Get rid of HEAP_strdupWtoA calls.
[wine/multimedia.git] / loader / preloader.c
blobaebb6983052c3af79b788849d50285d98504648e
1 /*
2 * Preloader for ld.so
4 * Copyright (C) 1995,96,97,98,99,2000,2001,2002 Free Software Foundation, Inc.
5 * Copyright (C) 2004 Mike McCormack for CodeWeavers
6 * Copyright (C) 2004 Alexandre Julliard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * Design notes
26 * The goal of this program is to be a workaround for exec-shield, as used
27 * by the Linux kernel distributed with Fedora Core and other distros.
29 * To do this, we implement our own shared object loader that reserves memory
30 * that is important to Wine, and then loads the main binary and its ELF
31 * interpreter.
33 * We will try to set up the stack and memory area so that the program that
34 * loads after us (eg. the wine binary) never knows we were here, except that
35 * areas of memory it needs are already magically reserved.
37 * The following memory areas are important to Wine:
38 * 0x00000000 - 0x00110000 the DOS area
39 * 0x80000000 - 0x81000000 the shared heap
40 * ??? - ??? the PE binary load address (usually starting at 0x00400000)
42 * If this program is used as the shared object loader, the only difference
43 * that the loaded programs should see is that this loader will be mapped
44 * into memory when it starts.
48 * References (things I consulted to understand how ELF loading works):
50 * glibc 2.3.2 elf/dl-load.c
51 * http://www.gnu.org/directory/glibc.html
53 * Linux 2.6.4 fs/binfmt_elf.c
54 * ftp://ftp.kernel.org/pub/linux/kernel/v2.6/linux-2.6.4.tar.bz2
56 * Userland exec, by <grugq@hcunix.net>
57 * http://cert.uni-stuttgart.de/archive/bugtraq/2004/01/msg00002.html
59 * The ELF specification:
60 * http://www.linuxbase.org/spec/booksets/LSB-Embedded/LSB-Embedded/book387.html
63 #include "config.h"
64 #include "wine/port.h"
66 #include <stdarg.h>
67 #include <stdio.h>
68 #include <stdlib.h>
69 #include <string.h>
70 #include <sys/types.h>
71 #include <sys/stat.h>
72 #include <fcntl.h>
73 #ifdef HAVE_SYS_MMAN_H
74 # include <sys/mman.h>
75 #endif
76 #ifdef HAVE_SYS_SYSCALL_H
77 # include <sys/syscall.h>
78 #endif
79 #ifdef HAVE_UNISTD_H
80 # include <unistd.h>
81 #endif
82 #ifdef HAVE_ELF_H
83 # include <elf.h>
84 #endif
85 #ifdef HAVE_LINK_H
86 # include <link.h>
87 #endif
88 #ifdef HAVE_SYS_LINK_H
89 # include <sys/link.h>
90 #endif
92 #include "main.h"
94 /* ELF definitions */
95 #define ELF_PREFERRED_ADDRESS(loader, maplength, mapstartpref) (mapstartpref)
96 #define ELF_FIXED_ADDRESS(loader, mapstart) ((void) 0)
98 #define MAP_BASE_ADDR(l) 0
100 #ifndef MAP_COPY
101 #define MAP_COPY MAP_PRIVATE
102 #endif
103 #ifndef MAP_NORESERVE
104 #define MAP_NORESERVE 0
105 #endif
107 static struct wine_preload_info preload_info[] =
109 { (void *)0x00000000, 0x00110000 }, /* DOS area */
110 { (void *)0x80000000, 0x01000000 }, /* shared heap */
111 { (void *)0x00110000, 0x0fef0000 }, /* default PE exe range (may be set with WINEPRELOADRESERVE) */
112 { 0, 0 } /* end of list */
115 /* debugging */
116 #undef DUMP_SEGMENTS
117 #undef DUMP_AUX_INFO
118 #undef DUMP_SYMS
120 /* older systems may not define these */
121 #ifndef PT_TLS
122 #define PT_TLS 7
123 #endif
125 #ifndef AT_SYSINFO
126 #define AT_SYSINFO 32
127 #endif
128 #ifndef AT_SYSINFO_EHDR
129 #define AT_SYSINFO_EHDR 33
130 #endif
132 static unsigned int page_size, page_mask;
133 static char *preloader_start, *preloader_end;
135 struct wld_link_map {
136 ElfW(Addr) l_addr;
137 ElfW(Dyn) *l_ld;
138 ElfW(Phdr)*l_phdr;
139 ElfW(Addr) l_entry;
140 ElfW(Half) l_ldnum;
141 ElfW(Half) l_phnum;
142 ElfW(Addr) l_map_start, l_map_end;
143 ElfW(Addr) l_interp;
148 * The _start function is the entry and exit point of this program
150 * It calls wld_start, passing a pointer to the args it receives
151 * then jumps to the address wld_start returns.
153 void _start();
154 extern char _end[];
155 __ASM_GLOBAL_FUNC(_start,
156 "\tmovl %esp,%eax\n"
157 "\tleal -128(%esp),%esp\n" /* allocate some space for extra aux values */
158 "\tpushl %eax\n" /* orig stack pointer */
159 "\tpushl %esp\n" /* ptr to orig stack pointer */
160 "\tcall wld_start\n"
161 "\tpopl %ecx\n" /* remove ptr to stack pointer */
162 "\tpopl %esp\n" /* new stack pointer */
163 "\tpush %eax\n" /* ELF interpreter entry point */
164 "\txor %eax,%eax\n"
165 "\txor %ecx,%ecx\n"
166 "\txor %edx,%edx\n"
167 "\tret\n")
169 /* wrappers for Linux system calls */
171 #define SYSCALL_RET(ret) (((ret) < 0 && (ret) > -4096) ? -1 : (ret))
173 static inline __attribute__((noreturn)) void wld_exit( int code )
175 for (;;) /* avoid warning */
176 __asm__ __volatile__( "pushl %%ebx; movl %1,%%ebx; int $0x80; popl %%ebx"
177 : : "a" (SYS_exit), "r" (code) );
180 static inline int wld_open( const char *name, int flags )
182 int ret;
183 __asm__ __volatile__( "pushl %%ebx; movl %2,%%ebx; int $0x80; popl %%ebx"
184 : "=a" (ret) : "0" (SYS_open), "r" (name), "c" (flags) );
185 return SYSCALL_RET(ret);
188 static inline int wld_close( int fd )
190 int ret;
191 __asm__ __volatile__( "pushl %%ebx; movl %2,%%ebx; int $0x80; popl %%ebx"
192 : "=a" (ret) : "0" (SYS_close), "r" (fd) );
193 return SYSCALL_RET(ret);
196 static inline ssize_t wld_read( int fd, void *buffer, size_t len )
198 int ret;
199 __asm__ __volatile__( "pushl %%ebx; movl %2,%%ebx; int $0x80; popl %%ebx"
200 : "=a" (ret)
201 : "0" (SYS_read), "r" (fd), "c" (buffer), "d" (len)
202 : "memory" );
203 return SYSCALL_RET(ret);
206 static inline ssize_t wld_write( int fd, const void *buffer, size_t len )
208 int ret;
209 __asm__ __volatile__( "pushl %%ebx; movl %2,%%ebx; int $0x80; popl %%ebx"
210 : "=a" (ret) : "0" (SYS_write), "r" (fd), "c" (buffer), "d" (len) );
211 return SYSCALL_RET(ret);
214 static inline int wld_mprotect( const void *addr, size_t len, int prot )
216 int ret;
217 __asm__ __volatile__( "pushl %%ebx; movl %2,%%ebx; int $0x80; popl %%ebx"
218 : "=a" (ret) : "0" (SYS_mprotect), "r" (addr), "c" (len), "d" (prot) );
219 return SYSCALL_RET(ret);
222 static void *wld_mmap( void *start, size_t len, int prot, int flags, int fd, off_t offset )
224 int ret;
226 struct
228 void *addr;
229 unsigned int length;
230 unsigned int prot;
231 unsigned int flags;
232 unsigned int fd;
233 unsigned int offset;
234 } args;
236 args.addr = start;
237 args.length = len;
238 args.prot = prot;
239 args.flags = flags;
240 args.fd = fd;
241 args.offset = offset;
242 __asm__ __volatile__( "pushl %%ebx; movl %2,%%ebx; int $0x80; popl %%ebx"
243 : "=a" (ret) : "0" (SYS_mmap), "q" (&args) : "memory" );
244 return (void *)SYSCALL_RET(ret);
247 static inline uid_t wld_getuid(void)
249 uid_t ret;
250 __asm__( "int $0x80" : "=a" (ret) : "0" (SYS_getuid) );
251 return ret;
254 static inline uid_t wld_geteuid(void)
256 uid_t ret;
257 __asm__( "int $0x80" : "=a" (ret) : "0" (SYS_geteuid) );
258 return ret;
261 static inline gid_t wld_getgid(void)
263 gid_t ret;
264 __asm__( "int $0x80" : "=a" (ret) : "0" (SYS_getgid) );
265 return ret;
268 static inline gid_t wld_getegid(void)
270 gid_t ret;
271 __asm__( "int $0x80" : "=a" (ret) : "0" (SYS_getegid) );
272 return ret;
276 /* replacement for libc functions */
278 static int wld_strcmp( const char *str1, const char *str2 )
280 while (*str1 && (*str1 == *str2)) { str1++; str2++; }
281 return *str1 - *str2;
284 static int wld_strncmp( const char *str1, const char *str2, size_t len )
286 if (len <= 0) return 0;
287 while ((--len > 0) && *str1 && (*str1 == *str2)) { str1++; str2++; }
288 return *str1 - *str2;
291 static inline void *wld_memset( void *dest, int val, size_t len )
293 char *dst = dest;
294 while (len--) *dst++ = val;
295 return dest;
299 * wld_printf - just the basics
301 * %x prints a hex number
302 * %s prints a string
304 static int wld_vsprintf(char *buffer, const char *fmt, va_list args )
306 static const char hex_chars[16] = "0123456789abcdef";
307 const char *p = fmt;
308 char *str = buffer;
310 while( *p )
312 if( *p == '%' )
314 p++;
315 if( *p == 'x' )
317 int i;
318 unsigned int x = va_arg( args, unsigned int );
319 for(i=7; i>=0; i--)
320 *str++ = hex_chars[(x>>(i*4))&0xf];
322 else if( *p == 's' )
324 char *s = va_arg( args, char * );
325 while(*s)
326 *str++ = *s++;
328 else if( *p == 0 )
329 break;
330 p++;
332 *str++ = *p++;
334 *str = 0;
335 return str - buffer;
338 static void wld_printf(const char *fmt, ... )
340 va_list args;
341 char buffer[256];
342 int len;
344 va_start( args, fmt );
345 len = wld_vsprintf(buffer, fmt, args );
346 va_end( args );
347 wld_write(2, buffer, len);
350 static __attribute__((noreturn)) void fatal_error(const char *fmt, ... )
352 va_list args;
353 char buffer[256];
354 int len;
356 va_start( args, fmt );
357 len = wld_vsprintf(buffer, fmt, args );
358 va_end( args );
359 wld_write(2, buffer, len);
360 wld_exit(1);
363 #ifdef DUMP_AUX_INFO
365 * Dump interesting bits of the ELF auxv_t structure that is passed
366 * as the 4th parameter to the _start function
368 static void dump_auxiliary( ElfW(auxv_t) *av )
370 #define NAME(at) { at, #at }
371 static const struct { int val; const char *name; } names[] =
373 NAME(AT_BASE),
374 NAME(AT_CLKTCK),
375 NAME(AT_EGID),
376 NAME(AT_ENTRY),
377 NAME(AT_EUID),
378 NAME(AT_FLAGS),
379 NAME(AT_GID),
380 NAME(AT_HWCAP),
381 NAME(AT_PAGESZ),
382 NAME(AT_PHDR),
383 NAME(AT_PHENT),
384 NAME(AT_PHNUM),
385 NAME(AT_PLATFORM),
386 NAME(AT_SYSINFO),
387 NAME(AT_SYSINFO_EHDR),
388 NAME(AT_UID),
389 { 0, NULL }
391 #undef NAME
393 int i;
395 for ( ; av->a_type != AT_NULL; av++)
397 for (i = 0; names[i].name; i++) if (names[i].val == av->a_type) break;
398 if (names[i].name) wld_printf("%s = %x\n", names[i].name, av->a_un.a_val);
399 else wld_printf( "%x = %x\n", av->a_type, av->a_un.a_val );
402 #endif
405 * set_auxiliary_values
407 * Set the new auxiliary values
409 static void set_auxiliary_values( ElfW(auxv_t) *av, const ElfW(auxv_t) *new_av,
410 const ElfW(auxv_t) *delete_av, void **stack )
412 int i, j, av_count = 0, new_count = 0, delete_count = 0;
413 char *src, *dst;
415 /* count how many aux values we have already */
416 while (av[av_count].a_type != AT_NULL) av_count++;
418 /* delete unwanted values */
419 for (j = 0; delete_av[j].a_type != AT_NULL; j++)
421 for (i = 0; i < av_count; i++) if (av[i].a_type == delete_av[j].a_type)
423 av[i].a_type = av[av_count-1].a_type;
424 av[i].a_un.a_val = av[av_count-1].a_un.a_val;
425 av[--av_count].a_type = AT_NULL;
426 delete_count++;
427 break;
431 /* count how many values we have in new_av that aren't in av */
432 for (j = 0; new_av[j].a_type != AT_NULL; j++)
434 for (i = 0; i < av_count; i++) if (av[i].a_type == new_av[j].a_type) break;
435 if (i == av_count) new_count++;
438 src = (char *)*stack;
439 dst = src - (new_count - delete_count) * sizeof(*av);
440 if (new_count > delete_count) /* need to make room for the extra values */
442 int len = (char *)(av + av_count + 1) - src;
443 for (i = 0; i < len; i++) dst[i] = src[i];
445 else if (new_count < delete_count) /* get rid of unused values */
447 int len = (char *)(av + av_count + 1) - dst;
448 for (i = len - 1; i >= 0; i--) dst[i] = src[i];
450 *stack = dst;
451 av -= (new_count - delete_count);
453 /* now set the values */
454 for (j = 0; new_av[j].a_type != AT_NULL; j++)
456 for (i = 0; i < av_count; i++) if (av[i].a_type == new_av[j].a_type) break;
457 if (i < av_count) av[i].a_un.a_val = new_av[j].a_un.a_val;
458 else
460 av[av_count].a_type = new_av[j].a_type;
461 av[av_count].a_un.a_val = new_av[j].a_un.a_val;
462 av_count++;
466 #ifdef DUMP_AUX_INFO
467 wld_printf("New auxiliary info:\n");
468 dump_auxiliary( av );
469 #endif
473 * get_auxiliary
475 * Get a field of the auxiliary structure
477 static int get_auxiliary( ElfW(auxv_t) *av, int type, int def_val )
479 for ( ; av->a_type != AT_NULL; av++)
480 if( av->a_type == type ) return av->a_un.a_val;
481 return def_val;
485 * map_so_lib
487 * modelled after _dl_map_object_from_fd() from glibc-2.3.1/elf/dl-load.c
489 * This function maps the segments from an ELF object, and optionally
490 * stores information about the mapping into the auxv_t structure.
492 static void map_so_lib( const char *name, struct wld_link_map *l)
494 int fd;
495 unsigned char buf[0x800];
496 ElfW(Ehdr) *header = (ElfW(Ehdr)*)buf;
497 ElfW(Phdr) *phdr, *ph;
498 /* Scan the program header table, collecting its load commands. */
499 struct loadcmd
501 ElfW(Addr) mapstart, mapend, dataend, allocend;
502 off_t mapoff;
503 int prot;
504 } loadcmds[16], *c;
505 size_t nloadcmds = 0, maplength;
507 fd = wld_open( name, O_RDONLY );
508 if (fd == -1) fatal_error("%s: could not open\n", name );
510 if (wld_read( fd, buf, sizeof(buf) ) != sizeof(buf))
511 fatal_error("%s: failed to read ELF header\n", name);
513 phdr = (void*) (((unsigned char*)buf) + header->e_phoff);
515 if( ( header->e_ident[0] != 0x7f ) ||
516 ( header->e_ident[1] != 'E' ) ||
517 ( header->e_ident[2] != 'L' ) ||
518 ( header->e_ident[3] != 'F' ) )
519 fatal_error( "%s: not an ELF binary... don't know how to load it\n", name );
521 if( header->e_machine != EM_386 )
522 fatal_error("%s: not an i386 ELF binary... don't know how to load it\n", name );
524 if (header->e_phnum > sizeof(loadcmds)/sizeof(loadcmds[0]))
525 fatal_error( "%s: oops... not enough space for load commands\n", name );
527 maplength = header->e_phnum * sizeof (ElfW(Phdr));
528 if (header->e_phoff + maplength > sizeof(buf))
529 fatal_error( "%s: oops... not enough space for ELF headers\n", name );
531 l->l_ld = 0;
532 l->l_addr = 0;
533 l->l_phdr = 0;
534 l->l_phnum = header->e_phnum;
535 l->l_entry = header->e_entry;
536 l->l_interp = 0;
538 for (ph = phdr; ph < &phdr[l->l_phnum]; ++ph)
541 #ifdef DUMP_SEGMENTS
542 wld_printf( "ph = %x\n", ph );
543 wld_printf( " p_type = %x\n", ph->p_type );
544 wld_printf( " p_flags = %x\n", ph->p_flags );
545 wld_printf( " p_offset = %x\n", ph->p_offset );
546 wld_printf( " p_vaddr = %x\n", ph->p_vaddr );
547 wld_printf( " p_paddr = %x\n", ph->p_paddr );
548 wld_printf( " p_filesz = %x\n", ph->p_filesz );
549 wld_printf( " p_memsz = %x\n", ph->p_memsz );
550 wld_printf( " p_align = %x\n", ph->p_align );
551 #endif
553 switch (ph->p_type)
555 /* These entries tell us where to find things once the file's
556 segments are mapped in. We record the addresses it says
557 verbatim, and later correct for the run-time load address. */
558 case PT_DYNAMIC:
559 l->l_ld = (void *) ph->p_vaddr;
560 l->l_ldnum = ph->p_memsz / sizeof (Elf32_Dyn);
561 break;
563 case PT_PHDR:
564 l->l_phdr = (void *) ph->p_vaddr;
565 break;
567 case PT_LOAD:
569 if ((ph->p_align & page_mask) != 0)
570 fatal_error( "%s: ELF load command alignment not page-aligned\n", name );
572 if (((ph->p_vaddr - ph->p_offset) & (ph->p_align - 1)) != 0)
573 fatal_error( "%s: ELF load command address/offset not properly aligned\n", name );
575 c = &loadcmds[nloadcmds++];
576 c->mapstart = ph->p_vaddr & ~(ph->p_align - 1);
577 c->mapend = ((ph->p_vaddr + ph->p_filesz + page_mask) & ~page_mask);
578 c->dataend = ph->p_vaddr + ph->p_filesz;
579 c->allocend = ph->p_vaddr + ph->p_memsz;
580 c->mapoff = ph->p_offset & ~(ph->p_align - 1);
582 c->prot = 0;
583 if (ph->p_flags & PF_R)
584 c->prot |= PROT_READ;
585 if (ph->p_flags & PF_W)
586 c->prot |= PROT_WRITE;
587 if (ph->p_flags & PF_X)
588 c->prot |= PROT_EXEC;
590 break;
592 case PT_INTERP:
593 l->l_interp = ph->p_vaddr;
594 break;
596 case PT_TLS:
598 * We don't need to set anything up because we're
599 * emulating the kernel, not ld-linux.so.2
600 * The ELF loader will set up the TLS data itself.
602 case PT_SHLIB:
603 case PT_NOTE:
604 default:
605 break;
609 /* Now process the load commands and map segments into memory. */
610 c = loadcmds;
612 /* Length of the sections to be loaded. */
613 maplength = loadcmds[nloadcmds - 1].allocend - c->mapstart;
615 if( header->e_type == ET_DYN )
617 ElfW(Addr) mappref;
618 mappref = (ELF_PREFERRED_ADDRESS (loader, maplength, c->mapstart)
619 - MAP_BASE_ADDR (l));
621 /* Remember which part of the address space this object uses. */
622 l->l_map_start = (ElfW(Addr)) wld_mmap ((void *) mappref, maplength,
623 c->prot, MAP_COPY | MAP_FILE,
624 fd, c->mapoff);
625 /* wld_printf("set : offset = %x\n", c->mapoff); */
626 /* wld_printf("l->l_map_start = %x\n", l->l_map_start); */
628 l->l_map_end = l->l_map_start + maplength;
629 l->l_addr = l->l_map_start - c->mapstart;
631 wld_mprotect ((caddr_t) (l->l_addr + c->mapend),
632 loadcmds[nloadcmds - 1].allocend - c->mapend,
633 PROT_NONE);
634 goto postmap;
636 else
638 /* sanity check */
639 if ((char *)c->mapstart + maplength > preloader_start &&
640 (char *)c->mapstart <= preloader_end)
641 fatal_error( "%s: binary overlaps preloader (%x-%x)\n",
642 name, c->mapstart, (char *)c->mapstart + maplength );
644 ELF_FIXED_ADDRESS (loader, c->mapstart);
647 /* Remember which part of the address space this object uses. */
648 l->l_map_start = c->mapstart + l->l_addr;
649 l->l_map_end = l->l_map_start + maplength;
651 while (c < &loadcmds[nloadcmds])
653 if (c->mapend > c->mapstart)
654 /* Map the segment contents from the file. */
655 wld_mmap ((void *) (l->l_addr + c->mapstart),
656 c->mapend - c->mapstart, c->prot,
657 MAP_FIXED | MAP_COPY | MAP_FILE, fd, c->mapoff);
659 postmap:
660 if (l->l_phdr == 0
661 && (ElfW(Off)) c->mapoff <= header->e_phoff
662 && ((size_t) (c->mapend - c->mapstart + c->mapoff)
663 >= header->e_phoff + header->e_phnum * sizeof (ElfW(Phdr))))
664 /* Found the program header in this segment. */
665 l->l_phdr = (void *)(unsigned int) (c->mapstart + header->e_phoff - c->mapoff);
667 if (c->allocend > c->dataend)
669 /* Extra zero pages should appear at the end of this segment,
670 after the data mapped from the file. */
671 ElfW(Addr) zero, zeroend, zeropage;
673 zero = l->l_addr + c->dataend;
674 zeroend = l->l_addr + c->allocend;
675 zeropage = (zero + page_mask) & ~page_mask;
678 * This is different from the dl-load load...
679 * ld-linux.so.2 relies on the whole page being zero'ed
681 zeroend = (zeroend + page_mask) & ~page_mask;
683 if (zeroend < zeropage)
685 /* All the extra data is in the last page of the segment.
686 We can just zero it. */
687 zeropage = zeroend;
690 if (zeropage > zero)
692 /* Zero the final part of the last page of the segment. */
693 if ((c->prot & PROT_WRITE) == 0)
695 /* Dag nab it. */
696 wld_mprotect ((caddr_t) (zero & ~page_mask), page_size, c->prot|PROT_WRITE);
698 wld_memset ((void *) zero, '\0', zeropage - zero);
699 if ((c->prot & PROT_WRITE) == 0)
700 wld_mprotect ((caddr_t) (zero & ~page_mask), page_size, c->prot);
703 if (zeroend > zeropage)
705 /* Map the remaining zero pages in from the zero fill FD. */
706 caddr_t mapat;
707 mapat = wld_mmap ((caddr_t) zeropage, zeroend - zeropage,
708 c->prot, MAP_ANON|MAP_PRIVATE|MAP_FIXED,
709 -1, 0);
713 ++c;
716 if (l->l_phdr == NULL) fatal_error("no program header\n");
718 l->l_phdr = (void *)((ElfW(Addr))l->l_phdr + l->l_addr);
719 l->l_entry += l->l_addr;
721 wld_close( fd );
726 * Find a symbol in the symbol table of the executable loaded
728 static void *find_symbol( const ElfW(Phdr) *phdr, int num, char *var )
730 const ElfW(Dyn) *dyn = NULL;
731 const ElfW(Phdr) *ph;
732 const ElfW(Sym) *symtab = NULL;
733 const char *strings = NULL;
734 uint32_t i, symtabend = 0;
736 /* check the values */
737 #ifdef DUMP_SYMS
738 wld_printf("%x %x\n", phdr, num );
739 #endif
740 if( ( phdr == NULL ) || ( num == 0 ) )
742 wld_printf("could not find PT_DYNAMIC header entry\n");
743 return NULL;
746 /* parse the (already loaded) ELF executable's header */
747 for (ph = phdr; ph < &phdr[num]; ++ph)
749 if( PT_DYNAMIC == ph->p_type )
751 dyn = (void *) ph->p_vaddr;
752 num = ph->p_memsz / sizeof (Elf32_Dyn);
753 break;
756 if( !dyn ) return NULL;
758 while( dyn->d_tag )
760 if( dyn->d_tag == DT_STRTAB )
761 strings = (const char*) dyn->d_un.d_ptr;
762 if( dyn->d_tag == DT_SYMTAB )
763 symtab = (const ElfW(Sym) *)dyn->d_un.d_ptr;
764 if( dyn->d_tag == DT_HASH )
765 symtabend = *((const uint32_t *)dyn->d_un.d_ptr + 1);
766 #ifdef DUMP_SYMS
767 wld_printf("%x %x\n", dyn->d_tag, dyn->d_un.d_ptr );
768 #endif
769 dyn++;
772 if( (!symtab) || (!strings) ) return NULL;
774 for (i = 0; i < symtabend; i++)
776 if( ( ELF32_ST_BIND(symtab[i].st_info) == STT_OBJECT ) &&
777 ( 0 == wld_strcmp( strings+symtab[i].st_name, var ) ) )
779 #ifdef DUMP_SYMS
780 wld_printf("Found %s -> %x\n", strings+symtab[i].st_name, symtab[i].st_value );
781 #endif
782 return (void*)symtab[i].st_value;
785 return NULL;
789 * preload_reserve
791 * Reserve a range specified in string format
793 static void preload_reserve( const char *str )
795 const char *p;
796 unsigned long result = 0;
797 void *start = NULL, *end = NULL;
798 int first = 1;
800 for (p = str; *p; p++)
802 if (*p >= '0' && *p <= '9') result = result * 16 + *p - '0';
803 else if (*p >= 'a' && *p <= 'f') result = result * 16 + *p - 'a' + 10;
804 else if (*p >= 'A' && *p <= 'F') result = result * 16 + *p - 'A' + 10;
805 else if (*p == '-')
807 if (!first) goto error;
808 start = (void *)(result & ~page_mask);
809 result = 0;
810 first = 0;
812 else goto error;
814 if (!first) end = (void *)((result + page_mask) & ~page_mask);
815 else if (result) goto error; /* single value '0' is allowed */
817 /* sanity checks */
818 if (end <= start) start = end = NULL;
819 else if ((char *)end > preloader_start &&
820 (char *)start <= preloader_end)
822 wld_printf( "WINEPRELOADRESERVE range %x-%x overlaps preloader %x-%x\n",
823 start, end, preloader_start, preloader_end );
824 start = end = NULL;
827 /* entry 2 is for the PE exe */
828 preload_info[2].addr = start;
829 preload_info[2].size = (char *)end - (char *)start;
830 return;
832 error:
833 fatal_error( "invalid WINEPRELOADRESERVE value '%s'\n", str );
837 * is_in_preload_range
839 * Check if address of the given aux value is in one of the reserved ranges
841 static int is_in_preload_range( const ElfW(auxv_t) *av, int type )
843 int i;
845 while (av->a_type != type && av->a_type != AT_NULL) av++;
847 if (av->a_type == type)
849 for (i = 0; preload_info[i].size; i++)
851 if ((char *)av->a_un.a_ptr >= (char *)preload_info[i].addr &&
852 (char *)av->a_un.a_ptr < (char *)preload_info[i].addr + preload_info[i].size)
853 return 1;
856 return 0;
860 * wld_start
862 * Repeat the actions the kernel would do when loading a dynamically linked .so
863 * Load the binary and then its ELF interpreter.
864 * Note, we assume that the binary is a dynamically linked ELF shared object.
866 void* wld_start( void **stack )
868 int i, *pargc;
869 char **argv, **p;
870 char *interp, *reserve = NULL;
871 ElfW(auxv_t) new_av[12], delete_av[3], *av;
872 struct wld_link_map main_binary_map, ld_so_map;
873 struct wine_preload_info **wine_main_preload_info;
875 pargc = *stack;
876 argv = (char **)pargc + 1;
877 if (*pargc < 2) fatal_error( "Usage: %s wine_binary [args]\n", argv[0] );
879 /* skip over the parameters */
880 p = argv + *pargc + 1;
882 /* skip over the environment */
883 while (*p)
885 static const char res[] = "WINEPRELOADRESERVE=";
886 if (!wld_strncmp( *p, res, sizeof(res)-1 )) reserve = *p + sizeof(res) - 1;
887 p++;
890 av = (ElfW(auxv_t)*) (p+1);
891 page_size = get_auxiliary( av, AT_PAGESZ, 4096 );
892 page_mask = page_size - 1;
894 preloader_start = (char *)_start - ((unsigned int)_start & page_mask);
895 preloader_end = (char *)((unsigned int)(_end + page_mask) & ~page_mask);
897 #ifdef DUMP_AUX_INFO
898 wld_printf( "stack = %x\n", *stack );
899 for( i = 0; i < *pargc; i++ ) wld_printf("argv[%x] = %s\n", i, argv[i]);
900 dump_auxiliary( av );
901 #endif
903 /* reserve memory that Wine needs */
904 if (reserve) preload_reserve( reserve );
905 for (i = 0; preload_info[i].size; i++)
906 wld_mmap( preload_info[i].addr, preload_info[i].size,
907 PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, -1, 0 );
909 /* load the main binary */
910 map_so_lib( argv[1], &main_binary_map );
912 /* load the ELF interpreter */
913 interp = (char *)main_binary_map.l_addr + main_binary_map.l_interp;
914 map_so_lib( interp, &ld_so_map );
916 /* store pointer to the preload info into the appropriate main binary variable */
917 wine_main_preload_info = find_symbol( main_binary_map.l_phdr, main_binary_map.l_phnum,
918 "wine_main_preload_info" );
919 if (wine_main_preload_info) *wine_main_preload_info = preload_info;
920 else wld_printf( "wine_main_preload_info not found\n" );
922 #define SET_NEW_AV(n,type,val) new_av[n].a_type = (type); new_av[n].a_un.a_val = (val);
923 SET_NEW_AV( 0, AT_PHDR, (unsigned long)main_binary_map.l_phdr );
924 SET_NEW_AV( 1, AT_PHENT, sizeof(ElfW(Phdr)) );
925 SET_NEW_AV( 2, AT_PHNUM, main_binary_map.l_phnum );
926 SET_NEW_AV( 3, AT_PAGESZ, page_size );
927 SET_NEW_AV( 4, AT_BASE, ld_so_map.l_addr );
928 SET_NEW_AV( 5, AT_FLAGS, get_auxiliary( av, AT_FLAGS, 0 ) );
929 SET_NEW_AV( 6, AT_ENTRY, main_binary_map.l_entry );
930 SET_NEW_AV( 7, AT_UID, get_auxiliary( av, AT_UID, wld_getuid() ) );
931 SET_NEW_AV( 8, AT_EUID, get_auxiliary( av, AT_EUID, wld_geteuid() ) );
932 SET_NEW_AV( 9, AT_GID, get_auxiliary( av, AT_GID, wld_getgid() ) );
933 SET_NEW_AV(10, AT_EGID, get_auxiliary( av, AT_EGID, wld_getegid() ) );
934 SET_NEW_AV(11, AT_NULL, 0 );
935 #undef SET_NEW_AV
937 i = 0;
938 /* delete sysinfo values if addresses conflict */
939 if (is_in_preload_range( av, AT_SYSINFO )) delete_av[i++].a_type = AT_SYSINFO;
940 if (is_in_preload_range( av, AT_SYSINFO_EHDR )) delete_av[i++].a_type = AT_SYSINFO_EHDR;
941 delete_av[i].a_type = AT_NULL;
943 /* get rid of first argument */
944 pargc[1] = pargc[0] - 1;
945 *stack = pargc + 1;
947 set_auxiliary_values( av, new_av, delete_av, stack );
949 #ifdef DUMP_AUX_INFO
950 wld_printf("new stack = %x\n", *stack);
951 wld_printf("jumping to %x\n", ld_so_map.l_entry);
952 #endif
954 return (void *)ld_so_map.l_entry;