Implement VarOr.
[wine/wine-gecko.git] / dlls / oleaut32 / variant.c
blobb0f76f940cf94dfd3b9369ef96891c0d4121585d
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * The alorithm for conversion from Julian days to day/month/year is based on
7 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
8 * Copyright 1994-7 Regents of the University of California
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include "config.h"
27 #include <string.h>
28 #include <stdlib.h>
29 #include <stdarg.h>
31 #define NONAMELESSUNION
32 #define NONAMELESSSTRUCT
33 #include "windef.h"
34 #include "winbase.h"
35 #include "oleauto.h"
36 #include "wine/debug.h"
37 #include "wine/unicode.h"
38 #include "winerror.h"
39 #include "variant.h"
41 WINE_DEFAULT_DEBUG_CHANNEL(ole);
43 const char* wine_vtypes[VT_CLSID] =
45 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
46 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
47 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
48 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
49 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR""32","33","34","35",
50 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
51 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
52 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
53 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
56 const char* wine_vflags[16] =
58 "",
59 "|VT_VECTOR",
60 "|VT_ARRAY",
61 "|VT_VECTOR|VT_ARRAY",
62 "|VT_BYREF",
63 "|VT_VECTOR|VT_ARRAY",
64 "|VT_ARRAY|VT_BYREF",
65 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
66 "|VT_HARDTYPE",
67 "|VT_VECTOR|VT_HARDTYPE",
68 "|VT_ARRAY|VT_HARDTYPE",
69 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
70 "|VT_BYREF|VT_HARDTYPE",
71 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
72 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
73 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
76 /* Convert a variant from one type to another */
77 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
78 VARIANTARG* ps, VARTYPE vt)
80 HRESULT res = DISP_E_TYPEMISMATCH;
81 VARTYPE vtFrom = V_TYPE(ps);
82 BOOL bIgnoreOverflow = FALSE;
83 DWORD dwFlags = 0;
85 TRACE("(%p->(%s%s),0x%08lx,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
86 debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
87 debugstr_vt(vt), debugstr_vf(vt));
89 if (vt == VT_BSTR || vtFrom == VT_BSTR)
91 /* All flags passed to low level function are only used for
92 * changing to or from strings. Map these here.
94 if (wFlags & VARIANT_LOCALBOOL)
95 dwFlags |= VAR_LOCALBOOL;
96 if (wFlags & VARIANT_CALENDAR_HIJRI)
97 dwFlags |= VAR_CALENDAR_HIJRI;
98 if (wFlags & VARIANT_CALENDAR_THAI)
99 dwFlags |= VAR_CALENDAR_THAI;
100 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
101 dwFlags |= VAR_CALENDAR_GREGORIAN;
102 if (wFlags & VARIANT_NOUSEROVERRIDE)
103 dwFlags |= LOCALE_NOUSEROVERRIDE;
104 if (wFlags & VARIANT_USE_NLS)
105 dwFlags |= LOCALE_USE_NLS;
108 /* Map int/uint to i4/ui4 */
109 if (vt == VT_INT)
110 vt = VT_I4;
111 else if (vt == VT_UINT)
112 vt = VT_UI4;
114 if (vtFrom == VT_INT)
115 vtFrom = VT_I4;
116 else if (vtFrom == VT_UINT)
118 vtFrom = VT_UI4;
119 if (vt == VT_I4)
120 bIgnoreOverflow = TRUE;
123 if (vt == vtFrom)
124 return VariantCopy(pd, ps);
126 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
128 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
129 * accessing the default object property.
131 return DISP_E_TYPEMISMATCH;
134 switch (vt)
136 case VT_EMPTY:
137 if (vtFrom == VT_NULL)
138 return DISP_E_TYPEMISMATCH;
139 /* ... Fall through */
140 case VT_NULL:
141 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
143 res = VariantClear( pd );
144 if (vt == VT_NULL && SUCCEEDED(res))
145 V_VT(pd) = VT_NULL;
147 return res;
149 case VT_I1:
150 switch (vtFrom)
152 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
153 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
154 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
155 case VT_UI1: return VarI1FromUI1(V_UI1(ps), &V_I1(pd));
156 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
157 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
158 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
159 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
160 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
161 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
162 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
163 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
164 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
165 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
166 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
167 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
169 break;
171 case VT_I2:
172 switch (vtFrom)
174 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
175 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
176 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
177 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
178 case VT_UI2: return VarI2FromUI2(V_UI2(ps), &V_I2(pd));
179 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
180 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
181 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
182 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
183 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
184 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
185 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
186 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
187 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
188 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
189 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
191 break;
193 case VT_I4:
194 switch (vtFrom)
196 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
197 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
198 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
199 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
200 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
201 case VT_UI4:
202 if (bIgnoreOverflow)
204 V_VT(pd) = VT_I4;
205 V_I4(pd) = V_I4(ps);
206 return S_OK;
208 return VarI4FromUI4(V_UI4(ps), &V_I4(pd));
209 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
210 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
211 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
212 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
213 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
214 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
215 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
216 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
217 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
218 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
220 break;
222 case VT_UI1:
223 switch (vtFrom)
225 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
226 case VT_I1: return VarUI1FromI1(V_I1(ps), &V_UI1(pd));
227 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
228 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
229 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
230 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
231 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
232 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
233 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
234 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
235 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
236 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
237 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
238 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
239 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
240 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
242 break;
244 case VT_UI2:
245 switch (vtFrom)
247 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
248 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
249 case VT_I2: return VarUI2FromI2(V_I2(ps), &V_UI2(pd));
250 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
251 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
252 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
253 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
254 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
255 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
256 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
257 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
258 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
259 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
260 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
261 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
262 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
264 break;
266 case VT_UI4:
267 switch (vtFrom)
269 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
270 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
271 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
272 case VT_I4: return VarUI4FromI4(V_I4(ps), &V_UI4(pd));
273 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
274 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
275 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
276 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
277 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
278 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
279 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
280 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
281 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
282 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
283 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
284 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
286 break;
288 case VT_UI8:
289 switch (vtFrom)
291 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
292 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
293 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
294 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
295 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
296 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
297 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
298 case VT_I8: return VarUI8FromI8(V_I8(ps), &V_UI8(pd));
299 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
300 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
301 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
302 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
303 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
304 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
305 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
306 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
308 break;
310 case VT_I8:
311 switch (vtFrom)
313 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
314 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
315 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
316 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
317 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
318 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
319 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
320 case VT_UI8: return VarI8FromUI8(V_I8(ps), &V_I8(pd));
321 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
322 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
323 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
324 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
325 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
326 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
327 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
328 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
330 break;
332 case VT_R4:
333 switch (vtFrom)
335 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
336 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
337 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
338 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
339 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
340 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
341 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
342 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
343 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
344 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
345 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
346 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
347 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
348 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
349 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
350 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
352 break;
354 case VT_R8:
355 switch (vtFrom)
357 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
358 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
359 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
360 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
361 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
362 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
363 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
364 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
365 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
366 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
367 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
368 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
369 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
370 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
371 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
372 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
374 break;
376 case VT_DATE:
377 switch (vtFrom)
379 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
380 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
381 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
382 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
383 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
384 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
385 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
386 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
387 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
388 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
389 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
390 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
391 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
392 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
393 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
394 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
396 break;
398 case VT_BOOL:
399 switch (vtFrom)
401 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
402 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
403 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
404 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
405 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
406 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
407 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
408 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
409 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
410 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
411 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
412 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
413 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
414 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
415 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
416 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
418 break;
420 case VT_BSTR:
421 switch (vtFrom)
423 case VT_EMPTY:
424 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
425 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
426 case VT_BOOL:
427 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
428 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
429 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
430 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
431 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
432 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
434 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
435 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
436 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
437 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
438 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
439 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
440 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
441 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
442 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
443 /* case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd)); */
445 break;
447 case VT_CY:
448 switch (vtFrom)
450 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
451 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
452 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
453 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
454 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
455 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
456 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
457 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
458 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
459 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
460 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
461 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
462 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
463 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
464 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
465 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
467 break;
469 case VT_DECIMAL:
470 switch (vtFrom)
472 case VT_EMPTY:
473 case VT_BOOL:
474 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
475 DEC_HI32(&V_DECIMAL(pd)) = 0;
476 DEC_MID32(&V_DECIMAL(pd)) = 0;
477 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
478 * VT_NULL and VT_EMPTY always give a 0 value.
480 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
481 return S_OK;
482 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
483 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
484 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
485 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
486 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
487 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
488 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
489 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
490 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
491 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
492 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
493 case VT_CY: return VarDecFromCy(V_CY(pd), &V_DECIMAL(ps));
494 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(ps));
495 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
497 break;
499 case VT_UNKNOWN:
500 switch (vtFrom)
502 case VT_DISPATCH:
503 if (V_DISPATCH(ps) == NULL)
504 V_UNKNOWN(pd) = NULL;
505 else
506 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
507 break;
509 break;
511 case VT_DISPATCH:
512 switch (vtFrom)
514 case VT_UNKNOWN:
515 if (V_UNKNOWN(ps) == NULL)
516 V_DISPATCH(pd) = NULL;
517 else
518 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
519 break;
521 break;
523 case VT_RECORD:
524 break;
526 return res;
529 /* Coerce to/from an array */
530 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
532 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
533 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
535 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
536 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps));
538 if (V_VT(ps) == vt)
539 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
541 return DISP_E_TYPEMISMATCH;
544 /******************************************************************************
545 * Check if a variants type is valid.
547 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
549 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
551 vt &= VT_TYPEMASK;
553 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
555 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
557 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
558 return DISP_E_BADVARTYPE;
559 if (vt != (VARTYPE)15)
560 return S_OK;
563 return DISP_E_BADVARTYPE;
566 /******************************************************************************
567 * VariantInit [OLEAUT32.8]
569 * Initialise a variant.
571 * PARAMS
572 * pVarg [O] Variant to initialise
574 * RETURNS
575 * Nothing.
577 * NOTES
578 * This function simply sets the type of the variant to VT_EMPTY. It does not
579 * free any existing value, use VariantClear() for that.
581 void WINAPI VariantInit(VARIANTARG* pVarg)
583 TRACE("(%p)\n", pVarg);
585 V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
588 /******************************************************************************
589 * VariantClear [OLEAUT32.9]
591 * Clear a variant.
593 * PARAMS
594 * pVarg [I/O] Variant to clear
596 * RETURNS
597 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
598 * Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type.
600 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
602 HRESULT hres = S_OK;
604 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
606 hres = VARIANT_ValidateType(V_VT(pVarg));
608 if (SUCCEEDED(hres))
610 if (!V_ISBYREF(pVarg))
612 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
614 if (V_ARRAY(pVarg))
615 hres = SafeArrayDestroy(V_ARRAY(pVarg));
617 else if (V_VT(pVarg) == VT_BSTR)
619 if (V_BSTR(pVarg))
620 SysFreeString(V_BSTR(pVarg));
622 else if (V_VT(pVarg) == VT_RECORD)
624 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
625 if (pBr->pRecInfo)
627 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
628 IRecordInfo_Release(pBr->pRecInfo);
631 else if (V_VT(pVarg) == VT_DISPATCH ||
632 V_VT(pVarg) == VT_UNKNOWN)
634 if (V_UNKNOWN(pVarg))
635 IUnknown_Release(V_UNKNOWN(pVarg));
637 else if (V_VT(pVarg) == VT_VARIANT)
639 if (V_VARIANTREF(pVarg))
640 VariantClear(V_VARIANTREF(pVarg));
643 V_VT(pVarg) = VT_EMPTY;
645 return hres;
648 /******************************************************************************
649 * Copy an IRecordInfo object contained in a variant.
651 static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
653 HRESULT hres = S_OK;
655 if (pBr->pRecInfo)
657 ULONG ulSize;
659 hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
660 if (SUCCEEDED(hres))
662 PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
663 if (!pvRecord)
664 hres = E_OUTOFMEMORY;
665 else
667 memcpy(pvRecord, pBr->pvRecord, ulSize);
668 pBr->pvRecord = pvRecord;
670 hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
671 if (SUCCEEDED(hres))
672 IRecordInfo_AddRef(pBr->pRecInfo);
676 else if (pBr->pvRecord)
677 hres = E_INVALIDARG;
678 return hres;
681 /******************************************************************************
682 * VariantCopy [OLEAUT32.10]
684 * Copy a variant.
686 * PARAMS
687 * pvargDest [O] Destination for copy
688 * pvargSrc [I] Source variant to copy
690 * RETURNS
691 * Success: S_OK. pvargDest contains a copy of pvargSrc.
692 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
693 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
694 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
695 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
697 * NOTES
698 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
699 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
700 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
701 * fails, so does this function.
702 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
703 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
704 * is copied rather than just any pointers to it.
705 * - For by-value object types the object pointer is copied and the objects
706 * reference count increased using IUnknown_AddRef().
707 * - For all by-reference types, only the referencing pointer is copied.
709 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
711 HRESULT hres = S_OK;
713 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
714 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
715 debugstr_VF(pvargSrc));
717 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
718 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
719 return DISP_E_BADVARTYPE;
721 if (pvargSrc != pvargDest &&
722 SUCCEEDED(hres = VariantClear(pvargDest)))
724 *pvargDest = *pvargSrc; /* Shallow copy the value */
726 if (!V_ISBYREF(pvargSrc))
728 if (V_ISARRAY(pvargSrc))
730 if (V_ARRAY(pvargSrc))
731 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
733 else if (V_VT(pvargSrc) == VT_BSTR)
735 if (V_BSTR(pvargSrc))
737 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
738 if (!V_BSTR(pvargDest))
740 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc)));
741 hres = E_OUTOFMEMORY;
745 else if (V_VT(pvargSrc) == VT_RECORD)
747 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
749 else if (V_VT(pvargSrc) == VT_DISPATCH ||
750 V_VT(pvargSrc) == VT_UNKNOWN)
752 if (V_UNKNOWN(pvargSrc))
753 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
757 return hres;
760 /* Return the byte size of a variants data */
761 static inline size_t VARIANT_DataSize(const VARIANT* pv)
763 switch (V_TYPE(pv))
765 case VT_I1:
766 case VT_UI1: return sizeof(BYTE); break;
767 case VT_I2:
768 case VT_UI2: return sizeof(SHORT); break;
769 case VT_INT:
770 case VT_UINT:
771 case VT_I4:
772 case VT_UI4: return sizeof(LONG); break;
773 case VT_I8:
774 case VT_UI8: return sizeof(LONGLONG); break;
775 case VT_R4: return sizeof(float); break;
776 case VT_R8: return sizeof(double); break;
777 case VT_DATE: return sizeof(DATE); break;
778 case VT_BOOL: return sizeof(VARIANT_BOOL); break;
779 case VT_DISPATCH:
780 case VT_UNKNOWN:
781 case VT_BSTR: return sizeof(void*); break;
782 case VT_CY: return sizeof(CY); break;
783 case VT_ERROR: return sizeof(SCODE); break;
785 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
786 return 0;
789 /******************************************************************************
790 * VariantCopyInd [OLEAUT32.11]
792 * Copy a variant, dereferencing it it is by-reference.
794 * PARAMS
795 * pvargDest [O] Destination for copy
796 * pvargSrc [I] Source variant to copy
798 * RETURNS
799 * Success: S_OK. pvargDest contains a copy of pvargSrc.
800 * Failure: An HRESULT error code indicating the error.
802 * NOTES
803 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
804 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
805 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
806 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
807 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
809 * NOTES
810 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
811 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
812 * value.
813 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
814 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
815 * to it. If clearing pvargDest fails, so does this function.
817 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
819 VARIANTARG vTmp, *pSrc = pvargSrc;
820 VARTYPE vt;
821 HRESULT hres = S_OK;
823 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
824 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
825 debugstr_VF(pvargSrc));
827 if (!V_ISBYREF(pvargSrc))
828 return VariantCopy(pvargDest, pvargSrc);
830 /* Argument checking is more lax than VariantCopy()... */
831 vt = V_TYPE(pvargSrc);
832 if (V_ISARRAY(pvargSrc) ||
833 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
834 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
836 /* OK */
838 else
839 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
841 if (pvargSrc == pvargDest)
843 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
844 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
846 vTmp = *pvargSrc;
847 pSrc = &vTmp;
848 V_VT(pvargDest) = VT_EMPTY;
850 else
852 /* Copy into another variant. Free the variant in pvargDest */
853 if (FAILED(hres = VariantClear(pvargDest)))
855 TRACE("VariantClear() of destination failed\n");
856 return hres;
860 if (V_ISARRAY(pSrc))
862 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
863 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
865 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
867 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
868 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
870 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
872 V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
873 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
875 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
876 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
878 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
879 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
880 if (*V_UNKNOWNREF(pSrc))
881 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
883 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
885 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
886 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
887 hres = E_INVALIDARG; /* Don't dereference more than one level */
888 else
889 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
891 /* Use the dereferenced variants type value, not VT_VARIANT */
892 goto VariantCopyInd_Return;
894 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
896 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
897 sizeof(DECIMAL) - sizeof(USHORT));
899 else
901 /* Copy the pointed to data into this variant */
902 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
905 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
907 VariantCopyInd_Return:
909 if (pSrc != pvargSrc)
910 VariantClear(pSrc);
912 TRACE("returning 0x%08lx, %p->(%s%s)\n", hres, pvargDest,
913 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
914 return hres;
917 /******************************************************************************
918 * VariantChangeType [OLEAUT32.12]
920 * Change the type of a variant.
922 * PARAMS
923 * pvargDest [O] Destination for the converted variant
924 * pvargSrc [O] Source variant to change the type of
925 * wFlags [I] VARIANT_ flags from "oleauto.h"
926 * vt [I] Variant type to change pvargSrc into
928 * RETURNS
929 * Success: S_OK. pvargDest contains the converted value.
930 * Failure: An HRESULT error code describing the failure.
932 * NOTES
933 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
934 * See VariantChangeTypeEx.
936 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
937 USHORT wFlags, VARTYPE vt)
939 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
942 /******************************************************************************
943 * VariantChangeTypeEx [OLEAUT32.147]
945 * Change the type of a variant.
947 * PARAMS
948 * pvargDest [O] Destination for the converted variant
949 * pvargSrc [O] Source variant to change the type of
950 * lcid [I] LCID for the conversion
951 * wFlags [I] VARIANT_ flags from "oleauto.h"
952 * vt [I] Variant type to change pvargSrc into
954 * RETURNS
955 * Success: S_OK. pvargDest contains the converted value.
956 * Failure: An HRESULT error code describing the failure.
958 * NOTES
959 * pvargDest and pvargSrc can point to the same variant to perform an in-place
960 * conversion. If the conversion is successful, pvargSrc will be freed.
962 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
963 LCID lcid, USHORT wFlags, VARTYPE vt)
965 HRESULT res = S_OK;
967 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%04x,%s%s)\n", pvargDest,
968 debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
969 debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
970 debugstr_vt(vt), debugstr_vf(vt));
972 if (vt == VT_CLSID)
973 res = DISP_E_BADVARTYPE;
974 else
976 res = VARIANT_ValidateType(V_VT(pvargSrc));
978 if (SUCCEEDED(res))
980 res = VARIANT_ValidateType(vt);
982 if (SUCCEEDED(res))
984 VARIANTARG vTmp;
986 V_VT(&vTmp) = VT_EMPTY;
987 res = VariantCopyInd(&vTmp, pvargSrc);
989 if (SUCCEEDED(res))
991 res = VariantClear(pvargDest);
993 if (SUCCEEDED(res))
995 if (V_ISARRAY(&vTmp) || (vt & VT_ARRAY))
996 res = VARIANT_CoerceArray(pvargDest, &vTmp, vt);
997 else
998 res = VARIANT_Coerce(pvargDest, lcid, wFlags, &vTmp, vt);
1000 if (SUCCEEDED(res))
1001 V_VT(pvargDest) = vt;
1003 VariantClear(&vTmp);
1009 TRACE("returning 0x%08lx, %p->(%s%s)\n", res, pvargDest,
1010 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
1011 return res;
1014 /* Date Conversions */
1016 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1018 /* Convert a VT_DATE value to a Julian Date */
1019 static inline int VARIANT_JulianFromDate(int dateIn)
1021 int julianDays = dateIn;
1023 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1024 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1025 return julianDays;
1028 /* Convert a Julian Date to a VT_DATE value */
1029 static inline int VARIANT_DateFromJulian(int dateIn)
1031 int julianDays = dateIn;
1033 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1034 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1035 return julianDays;
1038 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1039 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1041 int j, i, l, n;
1043 l = jd + 68569;
1044 n = l * 4 / 146097;
1045 l -= (n * 146097 + 3) / 4;
1046 i = (4000 * (l + 1)) / 1461001;
1047 l += 31 - (i * 1461) / 4;
1048 j = (l * 80) / 2447;
1049 *day = l - (j * 2447) / 80;
1050 l = j / 11;
1051 *month = (j + 2) - (12 * l);
1052 *year = 100 * (n - 49) + i + l;
1055 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1056 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1058 int m12 = (month - 14) / 12;
1060 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1061 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1064 /* Macros for accessing DOS format date/time fields */
1065 #define DOS_YEAR(x) (1980 + (x >> 9))
1066 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1067 #define DOS_DAY(x) (x & 0x1f)
1068 #define DOS_HOUR(x) (x >> 11)
1069 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1070 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1071 /* Create a DOS format date/time */
1072 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1073 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1075 /* Roll a date forwards or backwards to correct it */
1076 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1078 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1080 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1081 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1083 /* Years < 100 are treated as 1900 + year */
1084 if (lpUd->st.wYear < 100)
1085 lpUd->st.wYear += 1900;
1087 if (!lpUd->st.wMonth)
1089 /* Roll back to December of the previous year */
1090 lpUd->st.wMonth = 12;
1091 lpUd->st.wYear--;
1093 else while (lpUd->st.wMonth > 12)
1095 /* Roll forward the correct number of months */
1096 lpUd->st.wYear++;
1097 lpUd->st.wMonth -= 12;
1100 if (lpUd->st.wYear > 9999 || lpUd->st.wHour > 23 ||
1101 lpUd->st.wMinute > 59 || lpUd->st.wSecond > 59)
1102 return E_INVALIDARG; /* Invalid values */
1104 if (!lpUd->st.wDay)
1106 /* Roll back the date one day */
1107 if (lpUd->st.wMonth == 1)
1109 /* Roll back to December 31 of the previous year */
1110 lpUd->st.wDay = 31;
1111 lpUd->st.wMonth = 12;
1112 lpUd->st.wYear--;
1114 else
1116 lpUd->st.wMonth--; /* Previous month */
1117 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1118 lpUd->st.wDay = 29; /* Februaury has 29 days on leap years */
1119 else
1120 lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */
1123 else if (lpUd->st.wDay > 28)
1125 int rollForward = 0;
1127 /* Possibly need to roll the date forward */
1128 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1129 rollForward = lpUd->st.wDay - 29; /* Februaury has 29 days on leap years */
1130 else
1131 rollForward = lpUd->st.wDay - days[lpUd->st.wMonth];
1133 if (rollForward > 0)
1135 lpUd->st.wDay = rollForward;
1136 lpUd->st.wMonth++;
1137 if (lpUd->st.wMonth > 12)
1139 lpUd->st.wMonth = 1; /* Roll forward into January of the next year */
1140 lpUd->st.wYear++;
1144 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1145 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1146 return S_OK;
1149 /**********************************************************************
1150 * DosDateTimeToVariantTime [OLEAUT32.14]
1152 * Convert a Dos format date and time into variant VT_DATE format.
1154 * PARAMS
1155 * wDosDate [I] Dos format date
1156 * wDosTime [I] Dos format time
1157 * pDateOut [O] Destination for VT_DATE format
1159 * RETURNS
1160 * Success: TRUE. pDateOut contains the converted time.
1161 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1163 * NOTES
1164 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1165 * - Dos format times are accurate to only 2 second precision.
1166 * - The format of a Dos Date is:
1167 *| Bits Values Meaning
1168 *| ---- ------ -------
1169 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1170 *| the days in the month rolls forward the extra days.
1171 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1172 *| year. 13-15 are invalid.
1173 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1174 * - The format of a Dos Time is:
1175 *| Bits Values Meaning
1176 *| ---- ------ -------
1177 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1178 *| 5-10 0-59 Minutes. 60-63 are invalid.
1179 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1181 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1182 double *pDateOut)
1184 UDATE ud;
1186 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1187 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1188 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1189 pDateOut);
1191 ud.st.wYear = DOS_YEAR(wDosDate);
1192 ud.st.wMonth = DOS_MONTH(wDosDate);
1193 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1194 return FALSE;
1195 ud.st.wDay = DOS_DAY(wDosDate);
1196 ud.st.wHour = DOS_HOUR(wDosTime);
1197 ud.st.wMinute = DOS_MINUTE(wDosTime);
1198 ud.st.wSecond = DOS_SECOND(wDosTime);
1199 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1201 return !VarDateFromUdate(&ud, 0, pDateOut);
1204 /**********************************************************************
1205 * VariantTimeToDosDateTime [OLEAUT32.13]
1207 * Convert a variant format date into a Dos format date and time.
1209 * dateIn [I] VT_DATE time format
1210 * pwDosDate [O] Destination for Dos format date
1211 * pwDosTime [O] Destination for Dos format time
1213 * RETURNS
1214 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1215 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1217 * NOTES
1218 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1220 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1222 UDATE ud;
1224 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1226 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1227 return FALSE;
1229 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1230 return FALSE;
1232 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1233 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1235 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1236 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1237 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1238 return TRUE;
1241 /***********************************************************************
1242 * SystemTimeToVariantTime [OLEAUT32.184]
1244 * Convert a System format date and time into variant VT_DATE format.
1246 * PARAMS
1247 * lpSt [I] System format date and time
1248 * pDateOut [O] Destination for VT_DATE format date
1250 * RETURNS
1251 * Success: TRUE. *pDateOut contains the converted value.
1252 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1254 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1256 UDATE ud;
1258 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1259 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1261 if (lpSt->wMonth > 12)
1262 return FALSE;
1264 memcpy(&ud.st, lpSt, sizeof(ud.st));
1265 return !VarDateFromUdate(&ud, 0, pDateOut);
1268 /***********************************************************************
1269 * VariantTimeToSystemTime [OLEAUT32.185]
1271 * Convert a variant VT_DATE into a System format date and time.
1273 * PARAMS
1274 * datein [I] Variant VT_DATE format date
1275 * lpSt [O] Destination for System format date and time
1277 * RETURNS
1278 * Success: TRUE. *lpSt contains the converted value.
1279 * Failure: FALSE, if dateIn is too large or small.
1281 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1283 UDATE ud;
1285 TRACE("(%g,%p)\n", dateIn, lpSt);
1287 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1288 return FALSE;
1290 memcpy(lpSt, &ud.st, sizeof(ud.st));
1291 return TRUE;
1294 /***********************************************************************
1295 * VarDateFromUdate [OLEAUT32.330]
1297 * Convert an unpacked format date and time to a variant VT_DATE.
1299 * PARAMS
1300 * pUdateIn [I] Unpacked format date and time to convert
1301 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1302 * pDateOut [O] Destination for variant VT_DATE.
1304 * RETURNS
1305 * Success: S_OK. *pDateOut contains the converted value.
1306 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1308 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1310 UDATE ud;
1311 double dateVal;
1313 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08lx,%p)\n", pUdateIn,
1314 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1315 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1316 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1317 pUdateIn->wDayOfYear, dwFlags, pDateOut);
1319 memcpy(&ud, pUdateIn, sizeof(ud));
1321 if (dwFlags & VAR_VALIDDATE)
1322 WARN("Ignoring VAR_VALIDDATE\n");
1324 if (FAILED(VARIANT_RollUdate(&ud)))
1325 return E_INVALIDARG;
1327 /* Date */
1328 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1330 /* Time */
1331 dateVal += ud.st.wHour / 24.0;
1332 dateVal += ud.st.wMinute / 1440.0;
1333 dateVal += ud.st.wSecond / 86400.0;
1334 dateVal += ud.st.wMilliseconds / 86400000.0;
1336 TRACE("Returning %g\n", dateVal);
1337 *pDateOut = dateVal;
1338 return S_OK;
1341 /***********************************************************************
1342 * VarUdateFromDate [OLEAUT32.331]
1344 * Convert a variant VT_DATE into an unpacked format date and time.
1346 * PARAMS
1347 * datein [I] Variant VT_DATE format date
1348 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1349 * lpUdate [O] Destination for unpacked format date and time
1351 * RETURNS
1352 * Success: S_OK. *lpUdate contains the converted value.
1353 * Failure: E_INVALIDARG, if dateIn is too large or small.
1355 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1357 /* Cumulative totals of days per month */
1358 static const USHORT cumulativeDays[] =
1360 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1362 double datePart, timePart;
1363 int julianDays;
1365 TRACE("(%g,0x%08lx,%p)\n", dateIn, dwFlags, lpUdate);
1367 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1368 return E_INVALIDARG;
1370 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1371 /* Compensate for int truncation (always downwards) */
1372 timePart = dateIn - datePart + 0.00000000001;
1373 if (timePart >= 1.0)
1374 timePart -= 0.00000000001;
1376 /* Date */
1377 julianDays = VARIANT_JulianFromDate(dateIn);
1378 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1379 &lpUdate->st.wDay);
1381 datePart = (datePart + 1.5) / 7.0;
1382 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1383 if (lpUdate->st.wDayOfWeek == 0)
1384 lpUdate->st.wDayOfWeek = 5;
1385 else if (lpUdate->st.wDayOfWeek == 1)
1386 lpUdate->st.wDayOfWeek = 6;
1387 else
1388 lpUdate->st.wDayOfWeek -= 2;
1390 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1391 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1392 else
1393 lpUdate->wDayOfYear = 0;
1395 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1396 lpUdate->wDayOfYear += lpUdate->st.wDay;
1398 /* Time */
1399 timePart *= 24.0;
1400 lpUdate->st.wHour = timePart;
1401 timePart -= lpUdate->st.wHour;
1402 timePart *= 60.0;
1403 lpUdate->st.wMinute = timePart;
1404 timePart -= lpUdate->st.wMinute;
1405 timePart *= 60.0;
1406 lpUdate->st.wSecond = timePart;
1407 timePart -= lpUdate->st.wSecond;
1408 lpUdate->st.wMilliseconds = 0;
1409 if (timePart > 0.5)
1411 /* Round the milliseconds, adjusting the time/date forward if needed */
1412 if (lpUdate->st.wSecond < 59)
1413 lpUdate->st.wSecond++;
1414 else
1416 lpUdate->st.wSecond = 0;
1417 if (lpUdate->st.wMinute < 59)
1418 lpUdate->st.wMinute++;
1419 else
1421 lpUdate->st.wMinute = 0;
1422 if (lpUdate->st.wHour < 23)
1423 lpUdate->st.wHour++;
1424 else
1426 lpUdate->st.wHour = 0;
1427 /* Roll over a whole day */
1428 if (++lpUdate->st.wDay > 28)
1429 VARIANT_RollUdate(lpUdate);
1434 return S_OK;
1437 #define GET_NUMBER_TEXT(fld,name) \
1438 buff[0] = 0; \
1439 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1440 WARN("buffer too small for " #fld "\n"); \
1441 else \
1442 if (buff[0]) lpChars->name = buff[0]; \
1443 TRACE("lcid 0x%lx, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1445 /* Get the valid number characters for an lcid */
1446 void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1448 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1449 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1450 WCHAR buff[4];
1452 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1453 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1454 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1455 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1456 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeperator);
1457 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1458 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeperator);
1460 /* Local currency symbols are often 2 characters */
1461 lpChars->cCurrencyLocal2 = '\0';
1462 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1464 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1465 case 2: lpChars->cCurrencyLocal = buff[0];
1466 break;
1467 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1469 TRACE("lcid 0x%lx, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1470 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1473 /* Number Parsing States */
1474 #define B_PROCESSING_EXPONENT 0x1
1475 #define B_NEGATIVE_EXPONENT 0x2
1476 #define B_EXPONENT_START 0x4
1477 #define B_INEXACT_ZEROS 0x8
1478 #define B_LEADING_ZERO 0x10
1479 #define B_PROCESSING_HEX 0x20
1480 #define B_PROCESSING_OCT 0x40
1482 /**********************************************************************
1483 * VarParseNumFromStr [OLEAUT32.46]
1485 * Parse a string containing a number into a NUMPARSE structure.
1487 * PARAMS
1488 * lpszStr [I] String to parse number from
1489 * lcid [I] Locale Id for the conversion
1490 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1491 * pNumprs [I/O] Destination for parsed number
1492 * rgbDig [O] Destination for digits read in
1494 * RETURNS
1495 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1496 * the number.
1497 * Failure: E_INVALIDARG, if any parameter is invalid.
1498 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1499 * incorrectly.
1500 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1502 * NOTES
1503 * pNumprs must have the following fields set:
1504 * cDig: Set to the size of rgbDig.
1505 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1506 * from "oleauto.h".
1508 * FIXME
1509 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1510 * numerals, so this has not been implemented.
1512 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1513 NUMPARSE *pNumprs, BYTE *rgbDig)
1515 VARIANT_NUMBER_CHARS chars;
1516 BYTE rgbTmp[1024];
1517 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1518 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1519 int cchUsed = 0;
1521 TRACE("(%s,%ld,0x%08lx,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1523 if (!pNumprs || !rgbDig)
1524 return E_INVALIDARG;
1526 if (pNumprs->cDig < iMaxDigits)
1527 iMaxDigits = pNumprs->cDig;
1529 pNumprs->cDig = 0;
1530 pNumprs->dwOutFlags = 0;
1531 pNumprs->cchUsed = 0;
1532 pNumprs->nBaseShift = 0;
1533 pNumprs->nPwr10 = 0;
1535 if (!lpszStr)
1536 return DISP_E_TYPEMISMATCH;
1538 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1540 /* First consume all the leading symbols and space from the string */
1541 while (1)
1543 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1545 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1548 cchUsed++;
1549 lpszStr++;
1550 } while (isspaceW(*lpszStr));
1552 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1553 *lpszStr == chars.cPositiveSymbol &&
1554 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1556 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1557 cchUsed++;
1558 lpszStr++;
1560 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1561 *lpszStr == chars.cNegativeSymbol &&
1562 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1564 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1565 cchUsed++;
1566 lpszStr++;
1568 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1569 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1570 *lpszStr == chars.cCurrencyLocal &&
1571 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1573 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1574 cchUsed++;
1575 lpszStr++;
1576 /* Only accept currency characters */
1577 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1578 chars.cDigitSeperator = chars.cCurrencyDigitSeperator;
1580 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1581 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1583 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1584 cchUsed++;
1585 lpszStr++;
1587 else
1588 break;
1591 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1593 /* Only accept non-currency characters */
1594 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1595 chars.cCurrencyDigitSeperator = chars.cDigitSeperator;
1598 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1599 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1601 dwState |= B_PROCESSING_HEX;
1602 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1603 cchUsed=cchUsed+2;
1604 lpszStr=lpszStr+2;
1606 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1607 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1609 dwState |= B_PROCESSING_OCT;
1610 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1611 cchUsed=cchUsed+2;
1612 lpszStr=lpszStr+2;
1615 /* Strip Leading zeros */
1616 while (*lpszStr == '0')
1618 dwState |= B_LEADING_ZERO;
1619 cchUsed++;
1620 lpszStr++;
1623 while (*lpszStr)
1625 if (isdigitW(*lpszStr))
1627 if (dwState & B_PROCESSING_EXPONENT)
1629 int exponentSize = 0;
1630 if (dwState & B_EXPONENT_START)
1632 while (*lpszStr == '0')
1634 /* Skip leading zero's in the exponent */
1635 cchUsed++;
1636 lpszStr++;
1638 if (!isdigitW(*lpszStr))
1639 break; /* No exponent digits - invalid */
1642 while (isdigitW(*lpszStr))
1644 exponentSize *= 10;
1645 exponentSize += *lpszStr - '0';
1646 cchUsed++;
1647 lpszStr++;
1649 if (dwState & B_NEGATIVE_EXPONENT)
1650 exponentSize = -exponentSize;
1651 /* Add the exponent into the powers of 10 */
1652 pNumprs->nPwr10 += exponentSize;
1653 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1654 lpszStr--; /* back up to allow processing of next char */
1656 else
1658 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1659 && !(dwState & B_PROCESSING_OCT))
1661 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1663 if (*lpszStr != '0')
1664 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1666 /* This digit can't be represented, but count it in nPwr10 */
1667 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1668 pNumprs->nPwr10--;
1669 else
1670 pNumprs->nPwr10++;
1672 else
1674 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1675 return DISP_E_TYPEMISMATCH;
1678 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1679 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1681 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1683 pNumprs->cDig++;
1684 cchUsed++;
1687 else if (*lpszStr == chars.cDigitSeperator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1689 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1690 cchUsed++;
1692 else if (*lpszStr == chars.cDecimalPoint &&
1693 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1694 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1696 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1697 cchUsed++;
1699 /* Remove trailing zeros from the whole number part */
1700 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1702 pNumprs->nPwr10++;
1703 pNumprs->cDig--;
1706 /* If we have no digits so far, skip leading zeros */
1707 if (!pNumprs->cDig)
1709 while (lpszStr[1] == '0')
1711 dwState |= B_LEADING_ZERO;
1712 cchUsed++;
1713 lpszStr++;
1717 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1718 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1719 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1721 dwState |= B_PROCESSING_EXPONENT;
1722 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1723 cchUsed++;
1725 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1727 cchUsed++; /* Ignore positive exponent */
1729 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1731 dwState |= B_NEGATIVE_EXPONENT;
1732 cchUsed++;
1734 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1735 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1736 dwState & B_PROCESSING_HEX)
1738 if (pNumprs->cDig >= iMaxDigits)
1740 return DISP_E_OVERFLOW;
1742 else
1744 if (*lpszStr >= 'a')
1745 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1746 else
1747 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1749 pNumprs->cDig++;
1750 cchUsed++;
1752 else
1753 break; /* Stop at an unrecognised character */
1755 lpszStr++;
1758 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1760 /* Ensure a 0 on its own gets stored */
1761 pNumprs->cDig = 1;
1762 rgbTmp[0] = 0;
1765 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1767 pNumprs->cchUsed = cchUsed;
1768 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1771 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1773 if (dwState & B_INEXACT_ZEROS)
1774 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1775 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1777 /* copy all of the digits into the output digit buffer */
1778 /* this is exactly what windows does although it also returns */
1779 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1780 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1782 if (dwState & B_PROCESSING_HEX) {
1783 /* hex numbers have always the same format */
1784 pNumprs->nPwr10=0;
1785 pNumprs->nBaseShift=4;
1786 } else {
1787 if (dwState & B_PROCESSING_OCT) {
1788 /* oct numbers have always the same format */
1789 pNumprs->nPwr10=0;
1790 pNumprs->nBaseShift=3;
1791 } else {
1792 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1794 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1795 pNumprs->nPwr10--;
1796 else
1797 pNumprs->nPwr10++;
1799 pNumprs->cDig--;
1803 } else
1805 /* Remove trailing zeros from the last (whole number or decimal) part */
1806 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1808 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1809 pNumprs->nPwr10--;
1810 else
1811 pNumprs->nPwr10++;
1813 pNumprs->cDig--;
1817 if (pNumprs->cDig <= iMaxDigits)
1818 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1819 else
1820 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1822 /* Copy the digits we processed into rgbDig */
1823 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1825 /* Consume any trailing symbols and space */
1826 while (1)
1828 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1830 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1833 cchUsed++;
1834 lpszStr++;
1835 } while (isspaceW(*lpszStr));
1837 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1838 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1839 *lpszStr == chars.cPositiveSymbol)
1841 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1842 cchUsed++;
1843 lpszStr++;
1845 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1846 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1847 *lpszStr == chars.cNegativeSymbol)
1849 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1850 cchUsed++;
1851 lpszStr++;
1853 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1854 pNumprs->dwOutFlags & NUMPRS_PARENS)
1856 cchUsed++;
1857 lpszStr++;
1858 pNumprs->dwOutFlags |= NUMPRS_NEG;
1860 else
1861 break;
1864 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1866 pNumprs->cchUsed = cchUsed;
1867 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1870 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1871 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1873 if (!pNumprs->cDig)
1874 return DISP_E_TYPEMISMATCH; /* No Number found */
1876 pNumprs->cchUsed = cchUsed;
1877 return S_OK;
1880 /* VTBIT flags indicating an integer value */
1881 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1882 /* VTBIT flags indicating a real number value */
1883 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1885 /**********************************************************************
1886 * VarNumFromParseNum [OLEAUT32.47]
1888 * Convert a NUMPARSE structure into a numeric Variant type.
1890 * PARAMS
1891 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1892 * rgbDig [I] Source for the numbers digits
1893 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1894 * pVarDst [O] Destination for the converted Variant value.
1896 * RETURNS
1897 * Success: S_OK. pVarDst contains the converted value.
1898 * Failure: E_INVALIDARG, if any parameter is invalid.
1899 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1901 * NOTES
1902 * - The smallest favoured type present in dwVtBits that can represent the
1903 * number in pNumprs without losing precision is used.
1904 * - Signed types are preferrred over unsigned types of the same size.
1905 * - Preferred types in order are: integer, float, double, currency then decimal.
1906 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1907 * for details of the rounding method.
1908 * - pVarDst is not cleared before the result is stored in it.
1910 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1911 ULONG dwVtBits, VARIANT *pVarDst)
1913 /* Scale factors and limits for double arithmetic */
1914 static const double dblMultipliers[11] = {
1915 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1916 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1918 static const double dblMinimums[11] = {
1919 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1920 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1921 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1923 static const double dblMaximums[11] = {
1924 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1925 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1926 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1929 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
1931 TRACE("(%p,%p,0x%lx,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
1933 if (pNumprs->nBaseShift)
1935 /* nBaseShift indicates a hex or octal number */
1936 ULONG64 ul64 = 0;
1937 LONG64 l64;
1938 int i;
1940 /* Convert the hex or octal number string into a UI64 */
1941 for (i = 0; i < pNumprs->cDig; i++)
1943 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
1945 TRACE("Overflow multiplying digits\n");
1946 return DISP_E_OVERFLOW;
1948 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
1951 /* also make a negative representation */
1952 l64=-ul64;
1954 /* Try signed and unsigned types in size order */
1955 if (dwVtBits & VTBIT_I1 && ((ul64 <= I1_MAX)||(l64 >= I1_MIN)))
1957 V_VT(pVarDst) = VT_I1;
1958 if (ul64 <= I1_MAX)
1959 V_I1(pVarDst) = ul64;
1960 else
1961 V_I1(pVarDst) = l64;
1962 return S_OK;
1964 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
1966 V_VT(pVarDst) = VT_UI1;
1967 V_UI1(pVarDst) = ul64;
1968 return S_OK;
1970 else if (dwVtBits & VTBIT_I2 && ((ul64 <= I2_MAX)||(l64 >= I2_MIN)))
1972 V_VT(pVarDst) = VT_I2;
1973 if (ul64 <= I2_MAX)
1974 V_I2(pVarDst) = ul64;
1975 else
1976 V_I2(pVarDst) = l64;
1977 return S_OK;
1979 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
1981 V_VT(pVarDst) = VT_UI2;
1982 V_UI2(pVarDst) = ul64;
1983 return S_OK;
1985 else if (dwVtBits & VTBIT_I4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
1987 V_VT(pVarDst) = VT_I4;
1988 if (ul64 <= I4_MAX)
1989 V_I4(pVarDst) = ul64;
1990 else
1991 V_I4(pVarDst) = l64;
1992 return S_OK;
1994 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
1996 V_VT(pVarDst) = VT_UI4;
1997 V_UI4(pVarDst) = ul64;
1998 return S_OK;
2000 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I4_MAX)||(l64>=I4_MIN)))
2002 V_VT(pVarDst) = VT_I8;
2003 V_I8(pVarDst) = ul64;
2004 return S_OK;
2006 else if (dwVtBits & VTBIT_UI8)
2008 V_VT(pVarDst) = VT_UI8;
2009 V_UI8(pVarDst) = ul64;
2010 return S_OK;
2012 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2014 V_VT(pVarDst) = VT_DECIMAL;
2015 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2016 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2017 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2018 return S_OK;
2020 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2022 V_VT(pVarDst) = VT_R4;
2023 if (ul64 <= I4_MAX)
2024 V_R4(pVarDst) = ul64;
2025 else
2026 V_R4(pVarDst) = l64;
2027 return S_OK;
2029 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2031 V_VT(pVarDst) = VT_R8;
2032 if (ul64 <= I4_MAX)
2033 V_R8(pVarDst) = ul64;
2034 else
2035 V_R8(pVarDst) = l64;
2036 return S_OK;
2039 TRACE("Overflow: possible return types: 0x%lx, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2040 return DISP_E_OVERFLOW;
2043 /* Count the number of relevant fractional and whole digits stored,
2044 * And compute the divisor/multiplier to scale the number by.
2046 if (pNumprs->nPwr10 < 0)
2048 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2050 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2051 wholeNumberDigits = 0;
2052 fractionalDigits = pNumprs->cDig;
2053 divisor10 = -pNumprs->nPwr10;
2055 else
2057 /* An exactly represented real number e.g. 1.024 */
2058 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2059 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2060 divisor10 = pNumprs->cDig - wholeNumberDigits;
2063 else if (pNumprs->nPwr10 == 0)
2065 /* An exactly represented whole number e.g. 1024 */
2066 wholeNumberDigits = pNumprs->cDig;
2067 fractionalDigits = 0;
2069 else /* pNumprs->nPwr10 > 0 */
2071 /* A whole number followed by nPwr10 0's e.g. 102400 */
2072 wholeNumberDigits = pNumprs->cDig;
2073 fractionalDigits = 0;
2074 multiplier10 = pNumprs->nPwr10;
2077 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d ", pNumprs->cDig,
2078 pNumprs->nPwr10, wholeNumberDigits, fractionalDigits);
2079 TRACE("mult %d; div %d\n", multiplier10, divisor10);
2081 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2082 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2084 /* We have one or more integer output choices, and either:
2085 * 1) An integer input value, or
2086 * 2) A real number input value but no floating output choices.
2087 * Alternately, we have a DECIMAL output available and an integer input.
2089 * So, place the integer value into pVarDst, using the smallest type
2090 * possible and preferring signed over unsigned types.
2092 BOOL bOverflow = FALSE, bNegative;
2093 ULONG64 ul64 = 0;
2094 int i;
2096 /* Convert the integer part of the number into a UI8 */
2097 for (i = 0; i < wholeNumberDigits; i++)
2099 if (ul64 > (UI8_MAX / 10 - rgbDig[i]))
2101 TRACE("Overflow multiplying digits\n");
2102 bOverflow = TRUE;
2103 break;
2105 ul64 = ul64 * 10 + rgbDig[i];
2108 /* Account for the scale of the number */
2109 if (!bOverflow && multiplier10)
2111 for (i = 0; i < multiplier10; i++)
2113 if (ul64 > (UI8_MAX / 10))
2115 TRACE("Overflow scaling number\n");
2116 bOverflow = TRUE;
2117 break;
2119 ul64 = ul64 * 10;
2123 /* If we have any fractional digits, round the value.
2124 * Note we don't have to do this if divisor10 is < 1,
2125 * because this means the fractional part must be < 0.5
2127 if (!bOverflow && fractionalDigits && divisor10 > 0)
2129 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2130 BOOL bAdjust = FALSE;
2132 TRACE("first decimal value is %d\n", *fracDig);
2134 if (*fracDig > 5)
2135 bAdjust = TRUE; /* > 0.5 */
2136 else if (*fracDig == 5)
2138 for (i = 1; i < fractionalDigits; i++)
2140 if (fracDig[i])
2142 bAdjust = TRUE; /* > 0.5 */
2143 break;
2146 /* If exactly 0.5, round only odd values */
2147 if (i == fractionalDigits && (ul64 & 1))
2148 bAdjust = TRUE;
2151 if (bAdjust)
2153 if (ul64 == UI8_MAX)
2155 TRACE("Overflow after rounding\n");
2156 bOverflow = TRUE;
2158 ul64++;
2162 /* Zero is not a negative number */
2163 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE;
2165 TRACE("Integer value is %lld, bNeg %d\n", ul64, bNegative);
2167 /* For negative integers, try the signed types in size order */
2168 if (!bOverflow && bNegative)
2170 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2172 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2174 V_VT(pVarDst) = VT_I1;
2175 V_I1(pVarDst) = -ul64;
2176 return S_OK;
2178 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2180 V_VT(pVarDst) = VT_I2;
2181 V_I2(pVarDst) = -ul64;
2182 return S_OK;
2184 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2186 V_VT(pVarDst) = VT_I4;
2187 V_I4(pVarDst) = -ul64;
2188 return S_OK;
2190 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2192 V_VT(pVarDst) = VT_I8;
2193 V_I8(pVarDst) = -ul64;
2194 return S_OK;
2196 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2198 /* Decimal is only output choice left - fast path */
2199 V_VT(pVarDst) = VT_DECIMAL;
2200 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2201 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2202 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2203 return S_OK;
2207 else if (!bOverflow)
2209 /* For positive integers, try signed then unsigned types in size order */
2210 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2212 V_VT(pVarDst) = VT_I1;
2213 V_I1(pVarDst) = ul64;
2214 return S_OK;
2216 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2218 V_VT(pVarDst) = VT_UI1;
2219 V_UI1(pVarDst) = ul64;
2220 return S_OK;
2222 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2224 V_VT(pVarDst) = VT_I2;
2225 V_I2(pVarDst) = ul64;
2226 return S_OK;
2228 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2230 V_VT(pVarDst) = VT_UI2;
2231 V_UI2(pVarDst) = ul64;
2232 return S_OK;
2234 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2236 V_VT(pVarDst) = VT_I4;
2237 V_I4(pVarDst) = ul64;
2238 return S_OK;
2240 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2242 V_VT(pVarDst) = VT_UI4;
2243 V_UI4(pVarDst) = ul64;
2244 return S_OK;
2246 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2248 V_VT(pVarDst) = VT_I8;
2249 V_I8(pVarDst) = ul64;
2250 return S_OK;
2252 else if (dwVtBits & VTBIT_UI8)
2254 V_VT(pVarDst) = VT_UI8;
2255 V_UI8(pVarDst) = ul64;
2256 return S_OK;
2258 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2260 /* Decimal is only output choice left - fast path */
2261 V_VT(pVarDst) = VT_DECIMAL;
2262 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2263 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2264 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2265 return S_OK;
2270 if (dwVtBits & REAL_VTBITS)
2272 /* Try to put the number into a float or real */
2273 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2274 double whole = 0.0;
2275 int i;
2277 /* Convert the number into a double */
2278 for (i = 0; i < pNumprs->cDig; i++)
2279 whole = whole * 10.0 + rgbDig[i];
2281 TRACE("Whole double value is %16.16g\n", whole);
2283 /* Account for the scale */
2284 while (multiplier10 > 10)
2286 if (whole > dblMaximums[10])
2288 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2289 bOverflow = TRUE;
2290 break;
2292 whole = whole * dblMultipliers[10];
2293 multiplier10 -= 10;
2295 if (multiplier10)
2297 if (whole > dblMaximums[multiplier10])
2299 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2300 bOverflow = TRUE;
2302 else
2303 whole = whole * dblMultipliers[multiplier10];
2306 TRACE("Scaled double value is %16.16g\n", whole);
2308 while (divisor10 > 10)
2310 if (whole < dblMinimums[10])
2312 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2313 bOverflow = TRUE;
2314 break;
2316 whole = whole / dblMultipliers[10];
2317 divisor10 -= 10;
2319 if (divisor10)
2321 if (whole < dblMinimums[divisor10])
2323 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2324 bOverflow = TRUE;
2326 else
2327 whole = whole / dblMultipliers[divisor10];
2329 if (!bOverflow)
2330 TRACE("Final double value is %16.16g\n", whole);
2332 if (dwVtBits & VTBIT_R4 &&
2333 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2335 TRACE("Set R4 to final value\n");
2336 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2337 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2338 return S_OK;
2341 if (dwVtBits & VTBIT_R8)
2343 TRACE("Set R8 to final value\n");
2344 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2345 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2346 return S_OK;
2349 if (dwVtBits & VTBIT_CY)
2351 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2353 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2354 TRACE("Set CY to final value\n");
2355 return S_OK;
2357 TRACE("Value Overflows CY\n");
2361 if (dwVtBits & VTBIT_DECIMAL)
2363 int i;
2364 ULONG carry;
2365 ULONG64 tmp;
2366 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2368 DECIMAL_SETZERO(pDec);
2369 DEC_LO32(pDec) = 0;
2371 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2372 DEC_SIGN(pDec) = DECIMAL_NEG;
2373 else
2374 DEC_SIGN(pDec) = DECIMAL_POS;
2376 /* Factor the significant digits */
2377 for (i = 0; i < pNumprs->cDig; i++)
2379 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2380 carry = (ULONG)(tmp >> 32);
2381 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2382 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2383 carry = (ULONG)(tmp >> 32);
2384 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2385 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2386 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2388 if (tmp >> 32 & UI4_MAX)
2390 VarNumFromParseNum_DecOverflow:
2391 TRACE("Overflow\n");
2392 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2393 return DISP_E_OVERFLOW;
2397 /* Account for the scale of the number */
2398 while (multiplier10 > 0)
2400 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2401 carry = (ULONG)(tmp >> 32);
2402 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2403 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2404 carry = (ULONG)(tmp >> 32);
2405 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2406 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2407 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2409 if (tmp >> 32 & UI4_MAX)
2410 goto VarNumFromParseNum_DecOverflow;
2411 multiplier10--;
2413 DEC_SCALE(pDec) = divisor10;
2415 V_VT(pVarDst) = VT_DECIMAL;
2416 return S_OK;
2418 return DISP_E_OVERFLOW; /* No more output choices */
2421 /**********************************************************************
2422 * VarCat [OLEAUT32.318]
2424 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2426 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2427 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
2429 /* Should we VariantClear out? */
2430 /* Can we handle array, vector, by ref etc. */
2431 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL &&
2432 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2434 V_VT(out) = VT_NULL;
2435 return S_OK;
2438 if (V_VT(left) == VT_BSTR && V_VT(right) == VT_BSTR)
2440 V_VT(out) = VT_BSTR;
2441 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2442 return S_OK;
2444 if (V_VT(left) == VT_BSTR) {
2445 VARIANT bstrvar;
2446 HRESULT hres;
2448 V_VT(out) = VT_BSTR;
2449 hres = VariantChangeTypeEx(&bstrvar,right,0,0,VT_BSTR);
2450 if (hres) {
2451 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2452 return hres;
2454 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar), &V_BSTR(out));
2455 return S_OK;
2457 if (V_VT(right) == VT_BSTR) {
2458 VARIANT bstrvar;
2459 HRESULT hres;
2461 V_VT(out) = VT_BSTR;
2462 hres = VariantChangeTypeEx(&bstrvar,left,0,0,VT_BSTR);
2463 if (hres) {
2464 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2465 return hres;
2467 VarBstrCat (V_BSTR(&bstrvar), V_BSTR(right), &V_BSTR(out));
2468 return S_OK;
2470 FIXME ("types %d / %d not supported\n",V_VT(left)&VT_TYPEMASK, V_VT(right)&VT_TYPEMASK);
2471 return S_OK;
2474 /**********************************************************************
2475 * VarCmp [OLEAUT32.176]
2477 * flags can be:
2478 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS
2479 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2482 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2484 BOOL lOk = TRUE;
2485 BOOL rOk = TRUE;
2486 LONGLONG lVal = -1;
2487 LONGLONG rVal = -1;
2488 VARIANT rv,lv;
2489 DWORD xmask;
2490 HRESULT rc;
2492 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%08lx)\n", left, debugstr_VT(left),
2493 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
2495 VariantInit(&lv);VariantInit(&rv);
2496 V_VT(right) &= ~0x8000; /* hack since we sometime get this flag. */
2497 V_VT(left) &= ~0x8000; /* hack since we sometime get this flag. */
2499 /* If either are null, then return VARCMP_NULL */
2500 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL ||
2501 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2502 return VARCMP_NULL;
2504 /* Strings - use VarBstrCmp */
2505 if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR &&
2506 (V_VT(right)&VT_TYPEMASK) == VT_BSTR) {
2507 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2510 xmask = (1<<(V_VT(left)&VT_TYPEMASK))|(1<<(V_VT(right)&VT_TYPEMASK));
2511 if (xmask & (1<<VT_R8)) {
2512 rc = VariantChangeType(&lv,left,0,VT_R8);
2513 if (FAILED(rc)) return rc;
2514 rc = VariantChangeType(&rv,right,0,VT_R8);
2515 if (FAILED(rc)) return rc;
2517 if (V_R8(&lv) == V_R8(&rv)) return VARCMP_EQ;
2518 if (V_R8(&lv) < V_R8(&rv)) return VARCMP_LT;
2519 if (V_R8(&lv) > V_R8(&rv)) return VARCMP_GT;
2520 return E_FAIL; /* can't get here */
2522 if (xmask & (1<<VT_R4)) {
2523 rc = VariantChangeType(&lv,left,0,VT_R4);
2524 if (FAILED(rc)) return rc;
2525 rc = VariantChangeType(&rv,right,0,VT_R4);
2526 if (FAILED(rc)) return rc;
2528 if (V_R4(&lv) == V_R4(&rv)) return VARCMP_EQ;
2529 if (V_R4(&lv) < V_R4(&rv)) return VARCMP_LT;
2530 if (V_R4(&lv) > V_R4(&rv)) return VARCMP_GT;
2531 return E_FAIL; /* can't get here */
2534 /* Integers - Ideally like to use VarDecCmp, but no Dec support yet
2535 Use LONGLONG to maximize ranges */
2536 lOk = TRUE;
2537 switch (V_VT(left)&VT_TYPEMASK) {
2538 case VT_I1 : lVal = V_UNION(left,cVal); break;
2539 case VT_I2 : lVal = V_UNION(left,iVal); break;
2540 case VT_I4 : lVal = V_UNION(left,lVal); break;
2541 case VT_INT : lVal = V_UNION(left,lVal); break;
2542 case VT_UI1 : lVal = V_UNION(left,bVal); break;
2543 case VT_UI2 : lVal = V_UNION(left,uiVal); break;
2544 case VT_UI4 : lVal = V_UNION(left,ulVal); break;
2545 case VT_UINT : lVal = V_UNION(left,ulVal); break;
2546 case VT_BOOL : lVal = V_UNION(left,boolVal); break;
2547 default: lOk = FALSE;
2550 rOk = TRUE;
2551 switch (V_VT(right)&VT_TYPEMASK) {
2552 case VT_I1 : rVal = V_UNION(right,cVal); break;
2553 case VT_I2 : rVal = V_UNION(right,iVal); break;
2554 case VT_I4 : rVal = V_UNION(right,lVal); break;
2555 case VT_INT : rVal = V_UNION(right,lVal); break;
2556 case VT_UI1 : rVal = V_UNION(right,bVal); break;
2557 case VT_UI2 : rVal = V_UNION(right,uiVal); break;
2558 case VT_UI4 : rVal = V_UNION(right,ulVal); break;
2559 case VT_UINT : rVal = V_UNION(right,ulVal); break;
2560 case VT_BOOL : rVal = V_UNION(right,boolVal); break;
2561 default: rOk = FALSE;
2564 if (lOk && rOk) {
2565 if (lVal < rVal) {
2566 return VARCMP_LT;
2567 } else if (lVal > rVal) {
2568 return VARCMP_GT;
2569 } else {
2570 return VARCMP_EQ;
2574 /* Strings - use VarBstrCmp */
2575 if ((V_VT(left)&VT_TYPEMASK) == VT_DATE &&
2576 (V_VT(right)&VT_TYPEMASK) == VT_DATE) {
2578 if (floor(V_UNION(left,date)) == floor(V_UNION(right,date))) {
2579 /* Due to floating point rounding errors, calculate varDate in whole numbers) */
2580 double wholePart = 0.0;
2581 double leftR;
2582 double rightR;
2584 /* Get the fraction * 24*60*60 to make it into whole seconds */
2585 wholePart = (double) floor( V_UNION(left,date) );
2586 if (wholePart == 0) wholePart = 1;
2587 leftR = floor(fmod( V_UNION(left,date), wholePart ) * (24*60*60));
2589 wholePart = (double) floor( V_UNION(right,date) );
2590 if (wholePart == 0) wholePart = 1;
2591 rightR = floor(fmod( V_UNION(right,date), wholePart ) * (24*60*60));
2593 if (leftR < rightR) {
2594 return VARCMP_LT;
2595 } else if (leftR > rightR) {
2596 return VARCMP_GT;
2597 } else {
2598 return VARCMP_EQ;
2601 } else if (V_UNION(left,date) < V_UNION(right,date)) {
2602 return VARCMP_LT;
2603 } else if (V_UNION(left,date) > V_UNION(right,date)) {
2604 return VARCMP_GT;
2607 FIXME("VarCmp partial implementation, doesn't support vt 0x%x / 0x%x\n",V_VT(left), V_VT(right));
2608 return E_FAIL;
2611 /**********************************************************************
2612 * VarAnd [OLEAUT32.142]
2615 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2617 HRESULT rc = E_FAIL;
2619 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2620 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2622 if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL &&
2623 (V_VT(right)&VT_TYPEMASK) == VT_BOOL) {
2625 V_VT(result) = VT_BOOL;
2626 if (V_BOOL(left) && V_BOOL(right)) {
2627 V_BOOL(result) = VARIANT_TRUE;
2628 } else {
2629 V_BOOL(result) = VARIANT_FALSE;
2631 rc = S_OK;
2633 } else {
2634 /* Integers */
2635 BOOL lOk = TRUE;
2636 BOOL rOk = TRUE;
2637 LONGLONG lVal = -1;
2638 LONGLONG rVal = -1;
2639 LONGLONG res = -1;
2640 int resT = 0; /* Testing has shown I2 & I2 == I2, all else
2641 becomes I4, even unsigned ints (incl. UI2) */
2643 lOk = TRUE;
2644 switch (V_VT(left)&VT_TYPEMASK) {
2645 case VT_I1 : lVal = V_UNION(left,cVal); resT=VT_I4; break;
2646 case VT_I2 : lVal = V_UNION(left,iVal); resT=VT_I2; break;
2647 case VT_I4 : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2648 case VT_INT : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2649 case VT_UI1 : lVal = V_UNION(left,bVal); resT=VT_I4; break;
2650 case VT_UI2 : lVal = V_UNION(left,uiVal); resT=VT_I4; break;
2651 case VT_UI4 : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2652 case VT_UINT : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2653 case VT_BOOL : rVal = V_UNION(left,boolVal); resT=VT_I4; break;
2654 default: lOk = FALSE;
2657 rOk = TRUE;
2658 switch (V_VT(right)&VT_TYPEMASK) {
2659 case VT_I1 : rVal = V_UNION(right,cVal); resT=VT_I4; break;
2660 case VT_I2 : rVal = V_UNION(right,iVal); resT=max(VT_I2, resT); break;
2661 case VT_I4 : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2662 case VT_INT : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2663 case VT_UI1 : rVal = V_UNION(right,bVal); resT=VT_I4; break;
2664 case VT_UI2 : rVal = V_UNION(right,uiVal); resT=VT_I4; break;
2665 case VT_UI4 : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2666 case VT_UINT : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2667 case VT_BOOL : rVal = V_UNION(right,boolVal); resT=VT_I4; break;
2668 default: rOk = FALSE;
2671 if (lOk && rOk) {
2672 res = (lVal & rVal);
2673 V_VT(result) = resT;
2674 switch (resT) {
2675 case VT_I2 : V_UNION(result,iVal) = res; break;
2676 case VT_I4 : V_UNION(result,lVal) = res; break;
2677 default:
2678 FIXME("Unexpected result variant type %x\n", resT);
2679 V_UNION(result,lVal) = res;
2681 rc = S_OK;
2683 } else {
2684 FIXME("VarAnd stub\n");
2688 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2689 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2690 return rc;
2693 /**********************************************************************
2694 * VarAdd [OLEAUT32.141]
2695 * FIXME: From MSDN: If ... Then
2696 * Both expressions are of the string type Concatenated.
2697 * One expression is a string type and the other a character Addition.
2698 * One expression is numeric and the other is a string Addition.
2699 * Both expressions are numeric Addition.
2700 * Either expression is NULL NULL is returned.
2701 * Both expressions are empty Integer subtype is returned.
2704 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2706 HRESULT rc = E_FAIL;
2708 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2709 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2711 if ((V_VT(left)&VT_TYPEMASK) == VT_EMPTY)
2712 return VariantCopy(result,right);
2714 if ((V_VT(right)&VT_TYPEMASK) == VT_EMPTY)
2715 return VariantCopy(result,left);
2717 /* check if we add doubles */
2718 if (((V_VT(left)&VT_TYPEMASK) == VT_R8) || ((V_VT(right)&VT_TYPEMASK) == VT_R8)) {
2719 BOOL lOk = TRUE;
2720 BOOL rOk = TRUE;
2721 double lVal = -1;
2722 double rVal = -1;
2723 double res = -1;
2725 lOk = TRUE;
2726 switch (V_VT(left)&VT_TYPEMASK) {
2727 case VT_I1 : lVal = V_UNION(left,cVal); break;
2728 case VT_I2 : lVal = V_UNION(left,iVal); break;
2729 case VT_I4 : lVal = V_UNION(left,lVal); break;
2730 case VT_INT : lVal = V_UNION(left,lVal); break;
2731 case VT_UI1 : lVal = V_UNION(left,bVal); break;
2732 case VT_UI2 : lVal = V_UNION(left,uiVal); break;
2733 case VT_UI4 : lVal = V_UNION(left,ulVal); break;
2734 case VT_UINT : lVal = V_UNION(left,ulVal); break;
2735 case VT_R4 : lVal = V_UNION(left,fltVal); break;
2736 case VT_R8 : lVal = V_UNION(left,dblVal); break;
2737 case VT_NULL : lVal = 0.0; break;
2738 default: lOk = FALSE;
2741 rOk = TRUE;
2742 switch (V_VT(right)&VT_TYPEMASK) {
2743 case VT_I1 : rVal = V_UNION(right,cVal); break;
2744 case VT_I2 : rVal = V_UNION(right,iVal); break;
2745 case VT_I4 : rVal = V_UNION(right,lVal); break;
2746 case VT_INT : rVal = V_UNION(right,lVal); break;
2747 case VT_UI1 : rVal = V_UNION(right,bVal); break;
2748 case VT_UI2 : rVal = V_UNION(right,uiVal); break;
2749 case VT_UI4 : rVal = V_UNION(right,ulVal); break;
2750 case VT_UINT : rVal = V_UNION(right,ulVal); break;
2751 case VT_R4 : rVal = V_UNION(right,fltVal);break;
2752 case VT_R8 : rVal = V_UNION(right,dblVal);break;
2753 case VT_NULL : rVal = 0.0; break;
2754 default: rOk = FALSE;
2757 if (lOk && rOk) {
2758 res = (lVal + rVal);
2759 V_VT(result) = VT_R8;
2760 V_UNION(result,dblVal) = res;
2761 rc = S_OK;
2762 } else {
2763 FIXME("Unhandled type pair %d / %d in double addition.\n",
2764 (V_VT(left)&VT_TYPEMASK),
2765 (V_VT(right)&VT_TYPEMASK)
2768 return rc;
2771 /* now check if we add floats. VT_R8 can no longer happen here! */
2772 if (((V_VT(left)&VT_TYPEMASK) == VT_R4) || ((V_VT(right)&VT_TYPEMASK) == VT_R4)) {
2773 BOOL lOk = TRUE;
2774 BOOL rOk = TRUE;
2775 float lVal = -1;
2776 float rVal = -1;
2777 float res = -1;
2779 lOk = TRUE;
2780 switch (V_VT(left)&VT_TYPEMASK) {
2781 case VT_I1 : lVal = V_UNION(left,cVal); break;
2782 case VT_I2 : lVal = V_UNION(left,iVal); break;
2783 case VT_I4 : lVal = V_UNION(left,lVal); break;
2784 case VT_INT : lVal = V_UNION(left,lVal); break;
2785 case VT_UI1 : lVal = V_UNION(left,bVal); break;
2786 case VT_UI2 : lVal = V_UNION(left,uiVal); break;
2787 case VT_UI4 : lVal = V_UNION(left,ulVal); break;
2788 case VT_UINT : lVal = V_UNION(left,ulVal); break;
2789 case VT_R4 : lVal = V_UNION(left,fltVal); break;
2790 case VT_NULL : lVal = 0.0; break;
2791 default: lOk = FALSE;
2794 rOk = TRUE;
2795 switch (V_VT(right)&VT_TYPEMASK) {
2796 case VT_I1 : rVal = V_UNION(right,cVal); break;
2797 case VT_I2 : rVal = V_UNION(right,iVal); break;
2798 case VT_I4 : rVal = V_UNION(right,lVal); break;
2799 case VT_INT : rVal = V_UNION(right,lVal); break;
2800 case VT_UI1 : rVal = V_UNION(right,bVal); break;
2801 case VT_UI2 : rVal = V_UNION(right,uiVal); break;
2802 case VT_UI4 : rVal = V_UNION(right,ulVal); break;
2803 case VT_UINT : rVal = V_UNION(right,ulVal); break;
2804 case VT_R4 : rVal = V_UNION(right,fltVal);break;
2805 case VT_NULL : rVal = 0.0; break;
2806 default: rOk = FALSE;
2809 if (lOk && rOk) {
2810 res = (lVal + rVal);
2811 V_VT(result) = VT_R4;
2812 V_UNION(result,fltVal) = res;
2813 rc = S_OK;
2814 } else {
2815 FIXME("Unhandled type pair %d / %d in float addition.\n",
2816 (V_VT(left)&VT_TYPEMASK),
2817 (V_VT(right)&VT_TYPEMASK)
2820 return rc;
2823 /* Handle strings as concat */
2824 if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR &&
2825 (V_VT(right)&VT_TYPEMASK) == VT_BSTR) {
2826 V_VT(result) = VT_BSTR;
2827 return VarBstrCat(V_BSTR(left), V_BSTR(right), &V_BSTR(result));
2828 } else {
2830 /* Integers */
2831 BOOL lOk = TRUE;
2832 BOOL rOk = TRUE;
2833 LONGLONG lVal = -1;
2834 LONGLONG rVal = -1;
2835 LONGLONG res = -1;
2836 int resT = 0; /* Testing has shown I2 + I2 == I2, all else
2837 becomes I4 */
2839 lOk = TRUE;
2840 switch (V_VT(left)&VT_TYPEMASK) {
2841 case VT_I1 : lVal = V_UNION(left,cVal); resT=VT_I4; break;
2842 case VT_I2 : lVal = V_UNION(left,iVal); resT=VT_I2; break;
2843 case VT_I4 : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2844 case VT_INT : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2845 case VT_UI1 : lVal = V_UNION(left,bVal); resT=VT_I4; break;
2846 case VT_UI2 : lVal = V_UNION(left,uiVal); resT=VT_I4; break;
2847 case VT_UI4 : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2848 case VT_UINT : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2849 case VT_NULL : lVal = 0; resT = VT_I4; break;
2850 default: lOk = FALSE;
2853 rOk = TRUE;
2854 switch (V_VT(right)&VT_TYPEMASK) {
2855 case VT_I1 : rVal = V_UNION(right,cVal); resT=VT_I4; break;
2856 case VT_I2 : rVal = V_UNION(right,iVal); resT=max(VT_I2, resT); break;
2857 case VT_I4 : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2858 case VT_INT : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2859 case VT_UI1 : rVal = V_UNION(right,bVal); resT=VT_I4; break;
2860 case VT_UI2 : rVal = V_UNION(right,uiVal); resT=VT_I4; break;
2861 case VT_UI4 : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2862 case VT_UINT : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2863 case VT_NULL : rVal = 0; resT=VT_I4; break;
2864 default: rOk = FALSE;
2867 if (lOk && rOk) {
2868 res = (lVal + rVal);
2869 V_VT(result) = resT;
2870 switch (resT) {
2871 case VT_I2 : V_UNION(result,iVal) = res; break;
2872 case VT_I4 : V_UNION(result,lVal) = res; break;
2873 default:
2874 FIXME("Unexpected result variant type %x\n", resT);
2875 V_UNION(result,lVal) = res;
2877 rc = S_OK;
2879 } else {
2880 FIXME("unimplemented part (0x%x + 0x%x)\n",V_VT(left), V_VT(right));
2884 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2885 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2886 return rc;
2889 /**********************************************************************
2890 * VarMul [OLEAUT32.156]
2893 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2895 HRESULT rc = E_FAIL;
2896 VARTYPE lvt,rvt,resvt;
2897 VARIANT lv,rv;
2898 BOOL found;
2900 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2901 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2903 VariantInit(&lv);VariantInit(&rv);
2904 lvt = V_VT(left)&VT_TYPEMASK;
2905 rvt = V_VT(right)&VT_TYPEMASK;
2906 found = FALSE;resvt=VT_VOID;
2907 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_R4)|(1<<VT_R8))) {
2908 found = TRUE;
2909 resvt = VT_R8;
2911 if (!found && (((1<<lvt) | (1<<rvt)) & ((1<<VT_I1)|(1<<VT_I2)|(1<<VT_UI1)|(1<<VT_UI2)|(1<<VT_I4)|(1<<VT_UI4)|(1<<VT_INT)|(1<<VT_UINT)))) {
2912 found = TRUE;
2913 resvt = VT_I4;
2915 if (!found) {
2916 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
2917 return E_FAIL;
2919 rc = VariantChangeType(&lv, left, 0, resvt);
2920 if (FAILED(rc)) {
2921 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
2922 return rc;
2924 rc = VariantChangeType(&rv, right, 0, resvt);
2925 if (FAILED(rc)) {
2926 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
2927 return rc;
2929 switch (resvt) {
2930 case VT_R8:
2931 V_VT(result) = resvt;
2932 V_R8(result) = V_R8(&lv) * V_R8(&rv);
2933 rc = S_OK;
2934 break;
2935 case VT_I4:
2936 V_VT(result) = resvt;
2937 V_I4(result) = V_I4(&lv) * V_I4(&rv);
2938 rc = S_OK;
2939 break;
2941 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
2942 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
2943 return rc;
2946 /**********************************************************************
2947 * VarDiv [OLEAUT32.143]
2950 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2952 HRESULT rc = E_FAIL;
2953 VARTYPE lvt,rvt,resvt;
2954 VARIANT lv,rv;
2955 BOOL found;
2957 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2958 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2960 VariantInit(&lv);VariantInit(&rv);
2961 lvt = V_VT(left)&VT_TYPEMASK;
2962 rvt = V_VT(right)&VT_TYPEMASK;
2963 found = FALSE;resvt = VT_VOID;
2964 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_R4)|(1<<VT_R8))) {
2965 found = TRUE;
2966 resvt = VT_R8;
2968 if (!found && (((1<<lvt) | (1<<rvt)) & ((1<<VT_I1)|(1<<VT_I2)|(1<<VT_UI1)|(1<<VT_UI2)|(1<<VT_I4)|(1<<VT_UI4)|(1<<VT_INT)|(1<<VT_UINT)))) {
2969 found = TRUE;
2970 resvt = VT_I4;
2972 if (!found) {
2973 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
2974 return E_FAIL;
2976 rc = VariantChangeType(&lv, left, 0, resvt);
2977 if (FAILED(rc)) {
2978 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
2979 return rc;
2981 rc = VariantChangeType(&rv, right, 0, resvt);
2982 if (FAILED(rc)) {
2983 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
2984 return rc;
2986 switch (resvt) {
2987 case VT_R8:
2988 V_VT(result) = resvt;
2989 V_R8(result) = V_R8(&lv) / V_R8(&rv);
2990 rc = S_OK;
2991 break;
2992 case VT_I4:
2993 V_VT(result) = resvt;
2994 V_I4(result) = V_I4(&lv) / V_I4(&rv);
2995 rc = S_OK;
2996 break;
2998 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
2999 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3000 return rc;
3003 /**********************************************************************
3004 * VarSub [OLEAUT32.159]
3007 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3009 HRESULT rc = E_FAIL;
3010 VARTYPE lvt,rvt,resvt;
3011 VARIANT lv,rv;
3012 BOOL found;
3014 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3015 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3017 VariantInit(&lv);VariantInit(&rv);
3018 lvt = V_VT(left)&VT_TYPEMASK;
3019 rvt = V_VT(right)&VT_TYPEMASK;
3020 found = FALSE;resvt = VT_VOID;
3021 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_DATE)|(1<<VT_R4)|(1<<VT_R8))) {
3022 found = TRUE;
3023 resvt = VT_R8;
3025 if (!found && (((1<<lvt) | (1<<rvt)) & ((1<<VT_I1)|(1<<VT_I2)|(1<<VT_UI1)|(1<<VT_UI2)|(1<<VT_I4)|(1<<VT_UI4)|(1<<VT_INT)|(1<<VT_UINT)))) {
3026 found = TRUE;
3027 resvt = VT_I4;
3029 if (!found) {
3030 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
3031 return E_FAIL;
3033 rc = VariantChangeType(&lv, left, 0, resvt);
3034 if (FAILED(rc)) {
3035 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
3036 return rc;
3038 rc = VariantChangeType(&rv, right, 0, resvt);
3039 if (FAILED(rc)) {
3040 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
3041 return rc;
3043 switch (resvt) {
3044 case VT_R8:
3045 V_VT(result) = resvt;
3046 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3047 rc = S_OK;
3048 break;
3049 case VT_I4:
3050 V_VT(result) = resvt;
3051 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3052 rc = S_OK;
3053 break;
3055 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
3056 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3057 return rc;
3060 /**********************************************************************
3061 * VarOr [OLEAUT32.157]
3063 * Perform a logical or (OR) operation on two variants.
3065 * PARAMS
3066 * pVarLeft [I] First variant
3067 * pVarRight [I] Variant to OR with pVarLeft
3068 * pVarOut [O] Destination for OR result
3070 * RETURNS
3071 * Success: S_OK. pVarOut contains the result of the operation with its type
3072 * taken from the table listed under VarXor().
3073 * Failure: An HRESULT error code indicating the error.
3075 * NOTES
3076 * See the Notes section of VarXor() for further information.
3078 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3080 VARTYPE vt = VT_I4;
3081 VARIANT varLeft, varRight, varStr;
3082 HRESULT hRet;
3084 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3085 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3086 debugstr_VF(pVarRight), pVarOut);
3088 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3089 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3090 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
3091 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
3092 return DISP_E_BADVARTYPE;
3094 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
3096 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3098 /* NULL OR Zero is NULL, NULL OR value is value */
3099 if (V_VT(pVarLeft) == VT_NULL)
3100 pVarLeft = pVarRight; /* point to the non-NULL var */
3102 V_VT(pVarOut) = VT_NULL;
3103 V_I4(pVarOut) = 0;
3105 switch (V_VT(pVarLeft))
3107 case VT_DATE: case VT_R8:
3108 if (V_R8(pVarLeft))
3109 goto VarOr_AsEmpty;
3110 return S_OK;
3111 case VT_BOOL:
3112 if (V_BOOL(pVarLeft))
3113 *pVarOut = *pVarLeft;
3114 return S_OK;
3115 case VT_I2: case VT_UI2:
3116 if (V_I2(pVarLeft))
3117 goto VarOr_AsEmpty;
3118 return S_OK;
3119 case VT_I1:
3120 if (V_I1(pVarLeft))
3121 goto VarOr_AsEmpty;
3122 return S_OK;
3123 case VT_UI1:
3124 if (V_UI1(pVarLeft))
3125 *pVarOut = *pVarLeft;
3126 return S_OK;
3127 case VT_R4:
3128 if (V_R4(pVarLeft))
3129 goto VarOr_AsEmpty;
3130 return S_OK;
3131 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
3132 if (V_I4(pVarLeft))
3133 goto VarOr_AsEmpty;
3134 return S_OK;
3135 case VT_CY:
3136 if (V_CY(pVarLeft).int64)
3137 goto VarOr_AsEmpty;
3138 return S_OK;
3139 case VT_I8: case VT_UI8:
3140 if (V_I8(pVarLeft))
3141 goto VarOr_AsEmpty;
3142 return S_OK;
3143 case VT_DECIMAL:
3144 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
3145 goto VarOr_AsEmpty;
3146 return S_OK;
3147 case VT_BSTR:
3149 VARIANT_BOOL b;
3151 if (!V_BSTR(pVarLeft))
3152 return DISP_E_BADVARTYPE;
3154 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3155 if (SUCCEEDED(hRet) && b)
3157 V_VT(pVarOut) = VT_BOOL;
3158 V_BOOL(pVarOut) = b;
3160 return hRet;
3162 case VT_NULL: case VT_EMPTY:
3163 V_VT(pVarOut) = VT_NULL;
3164 return S_OK;
3165 default:
3166 return DISP_E_BADVARTYPE;
3170 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
3172 if (V_VT(pVarLeft) == VT_EMPTY)
3173 pVarLeft = pVarRight; /* point to the non-EMPTY var */
3175 VarOr_AsEmpty:
3176 /* Since one argument is empty (0), OR'ing it with the other simply
3177 * gives the others value (as 0|x => x). So just convert the other
3178 * argument to the required result type.
3180 switch (V_VT(pVarLeft))
3182 case VT_BSTR:
3183 if (!V_BSTR(pVarLeft))
3184 return DISP_E_BADVARTYPE;
3186 hRet = VariantCopy(&varStr, pVarLeft);
3187 if (FAILED(hRet))
3188 goto VarOr_Exit;
3189 pVarLeft = &varStr;
3190 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3191 if (FAILED(hRet))
3192 goto VarOr_Exit;
3193 /* Fall Through ... */
3194 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
3195 V_VT(pVarOut) = VT_I2;
3196 break;
3197 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
3198 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
3199 case VT_INT: case VT_UINT: case VT_UI8:
3200 V_VT(pVarOut) = VT_I4;
3201 break;
3202 case VT_I8:
3203 V_VT(pVarOut) = VT_I8;
3204 break;
3205 default:
3206 return DISP_E_BADVARTYPE;
3208 hRet = VariantCopy(&varLeft, pVarLeft);
3209 if (FAILED(hRet))
3210 goto VarOr_Exit;
3211 pVarLeft = &varLeft;
3212 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
3213 goto VarOr_Exit;
3216 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
3218 V_VT(pVarOut) = VT_BOOL;
3219 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
3220 return S_OK;
3223 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
3225 V_VT(pVarOut) = VT_UI1;
3226 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
3227 return S_OK;
3230 if (V_VT(pVarLeft) == VT_BSTR)
3232 hRet = VariantCopy(&varStr, pVarLeft);
3233 if (FAILED(hRet))
3234 goto VarOr_Exit;
3235 pVarLeft = &varStr;
3236 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3237 if (FAILED(hRet))
3238 goto VarOr_Exit;
3241 if (V_VT(pVarLeft) == VT_BOOL &&
3242 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
3244 vt = VT_BOOL;
3246 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
3247 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
3248 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
3249 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
3251 vt = VT_I2;
3253 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
3255 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3256 return DISP_E_TYPEMISMATCH;
3257 vt = VT_I8;
3260 hRet = VariantCopy(&varLeft, pVarLeft);
3261 if (FAILED(hRet))
3262 goto VarOr_Exit;
3264 hRet = VariantCopy(&varRight, pVarRight);
3265 if (FAILED(hRet))
3266 goto VarOr_Exit;
3268 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3269 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3270 else
3272 double d;
3274 if (V_VT(&varLeft) == VT_BSTR &&
3275 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
3276 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
3277 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
3278 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3279 if (FAILED(hRet))
3280 goto VarOr_Exit;
3283 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
3284 V_VT(&varRight) = VT_I4; /* Don't overflow */
3285 else
3287 double d;
3289 if (V_VT(&varRight) == VT_BSTR &&
3290 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
3291 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
3292 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
3293 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
3294 if (FAILED(hRet))
3295 goto VarOr_Exit;
3298 V_VT(pVarOut) = vt;
3299 if (vt == VT_I8)
3301 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
3303 else if (vt == VT_I4)
3305 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
3307 else
3309 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
3312 VarOr_Exit:
3313 VariantClear(&varStr);
3314 VariantClear(&varLeft);
3315 VariantClear(&varRight);
3316 return hRet;
3319 /**********************************************************************
3320 * VarAbs [OLEAUT32.168]
3322 * Convert a variant to its absolute value.
3324 * PARAMS
3325 * pVarIn [I] Source variant
3326 * pVarOut [O] Destination for converted value
3328 * RETURNS
3329 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
3330 * Failure: An HRESULT error code indicating the error.
3332 * NOTES
3333 * - This function does not process by-reference variants.
3334 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3335 * according to the following table:
3336 *| Input Type Output Type
3337 *| ---------- -----------
3338 *| VT_BOOL VT_I2
3339 *| VT_BSTR VT_R8
3340 *| (All others) Unchanged
3342 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
3344 VARIANT varIn;
3345 HRESULT hRet = S_OK;
3347 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3348 debugstr_VF(pVarIn), pVarOut);
3350 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
3351 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
3352 V_VT(pVarIn) == VT_ERROR)
3353 return DISP_E_TYPEMISMATCH;
3355 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
3357 #define ABS_CASE(typ,min) \
3358 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
3359 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
3360 break
3362 switch (V_VT(pVarIn))
3364 ABS_CASE(I1,I1_MIN);
3365 case VT_BOOL:
3366 V_VT(pVarOut) = VT_I2;
3367 /* BOOL->I2, Fall through ... */
3368 ABS_CASE(I2,I2_MIN);
3369 case VT_INT:
3370 ABS_CASE(I4,I4_MIN);
3371 ABS_CASE(I8,I8_MIN);
3372 ABS_CASE(R4,R4_MIN);
3373 case VT_BSTR:
3374 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3375 if (FAILED(hRet))
3376 break;
3377 V_VT(pVarOut) = VT_R8;
3378 pVarIn = &varIn;
3379 /* Fall through ... */
3380 case VT_DATE:
3381 ABS_CASE(R8,R8_MIN);
3382 case VT_CY:
3383 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
3384 break;
3385 case VT_DECIMAL:
3386 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
3387 break;
3388 case VT_UI1:
3389 case VT_UI2:
3390 case VT_UINT:
3391 case VT_UI4:
3392 case VT_UI8:
3393 /* No-Op */
3394 break;
3395 case VT_EMPTY:
3396 V_VT(pVarOut) = VT_I2;
3397 case VT_NULL:
3398 V_I2(pVarOut) = 0;
3399 break;
3400 default:
3401 hRet = DISP_E_BADVARTYPE;
3404 return hRet;
3407 /**********************************************************************
3408 * VarFix [OLEAUT32.169]
3410 * Truncate a variants value to a whole number.
3412 * PARAMS
3413 * pVarIn [I] Source variant
3414 * pVarOut [O] Destination for converted value
3416 * RETURNS
3417 * Success: S_OK. pVarOut contains the converted value.
3418 * Failure: An HRESULT error code indicating the error.
3420 * NOTES
3421 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3422 * according to the following table:
3423 *| Input Type Output Type
3424 *| ---------- -----------
3425 *| VT_BOOL VT_I2
3426 *| VT_EMPTY VT_I2
3427 *| VT_BSTR VT_R8
3428 *| All Others Unchanged
3429 * - The difference between this function and VarInt() is that VarInt() rounds
3430 * negative numbers away from 0, while this function rounds them towards zero.
3432 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
3434 HRESULT hRet = S_OK;
3436 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3437 debugstr_VF(pVarIn), pVarOut);
3439 V_VT(pVarOut) = V_VT(pVarIn);
3441 switch (V_VT(pVarIn))
3443 case VT_UI1:
3444 V_UI1(pVarOut) = V_UI1(pVarIn);
3445 break;
3446 case VT_BOOL:
3447 V_VT(pVarOut) = VT_I2;
3448 /* Fall through */
3449 case VT_I2:
3450 V_I2(pVarOut) = V_I2(pVarIn);
3451 break;
3452 case VT_I4:
3453 V_I4(pVarOut) = V_I4(pVarIn);
3454 break;
3455 case VT_I8:
3456 V_I8(pVarOut) = V_I8(pVarIn);
3457 break;
3458 case VT_R4:
3459 if (V_R4(pVarIn) < 0.0f)
3460 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
3461 else
3462 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3463 break;
3464 case VT_BSTR:
3465 V_VT(pVarOut) = VT_R8;
3466 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3467 pVarIn = pVarOut;
3468 /* Fall through */
3469 case VT_DATE:
3470 case VT_R8:
3471 if (V_R8(pVarIn) < 0.0)
3472 V_R8(pVarOut) = ceil(V_R8(pVarIn));
3473 else
3474 V_R8(pVarOut) = floor(V_R8(pVarIn));
3475 break;
3476 case VT_CY:
3477 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
3478 break;
3479 case VT_DECIMAL:
3480 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3481 break;
3482 case VT_EMPTY:
3483 V_VT(pVarOut) = VT_I2;
3484 V_I2(pVarOut) = 0;
3485 break;
3486 case VT_NULL:
3487 /* No-Op */
3488 break;
3489 default:
3490 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3491 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3492 hRet = DISP_E_BADVARTYPE;
3493 else
3494 hRet = DISP_E_TYPEMISMATCH;
3496 if (FAILED(hRet))
3497 V_VT(pVarOut) = VT_EMPTY;
3499 return hRet;
3502 /**********************************************************************
3503 * VarInt [OLEAUT32.172]
3505 * Truncate a variants value to a whole number.
3507 * PARAMS
3508 * pVarIn [I] Source variant
3509 * pVarOut [O] Destination for converted value
3511 * RETURNS
3512 * Success: S_OK. pVarOut contains the converted value.
3513 * Failure: An HRESULT error code indicating the error.
3515 * NOTES
3516 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3517 * according to the following table:
3518 *| Input Type Output Type
3519 *| ---------- -----------
3520 *| VT_BOOL VT_I2
3521 *| VT_EMPTY VT_I2
3522 *| VT_BSTR VT_R8
3523 *| All Others Unchanged
3524 * - The difference between this function and VarFix() is that VarFix() rounds
3525 * negative numbers towards 0, while this function rounds them away from zero.
3527 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
3529 HRESULT hRet = S_OK;
3531 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3532 debugstr_VF(pVarIn), pVarOut);
3534 V_VT(pVarOut) = V_VT(pVarIn);
3536 switch (V_VT(pVarIn))
3538 case VT_R4:
3539 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3540 break;
3541 case VT_BSTR:
3542 V_VT(pVarOut) = VT_R8;
3543 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3544 pVarIn = pVarOut;
3545 /* Fall through */
3546 case VT_DATE:
3547 case VT_R8:
3548 V_R8(pVarOut) = floor(V_R8(pVarIn));
3549 break;
3550 case VT_CY:
3551 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
3552 break;
3553 case VT_DECIMAL:
3554 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3555 break;
3556 default:
3557 return VarFix(pVarIn, pVarOut);
3560 return hRet;
3563 /**********************************************************************
3564 * VarXor [OLEAUT32.167]
3566 * Perform a logical exclusive-or (XOR) operation on two variants.
3568 * PARAMS
3569 * pVarLeft [I] First variant
3570 * pVarRight [I] Variant to XOR with pVarLeft
3571 * pVarOut [O] Destination for XOR result
3573 * RETURNS
3574 * Success: S_OK. pVarOut contains the result of the operation with its type
3575 * taken from the table below).
3576 * Failure: An HRESULT error code indicating the error.
3578 * NOTES
3579 * - Neither pVarLeft or pVarRight are modified by this function.
3580 * - This function does not process by-reference variants.
3581 * - Input types of VT_BSTR may be numeric strings or boolean text.
3582 * - The type of result stored in pVarOut depends on the types of pVarLeft
3583 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
3584 * or VT_NULL if the function succeeds.
3585 * - Type promotion is inconsistent and as a result certain combinations of
3586 * values will return DISP_E_OVERFLOW even when they could be represented.
3587 * This matches the behaviour of native oleaut32.
3589 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3591 VARTYPE vt;
3592 VARIANT varLeft, varRight;
3593 double d;
3594 HRESULT hRet;
3596 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3597 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3598 debugstr_VF(pVarRight), pVarOut);
3600 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3601 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
3602 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
3603 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3604 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
3605 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
3606 return DISP_E_BADVARTYPE;
3608 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3610 /* NULL XOR anything valid is NULL */
3611 V_VT(pVarOut) = VT_NULL;
3612 return S_OK;
3615 /* Copy our inputs so we don't disturb anything */
3616 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
3618 hRet = VariantCopy(&varLeft, pVarLeft);
3619 if (FAILED(hRet))
3620 goto VarXor_Exit;
3622 hRet = VariantCopy(&varRight, pVarRight);
3623 if (FAILED(hRet))
3624 goto VarXor_Exit;
3626 /* Try any strings first as numbers, then as VT_BOOL */
3627 if (V_VT(&varLeft) == VT_BSTR)
3629 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
3630 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
3631 FAILED(hRet) ? VT_BOOL : VT_I4);
3632 if (FAILED(hRet))
3633 goto VarXor_Exit;
3636 if (V_VT(&varRight) == VT_BSTR)
3638 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
3639 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
3640 FAILED(hRet) ? VT_BOOL : VT_I4);
3641 if (FAILED(hRet))
3642 goto VarXor_Exit;
3645 /* Determine the result type */
3646 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
3648 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3649 return DISP_E_TYPEMISMATCH;
3650 vt = VT_I8;
3652 else
3654 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
3656 case (VT_BOOL << 16) | VT_BOOL:
3657 vt = VT_BOOL;
3658 break;
3659 case (VT_UI1 << 16) | VT_UI1:
3660 vt = VT_UI1;
3661 break;
3662 case (VT_EMPTY << 16) | VT_EMPTY:
3663 case (VT_EMPTY << 16) | VT_UI1:
3664 case (VT_EMPTY << 16) | VT_I2:
3665 case (VT_EMPTY << 16) | VT_BOOL:
3666 case (VT_UI1 << 16) | VT_EMPTY:
3667 case (VT_UI1 << 16) | VT_I2:
3668 case (VT_UI1 << 16) | VT_BOOL:
3669 case (VT_I2 << 16) | VT_EMPTY:
3670 case (VT_I2 << 16) | VT_UI1:
3671 case (VT_I2 << 16) | VT_I2:
3672 case (VT_I2 << 16) | VT_BOOL:
3673 case (VT_BOOL << 16) | VT_EMPTY:
3674 case (VT_BOOL << 16) | VT_UI1:
3675 case (VT_BOOL << 16) | VT_I2:
3676 vt = VT_I2;
3677 break;
3678 default:
3679 vt = VT_I4;
3680 break;
3684 /* VT_UI4 does not overflow */
3685 if (vt != VT_I8)
3687 if (V_VT(&varLeft) == VT_UI4)
3688 V_VT(&varLeft) = VT_I4;
3689 if (V_VT(&varRight) == VT_UI4)
3690 V_VT(&varRight) = VT_I4;
3693 /* Convert our input copies to the result type */
3694 if (V_VT(&varLeft) != vt)
3695 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3696 if (FAILED(hRet))
3697 goto VarXor_Exit;
3699 if (V_VT(&varRight) != vt)
3700 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
3701 if (FAILED(hRet))
3702 goto VarXor_Exit;
3704 V_VT(pVarOut) = vt;
3706 /* Calculate the result */
3707 switch (vt)
3709 case VT_I8:
3710 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
3711 break;
3712 case VT_I4:
3713 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
3714 break;
3715 case VT_BOOL:
3716 case VT_I2:
3717 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
3718 break;
3719 case VT_UI1:
3720 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
3721 break;
3724 VarXor_Exit:
3725 VariantClear(&varLeft);
3726 VariantClear(&varRight);
3727 return hRet;
3730 /**********************************************************************
3731 * VarEqv [OLEAUT32.172]
3733 * Determine if two variants contain the same value.
3735 * PARAMS
3736 * pVarLeft [I] First variant to compare
3737 * pVarRight [I] Variant to compare to pVarLeft
3738 * pVarOut [O] Destination for comparison result
3740 * RETURNS
3741 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
3742 * if equivalent or non-zero otherwise.
3743 * Failure: An HRESULT error code indicating the error.
3745 * NOTES
3746 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
3747 * the result.
3749 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3751 HRESULT hRet;
3753 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3754 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3755 debugstr_VF(pVarRight), pVarOut);
3757 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
3758 if (SUCCEEDED(hRet))
3760 if (V_VT(pVarOut) == VT_I8)
3761 V_I8(pVarOut) = ~V_I8(pVarOut);
3762 else
3763 V_UI4(pVarOut) = ~V_UI4(pVarOut);
3765 return hRet;
3768 /**********************************************************************
3769 * VarNeg [OLEAUT32.173]
3771 * Negate the value of a variant.
3773 * PARAMS
3774 * pVarIn [I] Source variant
3775 * pVarOut [O] Destination for converted value
3777 * RETURNS
3778 * Success: S_OK. pVarOut contains the converted value.
3779 * Failure: An HRESULT error code indicating the error.
3781 * NOTES
3782 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3783 * according to the following table:
3784 *| Input Type Output Type
3785 *| ---------- -----------
3786 *| VT_EMPTY VT_I2
3787 *| VT_UI1 VT_I2
3788 *| VT_BOOL VT_I2
3789 *| VT_BSTR VT_R8
3790 *| All Others Unchanged (unless promoted)
3791 * - Where the negated value of a variant does not fit in its base type, the type
3792 * is promoted according to the following table:
3793 *| Input Type Promoted To
3794 *| ---------- -----------
3795 *| VT_I2 VT_I4
3796 *| VT_I4 VT_R8
3797 *| VT_I8 VT_R8
3798 * - The native version of this function returns DISP_E_BADVARTYPE for valid
3799 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
3800 * for types which are not valid. Since this is in contravention of the
3801 * meaning of those error codes and unlikely to be relied on by applications,
3802 * this implementation returns errors consistent with the other high level
3803 * variant math functions.
3805 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
3807 HRESULT hRet = S_OK;
3809 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3810 debugstr_VF(pVarIn), pVarOut);
3812 V_VT(pVarOut) = V_VT(pVarIn);
3814 switch (V_VT(pVarIn))
3816 case VT_UI1:
3817 V_VT(pVarOut) = VT_I2;
3818 V_I2(pVarOut) = -V_UI1(pVarIn);
3819 break;
3820 case VT_BOOL:
3821 V_VT(pVarOut) = VT_I2;
3822 /* Fall through */
3823 case VT_I2:
3824 if (V_I2(pVarIn) == I2_MIN)
3826 V_VT(pVarOut) = VT_I4;
3827 V_I4(pVarOut) = -(int)V_I2(pVarIn);
3829 else
3830 V_I2(pVarOut) = -V_I2(pVarIn);
3831 break;
3832 case VT_I4:
3833 if (V_I4(pVarIn) == I4_MIN)
3835 V_VT(pVarOut) = VT_R8;
3836 V_R8(pVarOut) = -(double)V_I4(pVarIn);
3838 else
3839 V_I4(pVarOut) = -V_I4(pVarIn);
3840 break;
3841 case VT_I8:
3842 if (V_I8(pVarIn) == I8_MIN)
3844 V_VT(pVarOut) = VT_R8;
3845 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
3846 V_R8(pVarOut) *= -1.0;
3848 else
3849 V_I8(pVarOut) = -V_I8(pVarIn);
3850 break;
3851 case VT_R4:
3852 V_R4(pVarOut) = -V_R4(pVarIn);
3853 break;
3854 case VT_DATE:
3855 case VT_R8:
3856 V_R8(pVarOut) = -V_R8(pVarIn);
3857 break;
3858 case VT_CY:
3859 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
3860 break;
3861 case VT_DECIMAL:
3862 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3863 break;
3864 case VT_BSTR:
3865 V_VT(pVarOut) = VT_R8;
3866 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3867 V_R8(pVarOut) = -V_R8(pVarOut);
3868 break;
3869 case VT_EMPTY:
3870 V_VT(pVarOut) = VT_I2;
3871 V_I2(pVarOut) = 0;
3872 break;
3873 case VT_NULL:
3874 /* No-Op */
3875 break;
3876 default:
3877 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3878 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3879 hRet = DISP_E_BADVARTYPE;
3880 else
3881 hRet = DISP_E_TYPEMISMATCH;
3883 if (FAILED(hRet))
3884 V_VT(pVarOut) = VT_EMPTY;
3886 return hRet;
3889 /**********************************************************************
3890 * VarNot [OLEAUT32.174]
3892 * Perform a not operation on a variant.
3894 * PARAMS
3895 * pVarIn [I] Source variant
3896 * pVarOut [O] Destination for converted value
3898 * RETURNS
3899 * Success: S_OK. pVarOut contains the converted value.
3900 * Failure: An HRESULT error code indicating the error.
3902 * NOTES
3903 * - Strictly speaking, this function performs a bitwise ones compliment
3904 * on the variants value (after possibly converting to VT_I4, see below).
3905 * This only behaves like a boolean not operation if the value in
3906 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
3907 * - To perform a genuine not operation, convert the variant to a VT_BOOL
3908 * before calling this function.
3909 * - This function does not process by-reference variants.
3910 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3911 * according to the following table:
3912 *| Input Type Output Type
3913 *| ---------- -----------
3914 *| VT_EMPTY VT_I2
3915 *| VT_R4 VT_I4
3916 *| VT_R8 VT_I4
3917 *| VT_BSTR VT_I4
3918 *| VT_DECIMAL VT_I4
3919 *| VT_CY VT_I4
3920 *| (All others) Unchanged
3922 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
3924 VARIANT varIn;
3925 HRESULT hRet = S_OK;
3927 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3928 debugstr_VF(pVarIn), pVarOut);
3930 V_VT(pVarOut) = V_VT(pVarIn);
3932 switch (V_VT(pVarIn))
3934 case VT_I1:
3935 V_I4(pVarOut) = ~V_I1(pVarIn);
3936 V_VT(pVarOut) = VT_I4;
3937 break;
3938 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
3939 case VT_BOOL:
3940 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
3941 case VT_UI2:
3942 V_I4(pVarOut) = ~V_UI2(pVarIn);
3943 V_VT(pVarOut) = VT_I4;
3944 break;
3945 case VT_DECIMAL:
3946 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
3947 if (FAILED(hRet))
3948 break;
3949 pVarIn = &varIn;
3950 /* Fall through ... */
3951 case VT_INT:
3952 V_VT(pVarOut) = VT_I4;
3953 /* Fall through ... */
3954 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
3955 case VT_UINT:
3956 case VT_UI4:
3957 V_I4(pVarOut) = ~V_UI4(pVarIn);
3958 V_VT(pVarOut) = VT_I4;
3959 break;
3960 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
3961 case VT_UI8:
3962 V_I4(pVarOut) = ~V_UI8(pVarIn);
3963 V_VT(pVarOut) = VT_I4;
3964 break;
3965 case VT_R4:
3966 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
3967 V_I4(pVarOut) = ~V_I4(pVarOut);
3968 V_VT(pVarOut) = VT_I4;
3969 break;
3970 case VT_BSTR:
3971 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3972 if (FAILED(hRet))
3973 break;
3974 pVarIn = &varIn;
3975 /* Fall through ... */
3976 case VT_DATE:
3977 case VT_R8:
3978 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
3979 V_I4(pVarOut) = ~V_I4(pVarOut);
3980 V_VT(pVarOut) = VT_I4;
3981 break;
3982 case VT_CY:
3983 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
3984 V_I4(pVarOut) = ~V_I4(pVarOut);
3985 V_VT(pVarOut) = VT_I4;
3986 break;
3987 case VT_EMPTY:
3988 V_I2(pVarOut) = ~0;
3989 V_VT(pVarOut) = VT_I2;
3990 break;
3991 case VT_NULL:
3992 /* No-Op */
3993 break;
3994 default:
3995 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3996 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3997 hRet = DISP_E_BADVARTYPE;
3998 else
3999 hRet = DISP_E_TYPEMISMATCH;
4001 if (FAILED(hRet))
4002 V_VT(pVarOut) = VT_EMPTY;
4004 return hRet;
4007 /**********************************************************************
4008 * VarRound [OLEAUT32.175]
4010 * Perform a round operation on a variant.
4012 * PARAMS
4013 * pVarIn [I] Source variant
4014 * deci [I] Number of decimals to round to
4015 * pVarOut [O] Destination for converted value
4017 * RETURNS
4018 * Success: S_OK. pVarOut contains the converted value.
4019 * Failure: An HRESULT error code indicating the error.
4021 * NOTES
4022 * - Floating point values are rounded to the desired number of decimals.
4023 * - Some integer types are just copied to the return variable.
4024 * - Some other integer types are not handled and fail.
4026 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
4028 VARIANT varIn;
4029 HRESULT hRet = S_OK;
4030 float factor;
4032 TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci);
4034 switch (V_VT(pVarIn))
4036 /* cases that fail on windows */
4037 case VT_I1:
4038 case VT_I8:
4039 case VT_UI2:
4040 case VT_UI4:
4041 hRet = DISP_E_BADVARTYPE;
4042 break;
4044 /* cases just copying in to out */
4045 case VT_UI1:
4046 V_VT(pVarOut) = V_VT(pVarIn);
4047 V_UI1(pVarOut) = V_UI1(pVarIn);
4048 break;
4049 case VT_I2:
4050 V_VT(pVarOut) = V_VT(pVarIn);
4051 V_I2(pVarOut) = V_I2(pVarIn);
4052 break;
4053 case VT_I4:
4054 V_VT(pVarOut) = V_VT(pVarIn);
4055 V_I4(pVarOut) = V_I4(pVarIn);
4056 break;
4057 case VT_NULL:
4058 V_VT(pVarOut) = V_VT(pVarIn);
4059 /* value unchanged */
4060 break;
4062 /* cases that change type */
4063 case VT_EMPTY:
4064 V_VT(pVarOut) = VT_I2;
4065 V_I2(pVarOut) = 0;
4066 break;
4067 case VT_BOOL:
4068 V_VT(pVarOut) = VT_I2;
4069 V_I2(pVarOut) = V_BOOL(pVarIn);
4070 break;
4071 case VT_BSTR:
4072 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4073 if (FAILED(hRet))
4074 break;
4075 V_VT(&varIn)=VT_R8;
4076 pVarIn = &varIn;
4077 /* Fall through ... */
4079 /* cases we need to do math */
4080 case VT_R8:
4081 if (V_R8(pVarIn)>0) {
4082 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4083 } else {
4084 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4086 V_VT(pVarOut) = V_VT(pVarIn);
4087 break;
4088 case VT_R4:
4089 if (V_R4(pVarIn)>0) {
4090 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4091 } else {
4092 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4094 V_VT(pVarOut) = V_VT(pVarIn);
4095 break;
4096 case VT_DATE:
4097 if (V_DATE(pVarIn)>0) {
4098 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4099 } else {
4100 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4102 V_VT(pVarOut) = V_VT(pVarIn);
4103 break;
4104 case VT_CY:
4105 if (deci>3)
4106 factor=1;
4107 else
4108 factor=pow(10, 4-deci);
4110 if (V_CY(pVarIn).int64>0) {
4111 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
4112 } else {
4113 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
4115 V_VT(pVarOut) = V_VT(pVarIn);
4116 break;
4118 /* cases we don't know yet */
4119 default:
4120 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
4121 V_VT(pVarIn) & VT_TYPEMASK, deci);
4122 hRet = DISP_E_BADVARTYPE;
4125 if (FAILED(hRet))
4126 V_VT(pVarOut) = VT_EMPTY;
4128 TRACE("returning 0x%08lx (%s%s),%f\n", hRet, debugstr_VT(pVarOut),
4129 debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) :
4130 (V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0);
4132 return hRet;
4136 /**********************************************************************
4137 * VarMod [OLEAUT32.154]
4139 * Perform the modulus operation of the right hand variant on the left
4141 * PARAMS
4142 * left [I] Left hand variant
4143 * right [I] Right hand variant
4144 * result [O] Destination for converted value
4146 * RETURNS
4147 * Success: S_OK. result contains the remainder.
4148 * Failure: An HRESULT error code indicating the error.
4150 * NOTE:
4151 * If an error occurs the type of result will be modified but the value will not be.
4152 * Doesn't support arrays or any special flags yet.
4154 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4156 BOOL lOk = TRUE;
4157 BOOL rOk = TRUE;
4158 HRESULT rc = E_FAIL;
4159 int resT = 0;
4160 VARIANT lv,rv;
4162 VariantInit(&lv);
4163 VariantInit(&rv);
4165 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
4166 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
4168 /* check for invalid inputs */
4169 lOk = TRUE;
4170 switch (V_VT(left) & VT_TYPEMASK) {
4171 case VT_BOOL :
4172 case VT_I1 :
4173 case VT_I2 :
4174 case VT_I4 :
4175 case VT_I8 :
4176 case VT_INT :
4177 case VT_UI1 :
4178 case VT_UI2 :
4179 case VT_UI4 :
4180 case VT_UI8 :
4181 case VT_UINT :
4182 case VT_R4 :
4183 case VT_R8 :
4184 case VT_CY :
4185 case VT_EMPTY:
4186 case VT_DATE :
4187 case VT_BSTR :
4188 break;
4189 case VT_VARIANT:
4190 case VT_UNKNOWN:
4191 V_VT(result) = VT_EMPTY;
4192 return DISP_E_TYPEMISMATCH;
4193 case VT_DECIMAL:
4194 V_VT(result) = VT_EMPTY;
4195 return E_INVALIDARG;
4196 case VT_ERROR:
4197 return DISP_E_TYPEMISMATCH;
4198 case VT_RECORD:
4199 V_VT(result) = VT_EMPTY;
4200 return DISP_E_TYPEMISMATCH;
4201 case VT_NULL:
4202 break;
4203 default:
4204 V_VT(result) = VT_EMPTY;
4205 return DISP_E_BADVARTYPE;
4209 rOk = TRUE;
4210 switch (V_VT(right) & VT_TYPEMASK) {
4211 case VT_BOOL :
4212 case VT_I1 :
4213 case VT_I2 :
4214 case VT_I4 :
4215 case VT_I8 :
4216 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
4218 V_VT(result) = VT_EMPTY;
4219 return DISP_E_TYPEMISMATCH;
4221 case VT_INT :
4222 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
4224 V_VT(result) = VT_EMPTY;
4225 return DISP_E_TYPEMISMATCH;
4227 case VT_UI1 :
4228 case VT_UI2 :
4229 case VT_UI4 :
4230 case VT_UI8 :
4231 case VT_UINT :
4232 case VT_R4 :
4233 case VT_R8 :
4234 case VT_CY :
4235 if(V_VT(left) == VT_EMPTY)
4237 V_VT(result) = VT_I4;
4238 return S_OK;
4240 case VT_EMPTY:
4241 case VT_DATE :
4242 case VT_BSTR:
4243 if(V_VT(left) == VT_NULL)
4245 V_VT(result) = VT_NULL;
4246 return S_OK;
4248 break;
4250 case VT_VOID:
4251 V_VT(result) = VT_EMPTY;
4252 return DISP_E_BADVARTYPE;
4253 case VT_NULL:
4254 if(V_VT(left) == VT_VOID)
4256 V_VT(result) = VT_EMPTY;
4257 return DISP_E_BADVARTYPE;
4258 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
4259 lOk)
4261 V_VT(result) = VT_NULL;
4262 return S_OK;
4263 } else
4265 V_VT(result) = VT_NULL;
4266 return DISP_E_BADVARTYPE;
4268 case VT_VARIANT:
4269 case VT_UNKNOWN:
4270 V_VT(result) = VT_EMPTY;
4271 return DISP_E_TYPEMISMATCH;
4272 case VT_DECIMAL:
4273 if(V_VT(left) == VT_ERROR)
4275 V_VT(result) = VT_EMPTY;
4276 return DISP_E_TYPEMISMATCH;
4277 } else
4279 V_VT(result) = VT_EMPTY;
4280 return E_INVALIDARG;
4282 case VT_ERROR:
4283 return DISP_E_TYPEMISMATCH;
4284 case VT_RECORD:
4285 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
4287 V_VT(result) = VT_EMPTY;
4288 return DISP_E_BADVARTYPE;
4289 } else
4291 V_VT(result) = VT_EMPTY;
4292 return DISP_E_TYPEMISMATCH;
4294 default:
4295 V_VT(result) = VT_EMPTY;
4296 return DISP_E_BADVARTYPE;
4299 /* determine the result type */
4300 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
4301 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4302 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
4303 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
4304 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4305 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4306 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
4307 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4308 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4309 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
4310 else resT = VT_I4; /* most outputs are I4 */
4312 /* convert to I8 for the modulo */
4313 rc = VariantChangeType(&lv, left, 0, VT_I8);
4314 if(FAILED(rc))
4316 FIXME("Could not convert left type %d to %d? rc == 0x%lX\n", V_VT(left), VT_I8, rc);
4317 return rc;
4320 rc = VariantChangeType(&rv, right, 0, VT_I8);
4321 if(FAILED(rc))
4323 FIXME("Could not convert right type %d to %d? rc == 0x%lX\n", V_VT(right), VT_I8, rc);
4324 return rc;
4327 /* if right is zero set VT_EMPTY and return divide by zero */
4328 if(V_I8(&rv) == 0)
4330 V_VT(result) = VT_EMPTY;
4331 return DISP_E_DIVBYZERO;
4334 /* perform the modulo operation */
4335 V_VT(result) = VT_I8;
4336 V_I8(result) = V_I8(&lv) % V_I8(&rv);
4338 TRACE("V_I8(left) == %ld, V_I8(right) == %ld, V_I8(result) == %ld\n", (long)V_I8(&lv), (long)V_I8(&rv), (long)V_I8(result));
4340 /* convert left and right to the destination type */
4341 rc = VariantChangeType(result, result, 0, resT);
4342 if(FAILED(rc))
4344 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
4345 return rc;
4348 return S_OK;
4351 /**********************************************************************
4352 * VarPow [OLEAUT32.158]
4355 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4357 HRESULT hr;
4358 VARIANT dl,dr;
4360 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
4361 right, debugstr_VT(right), debugstr_VF(right), result);
4363 hr = VariantChangeType(&dl,left,0,VT_R8);
4364 if (!SUCCEEDED(hr)) {
4365 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
4366 return E_FAIL;
4368 hr = VariantChangeType(&dr,right,0,VT_R8);
4369 if (!SUCCEEDED(hr)) {
4370 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
4371 return E_FAIL;
4373 V_VT(result) = VT_R8;
4374 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
4375 return S_OK;