
2381 break;
2383 whole = whole * dblMultipliers[10];
2384 multiplier10 -= 10;
2386 if (multiplier10 && !bOverflow)
2388 if (whole > dblMaximums[multiplier10])
2390 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2391 bOverflow = TRUE;
2393 else
2394 whole = whole * dblMultipliers[multiplier10];
2397 if (!bOverflow)
2398 TRACE("Scaled double value is %16.16g\n", whole);
2400 while (divisor10 > 10 && !bOverflow)
2402 if (whole < dblMinimums[10] && whole != 0)
2404 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2405 bOverflow = TRUE;
2406 break;
2408 whole = whole / dblMultipliers[10];
2409 divisor10 -= 10;
2411 if (divisor10 && !bOverflow)
2413 if (whole < dblMinimums[divisor10] && whole != 0)
2415 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2416 bOverflow = TRUE;
2418 else
2419 whole = whole / dblMultipliers[divisor10];
2421 if (!bOverflow)
2422 TRACE("Final double value is %16.16g\n", whole);
2424 if (dwVtBits & VTBIT_R4 &&
2425 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2427 TRACE("Set R4 to final value\n");
2428 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2429 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2430 return S_OK;
2433 if (dwVtBits & VTBIT_R8)
2435 TRACE("Set R8 to final value\n");
2436 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2437 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2438 return S_OK;
2441 if (dwVtBits & VTBIT_CY)
2443 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2445 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2446 TRACE("Set CY to final value\n");
2447 return S_OK;
2449 TRACE("Value Overflows CY\n");
2453 if (dwVtBits & VTBIT_DECIMAL)
2455 int i;
2456 ULONG carry;
2457 ULONG64 tmp;
2458 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2460 DECIMAL_SETZERO(*pDec);
2461 DEC_LO32(pDec) = 0;
2463 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2464 DEC_SIGN(pDec) = DECIMAL_NEG;
2465 else
2466 DEC_SIGN(pDec) = DECIMAL_POS;
2468 /* Factor the significant digits */
2469 for (i = 0; i < pNumprs->cDig; i++)
2471 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2472 carry = (ULONG)(tmp >> 32);
2473 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2474 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2475 carry = (ULONG)(tmp >> 32);
2476 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2477 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2478 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2480 if (tmp >> 32 & UI4_MAX)
2482 VarNumFromParseNum_DecOverflow:
2483 TRACE("Overflow\n");
2484 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2485 return DISP_E_OVERFLOW;
2489 /* Account for the scale of the number */
2490 while (multiplier10 > 0)
2492 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2493 carry = (ULONG)(tmp >> 32);
2494 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2495 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2496 carry = (ULONG)(tmp >> 32);
2497 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2498 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2499 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2501 if (tmp >> 32 & UI4_MAX)
2502 goto VarNumFromParseNum_DecOverflow;
2503 multiplier10--;
2505 DEC_SCALE(pDec) = divisor10;
2507 V_VT(pVarDst) = VT_DECIMAL;
2508 return S_OK;
2510 return DISP_E_OVERFLOW; /* No more output choices */
2513 /**********************************************************************
2514 * VarCat [OLEAUT32.318]
2516 * Concatenates one variant onto another.
2518 * PARAMS
2519 * left [I] First variant
2520 * right [I] Second variant
2521 * result [O] Result variant
2523 * RETURNS
2524 * Success: S_OK.
2525 * Failure: An HRESULT error code indicating the error.
2527 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2529 VARTYPE leftvt,rightvt,resultvt;
2530 HRESULT hres;
2531 static WCHAR str_true[32];
2532 static WCHAR str_false[32];
2533 static const WCHAR sz_empty[] = {'\0'};
2534 leftvt = V_VT(left);
2535 rightvt = V_VT(right);
2537 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2539 if (!str_true[0]) {
2540 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2541 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2544 /* when both left and right are NULL the result is NULL */
2545 if (leftvt == VT_NULL && rightvt == VT_NULL)
2547 V_VT(out) = VT_NULL;
2548 return S_OK;
2551 hres = S_OK;
2552 resultvt = VT_EMPTY;
2554 /* There are many special case for errors and return types */
2555 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2556 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2557 hres = DISP_E_TYPEMISMATCH;
2558 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2559 leftvt == VT_R4 || leftvt == VT_R8 ||
2560 leftvt == VT_CY || leftvt == VT_BOOL ||
2561 leftvt == VT_BSTR || leftvt == VT_I1 ||
2562 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2563 leftvt == VT_UI4 || leftvt == VT_I8 ||
2564 leftvt == VT_UI8 || leftvt == VT_INT ||
2565 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2566 leftvt == VT_NULL || leftvt == VT_DATE ||
2567 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2569 (rightvt == VT_I2 || rightvt == VT_I4 ||
2570 rightvt == VT_R4 || rightvt == VT_R8 ||
2571 rightvt == VT_CY || rightvt == VT_BOOL ||
2572 rightvt == VT_BSTR || rightvt == VT_I1 ||
2573 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2574 rightvt == VT_UI4 || rightvt == VT_I8 ||
2575 rightvt == VT_UI8 || rightvt == VT_INT ||
2576 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2577 rightvt == VT_NULL || rightvt == VT_DATE ||
2578 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2579 resultvt = VT_BSTR;
2580 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2581 hres = DISP_E_TYPEMISMATCH;
2582 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2583 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2584 hres = DISP_E_TYPEMISMATCH;
2585 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2586 rightvt == VT_DECIMAL)
2587 hres = DISP_E_BADVARTYPE;
2588 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2589 hres = DISP_E_TYPEMISMATCH;
2590 else if (leftvt == VT_VARIANT)
2591 hres = DISP_E_TYPEMISMATCH;
2592 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2593 leftvt == VT_NULL || leftvt == VT_I2 ||
2594 leftvt == VT_I4 || leftvt == VT_R4 ||
2595 leftvt == VT_R8 || leftvt == VT_CY ||
2596 leftvt == VT_DATE || leftvt == VT_BSTR ||
2597 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2598 leftvt == VT_I1 || leftvt == VT_UI1 ||
2599 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2600 leftvt == VT_I8 || leftvt == VT_UI8 ||
2601 leftvt == VT_INT || leftvt == VT_UINT))
2602 hres = DISP_E_TYPEMISMATCH;
2603 else
2604 hres = DISP_E_BADVARTYPE;
2606 /* if result type is not S_OK, then no need to go further */
2607 if (hres != S_OK)
2609 V_VT(out) = resultvt;
2610 return hres;
2612 /* Else proceed with formatting inputs to strings */
2613 else
2615 VARIANT bstrvar_left, bstrvar_right;
2616 V_VT(out) = VT_BSTR;
2618 VariantInit(&bstrvar_left);
2619 VariantInit(&bstrvar_right);
2621 /* Convert left side variant to string */
2622 if (leftvt != VT_BSTR)
2624 if (leftvt == VT_BOOL)
2626 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2627 V_VT(&bstrvar_left) = VT_BSTR;
2628 if (V_BOOL(left))
2629 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2630 else
2631 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2633 /* Fill with empty string for later concat with right side */
2634 else if (leftvt == VT_NULL)
2636 V_VT(&bstrvar_left) = VT_BSTR;
2637 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2639 else
2641 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2642 if (hres != S_OK) {
2643 VariantClear(&bstrvar_left);
2644 VariantClear(&bstrvar_right);
2645 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2646 rightvt == VT_NULL || rightvt == VT_I2 ||
2647 rightvt == VT_I4 || rightvt == VT_R4 ||
2648 rightvt == VT_R8 || rightvt == VT_CY ||
2649 rightvt == VT_DATE || rightvt == VT_BSTR ||
2650 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2651 rightvt == VT_I1 || rightvt == VT_UI1 ||
2652 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2653 rightvt == VT_I8 || rightvt == VT_UI8 ||
2654 rightvt == VT_INT || rightvt == VT_UINT))
2655 return DISP_E_BADVARTYPE;
2656 return hres;
2661 /* convert right side variant to string */
2662 if (rightvt != VT_BSTR)
2664 if (rightvt == VT_BOOL)
2666 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2667 V_VT(&bstrvar_right) = VT_BSTR;
2668 if (V_BOOL(right))
2669 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2670 else
2671 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2673 /* Fill with empty string for later concat with right side */
2674 else if (rightvt == VT_NULL)
2676 V_VT(&bstrvar_right) = VT_BSTR;
2677 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2679 else
2681 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2682 if (hres != S_OK) {
2683 VariantClear(&bstrvar_left);
2684 VariantClear(&bstrvar_right);
2685 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2686 leftvt == VT_NULL || leftvt == VT_I2 ||
2687 leftvt == VT_I4 || leftvt == VT_R4 ||
2688 leftvt == VT_R8 || leftvt == VT_CY ||
2689 leftvt == VT_DATE || leftvt == VT_BSTR ||
2690 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2691 leftvt == VT_I1 || leftvt == VT_UI1 ||
2692 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2693 leftvt == VT_I8 || leftvt == VT_UI8 ||
2694 leftvt == VT_INT || leftvt == VT_UINT))
2695 return DISP_E_BADVARTYPE;
2696 return hres;
2701 /* Concat the resulting strings together */
2702 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2703 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2704 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2705 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2706 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2707 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2708 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2709 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2711 VariantClear(&bstrvar_left);
2712 VariantClear(&bstrvar_right);
2713 return S_OK;
2718 /* Wrapper around VariantChangeTypeEx() which permits changing a
2719 variant with VT_RESERVED flag set. Needed by VarCmp. */
2720 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2721 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2723 VARIANTARG vtmpsrc = *pvargSrc;
2725 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2726 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2729 /**********************************************************************
2730 * VarCmp [OLEAUT32.176]
2732 * Compare two variants.
2734 * PARAMS
2735 * left [I] First variant
2736 * right [I] Second variant
2737 * lcid [I] LCID (locale identifier) for the comparison
2738 * flags [I] Flags to be used in the comparison:
2739 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2740 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2742 * RETURNS
2743 * VARCMP_LT: left variant is less than right variant.
2744 * VARCMP_EQ: input variants are equal.
2745 * VARCMP_GT: left variant is greater than right variant.
2746 * VARCMP_NULL: either one of the input variants is NULL.
2747 * Failure: An HRESULT error code indicating the error.
2749 * NOTES
2750 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2751 * UI8 and UINT as input variants. INT is accepted only as left variant.
2753 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2754 * an ERROR variant will trigger an error.
2756 * Both input variants can have VT_RESERVED flag set which is ignored
2757 * unless one and only one of the variants is a BSTR and the other one
2758 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2759 * different meaning:
2760 * - BSTR and other: BSTR is always greater than the other variant.
2761 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2762 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2763 * comparison will take place else the BSTR is always greater.
2764 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2765 * variant is ignored and the return value depends only on the sign
2766 * of the BSTR if it is a number else the BSTR is always greater. A
2767 * positive BSTR is greater, a negative one is smaller than the other
2768 * variant.
2770 * SEE
2771 * VarBstrCmp for the lcid and flags usage.
2773 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2775 VARTYPE lvt, rvt, vt;
2776 VARIANT rv,lv;
2777 DWORD xmask;
2778 HRESULT rc;
2780 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2782 lvt = V_VT(left) & VT_TYPEMASK;
2783 rvt = V_VT(right) & VT_TYPEMASK;
2784 xmask = (1 << lvt) | (1 << rvt);
2786 /* If we have any flag set except VT_RESERVED bail out.
2787 Same for the left input variant type > VT_INT and for the
2788 right input variant type > VT_I8. Yes, VT_INT is only supported
2789 as left variant. Go figure */
2790 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2791 lvt > VT_INT || rvt > VT_I8) {
2792 return DISP_E_BADVARTYPE;
2795 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2796 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2797 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2798 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2799 return DISP_E_TYPEMISMATCH;
2801 /* If both variants are VT_ERROR return VARCMP_EQ */
2802 if (xmask == VTBIT_ERROR)
2803 return VARCMP_EQ;
2804 else if (xmask & VTBIT_ERROR)
2805 return DISP_E_TYPEMISMATCH;
2807 if (xmask & VTBIT_NULL)
2808 return VARCMP_NULL;
2810 VariantInit(&lv);
2811 VariantInit(&rv);
2813 /* Two BSTRs, ignore VT_RESERVED */
2814 if (xmask == VTBIT_BSTR)
2815 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2817 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2818 if (xmask & VTBIT_BSTR) {
2819 VARIANT *bstrv, *nonbv;
2820 VARTYPE nonbvt;
2821 int swap = 0;
2823 /* Swap the variants so the BSTR is always on the left */
2824 if (lvt == VT_BSTR) {
2825 bstrv = left;
2826 nonbv = right;
2827 nonbvt = rvt;
2828 } else {
2829 swap = 1;
2830 bstrv = right;
2831 nonbv = left;
2832 nonbvt = lvt;
2835 /* BSTR and EMPTY: ignore VT_RESERVED */
2836 if (nonbvt == VT_EMPTY)
2837 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2838 else {
2839 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2840 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2842 if (!breserv && !nreserv)
2843 /* No VT_RESERVED set ==> BSTR always greater */
2844 rc = VARCMP_GT;
2845 else if (breserv && !nreserv) {
2846 /* BSTR has VT_RESERVED set. Do a string comparison */
2847 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2848 if (FAILED(rc))
2849 return rc;
2850 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2851 VariantClear(&rv);
2852 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2853 /* Non NULL nor empty BSTR */
2854 /* If the BSTR is not a number the BSTR is greater */
2855 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2856 if (FAILED(rc))
2857 rc = VARCMP_GT;
2858 else if (breserv && nreserv)
2859 /* FIXME: This is strange: with both VT_RESERVED set it
2860 looks like the result depends only on the sign of
2861 the BSTR number */
2862 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2863 else
2864 /* Numeric comparison, will be handled below.
2865 VARCMP_NULL used only to break out. */
2866 rc = VARCMP_NULL;
2867 VariantClear(&lv);
2868 VariantClear(&rv);
2869 } else
2870 /* Empty or NULL BSTR */
2871 rc = VARCMP_GT;
2873 /* Fixup the return code if we swapped left and right */
2874 if (swap) {
2875 if (rc == VARCMP_GT)
2876 rc = VARCMP_LT;
2877 else if (rc == VARCMP_LT)
2878 rc = VARCMP_GT;
2880 if (rc != VARCMP_NULL)
2881 return rc;
2884 if (xmask & VTBIT_DECIMAL)
2885 vt = VT_DECIMAL;
2886 else if (xmask & VTBIT_BSTR)
2887 vt = VT_R8;
2888 else if (xmask & VTBIT_R4)
2889 vt = VT_R4;
2890 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2891 vt = VT_R8;
2892 else if (xmask & VTBIT_CY)
2893 vt = VT_CY;
2894 else
2895 /* default to I8 */
2896 vt = VT_I8;
2898 /* Coerce the variants */
2899 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2900 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2901 /* Overflow, change to R8 */
2902 vt = VT_R8;
2903 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2905 if (FAILED(rc))
2906 return rc;
2907 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2908 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2909 /* Overflow, change to R8 */
2910 vt = VT_R8;
2911 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2912 if (FAILED(rc))
2913 return rc;
2914 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2916 if (FAILED(rc))
2917 return rc;
2919 #define _VARCMP(a,b) \
2920 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2922 switch (vt) {
2923 case VT_CY:
2924 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2925 case VT_DECIMAL:
2926 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2927 case VT_I8:
2928 return _VARCMP(V_I8(&lv), V_I8(&rv));
2929 case VT_R4:
2930 return _VARCMP(V_R4(&lv), V_R4(&rv));
2931 case VT_R8:
2932 return _VARCMP(V_R8(&lv), V_R8(&rv));
2933 default:
2934 /* We should never get here */
2935 return E_FAIL;
2937 #undef _VARCMP
2940 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
2942 HRESULT hres;
2943 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
2945 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
2946 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
2947 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
2948 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
2949 NULL, NULL);
2950 } else {
2951 hres = DISP_E_TYPEMISMATCH;
2953 return hres;
2956 /**********************************************************************
2957 * VarAnd [OLEAUT32.142]
2959 * Computes the logical AND of two variants.
2961 * PARAMS
2962 * left [I] First variant
2963 * right [I] Second variant
2964 * result [O] Result variant
2966 * RETURNS
2967 * Success: S_OK.
2968 * Failure: An HRESULT error code indicating the error.
2970 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2972 HRESULT hres = S_OK;
2973 VARTYPE resvt = VT_EMPTY;
2974 VARTYPE leftvt,rightvt;
2975 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2976 VARIANT varLeft, varRight;
2977 VARIANT tempLeft, tempRight;
2979 VariantInit(&varLeft);
2980 VariantInit(&varRight);
2981 VariantInit(&tempLeft);
2982 VariantInit(&tempRight);
2984 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
2986 /* Handle VT_DISPATCH by storing and taking address of returned value */
2987 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2989 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2990 if (FAILED(hres)) goto VarAnd_Exit;
2991 left = &tempLeft;
2993 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2995 hres = VARIANT_FetchDispatchValue(right, &tempRight);
2996 if (FAILED(hres)) goto VarAnd_Exit;
2997 right = &tempRight;
3000 leftvt = V_VT(left)&VT_TYPEMASK;
3001 rightvt = V_VT(right)&VT_TYPEMASK;
3002 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3003 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3005 if (leftExtraFlags != rightExtraFlags)
3007 hres = DISP_E_BADVARTYPE;
3008 goto VarAnd_Exit;
3010 ExtraFlags = leftExtraFlags;
3012 /* Native VarAnd always returns an error when using extra
3013 * flags or if the variant combination is I8 and INT.
3015 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
3016 (leftvt == VT_INT && rightvt == VT_I8) ||
3017 ExtraFlags != 0)
3019 hres = DISP_E_BADVARTYPE;
3020 goto VarAnd_Exit;
3023 /* Determine return type */
3024 else if (leftvt == VT_I8 || rightvt == VT_I8)
3025 resvt = VT_I8;
3026 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
3027 leftvt == VT_UINT || rightvt == VT_UINT ||
3028 leftvt == VT_INT || rightvt == VT_INT ||
3029 leftvt == VT_UINT || rightvt == VT_UINT ||
3030 leftvt == VT_R4 || rightvt == VT_R4 ||
3031 leftvt == VT_R8 || rightvt == VT_R8 ||
3032 leftvt == VT_CY || rightvt == VT_CY ||
3033 leftvt == VT_DATE || rightvt == VT_DATE ||
3034 leftvt == VT_I1 || rightvt == VT_I1 ||
3035 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3036 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3037 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3038 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3039 resvt = VT_I4;
3040 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3041 leftvt == VT_I2 || rightvt == VT_I2 ||
3042 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3043 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3044 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3045 (leftvt == VT_UI1 && rightvt == VT_UI1))
3046 resvt = VT_UI1;
3047 else
3048 resvt = VT_I2;
3049 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3050 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3051 resvt = VT_BOOL;
3052 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3053 leftvt == VT_BSTR || rightvt == VT_BSTR)
3054 resvt = VT_NULL;
3055 else
3057 hres = DISP_E_BADVARTYPE;
3058 goto VarAnd_Exit;
3061 if (leftvt == VT_NULL || rightvt == VT_NULL)
3064 * Special cases for when left variant is VT_NULL
3065 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3067 if (leftvt == VT_NULL)
3069 VARIANT_BOOL b;
3070 switch(rightvt)
3072 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3073 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3074 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3075 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3076 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3077 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3078 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3079 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3080 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3081 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3082 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3083 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3084 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3085 case VT_CY:
3086 if(V_CY(right).int64)
3087 resvt = VT_NULL;
3088 break;
3089 case VT_DECIMAL:
3090 if (DEC_HI32(&V_DECIMAL(right)) ||
3091 DEC_LO64(&V_DECIMAL(right)))
3092 resvt = VT_NULL;
3093 break;
3094 case VT_BSTR:
3095 hres = VarBoolFromStr(V_BSTR(right),
3096 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3097 if (FAILED(hres))
3098 return hres;
3099 else if (b)
3100 V_VT(result) = VT_NULL;
3101 else
3103 V_VT(result) = VT_BOOL;
3104 V_BOOL(result) = b;
3106 goto VarAnd_Exit;
3109 V_VT(result) = resvt;
3110 goto VarAnd_Exit;
3113 hres = VariantCopy(&varLeft, left);
3114 if (FAILED(hres)) goto VarAnd_Exit;
3116 hres = VariantCopy(&varRight, right);
3117 if (FAILED(hres)) goto VarAnd_Exit;
3119 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3120 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3121 else
3123 double d;
3125 if (V_VT(&varLeft) == VT_BSTR &&
3126 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3127 LOCALE_USER_DEFAULT, 0, &d)))
3128 hres = VariantChangeType(&varLeft,&varLeft,
3129 VARIANT_LOCALBOOL, VT_BOOL);
3130 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3131 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3132 if (FAILED(hres)) goto VarAnd_Exit;
3135 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3136 V_VT(&varRight) = VT_I4; /* Don't overflow */
3137 else
3139 double d;
3141 if (V_VT(&varRight) == VT_BSTR &&
3142 FAILED(VarR8FromStr(V_BSTR(&varRight),
3143 LOCALE_USER_DEFAULT, 0, &d)))
3144 hres = VariantChangeType(&varRight, &varRight,
3145 VARIANT_LOCALBOOL, VT_BOOL);
3146 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3147 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3148 if (FAILED(hres)) goto VarAnd_Exit;
3151 V_VT(result) = resvt;
3152 switch(resvt)
3154 case VT_I8:
3155 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3156 break;
3157 case VT_I4:
3158 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3159 break;
3160 case VT_I2:
3161 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3162 break;
3163 case VT_UI1:
3164 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3165 break;
3166 case VT_BOOL:
3167 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3168 break;
3169 default:
3170 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3171 leftvt,rightvt);
3174 VarAnd_Exit:
3175 VariantClear(&varLeft);
3176 VariantClear(&varRight);
3177 VariantClear(&tempLeft);
3178 VariantClear(&tempRight);
3180 return hres;
3183 /**********************************************************************
3184 * VarAdd [OLEAUT32.141]
3186 * Add two variants.
3188 * PARAMS
3189 * left [I] First variant
3190 * right [I] Second variant
3191 * result [O] Result variant
3193 * RETURNS
3194 * Success: S_OK.
3195 * Failure: An HRESULT error code indicating the error.
3197 * NOTES
3198 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3199 * UI8, INT and UINT as input variants.
3201 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3202 * same here.
3204 * FIXME
3205 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3206 * case.
3208 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3210 HRESULT hres;
3211 VARTYPE lvt, rvt, resvt, tvt;
3212 VARIANT lv, rv, tv;
3213 VARIANT tempLeft, tempRight;
3214 double r8res;
3216 /* Variant priority for coercion. Sorted from lowest to highest.
3217 VT_ERROR shows an invalid input variant type. */
3218 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3219 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3220 vt_ERROR };
3221 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3222 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3223 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3224 VT_NULL, VT_ERROR };
3226 /* Mapping for coercion from input variant to priority of result variant. */
3227 static const VARTYPE coerce[] = {
3228 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3229 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3230 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3231 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3232 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3233 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3234 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3235 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3238 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3240 VariantInit(&lv);
3241 VariantInit(&rv);
3242 VariantInit(&tv);
3243 VariantInit(&tempLeft);
3244 VariantInit(&tempRight);
3246 /* Handle VT_DISPATCH by storing and taking address of returned value */
3247 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3249 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3251 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3252 if (FAILED(hres)) goto end;
3253 left = &tempLeft;
3255 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3257 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3258 if (FAILED(hres)) goto end;
3259 right = &tempRight;
3263 lvt = V_VT(left)&VT_TYPEMASK;
3264 rvt = V_VT(right)&VT_TYPEMASK;
3266 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3267 Same for any input variant type > VT_I8 */
3268 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3269 lvt > VT_I8 || rvt > VT_I8) {
3270 hres = DISP_E_BADVARTYPE;
3271 goto end;
3274 /* Determine the variant type to coerce to. */
3275 if (coerce[lvt] > coerce[rvt]) {
3276 resvt = prio2vt[coerce[lvt]];
3277 tvt = prio2vt[coerce[rvt]];
3278 } else {
3279 resvt = prio2vt[coerce[rvt]];
3280 tvt = prio2vt[coerce[lvt]];
3283 /* Special cases where the result variant type is defined by both
3284 input variants and not only that with the highest priority */
3285 if (resvt == VT_BSTR) {
3286 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3287 resvt = VT_BSTR;
3288 else
3289 resvt = VT_R8;
3291 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3292 resvt = VT_R8;
3294 /* For overflow detection use the biggest compatible type for the
3295 addition */
3296 switch (resvt) {
3297 case VT_ERROR:
3298 hres = DISP_E_BADVARTYPE;
3299 goto end;
3300 case VT_NULL:
3301 hres = S_OK;
3302 V_VT(result) = VT_NULL;
3303 goto end;
3304 case VT_DISPATCH:
3305 FIXME("cannot handle variant type VT_DISPATCH\n");
3306 hres = DISP_E_TYPEMISMATCH;
3307 goto end;
3308 case VT_EMPTY:
3309 resvt = VT_I2;
3310 /* Fall through */
3311 case VT_UI1:
3312 case VT_I2:
3313 case VT_I4:
3314 case VT_I8:
3315 tvt = VT_I8;
3316 break;
3317 case VT_DATE:
3318 case VT_R4:
3319 tvt = VT_R8;
3320 break;
3321 default:
3322 tvt = resvt;
3325 /* Now coerce the variants */
3326 hres = VariantChangeType(&lv, left, 0, tvt);
3327 if (FAILED(hres))
3328 goto end;
3329 hres = VariantChangeType(&rv, right, 0, tvt);
3330 if (FAILED(hres))
3331 goto end;
3333 /* Do the math */
3334 hres = S_OK;
3335 V_VT(result) = resvt;
3336 switch (tvt) {
3337 case VT_DECIMAL:
3338 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3339 &V_DECIMAL(result));
3340 goto end;
3341 case VT_CY:
3342 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3343 goto end;
3344 case VT_BSTR:
3345 /* We do not add those, we concatenate them. */
3346 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3347 goto end;
3348 case VT_I8:
3349 /* Overflow detection */
3350 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3351 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3352 V_VT(result) = VT_R8;
3353 V_R8(result) = r8res;
3354 goto end;
3355 } else {
3356 V_VT(&tv) = tvt;
3357 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3359 break;
3360 case VT_R8:
3361 V_VT(&tv) = tvt;
3362 /* FIXME: overflow detection */
3363 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3364 break;
3365 default:
3366 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3367 break;
3369 if (resvt != tvt) {
3370 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3371 /* Overflow! Change to the vartype with the next higher priority.
3372 With one exception: I4 ==> R8 even if it would fit in I8 */
3373 if (resvt == VT_I4)
3374 resvt = VT_R8;
3375 else
3376 resvt = prio2vt[coerce[resvt] + 1];
3377 hres = VariantChangeType(result, &tv, 0, resvt);
3379 } else
3380 hres = VariantCopy(result, &tv);
3382 end:
3383 if (hres != S_OK) {
3384 V_VT(result) = VT_EMPTY;
3385 V_I4(result) = 0; /* No V_EMPTY */
3387 VariantClear(&lv);
3388 VariantClear(&rv);
3389 VariantClear(&tv);
3390 VariantClear(&tempLeft);
3391 VariantClear(&tempRight);
3392 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3393 return hres;
3396 /**********************************************************************
3397 * VarMul [OLEAUT32.156]
3399 * Multiply two variants.
3401 * PARAMS
3402 * left [I] First variant
3403 * right [I] Second variant
3404 * result [O] Result variant
3406 * RETURNS
3407 * Success: S_OK.
3408 * Failure: An HRESULT error code indicating the error.
3410 * NOTES
3411 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3412 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3414 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3415 * same here.
3417 * FIXME
3418 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3419 * case.
3421 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3423 HRESULT hres;
3424 VARTYPE lvt, rvt, resvt, tvt;
3425 VARIANT lv, rv, tv;
3426 VARIANT tempLeft, tempRight;
3427 double r8res;
3429 /* Variant priority for coercion. Sorted from lowest to highest.
3430 VT_ERROR shows an invalid input variant type. */
3431 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3432 vt_DECIMAL, vt_NULL, vt_ERROR };
3433 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3434 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3435 VT_DECIMAL, VT_NULL, VT_ERROR };
3437 /* Mapping for coercion from input variant to priority of result variant. */
3438 static const VARTYPE coerce[] = {
3439 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3440 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3441 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3442 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3443 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3444 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3445 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3446 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3449 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3451 VariantInit(&lv);
3452 VariantInit(&rv);
3453 VariantInit(&tv);
3454 VariantInit(&tempLeft);
3455 VariantInit(&tempRight);
3457 /* Handle VT_DISPATCH by storing and taking address of returned value */
3458 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3460 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3461 if (FAILED(hres)) goto end;
3462 left = &tempLeft;
3464 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3466 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3467 if (FAILED(hres)) goto end;
3468 right = &tempRight;
3471 lvt = V_VT(left)&VT_TYPEMASK;
3472 rvt = V_VT(right)&VT_TYPEMASK;
3474 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3475 Same for any input variant type > VT_I8 */
3476 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3477 lvt > VT_I8 || rvt > VT_I8) {
3478 hres = DISP_E_BADVARTYPE;
3479 goto end;
3482 /* Determine the variant type to coerce to. */
3483 if (coerce[lvt] > coerce[rvt]) {
3484 resvt = prio2vt[coerce[lvt]];
3485 tvt = prio2vt[coerce[rvt]];
3486 } else {
3487 resvt = prio2vt[coerce[rvt]];
3488 tvt = prio2vt[coerce[lvt]];
3491 /* Special cases where the result variant type is defined by both
3492 input variants and not only that with the highest priority */
3493 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3494 resvt = VT_R8;
3495 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3496 resvt = VT_I2;
3498 /* For overflow detection use the biggest compatible type for the
3499 multiplication */
3500 switch (resvt) {
3501 case VT_ERROR:
3502 hres = DISP_E_BADVARTYPE;
3503 goto end;
3504 case VT_NULL:
3505 hres = S_OK;
3506 V_VT(result) = VT_NULL;
3507 goto end;
3508 case VT_UI1:
3509 case VT_I2:
3510 case VT_I4:
3511 case VT_I8:
3512 tvt = VT_I8;
3513 break;
3514 case VT_R4:
3515 tvt = VT_R8;
3516 break;
3517 default:
3518 tvt = resvt;
3521 /* Now coerce the variants */
3522 hres = VariantChangeType(&lv, left, 0, tvt);
3523 if (FAILED(hres))
3524 goto end;
3525 hres = VariantChangeType(&rv, right, 0, tvt);
3526 if (FAILED(hres))
3527 goto end;
3529 /* Do the math */
3530 hres = S_OK;
3531 V_VT(&tv) = tvt;
3532 V_VT(result) = resvt;
3533 switch (tvt) {
3534 case VT_DECIMAL:
3535 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3536 &V_DECIMAL(result));
3537 goto end;
3538 case VT_CY:
3539 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3540 goto end;
3541 case VT_I8:
3542 /* Overflow detection */
3543 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3544 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3545 V_VT(result) = VT_R8;
3546 V_R8(result) = r8res;
3547 goto end;
3548 } else
3549 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3550 break;
3551 case VT_R8:
3552 /* FIXME: overflow detection */
3553 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3554 break;
3555 default:
3556 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3557 break;
3559 if (resvt != tvt) {
3560 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3561 /* Overflow! Change to the vartype with the next higher priority.
3562 With one exception: I4 ==> R8 even if it would fit in I8 */
3563 if (resvt == VT_I4)
3564 resvt = VT_R8;
3565 else
3566 resvt = prio2vt[coerce[resvt] + 1];
3568 } else
3569 hres = VariantCopy(result, &tv);
3571 end:
3572 if (hres != S_OK) {
3573 V_VT(result) = VT_EMPTY;
3574 V_I4(result) = 0; /* No V_EMPTY */
3576 VariantClear(&lv);
3577 VariantClear(&rv);
3578 VariantClear(&tv);
3579 VariantClear(&tempLeft);
3580 VariantClear(&tempRight);
3581 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3582 return hres;
3585 /**********************************************************************
3586 * VarDiv [OLEAUT32.143]
3588 * Divides one variant with another.
3590 * PARAMS
3591 * left [I] First variant
3592 * right [I] Second variant
3593 * result [O] Result variant
3595 * RETURNS
3596 * Success: S_OK.
3597 * Failure: An HRESULT error code indicating the error.
3599 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3601 HRESULT hres = S_OK;
3602 VARTYPE resvt = VT_EMPTY;
3603 VARTYPE leftvt,rightvt;
3604 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3605 VARIANT lv,rv;
3606 VARIANT tempLeft, tempRight;
3608 VariantInit(&tempLeft);
3609 VariantInit(&tempRight);
3610 VariantInit(&lv);
3611 VariantInit(&rv);
3613 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3615 /* Handle VT_DISPATCH by storing and taking address of returned value */
3616 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3618 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3619 if (FAILED(hres)) goto end;
3620 left = &tempLeft;
3622 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3624 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3625 if (FAILED(hres)) goto end;
3626 right = &tempRight;
3629 leftvt = V_VT(left)&VT_TYPEMASK;
3630 rightvt = V_VT(right)&VT_TYPEMASK;
3631 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3632 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3634 if (leftExtraFlags != rightExtraFlags)
3636 hres = DISP_E_BADVARTYPE;
3637 goto end;
3639 ExtraFlags = leftExtraFlags;
3641 /* Native VarDiv always returns an error when using extra flags */
3642 if (ExtraFlags != 0)
3644 hres = DISP_E_BADVARTYPE;
3645 goto end;
3648 /* Determine return type */
3649 if (!(rightvt == VT_EMPTY))
3651 if (leftvt == VT_NULL || rightvt == VT_NULL)
3653 V_VT(result) = VT_NULL;
3654 hres = S_OK;
3655 goto end;
3657 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3658 resvt = VT_DECIMAL;
3659 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3660 leftvt == VT_CY || rightvt == VT_CY ||
3661 leftvt == VT_DATE || rightvt == VT_DATE ||
3662 leftvt == VT_I4 || rightvt == VT_I4 ||
3663 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3664 leftvt == VT_I2 || rightvt == VT_I2 ||
3665 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3666 leftvt == VT_R8 || rightvt == VT_R8 ||
3667 leftvt == VT_UI1 || rightvt == VT_UI1)
3669 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3670 (leftvt == VT_R4 && rightvt == VT_UI1))
3671 resvt = VT_R4;
3672 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3673 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3674 (leftvt == VT_BOOL || leftvt == VT_I2)))
3675 resvt = VT_R4;
3676 else
3677 resvt = VT_R8;
3679 else if (leftvt == VT_R4 || rightvt == VT_R4)
3680 resvt = VT_R4;
3682 else if (leftvt == VT_NULL && rightvt == VT_EMPTY)
3684 V_VT(result) = VT_NULL;
3685 hres = S_OK;
3686 goto end;
3688 else
3690 hres = DISP_E_BADVARTYPE;
3691 goto end;
3694 /* coerce to the result type */
3695 hres = VariantChangeType(&lv, left, 0, resvt);
3696 if (hres != S_OK) goto end;
3698 hres = VariantChangeType(&rv, right, 0, resvt);
3699 if (hres != S_OK) goto end;
3701 /* do the math */
3702 V_VT(result) = resvt;
3703 switch (resvt)
3705 case VT_R4:
3706 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3708 hres = DISP_E_OVERFLOW;
3709 V_VT(result) = VT_EMPTY;
3711 else if (V_R4(&rv) == 0.0)
3713 hres = DISP_E_DIVBYZERO;
3714 V_VT(result) = VT_EMPTY;
3716 else
3717 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3718 break;
3719 case VT_R8:
3720 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3722 hres = DISP_E_OVERFLOW;
3723 V_VT(result) = VT_EMPTY;
3725 else if (V_R8(&rv) == 0.0)
3727 hres = DISP_E_DIVBYZERO;
3728 V_VT(result) = VT_EMPTY;
3730 else
3731 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3732 break;
3733 case VT_DECIMAL:
3734 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3735 break;
3738 end:
3739 VariantClear(&lv);
3740 VariantClear(&rv);
3741 VariantClear(&tempLeft);
3742 VariantClear(&tempRight);
3743 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3744 return hres;
3747 /**********************************************************************
3748 * VarSub [OLEAUT32.159]
3750 * Subtract two variants.
3752 * PARAMS
3753 * left [I] First variant
3754 * right [I] Second variant
3755 * result [O] Result variant
3757 * RETURNS
3758 * Success: S_OK.
3759 * Failure: An HRESULT error code indicating the error.
3761 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3763 HRESULT hres = S_OK;
3764 VARTYPE resvt = VT_EMPTY;
3765 VARTYPE leftvt,rightvt;
3766 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3767 VARIANT lv,rv;
3768 VARIANT tempLeft, tempRight;
3770 VariantInit(&lv);
3771 VariantInit(&rv);
3772 VariantInit(&tempLeft);
3773 VariantInit(&tempRight);
3775 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3777 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3778 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3779 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3781 if (NULL == V_DISPATCH(left)) {
3782 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3783 hres = DISP_E_BADVARTYPE;
3784 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3785 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3786 hres = DISP_E_BADVARTYPE;
3787 else switch (V_VT(right) & VT_TYPEMASK)
3789 case VT_VARIANT:
3790 case VT_UNKNOWN:
3791 case 15:
3792 case VT_I1:
3793 case VT_UI2:
3794 case VT_UI4:
3795 hres = DISP_E_BADVARTYPE;
3797 if (FAILED(hres)) goto end;
3799 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3800 if (FAILED(hres)) goto end;
3801 left = &tempLeft;
3803 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3804 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3805 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3807 if (NULL == V_DISPATCH(right))
3809 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3810 hres = DISP_E_BADVARTYPE;
3811 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3812 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3813 hres = DISP_E_BADVARTYPE;
3814 else switch (V_VT(left) & VT_TYPEMASK)
3816 case VT_VARIANT:
3817 case VT_UNKNOWN:
3818 case 15:
3819 case VT_I1:
3820 case VT_UI2:
3821 case VT_UI4:
3822 hres = DISP_E_BADVARTYPE;
3824 if (FAILED(hres)) goto end;
3826 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3827 if (FAILED(hres)) goto end;
3828 right = &tempRight;
3831 leftvt = V_VT(left)&VT_TYPEMASK;
3832 rightvt = V_VT(right)&VT_TYPEMASK;
3833 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3834 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3836 if (leftExtraFlags != rightExtraFlags)
3838 hres = DISP_E_BADVARTYPE;
3839 goto end;
3841 ExtraFlags = leftExtraFlags;
3843 /* determine return type and return code */
3844 /* All extra flags produce errors */
3845 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3846 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3847 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3848 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3849 ExtraFlags == VT_VECTOR ||
3850 ExtraFlags == VT_BYREF ||
3851 ExtraFlags == VT_RESERVED)
3853 hres = DISP_E_BADVARTYPE;
3854 goto end;
3856 else if (ExtraFlags >= VT_ARRAY)
3858 hres = DISP_E_TYPEMISMATCH;
3859 goto end;
3861 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3862 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3863 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3864 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3865 leftvt == VT_I1 || rightvt == VT_I1 ||
3866 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3867 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3868 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3869 leftvt == VT_INT || rightvt == VT_INT ||
3870 leftvt == VT_UINT || rightvt == VT_UINT ||
3871 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3872 leftvt == VT_RECORD || rightvt == VT_RECORD)
3874 if (leftvt == VT_RECORD && rightvt == VT_I8)
3875 hres = DISP_E_TYPEMISMATCH;
3876 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3877 hres = DISP_E_TYPEMISMATCH;
3878 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3879 hres = DISP_E_TYPEMISMATCH;
3880 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3881 hres = DISP_E_TYPEMISMATCH;
3882 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3883 hres = DISP_E_BADVARTYPE;
3884 else
3885 hres = DISP_E_BADVARTYPE;
3886 goto end;
3888 /* The following flags/types are invalid for left variant */
3889 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3890 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3891 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3893 hres = DISP_E_BADVARTYPE;
3894 goto end;
3896 /* The following flags/types are invalid for right variant */
3897 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3898 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3899 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3901 hres = DISP_E_BADVARTYPE;
3902 goto end;
3904 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3905 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3906 resvt = VT_NULL;
3907 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3908 leftvt == VT_ERROR || rightvt == VT_ERROR)
3910 hres = DISP_E_TYPEMISMATCH;
3911 goto end;
3913 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3914 resvt = VT_NULL;
3915 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3916 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3917 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3918 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3919 resvt = VT_R8;
3920 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3921 resvt = VT_DECIMAL;
3922 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3923 resvt = VT_DATE;
3924 else if (leftvt == VT_CY || rightvt == VT_CY)
3925 resvt = VT_CY;
3926 else if (leftvt == VT_R8 || rightvt == VT_R8)
3927 resvt = VT_R8;
3928 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3929 resvt = VT_R8;
3930 else if (leftvt == VT_R4 || rightvt == VT_R4)
3932 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3933 leftvt == VT_I8 || rightvt == VT_I8)
3934 resvt = VT_R8;
3935 else
3936 resvt = VT_R4;
3938 else if (leftvt == VT_I8 || rightvt == VT_I8)
3939 resvt = VT_I8;
3940 else if (leftvt == VT_I4 || rightvt == VT_I4)
3941 resvt = VT_I4;
3942 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3943 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3944 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3945 resvt = VT_I2;
3946 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3947 resvt = VT_UI1;
3948 else
3950 hres = DISP_E_TYPEMISMATCH;
3951 goto end;
3954 /* coerce to the result type */
3955 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3956 hres = VariantChangeType(&lv, left, 0, VT_R8);
3957 else
3958 hres = VariantChangeType(&lv, left, 0, resvt);
3959 if (hres != S_OK) goto end;
3960 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3961 hres = VariantChangeType(&rv, right, 0, VT_R8);
3962 else
3963 hres = VariantChangeType(&rv, right, 0, resvt);
3964 if (hres != S_OK) goto end;
3966 /* do the math */
3967 V_VT(result) = resvt;
3968 switch (resvt)
3970 case VT_NULL:
3971 break;
3972 case VT_DATE:
3973 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3974 break;
3975 case VT_CY:
3976 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3977 break;
3978 case VT_R4:
3979 V_R4(result) = V_R4(&lv) - V_R4(&rv);
3980 break;
3981 case VT_I8:
3982 V_I8(result) = V_I8(&lv) - V_I8(&rv);
3983 break;
3984 case VT_I4:
3985 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3986 break;
3987 case VT_I2:
3988 V_I2(result) = V_I2(&lv) - V_I2(&rv);
3989 break;
3990 case VT_I1:
3991 V_I1(result) = V_I1(&lv) - V_I1(&rv);
3992 break;
3993 case VT_UI1:
3994 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3995 break;
3996 case VT_R8:
3997 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3998 break;
3999 case VT_DECIMAL:
4000 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
4001 break;
4004 end:
4005 VariantClear(&lv);
4006 VariantClear(&rv);
4007 VariantClear(&tempLeft);
4008 VariantClear(&tempRight);
4009 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
4010 return hres;
4014 /**********************************************************************
4015 * VarOr [OLEAUT32.157]
4017 * Perform a logical or (OR) operation on two variants.
4019 * PARAMS
4020 * pVarLeft [I] First variant
4021 * pVarRight [I] Variant to OR with pVarLeft
4022 * pVarOut [O] Destination for OR result
4024 * RETURNS
4025 * Success: S_OK. pVarOut contains the result of the operation with its type
4026 * taken from the table listed under VarXor().
4027 * Failure: An HRESULT error code indicating the error.
4029 * NOTES
4030 * See the Notes section of VarXor() for further information.
4032 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4034 VARTYPE vt = VT_I4;
4035 VARIANT varLeft, varRight, varStr;
4036 HRESULT hRet;
4037 VARIANT tempLeft, tempRight;
4039 VariantInit(&tempLeft);
4040 VariantInit(&tempRight);
4041 VariantInit(&varLeft);
4042 VariantInit(&varRight);
4043 VariantInit(&varStr);
4045 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4047 /* Handle VT_DISPATCH by storing and taking address of returned value */
4048 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4050 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4051 if (FAILED(hRet)) goto VarOr_Exit;
4052 pVarLeft = &tempLeft;
4054 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4056 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4057 if (FAILED(hRet)) goto VarOr_Exit;
4058 pVarRight = &tempRight;
4061 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4062 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4063 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4064 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4066 hRet = DISP_E_BADVARTYPE;
4067 goto VarOr_Exit;
4070 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4072 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4074 /* NULL OR Zero is NULL, NULL OR value is value */
4075 if (V_VT(pVarLeft) == VT_NULL)
4076 pVarLeft = pVarRight; /* point to the non-NULL var */
4078 V_VT(pVarOut) = VT_NULL;
4079 V_I4(pVarOut) = 0;
4081 switch (V_VT(pVarLeft))
4083 case VT_DATE: case VT_R8:
4084 if (V_R8(pVarLeft))
4085 goto VarOr_AsEmpty;
4086 hRet = S_OK;
4087 goto VarOr_Exit;
4088 case VT_BOOL:
4089 if (V_BOOL(pVarLeft))
4090 *pVarOut = *pVarLeft;
4091 hRet = S_OK;
4092 goto VarOr_Exit;
4093 case VT_I2: case VT_UI2:
4094 if (V_I2(pVarLeft))
4095 goto VarOr_AsEmpty;
4096 hRet = S_OK;
4097 goto VarOr_Exit;
4098 case VT_I1:
4099 if (V_I1(pVarLeft))
4100 goto VarOr_AsEmpty;
4101 hRet = S_OK;
4102 goto VarOr_Exit;
4103 case VT_UI1:
4104 if (V_UI1(pVarLeft))
4105 *pVarOut = *pVarLeft;
4106 hRet = S_OK;
4107 goto VarOr_Exit;
4108 case VT_R4:
4109 if (V_R4(pVarLeft))
4110 goto VarOr_AsEmpty;
4111 hRet = S_OK;
4112 goto VarOr_Exit;
4113 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4114 if (V_I4(pVarLeft))
4115 goto VarOr_AsEmpty;
4116 hRet = S_OK;
4117 goto VarOr_Exit;
4118 case VT_CY:
4119 if (V_CY(pVarLeft).int64)
4120 goto VarOr_AsEmpty;
4121 hRet = S_OK;
4122 goto VarOr_Exit;
4123 case VT_I8: case VT_UI8:
4124 if (V_I8(pVarLeft))
4125 goto VarOr_AsEmpty;
4126 hRet = S_OK;
4127 goto VarOr_Exit;
4128 case VT_DECIMAL:
4129 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4130 goto VarOr_AsEmpty;
4131 hRet = S_OK;
4132 goto VarOr_Exit;
4133 case VT_BSTR:
4135 VARIANT_BOOL b;
4137 if (!V_BSTR(pVarLeft))
4139 hRet = DISP_E_BADVARTYPE;
4140 goto VarOr_Exit;
4143 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4144 if (SUCCEEDED(hRet) && b)
4146 V_VT(pVarOut) = VT_BOOL;
4147 V_BOOL(pVarOut) = b;
4149 goto VarOr_Exit;
4151 case VT_NULL: case VT_EMPTY:
4152 V_VT(pVarOut) = VT_NULL;
4153 hRet = S_OK;
4154 goto VarOr_Exit;
4155 default:
4156 hRet = DISP_E_BADVARTYPE;
4157 goto VarOr_Exit;
4161 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4163 if (V_VT(pVarLeft) == VT_EMPTY)
4164 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4166 VarOr_AsEmpty:
4167 /* Since one argument is empty (0), OR'ing it with the other simply
4168 * gives the others value (as 0|x => x). So just convert the other
4169 * argument to the required result type.
4171 switch (V_VT(pVarLeft))
4173 case VT_BSTR:
4174 if (!V_BSTR(pVarLeft))
4176 hRet = DISP_E_BADVARTYPE;
4177 goto VarOr_Exit;
4180 hRet = VariantCopy(&varStr, pVarLeft);
4181 if (FAILED(hRet))
4182 goto VarOr_Exit;
4183 pVarLeft = &varStr;
4184 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4185 if (FAILED(hRet))
4186 goto VarOr_Exit;
4187 /* Fall Through ... */
4188 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4189 V_VT(pVarOut) = VT_I2;
4190 break;
4191 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4192 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4193 case VT_INT: case VT_UINT: case VT_UI8:
4194 V_VT(pVarOut) = VT_I4;
4195 break;
4196 case VT_I8:
4197 V_VT(pVarOut) = VT_I8;
4198 break;
4199 default:
4200 hRet = DISP_E_BADVARTYPE;
4201 goto VarOr_Exit;
4203 hRet = VariantCopy(&varLeft, pVarLeft);
4204 if (FAILED(hRet))
4205 goto VarOr_Exit;
4206 pVarLeft = &varLeft;
4207 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4208 goto VarOr_Exit;
4211 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4213 V_VT(pVarOut) = VT_BOOL;
4214 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4215 hRet = S_OK;
4216 goto VarOr_Exit;
4219 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4221 V_VT(pVarOut) = VT_UI1;
4222 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4223 hRet = S_OK;
4224 goto VarOr_Exit;
4227 if (V_VT(pVarLeft) == VT_BSTR)
4229 hRet = VariantCopy(&varStr, pVarLeft);
4230 if (FAILED(hRet))
4231 goto VarOr_Exit;
4232 pVarLeft = &varStr;
4233 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4234 if (FAILED(hRet))
4235 goto VarOr_Exit;
4238 if (V_VT(pVarLeft) == VT_BOOL &&
4239 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4241 vt = VT_BOOL;
4243 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4244 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4245 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4246 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4248 vt = VT_I2;
4250 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4252 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4254 hRet = DISP_E_TYPEMISMATCH;
4255 goto VarOr_Exit;
4257 vt = VT_I8;
4260 hRet = VariantCopy(&varLeft, pVarLeft);
4261 if (FAILED(hRet))
4262 goto VarOr_Exit;
4264 hRet = VariantCopy(&varRight, pVarRight);
4265 if (FAILED(hRet))
4266 goto VarOr_Exit;
4268 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4269 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4270 else
4272 double d;
4274 if (V_VT(&varLeft) == VT_BSTR &&
4275 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4276 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4277 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4278 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4279 if (FAILED(hRet))
4280 goto VarOr_Exit;
4283 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4284 V_VT(&varRight) = VT_I4; /* Don't overflow */
4285 else
4287 double d;
4289 if (V_VT(&varRight) == VT_BSTR &&
4290 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4291 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4292 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4293 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4294 if (FAILED(hRet))
4295 goto VarOr_Exit;
4298 V_VT(pVarOut) = vt;
4299 if (vt == VT_I8)
4301 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4303 else if (vt == VT_I4)
4305 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4307 else
4309 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4312 VarOr_Exit:
4313 VariantClear(&varStr);
4314 VariantClear(&varLeft);
4315 VariantClear(&varRight);
4316 VariantClear(&tempLeft);
4317 VariantClear(&tempRight);
4318 return hRet;
4321 /**********************************************************************
4322 * VarAbs [OLEAUT32.168]
4324 * Convert a variant to its absolute value.
4326 * PARAMS
4327 * pVarIn [I] Source variant
4328 * pVarOut [O] Destination for converted value
4330 * RETURNS
4331 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4332 * Failure: An HRESULT error code indicating the error.
4334 * NOTES
4335 * - This function does not process by-reference variants.
4336 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4337 * according to the following table:
4338 *| Input Type Output Type
4339 *| ---------- -----------
4340 *| VT_BOOL VT_I2
4341 *| VT_BSTR VT_R8
4342 *| (All others) Unchanged
4344 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4346 VARIANT varIn;
4347 HRESULT hRet = S_OK;
4348 VARIANT temp;
4350 VariantInit(&temp);
4352 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4354 /* Handle VT_DISPATCH by storing and taking address of returned value */
4355 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4357 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4358 if (FAILED(hRet)) goto VarAbs_Exit;
4359 pVarIn = &temp;
4362 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4363 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4364 V_VT(pVarIn) == VT_ERROR)
4366 hRet = DISP_E_TYPEMISMATCH;
4367 goto VarAbs_Exit;
4369 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4371 #define ABS_CASE(typ,min) \
4372 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4373 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4374 break
4376 switch (V_VT(pVarIn))
4378 ABS_CASE(I1,I1_MIN);
4379 case VT_BOOL:
4380 V_VT(pVarOut) = VT_I2;
4381 /* BOOL->I2, Fall through ... */
4382 ABS_CASE(I2,I2_MIN);
4383 case VT_INT:
4384 ABS_CASE(I4,I4_MIN);
4385 ABS_CASE(I8,I8_MIN);
4386 ABS_CASE(R4,R4_MIN);
4387 case VT_BSTR:
4388 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4389 if (FAILED(hRet))
4390 break;
4391 V_VT(pVarOut) = VT_R8;
4392 pVarIn = &varIn;
4393 /* Fall through ... */
4394 case VT_DATE:
4395 ABS_CASE(R8,R8_MIN);
4396 case VT_CY:
4397 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4398 break;
4399 case VT_DECIMAL:
4400 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4401 break;
4402 case VT_UI1:
4403 case VT_UI2:
4404 case VT_UINT:
4405 case VT_UI4:
4406 case VT_UI8:
4407 /* No-Op */
4408 break;
4409 case VT_EMPTY:
4410 V_VT(pVarOut) = VT_I2;
4411 case VT_NULL:
4412 V_I2(pVarOut) = 0;
4413 break;
4414 default:
4415 hRet = DISP_E_BADVARTYPE;
4418 VarAbs_Exit:
4419 VariantClear(&temp);
4420 return hRet;
4423 /**********************************************************************
4424 * VarFix [OLEAUT32.169]
4426 * Truncate a variants value to a whole number.
4428 * PARAMS
4429 * pVarIn [I] Source variant
4430 * pVarOut [O] Destination for converted value
4432 * RETURNS
4433 * Success: S_OK. pVarOut contains the converted value.
4434 * Failure: An HRESULT error code indicating the error.
4436 * NOTES
4437 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4438 * according to the following table:
4439 *| Input Type Output Type
4440 *| ---------- -----------
4441 *| VT_BOOL VT_I2
4442 *| VT_EMPTY VT_I2
4443 *| VT_BSTR VT_R8
4444 *| All Others Unchanged
4445 * - The difference between this function and VarInt() is that VarInt() rounds
4446 * negative numbers away from 0, while this function rounds them towards zero.
4448 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4450 HRESULT hRet = S_OK;
4451 VARIANT temp;
4453 VariantInit(&temp);
4455 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4457 /* Handle VT_DISPATCH by storing and taking address of returned value */
4458 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4460 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4461 if (FAILED(hRet)) goto VarFix_Exit;
4462 pVarIn = &temp;
4464 V_VT(pVarOut) = V_VT(pVarIn);
4466 switch (V_VT(pVarIn))
4468 case VT_UI1:
4469 V_UI1(pVarOut) = V_UI1(pVarIn);
4470 break;
4471 case VT_BOOL:
4472 V_VT(pVarOut) = VT_I2;
4473 /* Fall through */
4474 case VT_I2:
4475 V_I2(pVarOut) = V_I2(pVarIn);
4476 break;
4477 case VT_I4:
4478 V_I4(pVarOut) = V_I4(pVarIn);
4479 break;
4480 case VT_I8:
4481 V_I8(pVarOut) = V_I8(pVarIn);
4482 break;
4483 case VT_R4:
4484 if (V_R4(pVarIn) < 0.0f)
4485 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4486 else
4487 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4488 break;
4489 case VT_BSTR:
4490 V_VT(pVarOut) = VT_R8;
4491 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4492 pVarIn = pVarOut;
4493 /* Fall through */
4494 case VT_DATE:
4495 case VT_R8:
4496 if (V_R8(pVarIn) < 0.0)
4497 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4498 else
4499 V_R8(pVarOut) = floor(V_R8(pVarIn));
4500 break;
4501 case VT_CY:
4502 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4503 break;
4504 case VT_DECIMAL:
4505 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4506 break;
4507 case VT_EMPTY:
4508 V_VT(pVarOut) = VT_I2;
4509 V_I2(pVarOut) = 0;
4510 break;
4511 case VT_NULL:
4512 /* No-Op */
4513 break;
4514 default:
4515 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4516 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4517 hRet = DISP_E_BADVARTYPE;
4518 else
4519 hRet = DISP_E_TYPEMISMATCH;
4521 VarFix_Exit:
4522 if (FAILED(hRet))
4523 V_VT(pVarOut) = VT_EMPTY;
4524 VariantClear(&temp);
4526 return hRet;
4529 /**********************************************************************
4530 * VarInt [OLEAUT32.172]
4532 * Truncate a variants value to a whole number.
4534 * PARAMS
4535 * pVarIn [I] Source variant
4536 * pVarOut [O] Destination for converted value
4538 * RETURNS
4539 * Success: S_OK. pVarOut contains the converted value.
4540 * Failure: An HRESULT error code indicating the error.
4542 * NOTES
4543 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4544 * according to the following table:
4545 *| Input Type Output Type
4546 *| ---------- -----------
4547 *| VT_BOOL VT_I2
4548 *| VT_EMPTY VT_I2
4549 *| VT_BSTR VT_R8
4550 *| All Others Unchanged
4551 * - The difference between this function and VarFix() is that VarFix() rounds
4552 * negative numbers towards 0, while this function rounds them away from zero.
4554 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4556 HRESULT hRet = S_OK;
4557 VARIANT temp;
4559 VariantInit(&temp);
4561 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4563 /* Handle VT_DISPATCH by storing and taking address of returned value */
4564 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4566 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4567 if (FAILED(hRet)) goto VarInt_Exit;
4568 pVarIn = &temp;
4570 V_VT(pVarOut) = V_VT(pVarIn);
4572 switch (V_VT(pVarIn))
4574 case VT_R4:
4575 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4576 break;
4577 case VT_BSTR:
4578 V_VT(pVarOut) = VT_R8;
4579 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4580 pVarIn = pVarOut;
4581 /* Fall through */
4582 case VT_DATE:
4583 case VT_R8:
4584 V_R8(pVarOut) = floor(V_R8(pVarIn));
4585 break;
4586 case VT_CY:
4587 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4588 break;
4589 case VT_DECIMAL:
4590 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4591 break;
4592 default:
4593 hRet = VarFix(pVarIn, pVarOut);
4595 VarInt_Exit:
4596 VariantClear(&temp);
4598 return hRet;
4601 /**********************************************************************
4602 * VarXor [OLEAUT32.167]
4604 * Perform a logical exclusive-or (XOR) operation on two variants.
4606 * PARAMS
4607 * pVarLeft [I] First variant
4608 * pVarRight [I] Variant to XOR with pVarLeft
4609 * pVarOut [O] Destination for XOR result
4611 * RETURNS
4612 * Success: S_OK. pVarOut contains the result of the operation with its type
4613 * taken from the table below).
4614 * Failure: An HRESULT error code indicating the error.
4616 * NOTES
4617 * - Neither pVarLeft or pVarRight are modified by this function.
4618 * - This function does not process by-reference variants.
4619 * - Input types of VT_BSTR may be numeric strings or boolean text.
4620 * - The type of result stored in pVarOut depends on the types of pVarLeft
4621 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4622 * or VT_NULL if the function succeeds.
4623 * - Type promotion is inconsistent and as a result certain combinations of
4624 * values will return DISP_E_OVERFLOW even when they could be represented.
4625 * This matches the behaviour of native oleaut32.
4627 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4629 VARTYPE vt;
4630 VARIANT varLeft, varRight;
4631 VARIANT tempLeft, tempRight;
4632 double d;
4633 HRESULT hRet;
4635 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4637 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4638 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4639 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4640 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4641 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4642 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4643 return DISP_E_BADVARTYPE;
4645 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4647 /* NULL XOR anything valid is NULL */
4648 V_VT(pVarOut) = VT_NULL;
4649 return S_OK;
4652 VariantInit(&tempLeft);
4653 VariantInit(&tempRight);
4655 /* Handle VT_DISPATCH by storing and taking address of returned value */
4656 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4658 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4659 if (FAILED(hRet)) goto VarXor_Exit;
4660 pVarLeft = &tempLeft;
4662 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4664 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4665 if (FAILED(hRet)) goto VarXor_Exit;
4666 pVarRight = &tempRight;
4669 /* Copy our inputs so we don't disturb anything */
4670 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4672 hRet = VariantCopy(&varLeft, pVarLeft);
4673 if (FAILED(hRet))
4674 goto VarXor_Exit;
4676 hRet = VariantCopy(&varRight, pVarRight);
4677 if (FAILED(hRet))
4678 goto VarXor_Exit;
4680 /* Try any strings first as numbers, then as VT_BOOL */
4681 if (V_VT(&varLeft) == VT_BSTR)
4683 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4684 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4685 FAILED(hRet) ? VT_BOOL : VT_I4);
4686 if (FAILED(hRet))
4687 goto VarXor_Exit;
4690 if (V_VT(&varRight) == VT_BSTR)
4692 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4693 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4694 FAILED(hRet) ? VT_BOOL : VT_I4);
4695 if (FAILED(hRet))
4696 goto VarXor_Exit;
4699 /* Determine the result type */
4700 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4702 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4704 hRet = DISP_E_TYPEMISMATCH;
4705 goto VarXor_Exit;
4707 vt = VT_I8;
4709 else
4711 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4713 case (VT_BOOL << 16) | VT_BOOL:
4714 vt = VT_BOOL;
4715 break;
4716 case (VT_UI1 << 16) | VT_UI1:
4717 vt = VT_UI1;
4718 break;
4719 case (VT_EMPTY << 16) | VT_EMPTY:
4720 case (VT_EMPTY << 16) | VT_UI1:
4721 case (VT_EMPTY << 16) | VT_I2:
4722 case (VT_EMPTY << 16) | VT_BOOL:
4723 case (VT_UI1 << 16) | VT_EMPTY:
4724 case (VT_UI1 << 16) | VT_I2:
4725 case (VT_UI1 << 16) | VT_BOOL:
4726 case (VT_I2 << 16) | VT_EMPTY:
4727 case (VT_I2 << 16) | VT_UI1:
4728 case (VT_I2 << 16) | VT_I2:
4729 case (VT_I2 << 16) | VT_BOOL:
4730 case (VT_BOOL << 16) | VT_EMPTY:
4731 case (VT_BOOL << 16) | VT_UI1:
4732 case (VT_BOOL << 16) | VT_I2:
4733 vt = VT_I2;
4734 break;
4735 default:
4736 vt = VT_I4;
4737 break;
4741 /* VT_UI4 does not overflow */
4742 if (vt != VT_I8)
4744 if (V_VT(&varLeft) == VT_UI4)
4745 V_VT(&varLeft) = VT_I4;
4746 if (V_VT(&varRight) == VT_UI4)
4747 V_VT(&varRight) = VT_I4;
4750 /* Convert our input copies to the result type */
4751 if (V_VT(&varLeft) != vt)
4752 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4753 if (FAILED(hRet))
4754 goto VarXor_Exit;
4756 if (V_VT(&varRight) != vt)
4757 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4758 if (FAILED(hRet))
4759 goto VarXor_Exit;
4761 V_VT(pVarOut) = vt;
4763 /* Calculate the result */
4764 switch (vt)
4766 case VT_I8:
4767 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4768 break;
4769 case VT_I4:
4770 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4771 break;
4772 case VT_BOOL:
4773 case VT_I2:
4774 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4775 break;
4776 case VT_UI1:
4777 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4778 break;
4781 VarXor_Exit:
4782 VariantClear(&varLeft);
4783 VariantClear(&varRight);
4784 VariantClear(&tempLeft);
4785 VariantClear(&tempRight);
4786 return hRet;
4789 /**********************************************************************
4790 * VarEqv [OLEAUT32.172]
4792 * Determine if two variants contain the same value.
4794 * PARAMS
4795 * pVarLeft [I] First variant to compare
4796 * pVarRight [I] Variant to compare to pVarLeft
4797 * pVarOut [O] Destination for comparison result
4799 * RETURNS
4800 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4801 * if equivalent or non-zero otherwise.
4802 * Failure: An HRESULT error code indicating the error.
4804 * NOTES
4805 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4806 * the result.
4808 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4810 HRESULT hRet;
4812 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4814 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4815 if (SUCCEEDED(hRet))
4817 if (V_VT(pVarOut) == VT_I8)
4818 V_I8(pVarOut) = ~V_I8(pVarOut);
4819 else
4820 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4822 return hRet;
4825 /**********************************************************************
4826 * VarNeg [OLEAUT32.173]
4828 * Negate the value of a variant.
4830 * PARAMS
4831 * pVarIn [I] Source variant
4832 * pVarOut [O] Destination for converted value
4834 * RETURNS
4835 * Success: S_OK. pVarOut contains the converted value.
4836 * Failure: An HRESULT error code indicating the error.
4838 * NOTES
4839 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4840 * according to the following table:
4841 *| Input Type Output Type
4842 *| ---------- -----------
4843 *| VT_EMPTY VT_I2
4844 *| VT_UI1 VT_I2
4845 *| VT_BOOL VT_I2
4846 *| VT_BSTR VT_R8
4847 *| All Others Unchanged (unless promoted)
4848 * - Where the negated value of a variant does not fit in its base type, the type
4849 * is promoted according to the following table:
4850 *| Input Type Promoted To
4851 *| ---------- -----------
4852 *| VT_I2 VT_I4
4853 *| VT_I4 VT_R8
4854 *| VT_I8 VT_R8
4855 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4856 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4857 * for types which are not valid. Since this is in contravention of the
4858 * meaning of those error codes and unlikely to be relied on by applications,
4859 * this implementation returns errors consistent with the other high level
4860 * variant math functions.
4862 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4864 HRESULT hRet = S_OK;
4865 VARIANT temp;
4867 VariantInit(&temp);
4869 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4871 /* Handle VT_DISPATCH by storing and taking address of returned value */
4872 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4874 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4875 if (FAILED(hRet)) goto VarNeg_Exit;
4876 pVarIn = &temp;
4878 V_VT(pVarOut) = V_VT(pVarIn);
4880 switch (V_VT(pVarIn))
4882 case VT_UI1:
4883 V_VT(pVarOut) = VT_I2;
4884 V_I2(pVarOut) = -V_UI1(pVarIn);
4885 break;
4886 case VT_BOOL:
4887 V_VT(pVarOut) = VT_I2;
4888 /* Fall through */
4889 case VT_I2:
4890 if (V_I2(pVarIn) == I2_MIN)
4892 V_VT(pVarOut) = VT_I4;
4893 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4895 else
4896 V_I2(pVarOut) = -V_I2(pVarIn);
4897 break;
4898 case VT_I4:
4899 if (V_I4(pVarIn) == I4_MIN)
4901 V_VT(pVarOut) = VT_R8;
4902 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4904 else
4905 V_I4(pVarOut) = -V_I4(pVarIn);
4906 break;
4907 case VT_I8:
4908 if (V_I8(pVarIn) == I8_MIN)
4910 V_VT(pVarOut) = VT_R8;
4911 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4912 V_R8(pVarOut) *= -1.0;
4914 else
4915 V_I8(pVarOut) = -V_I8(pVarIn);
4916 break;
4917 case VT_R4:
4918 V_R4(pVarOut) = -V_R4(pVarIn);
4919 break;
4920 case VT_DATE:
4921 case VT_R8:
4922 V_R8(pVarOut) = -V_R8(pVarIn);
4923 break;
4924 case VT_CY:
4925 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4926 break;
4927 case VT_DECIMAL:
4928 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4929 break;
4930 case VT_BSTR:
4931 V_VT(pVarOut) = VT_R8;
4932 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4933 V_R8(pVarOut) = -V_R8(pVarOut);
4934 break;
4935 case VT_EMPTY:
4936 V_VT(pVarOut) = VT_I2;
4937 V_I2(pVarOut) = 0;
4938 break;
4939 case VT_NULL:
4940 /* No-Op */
4941 break;
4942 default:
4943 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4944 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4945 hRet = DISP_E_BADVARTYPE;
4946 else
4947 hRet = DISP_E_TYPEMISMATCH;
4949 VarNeg_Exit:
4950 if (FAILED(hRet))
4951 V_VT(pVarOut) = VT_EMPTY;
4952 VariantClear(&temp);
4954 return hRet;
4957 /**********************************************************************
4958 * VarNot [OLEAUT32.174]
4960 * Perform a not operation on a variant.
4962 * PARAMS
4963 * pVarIn [I] Source variant
4964 * pVarOut [O] Destination for converted value
4966 * RETURNS
4967 * Success: S_OK. pVarOut contains the converted value.
4968 * Failure: An HRESULT error code indicating the error.
4970 * NOTES
4971 * - Strictly speaking, this function performs a bitwise ones complement
4972 * on the variants value (after possibly converting to VT_I4, see below).
4973 * This only behaves like a boolean not operation if the value in
4974 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4975 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4976 * before calling this function.
4977 * - This function does not process by-reference variants.
4978 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4979 * according to the following table:
4980 *| Input Type Output Type
4981 *| ---------- -----------
4982 *| VT_EMPTY VT_I2
4983 *| VT_R4 VT_I4
4984 *| VT_R8 VT_I4
4985 *| VT_BSTR VT_I4
4986 *| VT_DECIMAL VT_I4
4987 *| VT_CY VT_I4
4988 *| (All others) Unchanged
4990 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4992 VARIANT varIn;
4993 HRESULT hRet = S_OK;
4994 VARIANT temp;
4996 VariantInit(&temp);
4998 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
5000 /* Handle VT_DISPATCH by storing and taking address of returned value */
5001 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5003 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5004 if (FAILED(hRet)) goto VarNot_Exit;
5005 pVarIn = &temp;
5008 if (V_VT(pVarIn) == VT_BSTR)
5010 V_VT(&varIn) = VT_R8;
5011 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
5012 if (FAILED(hRet))
5014 V_VT(&varIn) = VT_BOOL;
5015 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
5017 if (FAILED(hRet)) goto VarNot_Exit;
5018 pVarIn = &varIn;
5021 V_VT(pVarOut) = V_VT(pVarIn);
5023 switch (V_VT(pVarIn))
5025 case VT_I1:
5026 V_I4(pVarOut) = ~V_I1(pVarIn);
5027 V_VT(pVarOut) = VT_I4;
5028 break;
5029 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
5030 case VT_BOOL:
5031 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
5032 case VT_UI2:
5033 V_I4(pVarOut) = ~V_UI2(pVarIn);
5034 V_VT(pVarOut) = VT_I4;
5035 break;
5036 case VT_DECIMAL:
5037 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
5038 if (FAILED(hRet))
5039 break;
5040 pVarIn = &varIn;
5041 /* Fall through ... */
5042 case VT_INT:
5043 V_VT(pVarOut) = VT_I4;
5044 /* Fall through ... */
5045 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5046 case VT_UINT:
5047 case VT_UI4:
5048 V_I4(pVarOut) = ~V_UI4(pVarIn);
5049 V_VT(pVarOut) = VT_I4;
5050 break;
5051 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5052 case VT_UI8:
5053 V_I4(pVarOut) = ~V_UI8(pVarIn);
5054 V_VT(pVarOut) = VT_I4;
5055 break;
5056 case VT_R4:
5057 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5058 V_I4(pVarOut) = ~V_I4(pVarOut);
5059 V_VT(pVarOut) = VT_I4;
5060 break;
5061 case VT_DATE:
5062 case VT_R8:
5063 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5064 V_I4(pVarOut) = ~V_I4(pVarOut);
5065 V_VT(pVarOut) = VT_I4;
5066 break;
5067 case VT_CY:
5068 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5069 V_I4(pVarOut) = ~V_I4(pVarOut);
5070 V_VT(pVarOut) = VT_I4;
5071 break;
5072 case VT_EMPTY:
5073 V_I2(pVarOut) = ~0;
5074 V_VT(pVarOut) = VT_I2;
5075 break;
5076 case VT_NULL:
5077 /* No-Op */
5078 break;
5079 default:
5080 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5081 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5082 hRet = DISP_E_BADVARTYPE;
5083 else
5084 hRet = DISP_E_TYPEMISMATCH;
5086 VarNot_Exit:
5087 if (FAILED(hRet))
5088 V_VT(pVarOut) = VT_EMPTY;
5089 VariantClear(&temp);
5091 return hRet;
5094 /**********************************************************************
5095 * VarRound [OLEAUT32.175]
5097 * Perform a round operation on a variant.
5099 * PARAMS
5100 * pVarIn [I] Source variant
5101 * deci [I] Number of decimals to round to
5102 * pVarOut [O] Destination for converted value
5104 * RETURNS
5105 * Success: S_OK. pVarOut contains the converted value.
5106 * Failure: An HRESULT error code indicating the error.
5108 * NOTES
5109 * - Floating point values are rounded to the desired number of decimals.
5110 * - Some integer types are just copied to the return variable.
5111 * - Some other integer types are not handled and fail.
5113 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5115 VARIANT varIn;
5116 HRESULT hRet = S_OK;
5117 float factor;
5118 VARIANT temp;
5120 VariantInit(&temp);
5122 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5124 /* Handle VT_DISPATCH by storing and taking address of returned value */
5125 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5127 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5128 if (FAILED(hRet)) goto VarRound_Exit;
5129 pVarIn = &temp;
5132 switch (V_VT(pVarIn))
5134 /* cases that fail on windows */
5135 case VT_I1:
5136 case VT_I8:
5137 case VT_UI2:
5138 case VT_UI4:
5139 hRet = DISP_E_BADVARTYPE;
5140 break;
5142 /* cases just copying in to out */
5143 case VT_UI1:
5144 V_VT(pVarOut) = V_VT(pVarIn);
5145 V_UI1(pVarOut) = V_UI1(pVarIn);
5146 break;
5147 case VT_I2:
5148 V_VT(pVarOut) = V_VT(pVarIn);
5149 V_I2(pVarOut) = V_I2(pVarIn);
5150 break;
5151 case VT_I4:
5152 V_VT(pVarOut) = V_VT(pVarIn);
5153 V_I4(pVarOut) = V_I4(pVarIn);
5154 break;
5155 case VT_NULL:
5156 V_VT(pVarOut) = V_VT(pVarIn);
5157 /* value unchanged */
5158 break;
5160 /* cases that change type */
5161 case VT_EMPTY:
5162 V_VT(pVarOut) = VT_I2;
5163 V_I2(pVarOut) = 0;
5164 break;
5165 case VT_BOOL:
5166 V_VT(pVarOut) = VT_I2;
5167 V_I2(pVarOut) = V_BOOL(pVarIn);
5168 break;
5169 case VT_BSTR:
5170 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5171 if (FAILED(hRet))
5172 break;
5173 V_VT(&varIn)=VT_R8;
5174 pVarIn = &varIn;
5175 /* Fall through ... */
5177 /* cases we need to do math */
5178 case VT_R8:
5179 if (V_R8(pVarIn)>0) {
5180 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5181 } else {
5182 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5184 V_VT(pVarOut) = V_VT(pVarIn);
5185 break;
5186 case VT_R4:
5187 if (V_R4(pVarIn)>0) {
5188 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5189 } else {
5190 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5192 V_VT(pVarOut) = V_VT(pVarIn);
5193 break;
5194 case VT_DATE:
5195 if (V_DATE(pVarIn)>0) {
5196 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5197 } else {
5198 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5200 V_VT(pVarOut) = V_VT(pVarIn);
5201 break;
5202 case VT_CY:
5203 if (deci>3)
5204 factor=1;
5205 else
5206 factor=pow(10, 4-deci);
5208 if (V_CY(pVarIn).int64>0) {
5209 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5210 } else {
5211 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5213 V_VT(pVarOut) = V_VT(pVarIn);
5214 break;
5216 /* cases we don't know yet */
5217 default:
5218 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5219 V_VT(pVarIn) & VT_TYPEMASK, deci);
5220 hRet = DISP_E_BADVARTYPE;
5222 VarRound_Exit:
5223 if (FAILED(hRet))
5224 V_VT(pVarOut) = VT_EMPTY;
5225 VariantClear(&temp);
5227 TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5228 return hRet;
5231 /**********************************************************************
5232 * VarIdiv [OLEAUT32.153]
5234 * Converts input variants to integers and divides them.
5236 * PARAMS
5237 * left [I] Left hand variant
5238 * right [I] Right hand variant
5239 * result [O] Destination for quotient
5241 * RETURNS
5242 * Success: S_OK. result contains the quotient.
5243 * Failure: An HRESULT error code indicating the error.
5245 * NOTES
5246 * If either expression is null, null is returned, as per MSDN
5248 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5250 HRESULT hres = S_OK;
5251 VARTYPE resvt = VT_EMPTY;
5252 VARTYPE leftvt,rightvt;
5253 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5254 VARIANT lv,rv;
5255 VARIANT tempLeft, tempRight;
5257 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5259 VariantInit(&lv);
5260 VariantInit(&rv);
5261 VariantInit(&tempLeft);
5262 VariantInit(&tempRight);
5264 leftvt = V_VT(left)&VT_TYPEMASK;
5265 rightvt = V_VT(right)&VT_TYPEMASK;
5266 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5267 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5269 if (leftExtraFlags != rightExtraFlags)
5271 hres = DISP_E_BADVARTYPE;
5272 goto end;
5274 ExtraFlags = leftExtraFlags;
5276 /* Native VarIdiv always returns an error when using extra
5277 * flags or if the variant combination is I8 and INT.
5279 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5280 (leftvt == VT_INT && rightvt == VT_I8) ||
5281 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5282 ExtraFlags != 0)
5284 hres = DISP_E_BADVARTYPE;
5285 goto end;
5288 /* Determine variant type */
5289 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5291 V_VT(result) = VT_NULL;
5292 hres = S_OK;
5293 goto end;
5295 else if (leftvt == VT_I8 || rightvt == VT_I8)
5296 resvt = VT_I8;
5297 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5298 leftvt == VT_INT || rightvt == VT_INT ||
5299 leftvt == VT_UINT || rightvt == VT_UINT ||
5300 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5301 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5302 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5303 leftvt == VT_I1 || rightvt == VT_I1 ||
5304 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5305 leftvt == VT_DATE || rightvt == VT_DATE ||
5306 leftvt == VT_CY || rightvt == VT_CY ||
5307 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5308 leftvt == VT_R8 || rightvt == VT_R8 ||
5309 leftvt == VT_R4 || rightvt == VT_R4)
5310 resvt = VT_I4;
5311 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5312 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5313 leftvt == VT_EMPTY)
5314 resvt = VT_I2;
5315 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5316 resvt = VT_UI1;
5317 else
5319 hres = DISP_E_BADVARTYPE;
5320 goto end;
5323 /* coerce to the result type */
5324 hres = VariantChangeType(&lv, left, 0, resvt);
5325 if (hres != S_OK) goto end;
5326 hres = VariantChangeType(&rv, right, 0, resvt);
5327 if (hres != S_OK) goto end;
5329 /* do the math */
5330 V_VT(result) = resvt;
5331 switch (resvt)
5333 case VT_UI1:
5334 if (V_UI1(&rv) == 0)
5336 hres = DISP_E_DIVBYZERO;
5337 V_VT(result) = VT_EMPTY;
5339 else
5340 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5341 break;
5342 case VT_I2:
5343 if (V_I2(&rv) == 0)
5345 hres = DISP_E_DIVBYZERO;
5346 V_VT(result) = VT_EMPTY;
5348 else
5349 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5350 break;
5351 case VT_I4:
5352 if (V_I4(&rv) == 0)
5354 hres = DISP_E_DIVBYZERO;
5355 V_VT(result) = VT_EMPTY;
5357 else
5358 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5359 break;
5360 case VT_I8:
5361 if (V_I8(&rv) == 0)
5363 hres = DISP_E_DIVBYZERO;
5364 V_VT(result) = VT_EMPTY;
5366 else
5367 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5368 break;
5369 default:
5370 FIXME("Couldn't integer divide variant types %d,%d\n",
5371 leftvt,rightvt);
5374 end:
5375 VariantClear(&lv);
5376 VariantClear(&rv);
5377 VariantClear(&tempLeft);
5378 VariantClear(&tempRight);
5380 return hres;
5384 /**********************************************************************
5385 * VarMod [OLEAUT32.155]
5387 * Perform the modulus operation of the right hand variant on the left
5389 * PARAMS
5390 * left [I] Left hand variant
5391 * right [I] Right hand variant
5392 * result [O] Destination for converted value
5394 * RETURNS
5395 * Success: S_OK. result contains the remainder.
5396 * Failure: An HRESULT error code indicating the error.
5398 * NOTE:
5399 * If an error occurs the type of result will be modified but the value will not be.
5400 * Doesn't support arrays or any special flags yet.
5402 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5404 BOOL lOk = TRUE;
5405 HRESULT rc = E_FAIL;
5406 int resT = 0;
5407 VARIANT lv,rv;
5408 VARIANT tempLeft, tempRight;
5410 VariantInit(&tempLeft);
5411 VariantInit(&tempRight);
5412 VariantInit(&lv);
5413 VariantInit(&rv);
5415 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5417 /* Handle VT_DISPATCH by storing and taking address of returned value */
5418 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5420 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5421 if (FAILED(rc)) goto end;
5422 left = &tempLeft;
5424 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5426 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5427 if (FAILED(rc)) goto end;
5428 right = &tempRight;
5431 /* check for invalid inputs */
5432 lOk = TRUE;
5433 switch (V_VT(left) & VT_TYPEMASK) {
5434 case VT_BOOL :
5435 case VT_I1 :
5436 case VT_I2 :
5437 case VT_I4 :
5438 case VT_I8 :
5439 case VT_INT :
5440 case VT_UI1 :
5441 case VT_UI2 :
5442 case VT_UI4 :
5443 case VT_UI8 :
5444 case VT_UINT :
5445 case VT_R4 :
5446 case VT_R8 :
5447 case VT_CY :
5448 case VT_EMPTY:
5449 case VT_DATE :
5450 case VT_BSTR :
5451 case VT_DECIMAL:
5452 break;
5453 case VT_VARIANT:
5454 case VT_UNKNOWN:
5455 V_VT(result) = VT_EMPTY;
5456 rc = DISP_E_TYPEMISMATCH;
5457 goto end;
5458 case VT_ERROR:
5459 rc = DISP_E_TYPEMISMATCH;
5460 goto end;
5461 case VT_RECORD:
5462 V_VT(result) = VT_EMPTY;
5463 rc = DISP_E_TYPEMISMATCH;
5464 goto end;
5465 case VT_NULL:
5466 break;
5467 default:
5468 V_VT(result) = VT_EMPTY;
5469 rc = DISP_E_BADVARTYPE;
5470 goto end;
5474 switch (V_VT(right) & VT_TYPEMASK) {
5475 case VT_BOOL :
5476 case VT_I1 :
5477 case VT_I2 :
5478 case VT_I4 :
5479 case VT_I8 :
5480 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5482 V_VT(result) = VT_EMPTY;
5483 rc = DISP_E_TYPEMISMATCH;
5484 goto end;
5486 case VT_INT :
5487 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5489 V_VT(result) = VT_EMPTY;
5490 rc = DISP_E_TYPEMISMATCH;
5491 goto end;
5493 case VT_UI1 :
5494 case VT_UI2 :
5495 case VT_UI4 :
5496 case VT_UI8 :
5497 case VT_UINT :
5498 case VT_R4 :
5499 case VT_R8 :
5500 case VT_CY :
5501 if(V_VT(left) == VT_EMPTY)
5503 V_VT(result) = VT_I4;
5504 rc = S_OK;
5505 goto end;
5507 case VT_EMPTY:
5508 case VT_DATE :
5509 case VT_DECIMAL:
5510 if(V_VT(left) == VT_ERROR)
5512 V_VT(result) = VT_EMPTY;
5513 rc = DISP_E_TYPEMISMATCH;
5514 goto end;
5516 case VT_BSTR:
5517 if(V_VT(left) == VT_NULL)
5519 V_VT(result) = VT_NULL;
5520 rc = S_OK;
5521 goto end;
5523 break;
5525 case VT_VOID:
5526 V_VT(result) = VT_EMPTY;
5527 rc = DISP_E_BADVARTYPE;
5528 goto end;
5529 case VT_NULL:
5530 if(V_VT(left) == VT_VOID)
5532 V_VT(result) = VT_EMPTY;
5533 rc = DISP_E_BADVARTYPE;
5534 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5535 lOk)
5537 V_VT(result) = VT_NULL;
5538 rc = S_OK;
5539 } else
5541 V_VT(result) = VT_NULL;
5542 rc = DISP_E_BADVARTYPE;
5544 goto end;
5545 case VT_VARIANT:
5546 case VT_UNKNOWN:
5547 V_VT(result) = VT_EMPTY;
5548 rc = DISP_E_TYPEMISMATCH;
5549 goto end;
5550 case VT_ERROR:
5551 rc = DISP_E_TYPEMISMATCH;
5552 goto end;
5553 case VT_RECORD:
5554 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5556 V_VT(result) = VT_EMPTY;
5557 rc = DISP_E_BADVARTYPE;
5558 } else
5560 V_VT(result) = VT_EMPTY;
5561 rc = DISP_E_TYPEMISMATCH;
5563 goto end;
5564 default:
5565 V_VT(result) = VT_EMPTY;
5566 rc = DISP_E_BADVARTYPE;
5567 goto end;
5570 /* determine the result type */
5571 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5572 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5573 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5574 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5575 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5576 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5577 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5578 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5579 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5580 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5581 else resT = VT_I4; /* most outputs are I4 */
5583 /* convert to I8 for the modulo */
5584 rc = VariantChangeType(&lv, left, 0, VT_I8);
5585 if(FAILED(rc))
5587 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5588 goto end;
5591 rc = VariantChangeType(&rv, right, 0, VT_I8);
5592 if(FAILED(rc))
5594 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5595 goto end;
5598 /* if right is zero set VT_EMPTY and return divide by zero */
5599 if(V_I8(&rv) == 0)
5601 V_VT(result) = VT_EMPTY;
5602 rc = DISP_E_DIVBYZERO;
5603 goto end;
5606 /* perform the modulo operation */
5607 V_VT(result) = VT_I8;
5608 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5610 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5611 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5612 wine_dbgstr_longlong(V_I8(result)));
5614 /* convert left and right to the destination type */
5615 rc = VariantChangeType(result, result, 0, resT);
5616 if(FAILED(rc))
5618 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5619 /* fall to end of function */
5622 end:
5623 VariantClear(&lv);
5624 VariantClear(&rv);
5625 VariantClear(&tempLeft);
5626 VariantClear(&tempRight);
5627 return rc;
5630 /**********************************************************************
5631 * VarPow [OLEAUT32.158]
5633 * Computes the power of one variant to another variant.
5635 * PARAMS
5636 * left [I] First variant
5637 * right [I] Second variant
5638 * result [O] Result variant
5640 * RETURNS
5641 * Success: S_OK.
5642 * Failure: An HRESULT error code indicating the error.
5644 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5646 HRESULT hr = S_OK;
5647 VARIANT dl,dr;
5648 VARTYPE resvt = VT_EMPTY;
5649 VARTYPE leftvt,rightvt;
5650 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5651 VARIANT tempLeft, tempRight;
5653 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5655 VariantInit(&dl);
5656 VariantInit(&dr);
5657 VariantInit(&tempLeft);
5658 VariantInit(&tempRight);
5660 /* Handle VT_DISPATCH by storing and taking address of returned value */
5661 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5663 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5664 if (FAILED(hr)) goto end;
5665 left = &tempLeft;
5667 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5669 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5670 if (FAILED(hr)) goto end;
5671 right = &tempRight;
5674 leftvt = V_VT(left)&VT_TYPEMASK;
5675 rightvt = V_VT(right)&VT_TYPEMASK;
5676 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5677 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5679 if (leftExtraFlags != rightExtraFlags)
5681 hr = DISP_E_BADVARTYPE;
5682 goto end;
5684 ExtraFlags = leftExtraFlags;
5686 /* Native VarPow always returns an error when using extra flags */
5687 if (ExtraFlags != 0)
5689 hr = DISP_E_BADVARTYPE;
5690 goto end;
5693 /* Determine return type */
5694 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5695 V_VT(result) = VT_NULL;
5696 hr = S_OK;
5697 goto end;
5699 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5700 leftvt == VT_I4 || leftvt == VT_R4 ||
5701 leftvt == VT_R8 || leftvt == VT_CY ||
5702 leftvt == VT_DATE || leftvt == VT_BSTR ||
5703 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5704 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5705 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5706 rightvt == VT_I4 || rightvt == VT_R4 ||
5707 rightvt == VT_R8 || rightvt == VT_CY ||
5708 rightvt == VT_DATE || rightvt == VT_BSTR ||
5709 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5710 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5711 resvt = VT_R8;
5712 else
5714 hr = DISP_E_BADVARTYPE;
5715 goto end;
5718 hr = VariantChangeType(&dl,left,0,resvt);
5719 if (FAILED(hr)) {
5720 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5721 hr = E_FAIL;
5722 goto end;
5725 hr = VariantChangeType(&dr,right,0,resvt);
5726 if (FAILED(hr)) {
5727 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5728 hr = E_FAIL;
5729 goto end;
5732 V_VT(result) = VT_R8;
5733 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5735 end:
5736 VariantClear(&dl);
5737 VariantClear(&dr);
5738 VariantClear(&tempLeft);
5739 VariantClear(&tempRight);
5741 return hr;
5744 /**********************************************************************
5745 * VarImp [OLEAUT32.154]
5747 * Bitwise implication of two variants.
5749 * PARAMS
5750 * left [I] First variant
5751 * right [I] Second variant
5752 * result [O] Result variant
5754 * RETURNS
5755 * Success: S_OK.
5756 * Failure: An HRESULT error code indicating the error.
5758 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5760 HRESULT hres = S_OK;
5761 VARTYPE resvt = VT_EMPTY;
5762 VARTYPE leftvt,rightvt;
5763 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5764 VARIANT lv,rv;
5765 double d;
5766 VARIANT tempLeft, tempRight;
5768 VariantInit(&lv);
5769 VariantInit(&rv);
5770 VariantInit(&tempLeft);
5771 VariantInit(&tempRight);
5773 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5775 /* Handle VT_DISPATCH by storing and taking address of returned value */
5776 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5778 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5779 if (FAILED(hres)) goto VarImp_Exit;
5780 left = &tempLeft;
5782 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5784 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5785 if (FAILED(hres)) goto VarImp_Exit;
5786 right = &tempRight;
5789 leftvt = V_VT(left)&VT_TYPEMASK;
5790 rightvt = V_VT(right)&VT_TYPEMASK;
5791 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5792 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5794 if (leftExtraFlags != rightExtraFlags)
5796 hres = DISP_E_BADVARTYPE;
5797 goto VarImp_Exit;
5799 ExtraFlags = leftExtraFlags;
5801 /* Native VarImp always returns an error when using extra
5802 * flags or if the variants are I8 and INT.
5804 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5805 ExtraFlags != 0)
5807 hres = DISP_E_BADVARTYPE;
5808 goto VarImp_Exit;
5811 /* Determine result type */
5812 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5813 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5815 V_VT(result) = VT_NULL;
5816 hres = S_OK;
5817 goto VarImp_Exit;
5819 else if (leftvt == VT_I8 || rightvt == VT_I8)
5820 resvt = VT_I8;
5821 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5822 leftvt == VT_INT || rightvt == VT_INT ||
5823 leftvt == VT_UINT || rightvt == VT_UINT ||
5824 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5825 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5826 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5827 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5828 leftvt == VT_DATE || rightvt == VT_DATE ||
5829 leftvt == VT_CY || rightvt == VT_CY ||
5830 leftvt == VT_R8 || rightvt == VT_R8 ||
5831 leftvt == VT_R4 || rightvt == VT_R4 ||
5832 leftvt == VT_I1 || rightvt == VT_I1)
5833 resvt = VT_I4;
5834 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5835 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5836 (leftvt == VT_NULL && rightvt == VT_UI1))
5837 resvt = VT_UI1;
5838 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5839 leftvt == VT_I2 || rightvt == VT_I2 ||
5840 leftvt == VT_UI1 || rightvt == VT_UI1)
5841 resvt = VT_I2;
5842 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5843 leftvt == VT_BSTR || rightvt == VT_BSTR)
5844 resvt = VT_BOOL;
5846 /* VT_NULL requires special handling for when the opposite
5847 * variant is equal to something other than -1.
5848 * (NULL Imp 0 = NULL, NULL Imp n = n)
5850 if (leftvt == VT_NULL)
5852 VARIANT_BOOL b;
5853 switch(rightvt)
5855 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5856 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5857 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5858 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5859 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5860 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5861 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5862 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5863 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5864 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5865 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5866 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5867 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5868 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5869 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5870 case VT_DECIMAL:
5871 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5872 resvt = VT_NULL;
5873 break;
5874 case VT_BSTR:
5875 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5876 if (FAILED(hres)) goto VarImp_Exit;
5877 else if (!b)
5878 V_VT(result) = VT_NULL;
5879 else
5881 V_VT(result) = VT_BOOL;
5882 V_BOOL(result) = b;
5884 goto VarImp_Exit;
5886 if (resvt == VT_NULL)
5888 V_VT(result) = resvt;
5889 goto VarImp_Exit;
5891 else
5893 hres = VariantChangeType(result,right,0,resvt);
5894 goto VarImp_Exit;
5898 /* Special handling is required when NULL is the right variant.
5899 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5901 else if (rightvt == VT_NULL)
5903 VARIANT_BOOL b;
5904 switch(leftvt)
5906 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5907 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5908 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5909 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5910 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5911 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5912 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5913 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5914 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5915 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5916 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5917 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5918 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5919 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5920 case VT_DECIMAL:
5921 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5922 resvt = VT_NULL;
5923 break;
5924 case VT_BSTR:
5925 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5926 if (FAILED(hres)) goto VarImp_Exit;
5927 else if (b == VARIANT_TRUE)
5928 resvt = VT_NULL;
5930 if (resvt == VT_NULL)
5932 V_VT(result) = resvt;
5933 goto VarImp_Exit;
5937 hres = VariantCopy(&lv, left);
5938 if (FAILED(hres)) goto VarImp_Exit;
5940 if (rightvt == VT_NULL)
5942 memset( &rv, 0, sizeof(rv) );
5943 V_VT(&rv) = resvt;
5945 else
5947 hres = VariantCopy(&rv, right);
5948 if (FAILED(hres)) goto VarImp_Exit;
5951 if (V_VT(&lv) == VT_BSTR &&
5952 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5953 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5954 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5955 hres = VariantChangeType(&lv,&lv,0,resvt);
5956 if (FAILED(hres)) goto VarImp_Exit;
5958 if (V_VT(&rv) == VT_BSTR &&
5959 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5960 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5961 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5962 hres = VariantChangeType(&rv, &rv, 0, resvt);
5963 if (FAILED(hres)) goto VarImp_Exit;
5965 /* do the math */
5966 V_VT(result) = resvt;
5967 switch (resvt)
5969 case VT_I8:
5970 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5971 break;
5972 case VT_I4:
5973 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5974 break;
5975 case VT_I2:
5976 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
5977 break;
5978 case VT_UI1:
5979 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
5980 break;
5981 case VT_BOOL:
5982 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
5983 break;
5984 default:
5985 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5986 leftvt,rightvt);
5989 VarImp_Exit:
5991 VariantClear(&lv);
5992 VariantClear(&rv);
5993 VariantClear(&tempLeft);
5994 VariantClear(&tempRight);
5996 return hres;