wbemprox: Handle NULL out parameter to object methods.
[wine/wine-gecko.git] / dlls / oleaut32 / variant.c
blob562236eb831779d4016607a1b768701c3ed60f91
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include "config.h"
30 #include <string.h>
31 #include <stdlib.h>
32 #include <stdarg.h>
34 #define COBJMACROS
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
38 #include "windef.h"
39 #include "winbase.h"
40 #include "wine/unicode.h"
41 #include "winerror.h"
42 #include "variant.h"
43 #include "resource.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
48 const char * const wine_vtypes[VT_CLSID+1] =
50 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
51 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
52 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
53 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
54 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
55 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
56 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
57 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
58 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
61 const char * const wine_vflags[16] =
63 "",
64 "|VT_VECTOR",
65 "|VT_ARRAY",
66 "|VT_VECTOR|VT_ARRAY",
67 "|VT_BYREF",
68 "|VT_VECTOR|VT_ARRAY",
69 "|VT_ARRAY|VT_BYREF",
70 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
71 "|VT_HARDTYPE",
72 "|VT_VECTOR|VT_HARDTYPE",
73 "|VT_ARRAY|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
75 "|VT_BYREF|VT_HARDTYPE",
76 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
77 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
78 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
81 const char *debugstr_variant(const VARIANT *v)
83 if(!v)
84 return "(null)";
86 switch(V_VT(v)) {
87 case VT_EMPTY:
88 return wine_dbg_sprintf("%p {VT_EMPTY}", v);
89 case VT_NULL:
90 return wine_dbg_sprintf("%p {VT_NULL}", v);
91 case VT_I1:
92 return wine_dbg_sprintf("%p {VT_I1: %d}", v, V_I1(v));
93 case VT_I2:
94 return wine_dbg_sprintf("%p {VT_I2: %d}", v, V_I2(v));
95 case VT_I4:
96 return wine_dbg_sprintf("%p {VT_I4: %d}", v, V_I4(v));
97 case VT_R4:
98 return wine_dbg_sprintf("%p {VT_R4: %f}", v, V_R4(v));
99 case VT_R8:
100 return wine_dbg_sprintf("%p {VT_R8: %lf}", v, V_R8(v));
101 case VT_BSTR:
102 return wine_dbg_sprintf("%p {VT_BSTR: %s}", v, debugstr_w(V_BSTR(v)));
103 case VT_DISPATCH:
104 return wine_dbg_sprintf("%p {VT_DISPATCH: %p}", v, V_DISPATCH(v));
105 case VT_ERROR:
106 return wine_dbg_sprintf("%p {VT_ERROR: %08x}", v, V_ERROR(v));
107 case VT_BOOL:
108 return wine_dbg_sprintf("%p {VT_BOOL: %x}", v, V_BOOL(v));
109 case VT_UINT:
110 return wine_dbg_sprintf("%p {VT_UINT: %u}", v, V_UINT(v));
111 default:
112 return wine_dbg_sprintf("%p {vt %s%s}", v, debugstr_VT(v), debugstr_VF(v));
116 /* Convert a variant from one type to another */
117 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
118 VARIANTARG* ps, VARTYPE vt)
120 HRESULT res = DISP_E_TYPEMISMATCH;
121 VARTYPE vtFrom = V_TYPE(ps);
122 DWORD dwFlags = 0;
124 TRACE("(%s,0x%08x,0x%04x,%s,%s%s)\n", debugstr_variant(pd), lcid, wFlags,
125 debugstr_variant(ps), debugstr_vt(vt), debugstr_vf(vt));
127 if (vt == VT_BSTR || vtFrom == VT_BSTR)
129 /* All flags passed to low level function are only used for
130 * changing to or from strings. Map these here.
132 if (wFlags & VARIANT_LOCALBOOL)
133 dwFlags |= VAR_LOCALBOOL;
134 if (wFlags & VARIANT_CALENDAR_HIJRI)
135 dwFlags |= VAR_CALENDAR_HIJRI;
136 if (wFlags & VARIANT_CALENDAR_THAI)
137 dwFlags |= VAR_CALENDAR_THAI;
138 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
139 dwFlags |= VAR_CALENDAR_GREGORIAN;
140 if (wFlags & VARIANT_NOUSEROVERRIDE)
141 dwFlags |= LOCALE_NOUSEROVERRIDE;
142 if (wFlags & VARIANT_USE_NLS)
143 dwFlags |= LOCALE_USE_NLS;
146 /* Map int/uint to i4/ui4 */
147 if (vt == VT_INT)
148 vt = VT_I4;
149 else if (vt == VT_UINT)
150 vt = VT_UI4;
152 if (vtFrom == VT_INT)
153 vtFrom = VT_I4;
154 else if (vtFrom == VT_UINT)
155 vtFrom = VT_UI4;
157 if (vt == vtFrom)
158 return VariantCopy(pd, ps);
160 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
162 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
163 * accessing the default object property.
165 return DISP_E_TYPEMISMATCH;
168 switch (vt)
170 case VT_EMPTY:
171 if (vtFrom == VT_NULL)
172 return DISP_E_TYPEMISMATCH;
173 /* ... Fall through */
174 case VT_NULL:
175 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
177 res = VariantClear( pd );
178 if (vt == VT_NULL && SUCCEEDED(res))
179 V_VT(pd) = VT_NULL;
181 return res;
183 case VT_I1:
184 switch (vtFrom)
186 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
187 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
188 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
189 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
190 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
191 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
192 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
193 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
194 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
195 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
196 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
197 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
198 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
199 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
200 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
201 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
203 break;
205 case VT_I2:
206 switch (vtFrom)
208 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
209 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
210 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
211 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
212 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
213 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
214 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
215 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
216 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
217 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
218 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
219 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
220 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
221 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
222 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
223 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
225 break;
227 case VT_I4:
228 switch (vtFrom)
230 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
231 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
232 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
233 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
234 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
235 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
236 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
237 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
238 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
239 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
240 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
241 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
242 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
243 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
244 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
245 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
247 break;
249 case VT_UI1:
250 switch (vtFrom)
252 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
253 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
254 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
255 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
256 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
257 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
258 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
259 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
260 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
261 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
262 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
263 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
264 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
265 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
266 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
267 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
269 break;
271 case VT_UI2:
272 switch (vtFrom)
274 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
275 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
276 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
277 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
278 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
279 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
280 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
281 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
282 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
283 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
284 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
285 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
286 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
287 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
288 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
289 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
291 break;
293 case VT_UI4:
294 switch (vtFrom)
296 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
297 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
298 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
299 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
300 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
301 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
302 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
303 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
304 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
305 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
306 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
307 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
308 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
309 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
310 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
311 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
313 break;
315 case VT_UI8:
316 switch (vtFrom)
318 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
319 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
320 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
321 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
322 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
323 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
324 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
325 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
326 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
327 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
328 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
329 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
330 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
331 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
332 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
333 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
335 break;
337 case VT_I8:
338 switch (vtFrom)
340 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
341 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
342 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
343 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
344 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
345 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
346 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
347 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
348 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
349 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
350 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
351 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
352 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
353 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
354 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
355 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
357 break;
359 case VT_R4:
360 switch (vtFrom)
362 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
363 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
364 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
365 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
366 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
367 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
368 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
369 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
370 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
371 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
372 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
373 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
374 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
375 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
376 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
377 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
379 break;
381 case VT_R8:
382 switch (vtFrom)
384 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
385 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
386 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
387 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
388 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
389 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
390 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
391 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
392 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
393 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
394 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
395 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
396 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
397 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
398 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
399 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
401 break;
403 case VT_DATE:
404 switch (vtFrom)
406 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
407 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
408 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
409 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
410 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
411 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
412 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
413 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
414 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
415 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
416 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
417 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
418 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
419 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
420 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
421 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
423 break;
425 case VT_BOOL:
426 switch (vtFrom)
428 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
429 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
430 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
431 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
432 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
433 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
434 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
435 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
436 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
437 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
438 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
439 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
440 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
441 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
442 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
443 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
445 break;
447 case VT_BSTR:
448 switch (vtFrom)
450 case VT_EMPTY:
451 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
452 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
453 case VT_BOOL:
454 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
455 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
456 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
457 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
458 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
459 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
460 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
461 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
462 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
463 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
464 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
465 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
466 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
467 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
468 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
469 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
470 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
472 break;
474 case VT_CY:
475 switch (vtFrom)
477 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
478 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
479 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
480 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
481 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
482 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
483 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
484 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
485 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
486 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
487 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
488 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
489 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
490 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
491 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
492 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
494 break;
496 case VT_DECIMAL:
497 switch (vtFrom)
499 case VT_EMPTY:
500 case VT_BOOL:
501 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
502 DEC_HI32(&V_DECIMAL(pd)) = 0;
503 DEC_MID32(&V_DECIMAL(pd)) = 0;
504 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
505 * VT_NULL and VT_EMPTY always give a 0 value.
507 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
508 return S_OK;
509 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
510 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
511 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
512 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
513 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
514 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
515 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
516 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
517 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
518 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
519 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
520 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
521 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
522 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
524 break;
526 case VT_UNKNOWN:
527 switch (vtFrom)
529 case VT_DISPATCH:
530 if (V_DISPATCH(ps) == NULL)
531 V_UNKNOWN(pd) = NULL;
532 else
533 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
534 break;
536 break;
538 case VT_DISPATCH:
539 switch (vtFrom)
541 case VT_UNKNOWN:
542 if (V_UNKNOWN(ps) == NULL)
543 V_DISPATCH(pd) = NULL;
544 else
545 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
546 break;
548 break;
550 case VT_RECORD:
551 break;
553 return res;
556 /* Coerce to/from an array */
557 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
559 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
560 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
562 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
563 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
565 if (V_VT(ps) == vt)
566 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
568 return DISP_E_TYPEMISMATCH;
571 /******************************************************************************
572 * Check if a variants type is valid.
574 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
576 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
578 vt &= VT_TYPEMASK;
580 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
582 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
584 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
585 return DISP_E_BADVARTYPE;
586 if (vt != (VARTYPE)15)
587 return S_OK;
590 return DISP_E_BADVARTYPE;
593 /******************************************************************************
594 * VariantInit [OLEAUT32.8]
596 * Initialise a variant.
598 * PARAMS
599 * pVarg [O] Variant to initialise
601 * RETURNS
602 * Nothing.
604 * NOTES
605 * This function simply sets the type of the variant to VT_EMPTY. It does not
606 * free any existing value, use VariantClear() for that.
608 void WINAPI VariantInit(VARIANTARG* pVarg)
610 TRACE("(%p)\n", pVarg);
612 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
613 V_VT(pVarg) = VT_EMPTY;
616 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
618 HRESULT hres;
620 TRACE("(%s)\n", debugstr_variant(pVarg));
622 hres = VARIANT_ValidateType(V_VT(pVarg));
623 if (FAILED(hres))
624 return hres;
626 switch (V_VT(pVarg))
628 case VT_DISPATCH:
629 case VT_UNKNOWN:
630 if (V_UNKNOWN(pVarg))
631 IUnknown_Release(V_UNKNOWN(pVarg));
632 break;
633 case VT_UNKNOWN | VT_BYREF:
634 case VT_DISPATCH | VT_BYREF:
635 if(*V_UNKNOWNREF(pVarg))
636 IUnknown_Release(*V_UNKNOWNREF(pVarg));
637 break;
638 case VT_BSTR:
639 SysFreeString(V_BSTR(pVarg));
640 break;
641 case VT_BSTR | VT_BYREF:
642 SysFreeString(*V_BSTRREF(pVarg));
643 break;
644 case VT_VARIANT | VT_BYREF:
645 VariantClear(V_VARIANTREF(pVarg));
646 break;
647 case VT_RECORD:
648 case VT_RECORD | VT_BYREF:
650 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
651 if (pBr->pRecInfo)
653 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
654 IRecordInfo_Release(pBr->pRecInfo);
656 break;
658 default:
659 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
661 if (V_ISBYREF(pVarg))
663 if (*V_ARRAYREF(pVarg))
664 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
666 else if (V_ARRAY(pVarg))
667 hres = SafeArrayDestroy(V_ARRAY(pVarg));
669 break;
672 V_VT(pVarg) = VT_EMPTY;
673 return hres;
676 /******************************************************************************
677 * VariantClear [OLEAUT32.9]
679 * Clear a variant.
681 * PARAMS
682 * pVarg [I/O] Variant to clear
684 * RETURNS
685 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
686 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
688 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
690 HRESULT hres;
692 TRACE("(%s)\n", debugstr_variant(pVarg));
694 hres = VARIANT_ValidateType(V_VT(pVarg));
696 if (SUCCEEDED(hres))
698 if (!V_ISBYREF(pVarg))
700 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
702 hres = SafeArrayDestroy(V_ARRAY(pVarg));
704 else if (V_VT(pVarg) == VT_BSTR)
706 SysFreeString(V_BSTR(pVarg));
708 else if (V_VT(pVarg) == VT_RECORD)
710 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
711 if (pBr->pRecInfo)
713 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
714 IRecordInfo_Release(pBr->pRecInfo);
717 else if (V_VT(pVarg) == VT_DISPATCH ||
718 V_VT(pVarg) == VT_UNKNOWN)
720 if (V_UNKNOWN(pVarg))
721 IUnknown_Release(V_UNKNOWN(pVarg));
724 V_VT(pVarg) = VT_EMPTY;
726 return hres;
729 /******************************************************************************
730 * Copy an IRecordInfo object contained in a variant.
732 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
734 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
735 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
736 HRESULT hr = S_OK;
737 ULONG size;
739 if (!src_rec->pRecInfo)
741 if (src_rec->pvRecord) return E_INVALIDARG;
742 return S_OK;
745 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
746 if (FAILED(hr)) return hr;
748 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
749 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
750 could free it later. */
751 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
752 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
754 dest_rec->pRecInfo = src_rec->pRecInfo;
755 IRecordInfo_AddRef(src_rec->pRecInfo);
757 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
760 /******************************************************************************
761 * VariantCopy [OLEAUT32.10]
763 * Copy a variant.
765 * PARAMS
766 * pvargDest [O] Destination for copy
767 * pvargSrc [I] Source variant to copy
769 * RETURNS
770 * Success: S_OK. pvargDest contains a copy of pvargSrc.
771 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
772 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
773 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
774 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
776 * NOTES
777 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
778 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
779 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
780 * fails, so does this function.
781 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
782 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
783 * is copied rather than just any pointers to it.
784 * - For by-value object types the object pointer is copied and the objects
785 * reference count increased using IUnknown_AddRef().
786 * - For all by-reference types, only the referencing pointer is copied.
788 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
790 HRESULT hres = S_OK;
792 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
794 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
795 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
796 return DISP_E_BADVARTYPE;
798 if (pvargSrc != pvargDest &&
799 SUCCEEDED(hres = VariantClear(pvargDest)))
801 *pvargDest = *pvargSrc; /* Shallow copy the value */
803 if (!V_ISBYREF(pvargSrc))
805 switch (V_VT(pvargSrc))
807 case VT_BSTR:
808 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
809 if (!V_BSTR(pvargDest))
810 hres = E_OUTOFMEMORY;
811 break;
812 case VT_RECORD:
813 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
814 break;
815 case VT_DISPATCH:
816 case VT_UNKNOWN:
817 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
818 if (V_UNKNOWN(pvargSrc))
819 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
820 break;
821 default:
822 if (V_ISARRAY(pvargSrc))
823 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
827 return hres;
830 /* Return the byte size of a variants data */
831 static inline size_t VARIANT_DataSize(const VARIANT* pv)
833 switch (V_TYPE(pv))
835 case VT_I1:
836 case VT_UI1: return sizeof(BYTE);
837 case VT_I2:
838 case VT_UI2: return sizeof(SHORT);
839 case VT_INT:
840 case VT_UINT:
841 case VT_I4:
842 case VT_UI4: return sizeof(LONG);
843 case VT_I8:
844 case VT_UI8: return sizeof(LONGLONG);
845 case VT_R4: return sizeof(float);
846 case VT_R8: return sizeof(double);
847 case VT_DATE: return sizeof(DATE);
848 case VT_BOOL: return sizeof(VARIANT_BOOL);
849 case VT_DISPATCH:
850 case VT_UNKNOWN:
851 case VT_BSTR: return sizeof(void*);
852 case VT_CY: return sizeof(CY);
853 case VT_ERROR: return sizeof(SCODE);
855 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
856 return 0;
859 /******************************************************************************
860 * VariantCopyInd [OLEAUT32.11]
862 * Copy a variant, dereferencing it if it is by-reference.
864 * PARAMS
865 * pvargDest [O] Destination for copy
866 * pvargSrc [I] Source variant to copy
868 * RETURNS
869 * Success: S_OK. pvargDest contains a copy of pvargSrc.
870 * Failure: An HRESULT error code indicating the error.
872 * NOTES
873 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
874 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
875 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
876 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
877 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
879 * NOTES
880 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
881 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
882 * value.
883 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
884 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
885 * to it. If clearing pvargDest fails, so does this function.
887 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
889 VARIANTARG vTmp, *pSrc = pvargSrc;
890 VARTYPE vt;
891 HRESULT hres = S_OK;
893 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
895 if (!V_ISBYREF(pvargSrc))
896 return VariantCopy(pvargDest, pvargSrc);
898 /* Argument checking is more lax than VariantCopy()... */
899 vt = V_TYPE(pvargSrc);
900 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
901 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
902 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
904 /* OK */
906 else
907 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
909 if (pvargSrc == pvargDest)
911 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
912 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
914 vTmp = *pvargSrc;
915 pSrc = &vTmp;
916 V_VT(pvargDest) = VT_EMPTY;
918 else
920 /* Copy into another variant. Free the variant in pvargDest */
921 if (FAILED(hres = VariantClear(pvargDest)))
923 TRACE("VariantClear() of destination failed\n");
924 return hres;
928 if (V_ISARRAY(pSrc))
930 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
931 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
933 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
935 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
936 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
938 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
940 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
942 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
943 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
945 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
946 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
947 if (*V_UNKNOWNREF(pSrc))
948 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
950 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
952 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
953 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
954 hres = E_INVALIDARG; /* Don't dereference more than one level */
955 else
956 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
958 /* Use the dereferenced variants type value, not VT_VARIANT */
959 goto VariantCopyInd_Return;
961 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
963 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
964 sizeof(DECIMAL) - sizeof(USHORT));
966 else
968 /* Copy the pointed to data into this variant */
969 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
972 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
974 VariantCopyInd_Return:
976 if (pSrc != pvargSrc)
977 VariantClear(pSrc);
979 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
980 return hres;
983 /******************************************************************************
984 * VariantChangeType [OLEAUT32.12]
986 * Change the type of a variant.
988 * PARAMS
989 * pvargDest [O] Destination for the converted variant
990 * pvargSrc [O] Source variant to change the type of
991 * wFlags [I] VARIANT_ flags from "oleauto.h"
992 * vt [I] Variant type to change pvargSrc into
994 * RETURNS
995 * Success: S_OK. pvargDest contains the converted value.
996 * Failure: An HRESULT error code describing the failure.
998 * NOTES
999 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
1000 * See VariantChangeTypeEx.
1002 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
1003 USHORT wFlags, VARTYPE vt)
1005 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
1008 /******************************************************************************
1009 * VariantChangeTypeEx [OLEAUT32.147]
1011 * Change the type of a variant.
1013 * PARAMS
1014 * pvargDest [O] Destination for the converted variant
1015 * pvargSrc [O] Source variant to change the type of
1016 * lcid [I] LCID for the conversion
1017 * wFlags [I] VARIANT_ flags from "oleauto.h"
1018 * vt [I] Variant type to change pvargSrc into
1020 * RETURNS
1021 * Success: S_OK. pvargDest contains the converted value.
1022 * Failure: An HRESULT error code describing the failure.
1024 * NOTES
1025 * pvargDest and pvargSrc can point to the same variant to perform an in-place
1026 * conversion. If the conversion is successful, pvargSrc will be freed.
1028 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
1029 LCID lcid, USHORT wFlags, VARTYPE vt)
1031 HRESULT res = S_OK;
1033 TRACE("(%s,%s,0x%08x,0x%04x,%s%s)\n", debugstr_variant(pvargDest),
1034 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt), debugstr_vf(vt));
1036 if (vt == VT_CLSID)
1037 res = DISP_E_BADVARTYPE;
1038 else
1040 res = VARIANT_ValidateType(V_VT(pvargSrc));
1042 if (SUCCEEDED(res))
1044 res = VARIANT_ValidateType(vt);
1046 if (SUCCEEDED(res))
1048 VARIANTARG vTmp, vSrcDeref;
1050 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1051 res = DISP_E_TYPEMISMATCH;
1052 else
1054 V_VT(&vTmp) = VT_EMPTY;
1055 V_VT(&vSrcDeref) = VT_EMPTY;
1056 VariantClear(&vTmp);
1057 VariantClear(&vSrcDeref);
1060 if (SUCCEEDED(res))
1062 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1063 if (SUCCEEDED(res))
1065 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1066 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1067 else
1068 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1070 if (SUCCEEDED(res)) {
1071 V_VT(&vTmp) = vt;
1072 res = VariantCopy(pvargDest, &vTmp);
1074 VariantClear(&vTmp);
1075 VariantClear(&vSrcDeref);
1082 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1083 return res;
1086 /* Date Conversions */
1088 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1090 /* Convert a VT_DATE value to a Julian Date */
1091 static inline int VARIANT_JulianFromDate(int dateIn)
1093 int julianDays = dateIn;
1095 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1096 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1097 return julianDays;
1100 /* Convert a Julian Date to a VT_DATE value */
1101 static inline int VARIANT_DateFromJulian(int dateIn)
1103 int julianDays = dateIn;
1105 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1106 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1107 return julianDays;
1110 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1111 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1113 int j, i, l, n;
1115 l = jd + 68569;
1116 n = l * 4 / 146097;
1117 l -= (n * 146097 + 3) / 4;
1118 i = (4000 * (l + 1)) / 1461001;
1119 l += 31 - (i * 1461) / 4;
1120 j = (l * 80) / 2447;
1121 *day = l - (j * 2447) / 80;
1122 l = j / 11;
1123 *month = (j + 2) - (12 * l);
1124 *year = 100 * (n - 49) + i + l;
1127 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1128 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1130 int m12 = (month - 14) / 12;
1132 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1133 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1136 /* Macros for accessing DOS format date/time fields */
1137 #define DOS_YEAR(x) (1980 + (x >> 9))
1138 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1139 #define DOS_DAY(x) (x & 0x1f)
1140 #define DOS_HOUR(x) (x >> 11)
1141 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1142 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1143 /* Create a DOS format date/time */
1144 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1145 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1147 /* Roll a date forwards or backwards to correct it */
1148 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1150 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1151 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1153 /* interpret values signed */
1154 iYear = lpUd->st.wYear;
1155 iMonth = lpUd->st.wMonth;
1156 iDay = lpUd->st.wDay;
1157 iHour = lpUd->st.wHour;
1158 iMinute = lpUd->st.wMinute;
1159 iSecond = lpUd->st.wSecond;
1161 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1162 iYear, iHour, iMinute, iSecond);
1164 if (iYear > 9999 || iYear < -9999)
1165 return E_INVALIDARG; /* Invalid value */
1166 /* Year 0 to 29 are treated as 2000 + year */
1167 if (iYear >= 0 && iYear < 30)
1168 iYear += 2000;
1169 /* Remaining years < 100 are treated as 1900 + year */
1170 else if (iYear >= 30 && iYear < 100)
1171 iYear += 1900;
1173 iMinute += iSecond / 60;
1174 iSecond = iSecond % 60;
1175 iHour += iMinute / 60;
1176 iMinute = iMinute % 60;
1177 iDay += iHour / 24;
1178 iHour = iHour % 24;
1179 iYear += iMonth / 12;
1180 iMonth = iMonth % 12;
1181 if (iMonth<=0) {iMonth+=12; iYear--;}
1182 while (iDay > days[iMonth])
1184 if (iMonth == 2 && IsLeapYear(iYear))
1185 iDay -= 29;
1186 else
1187 iDay -= days[iMonth];
1188 iMonth++;
1189 iYear += iMonth / 12;
1190 iMonth = iMonth % 12;
1192 while (iDay <= 0)
1194 iMonth--;
1195 if (iMonth<=0) {iMonth+=12; iYear--;}
1196 if (iMonth == 2 && IsLeapYear(iYear))
1197 iDay += 29;
1198 else
1199 iDay += days[iMonth];
1202 if (iSecond<0){iSecond+=60; iMinute--;}
1203 if (iMinute<0){iMinute+=60; iHour--;}
1204 if (iHour<0) {iHour+=24; iDay--;}
1205 if (iYear<=0) iYear+=2000;
1207 lpUd->st.wYear = iYear;
1208 lpUd->st.wMonth = iMonth;
1209 lpUd->st.wDay = iDay;
1210 lpUd->st.wHour = iHour;
1211 lpUd->st.wMinute = iMinute;
1212 lpUd->st.wSecond = iSecond;
1214 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1215 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1216 return S_OK;
1219 /**********************************************************************
1220 * DosDateTimeToVariantTime [OLEAUT32.14]
1222 * Convert a Dos format date and time into variant VT_DATE format.
1224 * PARAMS
1225 * wDosDate [I] Dos format date
1226 * wDosTime [I] Dos format time
1227 * pDateOut [O] Destination for VT_DATE format
1229 * RETURNS
1230 * Success: TRUE. pDateOut contains the converted time.
1231 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1233 * NOTES
1234 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1235 * - Dos format times are accurate to only 2 second precision.
1236 * - The format of a Dos Date is:
1237 *| Bits Values Meaning
1238 *| ---- ------ -------
1239 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1240 *| the days in the month rolls forward the extra days.
1241 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1242 *| year. 13-15 are invalid.
1243 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1244 * - The format of a Dos Time is:
1245 *| Bits Values Meaning
1246 *| ---- ------ -------
1247 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1248 *| 5-10 0-59 Minutes. 60-63 are invalid.
1249 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1251 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1252 double *pDateOut)
1254 UDATE ud;
1256 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1257 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1258 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1259 pDateOut);
1261 ud.st.wYear = DOS_YEAR(wDosDate);
1262 ud.st.wMonth = DOS_MONTH(wDosDate);
1263 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1264 return FALSE;
1265 ud.st.wDay = DOS_DAY(wDosDate);
1266 ud.st.wHour = DOS_HOUR(wDosTime);
1267 ud.st.wMinute = DOS_MINUTE(wDosTime);
1268 ud.st.wSecond = DOS_SECOND(wDosTime);
1269 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1270 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1271 return FALSE; /* Invalid values in Dos*/
1273 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1276 /**********************************************************************
1277 * VariantTimeToDosDateTime [OLEAUT32.13]
1279 * Convert a variant format date into a Dos format date and time.
1281 * dateIn [I] VT_DATE time format
1282 * pwDosDate [O] Destination for Dos format date
1283 * pwDosTime [O] Destination for Dos format time
1285 * RETURNS
1286 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1287 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1289 * NOTES
1290 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1292 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1294 UDATE ud;
1296 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1298 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1299 return FALSE;
1301 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1302 return FALSE;
1304 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1305 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1307 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1308 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1309 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1310 return TRUE;
1313 /***********************************************************************
1314 * SystemTimeToVariantTime [OLEAUT32.184]
1316 * Convert a System format date and time into variant VT_DATE format.
1318 * PARAMS
1319 * lpSt [I] System format date and time
1320 * pDateOut [O] Destination for VT_DATE format date
1322 * RETURNS
1323 * Success: TRUE. *pDateOut contains the converted value.
1324 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1326 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1328 UDATE ud;
1330 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1331 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1333 if (lpSt->wMonth > 12)
1334 return FALSE;
1335 if (lpSt->wDay > 31)
1336 return FALSE;
1337 if ((short)lpSt->wYear < 0)
1338 return FALSE;
1340 ud.st = *lpSt;
1341 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1344 /***********************************************************************
1345 * VariantTimeToSystemTime [OLEAUT32.185]
1347 * Convert a variant VT_DATE into a System format date and time.
1349 * PARAMS
1350 * datein [I] Variant VT_DATE format date
1351 * lpSt [O] Destination for System format date and time
1353 * RETURNS
1354 * Success: TRUE. *lpSt contains the converted value.
1355 * Failure: FALSE, if dateIn is too large or small.
1357 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1359 UDATE ud;
1361 TRACE("(%g,%p)\n", dateIn, lpSt);
1363 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1364 return FALSE;
1366 *lpSt = ud.st;
1367 return TRUE;
1370 /***********************************************************************
1371 * VarDateFromUdateEx [OLEAUT32.319]
1373 * Convert an unpacked format date and time to a variant VT_DATE.
1375 * PARAMS
1376 * pUdateIn [I] Unpacked format date and time to convert
1377 * lcid [I] Locale identifier for the conversion
1378 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1379 * pDateOut [O] Destination for variant VT_DATE.
1381 * RETURNS
1382 * Success: S_OK. *pDateOut contains the converted value.
1383 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1385 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1387 UDATE ud;
1388 double dateVal, dateSign;
1390 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1391 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1392 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1393 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1394 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1396 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1397 FIXME("lcid possibly not handled, treating as en-us\n");
1399 ud = *pUdateIn;
1401 if (dwFlags & VAR_VALIDDATE)
1402 WARN("Ignoring VAR_VALIDDATE\n");
1404 if (FAILED(VARIANT_RollUdate(&ud)))
1405 return E_INVALIDARG;
1407 /* Date */
1408 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1410 /* Sign */
1411 dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1413 /* Time */
1414 dateVal += ud.st.wHour / 24.0 * dateSign;
1415 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1416 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1418 TRACE("Returning %g\n", dateVal);
1419 *pDateOut = dateVal;
1420 return S_OK;
1423 /***********************************************************************
1424 * VarDateFromUdate [OLEAUT32.330]
1426 * Convert an unpacked format date and time to a variant VT_DATE.
1428 * PARAMS
1429 * pUdateIn [I] Unpacked format date and time to convert
1430 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1431 * pDateOut [O] Destination for variant VT_DATE.
1433 * RETURNS
1434 * Success: S_OK. *pDateOut contains the converted value.
1435 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1437 * NOTES
1438 * This function uses the United States English locale for the conversion. Use
1439 * VarDateFromUdateEx() for alternate locales.
1441 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1443 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1445 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1448 /***********************************************************************
1449 * VarUdateFromDate [OLEAUT32.331]
1451 * Convert a variant VT_DATE into an unpacked format date and time.
1453 * PARAMS
1454 * datein [I] Variant VT_DATE format date
1455 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1456 * lpUdate [O] Destination for unpacked format date and time
1458 * RETURNS
1459 * Success: S_OK. *lpUdate contains the converted value.
1460 * Failure: E_INVALIDARG, if dateIn is too large or small.
1462 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1464 /* Cumulative totals of days per month */
1465 static const USHORT cumulativeDays[] =
1467 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1469 double datePart, timePart;
1470 int julianDays;
1472 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1474 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1475 return E_INVALIDARG;
1477 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1478 /* Compensate for int truncation (always downwards) */
1479 timePart = fabs(dateIn - datePart) + 0.00000000001;
1480 if (timePart >= 1.0)
1481 timePart -= 0.00000000001;
1483 /* Date */
1484 julianDays = VARIANT_JulianFromDate(dateIn);
1485 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1486 &lpUdate->st.wDay);
1488 datePart = (datePart + 1.5) / 7.0;
1489 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1490 if (lpUdate->st.wDayOfWeek == 0)
1491 lpUdate->st.wDayOfWeek = 5;
1492 else if (lpUdate->st.wDayOfWeek == 1)
1493 lpUdate->st.wDayOfWeek = 6;
1494 else
1495 lpUdate->st.wDayOfWeek -= 2;
1497 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1498 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1499 else
1500 lpUdate->wDayOfYear = 0;
1502 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1503 lpUdate->wDayOfYear += lpUdate->st.wDay;
1505 /* Time */
1506 timePart *= 24.0;
1507 lpUdate->st.wHour = timePart;
1508 timePart -= lpUdate->st.wHour;
1509 timePart *= 60.0;
1510 lpUdate->st.wMinute = timePart;
1511 timePart -= lpUdate->st.wMinute;
1512 timePart *= 60.0;
1513 lpUdate->st.wSecond = timePart;
1514 timePart -= lpUdate->st.wSecond;
1515 lpUdate->st.wMilliseconds = 0;
1516 if (timePart > 0.5)
1518 /* Round the milliseconds, adjusting the time/date forward if needed */
1519 if (lpUdate->st.wSecond < 59)
1520 lpUdate->st.wSecond++;
1521 else
1523 lpUdate->st.wSecond = 0;
1524 if (lpUdate->st.wMinute < 59)
1525 lpUdate->st.wMinute++;
1526 else
1528 lpUdate->st.wMinute = 0;
1529 if (lpUdate->st.wHour < 23)
1530 lpUdate->st.wHour++;
1531 else
1533 lpUdate->st.wHour = 0;
1534 /* Roll over a whole day */
1535 if (++lpUdate->st.wDay > 28)
1536 VARIANT_RollUdate(lpUdate);
1541 return S_OK;
1544 #define GET_NUMBER_TEXT(fld,name) \
1545 buff[0] = 0; \
1546 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1547 WARN("buffer too small for " #fld "\n"); \
1548 else \
1549 if (buff[0]) lpChars->name = buff[0]; \
1550 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1552 /* Get the valid number characters for an lcid */
1553 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1555 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1556 static CRITICAL_SECTION csLastChars = { NULL, -1, 0, 0, 0, 0 };
1557 static VARIANT_NUMBER_CHARS lastChars;
1558 static LCID lastLcid = -1;
1559 static DWORD lastFlags = 0;
1560 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1561 WCHAR buff[4];
1563 /* To make caching thread-safe, a critical section is needed */
1564 EnterCriticalSection(&csLastChars);
1566 /* Asking for default locale entries is very expensive: It is a registry
1567 server call. So cache one locally, as Microsoft does it too */
1568 if(lcid == lastLcid && dwFlags == lastFlags)
1570 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1571 LeaveCriticalSection(&csLastChars);
1572 return;
1575 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1576 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1577 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1578 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1579 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1580 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1581 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1583 /* Local currency symbols are often 2 characters */
1584 lpChars->cCurrencyLocal2 = '\0';
1585 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1587 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1588 case 2: lpChars->cCurrencyLocal = buff[0];
1589 break;
1590 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1592 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1593 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1595 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1596 lastLcid = lcid;
1597 lastFlags = dwFlags;
1598 LeaveCriticalSection(&csLastChars);
1601 /* Number Parsing States */
1602 #define B_PROCESSING_EXPONENT 0x1
1603 #define B_NEGATIVE_EXPONENT 0x2
1604 #define B_EXPONENT_START 0x4
1605 #define B_INEXACT_ZEROS 0x8
1606 #define B_LEADING_ZERO 0x10
1607 #define B_PROCESSING_HEX 0x20
1608 #define B_PROCESSING_OCT 0x40
1610 /**********************************************************************
1611 * VarParseNumFromStr [OLEAUT32.46]
1613 * Parse a string containing a number into a NUMPARSE structure.
1615 * PARAMS
1616 * lpszStr [I] String to parse number from
1617 * lcid [I] Locale Id for the conversion
1618 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1619 * pNumprs [I/O] Destination for parsed number
1620 * rgbDig [O] Destination for digits read in
1622 * RETURNS
1623 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1624 * the number.
1625 * Failure: E_INVALIDARG, if any parameter is invalid.
1626 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1627 * incorrectly.
1628 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1630 * NOTES
1631 * pNumprs must have the following fields set:
1632 * cDig: Set to the size of rgbDig.
1633 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1634 * from "oleauto.h".
1636 * FIXME
1637 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1638 * numerals, so this has not been implemented.
1640 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1641 NUMPARSE *pNumprs, BYTE *rgbDig)
1643 VARIANT_NUMBER_CHARS chars;
1644 BYTE rgbTmp[1024];
1645 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1646 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1647 int cchUsed = 0;
1649 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1651 if (!pNumprs || !rgbDig)
1652 return E_INVALIDARG;
1654 if (pNumprs->cDig < iMaxDigits)
1655 iMaxDigits = pNumprs->cDig;
1657 pNumprs->cDig = 0;
1658 pNumprs->dwOutFlags = 0;
1659 pNumprs->cchUsed = 0;
1660 pNumprs->nBaseShift = 0;
1661 pNumprs->nPwr10 = 0;
1663 if (!lpszStr)
1664 return DISP_E_TYPEMISMATCH;
1666 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1668 /* First consume all the leading symbols and space from the string */
1669 while (1)
1671 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1673 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1676 cchUsed++;
1677 lpszStr++;
1678 } while (isspaceW(*lpszStr));
1680 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1681 *lpszStr == chars.cPositiveSymbol &&
1682 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1684 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1685 cchUsed++;
1686 lpszStr++;
1688 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1689 *lpszStr == chars.cNegativeSymbol &&
1690 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1692 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1693 cchUsed++;
1694 lpszStr++;
1696 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1697 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1698 *lpszStr == chars.cCurrencyLocal &&
1699 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1701 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1702 cchUsed++;
1703 lpszStr++;
1704 /* Only accept currency characters */
1705 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1706 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1708 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1709 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1711 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1712 cchUsed++;
1713 lpszStr++;
1715 else
1716 break;
1719 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1721 /* Only accept non-currency characters */
1722 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1723 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1726 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1727 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1729 dwState |= B_PROCESSING_HEX;
1730 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1731 cchUsed=cchUsed+2;
1732 lpszStr=lpszStr+2;
1734 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1735 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1737 dwState |= B_PROCESSING_OCT;
1738 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1739 cchUsed=cchUsed+2;
1740 lpszStr=lpszStr+2;
1743 /* Strip Leading zeros */
1744 while (*lpszStr == '0')
1746 dwState |= B_LEADING_ZERO;
1747 cchUsed++;
1748 lpszStr++;
1751 while (*lpszStr)
1753 if (isdigitW(*lpszStr))
1755 if (dwState & B_PROCESSING_EXPONENT)
1757 int exponentSize = 0;
1758 if (dwState & B_EXPONENT_START)
1760 if (!isdigitW(*lpszStr))
1761 break; /* No exponent digits - invalid */
1762 while (*lpszStr == '0')
1764 /* Skip leading zero's in the exponent */
1765 cchUsed++;
1766 lpszStr++;
1770 while (isdigitW(*lpszStr))
1772 exponentSize *= 10;
1773 exponentSize += *lpszStr - '0';
1774 cchUsed++;
1775 lpszStr++;
1777 if (dwState & B_NEGATIVE_EXPONENT)
1778 exponentSize = -exponentSize;
1779 /* Add the exponent into the powers of 10 */
1780 pNumprs->nPwr10 += exponentSize;
1781 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1782 lpszStr--; /* back up to allow processing of next char */
1784 else
1786 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1787 && !(dwState & B_PROCESSING_OCT))
1789 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1791 if (*lpszStr != '0')
1792 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1794 /* This digit can't be represented, but count it in nPwr10 */
1795 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1796 pNumprs->nPwr10--;
1797 else
1798 pNumprs->nPwr10++;
1800 else
1802 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1803 return DISP_E_TYPEMISMATCH;
1806 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1807 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1809 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1811 pNumprs->cDig++;
1812 cchUsed++;
1815 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1817 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1818 cchUsed++;
1820 else if (*lpszStr == chars.cDecimalPoint &&
1821 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1822 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1824 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1825 cchUsed++;
1827 /* If we have no digits so far, skip leading zeros */
1828 if (!pNumprs->cDig)
1830 while (lpszStr[1] == '0')
1832 dwState |= B_LEADING_ZERO;
1833 cchUsed++;
1834 lpszStr++;
1835 pNumprs->nPwr10--;
1839 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1840 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1841 dwState & B_PROCESSING_HEX)
1843 if (pNumprs->cDig >= iMaxDigits)
1845 return DISP_E_OVERFLOW;
1847 else
1849 if (*lpszStr >= 'a')
1850 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1851 else
1852 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1854 pNumprs->cDig++;
1855 cchUsed++;
1857 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1858 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1859 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1861 dwState |= B_PROCESSING_EXPONENT;
1862 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1863 cchUsed++;
1865 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1867 cchUsed++; /* Ignore positive exponent */
1869 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1871 dwState |= B_NEGATIVE_EXPONENT;
1872 cchUsed++;
1874 else
1875 break; /* Stop at an unrecognised character */
1877 lpszStr++;
1880 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1882 /* Ensure a 0 on its own gets stored */
1883 pNumprs->cDig = 1;
1884 rgbTmp[0] = 0;
1887 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1889 pNumprs->cchUsed = cchUsed;
1890 WARN("didn't completely parse exponent\n");
1891 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1894 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1896 if (dwState & B_INEXACT_ZEROS)
1897 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1898 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1900 /* copy all of the digits into the output digit buffer */
1901 /* this is exactly what windows does although it also returns */
1902 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1903 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1905 if (dwState & B_PROCESSING_HEX) {
1906 /* hex numbers have always the same format */
1907 pNumprs->nPwr10=0;
1908 pNumprs->nBaseShift=4;
1909 } else {
1910 if (dwState & B_PROCESSING_OCT) {
1911 /* oct numbers have always the same format */
1912 pNumprs->nPwr10=0;
1913 pNumprs->nBaseShift=3;
1914 } else {
1915 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1917 pNumprs->nPwr10++;
1918 pNumprs->cDig--;
1922 } else
1924 /* Remove trailing zeros from the last (whole number or decimal) part */
1925 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1927 pNumprs->nPwr10++;
1928 pNumprs->cDig--;
1932 if (pNumprs->cDig <= iMaxDigits)
1933 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1934 else
1935 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1937 /* Copy the digits we processed into rgbDig */
1938 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1940 /* Consume any trailing symbols and space */
1941 while (1)
1943 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1945 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1948 cchUsed++;
1949 lpszStr++;
1950 } while (isspaceW(*lpszStr));
1952 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1953 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1954 *lpszStr == chars.cPositiveSymbol)
1956 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1957 cchUsed++;
1958 lpszStr++;
1960 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1961 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1962 *lpszStr == chars.cNegativeSymbol)
1964 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1965 cchUsed++;
1966 lpszStr++;
1968 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1969 pNumprs->dwOutFlags & NUMPRS_PARENS)
1971 cchUsed++;
1972 lpszStr++;
1973 pNumprs->dwOutFlags |= NUMPRS_NEG;
1975 else
1976 break;
1979 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1981 pNumprs->cchUsed = cchUsed;
1982 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1985 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1986 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1988 if (!pNumprs->cDig)
1989 return DISP_E_TYPEMISMATCH; /* No Number found */
1991 pNumprs->cchUsed = cchUsed;
1992 return S_OK;
1995 /* VTBIT flags indicating an integer value */
1996 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1997 /* VTBIT flags indicating a real number value */
1998 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
2000 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
2001 #define FITS_AS_I1(x) ((x) >> 8 == 0)
2002 #define FITS_AS_I2(x) ((x) >> 16 == 0)
2003 #define FITS_AS_I4(x) ((x) >> 32 == 0)
2005 /**********************************************************************
2006 * VarNumFromParseNum [OLEAUT32.47]
2008 * Convert a NUMPARSE structure into a numeric Variant type.
2010 * PARAMS
2011 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
2012 * rgbDig [I] Source for the numbers digits
2013 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
2014 * pVarDst [O] Destination for the converted Variant value.
2016 * RETURNS
2017 * Success: S_OK. pVarDst contains the converted value.
2018 * Failure: E_INVALIDARG, if any parameter is invalid.
2019 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
2021 * NOTES
2022 * - The smallest favoured type present in dwVtBits that can represent the
2023 * number in pNumprs without losing precision is used.
2024 * - Signed types are preferred over unsigned types of the same size.
2025 * - Preferred types in order are: integer, float, double, currency then decimal.
2026 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
2027 * for details of the rounding method.
2028 * - pVarDst is not cleared before the result is stored in it.
2029 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2030 * design?): If some other VTBIT's for integers are specified together
2031 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2032 * the number to the smallest requested integer truncating this way the
2033 * number. Wine doesn't implement this "feature" (yet?).
2035 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
2036 ULONG dwVtBits, VARIANT *pVarDst)
2038 /* Scale factors and limits for double arithmetic */
2039 static const double dblMultipliers[11] = {
2040 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2041 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2043 static const double dblMinimums[11] = {
2044 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2045 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2046 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2048 static const double dblMaximums[11] = {
2049 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2050 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2051 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2054 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2056 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2058 if (pNumprs->nBaseShift)
2060 /* nBaseShift indicates a hex or octal number */
2061 ULONG64 ul64 = 0;
2062 LONG64 l64;
2063 int i;
2065 /* Convert the hex or octal number string into a UI64 */
2066 for (i = 0; i < pNumprs->cDig; i++)
2068 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2070 TRACE("Overflow multiplying digits\n");
2071 return DISP_E_OVERFLOW;
2073 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2076 /* also make a negative representation */
2077 l64=-ul64;
2079 /* Try signed and unsigned types in size order */
2080 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2082 V_VT(pVarDst) = VT_I1;
2083 V_I1(pVarDst) = ul64;
2084 return S_OK;
2086 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2088 V_VT(pVarDst) = VT_UI1;
2089 V_UI1(pVarDst) = ul64;
2090 return S_OK;
2092 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2094 V_VT(pVarDst) = VT_I2;
2095 V_I2(pVarDst) = ul64;
2096 return S_OK;
2098 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2100 V_VT(pVarDst) = VT_UI2;
2101 V_UI2(pVarDst) = ul64;
2102 return S_OK;
2104 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2106 V_VT(pVarDst) = VT_I4;
2107 V_I4(pVarDst) = ul64;
2108 return S_OK;
2110 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2112 V_VT(pVarDst) = VT_UI4;
2113 V_UI4(pVarDst) = ul64;
2114 return S_OK;
2116 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2118 V_VT(pVarDst) = VT_I8;
2119 V_I8(pVarDst) = ul64;
2120 return S_OK;
2122 else if (dwVtBits & VTBIT_UI8)
2124 V_VT(pVarDst) = VT_UI8;
2125 V_UI8(pVarDst) = ul64;
2126 return S_OK;
2128 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2130 V_VT(pVarDst) = VT_DECIMAL;
2131 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2132 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2133 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2134 return S_OK;
2136 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2138 V_VT(pVarDst) = VT_R4;
2139 if (ul64 <= I4_MAX)
2140 V_R4(pVarDst) = ul64;
2141 else
2142 V_R4(pVarDst) = l64;
2143 return S_OK;
2145 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2147 V_VT(pVarDst) = VT_R8;
2148 if (ul64 <= I4_MAX)
2149 V_R8(pVarDst) = ul64;
2150 else
2151 V_R8(pVarDst) = l64;
2152 return S_OK;
2155 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2156 return DISP_E_OVERFLOW;
2159 /* Count the number of relevant fractional and whole digits stored,
2160 * And compute the divisor/multiplier to scale the number by.
2162 if (pNumprs->nPwr10 < 0)
2164 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2166 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2167 wholeNumberDigits = 0;
2168 fractionalDigits = pNumprs->cDig;
2169 divisor10 = -pNumprs->nPwr10;
2171 else
2173 /* An exactly represented real number e.g. 1.024 */
2174 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2175 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2176 divisor10 = pNumprs->cDig - wholeNumberDigits;
2179 else if (pNumprs->nPwr10 == 0)
2181 /* An exactly represented whole number e.g. 1024 */
2182 wholeNumberDigits = pNumprs->cDig;
2183 fractionalDigits = 0;
2185 else /* pNumprs->nPwr10 > 0 */
2187 /* A whole number followed by nPwr10 0's e.g. 102400 */
2188 wholeNumberDigits = pNumprs->cDig;
2189 fractionalDigits = 0;
2190 multiplier10 = pNumprs->nPwr10;
2193 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2194 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2195 multiplier10, divisor10);
2197 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2198 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2200 /* We have one or more integer output choices, and either:
2201 * 1) An integer input value, or
2202 * 2) A real number input value but no floating output choices.
2203 * Alternately, we have a DECIMAL output available and an integer input.
2205 * So, place the integer value into pVarDst, using the smallest type
2206 * possible and preferring signed over unsigned types.
2208 BOOL bOverflow = FALSE, bNegative;
2209 ULONG64 ul64 = 0;
2210 int i;
2212 /* Convert the integer part of the number into a UI8 */
2213 for (i = 0; i < wholeNumberDigits; i++)
2215 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2217 TRACE("Overflow multiplying digits\n");
2218 bOverflow = TRUE;
2219 break;
2221 ul64 = ul64 * 10 + rgbDig[i];
2224 /* Account for the scale of the number */
2225 if (!bOverflow && multiplier10)
2227 for (i = 0; i < multiplier10; i++)
2229 if (ul64 > (UI8_MAX / 10))
2231 TRACE("Overflow scaling number\n");
2232 bOverflow = TRUE;
2233 break;
2235 ul64 = ul64 * 10;
2239 /* If we have any fractional digits, round the value.
2240 * Note we don't have to do this if divisor10 is < 1,
2241 * because this means the fractional part must be < 0.5
2243 if (!bOverflow && fractionalDigits && divisor10 > 0)
2245 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2246 BOOL bAdjust = FALSE;
2248 TRACE("first decimal value is %d\n", *fracDig);
2250 if (*fracDig > 5)
2251 bAdjust = TRUE; /* > 0.5 */
2252 else if (*fracDig == 5)
2254 for (i = 1; i < fractionalDigits; i++)
2256 if (fracDig[i])
2258 bAdjust = TRUE; /* > 0.5 */
2259 break;
2262 /* If exactly 0.5, round only odd values */
2263 if (i == fractionalDigits && (ul64 & 1))
2264 bAdjust = TRUE;
2267 if (bAdjust)
2269 if (ul64 == UI8_MAX)
2271 TRACE("Overflow after rounding\n");
2272 bOverflow = TRUE;
2274 ul64++;
2278 /* Zero is not a negative number */
2279 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2281 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2283 /* For negative integers, try the signed types in size order */
2284 if (!bOverflow && bNegative)
2286 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2288 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2290 V_VT(pVarDst) = VT_I1;
2291 V_I1(pVarDst) = -ul64;
2292 return S_OK;
2294 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2296 V_VT(pVarDst) = VT_I2;
2297 V_I2(pVarDst) = -ul64;
2298 return S_OK;
2300 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2302 V_VT(pVarDst) = VT_I4;
2303 V_I4(pVarDst) = -ul64;
2304 return S_OK;
2306 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2308 V_VT(pVarDst) = VT_I8;
2309 V_I8(pVarDst) = -ul64;
2310 return S_OK;
2312 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2314 /* Decimal is only output choice left - fast path */
2315 V_VT(pVarDst) = VT_DECIMAL;
2316 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2317 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2318 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2319 return S_OK;
2323 else if (!bOverflow)
2325 /* For positive integers, try signed then unsigned types in size order */
2326 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2328 V_VT(pVarDst) = VT_I1;
2329 V_I1(pVarDst) = ul64;
2330 return S_OK;
2332 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2334 V_VT(pVarDst) = VT_UI1;
2335 V_UI1(pVarDst) = ul64;
2336 return S_OK;
2338 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2340 V_VT(pVarDst) = VT_I2;
2341 V_I2(pVarDst) = ul64;
2342 return S_OK;
2344 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2346 V_VT(pVarDst) = VT_UI2;
2347 V_UI2(pVarDst) = ul64;
2348 return S_OK;
2350 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2352 V_VT(pVarDst) = VT_I4;
2353 V_I4(pVarDst) = ul64;
2354 return S_OK;
2356 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2358 V_VT(pVarDst) = VT_UI4;
2359 V_UI4(pVarDst) = ul64;
2360 return S_OK;
2362 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2364 V_VT(pVarDst) = VT_I8;
2365 V_I8(pVarDst) = ul64;
2366 return S_OK;
2368 else if (dwVtBits & VTBIT_UI8)
2370 V_VT(pVarDst) = VT_UI8;
2371 V_UI8(pVarDst) = ul64;
2372 return S_OK;
2374 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2376 /* Decimal is only output choice left - fast path */
2377 V_VT(pVarDst) = VT_DECIMAL;
2378 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2379 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2380 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2381 return S_OK;
2386 if (dwVtBits & REAL_VTBITS)
2388 /* Try to put the number into a float or real */
2389 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2390 double whole = 0.0;
2391 int i;
2393 /* Convert the number into a double */
2394 for (i = 0; i < pNumprs->cDig; i++)
2395 whole = whole * 10.0 + rgbDig[i];
2397 TRACE("Whole double value is %16.16g\n", whole);
2399 /* Account for the scale */
2400 while (multiplier10 > 10)
2402 if (whole > dblMaximums[10])
2404 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2405 bOverflow = TRUE;
2406 break;
2408 whole = whole * dblMultipliers[10];
2409 multiplier10 -= 10;
2411 if (multiplier10 && !bOverflow)
2413 if (whole > dblMaximums[multiplier10])
2415 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2416 bOverflow = TRUE;
2418 else
2419 whole = whole * dblMultipliers[multiplier10];
2422 if (!bOverflow)
2423 TRACE("Scaled double value is %16.16g\n", whole);
2425 while (divisor10 > 10 && !bOverflow)
2427 if (whole < dblMinimums[10] && whole != 0)
2429 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2430 bOverflow = TRUE;
2431 break;
2433 whole = whole / dblMultipliers[10];
2434 divisor10 -= 10;
2436 if (divisor10 && !bOverflow)
2438 if (whole < dblMinimums[divisor10] && whole != 0)
2440 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2441 bOverflow = TRUE;
2443 else
2444 whole = whole / dblMultipliers[divisor10];
2446 if (!bOverflow)
2447 TRACE("Final double value is %16.16g\n", whole);
2449 if (dwVtBits & VTBIT_R4 &&
2450 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2452 TRACE("Set R4 to final value\n");
2453 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2454 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2455 return S_OK;
2458 if (dwVtBits & VTBIT_R8)
2460 TRACE("Set R8 to final value\n");
2461 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2462 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2463 return S_OK;
2466 if (dwVtBits & VTBIT_CY)
2468 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2470 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2471 TRACE("Set CY to final value\n");
2472 return S_OK;
2474 TRACE("Value Overflows CY\n");
2478 if (dwVtBits & VTBIT_DECIMAL)
2480 int i;
2481 ULONG carry;
2482 ULONG64 tmp;
2483 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2485 DECIMAL_SETZERO(*pDec);
2486 DEC_LO32(pDec) = 0;
2488 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2489 DEC_SIGN(pDec) = DECIMAL_NEG;
2490 else
2491 DEC_SIGN(pDec) = DECIMAL_POS;
2493 /* Factor the significant digits */
2494 for (i = 0; i < pNumprs->cDig; i++)
2496 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2497 carry = (ULONG)(tmp >> 32);
2498 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2499 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2500 carry = (ULONG)(tmp >> 32);
2501 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2502 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2503 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2505 if (tmp >> 32 & UI4_MAX)
2507 VarNumFromParseNum_DecOverflow:
2508 TRACE("Overflow\n");
2509 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2510 return DISP_E_OVERFLOW;
2514 /* Account for the scale of the number */
2515 while (multiplier10 > 0)
2517 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2518 carry = (ULONG)(tmp >> 32);
2519 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2520 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2521 carry = (ULONG)(tmp >> 32);
2522 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2523 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2524 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2526 if (tmp >> 32 & UI4_MAX)
2527 goto VarNumFromParseNum_DecOverflow;
2528 multiplier10--;
2530 DEC_SCALE(pDec) = divisor10;
2532 V_VT(pVarDst) = VT_DECIMAL;
2533 return S_OK;
2535 return DISP_E_OVERFLOW; /* No more output choices */
2538 /**********************************************************************
2539 * VarCat [OLEAUT32.318]
2541 * Concatenates one variant onto another.
2543 * PARAMS
2544 * left [I] First variant
2545 * right [I] Second variant
2546 * result [O] Result variant
2548 * RETURNS
2549 * Success: S_OK.
2550 * Failure: An HRESULT error code indicating the error.
2552 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2554 VARTYPE leftvt,rightvt,resultvt;
2555 HRESULT hres;
2556 static WCHAR str_true[32];
2557 static WCHAR str_false[32];
2558 static const WCHAR sz_empty[] = {'\0'};
2559 leftvt = V_VT(left);
2560 rightvt = V_VT(right);
2562 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2564 if (!str_true[0]) {
2565 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2566 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2569 /* when both left and right are NULL the result is NULL */
2570 if (leftvt == VT_NULL && rightvt == VT_NULL)
2572 V_VT(out) = VT_NULL;
2573 return S_OK;
2576 hres = S_OK;
2577 resultvt = VT_EMPTY;
2579 /* There are many special case for errors and return types */
2580 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2581 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2582 hres = DISP_E_TYPEMISMATCH;
2583 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2584 leftvt == VT_R4 || leftvt == VT_R8 ||
2585 leftvt == VT_CY || leftvt == VT_BOOL ||
2586 leftvt == VT_BSTR || leftvt == VT_I1 ||
2587 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2588 leftvt == VT_UI4 || leftvt == VT_I8 ||
2589 leftvt == VT_UI8 || leftvt == VT_INT ||
2590 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2591 leftvt == VT_NULL || leftvt == VT_DATE ||
2592 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2594 (rightvt == VT_I2 || rightvt == VT_I4 ||
2595 rightvt == VT_R4 || rightvt == VT_R8 ||
2596 rightvt == VT_CY || rightvt == VT_BOOL ||
2597 rightvt == VT_BSTR || rightvt == VT_I1 ||
2598 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2599 rightvt == VT_UI4 || rightvt == VT_I8 ||
2600 rightvt == VT_UI8 || rightvt == VT_INT ||
2601 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2602 rightvt == VT_NULL || rightvt == VT_DATE ||
2603 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2604 resultvt = VT_BSTR;
2605 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2606 hres = DISP_E_TYPEMISMATCH;
2607 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2608 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2609 hres = DISP_E_TYPEMISMATCH;
2610 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2611 rightvt == VT_DECIMAL)
2612 hres = DISP_E_BADVARTYPE;
2613 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2614 hres = DISP_E_TYPEMISMATCH;
2615 else if (leftvt == VT_VARIANT)
2616 hres = DISP_E_TYPEMISMATCH;
2617 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2618 leftvt == VT_NULL || leftvt == VT_I2 ||
2619 leftvt == VT_I4 || leftvt == VT_R4 ||
2620 leftvt == VT_R8 || leftvt == VT_CY ||
2621 leftvt == VT_DATE || leftvt == VT_BSTR ||
2622 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2623 leftvt == VT_I1 || leftvt == VT_UI1 ||
2624 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2625 leftvt == VT_I8 || leftvt == VT_UI8 ||
2626 leftvt == VT_INT || leftvt == VT_UINT))
2627 hres = DISP_E_TYPEMISMATCH;
2628 else
2629 hres = DISP_E_BADVARTYPE;
2631 /* if result type is not S_OK, then no need to go further */
2632 if (hres != S_OK)
2634 V_VT(out) = resultvt;
2635 return hres;
2637 /* Else proceed with formatting inputs to strings */
2638 else
2640 VARIANT bstrvar_left, bstrvar_right;
2641 V_VT(out) = VT_BSTR;
2643 VariantInit(&bstrvar_left);
2644 VariantInit(&bstrvar_right);
2646 /* Convert left side variant to string */
2647 if (leftvt != VT_BSTR)
2649 if (leftvt == VT_BOOL)
2651 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2652 V_VT(&bstrvar_left) = VT_BSTR;
2653 if (V_BOOL(left))
2654 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2655 else
2656 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2658 /* Fill with empty string for later concat with right side */
2659 else if (leftvt == VT_NULL)
2661 V_VT(&bstrvar_left) = VT_BSTR;
2662 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2664 else
2666 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2667 if (hres != S_OK) {
2668 VariantClear(&bstrvar_left);
2669 VariantClear(&bstrvar_right);
2670 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2671 rightvt == VT_NULL || rightvt == VT_I2 ||
2672 rightvt == VT_I4 || rightvt == VT_R4 ||
2673 rightvt == VT_R8 || rightvt == VT_CY ||
2674 rightvt == VT_DATE || rightvt == VT_BSTR ||
2675 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2676 rightvt == VT_I1 || rightvt == VT_UI1 ||
2677 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2678 rightvt == VT_I8 || rightvt == VT_UI8 ||
2679 rightvt == VT_INT || rightvt == VT_UINT))
2680 return DISP_E_BADVARTYPE;
2681 return hres;
2686 /* convert right side variant to string */
2687 if (rightvt != VT_BSTR)
2689 if (rightvt == VT_BOOL)
2691 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2692 V_VT(&bstrvar_right) = VT_BSTR;
2693 if (V_BOOL(right))
2694 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2695 else
2696 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2698 /* Fill with empty string for later concat with right side */
2699 else if (rightvt == VT_NULL)
2701 V_VT(&bstrvar_right) = VT_BSTR;
2702 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2704 else
2706 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2707 if (hres != S_OK) {
2708 VariantClear(&bstrvar_left);
2709 VariantClear(&bstrvar_right);
2710 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2711 leftvt == VT_NULL || leftvt == VT_I2 ||
2712 leftvt == VT_I4 || leftvt == VT_R4 ||
2713 leftvt == VT_R8 || leftvt == VT_CY ||
2714 leftvt == VT_DATE || leftvt == VT_BSTR ||
2715 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2716 leftvt == VT_I1 || leftvt == VT_UI1 ||
2717 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2718 leftvt == VT_I8 || leftvt == VT_UI8 ||
2719 leftvt == VT_INT || leftvt == VT_UINT))
2720 return DISP_E_BADVARTYPE;
2721 return hres;
2726 /* Concat the resulting strings together */
2727 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2728 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2729 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2730 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2731 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2732 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2733 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2734 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2736 VariantClear(&bstrvar_left);
2737 VariantClear(&bstrvar_right);
2738 return S_OK;
2743 /* Wrapper around VariantChangeTypeEx() which permits changing a
2744 variant with VT_RESERVED flag set. Needed by VarCmp. */
2745 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2746 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2748 VARIANTARG vtmpsrc = *pvargSrc;
2750 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2751 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2754 /**********************************************************************
2755 * VarCmp [OLEAUT32.176]
2757 * Compare two variants.
2759 * PARAMS
2760 * left [I] First variant
2761 * right [I] Second variant
2762 * lcid [I] LCID (locale identifier) for the comparison
2763 * flags [I] Flags to be used in the comparison:
2764 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2765 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2767 * RETURNS
2768 * VARCMP_LT: left variant is less than right variant.
2769 * VARCMP_EQ: input variants are equal.
2770 * VARCMP_GT: left variant is greater than right variant.
2771 * VARCMP_NULL: either one of the input variants is NULL.
2772 * Failure: An HRESULT error code indicating the error.
2774 * NOTES
2775 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2776 * UI8 and UINT as input variants. INT is accepted only as left variant.
2778 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2779 * an ERROR variant will trigger an error.
2781 * Both input variants can have VT_RESERVED flag set which is ignored
2782 * unless one and only one of the variants is a BSTR and the other one
2783 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2784 * different meaning:
2785 * - BSTR and other: BSTR is always greater than the other variant.
2786 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2787 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2788 * comparison will take place else the BSTR is always greater.
2789 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2790 * variant is ignored and the return value depends only on the sign
2791 * of the BSTR if it is a number else the BSTR is always greater. A
2792 * positive BSTR is greater, a negative one is smaller than the other
2793 * variant.
2795 * SEE
2796 * VarBstrCmp for the lcid and flags usage.
2798 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2800 VARTYPE lvt, rvt, vt;
2801 VARIANT rv,lv;
2802 DWORD xmask;
2803 HRESULT rc;
2805 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2807 lvt = V_VT(left) & VT_TYPEMASK;
2808 rvt = V_VT(right) & VT_TYPEMASK;
2809 xmask = (1 << lvt) | (1 << rvt);
2811 /* If we have any flag set except VT_RESERVED bail out.
2812 Same for the left input variant type > VT_INT and for the
2813 right input variant type > VT_I8. Yes, VT_INT is only supported
2814 as left variant. Go figure */
2815 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2816 lvt > VT_INT || rvt > VT_I8) {
2817 return DISP_E_BADVARTYPE;
2820 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2821 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2822 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2823 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2824 return DISP_E_TYPEMISMATCH;
2826 /* If both variants are VT_ERROR return VARCMP_EQ */
2827 if (xmask == VTBIT_ERROR)
2828 return VARCMP_EQ;
2829 else if (xmask & VTBIT_ERROR)
2830 return DISP_E_TYPEMISMATCH;
2832 if (xmask & VTBIT_NULL)
2833 return VARCMP_NULL;
2835 VariantInit(&lv);
2836 VariantInit(&rv);
2838 /* Two BSTRs, ignore VT_RESERVED */
2839 if (xmask == VTBIT_BSTR)
2840 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2842 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2843 if (xmask & VTBIT_BSTR) {
2844 VARIANT *bstrv, *nonbv;
2845 VARTYPE nonbvt;
2846 int swap = 0;
2848 /* Swap the variants so the BSTR is always on the left */
2849 if (lvt == VT_BSTR) {
2850 bstrv = left;
2851 nonbv = right;
2852 nonbvt = rvt;
2853 } else {
2854 swap = 1;
2855 bstrv = right;
2856 nonbv = left;
2857 nonbvt = lvt;
2860 /* BSTR and EMPTY: ignore VT_RESERVED */
2861 if (nonbvt == VT_EMPTY)
2862 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2863 else {
2864 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2865 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2867 if (!breserv && !nreserv)
2868 /* No VT_RESERVED set ==> BSTR always greater */
2869 rc = VARCMP_GT;
2870 else if (breserv && !nreserv) {
2871 /* BSTR has VT_RESERVED set. Do a string comparison */
2872 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2873 if (FAILED(rc))
2874 return rc;
2875 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2876 VariantClear(&rv);
2877 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2878 /* Non NULL nor empty BSTR */
2879 /* If the BSTR is not a number the BSTR is greater */
2880 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2881 if (FAILED(rc))
2882 rc = VARCMP_GT;
2883 else if (breserv && nreserv)
2884 /* FIXME: This is strange: with both VT_RESERVED set it
2885 looks like the result depends only on the sign of
2886 the BSTR number */
2887 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2888 else
2889 /* Numeric comparison, will be handled below.
2890 VARCMP_NULL used only to break out. */
2891 rc = VARCMP_NULL;
2892 VariantClear(&lv);
2893 VariantClear(&rv);
2894 } else
2895 /* Empty or NULL BSTR */
2896 rc = VARCMP_GT;
2898 /* Fixup the return code if we swapped left and right */
2899 if (swap) {
2900 if (rc == VARCMP_GT)
2901 rc = VARCMP_LT;
2902 else if (rc == VARCMP_LT)
2903 rc = VARCMP_GT;
2905 if (rc != VARCMP_NULL)
2906 return rc;
2909 if (xmask & VTBIT_DECIMAL)
2910 vt = VT_DECIMAL;
2911 else if (xmask & VTBIT_BSTR)
2912 vt = VT_R8;
2913 else if (xmask & VTBIT_R4)
2914 vt = VT_R4;
2915 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2916 vt = VT_R8;
2917 else if (xmask & VTBIT_CY)
2918 vt = VT_CY;
2919 else
2920 /* default to I8 */
2921 vt = VT_I8;
2923 /* Coerce the variants */
2924 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2925 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2926 /* Overflow, change to R8 */
2927 vt = VT_R8;
2928 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2930 if (FAILED(rc))
2931 return rc;
2932 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2933 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2934 /* Overflow, change to R8 */
2935 vt = VT_R8;
2936 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2937 if (FAILED(rc))
2938 return rc;
2939 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2941 if (FAILED(rc))
2942 return rc;
2944 #define _VARCMP(a,b) \
2945 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2947 switch (vt) {
2948 case VT_CY:
2949 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2950 case VT_DECIMAL:
2951 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2952 case VT_I8:
2953 return _VARCMP(V_I8(&lv), V_I8(&rv));
2954 case VT_R4:
2955 return _VARCMP(V_R4(&lv), V_R4(&rv));
2956 case VT_R8:
2957 return _VARCMP(V_R8(&lv), V_R8(&rv));
2958 default:
2959 /* We should never get here */
2960 return E_FAIL;
2962 #undef _VARCMP
2965 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
2967 HRESULT hres;
2968 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
2970 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
2971 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
2972 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
2973 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
2974 NULL, NULL);
2975 } else {
2976 hres = DISP_E_TYPEMISMATCH;
2978 return hres;
2981 /**********************************************************************
2982 * VarAnd [OLEAUT32.142]
2984 * Computes the logical AND of two variants.
2986 * PARAMS
2987 * left [I] First variant
2988 * right [I] Second variant
2989 * result [O] Result variant
2991 * RETURNS
2992 * Success: S_OK.
2993 * Failure: An HRESULT error code indicating the error.
2995 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2997 HRESULT hres = S_OK;
2998 VARTYPE resvt = VT_EMPTY;
2999 VARTYPE leftvt,rightvt;
3000 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3001 VARIANT varLeft, varRight;
3002 VARIANT tempLeft, tempRight;
3004 VariantInit(&varLeft);
3005 VariantInit(&varRight);
3006 VariantInit(&tempLeft);
3007 VariantInit(&tempRight);
3009 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3011 /* Handle VT_DISPATCH by storing and taking address of returned value */
3012 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3014 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3015 if (FAILED(hres)) goto VarAnd_Exit;
3016 left = &tempLeft;
3018 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3020 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3021 if (FAILED(hres)) goto VarAnd_Exit;
3022 right = &tempRight;
3025 leftvt = V_VT(left)&VT_TYPEMASK;
3026 rightvt = V_VT(right)&VT_TYPEMASK;
3027 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3028 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3030 if (leftExtraFlags != rightExtraFlags)
3032 hres = DISP_E_BADVARTYPE;
3033 goto VarAnd_Exit;
3035 ExtraFlags = leftExtraFlags;
3037 /* Native VarAnd always returns an error when using extra
3038 * flags or if the variant combination is I8 and INT.
3040 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
3041 (leftvt == VT_INT && rightvt == VT_I8) ||
3042 ExtraFlags != 0)
3044 hres = DISP_E_BADVARTYPE;
3045 goto VarAnd_Exit;
3048 /* Determine return type */
3049 else if (leftvt == VT_I8 || rightvt == VT_I8)
3050 resvt = VT_I8;
3051 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
3052 leftvt == VT_UINT || rightvt == VT_UINT ||
3053 leftvt == VT_INT || rightvt == VT_INT ||
3054 leftvt == VT_UINT || rightvt == VT_UINT ||
3055 leftvt == VT_R4 || rightvt == VT_R4 ||
3056 leftvt == VT_R8 || rightvt == VT_R8 ||
3057 leftvt == VT_CY || rightvt == VT_CY ||
3058 leftvt == VT_DATE || rightvt == VT_DATE ||
3059 leftvt == VT_I1 || rightvt == VT_I1 ||
3060 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3061 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3062 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3063 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3064 resvt = VT_I4;
3065 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3066 leftvt == VT_I2 || rightvt == VT_I2 ||
3067 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3068 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3069 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3070 (leftvt == VT_UI1 && rightvt == VT_UI1))
3071 resvt = VT_UI1;
3072 else
3073 resvt = VT_I2;
3074 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3075 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3076 resvt = VT_BOOL;
3077 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3078 leftvt == VT_BSTR || rightvt == VT_BSTR)
3079 resvt = VT_NULL;
3080 else
3082 hres = DISP_E_BADVARTYPE;
3083 goto VarAnd_Exit;
3086 if (leftvt == VT_NULL || rightvt == VT_NULL)
3089 * Special cases for when left variant is VT_NULL
3090 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3092 if (leftvt == VT_NULL)
3094 VARIANT_BOOL b;
3095 switch(rightvt)
3097 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3098 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3099 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3100 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3101 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3102 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3103 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3104 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3105 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3106 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3107 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3108 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3109 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3110 case VT_CY:
3111 if(V_CY(right).int64)
3112 resvt = VT_NULL;
3113 break;
3114 case VT_DECIMAL:
3115 if (DEC_HI32(&V_DECIMAL(right)) ||
3116 DEC_LO64(&V_DECIMAL(right)))
3117 resvt = VT_NULL;
3118 break;
3119 case VT_BSTR:
3120 hres = VarBoolFromStr(V_BSTR(right),
3121 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3122 if (FAILED(hres))
3123 return hres;
3124 else if (b)
3125 V_VT(result) = VT_NULL;
3126 else
3128 V_VT(result) = VT_BOOL;
3129 V_BOOL(result) = b;
3131 goto VarAnd_Exit;
3134 V_VT(result) = resvt;
3135 goto VarAnd_Exit;
3138 hres = VariantCopy(&varLeft, left);
3139 if (FAILED(hres)) goto VarAnd_Exit;
3141 hres = VariantCopy(&varRight, right);
3142 if (FAILED(hres)) goto VarAnd_Exit;
3144 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3145 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3146 else
3148 double d;
3150 if (V_VT(&varLeft) == VT_BSTR &&
3151 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3152 LOCALE_USER_DEFAULT, 0, &d)))
3153 hres = VariantChangeType(&varLeft,&varLeft,
3154 VARIANT_LOCALBOOL, VT_BOOL);
3155 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3156 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3157 if (FAILED(hres)) goto VarAnd_Exit;
3160 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3161 V_VT(&varRight) = VT_I4; /* Don't overflow */
3162 else
3164 double d;
3166 if (V_VT(&varRight) == VT_BSTR &&
3167 FAILED(VarR8FromStr(V_BSTR(&varRight),
3168 LOCALE_USER_DEFAULT, 0, &d)))
3169 hres = VariantChangeType(&varRight, &varRight,
3170 VARIANT_LOCALBOOL, VT_BOOL);
3171 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3172 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3173 if (FAILED(hres)) goto VarAnd_Exit;
3176 V_VT(result) = resvt;
3177 switch(resvt)
3179 case VT_I8:
3180 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3181 break;
3182 case VT_I4:
3183 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3184 break;
3185 case VT_I2:
3186 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3187 break;
3188 case VT_UI1:
3189 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3190 break;
3191 case VT_BOOL:
3192 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3193 break;
3194 default:
3195 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3196 leftvt,rightvt);
3199 VarAnd_Exit:
3200 VariantClear(&varLeft);
3201 VariantClear(&varRight);
3202 VariantClear(&tempLeft);
3203 VariantClear(&tempRight);
3205 return hres;
3208 /**********************************************************************
3209 * VarAdd [OLEAUT32.141]
3211 * Add two variants.
3213 * PARAMS
3214 * left [I] First variant
3215 * right [I] Second variant
3216 * result [O] Result variant
3218 * RETURNS
3219 * Success: S_OK.
3220 * Failure: An HRESULT error code indicating the error.
3222 * NOTES
3223 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3224 * UI8, INT and UINT as input variants.
3226 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3227 * same here.
3229 * FIXME
3230 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3231 * case.
3233 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3235 HRESULT hres;
3236 VARTYPE lvt, rvt, resvt, tvt;
3237 VARIANT lv, rv, tv;
3238 VARIANT tempLeft, tempRight;
3239 double r8res;
3241 /* Variant priority for coercion. Sorted from lowest to highest.
3242 VT_ERROR shows an invalid input variant type. */
3243 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3244 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3245 vt_ERROR };
3246 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3247 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3248 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3249 VT_NULL, VT_ERROR };
3251 /* Mapping for coercion from input variant to priority of result variant. */
3252 static const VARTYPE coerce[] = {
3253 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3254 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3255 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3256 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3257 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3258 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3259 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3260 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3263 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3265 VariantInit(&lv);
3266 VariantInit(&rv);
3267 VariantInit(&tv);
3268 VariantInit(&tempLeft);
3269 VariantInit(&tempRight);
3271 /* Handle VT_DISPATCH by storing and taking address of returned value */
3272 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3274 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3276 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3277 if (FAILED(hres)) goto end;
3278 left = &tempLeft;
3280 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3282 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3283 if (FAILED(hres)) goto end;
3284 right = &tempRight;
3288 lvt = V_VT(left)&VT_TYPEMASK;
3289 rvt = V_VT(right)&VT_TYPEMASK;
3291 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3292 Same for any input variant type > VT_I8 */
3293 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3294 lvt > VT_I8 || rvt > VT_I8) {
3295 hres = DISP_E_BADVARTYPE;
3296 goto end;
3299 /* Determine the variant type to coerce to. */
3300 if (coerce[lvt] > coerce[rvt]) {
3301 resvt = prio2vt[coerce[lvt]];
3302 tvt = prio2vt[coerce[rvt]];
3303 } else {
3304 resvt = prio2vt[coerce[rvt]];
3305 tvt = prio2vt[coerce[lvt]];
3308 /* Special cases where the result variant type is defined by both
3309 input variants and not only that with the highest priority */
3310 if (resvt == VT_BSTR) {
3311 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3312 resvt = VT_BSTR;
3313 else
3314 resvt = VT_R8;
3316 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3317 resvt = VT_R8;
3319 /* For overflow detection use the biggest compatible type for the
3320 addition */
3321 switch (resvt) {
3322 case VT_ERROR:
3323 hres = DISP_E_BADVARTYPE;
3324 goto end;
3325 case VT_NULL:
3326 hres = S_OK;
3327 V_VT(result) = VT_NULL;
3328 goto end;
3329 case VT_DISPATCH:
3330 FIXME("cannot handle variant type VT_DISPATCH\n");
3331 hres = DISP_E_TYPEMISMATCH;
3332 goto end;
3333 case VT_EMPTY:
3334 resvt = VT_I2;
3335 /* Fall through */
3336 case VT_UI1:
3337 case VT_I2:
3338 case VT_I4:
3339 case VT_I8:
3340 tvt = VT_I8;
3341 break;
3342 case VT_DATE:
3343 case VT_R4:
3344 tvt = VT_R8;
3345 break;
3346 default:
3347 tvt = resvt;
3350 /* Now coerce the variants */
3351 hres = VariantChangeType(&lv, left, 0, tvt);
3352 if (FAILED(hres))
3353 goto end;
3354 hres = VariantChangeType(&rv, right, 0, tvt);
3355 if (FAILED(hres))
3356 goto end;
3358 /* Do the math */
3359 hres = S_OK;
3360 V_VT(result) = resvt;
3361 switch (tvt) {
3362 case VT_DECIMAL:
3363 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3364 &V_DECIMAL(result));
3365 goto end;
3366 case VT_CY:
3367 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3368 goto end;
3369 case VT_BSTR:
3370 /* We do not add those, we concatenate them. */
3371 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3372 goto end;
3373 case VT_I8:
3374 /* Overflow detection */
3375 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3376 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3377 V_VT(result) = VT_R8;
3378 V_R8(result) = r8res;
3379 goto end;
3380 } else {
3381 V_VT(&tv) = tvt;
3382 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3384 break;
3385 case VT_R8:
3386 V_VT(&tv) = tvt;
3387 /* FIXME: overflow detection */
3388 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3389 break;
3390 default:
3391 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3392 break;
3394 if (resvt != tvt) {
3395 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3396 /* Overflow! Change to the vartype with the next higher priority.
3397 With one exception: I4 ==> R8 even if it would fit in I8 */
3398 if (resvt == VT_I4)
3399 resvt = VT_R8;
3400 else
3401 resvt = prio2vt[coerce[resvt] + 1];
3402 hres = VariantChangeType(result, &tv, 0, resvt);
3404 } else
3405 hres = VariantCopy(result, &tv);
3407 end:
3408 if (hres != S_OK) {
3409 V_VT(result) = VT_EMPTY;
3410 V_I4(result) = 0; /* No V_EMPTY */
3412 VariantClear(&lv);
3413 VariantClear(&rv);
3414 VariantClear(&tv);
3415 VariantClear(&tempLeft);
3416 VariantClear(&tempRight);
3417 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3418 return hres;
3421 /**********************************************************************
3422 * VarMul [OLEAUT32.156]
3424 * Multiply two variants.
3426 * PARAMS
3427 * left [I] First variant
3428 * right [I] Second variant
3429 * result [O] Result variant
3431 * RETURNS
3432 * Success: S_OK.
3433 * Failure: An HRESULT error code indicating the error.
3435 * NOTES
3436 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3437 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3439 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3440 * same here.
3442 * FIXME
3443 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3444 * case.
3446 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3448 HRESULT hres;
3449 VARTYPE lvt, rvt, resvt, tvt;
3450 VARIANT lv, rv, tv;
3451 VARIANT tempLeft, tempRight;
3452 double r8res;
3454 /* Variant priority for coercion. Sorted from lowest to highest.
3455 VT_ERROR shows an invalid input variant type. */
3456 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3457 vt_DECIMAL, vt_NULL, vt_ERROR };
3458 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3459 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3460 VT_DECIMAL, VT_NULL, VT_ERROR };
3462 /* Mapping for coercion from input variant to priority of result variant. */
3463 static const VARTYPE coerce[] = {
3464 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3465 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3466 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3467 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3468 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3469 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3470 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3471 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3474 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3476 VariantInit(&lv);
3477 VariantInit(&rv);
3478 VariantInit(&tv);
3479 VariantInit(&tempLeft);
3480 VariantInit(&tempRight);
3482 /* Handle VT_DISPATCH by storing and taking address of returned value */
3483 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3485 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3486 if (FAILED(hres)) goto end;
3487 left = &tempLeft;
3489 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3491 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3492 if (FAILED(hres)) goto end;
3493 right = &tempRight;
3496 lvt = V_VT(left)&VT_TYPEMASK;
3497 rvt = V_VT(right)&VT_TYPEMASK;
3499 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3500 Same for any input variant type > VT_I8 */
3501 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3502 lvt > VT_I8 || rvt > VT_I8) {
3503 hres = DISP_E_BADVARTYPE;
3504 goto end;
3507 /* Determine the variant type to coerce to. */
3508 if (coerce[lvt] > coerce[rvt]) {
3509 resvt = prio2vt[coerce[lvt]];
3510 tvt = prio2vt[coerce[rvt]];
3511 } else {
3512 resvt = prio2vt[coerce[rvt]];
3513 tvt = prio2vt[coerce[lvt]];
3516 /* Special cases where the result variant type is defined by both
3517 input variants and not only that with the highest priority */
3518 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3519 resvt = VT_R8;
3520 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3521 resvt = VT_I2;
3523 /* For overflow detection use the biggest compatible type for the
3524 multiplication */
3525 switch (resvt) {
3526 case VT_ERROR:
3527 hres = DISP_E_BADVARTYPE;
3528 goto end;
3529 case VT_NULL:
3530 hres = S_OK;
3531 V_VT(result) = VT_NULL;
3532 goto end;
3533 case VT_UI1:
3534 case VT_I2:
3535 case VT_I4:
3536 case VT_I8:
3537 tvt = VT_I8;
3538 break;
3539 case VT_R4:
3540 tvt = VT_R8;
3541 break;
3542 default:
3543 tvt = resvt;
3546 /* Now coerce the variants */
3547 hres = VariantChangeType(&lv, left, 0, tvt);
3548 if (FAILED(hres))
3549 goto end;
3550 hres = VariantChangeType(&rv, right, 0, tvt);
3551 if (FAILED(hres))
3552 goto end;
3554 /* Do the math */
3555 hres = S_OK;
3556 V_VT(&tv) = tvt;
3557 V_VT(result) = resvt;
3558 switch (tvt) {
3559 case VT_DECIMAL:
3560 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3561 &V_DECIMAL(result));
3562 goto end;
3563 case VT_CY:
3564 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3565 goto end;
3566 case VT_I8:
3567 /* Overflow detection */
3568 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3569 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3570 V_VT(result) = VT_R8;
3571 V_R8(result) = r8res;
3572 goto end;
3573 } else
3574 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3575 break;
3576 case VT_R8:
3577 /* FIXME: overflow detection */
3578 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3579 break;
3580 default:
3581 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3582 break;
3584 if (resvt != tvt) {
3585 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3586 /* Overflow! Change to the vartype with the next higher priority.
3587 With one exception: I4 ==> R8 even if it would fit in I8 */
3588 if (resvt == VT_I4)
3589 resvt = VT_R8;
3590 else
3591 resvt = prio2vt[coerce[resvt] + 1];
3593 } else
3594 hres = VariantCopy(result, &tv);
3596 end:
3597 if (hres != S_OK) {
3598 V_VT(result) = VT_EMPTY;
3599 V_I4(result) = 0; /* No V_EMPTY */
3601 VariantClear(&lv);
3602 VariantClear(&rv);
3603 VariantClear(&tv);
3604 VariantClear(&tempLeft);
3605 VariantClear(&tempRight);
3606 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3607 return hres;
3610 /**********************************************************************
3611 * VarDiv [OLEAUT32.143]
3613 * Divides one variant with another.
3615 * PARAMS
3616 * left [I] First variant
3617 * right [I] Second variant
3618 * result [O] Result variant
3620 * RETURNS
3621 * Success: S_OK.
3622 * Failure: An HRESULT error code indicating the error.
3624 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3626 HRESULT hres = S_OK;
3627 VARTYPE resvt = VT_EMPTY;
3628 VARTYPE leftvt,rightvt;
3629 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3630 VARIANT lv,rv;
3631 VARIANT tempLeft, tempRight;
3633 VariantInit(&tempLeft);
3634 VariantInit(&tempRight);
3635 VariantInit(&lv);
3636 VariantInit(&rv);
3638 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3640 /* Handle VT_DISPATCH by storing and taking address of returned value */
3641 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3643 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3644 if (FAILED(hres)) goto end;
3645 left = &tempLeft;
3647 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3649 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3650 if (FAILED(hres)) goto end;
3651 right = &tempRight;
3654 leftvt = V_VT(left)&VT_TYPEMASK;
3655 rightvt = V_VT(right)&VT_TYPEMASK;
3656 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3657 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3659 if (leftExtraFlags != rightExtraFlags)
3661 hres = DISP_E_BADVARTYPE;
3662 goto end;
3664 ExtraFlags = leftExtraFlags;
3666 /* Native VarDiv always returns an error when using extra flags */
3667 if (ExtraFlags != 0)
3669 hres = DISP_E_BADVARTYPE;
3670 goto end;
3673 /* Determine return type */
3674 if (!(rightvt == VT_EMPTY))
3676 if (leftvt == VT_NULL || rightvt == VT_NULL)
3678 V_VT(result) = VT_NULL;
3679 hres = S_OK;
3680 goto end;
3682 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3683 resvt = VT_DECIMAL;
3684 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3685 leftvt == VT_CY || rightvt == VT_CY ||
3686 leftvt == VT_DATE || rightvt == VT_DATE ||
3687 leftvt == VT_I4 || rightvt == VT_I4 ||
3688 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3689 leftvt == VT_I2 || rightvt == VT_I2 ||
3690 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3691 leftvt == VT_R8 || rightvt == VT_R8 ||
3692 leftvt == VT_UI1 || rightvt == VT_UI1)
3694 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3695 (leftvt == VT_R4 && rightvt == VT_UI1))
3696 resvt = VT_R4;
3697 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3698 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3699 (leftvt == VT_BOOL || leftvt == VT_I2)))
3700 resvt = VT_R4;
3701 else
3702 resvt = VT_R8;
3704 else if (leftvt == VT_R4 || rightvt == VT_R4)
3705 resvt = VT_R4;
3707 else if (leftvt == VT_NULL && rightvt == VT_EMPTY)
3709 V_VT(result) = VT_NULL;
3710 hres = S_OK;
3711 goto end;
3713 else
3715 hres = DISP_E_BADVARTYPE;
3716 goto end;
3719 /* coerce to the result type */
3720 hres = VariantChangeType(&lv, left, 0, resvt);
3721 if (hres != S_OK) goto end;
3723 hres = VariantChangeType(&rv, right, 0, resvt);
3724 if (hres != S_OK) goto end;
3726 /* do the math */
3727 V_VT(result) = resvt;
3728 switch (resvt)
3730 case VT_R4:
3731 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3733 hres = DISP_E_OVERFLOW;
3734 V_VT(result) = VT_EMPTY;
3736 else if (V_R4(&rv) == 0.0)
3738 hres = DISP_E_DIVBYZERO;
3739 V_VT(result) = VT_EMPTY;
3741 else
3742 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3743 break;
3744 case VT_R8:
3745 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3747 hres = DISP_E_OVERFLOW;
3748 V_VT(result) = VT_EMPTY;
3750 else if (V_R8(&rv) == 0.0)
3752 hres = DISP_E_DIVBYZERO;
3753 V_VT(result) = VT_EMPTY;
3755 else
3756 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3757 break;
3758 case VT_DECIMAL:
3759 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3760 break;
3763 end:
3764 VariantClear(&lv);
3765 VariantClear(&rv);
3766 VariantClear(&tempLeft);
3767 VariantClear(&tempRight);
3768 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3769 return hres;
3772 /**********************************************************************
3773 * VarSub [OLEAUT32.159]
3775 * Subtract two variants.
3777 * PARAMS
3778 * left [I] First variant
3779 * right [I] Second variant
3780 * result [O] Result variant
3782 * RETURNS
3783 * Success: S_OK.
3784 * Failure: An HRESULT error code indicating the error.
3786 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3788 HRESULT hres = S_OK;
3789 VARTYPE resvt = VT_EMPTY;
3790 VARTYPE leftvt,rightvt;
3791 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3792 VARIANT lv,rv;
3793 VARIANT tempLeft, tempRight;
3795 VariantInit(&lv);
3796 VariantInit(&rv);
3797 VariantInit(&tempLeft);
3798 VariantInit(&tempRight);
3800 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3802 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3803 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3804 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3806 if (NULL == V_DISPATCH(left)) {
3807 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3808 hres = DISP_E_BADVARTYPE;
3809 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3810 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3811 hres = DISP_E_BADVARTYPE;
3812 else switch (V_VT(right) & VT_TYPEMASK)
3814 case VT_VARIANT:
3815 case VT_UNKNOWN:
3816 case 15:
3817 case VT_I1:
3818 case VT_UI2:
3819 case VT_UI4:
3820 hres = DISP_E_BADVARTYPE;
3822 if (FAILED(hres)) goto end;
3824 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3825 if (FAILED(hres)) goto end;
3826 left = &tempLeft;
3828 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3829 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3830 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3832 if (NULL == V_DISPATCH(right))
3834 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3835 hres = DISP_E_BADVARTYPE;
3836 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3837 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3838 hres = DISP_E_BADVARTYPE;
3839 else switch (V_VT(left) & VT_TYPEMASK)
3841 case VT_VARIANT:
3842 case VT_UNKNOWN:
3843 case 15:
3844 case VT_I1:
3845 case VT_UI2:
3846 case VT_UI4:
3847 hres = DISP_E_BADVARTYPE;
3849 if (FAILED(hres)) goto end;
3851 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3852 if (FAILED(hres)) goto end;
3853 right = &tempRight;
3856 leftvt = V_VT(left)&VT_TYPEMASK;
3857 rightvt = V_VT(right)&VT_TYPEMASK;
3858 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3859 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3861 if (leftExtraFlags != rightExtraFlags)
3863 hres = DISP_E_BADVARTYPE;
3864 goto end;
3866 ExtraFlags = leftExtraFlags;
3868 /* determine return type and return code */
3869 /* All extra flags produce errors */
3870 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3871 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3872 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3873 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3874 ExtraFlags == VT_VECTOR ||
3875 ExtraFlags == VT_BYREF ||
3876 ExtraFlags == VT_RESERVED)
3878 hres = DISP_E_BADVARTYPE;
3879 goto end;
3881 else if (ExtraFlags >= VT_ARRAY)
3883 hres = DISP_E_TYPEMISMATCH;
3884 goto end;
3886 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3887 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3888 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3889 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3890 leftvt == VT_I1 || rightvt == VT_I1 ||
3891 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3892 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3893 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3894 leftvt == VT_INT || rightvt == VT_INT ||
3895 leftvt == VT_UINT || rightvt == VT_UINT ||
3896 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3897 leftvt == VT_RECORD || rightvt == VT_RECORD)
3899 if (leftvt == VT_RECORD && rightvt == VT_I8)
3900 hres = DISP_E_TYPEMISMATCH;
3901 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3902 hres = DISP_E_TYPEMISMATCH;
3903 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3904 hres = DISP_E_TYPEMISMATCH;
3905 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3906 hres = DISP_E_TYPEMISMATCH;
3907 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3908 hres = DISP_E_BADVARTYPE;
3909 else
3910 hres = DISP_E_BADVARTYPE;
3911 goto end;
3913 /* The following flags/types are invalid for left variant */
3914 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3915 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3916 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3918 hres = DISP_E_BADVARTYPE;
3919 goto end;
3921 /* The following flags/types are invalid for right variant */
3922 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3923 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3924 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3926 hres = DISP_E_BADVARTYPE;
3927 goto end;
3929 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3930 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3931 resvt = VT_NULL;
3932 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3933 leftvt == VT_ERROR || rightvt == VT_ERROR)
3935 hres = DISP_E_TYPEMISMATCH;
3936 goto end;
3938 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3939 resvt = VT_NULL;
3940 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3941 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3942 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3943 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3944 resvt = VT_R8;
3945 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3946 resvt = VT_DECIMAL;
3947 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3948 resvt = VT_DATE;
3949 else if (leftvt == VT_CY || rightvt == VT_CY)
3950 resvt = VT_CY;
3951 else if (leftvt == VT_R8 || rightvt == VT_R8)
3952 resvt = VT_R8;
3953 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3954 resvt = VT_R8;
3955 else if (leftvt == VT_R4 || rightvt == VT_R4)
3957 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3958 leftvt == VT_I8 || rightvt == VT_I8)
3959 resvt = VT_R8;
3960 else
3961 resvt = VT_R4;
3963 else if (leftvt == VT_I8 || rightvt == VT_I8)
3964 resvt = VT_I8;
3965 else if (leftvt == VT_I4 || rightvt == VT_I4)
3966 resvt = VT_I4;
3967 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3968 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3969 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3970 resvt = VT_I2;
3971 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3972 resvt = VT_UI1;
3973 else
3975 hres = DISP_E_TYPEMISMATCH;
3976 goto end;
3979 /* coerce to the result type */
3980 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3981 hres = VariantChangeType(&lv, left, 0, VT_R8);
3982 else
3983 hres = VariantChangeType(&lv, left, 0, resvt);
3984 if (hres != S_OK) goto end;
3985 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3986 hres = VariantChangeType(&rv, right, 0, VT_R8);
3987 else
3988 hres = VariantChangeType(&rv, right, 0, resvt);
3989 if (hres != S_OK) goto end;
3991 /* do the math */
3992 V_VT(result) = resvt;
3993 switch (resvt)
3995 case VT_NULL:
3996 break;
3997 case VT_DATE:
3998 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3999 break;
4000 case VT_CY:
4001 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
4002 break;
4003 case VT_R4:
4004 V_R4(result) = V_R4(&lv) - V_R4(&rv);
4005 break;
4006 case VT_I8:
4007 V_I8(result) = V_I8(&lv) - V_I8(&rv);
4008 break;
4009 case VT_I4:
4010 V_I4(result) = V_I4(&lv) - V_I4(&rv);
4011 break;
4012 case VT_I2:
4013 V_I2(result) = V_I2(&lv) - V_I2(&rv);
4014 break;
4015 case VT_I1:
4016 V_I1(result) = V_I1(&lv) - V_I1(&rv);
4017 break;
4018 case VT_UI1:
4019 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
4020 break;
4021 case VT_R8:
4022 V_R8(result) = V_R8(&lv) - V_R8(&rv);
4023 break;
4024 case VT_DECIMAL:
4025 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
4026 break;
4029 end:
4030 VariantClear(&lv);
4031 VariantClear(&rv);
4032 VariantClear(&tempLeft);
4033 VariantClear(&tempRight);
4034 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
4035 return hres;
4039 /**********************************************************************
4040 * VarOr [OLEAUT32.157]
4042 * Perform a logical or (OR) operation on two variants.
4044 * PARAMS
4045 * pVarLeft [I] First variant
4046 * pVarRight [I] Variant to OR with pVarLeft
4047 * pVarOut [O] Destination for OR result
4049 * RETURNS
4050 * Success: S_OK. pVarOut contains the result of the operation with its type
4051 * taken from the table listed under VarXor().
4052 * Failure: An HRESULT error code indicating the error.
4054 * NOTES
4055 * See the Notes section of VarXor() for further information.
4057 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4059 VARTYPE vt = VT_I4;
4060 VARIANT varLeft, varRight, varStr;
4061 HRESULT hRet;
4062 VARIANT tempLeft, tempRight;
4064 VariantInit(&tempLeft);
4065 VariantInit(&tempRight);
4066 VariantInit(&varLeft);
4067 VariantInit(&varRight);
4068 VariantInit(&varStr);
4070 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4072 /* Handle VT_DISPATCH by storing and taking address of returned value */
4073 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4075 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4076 if (FAILED(hRet)) goto VarOr_Exit;
4077 pVarLeft = &tempLeft;
4079 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4081 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4082 if (FAILED(hRet)) goto VarOr_Exit;
4083 pVarRight = &tempRight;
4086 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4087 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4088 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4089 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4091 hRet = DISP_E_BADVARTYPE;
4092 goto VarOr_Exit;
4095 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4097 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4099 /* NULL OR Zero is NULL, NULL OR value is value */
4100 if (V_VT(pVarLeft) == VT_NULL)
4101 pVarLeft = pVarRight; /* point to the non-NULL var */
4103 V_VT(pVarOut) = VT_NULL;
4104 V_I4(pVarOut) = 0;
4106 switch (V_VT(pVarLeft))
4108 case VT_DATE: case VT_R8:
4109 if (V_R8(pVarLeft))
4110 goto VarOr_AsEmpty;
4111 hRet = S_OK;
4112 goto VarOr_Exit;
4113 case VT_BOOL:
4114 if (V_BOOL(pVarLeft))
4115 *pVarOut = *pVarLeft;
4116 hRet = S_OK;
4117 goto VarOr_Exit;
4118 case VT_I2: case VT_UI2:
4119 if (V_I2(pVarLeft))
4120 goto VarOr_AsEmpty;
4121 hRet = S_OK;
4122 goto VarOr_Exit;
4123 case VT_I1:
4124 if (V_I1(pVarLeft))
4125 goto VarOr_AsEmpty;
4126 hRet = S_OK;
4127 goto VarOr_Exit;
4128 case VT_UI1:
4129 if (V_UI1(pVarLeft))
4130 *pVarOut = *pVarLeft;
4131 hRet = S_OK;
4132 goto VarOr_Exit;
4133 case VT_R4:
4134 if (V_R4(pVarLeft))
4135 goto VarOr_AsEmpty;
4136 hRet = S_OK;
4137 goto VarOr_Exit;
4138 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4139 if (V_I4(pVarLeft))
4140 goto VarOr_AsEmpty;
4141 hRet = S_OK;
4142 goto VarOr_Exit;
4143 case VT_CY:
4144 if (V_CY(pVarLeft).int64)
4145 goto VarOr_AsEmpty;
4146 hRet = S_OK;
4147 goto VarOr_Exit;
4148 case VT_I8: case VT_UI8:
4149 if (V_I8(pVarLeft))
4150 goto VarOr_AsEmpty;
4151 hRet = S_OK;
4152 goto VarOr_Exit;
4153 case VT_DECIMAL:
4154 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4155 goto VarOr_AsEmpty;
4156 hRet = S_OK;
4157 goto VarOr_Exit;
4158 case VT_BSTR:
4160 VARIANT_BOOL b;
4162 if (!V_BSTR(pVarLeft))
4164 hRet = DISP_E_BADVARTYPE;
4165 goto VarOr_Exit;
4168 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4169 if (SUCCEEDED(hRet) && b)
4171 V_VT(pVarOut) = VT_BOOL;
4172 V_BOOL(pVarOut) = b;
4174 goto VarOr_Exit;
4176 case VT_NULL: case VT_EMPTY:
4177 V_VT(pVarOut) = VT_NULL;
4178 hRet = S_OK;
4179 goto VarOr_Exit;
4180 default:
4181 hRet = DISP_E_BADVARTYPE;
4182 goto VarOr_Exit;
4186 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4188 if (V_VT(pVarLeft) == VT_EMPTY)
4189 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4191 VarOr_AsEmpty:
4192 /* Since one argument is empty (0), OR'ing it with the other simply
4193 * gives the others value (as 0|x => x). So just convert the other
4194 * argument to the required result type.
4196 switch (V_VT(pVarLeft))
4198 case VT_BSTR:
4199 if (!V_BSTR(pVarLeft))
4201 hRet = DISP_E_BADVARTYPE;
4202 goto VarOr_Exit;
4205 hRet = VariantCopy(&varStr, pVarLeft);
4206 if (FAILED(hRet))
4207 goto VarOr_Exit;
4208 pVarLeft = &varStr;
4209 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4210 if (FAILED(hRet))
4211 goto VarOr_Exit;
4212 /* Fall Through ... */
4213 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4214 V_VT(pVarOut) = VT_I2;
4215 break;
4216 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4217 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4218 case VT_INT: case VT_UINT: case VT_UI8:
4219 V_VT(pVarOut) = VT_I4;
4220 break;
4221 case VT_I8:
4222 V_VT(pVarOut) = VT_I8;
4223 break;
4224 default:
4225 hRet = DISP_E_BADVARTYPE;
4226 goto VarOr_Exit;
4228 hRet = VariantCopy(&varLeft, pVarLeft);
4229 if (FAILED(hRet))
4230 goto VarOr_Exit;
4231 pVarLeft = &varLeft;
4232 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4233 goto VarOr_Exit;
4236 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4238 V_VT(pVarOut) = VT_BOOL;
4239 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4240 hRet = S_OK;
4241 goto VarOr_Exit;
4244 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4246 V_VT(pVarOut) = VT_UI1;
4247 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4248 hRet = S_OK;
4249 goto VarOr_Exit;
4252 if (V_VT(pVarLeft) == VT_BSTR)
4254 hRet = VariantCopy(&varStr, pVarLeft);
4255 if (FAILED(hRet))
4256 goto VarOr_Exit;
4257 pVarLeft = &varStr;
4258 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4259 if (FAILED(hRet))
4260 goto VarOr_Exit;
4263 if (V_VT(pVarLeft) == VT_BOOL &&
4264 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4266 vt = VT_BOOL;
4268 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4269 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4270 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4271 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4273 vt = VT_I2;
4275 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4277 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4279 hRet = DISP_E_TYPEMISMATCH;
4280 goto VarOr_Exit;
4282 vt = VT_I8;
4285 hRet = VariantCopy(&varLeft, pVarLeft);
4286 if (FAILED(hRet))
4287 goto VarOr_Exit;
4289 hRet = VariantCopy(&varRight, pVarRight);
4290 if (FAILED(hRet))
4291 goto VarOr_Exit;
4293 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4294 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4295 else
4297 double d;
4299 if (V_VT(&varLeft) == VT_BSTR &&
4300 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4301 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4302 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4303 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4304 if (FAILED(hRet))
4305 goto VarOr_Exit;
4308 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4309 V_VT(&varRight) = VT_I4; /* Don't overflow */
4310 else
4312 double d;
4314 if (V_VT(&varRight) == VT_BSTR &&
4315 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4316 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4317 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4318 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4319 if (FAILED(hRet))
4320 goto VarOr_Exit;
4323 V_VT(pVarOut) = vt;
4324 if (vt == VT_I8)
4326 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4328 else if (vt == VT_I4)
4330 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4332 else
4334 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4337 VarOr_Exit:
4338 VariantClear(&varStr);
4339 VariantClear(&varLeft);
4340 VariantClear(&varRight);
4341 VariantClear(&tempLeft);
4342 VariantClear(&tempRight);
4343 return hRet;
4346 /**********************************************************************
4347 * VarAbs [OLEAUT32.168]
4349 * Convert a variant to its absolute value.
4351 * PARAMS
4352 * pVarIn [I] Source variant
4353 * pVarOut [O] Destination for converted value
4355 * RETURNS
4356 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4357 * Failure: An HRESULT error code indicating the error.
4359 * NOTES
4360 * - This function does not process by-reference variants.
4361 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4362 * according to the following table:
4363 *| Input Type Output Type
4364 *| ---------- -----------
4365 *| VT_BOOL VT_I2
4366 *| VT_BSTR VT_R8
4367 *| (All others) Unchanged
4369 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4371 VARIANT varIn;
4372 HRESULT hRet = S_OK;
4373 VARIANT temp;
4375 VariantInit(&temp);
4377 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4379 /* Handle VT_DISPATCH by storing and taking address of returned value */
4380 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4382 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4383 if (FAILED(hRet)) goto VarAbs_Exit;
4384 pVarIn = &temp;
4387 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4388 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4389 V_VT(pVarIn) == VT_ERROR)
4391 hRet = DISP_E_TYPEMISMATCH;
4392 goto VarAbs_Exit;
4394 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4396 #define ABS_CASE(typ,min) \
4397 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4398 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4399 break
4401 switch (V_VT(pVarIn))
4403 ABS_CASE(I1,I1_MIN);
4404 case VT_BOOL:
4405 V_VT(pVarOut) = VT_I2;
4406 /* BOOL->I2, Fall through ... */
4407 ABS_CASE(I2,I2_MIN);
4408 case VT_INT:
4409 ABS_CASE(I4,I4_MIN);
4410 ABS_CASE(I8,I8_MIN);
4411 ABS_CASE(R4,R4_MIN);
4412 case VT_BSTR:
4413 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4414 if (FAILED(hRet))
4415 break;
4416 V_VT(pVarOut) = VT_R8;
4417 pVarIn = &varIn;
4418 /* Fall through ... */
4419 case VT_DATE:
4420 ABS_CASE(R8,R8_MIN);
4421 case VT_CY:
4422 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4423 break;
4424 case VT_DECIMAL:
4425 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4426 break;
4427 case VT_UI1:
4428 case VT_UI2:
4429 case VT_UINT:
4430 case VT_UI4:
4431 case VT_UI8:
4432 /* No-Op */
4433 break;
4434 case VT_EMPTY:
4435 V_VT(pVarOut) = VT_I2;
4436 case VT_NULL:
4437 V_I2(pVarOut) = 0;
4438 break;
4439 default:
4440 hRet = DISP_E_BADVARTYPE;
4443 VarAbs_Exit:
4444 VariantClear(&temp);
4445 return hRet;
4448 /**********************************************************************
4449 * VarFix [OLEAUT32.169]
4451 * Truncate a variants value to a whole number.
4453 * PARAMS
4454 * pVarIn [I] Source variant
4455 * pVarOut [O] Destination for converted value
4457 * RETURNS
4458 * Success: S_OK. pVarOut contains the converted value.
4459 * Failure: An HRESULT error code indicating the error.
4461 * NOTES
4462 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4463 * according to the following table:
4464 *| Input Type Output Type
4465 *| ---------- -----------
4466 *| VT_BOOL VT_I2
4467 *| VT_EMPTY VT_I2
4468 *| VT_BSTR VT_R8
4469 *| All Others Unchanged
4470 * - The difference between this function and VarInt() is that VarInt() rounds
4471 * negative numbers away from 0, while this function rounds them towards zero.
4473 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4475 HRESULT hRet = S_OK;
4476 VARIANT temp;
4478 VariantInit(&temp);
4480 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4482 /* Handle VT_DISPATCH by storing and taking address of returned value */
4483 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4485 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4486 if (FAILED(hRet)) goto VarFix_Exit;
4487 pVarIn = &temp;
4489 V_VT(pVarOut) = V_VT(pVarIn);
4491 switch (V_VT(pVarIn))
4493 case VT_UI1:
4494 V_UI1(pVarOut) = V_UI1(pVarIn);
4495 break;
4496 case VT_BOOL:
4497 V_VT(pVarOut) = VT_I2;
4498 /* Fall through */
4499 case VT_I2:
4500 V_I2(pVarOut) = V_I2(pVarIn);
4501 break;
4502 case VT_I4:
4503 V_I4(pVarOut) = V_I4(pVarIn);
4504 break;
4505 case VT_I8:
4506 V_I8(pVarOut) = V_I8(pVarIn);
4507 break;
4508 case VT_R4:
4509 if (V_R4(pVarIn) < 0.0f)
4510 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4511 else
4512 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4513 break;
4514 case VT_BSTR:
4515 V_VT(pVarOut) = VT_R8;
4516 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4517 pVarIn = pVarOut;
4518 /* Fall through */
4519 case VT_DATE:
4520 case VT_R8:
4521 if (V_R8(pVarIn) < 0.0)
4522 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4523 else
4524 V_R8(pVarOut) = floor(V_R8(pVarIn));
4525 break;
4526 case VT_CY:
4527 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4528 break;
4529 case VT_DECIMAL:
4530 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4531 break;
4532 case VT_EMPTY:
4533 V_VT(pVarOut) = VT_I2;
4534 V_I2(pVarOut) = 0;
4535 break;
4536 case VT_NULL:
4537 /* No-Op */
4538 break;
4539 default:
4540 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4541 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4542 hRet = DISP_E_BADVARTYPE;
4543 else
4544 hRet = DISP_E_TYPEMISMATCH;
4546 VarFix_Exit:
4547 if (FAILED(hRet))
4548 V_VT(pVarOut) = VT_EMPTY;
4549 VariantClear(&temp);
4551 return hRet;
4554 /**********************************************************************
4555 * VarInt [OLEAUT32.172]
4557 * Truncate a variants value to a whole number.
4559 * PARAMS
4560 * pVarIn [I] Source variant
4561 * pVarOut [O] Destination for converted value
4563 * RETURNS
4564 * Success: S_OK. pVarOut contains the converted value.
4565 * Failure: An HRESULT error code indicating the error.
4567 * NOTES
4568 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4569 * according to the following table:
4570 *| Input Type Output Type
4571 *| ---------- -----------
4572 *| VT_BOOL VT_I2
4573 *| VT_EMPTY VT_I2
4574 *| VT_BSTR VT_R8
4575 *| All Others Unchanged
4576 * - The difference between this function and VarFix() is that VarFix() rounds
4577 * negative numbers towards 0, while this function rounds them away from zero.
4579 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4581 HRESULT hRet = S_OK;
4582 VARIANT temp;
4584 VariantInit(&temp);
4586 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4588 /* Handle VT_DISPATCH by storing and taking address of returned value */
4589 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4591 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4592 if (FAILED(hRet)) goto VarInt_Exit;
4593 pVarIn = &temp;
4595 V_VT(pVarOut) = V_VT(pVarIn);
4597 switch (V_VT(pVarIn))
4599 case VT_R4:
4600 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4601 break;
4602 case VT_BSTR:
4603 V_VT(pVarOut) = VT_R8;
4604 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4605 pVarIn = pVarOut;
4606 /* Fall through */
4607 case VT_DATE:
4608 case VT_R8:
4609 V_R8(pVarOut) = floor(V_R8(pVarIn));
4610 break;
4611 case VT_CY:
4612 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4613 break;
4614 case VT_DECIMAL:
4615 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4616 break;
4617 default:
4618 hRet = VarFix(pVarIn, pVarOut);
4620 VarInt_Exit:
4621 VariantClear(&temp);
4623 return hRet;
4626 /**********************************************************************
4627 * VarXor [OLEAUT32.167]
4629 * Perform a logical exclusive-or (XOR) operation on two variants.
4631 * PARAMS
4632 * pVarLeft [I] First variant
4633 * pVarRight [I] Variant to XOR with pVarLeft
4634 * pVarOut [O] Destination for XOR result
4636 * RETURNS
4637 * Success: S_OK. pVarOut contains the result of the operation with its type
4638 * taken from the table below).
4639 * Failure: An HRESULT error code indicating the error.
4641 * NOTES
4642 * - Neither pVarLeft or pVarRight are modified by this function.
4643 * - This function does not process by-reference variants.
4644 * - Input types of VT_BSTR may be numeric strings or boolean text.
4645 * - The type of result stored in pVarOut depends on the types of pVarLeft
4646 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4647 * or VT_NULL if the function succeeds.
4648 * - Type promotion is inconsistent and as a result certain combinations of
4649 * values will return DISP_E_OVERFLOW even when they could be represented.
4650 * This matches the behaviour of native oleaut32.
4652 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4654 VARTYPE vt;
4655 VARIANT varLeft, varRight;
4656 VARIANT tempLeft, tempRight;
4657 double d;
4658 HRESULT hRet;
4660 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4662 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4663 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4664 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4665 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4666 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4667 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4668 return DISP_E_BADVARTYPE;
4670 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4672 /* NULL XOR anything valid is NULL */
4673 V_VT(pVarOut) = VT_NULL;
4674 return S_OK;
4677 VariantInit(&tempLeft);
4678 VariantInit(&tempRight);
4680 /* Handle VT_DISPATCH by storing and taking address of returned value */
4681 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4683 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4684 if (FAILED(hRet)) goto VarXor_Exit;
4685 pVarLeft = &tempLeft;
4687 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4689 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4690 if (FAILED(hRet)) goto VarXor_Exit;
4691 pVarRight = &tempRight;
4694 /* Copy our inputs so we don't disturb anything */
4695 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4697 hRet = VariantCopy(&varLeft, pVarLeft);
4698 if (FAILED(hRet))
4699 goto VarXor_Exit;
4701 hRet = VariantCopy(&varRight, pVarRight);
4702 if (FAILED(hRet))
4703 goto VarXor_Exit;
4705 /* Try any strings first as numbers, then as VT_BOOL */
4706 if (V_VT(&varLeft) == VT_BSTR)
4708 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4709 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4710 FAILED(hRet) ? VT_BOOL : VT_I4);
4711 if (FAILED(hRet))
4712 goto VarXor_Exit;
4715 if (V_VT(&varRight) == VT_BSTR)
4717 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4718 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4719 FAILED(hRet) ? VT_BOOL : VT_I4);
4720 if (FAILED(hRet))
4721 goto VarXor_Exit;
4724 /* Determine the result type */
4725 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4727 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4729 hRet = DISP_E_TYPEMISMATCH;
4730 goto VarXor_Exit;
4732 vt = VT_I8;
4734 else
4736 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4738 case (VT_BOOL << 16) | VT_BOOL:
4739 vt = VT_BOOL;
4740 break;
4741 case (VT_UI1 << 16) | VT_UI1:
4742 vt = VT_UI1;
4743 break;
4744 case (VT_EMPTY << 16) | VT_EMPTY:
4745 case (VT_EMPTY << 16) | VT_UI1:
4746 case (VT_EMPTY << 16) | VT_I2:
4747 case (VT_EMPTY << 16) | VT_BOOL:
4748 case (VT_UI1 << 16) | VT_EMPTY:
4749 case (VT_UI1 << 16) | VT_I2:
4750 case (VT_UI1 << 16) | VT_BOOL:
4751 case (VT_I2 << 16) | VT_EMPTY:
4752 case (VT_I2 << 16) | VT_UI1:
4753 case (VT_I2 << 16) | VT_I2:
4754 case (VT_I2 << 16) | VT_BOOL:
4755 case (VT_BOOL << 16) | VT_EMPTY:
4756 case (VT_BOOL << 16) | VT_UI1:
4757 case (VT_BOOL << 16) | VT_I2:
4758 vt = VT_I2;
4759 break;
4760 default:
4761 vt = VT_I4;
4762 break;
4766 /* VT_UI4 does not overflow */
4767 if (vt != VT_I8)
4769 if (V_VT(&varLeft) == VT_UI4)
4770 V_VT(&varLeft) = VT_I4;
4771 if (V_VT(&varRight) == VT_UI4)
4772 V_VT(&varRight) = VT_I4;
4775 /* Convert our input copies to the result type */
4776 if (V_VT(&varLeft) != vt)
4777 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4778 if (FAILED(hRet))
4779 goto VarXor_Exit;
4781 if (V_VT(&varRight) != vt)
4782 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4783 if (FAILED(hRet))
4784 goto VarXor_Exit;
4786 V_VT(pVarOut) = vt;
4788 /* Calculate the result */
4789 switch (vt)
4791 case VT_I8:
4792 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4793 break;
4794 case VT_I4:
4795 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4796 break;
4797 case VT_BOOL:
4798 case VT_I2:
4799 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4800 break;
4801 case VT_UI1:
4802 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4803 break;
4806 VarXor_Exit:
4807 VariantClear(&varLeft);
4808 VariantClear(&varRight);
4809 VariantClear(&tempLeft);
4810 VariantClear(&tempRight);
4811 return hRet;
4814 /**********************************************************************
4815 * VarEqv [OLEAUT32.172]
4817 * Determine if two variants contain the same value.
4819 * PARAMS
4820 * pVarLeft [I] First variant to compare
4821 * pVarRight [I] Variant to compare to pVarLeft
4822 * pVarOut [O] Destination for comparison result
4824 * RETURNS
4825 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4826 * if equivalent or non-zero otherwise.
4827 * Failure: An HRESULT error code indicating the error.
4829 * NOTES
4830 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4831 * the result.
4833 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4835 HRESULT hRet;
4837 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4839 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4840 if (SUCCEEDED(hRet))
4842 if (V_VT(pVarOut) == VT_I8)
4843 V_I8(pVarOut) = ~V_I8(pVarOut);
4844 else
4845 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4847 return hRet;
4850 /**********************************************************************
4851 * VarNeg [OLEAUT32.173]
4853 * Negate the value of a variant.
4855 * PARAMS
4856 * pVarIn [I] Source variant
4857 * pVarOut [O] Destination for converted value
4859 * RETURNS
4860 * Success: S_OK. pVarOut contains the converted value.
4861 * Failure: An HRESULT error code indicating the error.
4863 * NOTES
4864 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4865 * according to the following table:
4866 *| Input Type Output Type
4867 *| ---------- -----------
4868 *| VT_EMPTY VT_I2
4869 *| VT_UI1 VT_I2
4870 *| VT_BOOL VT_I2
4871 *| VT_BSTR VT_R8
4872 *| All Others Unchanged (unless promoted)
4873 * - Where the negated value of a variant does not fit in its base type, the type
4874 * is promoted according to the following table:
4875 *| Input Type Promoted To
4876 *| ---------- -----------
4877 *| VT_I2 VT_I4
4878 *| VT_I4 VT_R8
4879 *| VT_I8 VT_R8
4880 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4881 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4882 * for types which are not valid. Since this is in contravention of the
4883 * meaning of those error codes and unlikely to be relied on by applications,
4884 * this implementation returns errors consistent with the other high level
4885 * variant math functions.
4887 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4889 HRESULT hRet = S_OK;
4890 VARIANT temp;
4892 VariantInit(&temp);
4894 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4896 /* Handle VT_DISPATCH by storing and taking address of returned value */
4897 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4899 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4900 if (FAILED(hRet)) goto VarNeg_Exit;
4901 pVarIn = &temp;
4903 V_VT(pVarOut) = V_VT(pVarIn);
4905 switch (V_VT(pVarIn))
4907 case VT_UI1:
4908 V_VT(pVarOut) = VT_I2;
4909 V_I2(pVarOut) = -V_UI1(pVarIn);
4910 break;
4911 case VT_BOOL:
4912 V_VT(pVarOut) = VT_I2;
4913 /* Fall through */
4914 case VT_I2:
4915 if (V_I2(pVarIn) == I2_MIN)
4917 V_VT(pVarOut) = VT_I4;
4918 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4920 else
4921 V_I2(pVarOut) = -V_I2(pVarIn);
4922 break;
4923 case VT_I4:
4924 if (V_I4(pVarIn) == I4_MIN)
4926 V_VT(pVarOut) = VT_R8;
4927 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4929 else
4930 V_I4(pVarOut) = -V_I4(pVarIn);
4931 break;
4932 case VT_I8:
4933 if (V_I8(pVarIn) == I8_MIN)
4935 V_VT(pVarOut) = VT_R8;
4936 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4937 V_R8(pVarOut) *= -1.0;
4939 else
4940 V_I8(pVarOut) = -V_I8(pVarIn);
4941 break;
4942 case VT_R4:
4943 V_R4(pVarOut) = -V_R4(pVarIn);
4944 break;
4945 case VT_DATE:
4946 case VT_R8:
4947 V_R8(pVarOut) = -V_R8(pVarIn);
4948 break;
4949 case VT_CY:
4950 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4951 break;
4952 case VT_DECIMAL:
4953 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4954 break;
4955 case VT_BSTR:
4956 V_VT(pVarOut) = VT_R8;
4957 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4958 V_R8(pVarOut) = -V_R8(pVarOut);
4959 break;
4960 case VT_EMPTY:
4961 V_VT(pVarOut) = VT_I2;
4962 V_I2(pVarOut) = 0;
4963 break;
4964 case VT_NULL:
4965 /* No-Op */
4966 break;
4967 default:
4968 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4969 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4970 hRet = DISP_E_BADVARTYPE;
4971 else
4972 hRet = DISP_E_TYPEMISMATCH;
4974 VarNeg_Exit:
4975 if (FAILED(hRet))
4976 V_VT(pVarOut) = VT_EMPTY;
4977 VariantClear(&temp);
4979 return hRet;
4982 /**********************************************************************
4983 * VarNot [OLEAUT32.174]
4985 * Perform a not operation on a variant.
4987 * PARAMS
4988 * pVarIn [I] Source variant
4989 * pVarOut [O] Destination for converted value
4991 * RETURNS
4992 * Success: S_OK. pVarOut contains the converted value.
4993 * Failure: An HRESULT error code indicating the error.
4995 * NOTES
4996 * - Strictly speaking, this function performs a bitwise ones complement
4997 * on the variants value (after possibly converting to VT_I4, see below).
4998 * This only behaves like a boolean not operation if the value in
4999 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
5000 * - To perform a genuine not operation, convert the variant to a VT_BOOL
5001 * before calling this function.
5002 * - This function does not process by-reference variants.
5003 * - The type of the value stored in pVarOut depends on the type of pVarIn,
5004 * according to the following table:
5005 *| Input Type Output Type
5006 *| ---------- -----------
5007 *| VT_EMPTY VT_I2
5008 *| VT_R4 VT_I4
5009 *| VT_R8 VT_I4
5010 *| VT_BSTR VT_I4
5011 *| VT_DECIMAL VT_I4
5012 *| VT_CY VT_I4
5013 *| (All others) Unchanged
5015 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
5017 VARIANT varIn;
5018 HRESULT hRet = S_OK;
5019 VARIANT temp;
5021 VariantInit(&temp);
5023 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
5025 /* Handle VT_DISPATCH by storing and taking address of returned value */
5026 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5028 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5029 if (FAILED(hRet)) goto VarNot_Exit;
5030 pVarIn = &temp;
5033 if (V_VT(pVarIn) == VT_BSTR)
5035 V_VT(&varIn) = VT_R8;
5036 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
5037 if (FAILED(hRet))
5039 V_VT(&varIn) = VT_BOOL;
5040 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
5042 if (FAILED(hRet)) goto VarNot_Exit;
5043 pVarIn = &varIn;
5046 V_VT(pVarOut) = V_VT(pVarIn);
5048 switch (V_VT(pVarIn))
5050 case VT_I1:
5051 V_I4(pVarOut) = ~V_I1(pVarIn);
5052 V_VT(pVarOut) = VT_I4;
5053 break;
5054 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
5055 case VT_BOOL:
5056 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
5057 case VT_UI2:
5058 V_I4(pVarOut) = ~V_UI2(pVarIn);
5059 V_VT(pVarOut) = VT_I4;
5060 break;
5061 case VT_DECIMAL:
5062 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
5063 if (FAILED(hRet))
5064 break;
5065 pVarIn = &varIn;
5066 /* Fall through ... */
5067 case VT_INT:
5068 V_VT(pVarOut) = VT_I4;
5069 /* Fall through ... */
5070 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5071 case VT_UINT:
5072 case VT_UI4:
5073 V_I4(pVarOut) = ~V_UI4(pVarIn);
5074 V_VT(pVarOut) = VT_I4;
5075 break;
5076 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5077 case VT_UI8:
5078 V_I4(pVarOut) = ~V_UI8(pVarIn);
5079 V_VT(pVarOut) = VT_I4;
5080 break;
5081 case VT_R4:
5082 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5083 V_I4(pVarOut) = ~V_I4(pVarOut);
5084 V_VT(pVarOut) = VT_I4;
5085 break;
5086 case VT_DATE:
5087 case VT_R8:
5088 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5089 V_I4(pVarOut) = ~V_I4(pVarOut);
5090 V_VT(pVarOut) = VT_I4;
5091 break;
5092 case VT_CY:
5093 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5094 V_I4(pVarOut) = ~V_I4(pVarOut);
5095 V_VT(pVarOut) = VT_I4;
5096 break;
5097 case VT_EMPTY:
5098 V_I2(pVarOut) = ~0;
5099 V_VT(pVarOut) = VT_I2;
5100 break;
5101 case VT_NULL:
5102 /* No-Op */
5103 break;
5104 default:
5105 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5106 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5107 hRet = DISP_E_BADVARTYPE;
5108 else
5109 hRet = DISP_E_TYPEMISMATCH;
5111 VarNot_Exit:
5112 if (FAILED(hRet))
5113 V_VT(pVarOut) = VT_EMPTY;
5114 VariantClear(&temp);
5116 return hRet;
5119 /**********************************************************************
5120 * VarRound [OLEAUT32.175]
5122 * Perform a round operation on a variant.
5124 * PARAMS
5125 * pVarIn [I] Source variant
5126 * deci [I] Number of decimals to round to
5127 * pVarOut [O] Destination for converted value
5129 * RETURNS
5130 * Success: S_OK. pVarOut contains the converted value.
5131 * Failure: An HRESULT error code indicating the error.
5133 * NOTES
5134 * - Floating point values are rounded to the desired number of decimals.
5135 * - Some integer types are just copied to the return variable.
5136 * - Some other integer types are not handled and fail.
5138 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5140 VARIANT varIn;
5141 HRESULT hRet = S_OK;
5142 float factor;
5143 VARIANT temp;
5145 VariantInit(&temp);
5147 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5149 /* Handle VT_DISPATCH by storing and taking address of returned value */
5150 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5152 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5153 if (FAILED(hRet)) goto VarRound_Exit;
5154 pVarIn = &temp;
5157 switch (V_VT(pVarIn))
5159 /* cases that fail on windows */
5160 case VT_I1:
5161 case VT_I8:
5162 case VT_UI2:
5163 case VT_UI4:
5164 hRet = DISP_E_BADVARTYPE;
5165 break;
5167 /* cases just copying in to out */
5168 case VT_UI1:
5169 V_VT(pVarOut) = V_VT(pVarIn);
5170 V_UI1(pVarOut) = V_UI1(pVarIn);
5171 break;
5172 case VT_I2:
5173 V_VT(pVarOut) = V_VT(pVarIn);
5174 V_I2(pVarOut) = V_I2(pVarIn);
5175 break;
5176 case VT_I4:
5177 V_VT(pVarOut) = V_VT(pVarIn);
5178 V_I4(pVarOut) = V_I4(pVarIn);
5179 break;
5180 case VT_NULL:
5181 V_VT(pVarOut) = V_VT(pVarIn);
5182 /* value unchanged */
5183 break;
5185 /* cases that change type */
5186 case VT_EMPTY:
5187 V_VT(pVarOut) = VT_I2;
5188 V_I2(pVarOut) = 0;
5189 break;
5190 case VT_BOOL:
5191 V_VT(pVarOut) = VT_I2;
5192 V_I2(pVarOut) = V_BOOL(pVarIn);
5193 break;
5194 case VT_BSTR:
5195 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5196 if (FAILED(hRet))
5197 break;
5198 V_VT(&varIn)=VT_R8;
5199 pVarIn = &varIn;
5200 /* Fall through ... */
5202 /* cases we need to do math */
5203 case VT_R8:
5204 if (V_R8(pVarIn)>0) {
5205 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5206 } else {
5207 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5209 V_VT(pVarOut) = V_VT(pVarIn);
5210 break;
5211 case VT_R4:
5212 if (V_R4(pVarIn)>0) {
5213 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5214 } else {
5215 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5217 V_VT(pVarOut) = V_VT(pVarIn);
5218 break;
5219 case VT_DATE:
5220 if (V_DATE(pVarIn)>0) {
5221 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5222 } else {
5223 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5225 V_VT(pVarOut) = V_VT(pVarIn);
5226 break;
5227 case VT_CY:
5228 if (deci>3)
5229 factor=1;
5230 else
5231 factor=pow(10, 4-deci);
5233 if (V_CY(pVarIn).int64>0) {
5234 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5235 } else {
5236 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5238 V_VT(pVarOut) = V_VT(pVarIn);
5239 break;
5241 /* cases we don't know yet */
5242 default:
5243 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5244 V_VT(pVarIn) & VT_TYPEMASK, deci);
5245 hRet = DISP_E_BADVARTYPE;
5247 VarRound_Exit:
5248 if (FAILED(hRet))
5249 V_VT(pVarOut) = VT_EMPTY;
5250 VariantClear(&temp);
5252 TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5253 return hRet;
5256 /**********************************************************************
5257 * VarIdiv [OLEAUT32.153]
5259 * Converts input variants to integers and divides them.
5261 * PARAMS
5262 * left [I] Left hand variant
5263 * right [I] Right hand variant
5264 * result [O] Destination for quotient
5266 * RETURNS
5267 * Success: S_OK. result contains the quotient.
5268 * Failure: An HRESULT error code indicating the error.
5270 * NOTES
5271 * If either expression is null, null is returned, as per MSDN
5273 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5275 HRESULT hres = S_OK;
5276 VARTYPE resvt = VT_EMPTY;
5277 VARTYPE leftvt,rightvt;
5278 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5279 VARIANT lv,rv;
5280 VARIANT tempLeft, tempRight;
5282 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5284 VariantInit(&lv);
5285 VariantInit(&rv);
5286 VariantInit(&tempLeft);
5287 VariantInit(&tempRight);
5289 leftvt = V_VT(left)&VT_TYPEMASK;
5290 rightvt = V_VT(right)&VT_TYPEMASK;
5291 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5292 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5294 if (leftExtraFlags != rightExtraFlags)
5296 hres = DISP_E_BADVARTYPE;
5297 goto end;
5299 ExtraFlags = leftExtraFlags;
5301 /* Native VarIdiv always returns an error when using extra
5302 * flags or if the variant combination is I8 and INT.
5304 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5305 (leftvt == VT_INT && rightvt == VT_I8) ||
5306 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5307 ExtraFlags != 0)
5309 hres = DISP_E_BADVARTYPE;
5310 goto end;
5313 /* Determine variant type */
5314 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5316 V_VT(result) = VT_NULL;
5317 hres = S_OK;
5318 goto end;
5320 else if (leftvt == VT_I8 || rightvt == VT_I8)
5321 resvt = VT_I8;
5322 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5323 leftvt == VT_INT || rightvt == VT_INT ||
5324 leftvt == VT_UINT || rightvt == VT_UINT ||
5325 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5326 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5327 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5328 leftvt == VT_I1 || rightvt == VT_I1 ||
5329 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5330 leftvt == VT_DATE || rightvt == VT_DATE ||
5331 leftvt == VT_CY || rightvt == VT_CY ||
5332 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5333 leftvt == VT_R8 || rightvt == VT_R8 ||
5334 leftvt == VT_R4 || rightvt == VT_R4)
5335 resvt = VT_I4;
5336 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5337 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5338 leftvt == VT_EMPTY)
5339 resvt = VT_I2;
5340 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5341 resvt = VT_UI1;
5342 else
5344 hres = DISP_E_BADVARTYPE;
5345 goto end;
5348 /* coerce to the result type */
5349 hres = VariantChangeType(&lv, left, 0, resvt);
5350 if (hres != S_OK) goto end;
5351 hres = VariantChangeType(&rv, right, 0, resvt);
5352 if (hres != S_OK) goto end;
5354 /* do the math */
5355 V_VT(result) = resvt;
5356 switch (resvt)
5358 case VT_UI1:
5359 if (V_UI1(&rv) == 0)
5361 hres = DISP_E_DIVBYZERO;
5362 V_VT(result) = VT_EMPTY;
5364 else
5365 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5366 break;
5367 case VT_I2:
5368 if (V_I2(&rv) == 0)
5370 hres = DISP_E_DIVBYZERO;
5371 V_VT(result) = VT_EMPTY;
5373 else
5374 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5375 break;
5376 case VT_I4:
5377 if (V_I4(&rv) == 0)
5379 hres = DISP_E_DIVBYZERO;
5380 V_VT(result) = VT_EMPTY;
5382 else
5383 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5384 break;
5385 case VT_I8:
5386 if (V_I8(&rv) == 0)
5388 hres = DISP_E_DIVBYZERO;
5389 V_VT(result) = VT_EMPTY;
5391 else
5392 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5393 break;
5394 default:
5395 FIXME("Couldn't integer divide variant types %d,%d\n",
5396 leftvt,rightvt);
5399 end:
5400 VariantClear(&lv);
5401 VariantClear(&rv);
5402 VariantClear(&tempLeft);
5403 VariantClear(&tempRight);
5405 return hres;
5409 /**********************************************************************
5410 * VarMod [OLEAUT32.155]
5412 * Perform the modulus operation of the right hand variant on the left
5414 * PARAMS
5415 * left [I] Left hand variant
5416 * right [I] Right hand variant
5417 * result [O] Destination for converted value
5419 * RETURNS
5420 * Success: S_OK. result contains the remainder.
5421 * Failure: An HRESULT error code indicating the error.
5423 * NOTE:
5424 * If an error occurs the type of result will be modified but the value will not be.
5425 * Doesn't support arrays or any special flags yet.
5427 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5429 BOOL lOk = TRUE;
5430 HRESULT rc = E_FAIL;
5431 int resT = 0;
5432 VARIANT lv,rv;
5433 VARIANT tempLeft, tempRight;
5435 VariantInit(&tempLeft);
5436 VariantInit(&tempRight);
5437 VariantInit(&lv);
5438 VariantInit(&rv);
5440 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5442 /* Handle VT_DISPATCH by storing and taking address of returned value */
5443 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5445 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5446 if (FAILED(rc)) goto end;
5447 left = &tempLeft;
5449 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5451 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5452 if (FAILED(rc)) goto end;
5453 right = &tempRight;
5456 /* check for invalid inputs */
5457 lOk = TRUE;
5458 switch (V_VT(left) & VT_TYPEMASK) {
5459 case VT_BOOL :
5460 case VT_I1 :
5461 case VT_I2 :
5462 case VT_I4 :
5463 case VT_I8 :
5464 case VT_INT :
5465 case VT_UI1 :
5466 case VT_UI2 :
5467 case VT_UI4 :
5468 case VT_UI8 :
5469 case VT_UINT :
5470 case VT_R4 :
5471 case VT_R8 :
5472 case VT_CY :
5473 case VT_EMPTY:
5474 case VT_DATE :
5475 case VT_BSTR :
5476 case VT_DECIMAL:
5477 break;
5478 case VT_VARIANT:
5479 case VT_UNKNOWN:
5480 V_VT(result) = VT_EMPTY;
5481 rc = DISP_E_TYPEMISMATCH;
5482 goto end;
5483 case VT_ERROR:
5484 rc = DISP_E_TYPEMISMATCH;
5485 goto end;
5486 case VT_RECORD:
5487 V_VT(result) = VT_EMPTY;
5488 rc = DISP_E_TYPEMISMATCH;
5489 goto end;
5490 case VT_NULL:
5491 break;
5492 default:
5493 V_VT(result) = VT_EMPTY;
5494 rc = DISP_E_BADVARTYPE;
5495 goto end;
5499 switch (V_VT(right) & VT_TYPEMASK) {
5500 case VT_BOOL :
5501 case VT_I1 :
5502 case VT_I2 :
5503 case VT_I4 :
5504 case VT_I8 :
5505 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5507 V_VT(result) = VT_EMPTY;
5508 rc = DISP_E_TYPEMISMATCH;
5509 goto end;
5511 case VT_INT :
5512 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5514 V_VT(result) = VT_EMPTY;
5515 rc = DISP_E_TYPEMISMATCH;
5516 goto end;
5518 case VT_UI1 :
5519 case VT_UI2 :
5520 case VT_UI4 :
5521 case VT_UI8 :
5522 case VT_UINT :
5523 case VT_R4 :
5524 case VT_R8 :
5525 case VT_CY :
5526 if(V_VT(left) == VT_EMPTY)
5528 V_VT(result) = VT_I4;
5529 rc = S_OK;
5530 goto end;
5532 case VT_EMPTY:
5533 case VT_DATE :
5534 case VT_DECIMAL:
5535 if(V_VT(left) == VT_ERROR)
5537 V_VT(result) = VT_EMPTY;
5538 rc = DISP_E_TYPEMISMATCH;
5539 goto end;
5541 case VT_BSTR:
5542 if(V_VT(left) == VT_NULL)
5544 V_VT(result) = VT_NULL;
5545 rc = S_OK;
5546 goto end;
5548 break;
5550 case VT_VOID:
5551 V_VT(result) = VT_EMPTY;
5552 rc = DISP_E_BADVARTYPE;
5553 goto end;
5554 case VT_NULL:
5555 if(V_VT(left) == VT_VOID)
5557 V_VT(result) = VT_EMPTY;
5558 rc = DISP_E_BADVARTYPE;
5559 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5560 lOk)
5562 V_VT(result) = VT_NULL;
5563 rc = S_OK;
5564 } else
5566 V_VT(result) = VT_NULL;
5567 rc = DISP_E_BADVARTYPE;
5569 goto end;
5570 case VT_VARIANT:
5571 case VT_UNKNOWN:
5572 V_VT(result) = VT_EMPTY;
5573 rc = DISP_E_TYPEMISMATCH;
5574 goto end;
5575 case VT_ERROR:
5576 rc = DISP_E_TYPEMISMATCH;
5577 goto end;
5578 case VT_RECORD:
5579 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5581 V_VT(result) = VT_EMPTY;
5582 rc = DISP_E_BADVARTYPE;
5583 } else
5585 V_VT(result) = VT_EMPTY;
5586 rc = DISP_E_TYPEMISMATCH;
5588 goto end;
5589 default:
5590 V_VT(result) = VT_EMPTY;
5591 rc = DISP_E_BADVARTYPE;
5592 goto end;
5595 /* determine the result type */
5596 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5597 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5598 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5599 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5600 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5601 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5602 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5603 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5604 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5605 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5606 else resT = VT_I4; /* most outputs are I4 */
5608 /* convert to I8 for the modulo */
5609 rc = VariantChangeType(&lv, left, 0, VT_I8);
5610 if(FAILED(rc))
5612 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5613 goto end;
5616 rc = VariantChangeType(&rv, right, 0, VT_I8);
5617 if(FAILED(rc))
5619 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5620 goto end;
5623 /* if right is zero set VT_EMPTY and return divide by zero */
5624 if(V_I8(&rv) == 0)
5626 V_VT(result) = VT_EMPTY;
5627 rc = DISP_E_DIVBYZERO;
5628 goto end;
5631 /* perform the modulo operation */
5632 V_VT(result) = VT_I8;
5633 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5635 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5636 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5637 wine_dbgstr_longlong(V_I8(result)));
5639 /* convert left and right to the destination type */
5640 rc = VariantChangeType(result, result, 0, resT);
5641 if(FAILED(rc))
5643 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5644 /* fall to end of function */
5647 end:
5648 VariantClear(&lv);
5649 VariantClear(&rv);
5650 VariantClear(&tempLeft);
5651 VariantClear(&tempRight);
5652 return rc;
5655 /**********************************************************************
5656 * VarPow [OLEAUT32.158]
5658 * Computes the power of one variant to another variant.
5660 * PARAMS
5661 * left [I] First variant
5662 * right [I] Second variant
5663 * result [O] Result variant
5665 * RETURNS
5666 * Success: S_OK.
5667 * Failure: An HRESULT error code indicating the error.
5669 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5671 HRESULT hr = S_OK;
5672 VARIANT dl,dr;
5673 VARTYPE resvt = VT_EMPTY;
5674 VARTYPE leftvt,rightvt;
5675 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5676 VARIANT tempLeft, tempRight;
5678 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5680 VariantInit(&dl);
5681 VariantInit(&dr);
5682 VariantInit(&tempLeft);
5683 VariantInit(&tempRight);
5685 /* Handle VT_DISPATCH by storing and taking address of returned value */
5686 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5688 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5689 if (FAILED(hr)) goto end;
5690 left = &tempLeft;
5692 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5694 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5695 if (FAILED(hr)) goto end;
5696 right = &tempRight;
5699 leftvt = V_VT(left)&VT_TYPEMASK;
5700 rightvt = V_VT(right)&VT_TYPEMASK;
5701 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5702 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5704 if (leftExtraFlags != rightExtraFlags)
5706 hr = DISP_E_BADVARTYPE;
5707 goto end;
5709 ExtraFlags = leftExtraFlags;
5711 /* Native VarPow always returns an error when using extra flags */
5712 if (ExtraFlags != 0)
5714 hr = DISP_E_BADVARTYPE;
5715 goto end;
5718 /* Determine return type */
5719 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5720 V_VT(result) = VT_NULL;
5721 hr = S_OK;
5722 goto end;
5724 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5725 leftvt == VT_I4 || leftvt == VT_R4 ||
5726 leftvt == VT_R8 || leftvt == VT_CY ||
5727 leftvt == VT_DATE || leftvt == VT_BSTR ||
5728 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5729 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5730 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5731 rightvt == VT_I4 || rightvt == VT_R4 ||
5732 rightvt == VT_R8 || rightvt == VT_CY ||
5733 rightvt == VT_DATE || rightvt == VT_BSTR ||
5734 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5735 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5736 resvt = VT_R8;
5737 else
5739 hr = DISP_E_BADVARTYPE;
5740 goto end;
5743 hr = VariantChangeType(&dl,left,0,resvt);
5744 if (FAILED(hr)) {
5745 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5746 hr = E_FAIL;
5747 goto end;
5750 hr = VariantChangeType(&dr,right,0,resvt);
5751 if (FAILED(hr)) {
5752 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5753 hr = E_FAIL;
5754 goto end;
5757 V_VT(result) = VT_R8;
5758 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5760 end:
5761 VariantClear(&dl);
5762 VariantClear(&dr);
5763 VariantClear(&tempLeft);
5764 VariantClear(&tempRight);
5766 return hr;
5769 /**********************************************************************
5770 * VarImp [OLEAUT32.154]
5772 * Bitwise implication of two variants.
5774 * PARAMS
5775 * left [I] First variant
5776 * right [I] Second variant
5777 * result [O] Result variant
5779 * RETURNS
5780 * Success: S_OK.
5781 * Failure: An HRESULT error code indicating the error.
5783 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5785 HRESULT hres = S_OK;
5786 VARTYPE resvt = VT_EMPTY;
5787 VARTYPE leftvt,rightvt;
5788 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5789 VARIANT lv,rv;
5790 double d;
5791 VARIANT tempLeft, tempRight;
5793 VariantInit(&lv);
5794 VariantInit(&rv);
5795 VariantInit(&tempLeft);
5796 VariantInit(&tempRight);
5798 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5800 /* Handle VT_DISPATCH by storing and taking address of returned value */
5801 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5803 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5804 if (FAILED(hres)) goto VarImp_Exit;
5805 left = &tempLeft;
5807 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5809 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5810 if (FAILED(hres)) goto VarImp_Exit;
5811 right = &tempRight;
5814 leftvt = V_VT(left)&VT_TYPEMASK;
5815 rightvt = V_VT(right)&VT_TYPEMASK;
5816 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5817 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5819 if (leftExtraFlags != rightExtraFlags)
5821 hres = DISP_E_BADVARTYPE;
5822 goto VarImp_Exit;
5824 ExtraFlags = leftExtraFlags;
5826 /* Native VarImp always returns an error when using extra
5827 * flags or if the variants are I8 and INT.
5829 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5830 ExtraFlags != 0)
5832 hres = DISP_E_BADVARTYPE;
5833 goto VarImp_Exit;
5836 /* Determine result type */
5837 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5838 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5840 V_VT(result) = VT_NULL;
5841 hres = S_OK;
5842 goto VarImp_Exit;
5844 else if (leftvt == VT_I8 || rightvt == VT_I8)
5845 resvt = VT_I8;
5846 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5847 leftvt == VT_INT || rightvt == VT_INT ||
5848 leftvt == VT_UINT || rightvt == VT_UINT ||
5849 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5850 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5851 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5852 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5853 leftvt == VT_DATE || rightvt == VT_DATE ||
5854 leftvt == VT_CY || rightvt == VT_CY ||
5855 leftvt == VT_R8 || rightvt == VT_R8 ||
5856 leftvt == VT_R4 || rightvt == VT_R4 ||
5857 leftvt == VT_I1 || rightvt == VT_I1)
5858 resvt = VT_I4;
5859 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5860 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5861 (leftvt == VT_NULL && rightvt == VT_UI1))
5862 resvt = VT_UI1;
5863 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5864 leftvt == VT_I2 || rightvt == VT_I2 ||
5865 leftvt == VT_UI1 || rightvt == VT_UI1)
5866 resvt = VT_I2;
5867 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5868 leftvt == VT_BSTR || rightvt == VT_BSTR)
5869 resvt = VT_BOOL;
5871 /* VT_NULL requires special handling for when the opposite
5872 * variant is equal to something other than -1.
5873 * (NULL Imp 0 = NULL, NULL Imp n = n)
5875 if (leftvt == VT_NULL)
5877 VARIANT_BOOL b;
5878 switch(rightvt)
5880 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5881 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5882 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5883 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5884 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5885 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5886 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5887 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5888 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5889 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5890 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5891 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5892 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5893 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5894 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5895 case VT_DECIMAL:
5896 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5897 resvt = VT_NULL;
5898 break;
5899 case VT_BSTR:
5900 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5901 if (FAILED(hres)) goto VarImp_Exit;
5902 else if (!b)
5903 V_VT(result) = VT_NULL;
5904 else
5906 V_VT(result) = VT_BOOL;
5907 V_BOOL(result) = b;
5909 goto VarImp_Exit;
5911 if (resvt == VT_NULL)
5913 V_VT(result) = resvt;
5914 goto VarImp_Exit;
5916 else
5918 hres = VariantChangeType(result,right,0,resvt);
5919 goto VarImp_Exit;
5923 /* Special handling is required when NULL is the right variant.
5924 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5926 else if (rightvt == VT_NULL)
5928 VARIANT_BOOL b;
5929 switch(leftvt)
5931 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5932 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5933 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5934 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5935 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5936 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5937 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5938 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5939 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5940 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5941 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5942 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5943 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5944 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5945 case VT_DECIMAL:
5946 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5947 resvt = VT_NULL;
5948 break;
5949 case VT_BSTR:
5950 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5951 if (FAILED(hres)) goto VarImp_Exit;
5952 else if (b == VARIANT_TRUE)
5953 resvt = VT_NULL;
5955 if (resvt == VT_NULL)
5957 V_VT(result) = resvt;
5958 goto VarImp_Exit;
5962 hres = VariantCopy(&lv, left);
5963 if (FAILED(hres)) goto VarImp_Exit;
5965 if (rightvt == VT_NULL)
5967 memset( &rv, 0, sizeof(rv) );
5968 V_VT(&rv) = resvt;
5970 else
5972 hres = VariantCopy(&rv, right);
5973 if (FAILED(hres)) goto VarImp_Exit;
5976 if (V_VT(&lv) == VT_BSTR &&
5977 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5978 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5979 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5980 hres = VariantChangeType(&lv,&lv,0,resvt);
5981 if (FAILED(hres)) goto VarImp_Exit;
5983 if (V_VT(&rv) == VT_BSTR &&
5984 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5985 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5986 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5987 hres = VariantChangeType(&rv, &rv, 0, resvt);
5988 if (FAILED(hres)) goto VarImp_Exit;
5990 /* do the math */
5991 V_VT(result) = resvt;
5992 switch (resvt)
5994 case VT_I8:
5995 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5996 break;
5997 case VT_I4:
5998 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5999 break;
6000 case VT_I2:
6001 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
6002 break;
6003 case VT_UI1:
6004 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
6005 break;
6006 case VT_BOOL:
6007 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
6008 break;
6009 default:
6010 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
6011 leftvt,rightvt);
6014 VarImp_Exit:
6016 VariantClear(&lv);
6017 VariantClear(&rv);
6018 VariantClear(&tempLeft);
6019 VariantClear(&tempRight);
6021 return hres;