4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
40 #include "wine/unicode.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant
);
48 const char * const wine_vtypes
[VT_CLSID
+1] =
50 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
51 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
52 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
53 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
54 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
55 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
56 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
57 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
58 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
61 const char * const wine_vflags
[16] =
66 "|VT_VECTOR|VT_ARRAY",
68 "|VT_VECTOR|VT_ARRAY",
70 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
72 "|VT_VECTOR|VT_HARDTYPE",
73 "|VT_ARRAY|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
75 "|VT_BYREF|VT_HARDTYPE",
76 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
77 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
78 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
81 /* Convert a variant from one type to another */
82 static inline HRESULT
VARIANT_Coerce(VARIANTARG
* pd
, LCID lcid
, USHORT wFlags
,
83 VARIANTARG
* ps
, VARTYPE vt
)
85 HRESULT res
= DISP_E_TYPEMISMATCH
;
86 VARTYPE vtFrom
= V_TYPE(ps
);
89 TRACE("(%p->(%s%s),0x%08x,0x%04x,%p->(%s%s),%s%s)\n", pd
, debugstr_VT(pd
),
90 debugstr_VF(pd
), lcid
, wFlags
, ps
, debugstr_VT(ps
), debugstr_VF(ps
),
91 debugstr_vt(vt
), debugstr_vf(vt
));
93 if (vt
== VT_BSTR
|| vtFrom
== VT_BSTR
)
95 /* All flags passed to low level function are only used for
96 * changing to or from strings. Map these here.
98 if (wFlags
& VARIANT_LOCALBOOL
)
99 dwFlags
|= VAR_LOCALBOOL
;
100 if (wFlags
& VARIANT_CALENDAR_HIJRI
)
101 dwFlags
|= VAR_CALENDAR_HIJRI
;
102 if (wFlags
& VARIANT_CALENDAR_THAI
)
103 dwFlags
|= VAR_CALENDAR_THAI
;
104 if (wFlags
& VARIANT_CALENDAR_GREGORIAN
)
105 dwFlags
|= VAR_CALENDAR_GREGORIAN
;
106 if (wFlags
& VARIANT_NOUSEROVERRIDE
)
107 dwFlags
|= LOCALE_NOUSEROVERRIDE
;
108 if (wFlags
& VARIANT_USE_NLS
)
109 dwFlags
|= LOCALE_USE_NLS
;
112 /* Map int/uint to i4/ui4 */
115 else if (vt
== VT_UINT
)
118 if (vtFrom
== VT_INT
)
120 else if (vtFrom
== VT_UINT
)
124 return VariantCopy(pd
, ps
);
126 if (wFlags
& VARIANT_NOVALUEPROP
&& vtFrom
== VT_DISPATCH
&& vt
!= VT_UNKNOWN
)
128 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
129 * accessing the default object property.
131 return DISP_E_TYPEMISMATCH
;
137 if (vtFrom
== VT_NULL
)
138 return DISP_E_TYPEMISMATCH
;
139 /* ... Fall through */
141 if (vtFrom
<= VT_UINT
&& vtFrom
!= (VARTYPE
)15 && vtFrom
!= VT_ERROR
)
143 res
= VariantClear( pd
);
144 if (vt
== VT_NULL
&& SUCCEEDED(res
))
152 case VT_EMPTY
: V_I1(pd
) = 0; return S_OK
;
153 case VT_I2
: return VarI1FromI2(V_I2(ps
), &V_I1(pd
));
154 case VT_I4
: return VarI1FromI4(V_I4(ps
), &V_I1(pd
));
155 case VT_UI1
: V_I1(pd
) = V_UI1(ps
); return S_OK
;
156 case VT_UI2
: return VarI1FromUI2(V_UI2(ps
), &V_I1(pd
));
157 case VT_UI4
: return VarI1FromUI4(V_UI4(ps
), &V_I1(pd
));
158 case VT_I8
: return VarI1FromI8(V_I8(ps
), &V_I1(pd
));
159 case VT_UI8
: return VarI1FromUI8(V_UI8(ps
), &V_I1(pd
));
160 case VT_R4
: return VarI1FromR4(V_R4(ps
), &V_I1(pd
));
161 case VT_R8
: return VarI1FromR8(V_R8(ps
), &V_I1(pd
));
162 case VT_DATE
: return VarI1FromDate(V_DATE(ps
), &V_I1(pd
));
163 case VT_BOOL
: return VarI1FromBool(V_BOOL(ps
), &V_I1(pd
));
164 case VT_CY
: return VarI1FromCy(V_CY(ps
), &V_I1(pd
));
165 case VT_DECIMAL
: return VarI1FromDec(&V_DECIMAL(ps
), &V_I1(pd
) );
166 case VT_DISPATCH
: return VarI1FromDisp(V_DISPATCH(ps
), lcid
, &V_I1(pd
) );
167 case VT_BSTR
: return VarI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I1(pd
) );
174 case VT_EMPTY
: V_I2(pd
) = 0; return S_OK
;
175 case VT_I1
: return VarI2FromI1(V_I1(ps
), &V_I2(pd
));
176 case VT_I4
: return VarI2FromI4(V_I4(ps
), &V_I2(pd
));
177 case VT_UI1
: return VarI2FromUI1(V_UI1(ps
), &V_I2(pd
));
178 case VT_UI2
: V_I2(pd
) = V_UI2(ps
); return S_OK
;
179 case VT_UI4
: return VarI2FromUI4(V_UI4(ps
), &V_I2(pd
));
180 case VT_I8
: return VarI2FromI8(V_I8(ps
), &V_I2(pd
));
181 case VT_UI8
: return VarI2FromUI8(V_UI8(ps
), &V_I2(pd
));
182 case VT_R4
: return VarI2FromR4(V_R4(ps
), &V_I2(pd
));
183 case VT_R8
: return VarI2FromR8(V_R8(ps
), &V_I2(pd
));
184 case VT_DATE
: return VarI2FromDate(V_DATE(ps
), &V_I2(pd
));
185 case VT_BOOL
: return VarI2FromBool(V_BOOL(ps
), &V_I2(pd
));
186 case VT_CY
: return VarI2FromCy(V_CY(ps
), &V_I2(pd
));
187 case VT_DECIMAL
: return VarI2FromDec(&V_DECIMAL(ps
), &V_I2(pd
));
188 case VT_DISPATCH
: return VarI2FromDisp(V_DISPATCH(ps
), lcid
, &V_I2(pd
));
189 case VT_BSTR
: return VarI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I2(pd
));
196 case VT_EMPTY
: V_I4(pd
) = 0; return S_OK
;
197 case VT_I1
: return VarI4FromI1(V_I1(ps
), &V_I4(pd
));
198 case VT_I2
: return VarI4FromI2(V_I2(ps
), &V_I4(pd
));
199 case VT_UI1
: return VarI4FromUI1(V_UI1(ps
), &V_I4(pd
));
200 case VT_UI2
: return VarI4FromUI2(V_UI2(ps
), &V_I4(pd
));
201 case VT_UI4
: V_I4(pd
) = V_UI4(ps
); return S_OK
;
202 case VT_I8
: return VarI4FromI8(V_I8(ps
), &V_I4(pd
));
203 case VT_UI8
: return VarI4FromUI8(V_UI8(ps
), &V_I4(pd
));
204 case VT_R4
: return VarI4FromR4(V_R4(ps
), &V_I4(pd
));
205 case VT_R8
: return VarI4FromR8(V_R8(ps
), &V_I4(pd
));
206 case VT_DATE
: return VarI4FromDate(V_DATE(ps
), &V_I4(pd
));
207 case VT_BOOL
: return VarI4FromBool(V_BOOL(ps
), &V_I4(pd
));
208 case VT_CY
: return VarI4FromCy(V_CY(ps
), &V_I4(pd
));
209 case VT_DECIMAL
: return VarI4FromDec(&V_DECIMAL(ps
), &V_I4(pd
));
210 case VT_DISPATCH
: return VarI4FromDisp(V_DISPATCH(ps
), lcid
, &V_I4(pd
));
211 case VT_BSTR
: return VarI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I4(pd
));
218 case VT_EMPTY
: V_UI1(pd
) = 0; return S_OK
;
219 case VT_I1
: V_UI1(pd
) = V_I1(ps
); return S_OK
;
220 case VT_I2
: return VarUI1FromI2(V_I2(ps
), &V_UI1(pd
));
221 case VT_I4
: return VarUI1FromI4(V_I4(ps
), &V_UI1(pd
));
222 case VT_UI2
: return VarUI1FromUI2(V_UI2(ps
), &V_UI1(pd
));
223 case VT_UI4
: return VarUI1FromUI4(V_UI4(ps
), &V_UI1(pd
));
224 case VT_I8
: return VarUI1FromI8(V_I8(ps
), &V_UI1(pd
));
225 case VT_UI8
: return VarUI1FromUI8(V_UI8(ps
), &V_UI1(pd
));
226 case VT_R4
: return VarUI1FromR4(V_R4(ps
), &V_UI1(pd
));
227 case VT_R8
: return VarUI1FromR8(V_R8(ps
), &V_UI1(pd
));
228 case VT_DATE
: return VarUI1FromDate(V_DATE(ps
), &V_UI1(pd
));
229 case VT_BOOL
: return VarUI1FromBool(V_BOOL(ps
), &V_UI1(pd
));
230 case VT_CY
: return VarUI1FromCy(V_CY(ps
), &V_UI1(pd
));
231 case VT_DECIMAL
: return VarUI1FromDec(&V_DECIMAL(ps
), &V_UI1(pd
));
232 case VT_DISPATCH
: return VarUI1FromDisp(V_DISPATCH(ps
), lcid
, &V_UI1(pd
));
233 case VT_BSTR
: return VarUI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI1(pd
));
240 case VT_EMPTY
: V_UI2(pd
) = 0; return S_OK
;
241 case VT_I1
: return VarUI2FromI1(V_I1(ps
), &V_UI2(pd
));
242 case VT_I2
: V_UI2(pd
) = V_I2(ps
); return S_OK
;
243 case VT_I4
: return VarUI2FromI4(V_I4(ps
), &V_UI2(pd
));
244 case VT_UI1
: return VarUI2FromUI1(V_UI1(ps
), &V_UI2(pd
));
245 case VT_UI4
: return VarUI2FromUI4(V_UI4(ps
), &V_UI2(pd
));
246 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
247 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
248 case VT_R4
: return VarUI2FromR4(V_R4(ps
), &V_UI2(pd
));
249 case VT_R8
: return VarUI2FromR8(V_R8(ps
), &V_UI2(pd
));
250 case VT_DATE
: return VarUI2FromDate(V_DATE(ps
), &V_UI2(pd
));
251 case VT_BOOL
: return VarUI2FromBool(V_BOOL(ps
), &V_UI2(pd
));
252 case VT_CY
: return VarUI2FromCy(V_CY(ps
), &V_UI2(pd
));
253 case VT_DECIMAL
: return VarUI2FromDec(&V_DECIMAL(ps
), &V_UI2(pd
));
254 case VT_DISPATCH
: return VarUI2FromDisp(V_DISPATCH(ps
), lcid
, &V_UI2(pd
));
255 case VT_BSTR
: return VarUI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI2(pd
));
262 case VT_EMPTY
: V_UI4(pd
) = 0; return S_OK
;
263 case VT_I1
: return VarUI4FromI1(V_I1(ps
), &V_UI4(pd
));
264 case VT_I2
: return VarUI4FromI2(V_I2(ps
), &V_UI4(pd
));
265 case VT_I4
: V_UI4(pd
) = V_I4(ps
); return S_OK
;
266 case VT_UI1
: return VarUI4FromUI1(V_UI1(ps
), &V_UI4(pd
));
267 case VT_UI2
: return VarUI4FromUI2(V_UI2(ps
), &V_UI4(pd
));
268 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
269 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
270 case VT_R4
: return VarUI4FromR4(V_R4(ps
), &V_UI4(pd
));
271 case VT_R8
: return VarUI4FromR8(V_R8(ps
), &V_UI4(pd
));
272 case VT_DATE
: return VarUI4FromDate(V_DATE(ps
), &V_UI4(pd
));
273 case VT_BOOL
: return VarUI4FromBool(V_BOOL(ps
), &V_UI4(pd
));
274 case VT_CY
: return VarUI4FromCy(V_CY(ps
), &V_UI4(pd
));
275 case VT_DECIMAL
: return VarUI4FromDec(&V_DECIMAL(ps
), &V_UI4(pd
));
276 case VT_DISPATCH
: return VarUI4FromDisp(V_DISPATCH(ps
), lcid
, &V_UI4(pd
));
277 case VT_BSTR
: return VarUI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI4(pd
));
284 case VT_EMPTY
: V_UI8(pd
) = 0; return S_OK
;
285 case VT_I4
: if (V_I4(ps
) < 0) return DISP_E_OVERFLOW
; V_UI8(pd
) = V_I4(ps
); return S_OK
;
286 case VT_I1
: return VarUI8FromI1(V_I1(ps
), &V_UI8(pd
));
287 case VT_I2
: return VarUI8FromI2(V_I2(ps
), &V_UI8(pd
));
288 case VT_UI1
: return VarUI8FromUI1(V_UI1(ps
), &V_UI8(pd
));
289 case VT_UI2
: return VarUI8FromUI2(V_UI2(ps
), &V_UI8(pd
));
290 case VT_UI4
: return VarUI8FromUI4(V_UI4(ps
), &V_UI8(pd
));
291 case VT_I8
: V_UI8(pd
) = V_I8(ps
); return S_OK
;
292 case VT_R4
: return VarUI8FromR4(V_R4(ps
), &V_UI8(pd
));
293 case VT_R8
: return VarUI8FromR8(V_R8(ps
), &V_UI8(pd
));
294 case VT_DATE
: return VarUI8FromDate(V_DATE(ps
), &V_UI8(pd
));
295 case VT_BOOL
: return VarUI8FromBool(V_BOOL(ps
), &V_UI8(pd
));
296 case VT_CY
: return VarUI8FromCy(V_CY(ps
), &V_UI8(pd
));
297 case VT_DECIMAL
: return VarUI8FromDec(&V_DECIMAL(ps
), &V_UI8(pd
));
298 case VT_DISPATCH
: return VarUI8FromDisp(V_DISPATCH(ps
), lcid
, &V_UI8(pd
));
299 case VT_BSTR
: return VarUI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI8(pd
));
306 case VT_EMPTY
: V_I8(pd
) = 0; return S_OK
;
307 case VT_I4
: V_I8(pd
) = V_I4(ps
); return S_OK
;
308 case VT_I1
: return VarI8FromI1(V_I1(ps
), &V_I8(pd
));
309 case VT_I2
: return VarI8FromI2(V_I2(ps
), &V_I8(pd
));
310 case VT_UI1
: return VarI8FromUI1(V_UI1(ps
), &V_I8(pd
));
311 case VT_UI2
: return VarI8FromUI2(V_UI2(ps
), &V_I8(pd
));
312 case VT_UI4
: return VarI8FromUI4(V_UI4(ps
), &V_I8(pd
));
313 case VT_UI8
: V_I8(pd
) = V_UI8(ps
); return S_OK
;
314 case VT_R4
: return VarI8FromR4(V_R4(ps
), &V_I8(pd
));
315 case VT_R8
: return VarI8FromR8(V_R8(ps
), &V_I8(pd
));
316 case VT_DATE
: return VarI8FromDate(V_DATE(ps
), &V_I8(pd
));
317 case VT_BOOL
: return VarI8FromBool(V_BOOL(ps
), &V_I8(pd
));
318 case VT_CY
: return VarI8FromCy(V_CY(ps
), &V_I8(pd
));
319 case VT_DECIMAL
: return VarI8FromDec(&V_DECIMAL(ps
), &V_I8(pd
));
320 case VT_DISPATCH
: return VarI8FromDisp(V_DISPATCH(ps
), lcid
, &V_I8(pd
));
321 case VT_BSTR
: return VarI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I8(pd
));
328 case VT_EMPTY
: V_R4(pd
) = 0.0f
; return S_OK
;
329 case VT_I1
: return VarR4FromI1(V_I1(ps
), &V_R4(pd
));
330 case VT_I2
: return VarR4FromI2(V_I2(ps
), &V_R4(pd
));
331 case VT_I4
: return VarR4FromI4(V_I4(ps
), &V_R4(pd
));
332 case VT_UI1
: return VarR4FromUI1(V_UI1(ps
), &V_R4(pd
));
333 case VT_UI2
: return VarR4FromUI2(V_UI2(ps
), &V_R4(pd
));
334 case VT_UI4
: return VarR4FromUI4(V_UI4(ps
), &V_R4(pd
));
335 case VT_I8
: return VarR4FromI8(V_I8(ps
), &V_R4(pd
));
336 case VT_UI8
: return VarR4FromUI8(V_UI8(ps
), &V_R4(pd
));
337 case VT_R8
: return VarR4FromR8(V_R8(ps
), &V_R4(pd
));
338 case VT_DATE
: return VarR4FromDate(V_DATE(ps
), &V_R4(pd
));
339 case VT_BOOL
: return VarR4FromBool(V_BOOL(ps
), &V_R4(pd
));
340 case VT_CY
: return VarR4FromCy(V_CY(ps
), &V_R4(pd
));
341 case VT_DECIMAL
: return VarR4FromDec(&V_DECIMAL(ps
), &V_R4(pd
));
342 case VT_DISPATCH
: return VarR4FromDisp(V_DISPATCH(ps
), lcid
, &V_R4(pd
));
343 case VT_BSTR
: return VarR4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R4(pd
));
350 case VT_EMPTY
: V_R8(pd
) = 0.0; return S_OK
;
351 case VT_I1
: return VarR8FromI1(V_I1(ps
), &V_R8(pd
));
352 case VT_I2
: return VarR8FromI2(V_I2(ps
), &V_R8(pd
));
353 case VT_I4
: return VarR8FromI4(V_I4(ps
), &V_R8(pd
));
354 case VT_UI1
: return VarR8FromUI1(V_UI1(ps
), &V_R8(pd
));
355 case VT_UI2
: return VarR8FromUI2(V_UI2(ps
), &V_R8(pd
));
356 case VT_UI4
: return VarR8FromUI4(V_UI4(ps
), &V_R8(pd
));
357 case VT_I8
: return VarR8FromI8(V_I8(ps
), &V_R8(pd
));
358 case VT_UI8
: return VarR8FromUI8(V_UI8(ps
), &V_R8(pd
));
359 case VT_R4
: return VarR8FromR4(V_R4(ps
), &V_R8(pd
));
360 case VT_DATE
: return VarR8FromDate(V_DATE(ps
), &V_R8(pd
));
361 case VT_BOOL
: return VarR8FromBool(V_BOOL(ps
), &V_R8(pd
));
362 case VT_CY
: return VarR8FromCy(V_CY(ps
), &V_R8(pd
));
363 case VT_DECIMAL
: return VarR8FromDec(&V_DECIMAL(ps
), &V_R8(pd
));
364 case VT_DISPATCH
: return VarR8FromDisp(V_DISPATCH(ps
), lcid
, &V_R8(pd
));
365 case VT_BSTR
: return VarR8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R8(pd
));
372 case VT_EMPTY
: V_DATE(pd
) = 0.0; return S_OK
;
373 case VT_I1
: return VarDateFromI1(V_I1(ps
), &V_DATE(pd
));
374 case VT_I2
: return VarDateFromI2(V_I2(ps
), &V_DATE(pd
));
375 case VT_I4
: return VarDateFromI4(V_I4(ps
), &V_DATE(pd
));
376 case VT_UI1
: return VarDateFromUI1(V_UI1(ps
), &V_DATE(pd
));
377 case VT_UI2
: return VarDateFromUI2(V_UI2(ps
), &V_DATE(pd
));
378 case VT_UI4
: return VarDateFromUI4(V_UI4(ps
), &V_DATE(pd
));
379 case VT_I8
: return VarDateFromI8(V_I8(ps
), &V_DATE(pd
));
380 case VT_UI8
: return VarDateFromUI8(V_UI8(ps
), &V_DATE(pd
));
381 case VT_R4
: return VarDateFromR4(V_R4(ps
), &V_DATE(pd
));
382 case VT_R8
: return VarDateFromR8(V_R8(ps
), &V_DATE(pd
));
383 case VT_BOOL
: return VarDateFromBool(V_BOOL(ps
), &V_DATE(pd
));
384 case VT_CY
: return VarDateFromCy(V_CY(ps
), &V_DATE(pd
));
385 case VT_DECIMAL
: return VarDateFromDec(&V_DECIMAL(ps
), &V_DATE(pd
));
386 case VT_DISPATCH
: return VarDateFromDisp(V_DISPATCH(ps
), lcid
, &V_DATE(pd
));
387 case VT_BSTR
: return VarDateFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DATE(pd
));
394 case VT_EMPTY
: V_BOOL(pd
) = 0; return S_OK
;
395 case VT_I1
: return VarBoolFromI1(V_I1(ps
), &V_BOOL(pd
));
396 case VT_I2
: return VarBoolFromI2(V_I2(ps
), &V_BOOL(pd
));
397 case VT_I4
: return VarBoolFromI4(V_I4(ps
), &V_BOOL(pd
));
398 case VT_UI1
: return VarBoolFromUI1(V_UI1(ps
), &V_BOOL(pd
));
399 case VT_UI2
: return VarBoolFromUI2(V_UI2(ps
), &V_BOOL(pd
));
400 case VT_UI4
: return VarBoolFromUI4(V_UI4(ps
), &V_BOOL(pd
));
401 case VT_I8
: return VarBoolFromI8(V_I8(ps
), &V_BOOL(pd
));
402 case VT_UI8
: return VarBoolFromUI8(V_UI8(ps
), &V_BOOL(pd
));
403 case VT_R4
: return VarBoolFromR4(V_R4(ps
), &V_BOOL(pd
));
404 case VT_R8
: return VarBoolFromR8(V_R8(ps
), &V_BOOL(pd
));
405 case VT_DATE
: return VarBoolFromDate(V_DATE(ps
), &V_BOOL(pd
));
406 case VT_CY
: return VarBoolFromCy(V_CY(ps
), &V_BOOL(pd
));
407 case VT_DECIMAL
: return VarBoolFromDec(&V_DECIMAL(ps
), &V_BOOL(pd
));
408 case VT_DISPATCH
: return VarBoolFromDisp(V_DISPATCH(ps
), lcid
, &V_BOOL(pd
));
409 case VT_BSTR
: return VarBoolFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_BOOL(pd
));
417 V_BSTR(pd
) = SysAllocStringLen(NULL
, 0);
418 return V_BSTR(pd
) ? S_OK
: E_OUTOFMEMORY
;
420 if (wFlags
& (VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
))
421 return VarBstrFromBool(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
422 return VarBstrFromI2(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
423 case VT_I1
: return VarBstrFromI1(V_I1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
424 case VT_I2
: return VarBstrFromI2(V_I2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
425 case VT_I4
: return VarBstrFromI4(V_I4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
426 case VT_UI1
: return VarBstrFromUI1(V_UI1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
427 case VT_UI2
: return VarBstrFromUI2(V_UI2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
428 case VT_UI4
: return VarBstrFromUI4(V_UI4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
429 case VT_I8
: return VarBstrFromI8(V_I8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
430 case VT_UI8
: return VarBstrFromUI8(V_UI8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
431 case VT_R4
: return VarBstrFromR4(V_R4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
432 case VT_R8
: return VarBstrFromR8(V_R8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
433 case VT_DATE
: return VarBstrFromDate(V_DATE(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
434 case VT_CY
: return VarBstrFromCy(V_CY(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
435 case VT_DECIMAL
: return VarBstrFromDec(&V_DECIMAL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
436 case VT_DISPATCH
: return VarBstrFromDisp(V_DISPATCH(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
443 case VT_EMPTY
: V_CY(pd
).int64
= 0; return S_OK
;
444 case VT_I1
: return VarCyFromI1(V_I1(ps
), &V_CY(pd
));
445 case VT_I2
: return VarCyFromI2(V_I2(ps
), &V_CY(pd
));
446 case VT_I4
: return VarCyFromI4(V_I4(ps
), &V_CY(pd
));
447 case VT_UI1
: return VarCyFromUI1(V_UI1(ps
), &V_CY(pd
));
448 case VT_UI2
: return VarCyFromUI2(V_UI2(ps
), &V_CY(pd
));
449 case VT_UI4
: return VarCyFromUI4(V_UI4(ps
), &V_CY(pd
));
450 case VT_I8
: return VarCyFromI8(V_I8(ps
), &V_CY(pd
));
451 case VT_UI8
: return VarCyFromUI8(V_UI8(ps
), &V_CY(pd
));
452 case VT_R4
: return VarCyFromR4(V_R4(ps
), &V_CY(pd
));
453 case VT_R8
: return VarCyFromR8(V_R8(ps
), &V_CY(pd
));
454 case VT_DATE
: return VarCyFromDate(V_DATE(ps
), &V_CY(pd
));
455 case VT_BOOL
: return VarCyFromBool(V_BOOL(ps
), &V_CY(pd
));
456 case VT_DECIMAL
: return VarCyFromDec(&V_DECIMAL(ps
), &V_CY(pd
));
457 case VT_DISPATCH
: return VarCyFromDisp(V_DISPATCH(ps
), lcid
, &V_CY(pd
));
458 case VT_BSTR
: return VarCyFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_CY(pd
));
467 DEC_SIGNSCALE(&V_DECIMAL(pd
)) = SIGNSCALE(DECIMAL_POS
,0);
468 DEC_HI32(&V_DECIMAL(pd
)) = 0;
469 DEC_MID32(&V_DECIMAL(pd
)) = 0;
470 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
471 * VT_NULL and VT_EMPTY always give a 0 value.
473 DEC_LO32(&V_DECIMAL(pd
)) = vtFrom
== VT_BOOL
&& V_BOOL(ps
) ? 1 : 0;
475 case VT_I1
: return VarDecFromI1(V_I1(ps
), &V_DECIMAL(pd
));
476 case VT_I2
: return VarDecFromI2(V_I2(ps
), &V_DECIMAL(pd
));
477 case VT_I4
: return VarDecFromI4(V_I4(ps
), &V_DECIMAL(pd
));
478 case VT_UI1
: return VarDecFromUI1(V_UI1(ps
), &V_DECIMAL(pd
));
479 case VT_UI2
: return VarDecFromUI2(V_UI2(ps
), &V_DECIMAL(pd
));
480 case VT_UI4
: return VarDecFromUI4(V_UI4(ps
), &V_DECIMAL(pd
));
481 case VT_I8
: return VarDecFromI8(V_I8(ps
), &V_DECIMAL(pd
));
482 case VT_UI8
: return VarDecFromUI8(V_UI8(ps
), &V_DECIMAL(pd
));
483 case VT_R4
: return VarDecFromR4(V_R4(ps
), &V_DECIMAL(pd
));
484 case VT_R8
: return VarDecFromR8(V_R8(ps
), &V_DECIMAL(pd
));
485 case VT_DATE
: return VarDecFromDate(V_DATE(ps
), &V_DECIMAL(pd
));
486 case VT_CY
: return VarDecFromCy(V_CY(ps
), &V_DECIMAL(pd
));
487 case VT_DISPATCH
: return VarDecFromDisp(V_DISPATCH(ps
), lcid
, &V_DECIMAL(pd
));
488 case VT_BSTR
: return VarDecFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DECIMAL(pd
));
496 if (V_DISPATCH(ps
) == NULL
)
497 V_UNKNOWN(pd
) = NULL
;
499 res
= IDispatch_QueryInterface(V_DISPATCH(ps
), &IID_IUnknown
, (LPVOID
*)&V_UNKNOWN(pd
));
508 if (V_UNKNOWN(ps
) == NULL
)
509 V_DISPATCH(pd
) = NULL
;
511 res
= IUnknown_QueryInterface(V_UNKNOWN(ps
), &IID_IDispatch
, (LPVOID
*)&V_DISPATCH(pd
));
522 /* Coerce to/from an array */
523 static inline HRESULT
VARIANT_CoerceArray(VARIANTARG
* pd
, VARIANTARG
* ps
, VARTYPE vt
)
525 if (vt
== VT_BSTR
&& V_VT(ps
) == (VT_ARRAY
|VT_UI1
))
526 return BstrFromVector(V_ARRAY(ps
), &V_BSTR(pd
));
528 if (V_VT(ps
) == VT_BSTR
&& vt
== (VT_ARRAY
|VT_UI1
))
529 return VectorFromBstr(V_BSTR(ps
), &V_ARRAY(ps
));
532 return SafeArrayCopy(V_ARRAY(ps
), &V_ARRAY(pd
));
534 return DISP_E_TYPEMISMATCH
;
537 /******************************************************************************
538 * Check if a variants type is valid.
540 static inline HRESULT
VARIANT_ValidateType(VARTYPE vt
)
542 VARTYPE vtExtra
= vt
& VT_EXTRA_TYPE
;
546 if (!(vtExtra
& (VT_VECTOR
|VT_RESERVED
)))
548 if (vt
< VT_VOID
|| vt
== VT_RECORD
|| vt
== VT_CLSID
)
550 if ((vtExtra
& (VT_BYREF
|VT_ARRAY
)) && vt
<= VT_NULL
)
551 return DISP_E_BADVARTYPE
;
552 if (vt
!= (VARTYPE
)15)
556 return DISP_E_BADVARTYPE
;
559 /******************************************************************************
560 * VariantInit [OLEAUT32.8]
562 * Initialise a variant.
565 * pVarg [O] Variant to initialise
571 * This function simply sets the type of the variant to VT_EMPTY. It does not
572 * free any existing value, use VariantClear() for that.
574 void WINAPI
VariantInit(VARIANTARG
* pVarg
)
576 TRACE("(%p)\n", pVarg
);
578 V_VT(pVarg
) = VT_EMPTY
; /* Native doesn't set any other fields */
581 HRESULT
VARIANT_ClearInd(VARIANTARG
*pVarg
)
585 TRACE("(%p->(%s%s))\n", pVarg
, debugstr_VT(pVarg
), debugstr_VF(pVarg
));
587 hres
= VARIANT_ValidateType(V_VT(pVarg
));
595 if (V_UNKNOWN(pVarg
))
596 IUnknown_Release(V_UNKNOWN(pVarg
));
598 case VT_UNKNOWN
| VT_BYREF
:
599 case VT_DISPATCH
| VT_BYREF
:
600 if(*V_UNKNOWNREF(pVarg
))
601 IUnknown_Release(*V_UNKNOWNREF(pVarg
));
604 SysFreeString(V_BSTR(pVarg
));
606 case VT_BSTR
| VT_BYREF
:
607 SysFreeString(*V_BSTRREF(pVarg
));
609 case VT_VARIANT
| VT_BYREF
:
610 VariantClear(V_VARIANTREF(pVarg
));
613 case VT_RECORD
| VT_BYREF
:
615 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
618 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
619 IRecordInfo_Release(pBr
->pRecInfo
);
624 if (V_ISARRAY(pVarg
) || (V_VT(pVarg
) & ~VT_BYREF
) == VT_SAFEARRAY
)
626 if (V_ISBYREF(pVarg
))
628 if (*V_ARRAYREF(pVarg
))
629 hres
= SafeArrayDestroy(*V_ARRAYREF(pVarg
));
631 else if (V_ARRAY(pVarg
))
632 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
637 V_VT(pVarg
) = VT_EMPTY
;
641 /******************************************************************************
642 * VariantClear [OLEAUT32.9]
647 * pVarg [I/O] Variant to clear
650 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
651 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
653 HRESULT WINAPI
VariantClear(VARIANTARG
* pVarg
)
657 TRACE("(%p->(%s%s))\n", pVarg
, debugstr_VT(pVarg
), debugstr_VF(pVarg
));
659 hres
= VARIANT_ValidateType(V_VT(pVarg
));
663 if (!V_ISBYREF(pVarg
))
665 if (V_ISARRAY(pVarg
) || V_VT(pVarg
) == VT_SAFEARRAY
)
668 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
670 else if (V_VT(pVarg
) == VT_BSTR
)
672 SysFreeString(V_BSTR(pVarg
));
674 else if (V_VT(pVarg
) == VT_RECORD
)
676 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
679 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
680 IRecordInfo_Release(pBr
->pRecInfo
);
683 else if (V_VT(pVarg
) == VT_DISPATCH
||
684 V_VT(pVarg
) == VT_UNKNOWN
)
686 if (V_UNKNOWN(pVarg
))
687 IUnknown_Release(V_UNKNOWN(pVarg
));
690 V_VT(pVarg
) = VT_EMPTY
;
695 /******************************************************************************
696 * Copy an IRecordInfo object contained in a variant.
698 static HRESULT
VARIANT_CopyIRecordInfo(struct __tagBRECORD
* pBr
)
706 hres
= IRecordInfo_GetSize(pBr
->pRecInfo
, &ulSize
);
709 PVOID pvRecord
= HeapAlloc(GetProcessHeap(), 0, ulSize
);
711 hres
= E_OUTOFMEMORY
;
714 memcpy(pvRecord
, pBr
->pvRecord
, ulSize
);
715 pBr
->pvRecord
= pvRecord
;
717 hres
= IRecordInfo_RecordCopy(pBr
->pRecInfo
, pvRecord
, pvRecord
);
719 IRecordInfo_AddRef(pBr
->pRecInfo
);
723 else if (pBr
->pvRecord
)
728 /******************************************************************************
729 * VariantCopy [OLEAUT32.10]
734 * pvargDest [O] Destination for copy
735 * pvargSrc [I] Source variant to copy
738 * Success: S_OK. pvargDest contains a copy of pvargSrc.
739 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
740 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
741 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
742 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
745 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
746 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
747 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
748 * fails, so does this function.
749 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
750 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
751 * is copied rather than just any pointers to it.
752 * - For by-value object types the object pointer is copied and the objects
753 * reference count increased using IUnknown_AddRef().
754 * - For all by-reference types, only the referencing pointer is copied.
756 HRESULT WINAPI
VariantCopy(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
)
760 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest
, debugstr_VT(pvargDest
),
761 debugstr_VF(pvargDest
), pvargSrc
, debugstr_VT(pvargSrc
),
762 debugstr_VF(pvargSrc
));
764 if (V_TYPE(pvargSrc
) == VT_CLSID
|| /* VT_CLSID is a special case */
765 FAILED(VARIANT_ValidateType(V_VT(pvargSrc
))))
766 return DISP_E_BADVARTYPE
;
768 if (pvargSrc
!= pvargDest
&&
769 SUCCEEDED(hres
= VariantClear(pvargDest
)))
771 *pvargDest
= *pvargSrc
; /* Shallow copy the value */
773 if (!V_ISBYREF(pvargSrc
))
775 if (V_ISARRAY(pvargSrc
))
777 if (V_ARRAY(pvargSrc
))
778 hres
= SafeArrayCopy(V_ARRAY(pvargSrc
), &V_ARRAY(pvargDest
));
780 else if (V_VT(pvargSrc
) == VT_BSTR
)
782 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc
), SysStringByteLen(V_BSTR(pvargSrc
)));
783 if (!V_BSTR(pvargDest
))
785 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc
)));
786 hres
= E_OUTOFMEMORY
;
789 else if (V_VT(pvargSrc
) == VT_RECORD
)
791 hres
= VARIANT_CopyIRecordInfo(&V_UNION(pvargDest
,brecVal
));
793 else if (V_VT(pvargSrc
) == VT_DISPATCH
||
794 V_VT(pvargSrc
) == VT_UNKNOWN
)
796 if (V_UNKNOWN(pvargSrc
))
797 IUnknown_AddRef(V_UNKNOWN(pvargSrc
));
804 /* Return the byte size of a variants data */
805 static inline size_t VARIANT_DataSize(const VARIANT
* pv
)
810 case VT_UI1
: return sizeof(BYTE
);
812 case VT_UI2
: return sizeof(SHORT
);
816 case VT_UI4
: return sizeof(LONG
);
818 case VT_UI8
: return sizeof(LONGLONG
);
819 case VT_R4
: return sizeof(float);
820 case VT_R8
: return sizeof(double);
821 case VT_DATE
: return sizeof(DATE
);
822 case VT_BOOL
: return sizeof(VARIANT_BOOL
);
825 case VT_BSTR
: return sizeof(void*);
826 case VT_CY
: return sizeof(CY
);
827 case VT_ERROR
: return sizeof(SCODE
);
829 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv
), debugstr_VF(pv
));
833 /******************************************************************************
834 * VariantCopyInd [OLEAUT32.11]
836 * Copy a variant, dereferencing it if it is by-reference.
839 * pvargDest [O] Destination for copy
840 * pvargSrc [I] Source variant to copy
843 * Success: S_OK. pvargDest contains a copy of pvargSrc.
844 * Failure: An HRESULT error code indicating the error.
847 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
848 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
849 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
850 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
851 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
854 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
855 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
857 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
858 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
859 * to it. If clearing pvargDest fails, so does this function.
861 HRESULT WINAPI
VariantCopyInd(VARIANT
* pvargDest
, VARIANTARG
* pvargSrc
)
863 VARIANTARG vTmp
, *pSrc
= pvargSrc
;
867 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest
, debugstr_VT(pvargDest
),
868 debugstr_VF(pvargDest
), pvargSrc
, debugstr_VT(pvargSrc
),
869 debugstr_VF(pvargSrc
));
871 if (!V_ISBYREF(pvargSrc
))
872 return VariantCopy(pvargDest
, pvargSrc
);
874 /* Argument checking is more lax than VariantCopy()... */
875 vt
= V_TYPE(pvargSrc
);
876 if (V_ISARRAY(pvargSrc
) ||
877 (vt
> VT_NULL
&& vt
!= (VARTYPE
)15 && vt
< VT_VOID
&&
878 !(V_VT(pvargSrc
) & (VT_VECTOR
|VT_RESERVED
))))
883 return E_INVALIDARG
; /* ...And the return value for invalid types differs too */
885 if (pvargSrc
== pvargDest
)
887 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
888 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
892 V_VT(pvargDest
) = VT_EMPTY
;
896 /* Copy into another variant. Free the variant in pvargDest */
897 if (FAILED(hres
= VariantClear(pvargDest
)))
899 TRACE("VariantClear() of destination failed\n");
906 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
907 hres
= SafeArrayCopy(*V_ARRAYREF(pSrc
), &V_ARRAY(pvargDest
));
909 else if (V_VT(pSrc
) == (VT_BSTR
|VT_BYREF
))
911 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
912 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc
), SysStringByteLen(*V_BSTRREF(pSrc
)));
914 else if (V_VT(pSrc
) == (VT_RECORD
|VT_BYREF
))
916 V_UNION(pvargDest
,brecVal
) = V_UNION(pvargSrc
,brecVal
);
917 hres
= VARIANT_CopyIRecordInfo(&V_UNION(pvargDest
,brecVal
));
919 else if (V_VT(pSrc
) == (VT_DISPATCH
|VT_BYREF
) ||
920 V_VT(pSrc
) == (VT_UNKNOWN
|VT_BYREF
))
922 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
923 V_UNKNOWN(pvargDest
) = *V_UNKNOWNREF(pSrc
);
924 if (*V_UNKNOWNREF(pSrc
))
925 IUnknown_AddRef(*V_UNKNOWNREF(pSrc
));
927 else if (V_VT(pSrc
) == (VT_VARIANT
|VT_BYREF
))
929 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
930 if (V_VT(V_VARIANTREF(pSrc
)) == (VT_VARIANT
|VT_BYREF
))
931 hres
= E_INVALIDARG
; /* Don't dereference more than one level */
933 hres
= VariantCopyInd(pvargDest
, V_VARIANTREF(pSrc
));
935 /* Use the dereferenced variants type value, not VT_VARIANT */
936 goto VariantCopyInd_Return
;
938 else if (V_VT(pSrc
) == (VT_DECIMAL
|VT_BYREF
))
940 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest
)), &DEC_SCALE(V_DECIMALREF(pSrc
)),
941 sizeof(DECIMAL
) - sizeof(USHORT
));
945 /* Copy the pointed to data into this variant */
946 memcpy(&V_BYREF(pvargDest
), V_BYREF(pSrc
), VARIANT_DataSize(pSrc
));
949 V_VT(pvargDest
) = V_VT(pSrc
) & ~VT_BYREF
;
951 VariantCopyInd_Return
:
953 if (pSrc
!= pvargSrc
)
956 TRACE("returning 0x%08x, %p->(%s%s)\n", hres
, pvargDest
,
957 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
));
961 /******************************************************************************
962 * VariantChangeType [OLEAUT32.12]
964 * Change the type of a variant.
967 * pvargDest [O] Destination for the converted variant
968 * pvargSrc [O] Source variant to change the type of
969 * wFlags [I] VARIANT_ flags from "oleauto.h"
970 * vt [I] Variant type to change pvargSrc into
973 * Success: S_OK. pvargDest contains the converted value.
974 * Failure: An HRESULT error code describing the failure.
977 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
978 * See VariantChangeTypeEx.
980 HRESULT WINAPI
VariantChangeType(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
981 USHORT wFlags
, VARTYPE vt
)
983 return VariantChangeTypeEx( pvargDest
, pvargSrc
, LOCALE_USER_DEFAULT
, wFlags
, vt
);
986 /******************************************************************************
987 * VariantChangeTypeEx [OLEAUT32.147]
989 * Change the type of a variant.
992 * pvargDest [O] Destination for the converted variant
993 * pvargSrc [O] Source variant to change the type of
994 * lcid [I] LCID for the conversion
995 * wFlags [I] VARIANT_ flags from "oleauto.h"
996 * vt [I] Variant type to change pvargSrc into
999 * Success: S_OK. pvargDest contains the converted value.
1000 * Failure: An HRESULT error code describing the failure.
1003 * pvargDest and pvargSrc can point to the same variant to perform an in-place
1004 * conversion. If the conversion is successful, pvargSrc will be freed.
1006 HRESULT WINAPI
VariantChangeTypeEx(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
1007 LCID lcid
, USHORT wFlags
, VARTYPE vt
)
1011 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%04x,%s%s)\n", pvargDest
,
1012 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
), pvargSrc
,
1013 debugstr_VT(pvargSrc
), debugstr_VF(pvargSrc
), lcid
, wFlags
,
1014 debugstr_vt(vt
), debugstr_vf(vt
));
1017 res
= DISP_E_BADVARTYPE
;
1020 res
= VARIANT_ValidateType(V_VT(pvargSrc
));
1024 res
= VARIANT_ValidateType(vt
);
1028 VARIANTARG vTmp
, vSrcDeref
;
1030 if(V_ISBYREF(pvargSrc
) && !V_BYREF(pvargSrc
))
1031 res
= DISP_E_TYPEMISMATCH
;
1034 V_VT(&vTmp
) = VT_EMPTY
;
1035 V_VT(&vSrcDeref
) = VT_EMPTY
;
1036 VariantClear(&vTmp
);
1037 VariantClear(&vSrcDeref
);
1042 res
= VariantCopyInd(&vSrcDeref
, pvargSrc
);
1045 if (V_ISARRAY(&vSrcDeref
) || (vt
& VT_ARRAY
))
1046 res
= VARIANT_CoerceArray(&vTmp
, &vSrcDeref
, vt
);
1048 res
= VARIANT_Coerce(&vTmp
, lcid
, wFlags
, &vSrcDeref
, vt
);
1050 if (SUCCEEDED(res
)) {
1052 VariantCopy(pvargDest
, &vTmp
);
1054 VariantClear(&vTmp
);
1055 VariantClear(&vSrcDeref
);
1062 TRACE("returning 0x%08x, %p->(%s%s)\n", res
, pvargDest
,
1063 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
));
1067 /* Date Conversions */
1069 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1071 /* Convert a VT_DATE value to a Julian Date */
1072 static inline int VARIANT_JulianFromDate(int dateIn
)
1074 int julianDays
= dateIn
;
1076 julianDays
-= DATE_MIN
; /* Convert to + days from 1 Jan 100 AD */
1077 julianDays
+= 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1081 /* Convert a Julian Date to a VT_DATE value */
1082 static inline int VARIANT_DateFromJulian(int dateIn
)
1084 int julianDays
= dateIn
;
1086 julianDays
-= 1757585; /* Convert to + days from 1 Jan 100 AD */
1087 julianDays
+= DATE_MIN
; /* Convert to +/- days from 1 Jan 1899 AD */
1091 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1092 static inline void VARIANT_DMYFromJulian(int jd
, USHORT
*year
, USHORT
*month
, USHORT
*day
)
1098 l
-= (n
* 146097 + 3) / 4;
1099 i
= (4000 * (l
+ 1)) / 1461001;
1100 l
+= 31 - (i
* 1461) / 4;
1101 j
= (l
* 80) / 2447;
1102 *day
= l
- (j
* 2447) / 80;
1104 *month
= (j
+ 2) - (12 * l
);
1105 *year
= 100 * (n
- 49) + i
+ l
;
1108 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1109 static inline double VARIANT_JulianFromDMY(USHORT year
, USHORT month
, USHORT day
)
1111 int m12
= (month
- 14) / 12;
1113 return ((1461 * (year
+ 4800 + m12
)) / 4 + (367 * (month
- 2 - 12 * m12
)) / 12 -
1114 (3 * ((year
+ 4900 + m12
) / 100)) / 4 + day
- 32075);
1117 /* Macros for accessing DOS format date/time fields */
1118 #define DOS_YEAR(x) (1980 + (x >> 9))
1119 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1120 #define DOS_DAY(x) (x & 0x1f)
1121 #define DOS_HOUR(x) (x >> 11)
1122 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1123 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1124 /* Create a DOS format date/time */
1125 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1126 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1128 /* Roll a date forwards or backwards to correct it */
1129 static HRESULT
VARIANT_RollUdate(UDATE
*lpUd
)
1131 static const BYTE days
[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1132 short iYear
, iMonth
, iDay
, iHour
, iMinute
, iSecond
;
1134 /* interpret values signed */
1135 iYear
= lpUd
->st
.wYear
;
1136 iMonth
= lpUd
->st
.wMonth
;
1137 iDay
= lpUd
->st
.wDay
;
1138 iHour
= lpUd
->st
.wHour
;
1139 iMinute
= lpUd
->st
.wMinute
;
1140 iSecond
= lpUd
->st
.wSecond
;
1142 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay
, iMonth
,
1143 iYear
, iHour
, iMinute
, iSecond
);
1145 if (iYear
> 9999 || iYear
< -9999)
1146 return E_INVALIDARG
; /* Invalid value */
1147 /* Years < 100 are treated as 1900 + year */
1148 if (iYear
> 0 && iYear
< 100)
1151 iMinute
+= iSecond
/ 60;
1152 iSecond
= iSecond
% 60;
1153 iHour
+= iMinute
/ 60;
1154 iMinute
= iMinute
% 60;
1157 iYear
+= iMonth
/ 12;
1158 iMonth
= iMonth
% 12;
1159 if (iMonth
<=0) {iMonth
+=12; iYear
--;}
1160 while (iDay
> days
[iMonth
])
1162 if (iMonth
== 2 && IsLeapYear(iYear
))
1165 iDay
-= days
[iMonth
];
1167 iYear
+= iMonth
/ 12;
1168 iMonth
= iMonth
% 12;
1173 if (iMonth
<=0) {iMonth
+=12; iYear
--;}
1174 if (iMonth
== 2 && IsLeapYear(iYear
))
1177 iDay
+= days
[iMonth
];
1180 if (iSecond
<0){iSecond
+=60; iMinute
--;}
1181 if (iMinute
<0){iMinute
+=60; iHour
--;}
1182 if (iHour
<0) {iHour
+=24; iDay
--;}
1183 if (iYear
<=0) iYear
+=2000;
1185 lpUd
->st
.wYear
= iYear
;
1186 lpUd
->st
.wMonth
= iMonth
;
1187 lpUd
->st
.wDay
= iDay
;
1188 lpUd
->st
.wHour
= iHour
;
1189 lpUd
->st
.wMinute
= iMinute
;
1190 lpUd
->st
.wSecond
= iSecond
;
1192 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd
->st
.wDay
, lpUd
->st
.wMonth
,
1193 lpUd
->st
.wYear
, lpUd
->st
.wHour
, lpUd
->st
.wMinute
, lpUd
->st
.wSecond
);
1197 /**********************************************************************
1198 * DosDateTimeToVariantTime [OLEAUT32.14]
1200 * Convert a Dos format date and time into variant VT_DATE format.
1203 * wDosDate [I] Dos format date
1204 * wDosTime [I] Dos format time
1205 * pDateOut [O] Destination for VT_DATE format
1208 * Success: TRUE. pDateOut contains the converted time.
1209 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1212 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1213 * - Dos format times are accurate to only 2 second precision.
1214 * - The format of a Dos Date is:
1215 *| Bits Values Meaning
1216 *| ---- ------ -------
1217 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1218 *| the days in the month rolls forward the extra days.
1219 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1220 *| year. 13-15 are invalid.
1221 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1222 * - The format of a Dos Time is:
1223 *| Bits Values Meaning
1224 *| ---- ------ -------
1225 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1226 *| 5-10 0-59 Minutes. 60-63 are invalid.
1227 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1229 INT WINAPI
DosDateTimeToVariantTime(USHORT wDosDate
, USHORT wDosTime
,
1234 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1235 wDosDate
, DOS_YEAR(wDosDate
), DOS_MONTH(wDosDate
), DOS_DAY(wDosDate
),
1236 wDosTime
, DOS_HOUR(wDosTime
), DOS_MINUTE(wDosTime
), DOS_SECOND(wDosTime
),
1239 ud
.st
.wYear
= DOS_YEAR(wDosDate
);
1240 ud
.st
.wMonth
= DOS_MONTH(wDosDate
);
1241 if (ud
.st
.wYear
> 2099 || ud
.st
.wMonth
> 12)
1243 ud
.st
.wDay
= DOS_DAY(wDosDate
);
1244 ud
.st
.wHour
= DOS_HOUR(wDosTime
);
1245 ud
.st
.wMinute
= DOS_MINUTE(wDosTime
);
1246 ud
.st
.wSecond
= DOS_SECOND(wDosTime
);
1247 ud
.st
.wDayOfWeek
= ud
.st
.wMilliseconds
= 0;
1248 if (ud
.st
.wHour
> 23 || ud
.st
.wMinute
> 59 || ud
.st
.wSecond
> 59)
1249 return FALSE
; /* Invalid values in Dos*/
1251 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1254 /**********************************************************************
1255 * VariantTimeToDosDateTime [OLEAUT32.13]
1257 * Convert a variant format date into a Dos format date and time.
1259 * dateIn [I] VT_DATE time format
1260 * pwDosDate [O] Destination for Dos format date
1261 * pwDosTime [O] Destination for Dos format time
1264 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1265 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1268 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1270 INT WINAPI
VariantTimeToDosDateTime(double dateIn
, USHORT
*pwDosDate
, USHORT
*pwDosTime
)
1274 TRACE("(%g,%p,%p)\n", dateIn
, pwDosDate
, pwDosTime
);
1276 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1279 if (ud
.st
.wYear
< 1980 || ud
.st
.wYear
> 2099)
1282 *pwDosDate
= DOS_DATE(ud
.st
.wDay
, ud
.st
.wMonth
, ud
.st
.wYear
);
1283 *pwDosTime
= DOS_TIME(ud
.st
.wHour
, ud
.st
.wMinute
, ud
.st
.wSecond
);
1285 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1286 *pwDosDate
, DOS_YEAR(*pwDosDate
), DOS_MONTH(*pwDosDate
), DOS_DAY(*pwDosDate
),
1287 *pwDosTime
, DOS_HOUR(*pwDosTime
), DOS_MINUTE(*pwDosTime
), DOS_SECOND(*pwDosTime
));
1291 /***********************************************************************
1292 * SystemTimeToVariantTime [OLEAUT32.184]
1294 * Convert a System format date and time into variant VT_DATE format.
1297 * lpSt [I] System format date and time
1298 * pDateOut [O] Destination for VT_DATE format date
1301 * Success: TRUE. *pDateOut contains the converted value.
1302 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1304 INT WINAPI
SystemTimeToVariantTime(LPSYSTEMTIME lpSt
, double *pDateOut
)
1308 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt
, lpSt
->wDay
, lpSt
->wMonth
,
1309 lpSt
->wYear
, lpSt
->wHour
, lpSt
->wMinute
, lpSt
->wSecond
, pDateOut
);
1311 if (lpSt
->wMonth
> 12)
1315 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1318 /***********************************************************************
1319 * VariantTimeToSystemTime [OLEAUT32.185]
1321 * Convert a variant VT_DATE into a System format date and time.
1324 * datein [I] Variant VT_DATE format date
1325 * lpSt [O] Destination for System format date and time
1328 * Success: TRUE. *lpSt contains the converted value.
1329 * Failure: FALSE, if dateIn is too large or small.
1331 INT WINAPI
VariantTimeToSystemTime(double dateIn
, LPSYSTEMTIME lpSt
)
1335 TRACE("(%g,%p)\n", dateIn
, lpSt
);
1337 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1344 /***********************************************************************
1345 * VarDateFromUdateEx [OLEAUT32.319]
1347 * Convert an unpacked format date and time to a variant VT_DATE.
1350 * pUdateIn [I] Unpacked format date and time to convert
1351 * lcid [I] Locale identifier for the conversion
1352 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1353 * pDateOut [O] Destination for variant VT_DATE.
1356 * Success: S_OK. *pDateOut contains the converted value.
1357 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1359 HRESULT WINAPI
VarDateFromUdateEx(UDATE
*pUdateIn
, LCID lcid
, ULONG dwFlags
, DATE
*pDateOut
)
1364 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn
,
1365 pUdateIn
->st
.wMonth
, pUdateIn
->st
.wDay
, pUdateIn
->st
.wYear
,
1366 pUdateIn
->st
.wHour
, pUdateIn
->st
.wMinute
, pUdateIn
->st
.wSecond
,
1367 pUdateIn
->st
.wMilliseconds
, pUdateIn
->st
.wDayOfWeek
,
1368 pUdateIn
->wDayOfYear
, lcid
, dwFlags
, pDateOut
);
1370 if (lcid
!= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
))
1371 FIXME("lcid possibly not handled, treating as en-us\n");
1375 if (dwFlags
& VAR_VALIDDATE
)
1376 WARN("Ignoring VAR_VALIDDATE\n");
1378 if (FAILED(VARIANT_RollUdate(&ud
)))
1379 return E_INVALIDARG
;
1382 dateVal
= VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud
.st
.wYear
, ud
.st
.wMonth
, ud
.st
.wDay
));
1385 dateVal
+= ud
.st
.wHour
/ 24.0;
1386 dateVal
+= ud
.st
.wMinute
/ 1440.0;
1387 dateVal
+= ud
.st
.wSecond
/ 86400.0;
1389 TRACE("Returning %g\n", dateVal
);
1390 *pDateOut
= dateVal
;
1394 /***********************************************************************
1395 * VarDateFromUdate [OLEAUT32.330]
1397 * Convert an unpacked format date and time to a variant VT_DATE.
1400 * pUdateIn [I] Unpacked format date and time to convert
1401 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1402 * pDateOut [O] Destination for variant VT_DATE.
1405 * Success: S_OK. *pDateOut contains the converted value.
1406 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1409 * This function uses the United States English locale for the conversion. Use
1410 * VarDateFromUdateEx() for alternate locales.
1412 HRESULT WINAPI
VarDateFromUdate(UDATE
*pUdateIn
, ULONG dwFlags
, DATE
*pDateOut
)
1414 LCID lcid
= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
);
1416 return VarDateFromUdateEx(pUdateIn
, lcid
, dwFlags
, pDateOut
);
1419 /***********************************************************************
1420 * VarUdateFromDate [OLEAUT32.331]
1422 * Convert a variant VT_DATE into an unpacked format date and time.
1425 * datein [I] Variant VT_DATE format date
1426 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1427 * lpUdate [O] Destination for unpacked format date and time
1430 * Success: S_OK. *lpUdate contains the converted value.
1431 * Failure: E_INVALIDARG, if dateIn is too large or small.
1433 HRESULT WINAPI
VarUdateFromDate(DATE dateIn
, ULONG dwFlags
, UDATE
*lpUdate
)
1435 /* Cumulative totals of days per month */
1436 static const USHORT cumulativeDays
[] =
1438 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1440 double datePart
, timePart
;
1443 TRACE("(%g,0x%08x,%p)\n", dateIn
, dwFlags
, lpUdate
);
1445 if (dateIn
<= (DATE_MIN
- 1.0) || dateIn
>= (DATE_MAX
+ 1.0))
1446 return E_INVALIDARG
;
1448 datePart
= dateIn
< 0.0 ? ceil(dateIn
) : floor(dateIn
);
1449 /* Compensate for int truncation (always downwards) */
1450 timePart
= dateIn
- datePart
+ 0.00000000001;
1451 if (timePart
>= 1.0)
1452 timePart
-= 0.00000000001;
1455 julianDays
= VARIANT_JulianFromDate(dateIn
);
1456 VARIANT_DMYFromJulian(julianDays
, &lpUdate
->st
.wYear
, &lpUdate
->st
.wMonth
,
1459 datePart
= (datePart
+ 1.5) / 7.0;
1460 lpUdate
->st
.wDayOfWeek
= (datePart
- floor(datePart
)) * 7;
1461 if (lpUdate
->st
.wDayOfWeek
== 0)
1462 lpUdate
->st
.wDayOfWeek
= 5;
1463 else if (lpUdate
->st
.wDayOfWeek
== 1)
1464 lpUdate
->st
.wDayOfWeek
= 6;
1466 lpUdate
->st
.wDayOfWeek
-= 2;
1468 if (lpUdate
->st
.wMonth
> 2 && IsLeapYear(lpUdate
->st
.wYear
))
1469 lpUdate
->wDayOfYear
= 1; /* After February, in a leap year */
1471 lpUdate
->wDayOfYear
= 0;
1473 lpUdate
->wDayOfYear
+= cumulativeDays
[lpUdate
->st
.wMonth
];
1474 lpUdate
->wDayOfYear
+= lpUdate
->st
.wDay
;
1478 lpUdate
->st
.wHour
= timePart
;
1479 timePart
-= lpUdate
->st
.wHour
;
1481 lpUdate
->st
.wMinute
= timePart
;
1482 timePart
-= lpUdate
->st
.wMinute
;
1484 lpUdate
->st
.wSecond
= timePart
;
1485 timePart
-= lpUdate
->st
.wSecond
;
1486 lpUdate
->st
.wMilliseconds
= 0;
1489 /* Round the milliseconds, adjusting the time/date forward if needed */
1490 if (lpUdate
->st
.wSecond
< 59)
1491 lpUdate
->st
.wSecond
++;
1494 lpUdate
->st
.wSecond
= 0;
1495 if (lpUdate
->st
.wMinute
< 59)
1496 lpUdate
->st
.wMinute
++;
1499 lpUdate
->st
.wMinute
= 0;
1500 if (lpUdate
->st
.wHour
< 23)
1501 lpUdate
->st
.wHour
++;
1504 lpUdate
->st
.wHour
= 0;
1505 /* Roll over a whole day */
1506 if (++lpUdate
->st
.wDay
> 28)
1507 VARIANT_RollUdate(lpUdate
);
1515 #define GET_NUMBER_TEXT(fld,name) \
1517 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1518 WARN("buffer too small for " #fld "\n"); \
1520 if (buff[0]) lpChars->name = buff[0]; \
1521 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1523 /* Get the valid number characters for an lcid */
1524 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS
*lpChars
, LCID lcid
, DWORD dwFlags
)
1526 static const VARIANT_NUMBER_CHARS defaultChars
= { '-','+','.',',','$',0,'.',',' };
1527 static CRITICAL_SECTION csLastChars
= { NULL
, -1, 0, 0, 0, 0 };
1528 static VARIANT_NUMBER_CHARS lastChars
;
1529 static LCID lastLcid
= -1;
1530 static DWORD lastFlags
= 0;
1531 LCTYPE lctype
= dwFlags
& LOCALE_NOUSEROVERRIDE
;
1534 /* To make caching thread-safe, a critical section is needed */
1535 EnterCriticalSection(&csLastChars
);
1537 /* Asking for default locale entries is very expensive: It is a registry
1538 server call. So cache one locally, as Microsoft does it too */
1539 if(lcid
== lastLcid
&& dwFlags
== lastFlags
)
1541 memcpy(lpChars
, &lastChars
, sizeof(defaultChars
));
1542 LeaveCriticalSection(&csLastChars
);
1546 memcpy(lpChars
, &defaultChars
, sizeof(defaultChars
));
1547 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN
, cNegativeSymbol
);
1548 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN
, cPositiveSymbol
);
1549 GET_NUMBER_TEXT(LOCALE_SDECIMAL
, cDecimalPoint
);
1550 GET_NUMBER_TEXT(LOCALE_STHOUSAND
, cDigitSeparator
);
1551 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP
, cCurrencyDecimalPoint
);
1552 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP
, cCurrencyDigitSeparator
);
1554 /* Local currency symbols are often 2 characters */
1555 lpChars
->cCurrencyLocal2
= '\0';
1556 switch(GetLocaleInfoW(lcid
, lctype
|LOCALE_SCURRENCY
, buff
, sizeof(buff
)/sizeof(WCHAR
)))
1558 case 3: lpChars
->cCurrencyLocal2
= buff
[1]; /* Fall through */
1559 case 2: lpChars
->cCurrencyLocal
= buff
[0];
1561 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1563 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid
, lpChars
->cCurrencyLocal
,
1564 lpChars
->cCurrencyLocal2
, lpChars
->cCurrencyLocal
, lpChars
->cCurrencyLocal2
);
1566 memcpy(&lastChars
, lpChars
, sizeof(defaultChars
));
1568 lastFlags
= dwFlags
;
1569 LeaveCriticalSection(&csLastChars
);
1572 /* Number Parsing States */
1573 #define B_PROCESSING_EXPONENT 0x1
1574 #define B_NEGATIVE_EXPONENT 0x2
1575 #define B_EXPONENT_START 0x4
1576 #define B_INEXACT_ZEROS 0x8
1577 #define B_LEADING_ZERO 0x10
1578 #define B_PROCESSING_HEX 0x20
1579 #define B_PROCESSING_OCT 0x40
1581 /**********************************************************************
1582 * VarParseNumFromStr [OLEAUT32.46]
1584 * Parse a string containing a number into a NUMPARSE structure.
1587 * lpszStr [I] String to parse number from
1588 * lcid [I] Locale Id for the conversion
1589 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1590 * pNumprs [I/O] Destination for parsed number
1591 * rgbDig [O] Destination for digits read in
1594 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1596 * Failure: E_INVALIDARG, if any parameter is invalid.
1597 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1599 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1602 * pNumprs must have the following fields set:
1603 * cDig: Set to the size of rgbDig.
1604 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1608 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1609 * numerals, so this has not been implemented.
1611 HRESULT WINAPI
VarParseNumFromStr(OLECHAR
*lpszStr
, LCID lcid
, ULONG dwFlags
,
1612 NUMPARSE
*pNumprs
, BYTE
*rgbDig
)
1614 VARIANT_NUMBER_CHARS chars
;
1616 DWORD dwState
= B_EXPONENT_START
|B_INEXACT_ZEROS
;
1617 int iMaxDigits
= sizeof(rgbTmp
) / sizeof(BYTE
);
1620 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr
), lcid
, dwFlags
, pNumprs
, rgbDig
);
1622 if (!pNumprs
|| !rgbDig
)
1623 return E_INVALIDARG
;
1625 if (pNumprs
->cDig
< iMaxDigits
)
1626 iMaxDigits
= pNumprs
->cDig
;
1629 pNumprs
->dwOutFlags
= 0;
1630 pNumprs
->cchUsed
= 0;
1631 pNumprs
->nBaseShift
= 0;
1632 pNumprs
->nPwr10
= 0;
1635 return DISP_E_TYPEMISMATCH
;
1637 VARIANT_GetLocalisedNumberChars(&chars
, lcid
, dwFlags
);
1639 /* First consume all the leading symbols and space from the string */
1642 if (pNumprs
->dwInFlags
& NUMPRS_LEADING_WHITE
&& isspaceW(*lpszStr
))
1644 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_WHITE
;
1649 } while (isspaceW(*lpszStr
));
1651 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_PLUS
&&
1652 *lpszStr
== chars
.cPositiveSymbol
&&
1653 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
))
1655 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_PLUS
;
1659 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_MINUS
&&
1660 *lpszStr
== chars
.cNegativeSymbol
&&
1661 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
))
1663 pNumprs
->dwOutFlags
|= (NUMPRS_LEADING_MINUS
|NUMPRS_NEG
);
1667 else if (pNumprs
->dwInFlags
& NUMPRS_CURRENCY
&&
1668 !(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
) &&
1669 *lpszStr
== chars
.cCurrencyLocal
&&
1670 (!chars
.cCurrencyLocal2
|| lpszStr
[1] == chars
.cCurrencyLocal2
))
1672 pNumprs
->dwOutFlags
|= NUMPRS_CURRENCY
;
1675 /* Only accept currency characters */
1676 chars
.cDecimalPoint
= chars
.cCurrencyDecimalPoint
;
1677 chars
.cDigitSeparator
= chars
.cCurrencyDigitSeparator
;
1679 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== '(' &&
1680 !(pNumprs
->dwOutFlags
& NUMPRS_PARENS
))
1682 pNumprs
->dwOutFlags
|= NUMPRS_PARENS
;
1690 if (!(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
))
1692 /* Only accept non-currency characters */
1693 chars
.cCurrencyDecimalPoint
= chars
.cDecimalPoint
;
1694 chars
.cCurrencyDigitSeparator
= chars
.cDigitSeparator
;
1697 if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'H' || *(lpszStr
+1) == 'h')) &&
1698 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1700 dwState
|= B_PROCESSING_HEX
;
1701 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1705 else if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'O' || *(lpszStr
+1) == 'o')) &&
1706 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1708 dwState
|= B_PROCESSING_OCT
;
1709 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1714 /* Strip Leading zeros */
1715 while (*lpszStr
== '0')
1717 dwState
|= B_LEADING_ZERO
;
1724 if (isdigitW(*lpszStr
))
1726 if (dwState
& B_PROCESSING_EXPONENT
)
1728 int exponentSize
= 0;
1729 if (dwState
& B_EXPONENT_START
)
1731 if (!isdigitW(*lpszStr
))
1732 break; /* No exponent digits - invalid */
1733 while (*lpszStr
== '0')
1735 /* Skip leading zero's in the exponent */
1741 while (isdigitW(*lpszStr
))
1744 exponentSize
+= *lpszStr
- '0';
1748 if (dwState
& B_NEGATIVE_EXPONENT
)
1749 exponentSize
= -exponentSize
;
1750 /* Add the exponent into the powers of 10 */
1751 pNumprs
->nPwr10
+= exponentSize
;
1752 dwState
&= ~(B_PROCESSING_EXPONENT
|B_EXPONENT_START
);
1753 lpszStr
--; /* back up to allow processing of next char */
1757 if ((pNumprs
->cDig
>= iMaxDigits
) && !(dwState
& B_PROCESSING_HEX
)
1758 && !(dwState
& B_PROCESSING_OCT
))
1760 pNumprs
->dwOutFlags
|= NUMPRS_INEXACT
;
1762 if (*lpszStr
!= '0')
1763 dwState
&= ~B_INEXACT_ZEROS
; /* Inexact number with non-trailing zeros */
1765 /* This digit can't be represented, but count it in nPwr10 */
1766 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1773 if ((dwState
& B_PROCESSING_OCT
) && ((*lpszStr
== '8') || (*lpszStr
== '9'))) {
1774 return DISP_E_TYPEMISMATCH
;
1777 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1778 pNumprs
->nPwr10
--; /* Count decimal points in nPwr10 */
1780 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- '0';
1786 else if (*lpszStr
== chars
.cDigitSeparator
&& pNumprs
->dwInFlags
& NUMPRS_THOUSANDS
)
1788 pNumprs
->dwOutFlags
|= NUMPRS_THOUSANDS
;
1791 else if (*lpszStr
== chars
.cDecimalPoint
&&
1792 pNumprs
->dwInFlags
& NUMPRS_DECIMAL
&&
1793 !(pNumprs
->dwOutFlags
& (NUMPRS_DECIMAL
|NUMPRS_EXPONENT
)))
1795 pNumprs
->dwOutFlags
|= NUMPRS_DECIMAL
;
1798 /* If we have no digits so far, skip leading zeros */
1801 while (lpszStr
[1] == '0')
1803 dwState
|= B_LEADING_ZERO
;
1810 else if (((*lpszStr
>= 'a' && *lpszStr
<= 'f') ||
1811 (*lpszStr
>= 'A' && *lpszStr
<= 'F')) &&
1812 dwState
& B_PROCESSING_HEX
)
1814 if (pNumprs
->cDig
>= iMaxDigits
)
1816 return DISP_E_OVERFLOW
;
1820 if (*lpszStr
>= 'a')
1821 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'a' + 10;
1823 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'A' + 10;
1828 else if ((*lpszStr
== 'e' || *lpszStr
== 'E') &&
1829 pNumprs
->dwInFlags
& NUMPRS_EXPONENT
&&
1830 !(pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
))
1832 dwState
|= B_PROCESSING_EXPONENT
;
1833 pNumprs
->dwOutFlags
|= NUMPRS_EXPONENT
;
1836 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cPositiveSymbol
)
1838 cchUsed
++; /* Ignore positive exponent */
1840 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cNegativeSymbol
)
1842 dwState
|= B_NEGATIVE_EXPONENT
;
1846 break; /* Stop at an unrecognised character */
1851 if (!pNumprs
->cDig
&& dwState
& B_LEADING_ZERO
)
1853 /* Ensure a 0 on its own gets stored */
1858 if (pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
&& dwState
& B_PROCESSING_EXPONENT
)
1860 pNumprs
->cchUsed
= cchUsed
;
1861 WARN("didn't completely parse exponent\n");
1862 return DISP_E_TYPEMISMATCH
; /* Failed to completely parse the exponent */
1865 if (pNumprs
->dwOutFlags
& NUMPRS_INEXACT
)
1867 if (dwState
& B_INEXACT_ZEROS
)
1868 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* All zeros doesn't set NUMPRS_INEXACT */
1869 } else if(pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1871 /* copy all of the digits into the output digit buffer */
1872 /* this is exactly what windows does although it also returns */
1873 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1874 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1876 if (dwState
& B_PROCESSING_HEX
) {
1877 /* hex numbers have always the same format */
1879 pNumprs
->nBaseShift
=4;
1881 if (dwState
& B_PROCESSING_OCT
) {
1882 /* oct numbers have always the same format */
1884 pNumprs
->nBaseShift
=3;
1886 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1895 /* Remove trailing zeros from the last (whole number or decimal) part */
1896 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1903 if (pNumprs
->cDig
<= iMaxDigits
)
1904 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* Ignore stripped zeros for NUMPRS_INEXACT */
1906 pNumprs
->cDig
= iMaxDigits
; /* Only return iMaxDigits worth of digits */
1908 /* Copy the digits we processed into rgbDig */
1909 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1911 /* Consume any trailing symbols and space */
1914 if ((pNumprs
->dwInFlags
& NUMPRS_TRAILING_WHITE
) && isspaceW(*lpszStr
))
1916 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_WHITE
;
1921 } while (isspaceW(*lpszStr
));
1923 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_PLUS
&&
1924 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
) &&
1925 *lpszStr
== chars
.cPositiveSymbol
)
1927 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_PLUS
;
1931 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_MINUS
&&
1932 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
) &&
1933 *lpszStr
== chars
.cNegativeSymbol
)
1935 pNumprs
->dwOutFlags
|= (NUMPRS_TRAILING_MINUS
|NUMPRS_NEG
);
1939 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== ')' &&
1940 pNumprs
->dwOutFlags
& NUMPRS_PARENS
)
1944 pNumprs
->dwOutFlags
|= NUMPRS_NEG
;
1950 if (pNumprs
->dwOutFlags
& NUMPRS_PARENS
&& !(pNumprs
->dwOutFlags
& NUMPRS_NEG
))
1952 pNumprs
->cchUsed
= cchUsed
;
1953 return DISP_E_TYPEMISMATCH
; /* Opening parenthesis not matched */
1956 if (pNumprs
->dwInFlags
& NUMPRS_USE_ALL
&& *lpszStr
!= '\0')
1957 return DISP_E_TYPEMISMATCH
; /* Not all chars were consumed */
1960 return DISP_E_TYPEMISMATCH
; /* No Number found */
1962 pNumprs
->cchUsed
= cchUsed
;
1966 /* VTBIT flags indicating an integer value */
1967 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1968 /* VTBIT flags indicating a real number value */
1969 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1971 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1972 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1973 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1974 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1976 /**********************************************************************
1977 * VarNumFromParseNum [OLEAUT32.47]
1979 * Convert a NUMPARSE structure into a numeric Variant type.
1982 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1983 * rgbDig [I] Source for the numbers digits
1984 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1985 * pVarDst [O] Destination for the converted Variant value.
1988 * Success: S_OK. pVarDst contains the converted value.
1989 * Failure: E_INVALIDARG, if any parameter is invalid.
1990 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1993 * - The smallest favoured type present in dwVtBits that can represent the
1994 * number in pNumprs without losing precision is used.
1995 * - Signed types are preferred over unsigned types of the same size.
1996 * - Preferred types in order are: integer, float, double, currency then decimal.
1997 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1998 * for details of the rounding method.
1999 * - pVarDst is not cleared before the result is stored in it.
2000 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2001 * design?): If some other VTBIT's for integers are specified together
2002 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2003 * the number to the smallest requested integer truncating this way the
2004 * number. Wine doesn't implement this "feature" (yet?).
2006 HRESULT WINAPI
VarNumFromParseNum(NUMPARSE
*pNumprs
, BYTE
*rgbDig
,
2007 ULONG dwVtBits
, VARIANT
*pVarDst
)
2009 /* Scale factors and limits for double arithmetic */
2010 static const double dblMultipliers
[11] = {
2011 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2012 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2014 static const double dblMinimums
[11] = {
2015 R8_MIN
, R8_MIN
*10.0, R8_MIN
*100.0, R8_MIN
*1000.0, R8_MIN
*10000.0,
2016 R8_MIN
*100000.0, R8_MIN
*1000000.0, R8_MIN
*10000000.0,
2017 R8_MIN
*100000000.0, R8_MIN
*1000000000.0, R8_MIN
*10000000000.0
2019 static const double dblMaximums
[11] = {
2020 R8_MAX
, R8_MAX
/10.0, R8_MAX
/100.0, R8_MAX
/1000.0, R8_MAX
/10000.0,
2021 R8_MAX
/100000.0, R8_MAX
/1000000.0, R8_MAX
/10000000.0,
2022 R8_MAX
/100000000.0, R8_MAX
/1000000000.0, R8_MAX
/10000000000.0
2025 int wholeNumberDigits
, fractionalDigits
, divisor10
= 0, multiplier10
= 0;
2027 TRACE("(%p,%p,0x%x,%p)\n", pNumprs
, rgbDig
, dwVtBits
, pVarDst
);
2029 if (pNumprs
->nBaseShift
)
2031 /* nBaseShift indicates a hex or octal number */
2036 /* Convert the hex or octal number string into a UI64 */
2037 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2039 if (ul64
> ((UI8_MAX
>>pNumprs
->nBaseShift
) - rgbDig
[i
]))
2041 TRACE("Overflow multiplying digits\n");
2042 return DISP_E_OVERFLOW
;
2044 ul64
= (ul64
<<pNumprs
->nBaseShift
) + rgbDig
[i
];
2047 /* also make a negative representation */
2050 /* Try signed and unsigned types in size order */
2051 if (dwVtBits
& VTBIT_I1
&& FITS_AS_I1(ul64
))
2053 V_VT(pVarDst
) = VT_I1
;
2054 V_I1(pVarDst
) = ul64
;
2057 else if (dwVtBits
& VTBIT_UI1
&& FITS_AS_I1(ul64
))
2059 V_VT(pVarDst
) = VT_UI1
;
2060 V_UI1(pVarDst
) = ul64
;
2063 else if (dwVtBits
& VTBIT_I2
&& FITS_AS_I2(ul64
))
2065 V_VT(pVarDst
) = VT_I2
;
2066 V_I2(pVarDst
) = ul64
;
2069 else if (dwVtBits
& VTBIT_UI2
&& FITS_AS_I2(ul64
))
2071 V_VT(pVarDst
) = VT_UI2
;
2072 V_UI2(pVarDst
) = ul64
;
2075 else if (dwVtBits
& VTBIT_I4
&& FITS_AS_I4(ul64
))
2077 V_VT(pVarDst
) = VT_I4
;
2078 V_I4(pVarDst
) = ul64
;
2081 else if (dwVtBits
& VTBIT_UI4
&& FITS_AS_I4(ul64
))
2083 V_VT(pVarDst
) = VT_UI4
;
2084 V_UI4(pVarDst
) = ul64
;
2087 else if (dwVtBits
& VTBIT_I8
&& ((ul64
<= I8_MAX
)||(l64
>=I8_MIN
)))
2089 V_VT(pVarDst
) = VT_I8
;
2090 V_I8(pVarDst
) = ul64
;
2093 else if (dwVtBits
& VTBIT_UI8
)
2095 V_VT(pVarDst
) = VT_UI8
;
2096 V_UI8(pVarDst
) = ul64
;
2099 else if ((dwVtBits
& VTBIT_DECIMAL
) == VTBIT_DECIMAL
)
2101 V_VT(pVarDst
) = VT_DECIMAL
;
2102 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2103 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2104 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2107 else if (dwVtBits
& VTBIT_R4
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2109 V_VT(pVarDst
) = VT_R4
;
2111 V_R4(pVarDst
) = ul64
;
2113 V_R4(pVarDst
) = l64
;
2116 else if (dwVtBits
& VTBIT_R8
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2118 V_VT(pVarDst
) = VT_R8
;
2120 V_R8(pVarDst
) = ul64
;
2122 V_R8(pVarDst
) = l64
;
2126 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits
, wine_dbgstr_longlong(ul64
));
2127 return DISP_E_OVERFLOW
;
2130 /* Count the number of relevant fractional and whole digits stored,
2131 * And compute the divisor/multiplier to scale the number by.
2133 if (pNumprs
->nPwr10
< 0)
2135 if (-pNumprs
->nPwr10
>= pNumprs
->cDig
)
2137 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2138 wholeNumberDigits
= 0;
2139 fractionalDigits
= pNumprs
->cDig
;
2140 divisor10
= -pNumprs
->nPwr10
;
2144 /* An exactly represented real number e.g. 1.024 */
2145 wholeNumberDigits
= pNumprs
->cDig
+ pNumprs
->nPwr10
;
2146 fractionalDigits
= pNumprs
->cDig
- wholeNumberDigits
;
2147 divisor10
= pNumprs
->cDig
- wholeNumberDigits
;
2150 else if (pNumprs
->nPwr10
== 0)
2152 /* An exactly represented whole number e.g. 1024 */
2153 wholeNumberDigits
= pNumprs
->cDig
;
2154 fractionalDigits
= 0;
2156 else /* pNumprs->nPwr10 > 0 */
2158 /* A whole number followed by nPwr10 0's e.g. 102400 */
2159 wholeNumberDigits
= pNumprs
->cDig
;
2160 fractionalDigits
= 0;
2161 multiplier10
= pNumprs
->nPwr10
;
2164 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2165 pNumprs
->cDig
, pNumprs
->nPwr10
, wholeNumberDigits
, fractionalDigits
,
2166 multiplier10
, divisor10
);
2168 if (dwVtBits
& (INTEGER_VTBITS
|VTBIT_DECIMAL
) &&
2169 (!fractionalDigits
|| !(dwVtBits
& (REAL_VTBITS
|VTBIT_CY
|VTBIT_DECIMAL
))))
2171 /* We have one or more integer output choices, and either:
2172 * 1) An integer input value, or
2173 * 2) A real number input value but no floating output choices.
2174 * Alternately, we have a DECIMAL output available and an integer input.
2176 * So, place the integer value into pVarDst, using the smallest type
2177 * possible and preferring signed over unsigned types.
2179 BOOL bOverflow
= FALSE
, bNegative
;
2183 /* Convert the integer part of the number into a UI8 */
2184 for (i
= 0; i
< wholeNumberDigits
; i
++)
2186 if (ul64
> (UI8_MAX
/ 10 - rgbDig
[i
]))
2188 TRACE("Overflow multiplying digits\n");
2192 ul64
= ul64
* 10 + rgbDig
[i
];
2195 /* Account for the scale of the number */
2196 if (!bOverflow
&& multiplier10
)
2198 for (i
= 0; i
< multiplier10
; i
++)
2200 if (ul64
> (UI8_MAX
/ 10))
2202 TRACE("Overflow scaling number\n");
2210 /* If we have any fractional digits, round the value.
2211 * Note we don't have to do this if divisor10 is < 1,
2212 * because this means the fractional part must be < 0.5
2214 if (!bOverflow
&& fractionalDigits
&& divisor10
> 0)
2216 const BYTE
* fracDig
= rgbDig
+ wholeNumberDigits
;
2217 BOOL bAdjust
= FALSE
;
2219 TRACE("first decimal value is %d\n", *fracDig
);
2222 bAdjust
= TRUE
; /* > 0.5 */
2223 else if (*fracDig
== 5)
2225 for (i
= 1; i
< fractionalDigits
; i
++)
2229 bAdjust
= TRUE
; /* > 0.5 */
2233 /* If exactly 0.5, round only odd values */
2234 if (i
== fractionalDigits
&& (ul64
& 1))
2240 if (ul64
== UI8_MAX
)
2242 TRACE("Overflow after rounding\n");
2249 /* Zero is not a negative number */
2250 bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
&& ul64
? TRUE
: FALSE
;
2252 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64
), bNegative
);
2254 /* For negative integers, try the signed types in size order */
2255 if (!bOverflow
&& bNegative
)
2257 if (dwVtBits
& (VTBIT_I1
|VTBIT_I2
|VTBIT_I4
|VTBIT_I8
))
2259 if (dwVtBits
& VTBIT_I1
&& ul64
<= -I1_MIN
)
2261 V_VT(pVarDst
) = VT_I1
;
2262 V_I1(pVarDst
) = -ul64
;
2265 else if (dwVtBits
& VTBIT_I2
&& ul64
<= -I2_MIN
)
2267 V_VT(pVarDst
) = VT_I2
;
2268 V_I2(pVarDst
) = -ul64
;
2271 else if (dwVtBits
& VTBIT_I4
&& ul64
<= -((LONGLONG
)I4_MIN
))
2273 V_VT(pVarDst
) = VT_I4
;
2274 V_I4(pVarDst
) = -ul64
;
2277 else if (dwVtBits
& VTBIT_I8
&& ul64
<= (ULONGLONG
)I8_MAX
+ 1)
2279 V_VT(pVarDst
) = VT_I8
;
2280 V_I8(pVarDst
) = -ul64
;
2283 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2285 /* Decimal is only output choice left - fast path */
2286 V_VT(pVarDst
) = VT_DECIMAL
;
2287 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_NEG
,0);
2288 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2289 DEC_LO64(&V_DECIMAL(pVarDst
)) = -ul64
;
2294 else if (!bOverflow
)
2296 /* For positive integers, try signed then unsigned types in size order */
2297 if (dwVtBits
& VTBIT_I1
&& ul64
<= I1_MAX
)
2299 V_VT(pVarDst
) = VT_I1
;
2300 V_I1(pVarDst
) = ul64
;
2303 else if (dwVtBits
& VTBIT_UI1
&& ul64
<= UI1_MAX
)
2305 V_VT(pVarDst
) = VT_UI1
;
2306 V_UI1(pVarDst
) = ul64
;
2309 else if (dwVtBits
& VTBIT_I2
&& ul64
<= I2_MAX
)
2311 V_VT(pVarDst
) = VT_I2
;
2312 V_I2(pVarDst
) = ul64
;
2315 else if (dwVtBits
& VTBIT_UI2
&& ul64
<= UI2_MAX
)
2317 V_VT(pVarDst
) = VT_UI2
;
2318 V_UI2(pVarDst
) = ul64
;
2321 else if (dwVtBits
& VTBIT_I4
&& ul64
<= I4_MAX
)
2323 V_VT(pVarDst
) = VT_I4
;
2324 V_I4(pVarDst
) = ul64
;
2327 else if (dwVtBits
& VTBIT_UI4
&& ul64
<= UI4_MAX
)
2329 V_VT(pVarDst
) = VT_UI4
;
2330 V_UI4(pVarDst
) = ul64
;
2333 else if (dwVtBits
& VTBIT_I8
&& ul64
<= I8_MAX
)
2335 V_VT(pVarDst
) = VT_I8
;
2336 V_I8(pVarDst
) = ul64
;
2339 else if (dwVtBits
& VTBIT_UI8
)
2341 V_VT(pVarDst
) = VT_UI8
;
2342 V_UI8(pVarDst
) = ul64
;
2345 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2347 /* Decimal is only output choice left - fast path */
2348 V_VT(pVarDst
) = VT_DECIMAL
;
2349 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2350 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2351 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2357 if (dwVtBits
& REAL_VTBITS
)
2359 /* Try to put the number into a float or real */
2360 BOOL bOverflow
= FALSE
, bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
;
2364 /* Convert the number into a double */
2365 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2366 whole
= whole
* 10.0 + rgbDig
[i
];
2368 TRACE("Whole double value is %16.16g\n", whole
);
2370 /* Account for the scale */
2371 while (multiplier10
> 10)
2373 if (whole
> dblMaximums
[10])
2375 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2379 whole
= whole
* dblMultipliers
[10];
2382 if (multiplier10
&& !bOverflow
)
2384 if (whole
> dblMaximums
[multiplier10
])
2386 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2390 whole
= whole
* dblMultipliers
[multiplier10
];
2394 TRACE("Scaled double value is %16.16g\n", whole
);
2396 while (divisor10
> 10 && !bOverflow
)
2398 if (whole
< dblMinimums
[10] && whole
!= 0)
2400 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
); /* Underflow */
2404 whole
= whole
/ dblMultipliers
[10];
2407 if (divisor10
&& !bOverflow
)
2409 if (whole
< dblMinimums
[divisor10
] && whole
!= 0)
2411 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
); /* Underflow */
2415 whole
= whole
/ dblMultipliers
[divisor10
];
2418 TRACE("Final double value is %16.16g\n", whole
);
2420 if (dwVtBits
& VTBIT_R4
&&
2421 ((whole
<= R4_MAX
&& whole
>= R4_MIN
) || whole
== 0.0))
2423 TRACE("Set R4 to final value\n");
2424 V_VT(pVarDst
) = VT_R4
; /* Fits into a float */
2425 V_R4(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2429 if (dwVtBits
& VTBIT_R8
)
2431 TRACE("Set R8 to final value\n");
2432 V_VT(pVarDst
) = VT_R8
; /* Fits into a double */
2433 V_R8(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2437 if (dwVtBits
& VTBIT_CY
)
2439 if (SUCCEEDED(VarCyFromR8(bNegative
? -whole
: whole
, &V_CY(pVarDst
))))
2441 V_VT(pVarDst
) = VT_CY
; /* Fits into a currency */
2442 TRACE("Set CY to final value\n");
2445 TRACE("Value Overflows CY\n");
2449 if (dwVtBits
& VTBIT_DECIMAL
)
2454 DECIMAL
* pDec
= &V_DECIMAL(pVarDst
);
2456 DECIMAL_SETZERO(*pDec
);
2459 if (pNumprs
->dwOutFlags
& NUMPRS_NEG
)
2460 DEC_SIGN(pDec
) = DECIMAL_NEG
;
2462 DEC_SIGN(pDec
) = DECIMAL_POS
;
2464 /* Factor the significant digits */
2465 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2467 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10 + rgbDig
[i
];
2468 carry
= (ULONG
)(tmp
>> 32);
2469 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2470 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2471 carry
= (ULONG
)(tmp
>> 32);
2472 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2473 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2474 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2476 if (tmp
>> 32 & UI4_MAX
)
2478 VarNumFromParseNum_DecOverflow
:
2479 TRACE("Overflow\n");
2480 DEC_LO32(pDec
) = DEC_MID32(pDec
) = DEC_HI32(pDec
) = UI4_MAX
;
2481 return DISP_E_OVERFLOW
;
2485 /* Account for the scale of the number */
2486 while (multiplier10
> 0)
2488 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10;
2489 carry
= (ULONG
)(tmp
>> 32);
2490 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2491 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2492 carry
= (ULONG
)(tmp
>> 32);
2493 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2494 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2495 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2497 if (tmp
>> 32 & UI4_MAX
)
2498 goto VarNumFromParseNum_DecOverflow
;
2501 DEC_SCALE(pDec
) = divisor10
;
2503 V_VT(pVarDst
) = VT_DECIMAL
;
2506 return DISP_E_OVERFLOW
; /* No more output choices */
2509 /**********************************************************************
2510 * VarCat [OLEAUT32.318]
2512 * Concatenates one variant onto another.
2515 * left [I] First variant
2516 * right [I] Second variant
2517 * result [O] Result variant
2521 * Failure: An HRESULT error code indicating the error.
2523 HRESULT WINAPI
VarCat(LPVARIANT left
, LPVARIANT right
, LPVARIANT out
)
2525 VARTYPE leftvt
,rightvt
,resultvt
;
2527 static WCHAR str_true
[32];
2528 static WCHAR str_false
[32];
2529 static const WCHAR sz_empty
[] = {'\0'};
2530 leftvt
= V_VT(left
);
2531 rightvt
= V_VT(right
);
2533 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
2534 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), out
);
2537 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT
, IDS_FALSE
, str_false
);
2538 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT
, IDS_TRUE
, str_true
);
2541 /* when both left and right are NULL the result is NULL */
2542 if (leftvt
== VT_NULL
&& rightvt
== VT_NULL
)
2544 V_VT(out
) = VT_NULL
;
2549 resultvt
= VT_EMPTY
;
2551 /* There are many special case for errors and return types */
2552 if (leftvt
== VT_VARIANT
&& (rightvt
== VT_ERROR
||
2553 rightvt
== VT_DATE
|| rightvt
== VT_DECIMAL
))
2554 hres
= DISP_E_TYPEMISMATCH
;
2555 else if ((leftvt
== VT_I2
|| leftvt
== VT_I4
||
2556 leftvt
== VT_R4
|| leftvt
== VT_R8
||
2557 leftvt
== VT_CY
|| leftvt
== VT_BOOL
||
2558 leftvt
== VT_BSTR
|| leftvt
== VT_I1
||
2559 leftvt
== VT_UI1
|| leftvt
== VT_UI2
||
2560 leftvt
== VT_UI4
|| leftvt
== VT_I8
||
2561 leftvt
== VT_UI8
|| leftvt
== VT_INT
||
2562 leftvt
== VT_UINT
|| leftvt
== VT_EMPTY
||
2563 leftvt
== VT_NULL
|| leftvt
== VT_DATE
||
2564 leftvt
== VT_DECIMAL
|| leftvt
== VT_DISPATCH
)
2566 (rightvt
== VT_I2
|| rightvt
== VT_I4
||
2567 rightvt
== VT_R4
|| rightvt
== VT_R8
||
2568 rightvt
== VT_CY
|| rightvt
== VT_BOOL
||
2569 rightvt
== VT_BSTR
|| rightvt
== VT_I1
||
2570 rightvt
== VT_UI1
|| rightvt
== VT_UI2
||
2571 rightvt
== VT_UI4
|| rightvt
== VT_I8
||
2572 rightvt
== VT_UI8
|| rightvt
== VT_INT
||
2573 rightvt
== VT_UINT
|| rightvt
== VT_EMPTY
||
2574 rightvt
== VT_NULL
|| rightvt
== VT_DATE
||
2575 rightvt
== VT_DECIMAL
|| rightvt
== VT_DISPATCH
))
2577 else if (rightvt
== VT_ERROR
&& leftvt
< VT_VOID
)
2578 hres
= DISP_E_TYPEMISMATCH
;
2579 else if (leftvt
== VT_ERROR
&& (rightvt
== VT_DATE
||
2580 rightvt
== VT_ERROR
|| rightvt
== VT_DECIMAL
))
2581 hres
= DISP_E_TYPEMISMATCH
;
2582 else if (rightvt
== VT_DATE
|| rightvt
== VT_ERROR
||
2583 rightvt
== VT_DECIMAL
)
2584 hres
= DISP_E_BADVARTYPE
;
2585 else if (leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
2586 hres
= DISP_E_TYPEMISMATCH
;
2587 else if (leftvt
== VT_VARIANT
)
2588 hres
= DISP_E_TYPEMISMATCH
;
2589 else if (rightvt
== VT_VARIANT
&& (leftvt
== VT_EMPTY
||
2590 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2591 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2592 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2593 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2594 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2595 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2596 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2597 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2598 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2599 hres
= DISP_E_TYPEMISMATCH
;
2601 hres
= DISP_E_BADVARTYPE
;
2603 /* if result type is not S_OK, then no need to go further */
2606 V_VT(out
) = resultvt
;
2609 /* Else proceed with formatting inputs to strings */
2612 VARIANT bstrvar_left
, bstrvar_right
;
2613 V_VT(out
) = VT_BSTR
;
2615 VariantInit(&bstrvar_left
);
2616 VariantInit(&bstrvar_right
);
2618 /* Convert left side variant to string */
2619 if (leftvt
!= VT_BSTR
)
2621 if (leftvt
== VT_BOOL
)
2623 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2624 V_VT(&bstrvar_left
) = VT_BSTR
;
2625 if (V_BOOL(left
) == TRUE
)
2626 V_BSTR(&bstrvar_left
) = SysAllocString(str_true
);
2628 V_BSTR(&bstrvar_left
) = SysAllocString(str_false
);
2630 /* Fill with empty string for later concat with right side */
2631 else if (leftvt
== VT_NULL
)
2633 V_VT(&bstrvar_left
) = VT_BSTR
;
2634 V_BSTR(&bstrvar_left
) = SysAllocString(sz_empty
);
2638 hres
= VariantChangeTypeEx(&bstrvar_left
,left
,0,0,VT_BSTR
);
2640 VariantClear(&bstrvar_left
);
2641 VariantClear(&bstrvar_right
);
2642 if (leftvt
== VT_NULL
&& (rightvt
== VT_EMPTY
||
2643 rightvt
== VT_NULL
|| rightvt
== VT_I2
||
2644 rightvt
== VT_I4
|| rightvt
== VT_R4
||
2645 rightvt
== VT_R8
|| rightvt
== VT_CY
||
2646 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
2647 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
2648 rightvt
== VT_I1
|| rightvt
== VT_UI1
||
2649 rightvt
== VT_UI2
|| rightvt
== VT_UI4
||
2650 rightvt
== VT_I8
|| rightvt
== VT_UI8
||
2651 rightvt
== VT_INT
|| rightvt
== VT_UINT
))
2652 return DISP_E_BADVARTYPE
;
2658 /* convert right side variant to string */
2659 if (rightvt
!= VT_BSTR
)
2661 if (rightvt
== VT_BOOL
)
2663 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2664 V_VT(&bstrvar_right
) = VT_BSTR
;
2665 if (V_BOOL(right
) == TRUE
)
2666 V_BSTR(&bstrvar_right
) = SysAllocString(str_true
);
2668 V_BSTR(&bstrvar_right
) = SysAllocString(str_false
);
2670 /* Fill with empty string for later concat with right side */
2671 else if (rightvt
== VT_NULL
)
2673 V_VT(&bstrvar_right
) = VT_BSTR
;
2674 V_BSTR(&bstrvar_right
) = SysAllocString(sz_empty
);
2678 hres
= VariantChangeTypeEx(&bstrvar_right
,right
,0,0,VT_BSTR
);
2680 VariantClear(&bstrvar_left
);
2681 VariantClear(&bstrvar_right
);
2682 if (rightvt
== VT_NULL
&& (leftvt
== VT_EMPTY
||
2683 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2684 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2685 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2686 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2687 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2688 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2689 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2690 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2691 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2692 return DISP_E_BADVARTYPE
;
2698 /* Concat the resulting strings together */
2699 if (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
)
2700 VarBstrCat (V_BSTR(left
), V_BSTR(right
), &V_BSTR(out
));
2701 else if (leftvt
!= VT_BSTR
&& rightvt
!= VT_BSTR
)
2702 VarBstrCat (V_BSTR(&bstrvar_left
), V_BSTR(&bstrvar_right
), &V_BSTR(out
));
2703 else if (leftvt
!= VT_BSTR
&& rightvt
== VT_BSTR
)
2704 VarBstrCat (V_BSTR(&bstrvar_left
), V_BSTR(right
), &V_BSTR(out
));
2705 else if (leftvt
== VT_BSTR
&& rightvt
!= VT_BSTR
)
2706 VarBstrCat (V_BSTR(left
), V_BSTR(&bstrvar_right
), &V_BSTR(out
));
2708 VariantClear(&bstrvar_left
);
2709 VariantClear(&bstrvar_right
);
2715 /* Wrapper around VariantChangeTypeEx() which permits changing a
2716 variant with VT_RESERVED flag set. Needed by VarCmp. */
2717 static HRESULT
_VarChangeTypeExWrap (VARIANTARG
* pvargDest
,
2718 VARIANTARG
* pvargSrc
, LCID lcid
, USHORT wFlags
, VARTYPE vt
)
2723 flags
= V_VT(pvargSrc
) & ~VT_TYPEMASK
;
2724 V_VT(pvargSrc
) &= ~VT_RESERVED
;
2725 res
= VariantChangeTypeEx(pvargDest
,pvargSrc
,lcid
,wFlags
,vt
);
2726 V_VT(pvargSrc
) |= flags
;
2731 /**********************************************************************
2732 * VarCmp [OLEAUT32.176]
2734 * Compare two variants.
2737 * left [I] First variant
2738 * right [I] Second variant
2739 * lcid [I] LCID (locale identifier) for the comparison
2740 * flags [I] Flags to be used in the comparison:
2741 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2742 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2745 * VARCMP_LT: left variant is less than right variant.
2746 * VARCMP_EQ: input variants are equal.
2747 * VARCMP_GT: left variant is greater than right variant.
2748 * VARCMP_NULL: either one of the input variants is NULL.
2749 * Failure: An HRESULT error code indicating the error.
2752 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2753 * UI8 and UINT as input variants. INT is accepted only as left variant.
2755 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2756 * an ERROR variant will trigger an error.
2758 * Both input variants can have VT_RESERVED flag set which is ignored
2759 * unless one and only one of the variants is a BSTR and the other one
2760 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2761 * different meaning:
2762 * - BSTR and other: BSTR is always greater than the other variant.
2763 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2764 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2765 * comparison will take place else the BSTR is always greater.
2766 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2767 * variant is ignored and the return value depends only on the sign
2768 * of the BSTR if it is a number else the BSTR is always greater. A
2769 * positive BSTR is greater, a negative one is smaller than the other
2773 * VarBstrCmp for the lcid and flags usage.
2775 HRESULT WINAPI
VarCmp(LPVARIANT left
, LPVARIANT right
, LCID lcid
, DWORD flags
)
2777 VARTYPE lvt
, rvt
, vt
;
2782 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%08x)\n", left
, debugstr_VT(left
),
2783 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), lcid
, flags
);
2785 lvt
= V_VT(left
) & VT_TYPEMASK
;
2786 rvt
= V_VT(right
) & VT_TYPEMASK
;
2787 xmask
= (1 << lvt
) | (1 << rvt
);
2789 /* If we have any flag set except VT_RESERVED bail out.
2790 Same for the left input variant type > VT_INT and for the
2791 right input variant type > VT_I8. Yes, VT_INT is only supported
2792 as left variant. Go figure */
2793 if (((V_VT(left
) | V_VT(right
)) & ~VT_TYPEMASK
& ~VT_RESERVED
) ||
2794 lvt
> VT_INT
|| rvt
> VT_I8
) {
2795 return DISP_E_BADVARTYPE
;
2798 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2799 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2800 if (rvt
== VT_INT
|| xmask
& (VTBIT_I1
| VTBIT_UI2
| VTBIT_UI4
| VTBIT_UI8
|
2801 VTBIT_DISPATCH
| VTBIT_VARIANT
| VTBIT_UNKNOWN
| VTBIT_15
))
2802 return DISP_E_TYPEMISMATCH
;
2804 /* If both variants are VT_ERROR return VARCMP_EQ */
2805 if (xmask
== VTBIT_ERROR
)
2807 else if (xmask
& VTBIT_ERROR
)
2808 return DISP_E_TYPEMISMATCH
;
2810 if (xmask
& VTBIT_NULL
)
2816 /* Two BSTRs, ignore VT_RESERVED */
2817 if (xmask
== VTBIT_BSTR
)
2818 return VarBstrCmp(V_BSTR(left
), V_BSTR(right
), lcid
, flags
);
2820 /* A BSTR and an other variant; we have to take care of VT_RESERVED */
2821 if (xmask
& VTBIT_BSTR
) {
2822 VARIANT
*bstrv
, *nonbv
;
2826 /* Swap the variants so the BSTR is always on the left */
2827 if (lvt
== VT_BSTR
) {
2838 /* BSTR and EMPTY: ignore VT_RESERVED */
2839 if (nonbvt
== VT_EMPTY
)
2840 rc
= (!V_BSTR(bstrv
) || !*V_BSTR(bstrv
)) ? VARCMP_EQ
: VARCMP_GT
;
2842 VARTYPE breserv
= V_VT(bstrv
) & ~VT_TYPEMASK
;
2843 VARTYPE nreserv
= V_VT(nonbv
) & ~VT_TYPEMASK
;
2845 if (!breserv
&& !nreserv
)
2846 /* No VT_RESERVED set ==> BSTR always greater */
2848 else if (breserv
&& !nreserv
) {
2849 /* BSTR has VT_RESERVED set. Do a string comparison */
2850 rc
= VariantChangeTypeEx(&rv
,nonbv
,lcid
,0,VT_BSTR
);
2853 rc
= VarBstrCmp(V_BSTR(bstrv
), V_BSTR(&rv
), lcid
, flags
);
2855 } else if (V_BSTR(bstrv
) && *V_BSTR(bstrv
)) {
2856 /* Non NULL nor empty BSTR */
2857 /* If the BSTR is not a number the BSTR is greater */
2858 rc
= _VarChangeTypeExWrap(&lv
,bstrv
,lcid
,0,VT_R8
);
2861 else if (breserv
&& nreserv
)
2862 /* FIXME: This is strange: with both VT_RESERVED set it
2863 looks like the result depends only on the sign of
2865 rc
= (V_R8(&lv
) >= 0) ? VARCMP_GT
: VARCMP_LT
;
2867 /* Numeric comparison, will be handled below.
2868 VARCMP_NULL used only to break out. */
2873 /* Empty or NULL BSTR */
2876 /* Fixup the return code if we swapped left and right */
2878 if (rc
== VARCMP_GT
)
2880 else if (rc
== VARCMP_LT
)
2883 if (rc
!= VARCMP_NULL
)
2887 if (xmask
& VTBIT_DECIMAL
)
2889 else if (xmask
& VTBIT_BSTR
)
2891 else if (xmask
& VTBIT_R4
)
2893 else if (xmask
& (VTBIT_R8
| VTBIT_DATE
))
2895 else if (xmask
& VTBIT_CY
)
2901 /* Coerce the variants */
2902 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2903 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2904 /* Overflow, change to R8 */
2906 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2910 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2911 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2912 /* Overflow, change to R8 */
2914 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2917 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2922 #define _VARCMP(a,b) \
2923 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2927 return VarCyCmp(V_CY(&lv
), V_CY(&rv
));
2929 return VarDecCmp(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
));
2931 return _VARCMP(V_I8(&lv
), V_I8(&rv
));
2933 return _VARCMP(V_R4(&lv
), V_R4(&rv
));
2935 return _VARCMP(V_R8(&lv
), V_R8(&rv
));
2937 /* We should never get here */
2943 static HRESULT
VARIANT_FetchDispatchValue(LPVARIANT pvDispatch
, LPVARIANT pValue
)
2946 static DISPPARAMS emptyParams
= { NULL
, NULL
, 0, 0 };
2948 if ((V_VT(pvDispatch
) & VT_TYPEMASK
) == VT_DISPATCH
) {
2949 if (NULL
== V_DISPATCH(pvDispatch
)) return DISP_E_TYPEMISMATCH
;
2950 hres
= IDispatch_Invoke(V_DISPATCH(pvDispatch
), DISPID_VALUE
, &IID_NULL
,
2951 LOCALE_USER_DEFAULT
, DISPATCH_PROPERTYGET
, &emptyParams
, pValue
,
2954 hres
= DISP_E_TYPEMISMATCH
;
2959 /**********************************************************************
2960 * VarAnd [OLEAUT32.142]
2962 * Computes the logical AND of two variants.
2965 * left [I] First variant
2966 * right [I] Second variant
2967 * result [O] Result variant
2971 * Failure: An HRESULT error code indicating the error.
2973 HRESULT WINAPI
VarAnd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
2975 HRESULT hres
= S_OK
;
2976 VARTYPE resvt
= VT_EMPTY
;
2977 VARTYPE leftvt
,rightvt
;
2978 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
2979 VARIANT varLeft
, varRight
;
2980 VARIANT tempLeft
, tempRight
;
2982 VariantInit(&varLeft
);
2983 VariantInit(&varRight
);
2984 VariantInit(&tempLeft
);
2985 VariantInit(&tempRight
);
2987 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
2988 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
2990 /* Handle VT_DISPATCH by storing and taking address of returned value */
2991 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
2993 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
2994 if (FAILED(hres
)) goto VarAnd_Exit
;
2997 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
2999 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3000 if (FAILED(hres
)) goto VarAnd_Exit
;
3004 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3005 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3006 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3007 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3009 if (leftExtraFlags
!= rightExtraFlags
)
3011 hres
= DISP_E_BADVARTYPE
;
3014 ExtraFlags
= leftExtraFlags
;
3016 /* Native VarAnd always returns an error when using extra
3017 * flags or if the variant combination is I8 and INT.
3019 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
3020 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
3023 hres
= DISP_E_BADVARTYPE
;
3027 /* Determine return type */
3028 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
3030 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
3031 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3032 leftvt
== VT_INT
|| rightvt
== VT_INT
||
3033 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3034 leftvt
== VT_R4
|| rightvt
== VT_R4
||
3035 leftvt
== VT_R8
|| rightvt
== VT_R8
||
3036 leftvt
== VT_CY
|| rightvt
== VT_CY
||
3037 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
3038 leftvt
== VT_I1
|| rightvt
== VT_I1
||
3039 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
3040 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
3041 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
3042 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3044 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
||
3045 leftvt
== VT_I2
|| rightvt
== VT_I2
||
3046 leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
)
3047 if ((leftvt
== VT_NULL
&& rightvt
== VT_UI1
) ||
3048 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
3049 (leftvt
== VT_UI1
&& rightvt
== VT_UI1
))
3053 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3054 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
3056 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
||
3057 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3061 hres
= DISP_E_BADVARTYPE
;
3065 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3068 * Special cases for when left variant is VT_NULL
3069 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3071 if (leftvt
== VT_NULL
)
3076 case VT_I1
: if (V_I1(right
)) resvt
= VT_NULL
; break;
3077 case VT_UI1
: if (V_UI1(right
)) resvt
= VT_NULL
; break;
3078 case VT_I2
: if (V_I2(right
)) resvt
= VT_NULL
; break;
3079 case VT_UI2
: if (V_UI2(right
)) resvt
= VT_NULL
; break;
3080 case VT_I4
: if (V_I4(right
)) resvt
= VT_NULL
; break;
3081 case VT_UI4
: if (V_UI4(right
)) resvt
= VT_NULL
; break;
3082 case VT_I8
: if (V_I8(right
)) resvt
= VT_NULL
; break;
3083 case VT_UI8
: if (V_UI8(right
)) resvt
= VT_NULL
; break;
3084 case VT_INT
: if (V_INT(right
)) resvt
= VT_NULL
; break;
3085 case VT_UINT
: if (V_UINT(right
)) resvt
= VT_NULL
; break;
3086 case VT_BOOL
: if (V_BOOL(right
)) resvt
= VT_NULL
; break;
3087 case VT_R4
: if (V_R4(right
)) resvt
= VT_NULL
; break;
3088 case VT_R8
: if (V_R8(right
)) resvt
= VT_NULL
; break;
3090 if(V_CY(right
).int64
)
3094 if (DEC_HI32(&V_DECIMAL(right
)) ||
3095 DEC_LO64(&V_DECIMAL(right
)))
3099 hres
= VarBoolFromStr(V_BSTR(right
),
3100 LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
3104 V_VT(result
) = VT_NULL
;
3107 V_VT(result
) = VT_BOOL
;
3113 V_VT(result
) = resvt
;
3117 hres
= VariantCopy(&varLeft
, left
);
3118 if (FAILED(hres
)) goto VarAnd_Exit
;
3120 hres
= VariantCopy(&varRight
, right
);
3121 if (FAILED(hres
)) goto VarAnd_Exit
;
3123 if (resvt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
3124 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
3129 if (V_VT(&varLeft
) == VT_BSTR
&&
3130 FAILED(VarR8FromStr(V_BSTR(&varLeft
),
3131 LOCALE_USER_DEFAULT
, 0, &d
)))
3132 hres
= VariantChangeType(&varLeft
,&varLeft
,
3133 VARIANT_LOCALBOOL
, VT_BOOL
);
3134 if (SUCCEEDED(hres
) && V_VT(&varLeft
) != resvt
)
3135 hres
= VariantChangeType(&varLeft
,&varLeft
,0,resvt
);
3136 if (FAILED(hres
)) goto VarAnd_Exit
;
3139 if (resvt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
3140 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
3145 if (V_VT(&varRight
) == VT_BSTR
&&
3146 FAILED(VarR8FromStr(V_BSTR(&varRight
),
3147 LOCALE_USER_DEFAULT
, 0, &d
)))
3148 hres
= VariantChangeType(&varRight
, &varRight
,
3149 VARIANT_LOCALBOOL
, VT_BOOL
);
3150 if (SUCCEEDED(hres
) && V_VT(&varRight
) != resvt
)
3151 hres
= VariantChangeType(&varRight
, &varRight
, 0, resvt
);
3152 if (FAILED(hres
)) goto VarAnd_Exit
;
3155 V_VT(result
) = resvt
;
3159 V_I8(result
) = V_I8(&varLeft
) & V_I8(&varRight
);
3162 V_I4(result
) = V_I4(&varLeft
) & V_I4(&varRight
);
3165 V_I2(result
) = V_I2(&varLeft
) & V_I2(&varRight
);
3168 V_UI1(result
) = V_UI1(&varLeft
) & V_UI1(&varRight
);
3171 V_BOOL(result
) = V_BOOL(&varLeft
) & V_BOOL(&varRight
);
3174 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3179 VariantClear(&varLeft
);
3180 VariantClear(&varRight
);
3181 VariantClear(&tempLeft
);
3182 VariantClear(&tempRight
);
3187 /**********************************************************************
3188 * VarAdd [OLEAUT32.141]
3193 * left [I] First variant
3194 * right [I] Second variant
3195 * result [O] Result variant
3199 * Failure: An HRESULT error code indicating the error.
3202 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3203 * UI8, INT and UINT as input variants.
3205 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3209 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3212 HRESULT WINAPI
VarAdd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3215 VARTYPE lvt
, rvt
, resvt
, tvt
;
3217 VARIANT tempLeft
, tempRight
;
3220 /* Variant priority for coercion. Sorted from lowest to highest.
3221 VT_ERROR shows an invalid input variant type. */
3222 enum coerceprio
{ vt_EMPTY
, vt_UI1
, vt_I2
, vt_I4
, vt_I8
, vt_BSTR
,vt_R4
,
3223 vt_R8
, vt_CY
, vt_DATE
, vt_DECIMAL
, vt_DISPATCH
, vt_NULL
,
3225 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3226 static const VARTYPE prio2vt
[] = { VT_EMPTY
, VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_BSTR
, VT_R4
,
3227 VT_R8
, VT_CY
, VT_DATE
, VT_DECIMAL
, VT_DISPATCH
,
3228 VT_NULL
, VT_ERROR
};
3230 /* Mapping for coercion from input variant to priority of result variant. */
3231 static const VARTYPE coerce
[] = {
3232 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3233 vt_EMPTY
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3234 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3235 vt_R8
, vt_CY
, vt_DATE
, vt_BSTR
, vt_DISPATCH
,
3236 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3237 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3238 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3239 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3242 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3243 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
),
3249 VariantInit(&tempLeft
);
3250 VariantInit(&tempRight
);
3252 /* Handle VT_DISPATCH by storing and taking address of returned value */
3253 if ((V_VT(left
) & VT_TYPEMASK
) != VT_NULL
&& (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3255 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3257 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3258 if (FAILED(hres
)) goto end
;
3261 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3263 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3264 if (FAILED(hres
)) goto end
;
3269 lvt
= V_VT(left
)&VT_TYPEMASK
;
3270 rvt
= V_VT(right
)&VT_TYPEMASK
;
3272 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3273 Same for any input variant type > VT_I8 */
3274 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3275 lvt
> VT_I8
|| rvt
> VT_I8
) {
3276 hres
= DISP_E_BADVARTYPE
;
3280 /* Determine the variant type to coerce to. */
3281 if (coerce
[lvt
] > coerce
[rvt
]) {
3282 resvt
= prio2vt
[coerce
[lvt
]];
3283 tvt
= prio2vt
[coerce
[rvt
]];
3285 resvt
= prio2vt
[coerce
[rvt
]];
3286 tvt
= prio2vt
[coerce
[lvt
]];
3289 /* Special cases where the result variant type is defined by both
3290 input variants and not only that with the highest priority */
3291 if (resvt
== VT_BSTR
) {
3292 if (tvt
== VT_EMPTY
|| tvt
== VT_BSTR
)
3297 if (resvt
== VT_R4
&& (tvt
== VT_BSTR
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3300 /* For overflow detection use the biggest compatible type for the
3304 hres
= DISP_E_BADVARTYPE
;
3308 V_VT(result
) = VT_NULL
;
3311 FIXME("cannot handle variant type VT_DISPATCH\n");
3312 hres
= DISP_E_TYPEMISMATCH
;
3331 /* Now coerce the variants */
3332 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3335 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3341 V_VT(result
) = resvt
;
3344 hres
= VarDecAdd(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3345 &V_DECIMAL(result
));
3348 hres
= VarCyAdd(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3351 /* We do not add those, we concatenate them. */
3352 hres
= VarBstrCat(V_BSTR(&lv
), V_BSTR(&rv
), &V_BSTR(result
));
3355 /* Overflow detection */
3356 r8res
= (double)V_I8(&lv
) + (double)V_I8(&rv
);
3357 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3358 V_VT(result
) = VT_R8
;
3359 V_R8(result
) = r8res
;
3363 V_I8(&tv
) = V_I8(&lv
) + V_I8(&rv
);
3368 /* FIXME: overflow detection */
3369 V_R8(&tv
) = V_R8(&lv
) + V_R8(&rv
);
3372 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3376 if ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3377 /* Overflow! Change to the vartype with the next higher priority.
3378 With one exception: I4 ==> R8 even if it would fit in I8 */
3382 resvt
= prio2vt
[coerce
[resvt
] + 1];
3383 hres
= VariantChangeType(result
, &tv
, 0, resvt
);
3386 hres
= VariantCopy(result
, &tv
);
3390 V_VT(result
) = VT_EMPTY
;
3391 V_I4(result
) = 0; /* No V_EMPTY */
3396 VariantClear(&tempLeft
);
3397 VariantClear(&tempRight
);
3398 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3402 /**********************************************************************
3403 * VarMul [OLEAUT32.156]
3405 * Multiply two variants.
3408 * left [I] First variant
3409 * right [I] Second variant
3410 * result [O] Result variant
3414 * Failure: An HRESULT error code indicating the error.
3417 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3418 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3420 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3424 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3427 HRESULT WINAPI
VarMul(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3430 VARTYPE lvt
, rvt
, resvt
, tvt
;
3432 VARIANT tempLeft
, tempRight
;
3435 /* Variant priority for coercion. Sorted from lowest to highest.
3436 VT_ERROR shows an invalid input variant type. */
3437 enum coerceprio
{ vt_UI1
= 0, vt_I2
, vt_I4
, vt_I8
, vt_CY
, vt_R4
, vt_R8
,
3438 vt_DECIMAL
, vt_NULL
, vt_ERROR
};
3439 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3440 static const VARTYPE prio2vt
[] = { VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_CY
, VT_R4
, VT_R8
,
3441 VT_DECIMAL
, VT_NULL
, VT_ERROR
};
3443 /* Mapping for coercion from input variant to priority of result variant. */
3444 static const VARTYPE coerce
[] = {
3445 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3446 vt_UI1
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3447 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3448 vt_R8
, vt_CY
, vt_R8
, vt_R8
, vt_ERROR
,
3449 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3450 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3451 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3452 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3455 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3456 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
),
3462 VariantInit(&tempLeft
);
3463 VariantInit(&tempRight
);
3465 /* Handle VT_DISPATCH by storing and taking address of returned value */
3466 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3468 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3469 if (FAILED(hres
)) goto end
;
3472 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3474 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3475 if (FAILED(hres
)) goto end
;
3479 lvt
= V_VT(left
)&VT_TYPEMASK
;
3480 rvt
= V_VT(right
)&VT_TYPEMASK
;
3482 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3483 Same for any input variant type > VT_I8 */
3484 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3485 lvt
> VT_I8
|| rvt
> VT_I8
) {
3486 hres
= DISP_E_BADVARTYPE
;
3490 /* Determine the variant type to coerce to. */
3491 if (coerce
[lvt
] > coerce
[rvt
]) {
3492 resvt
= prio2vt
[coerce
[lvt
]];
3493 tvt
= prio2vt
[coerce
[rvt
]];
3495 resvt
= prio2vt
[coerce
[rvt
]];
3496 tvt
= prio2vt
[coerce
[lvt
]];
3499 /* Special cases where the result variant type is defined by both
3500 input variants and not only that with the highest priority */
3501 if (resvt
== VT_R4
&& (tvt
== VT_CY
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3503 if (lvt
== VT_EMPTY
&& rvt
== VT_EMPTY
)
3506 /* For overflow detection use the biggest compatible type for the
3510 hres
= DISP_E_BADVARTYPE
;
3514 V_VT(result
) = VT_NULL
;
3529 /* Now coerce the variants */
3530 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3533 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3540 V_VT(result
) = resvt
;
3543 hres
= VarDecMul(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3544 &V_DECIMAL(result
));
3547 hres
= VarCyMul(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3550 /* Overflow detection */
3551 r8res
= (double)V_I8(&lv
) * (double)V_I8(&rv
);
3552 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3553 V_VT(result
) = VT_R8
;
3554 V_R8(result
) = r8res
;
3557 V_I8(&tv
) = V_I8(&lv
) * V_I8(&rv
);
3560 /* FIXME: overflow detection */
3561 V_R8(&tv
) = V_R8(&lv
) * V_R8(&rv
);
3564 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3568 while ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3569 /* Overflow! Change to the vartype with the next higher priority.
3570 With one exception: I4 ==> R8 even if it would fit in I8 */
3574 resvt
= prio2vt
[coerce
[resvt
] + 1];
3577 hres
= VariantCopy(result
, &tv
);
3581 V_VT(result
) = VT_EMPTY
;
3582 V_I4(result
) = 0; /* No V_EMPTY */
3587 VariantClear(&tempLeft
);
3588 VariantClear(&tempRight
);
3589 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3593 /**********************************************************************
3594 * VarDiv [OLEAUT32.143]
3596 * Divides one variant with another.
3599 * left [I] First variant
3600 * right [I] Second variant
3601 * result [O] Result variant
3605 * Failure: An HRESULT error code indicating the error.
3607 HRESULT WINAPI
VarDiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3609 HRESULT hres
= S_OK
;
3610 VARTYPE resvt
= VT_EMPTY
;
3611 VARTYPE leftvt
,rightvt
;
3612 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3614 VARIANT tempLeft
, tempRight
;
3616 VariantInit(&tempLeft
);
3617 VariantInit(&tempRight
);
3621 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3622 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
3624 /* Handle VT_DISPATCH by storing and taking address of returned value */
3625 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3627 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3628 if (FAILED(hres
)) goto end
;
3631 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3633 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3634 if (FAILED(hres
)) goto end
;
3638 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3639 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3640 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3641 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3643 if (leftExtraFlags
!= rightExtraFlags
)
3645 hres
= DISP_E_BADVARTYPE
;
3648 ExtraFlags
= leftExtraFlags
;
3650 /* Native VarDiv always returns an error when using extra flags */
3651 if (ExtraFlags
!= 0)
3653 hres
= DISP_E_BADVARTYPE
;
3657 /* Determine return type */
3658 if (!(rightvt
== VT_EMPTY
))
3660 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3662 V_VT(result
) = VT_NULL
;
3666 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3668 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
||
3669 leftvt
== VT_CY
|| rightvt
== VT_CY
||
3670 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
3671 leftvt
== VT_I4
|| rightvt
== VT_I4
||
3672 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
3673 leftvt
== VT_I2
|| rightvt
== VT_I2
||
3674 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3675 leftvt
== VT_R8
|| rightvt
== VT_R8
||
3676 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3678 if ((leftvt
== VT_UI1
&& rightvt
== VT_R4
) ||
3679 (leftvt
== VT_R4
&& rightvt
== VT_UI1
))
3681 else if ((leftvt
== VT_R4
&& (rightvt
== VT_BOOL
||
3682 rightvt
== VT_I2
)) || (rightvt
== VT_R4
&&
3683 (leftvt
== VT_BOOL
|| leftvt
== VT_I2
)))
3688 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3691 else if (leftvt
== VT_NULL
&& rightvt
== VT_EMPTY
)
3693 V_VT(result
) = VT_NULL
;
3699 hres
= DISP_E_BADVARTYPE
;
3703 /* coerce to the result type */
3704 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3705 if (hres
!= S_OK
) goto end
;
3707 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3708 if (hres
!= S_OK
) goto end
;
3711 V_VT(result
) = resvt
;
3715 if (V_R4(&lv
) == 0.0 && V_R4(&rv
) == 0.0)
3717 hres
= DISP_E_OVERFLOW
;
3718 V_VT(result
) = VT_EMPTY
;
3720 else if (V_R4(&rv
) == 0.0)
3722 hres
= DISP_E_DIVBYZERO
;
3723 V_VT(result
) = VT_EMPTY
;
3726 V_R4(result
) = V_R4(&lv
) / V_R4(&rv
);
3729 if (V_R8(&lv
) == 0.0 && V_R8(&rv
) == 0.0)
3731 hres
= DISP_E_OVERFLOW
;
3732 V_VT(result
) = VT_EMPTY
;
3734 else if (V_R8(&rv
) == 0.0)
3736 hres
= DISP_E_DIVBYZERO
;
3737 V_VT(result
) = VT_EMPTY
;
3740 V_R8(result
) = V_R8(&lv
) / V_R8(&rv
);
3743 hres
= VarDecDiv(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3750 VariantClear(&tempLeft
);
3751 VariantClear(&tempRight
);
3752 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3756 /**********************************************************************
3757 * VarSub [OLEAUT32.159]
3759 * Subtract two variants.
3762 * left [I] First variant
3763 * right [I] Second variant
3764 * result [O] Result variant
3768 * Failure: An HRESULT error code indicating the error.
3770 HRESULT WINAPI
VarSub(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3772 HRESULT hres
= S_OK
;
3773 VARTYPE resvt
= VT_EMPTY
;
3774 VARTYPE leftvt
,rightvt
;
3775 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3777 VARIANT tempLeft
, tempRight
;
3781 VariantInit(&tempLeft
);
3782 VariantInit(&tempRight
);
3784 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3785 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
3787 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3788 (V_VT(left
)&(~VT_TYPEMASK
)) == 0 &&
3789 (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3791 if (NULL
== V_DISPATCH(left
)) {
3792 if ((V_VT(right
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3793 hres
= DISP_E_BADVARTYPE
;
3794 else if ((V_VT(right
) & VT_TYPEMASK
) >= VT_UI8
&&
3795 (V_VT(right
) & VT_TYPEMASK
) < VT_RECORD
)
3796 hres
= DISP_E_BADVARTYPE
;
3797 else switch (V_VT(right
) & VT_TYPEMASK
)
3805 hres
= DISP_E_BADVARTYPE
;
3807 if (FAILED(hres
)) goto end
;
3809 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3810 if (FAILED(hres
)) goto end
;
3813 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3814 (V_VT(right
)&(~VT_TYPEMASK
)) == 0 &&
3815 (V_VT(left
) & VT_TYPEMASK
) != VT_NULL
)
3817 if (NULL
== V_DISPATCH(right
))
3819 if ((V_VT(left
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3820 hres
= DISP_E_BADVARTYPE
;
3821 else if ((V_VT(left
) & VT_TYPEMASK
) >= VT_UI8
&&
3822 (V_VT(left
) & VT_TYPEMASK
) < VT_RECORD
)
3823 hres
= DISP_E_BADVARTYPE
;
3824 else switch (V_VT(left
) & VT_TYPEMASK
)
3832 hres
= DISP_E_BADVARTYPE
;
3834 if (FAILED(hres
)) goto end
;
3836 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3837 if (FAILED(hres
)) goto end
;
3841 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3842 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3843 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3844 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3846 if (leftExtraFlags
!= rightExtraFlags
)
3848 hres
= DISP_E_BADVARTYPE
;
3851 ExtraFlags
= leftExtraFlags
;
3853 /* determine return type and return code */
3854 /* All extra flags produce errors */
3855 if (ExtraFlags
== (VT_VECTOR
|VT_BYREF
|VT_RESERVED
) ||
3856 ExtraFlags
== (VT_VECTOR
|VT_RESERVED
) ||
3857 ExtraFlags
== (VT_VECTOR
|VT_BYREF
) ||
3858 ExtraFlags
== (VT_BYREF
|VT_RESERVED
) ||
3859 ExtraFlags
== VT_VECTOR
||
3860 ExtraFlags
== VT_BYREF
||
3861 ExtraFlags
== VT_RESERVED
)
3863 hres
= DISP_E_BADVARTYPE
;
3866 else if (ExtraFlags
>= VT_ARRAY
)
3868 hres
= DISP_E_TYPEMISMATCH
;
3871 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3872 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3873 else if (leftvt
== VT_CLSID
|| rightvt
== VT_CLSID
||
3874 leftvt
== VT_VARIANT
|| rightvt
== VT_VARIANT
||
3875 leftvt
== VT_I1
|| rightvt
== VT_I1
||
3876 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
3877 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
3878 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
3879 leftvt
== VT_INT
|| rightvt
== VT_INT
||
3880 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3881 leftvt
== VT_UNKNOWN
|| rightvt
== VT_UNKNOWN
||
3882 leftvt
== VT_RECORD
|| rightvt
== VT_RECORD
)
3884 if (leftvt
== VT_RECORD
&& rightvt
== VT_I8
)
3885 hres
= DISP_E_TYPEMISMATCH
;
3886 else if (leftvt
< VT_UI1
&& rightvt
== VT_RECORD
)
3887 hres
= DISP_E_TYPEMISMATCH
;
3888 else if (leftvt
>= VT_UI1
&& rightvt
== VT_RECORD
)
3889 hres
= DISP_E_TYPEMISMATCH
;
3890 else if (leftvt
== VT_RECORD
&& rightvt
<= VT_UI1
)
3891 hres
= DISP_E_TYPEMISMATCH
;
3892 else if (leftvt
== VT_RECORD
&& rightvt
> VT_UI1
)
3893 hres
= DISP_E_BADVARTYPE
;
3895 hres
= DISP_E_BADVARTYPE
;
3898 /* The following flags/types are invalid for left variant */
3899 else if (!((leftvt
<= VT_LPWSTR
|| leftvt
== VT_RECORD
||
3900 leftvt
== VT_CLSID
) && leftvt
!= (VARTYPE
)15 /* undefined vt */ &&
3901 (leftvt
< VT_VOID
|| leftvt
> VT_LPWSTR
)))
3903 hres
= DISP_E_BADVARTYPE
;
3906 /* The following flags/types are invalid for right variant */
3907 else if (!((rightvt
<= VT_LPWSTR
|| rightvt
== VT_RECORD
||
3908 rightvt
== VT_CLSID
) && rightvt
!= (VARTYPE
)15 /* undefined vt */ &&
3909 (rightvt
< VT_VOID
|| rightvt
> VT_LPWSTR
)))
3911 hres
= DISP_E_BADVARTYPE
;
3914 else if ((leftvt
== VT_NULL
&& rightvt
== VT_DISPATCH
) ||
3915 (leftvt
== VT_DISPATCH
&& rightvt
== VT_NULL
))
3917 else if (leftvt
== VT_DISPATCH
|| rightvt
== VT_DISPATCH
||
3918 leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
3920 hres
= DISP_E_TYPEMISMATCH
;
3923 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3925 else if ((leftvt
== VT_EMPTY
&& rightvt
== VT_BSTR
) ||
3926 (leftvt
== VT_DATE
&& rightvt
== VT_DATE
) ||
3927 (leftvt
== VT_BSTR
&& rightvt
== VT_EMPTY
) ||
3928 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
3930 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3932 else if (leftvt
== VT_DATE
|| rightvt
== VT_DATE
)
3934 else if (leftvt
== VT_CY
|| rightvt
== VT_CY
)
3936 else if (leftvt
== VT_R8
|| rightvt
== VT_R8
)
3938 else if (leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3940 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3942 if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
3943 leftvt
== VT_I8
|| rightvt
== VT_I8
)
3948 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
3950 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
)
3952 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
3953 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3954 (leftvt
== VT_EMPTY
&& rightvt
== VT_EMPTY
))
3956 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3960 hres
= DISP_E_TYPEMISMATCH
;
3964 /* coerce to the result type */
3965 if (leftvt
== VT_BSTR
&& rightvt
== VT_DATE
)
3966 hres
= VariantChangeType(&lv
, left
, 0, VT_R8
);
3968 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3969 if (hres
!= S_OK
) goto end
;
3970 if (leftvt
== VT_DATE
&& rightvt
== VT_BSTR
)
3971 hres
= VariantChangeType(&rv
, right
, 0, VT_R8
);
3973 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3974 if (hres
!= S_OK
) goto end
;
3977 V_VT(result
) = resvt
;
3983 V_DATE(result
) = V_DATE(&lv
) - V_DATE(&rv
);
3986 hres
= VarCySub(V_CY(&lv
), V_CY(&rv
), &(V_CY(result
)));
3989 V_R4(result
) = V_R4(&lv
) - V_R4(&rv
);
3992 V_I8(result
) = V_I8(&lv
) - V_I8(&rv
);
3995 V_I4(result
) = V_I4(&lv
) - V_I4(&rv
);
3998 V_I2(result
) = V_I2(&lv
) - V_I2(&rv
);
4001 V_I1(result
) = V_I1(&lv
) - V_I1(&rv
);
4004 V_UI1(result
) = V_UI2(&lv
) - V_UI1(&rv
);
4007 V_R8(result
) = V_R8(&lv
) - V_R8(&rv
);
4010 hres
= VarDecSub(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
4017 VariantClear(&tempLeft
);
4018 VariantClear(&tempRight
);
4019 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
4024 /**********************************************************************
4025 * VarOr [OLEAUT32.157]
4027 * Perform a logical or (OR) operation on two variants.
4030 * pVarLeft [I] First variant
4031 * pVarRight [I] Variant to OR with pVarLeft
4032 * pVarOut [O] Destination for OR result
4035 * Success: S_OK. pVarOut contains the result of the operation with its type
4036 * taken from the table listed under VarXor().
4037 * Failure: An HRESULT error code indicating the error.
4040 * See the Notes section of VarXor() for further information.
4042 HRESULT WINAPI
VarOr(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4045 VARIANT varLeft
, varRight
, varStr
;
4047 VARIANT tempLeft
, tempRight
;
4049 VariantInit(&tempLeft
);
4050 VariantInit(&tempRight
);
4051 VariantInit(&varLeft
);
4052 VariantInit(&varRight
);
4053 VariantInit(&varStr
);
4055 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4056 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4057 debugstr_VF(pVarRight
), pVarOut
);
4059 /* Handle VT_DISPATCH by storing and taking address of returned value */
4060 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
4062 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
4063 if (FAILED(hRet
)) goto VarOr_Exit
;
4064 pVarLeft
= &tempLeft
;
4066 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
4068 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
4069 if (FAILED(hRet
)) goto VarOr_Exit
;
4070 pVarRight
= &tempRight
;
4073 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4074 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4075 V_VT(pVarLeft
) == VT_DISPATCH
|| V_VT(pVarRight
) == VT_DISPATCH
||
4076 V_VT(pVarLeft
) == VT_RECORD
|| V_VT(pVarRight
) == VT_RECORD
)
4078 hRet
= DISP_E_BADVARTYPE
;
4082 V_VT(&varLeft
) = V_VT(&varRight
) = V_VT(&varStr
) = VT_EMPTY
;
4084 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4086 /* NULL OR Zero is NULL, NULL OR value is value */
4087 if (V_VT(pVarLeft
) == VT_NULL
)
4088 pVarLeft
= pVarRight
; /* point to the non-NULL var */
4090 V_VT(pVarOut
) = VT_NULL
;
4093 switch (V_VT(pVarLeft
))
4095 case VT_DATE
: case VT_R8
:
4101 if (V_BOOL(pVarLeft
))
4102 *pVarOut
= *pVarLeft
;
4105 case VT_I2
: case VT_UI2
:
4116 if (V_UI1(pVarLeft
))
4117 *pVarOut
= *pVarLeft
;
4125 case VT_I4
: case VT_UI4
: case VT_INT
: case VT_UINT
:
4131 if (V_CY(pVarLeft
).int64
)
4135 case VT_I8
: case VT_UI8
:
4141 if (DEC_HI32(&V_DECIMAL(pVarLeft
)) || DEC_LO64(&V_DECIMAL(pVarLeft
)))
4149 if (!V_BSTR(pVarLeft
))
4151 hRet
= DISP_E_BADVARTYPE
;
4155 hRet
= VarBoolFromStr(V_BSTR(pVarLeft
), LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
4156 if (SUCCEEDED(hRet
) && b
)
4158 V_VT(pVarOut
) = VT_BOOL
;
4159 V_BOOL(pVarOut
) = b
;
4163 case VT_NULL
: case VT_EMPTY
:
4164 V_VT(pVarOut
) = VT_NULL
;
4168 hRet
= DISP_E_BADVARTYPE
;
4173 if (V_VT(pVarLeft
) == VT_EMPTY
|| V_VT(pVarRight
) == VT_EMPTY
)
4175 if (V_VT(pVarLeft
) == VT_EMPTY
)
4176 pVarLeft
= pVarRight
; /* point to the non-EMPTY var */
4179 /* Since one argument is empty (0), OR'ing it with the other simply
4180 * gives the others value (as 0|x => x). So just convert the other
4181 * argument to the required result type.
4183 switch (V_VT(pVarLeft
))
4186 if (!V_BSTR(pVarLeft
))
4188 hRet
= DISP_E_BADVARTYPE
;
4192 hRet
= VariantCopy(&varStr
, pVarLeft
);
4196 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4199 /* Fall Through ... */
4200 case VT_EMPTY
: case VT_UI1
: case VT_BOOL
: case VT_I2
:
4201 V_VT(pVarOut
) = VT_I2
;
4203 case VT_DATE
: case VT_CY
: case VT_DECIMAL
: case VT_R4
: case VT_R8
:
4204 case VT_I1
: case VT_UI2
: case VT_I4
: case VT_UI4
:
4205 case VT_INT
: case VT_UINT
: case VT_UI8
:
4206 V_VT(pVarOut
) = VT_I4
;
4209 V_VT(pVarOut
) = VT_I8
;
4212 hRet
= DISP_E_BADVARTYPE
;
4215 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4218 pVarLeft
= &varLeft
;
4219 hRet
= VariantChangeType(pVarOut
, pVarLeft
, 0, V_VT(pVarOut
));
4223 if (V_VT(pVarLeft
) == VT_BOOL
&& V_VT(pVarRight
) == VT_BOOL
)
4225 V_VT(pVarOut
) = VT_BOOL
;
4226 V_BOOL(pVarOut
) = V_BOOL(pVarLeft
) | V_BOOL(pVarRight
);
4231 if (V_VT(pVarLeft
) == VT_UI1
&& V_VT(pVarRight
) == VT_UI1
)
4233 V_VT(pVarOut
) = VT_UI1
;
4234 V_UI1(pVarOut
) = V_UI1(pVarLeft
) | V_UI1(pVarRight
);
4239 if (V_VT(pVarLeft
) == VT_BSTR
)
4241 hRet
= VariantCopy(&varStr
, pVarLeft
);
4245 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4250 if (V_VT(pVarLeft
) == VT_BOOL
&&
4251 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_BSTR
))
4255 else if ((V_VT(pVarLeft
) == VT_BOOL
|| V_VT(pVarLeft
) == VT_UI1
||
4256 V_VT(pVarLeft
) == VT_I2
|| V_VT(pVarLeft
) == VT_BSTR
) &&
4257 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_UI1
||
4258 V_VT(pVarRight
) == VT_I2
|| V_VT(pVarRight
) == VT_BSTR
))
4262 else if (V_VT(pVarLeft
) == VT_I8
|| V_VT(pVarRight
) == VT_I8
)
4264 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4266 hRet
= DISP_E_TYPEMISMATCH
;
4272 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4276 hRet
= VariantCopy(&varRight
, pVarRight
);
4280 if (vt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
4281 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
4286 if (V_VT(&varLeft
) == VT_BSTR
&&
4287 FAILED(VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
)))
4288 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
, VT_BOOL
);
4289 if (SUCCEEDED(hRet
) && V_VT(&varLeft
) != vt
)
4290 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4295 if (vt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
4296 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
4301 if (V_VT(&varRight
) == VT_BSTR
&&
4302 FAILED(VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
)))
4303 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
, VT_BOOL
);
4304 if (SUCCEEDED(hRet
) && V_VT(&varRight
) != vt
)
4305 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4313 V_I8(pVarOut
) = V_I8(&varLeft
) | V_I8(&varRight
);
4315 else if (vt
== VT_I4
)
4317 V_I4(pVarOut
) = V_I4(&varLeft
) | V_I4(&varRight
);
4321 V_I2(pVarOut
) = V_I2(&varLeft
) | V_I2(&varRight
);
4325 VariantClear(&varStr
);
4326 VariantClear(&varLeft
);
4327 VariantClear(&varRight
);
4328 VariantClear(&tempLeft
);
4329 VariantClear(&tempRight
);
4333 /**********************************************************************
4334 * VarAbs [OLEAUT32.168]
4336 * Convert a variant to its absolute value.
4339 * pVarIn [I] Source variant
4340 * pVarOut [O] Destination for converted value
4343 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4344 * Failure: An HRESULT error code indicating the error.
4347 * - This function does not process by-reference variants.
4348 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4349 * according to the following table:
4350 *| Input Type Output Type
4351 *| ---------- -----------
4354 *| (All others) Unchanged
4356 HRESULT WINAPI
VarAbs(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4359 HRESULT hRet
= S_OK
;
4364 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4365 debugstr_VF(pVarIn
), pVarOut
);
4367 /* Handle VT_DISPATCH by storing and taking address of returned value */
4368 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4370 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4371 if (FAILED(hRet
)) goto VarAbs_Exit
;
4375 if (V_ISARRAY(pVarIn
) || V_VT(pVarIn
) == VT_UNKNOWN
||
4376 V_VT(pVarIn
) == VT_DISPATCH
|| V_VT(pVarIn
) == VT_RECORD
||
4377 V_VT(pVarIn
) == VT_ERROR
)
4379 hRet
= DISP_E_TYPEMISMATCH
;
4382 *pVarOut
= *pVarIn
; /* Shallow copy the value, and invert it if needed */
4384 #define ABS_CASE(typ,min) \
4385 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4386 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4389 switch (V_VT(pVarIn
))
4391 ABS_CASE(I1
,I1_MIN
);
4393 V_VT(pVarOut
) = VT_I2
;
4394 /* BOOL->I2, Fall through ... */
4395 ABS_CASE(I2
,I2_MIN
);
4397 ABS_CASE(I4
,I4_MIN
);
4398 ABS_CASE(I8
,I8_MIN
);
4399 ABS_CASE(R4
,R4_MIN
);
4401 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
4404 V_VT(pVarOut
) = VT_R8
;
4406 /* Fall through ... */
4408 ABS_CASE(R8
,R8_MIN
);
4410 hRet
= VarCyAbs(V_CY(pVarIn
), & V_CY(pVarOut
));
4413 DEC_SIGN(&V_DECIMAL(pVarOut
)) &= ~DECIMAL_NEG
;
4423 V_VT(pVarOut
) = VT_I2
;
4428 hRet
= DISP_E_BADVARTYPE
;
4432 VariantClear(&temp
);
4436 /**********************************************************************
4437 * VarFix [OLEAUT32.169]
4439 * Truncate a variants value to a whole number.
4442 * pVarIn [I] Source variant
4443 * pVarOut [O] Destination for converted value
4446 * Success: S_OK. pVarOut contains the converted value.
4447 * Failure: An HRESULT error code indicating the error.
4450 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4451 * according to the following table:
4452 *| Input Type Output Type
4453 *| ---------- -----------
4457 *| All Others Unchanged
4458 * - The difference between this function and VarInt() is that VarInt() rounds
4459 * negative numbers away from 0, while this function rounds them towards zero.
4461 HRESULT WINAPI
VarFix(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4463 HRESULT hRet
= S_OK
;
4468 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4469 debugstr_VF(pVarIn
), pVarOut
);
4471 /* Handle VT_DISPATCH by storing and taking address of returned value */
4472 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4474 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4475 if (FAILED(hRet
)) goto VarFix_Exit
;
4478 V_VT(pVarOut
) = V_VT(pVarIn
);
4480 switch (V_VT(pVarIn
))
4483 V_UI1(pVarOut
) = V_UI1(pVarIn
);
4486 V_VT(pVarOut
) = VT_I2
;
4489 V_I2(pVarOut
) = V_I2(pVarIn
);
4492 V_I4(pVarOut
) = V_I4(pVarIn
);
4495 V_I8(pVarOut
) = V_I8(pVarIn
);
4498 if (V_R4(pVarIn
) < 0.0f
)
4499 V_R4(pVarOut
) = (float)ceil(V_R4(pVarIn
));
4501 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4504 V_VT(pVarOut
) = VT_R8
;
4505 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4510 if (V_R8(pVarIn
) < 0.0)
4511 V_R8(pVarOut
) = ceil(V_R8(pVarIn
));
4513 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4516 hRet
= VarCyFix(V_CY(pVarIn
), &V_CY(pVarOut
));
4519 hRet
= VarDecFix(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4522 V_VT(pVarOut
) = VT_I2
;
4529 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4530 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4531 hRet
= DISP_E_BADVARTYPE
;
4533 hRet
= DISP_E_TYPEMISMATCH
;
4537 V_VT(pVarOut
) = VT_EMPTY
;
4538 VariantClear(&temp
);
4543 /**********************************************************************
4544 * VarInt [OLEAUT32.172]
4546 * Truncate a variants value to a whole number.
4549 * pVarIn [I] Source variant
4550 * pVarOut [O] Destination for converted value
4553 * Success: S_OK. pVarOut contains the converted value.
4554 * Failure: An HRESULT error code indicating the error.
4557 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4558 * according to the following table:
4559 *| Input Type Output Type
4560 *| ---------- -----------
4564 *| All Others Unchanged
4565 * - The difference between this function and VarFix() is that VarFix() rounds
4566 * negative numbers towards 0, while this function rounds them away from zero.
4568 HRESULT WINAPI
VarInt(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4570 HRESULT hRet
= S_OK
;
4575 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4576 debugstr_VF(pVarIn
), pVarOut
);
4578 /* Handle VT_DISPATCH by storing and taking address of returned value */
4579 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4581 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4582 if (FAILED(hRet
)) goto VarInt_Exit
;
4585 V_VT(pVarOut
) = V_VT(pVarIn
);
4587 switch (V_VT(pVarIn
))
4590 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4593 V_VT(pVarOut
) = VT_R8
;
4594 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4599 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4602 hRet
= VarCyInt(V_CY(pVarIn
), &V_CY(pVarOut
));
4605 hRet
= VarDecInt(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4608 hRet
= VarFix(pVarIn
, pVarOut
);
4611 VariantClear(&temp
);
4616 /**********************************************************************
4617 * VarXor [OLEAUT32.167]
4619 * Perform a logical exclusive-or (XOR) operation on two variants.
4622 * pVarLeft [I] First variant
4623 * pVarRight [I] Variant to XOR with pVarLeft
4624 * pVarOut [O] Destination for XOR result
4627 * Success: S_OK. pVarOut contains the result of the operation with its type
4628 * taken from the table below).
4629 * Failure: An HRESULT error code indicating the error.
4632 * - Neither pVarLeft or pVarRight are modified by this function.
4633 * - This function does not process by-reference variants.
4634 * - Input types of VT_BSTR may be numeric strings or boolean text.
4635 * - The type of result stored in pVarOut depends on the types of pVarLeft
4636 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4637 * or VT_NULL if the function succeeds.
4638 * - Type promotion is inconsistent and as a result certain combinations of
4639 * values will return DISP_E_OVERFLOW even when they could be represented.
4640 * This matches the behaviour of native oleaut32.
4642 HRESULT WINAPI
VarXor(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4645 VARIANT varLeft
, varRight
;
4646 VARIANT tempLeft
, tempRight
;
4650 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4651 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4652 debugstr_VF(pVarRight
), pVarOut
);
4654 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4655 V_VT(pVarLeft
) > VT_UINT
|| V_VT(pVarRight
) > VT_UINT
||
4656 V_VT(pVarLeft
) == VT_VARIANT
|| V_VT(pVarRight
) == VT_VARIANT
||
4657 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4658 V_VT(pVarLeft
) == (VARTYPE
)15 || V_VT(pVarRight
) == (VARTYPE
)15 ||
4659 V_VT(pVarLeft
) == VT_ERROR
|| V_VT(pVarRight
) == VT_ERROR
)
4660 return DISP_E_BADVARTYPE
;
4662 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4664 /* NULL XOR anything valid is NULL */
4665 V_VT(pVarOut
) = VT_NULL
;
4669 VariantInit(&tempLeft
);
4670 VariantInit(&tempRight
);
4672 /* Handle VT_DISPATCH by storing and taking address of returned value */
4673 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
4675 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
4676 if (FAILED(hRet
)) goto VarXor_Exit
;
4677 pVarLeft
= &tempLeft
;
4679 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
4681 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
4682 if (FAILED(hRet
)) goto VarXor_Exit
;
4683 pVarRight
= &tempRight
;
4686 /* Copy our inputs so we don't disturb anything */
4687 V_VT(&varLeft
) = V_VT(&varRight
) = VT_EMPTY
;
4689 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4693 hRet
= VariantCopy(&varRight
, pVarRight
);
4697 /* Try any strings first as numbers, then as VT_BOOL */
4698 if (V_VT(&varLeft
) == VT_BSTR
)
4700 hRet
= VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
);
4701 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
,
4702 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4707 if (V_VT(&varRight
) == VT_BSTR
)
4709 hRet
= VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
);
4710 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
,
4711 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4716 /* Determine the result type */
4717 if (V_VT(&varLeft
) == VT_I8
|| V_VT(&varRight
) == VT_I8
)
4719 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4721 hRet
= DISP_E_TYPEMISMATCH
;
4728 switch ((V_VT(&varLeft
) << 16) | V_VT(&varRight
))
4730 case (VT_BOOL
<< 16) | VT_BOOL
:
4733 case (VT_UI1
<< 16) | VT_UI1
:
4736 case (VT_EMPTY
<< 16) | VT_EMPTY
:
4737 case (VT_EMPTY
<< 16) | VT_UI1
:
4738 case (VT_EMPTY
<< 16) | VT_I2
:
4739 case (VT_EMPTY
<< 16) | VT_BOOL
:
4740 case (VT_UI1
<< 16) | VT_EMPTY
:
4741 case (VT_UI1
<< 16) | VT_I2
:
4742 case (VT_UI1
<< 16) | VT_BOOL
:
4743 case (VT_I2
<< 16) | VT_EMPTY
:
4744 case (VT_I2
<< 16) | VT_UI1
:
4745 case (VT_I2
<< 16) | VT_I2
:
4746 case (VT_I2
<< 16) | VT_BOOL
:
4747 case (VT_BOOL
<< 16) | VT_EMPTY
:
4748 case (VT_BOOL
<< 16) | VT_UI1
:
4749 case (VT_BOOL
<< 16) | VT_I2
:
4758 /* VT_UI4 does not overflow */
4761 if (V_VT(&varLeft
) == VT_UI4
)
4762 V_VT(&varLeft
) = VT_I4
;
4763 if (V_VT(&varRight
) == VT_UI4
)
4764 V_VT(&varRight
) = VT_I4
;
4767 /* Convert our input copies to the result type */
4768 if (V_VT(&varLeft
) != vt
)
4769 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4773 if (V_VT(&varRight
) != vt
)
4774 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4780 /* Calculate the result */
4784 V_I8(pVarOut
) = V_I8(&varLeft
) ^ V_I8(&varRight
);
4787 V_I4(pVarOut
) = V_I4(&varLeft
) ^ V_I4(&varRight
);
4791 V_I2(pVarOut
) = V_I2(&varLeft
) ^ V_I2(&varRight
);
4794 V_UI1(pVarOut
) = V_UI1(&varLeft
) ^ V_UI1(&varRight
);
4799 VariantClear(&varLeft
);
4800 VariantClear(&varRight
);
4801 VariantClear(&tempLeft
);
4802 VariantClear(&tempRight
);
4806 /**********************************************************************
4807 * VarEqv [OLEAUT32.172]
4809 * Determine if two variants contain the same value.
4812 * pVarLeft [I] First variant to compare
4813 * pVarRight [I] Variant to compare to pVarLeft
4814 * pVarOut [O] Destination for comparison result
4817 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4818 * if equivalent or non-zero otherwise.
4819 * Failure: An HRESULT error code indicating the error.
4822 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4825 HRESULT WINAPI
VarEqv(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4829 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4830 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4831 debugstr_VF(pVarRight
), pVarOut
);
4833 hRet
= VarXor(pVarLeft
, pVarRight
, pVarOut
);
4834 if (SUCCEEDED(hRet
))
4836 if (V_VT(pVarOut
) == VT_I8
)
4837 V_I8(pVarOut
) = ~V_I8(pVarOut
);
4839 V_UI4(pVarOut
) = ~V_UI4(pVarOut
);
4844 /**********************************************************************
4845 * VarNeg [OLEAUT32.173]
4847 * Negate the value of a variant.
4850 * pVarIn [I] Source variant
4851 * pVarOut [O] Destination for converted value
4854 * Success: S_OK. pVarOut contains the converted value.
4855 * Failure: An HRESULT error code indicating the error.
4858 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4859 * according to the following table:
4860 *| Input Type Output Type
4861 *| ---------- -----------
4866 *| All Others Unchanged (unless promoted)
4867 * - Where the negated value of a variant does not fit in its base type, the type
4868 * is promoted according to the following table:
4869 *| Input Type Promoted To
4870 *| ---------- -----------
4874 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4875 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4876 * for types which are not valid. Since this is in contravention of the
4877 * meaning of those error codes and unlikely to be relied on by applications,
4878 * this implementation returns errors consistent with the other high level
4879 * variant math functions.
4881 HRESULT WINAPI
VarNeg(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4883 HRESULT hRet
= S_OK
;
4888 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4889 debugstr_VF(pVarIn
), pVarOut
);
4891 /* Handle VT_DISPATCH by storing and taking address of returned value */
4892 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4894 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4895 if (FAILED(hRet
)) goto VarNeg_Exit
;
4898 V_VT(pVarOut
) = V_VT(pVarIn
);
4900 switch (V_VT(pVarIn
))
4903 V_VT(pVarOut
) = VT_I2
;
4904 V_I2(pVarOut
) = -V_UI1(pVarIn
);
4907 V_VT(pVarOut
) = VT_I2
;
4910 if (V_I2(pVarIn
) == I2_MIN
)
4912 V_VT(pVarOut
) = VT_I4
;
4913 V_I4(pVarOut
) = -(int)V_I2(pVarIn
);
4916 V_I2(pVarOut
) = -V_I2(pVarIn
);
4919 if (V_I4(pVarIn
) == I4_MIN
)
4921 V_VT(pVarOut
) = VT_R8
;
4922 V_R8(pVarOut
) = -(double)V_I4(pVarIn
);
4925 V_I4(pVarOut
) = -V_I4(pVarIn
);
4928 if (V_I8(pVarIn
) == I8_MIN
)
4930 V_VT(pVarOut
) = VT_R8
;
4931 hRet
= VarR8FromI8(V_I8(pVarIn
), &V_R8(pVarOut
));
4932 V_R8(pVarOut
) *= -1.0;
4935 V_I8(pVarOut
) = -V_I8(pVarIn
);
4938 V_R4(pVarOut
) = -V_R4(pVarIn
);
4942 V_R8(pVarOut
) = -V_R8(pVarIn
);
4945 hRet
= VarCyNeg(V_CY(pVarIn
), &V_CY(pVarOut
));
4948 hRet
= VarDecNeg(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4951 V_VT(pVarOut
) = VT_R8
;
4952 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4953 V_R8(pVarOut
) = -V_R8(pVarOut
);
4956 V_VT(pVarOut
) = VT_I2
;
4963 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4964 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4965 hRet
= DISP_E_BADVARTYPE
;
4967 hRet
= DISP_E_TYPEMISMATCH
;
4971 V_VT(pVarOut
) = VT_EMPTY
;
4972 VariantClear(&temp
);
4977 /**********************************************************************
4978 * VarNot [OLEAUT32.174]
4980 * Perform a not operation on a variant.
4983 * pVarIn [I] Source variant
4984 * pVarOut [O] Destination for converted value
4987 * Success: S_OK. pVarOut contains the converted value.
4988 * Failure: An HRESULT error code indicating the error.
4991 * - Strictly speaking, this function performs a bitwise ones complement
4992 * on the variants value (after possibly converting to VT_I4, see below).
4993 * This only behaves like a boolean not operation if the value in
4994 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4995 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4996 * before calling this function.
4997 * - This function does not process by-reference variants.
4998 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4999 * according to the following table:
5000 *| Input Type Output Type
5001 *| ---------- -----------
5008 *| (All others) Unchanged
5010 HRESULT WINAPI
VarNot(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
5013 HRESULT hRet
= S_OK
;
5018 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
5019 debugstr_VF(pVarIn
), pVarOut
);
5021 /* Handle VT_DISPATCH by storing and taking address of returned value */
5022 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
5024 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
5025 if (FAILED(hRet
)) goto VarNot_Exit
;
5029 V_VT(pVarOut
) = V_VT(pVarIn
);
5031 switch (V_VT(pVarIn
))
5034 V_I4(pVarOut
) = ~V_I1(pVarIn
);
5035 V_VT(pVarOut
) = VT_I4
;
5037 case VT_UI1
: V_UI1(pVarOut
) = ~V_UI1(pVarIn
); break;
5039 case VT_I2
: V_I2(pVarOut
) = ~V_I2(pVarIn
); break;
5041 V_I4(pVarOut
) = ~V_UI2(pVarIn
);
5042 V_VT(pVarOut
) = VT_I4
;
5045 hRet
= VarI4FromDec(&V_DECIMAL(pVarIn
), &V_I4(&varIn
));
5049 /* Fall through ... */
5051 V_VT(pVarOut
) = VT_I4
;
5052 /* Fall through ... */
5053 case VT_I4
: V_I4(pVarOut
) = ~V_I4(pVarIn
); break;
5056 V_I4(pVarOut
) = ~V_UI4(pVarIn
);
5057 V_VT(pVarOut
) = VT_I4
;
5059 case VT_I8
: V_I8(pVarOut
) = ~V_I8(pVarIn
); break;
5061 V_I4(pVarOut
) = ~V_UI8(pVarIn
);
5062 V_VT(pVarOut
) = VT_I4
;
5065 hRet
= VarI4FromR4(V_R4(pVarIn
), &V_I4(pVarOut
));
5066 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5067 V_VT(pVarOut
) = VT_I4
;
5070 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
5074 /* Fall through ... */
5077 hRet
= VarI4FromR8(V_R8(pVarIn
), &V_I4(pVarOut
));
5078 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5079 V_VT(pVarOut
) = VT_I4
;
5082 hRet
= VarI4FromCy(V_CY(pVarIn
), &V_I4(pVarOut
));
5083 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5084 V_VT(pVarOut
) = VT_I4
;
5088 V_VT(pVarOut
) = VT_I2
;
5094 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
5095 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
5096 hRet
= DISP_E_BADVARTYPE
;
5098 hRet
= DISP_E_TYPEMISMATCH
;
5102 V_VT(pVarOut
) = VT_EMPTY
;
5103 VariantClear(&temp
);
5108 /**********************************************************************
5109 * VarRound [OLEAUT32.175]
5111 * Perform a round operation on a variant.
5114 * pVarIn [I] Source variant
5115 * deci [I] Number of decimals to round to
5116 * pVarOut [O] Destination for converted value
5119 * Success: S_OK. pVarOut contains the converted value.
5120 * Failure: An HRESULT error code indicating the error.
5123 * - Floating point values are rounded to the desired number of decimals.
5124 * - Some integer types are just copied to the return variable.
5125 * - Some other integer types are not handled and fail.
5127 HRESULT WINAPI
VarRound(LPVARIANT pVarIn
, int deci
, LPVARIANT pVarOut
)
5130 HRESULT hRet
= S_OK
;
5136 TRACE("(%p->(%s%s),%d)\n", pVarIn
, debugstr_VT(pVarIn
), debugstr_VF(pVarIn
), deci
);
5138 /* Handle VT_DISPATCH by storing and taking address of returned value */
5139 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
5141 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
5142 if (FAILED(hRet
)) goto VarRound_Exit
;
5146 switch (V_VT(pVarIn
))
5148 /* cases that fail on windows */
5153 hRet
= DISP_E_BADVARTYPE
;
5156 /* cases just copying in to out */
5158 V_VT(pVarOut
) = V_VT(pVarIn
);
5159 V_UI1(pVarOut
) = V_UI1(pVarIn
);
5162 V_VT(pVarOut
) = V_VT(pVarIn
);
5163 V_I2(pVarOut
) = V_I2(pVarIn
);
5166 V_VT(pVarOut
) = V_VT(pVarIn
);
5167 V_I4(pVarOut
) = V_I4(pVarIn
);
5170 V_VT(pVarOut
) = V_VT(pVarIn
);
5171 /* value unchanged */
5174 /* cases that change type */
5176 V_VT(pVarOut
) = VT_I2
;
5180 V_VT(pVarOut
) = VT_I2
;
5181 V_I2(pVarOut
) = V_BOOL(pVarIn
);
5184 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
5189 /* Fall through ... */
5191 /* cases we need to do math */
5193 if (V_R8(pVarIn
)>0) {
5194 V_R8(pVarOut
)=floor(V_R8(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5196 V_R8(pVarOut
)=ceil(V_R8(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5198 V_VT(pVarOut
) = V_VT(pVarIn
);
5201 if (V_R4(pVarIn
)>0) {
5202 V_R4(pVarOut
)=floor(V_R4(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5204 V_R4(pVarOut
)=ceil(V_R4(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5206 V_VT(pVarOut
) = V_VT(pVarIn
);
5209 if (V_DATE(pVarIn
)>0) {
5210 V_DATE(pVarOut
)=floor(V_DATE(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5212 V_DATE(pVarOut
)=ceil(V_DATE(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5214 V_VT(pVarOut
) = V_VT(pVarIn
);
5220 factor
=pow(10, 4-deci
);
5222 if (V_CY(pVarIn
).int64
>0) {
5223 V_CY(pVarOut
).int64
=floor(V_CY(pVarIn
).int64
/factor
)*factor
;
5225 V_CY(pVarOut
).int64
=ceil(V_CY(pVarIn
).int64
/factor
)*factor
;
5227 V_VT(pVarOut
) = V_VT(pVarIn
);
5230 /* cases we don't know yet */
5232 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5233 V_VT(pVarIn
) & VT_TYPEMASK
, deci
);
5234 hRet
= DISP_E_BADVARTYPE
;
5238 V_VT(pVarOut
) = VT_EMPTY
;
5239 VariantClear(&temp
);
5241 TRACE("returning 0x%08x (%s%s),%f\n", hRet
, debugstr_VT(pVarOut
),
5242 debugstr_VF(pVarOut
), (V_VT(pVarOut
) == VT_R4
) ? V_R4(pVarOut
) :
5243 (V_VT(pVarOut
) == VT_R8
) ? V_R8(pVarOut
) : 0);
5248 /**********************************************************************
5249 * VarIdiv [OLEAUT32.153]
5251 * Converts input variants to integers and divides them.
5254 * left [I] Left hand variant
5255 * right [I] Right hand variant
5256 * result [O] Destination for quotient
5259 * Success: S_OK. result contains the quotient.
5260 * Failure: An HRESULT error code indicating the error.
5263 * If either expression is null, null is returned, as per MSDN
5265 HRESULT WINAPI
VarIdiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5267 HRESULT hres
= S_OK
;
5268 VARTYPE resvt
= VT_EMPTY
;
5269 VARTYPE leftvt
,rightvt
;
5270 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5272 VARIANT tempLeft
, tempRight
;
5274 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5275 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5279 VariantInit(&tempLeft
);
5280 VariantInit(&tempRight
);
5282 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5283 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5284 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5285 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5287 if (leftExtraFlags
!= rightExtraFlags
)
5289 hres
= DISP_E_BADVARTYPE
;
5292 ExtraFlags
= leftExtraFlags
;
5294 /* Native VarIdiv always returns an error when using extra
5295 * flags or if the variant combination is I8 and INT.
5297 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5298 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
5299 (rightvt
== VT_EMPTY
&& leftvt
!= VT_NULL
) ||
5302 hres
= DISP_E_BADVARTYPE
;
5306 /* Determine variant type */
5307 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
5309 V_VT(result
) = VT_NULL
;
5313 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5315 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5316 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5317 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5318 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5319 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5320 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5321 leftvt
== VT_I1
|| rightvt
== VT_I1
||
5322 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
5323 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5324 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5325 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5326 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5327 leftvt
== VT_R4
|| rightvt
== VT_R4
)
5329 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
5330 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5333 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5337 hres
= DISP_E_BADVARTYPE
;
5341 /* coerce to the result type */
5342 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
5343 if (hres
!= S_OK
) goto end
;
5344 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
5345 if (hres
!= S_OK
) goto end
;
5348 V_VT(result
) = resvt
;
5352 if (V_UI1(&rv
) == 0)
5354 hres
= DISP_E_DIVBYZERO
;
5355 V_VT(result
) = VT_EMPTY
;
5358 V_UI1(result
) = V_UI1(&lv
) / V_UI1(&rv
);
5363 hres
= DISP_E_DIVBYZERO
;
5364 V_VT(result
) = VT_EMPTY
;
5367 V_I2(result
) = V_I2(&lv
) / V_I2(&rv
);
5372 hres
= DISP_E_DIVBYZERO
;
5373 V_VT(result
) = VT_EMPTY
;
5376 V_I4(result
) = V_I4(&lv
) / V_I4(&rv
);
5381 hres
= DISP_E_DIVBYZERO
;
5382 V_VT(result
) = VT_EMPTY
;
5385 V_I8(result
) = V_I8(&lv
) / V_I8(&rv
);
5388 FIXME("Couldn't integer divide variant types %d,%d\n",
5395 VariantClear(&tempLeft
);
5396 VariantClear(&tempRight
);
5402 /**********************************************************************
5403 * VarMod [OLEAUT32.155]
5405 * Perform the modulus operation of the right hand variant on the left
5408 * left [I] Left hand variant
5409 * right [I] Right hand variant
5410 * result [O] Destination for converted value
5413 * Success: S_OK. result contains the remainder.
5414 * Failure: An HRESULT error code indicating the error.
5417 * If an error occurs the type of result will be modified but the value will not be.
5418 * Doesn't support arrays or any special flags yet.
5420 HRESULT WINAPI
VarMod(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5423 HRESULT rc
= E_FAIL
;
5426 VARIANT tempLeft
, tempRight
;
5428 VariantInit(&tempLeft
);
5429 VariantInit(&tempRight
);
5433 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5434 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5436 /* Handle VT_DISPATCH by storing and taking address of returned value */
5437 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5439 rc
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5440 if (FAILED(rc
)) goto end
;
5443 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5445 rc
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5446 if (FAILED(rc
)) goto end
;
5450 /* check for invalid inputs */
5452 switch (V_VT(left
) & VT_TYPEMASK
) {
5474 V_VT(result
) = VT_EMPTY
;
5475 rc
= DISP_E_TYPEMISMATCH
;
5478 rc
= DISP_E_TYPEMISMATCH
;
5481 V_VT(result
) = VT_EMPTY
;
5482 rc
= DISP_E_TYPEMISMATCH
;
5487 V_VT(result
) = VT_EMPTY
;
5488 rc
= DISP_E_BADVARTYPE
;
5493 switch (V_VT(right
) & VT_TYPEMASK
) {
5499 if((V_VT(left
) == VT_INT
) && (V_VT(right
) == VT_I8
))
5501 V_VT(result
) = VT_EMPTY
;
5502 rc
= DISP_E_TYPEMISMATCH
;
5506 if((V_VT(right
) == VT_INT
) && (V_VT(left
) == VT_I8
))
5508 V_VT(result
) = VT_EMPTY
;
5509 rc
= DISP_E_TYPEMISMATCH
;
5520 if(V_VT(left
) == VT_EMPTY
)
5522 V_VT(result
) = VT_I4
;
5529 if(V_VT(left
) == VT_ERROR
)
5531 V_VT(result
) = VT_EMPTY
;
5532 rc
= DISP_E_TYPEMISMATCH
;
5536 if(V_VT(left
) == VT_NULL
)
5538 V_VT(result
) = VT_NULL
;
5545 V_VT(result
) = VT_EMPTY
;
5546 rc
= DISP_E_BADVARTYPE
;
5549 if(V_VT(left
) == VT_VOID
)
5551 V_VT(result
) = VT_EMPTY
;
5552 rc
= DISP_E_BADVARTYPE
;
5553 } else if((V_VT(left
) == VT_NULL
) || (V_VT(left
) == VT_EMPTY
) || (V_VT(left
) == VT_ERROR
) ||
5556 V_VT(result
) = VT_NULL
;
5560 V_VT(result
) = VT_NULL
;
5561 rc
= DISP_E_BADVARTYPE
;
5566 V_VT(result
) = VT_EMPTY
;
5567 rc
= DISP_E_TYPEMISMATCH
;
5570 rc
= DISP_E_TYPEMISMATCH
;
5573 if((V_VT(left
) == 15) || ((V_VT(left
) >= 24) && (V_VT(left
) <= 35)) || !lOk
)
5575 V_VT(result
) = VT_EMPTY
;
5576 rc
= DISP_E_BADVARTYPE
;
5579 V_VT(result
) = VT_EMPTY
;
5580 rc
= DISP_E_TYPEMISMATCH
;
5584 V_VT(result
) = VT_EMPTY
;
5585 rc
= DISP_E_BADVARTYPE
;
5589 /* determine the result type */
5590 if((V_VT(left
) == VT_I8
) || (V_VT(right
) == VT_I8
)) resT
= VT_I8
;
5591 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5592 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_UI1
)) resT
= VT_UI1
;
5593 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5594 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5595 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5596 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5597 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5598 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5599 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5600 else resT
= VT_I4
; /* most outputs are I4 */
5602 /* convert to I8 for the modulo */
5603 rc
= VariantChangeType(&lv
, left
, 0, VT_I8
);
5606 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left
), VT_I8
, rc
);
5610 rc
= VariantChangeType(&rv
, right
, 0, VT_I8
);
5613 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right
), VT_I8
, rc
);
5617 /* if right is zero set VT_EMPTY and return divide by zero */
5620 V_VT(result
) = VT_EMPTY
;
5621 rc
= DISP_E_DIVBYZERO
;
5625 /* perform the modulo operation */
5626 V_VT(result
) = VT_I8
;
5627 V_I8(result
) = V_I8(&lv
) % V_I8(&rv
);
5629 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5630 wine_dbgstr_longlong(V_I8(&lv
)), wine_dbgstr_longlong(V_I8(&rv
)),
5631 wine_dbgstr_longlong(V_I8(result
)));
5633 /* convert left and right to the destination type */
5634 rc
= VariantChangeType(result
, result
, 0, resT
);
5637 FIXME("Could not convert 0x%x to %d?\n", V_VT(result
), resT
);
5638 /* fall to end of function */
5644 VariantClear(&tempLeft
);
5645 VariantClear(&tempRight
);
5649 /**********************************************************************
5650 * VarPow [OLEAUT32.158]
5652 * Computes the power of one variant to another variant.
5655 * left [I] First variant
5656 * right [I] Second variant
5657 * result [O] Result variant
5661 * Failure: An HRESULT error code indicating the error.
5663 HRESULT WINAPI
VarPow(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5667 VARTYPE resvt
= VT_EMPTY
;
5668 VARTYPE leftvt
,rightvt
;
5669 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5670 VARIANT tempLeft
, tempRight
;
5672 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
), debugstr_VF(left
),
5673 right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5677 VariantInit(&tempLeft
);
5678 VariantInit(&tempRight
);
5680 /* Handle VT_DISPATCH by storing and taking address of returned value */
5681 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5683 hr
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5684 if (FAILED(hr
)) goto end
;
5687 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5689 hr
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5690 if (FAILED(hr
)) goto end
;
5694 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5695 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5696 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5697 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5699 if (leftExtraFlags
!= rightExtraFlags
)
5701 hr
= DISP_E_BADVARTYPE
;
5704 ExtraFlags
= leftExtraFlags
;
5706 /* Native VarPow always returns an error when using extra flags */
5707 if (ExtraFlags
!= 0)
5709 hr
= DISP_E_BADVARTYPE
;
5713 /* Determine return type */
5714 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
) {
5715 V_VT(result
) = VT_NULL
;
5719 else if ((leftvt
== VT_EMPTY
|| leftvt
== VT_I2
||
5720 leftvt
== VT_I4
|| leftvt
== VT_R4
||
5721 leftvt
== VT_R8
|| leftvt
== VT_CY
||
5722 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
5723 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
5724 (leftvt
>= VT_I1
&& leftvt
<= VT_UINT
)) &&
5725 (rightvt
== VT_EMPTY
|| rightvt
== VT_I2
||
5726 rightvt
== VT_I4
|| rightvt
== VT_R4
||
5727 rightvt
== VT_R8
|| rightvt
== VT_CY
||
5728 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
5729 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
5730 (rightvt
>= VT_I1
&& rightvt
<= VT_UINT
)))
5734 hr
= DISP_E_BADVARTYPE
;
5738 hr
= VariantChangeType(&dl
,left
,0,resvt
);
5740 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5745 hr
= VariantChangeType(&dr
,right
,0,resvt
);
5747 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5752 V_VT(result
) = VT_R8
;
5753 V_R8(result
) = pow(V_R8(&dl
),V_R8(&dr
));
5758 VariantClear(&tempLeft
);
5759 VariantClear(&tempRight
);
5764 /**********************************************************************
5765 * VarImp [OLEAUT32.154]
5767 * Bitwise implication of two variants.
5770 * left [I] First variant
5771 * right [I] Second variant
5772 * result [O] Result variant
5776 * Failure: An HRESULT error code indicating the error.
5778 HRESULT WINAPI
VarImp(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5780 HRESULT hres
= S_OK
;
5781 VARTYPE resvt
= VT_EMPTY
;
5782 VARTYPE leftvt
,rightvt
;
5783 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5786 VARIANT tempLeft
, tempRight
;
5790 VariantInit(&tempLeft
);
5791 VariantInit(&tempRight
);
5793 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5794 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5796 /* Handle VT_DISPATCH by storing and taking address of returned value */
5797 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5799 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5800 if (FAILED(hres
)) goto VarImp_Exit
;
5803 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5805 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5806 if (FAILED(hres
)) goto VarImp_Exit
;
5810 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5811 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5812 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5813 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5815 if (leftExtraFlags
!= rightExtraFlags
)
5817 hres
= DISP_E_BADVARTYPE
;
5820 ExtraFlags
= leftExtraFlags
;
5822 /* Native VarImp always returns an error when using extra
5823 * flags or if the variants are I8 and INT.
5825 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5828 hres
= DISP_E_BADVARTYPE
;
5832 /* Determine result type */
5833 else if ((leftvt
== VT_NULL
&& rightvt
== VT_NULL
) ||
5834 (leftvt
== VT_NULL
&& rightvt
== VT_EMPTY
))
5836 V_VT(result
) = VT_NULL
;
5840 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5842 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5843 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5844 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5845 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5846 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5847 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5848 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5849 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5850 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5851 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5852 leftvt
== VT_R4
|| rightvt
== VT_R4
||
5853 leftvt
== VT_I1
|| rightvt
== VT_I1
)
5855 else if ((leftvt
== VT_UI1
&& rightvt
== VT_UI1
) ||
5856 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
5857 (leftvt
== VT_NULL
&& rightvt
== VT_UI1
))
5859 else if (leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
||
5860 leftvt
== VT_I2
|| rightvt
== VT_I2
||
5861 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5863 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5864 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
5867 /* VT_NULL requires special handling for when the opposite
5868 * variant is equal to something other than -1.
5869 * (NULL Imp 0 = NULL, NULL Imp n = n)
5871 if (leftvt
== VT_NULL
)
5876 case VT_I1
: if (!V_I1(right
)) resvt
= VT_NULL
; break;
5877 case VT_UI1
: if (!V_UI1(right
)) resvt
= VT_NULL
; break;
5878 case VT_I2
: if (!V_I2(right
)) resvt
= VT_NULL
; break;
5879 case VT_UI2
: if (!V_UI2(right
)) resvt
= VT_NULL
; break;
5880 case VT_I4
: if (!V_I4(right
)) resvt
= VT_NULL
; break;
5881 case VT_UI4
: if (!V_UI4(right
)) resvt
= VT_NULL
; break;
5882 case VT_I8
: if (!V_I8(right
)) resvt
= VT_NULL
; break;
5883 case VT_UI8
: if (!V_UI8(right
)) resvt
= VT_NULL
; break;
5884 case VT_INT
: if (!V_INT(right
)) resvt
= VT_NULL
; break;
5885 case VT_UINT
: if (!V_UINT(right
)) resvt
= VT_NULL
; break;
5886 case VT_BOOL
: if (!V_BOOL(right
)) resvt
= VT_NULL
; break;
5887 case VT_R4
: if (!V_R4(right
)) resvt
= VT_NULL
; break;
5888 case VT_R8
: if (!V_R8(right
)) resvt
= VT_NULL
; break;
5889 case VT_DATE
: if (!V_DATE(right
)) resvt
= VT_NULL
; break;
5890 case VT_CY
: if (!V_CY(right
).int64
) resvt
= VT_NULL
; break;
5892 if (!(DEC_HI32(&V_DECIMAL(right
)) || DEC_LO64(&V_DECIMAL(right
))))
5896 hres
= VarBoolFromStr(V_BSTR(right
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5897 if (FAILED(hres
)) goto VarImp_Exit
;
5899 V_VT(result
) = VT_NULL
;
5902 V_VT(result
) = VT_BOOL
;
5907 if (resvt
== VT_NULL
)
5909 V_VT(result
) = resvt
;
5914 hres
= VariantChangeType(result
,right
,0,resvt
);
5919 /* Special handling is required when NULL is the right variant.
5920 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5922 else if (rightvt
== VT_NULL
)
5927 case VT_I1
: if (V_I1(left
) == -1) resvt
= VT_NULL
; break;
5928 case VT_UI1
: if (V_UI1(left
) == 0xff) resvt
= VT_NULL
; break;
5929 case VT_I2
: if (V_I2(left
) == -1) resvt
= VT_NULL
; break;
5930 case VT_UI2
: if (V_UI2(left
) == 0xffff) resvt
= VT_NULL
; break;
5931 case VT_INT
: if (V_INT(left
) == -1) resvt
= VT_NULL
; break;
5932 case VT_UINT
: if (V_UINT(left
) == ~0u) resvt
= VT_NULL
; break;
5933 case VT_I4
: if (V_I4(left
) == -1) resvt
= VT_NULL
; break;
5934 case VT_UI4
: if (V_UI4(left
) == ~0u) resvt
= VT_NULL
; break;
5935 case VT_I8
: if (V_I8(left
) == -1) resvt
= VT_NULL
; break;
5936 case VT_UI8
: if (V_UI8(left
) == ~(ULONGLONG
)0) resvt
= VT_NULL
; break;
5937 case VT_BOOL
: if (V_BOOL(left
) == VARIANT_TRUE
) resvt
= VT_NULL
; break;
5938 case VT_R4
: if (V_R4(left
) == -1.0) resvt
= VT_NULL
; break;
5939 case VT_R8
: if (V_R8(left
) == -1.0) resvt
= VT_NULL
; break;
5940 case VT_CY
: if (V_CY(left
).int64
== -1) resvt
= VT_NULL
; break;
5942 if (DEC_HI32(&V_DECIMAL(left
)) == 0xffffffff)
5946 hres
= VarBoolFromStr(V_BSTR(left
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5947 if (FAILED(hres
)) goto VarImp_Exit
;
5948 else if (b
== VARIANT_TRUE
)
5951 if (resvt
== VT_NULL
)
5953 V_VT(result
) = resvt
;
5958 hres
= VariantCopy(&lv
, left
);
5959 if (FAILED(hres
)) goto VarImp_Exit
;
5961 if (rightvt
== VT_NULL
)
5963 memset( &rv
, 0, sizeof(rv
) );
5968 hres
= VariantCopy(&rv
, right
);
5969 if (FAILED(hres
)) goto VarImp_Exit
;
5972 if (V_VT(&lv
) == VT_BSTR
&&
5973 FAILED(VarR8FromStr(V_BSTR(&lv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5974 hres
= VariantChangeType(&lv
,&lv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5975 if (SUCCEEDED(hres
) && V_VT(&lv
) != resvt
)
5976 hres
= VariantChangeType(&lv
,&lv
,0,resvt
);
5977 if (FAILED(hres
)) goto VarImp_Exit
;
5979 if (V_VT(&rv
) == VT_BSTR
&&
5980 FAILED(VarR8FromStr(V_BSTR(&rv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5981 hres
= VariantChangeType(&rv
, &rv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5982 if (SUCCEEDED(hres
) && V_VT(&rv
) != resvt
)
5983 hres
= VariantChangeType(&rv
, &rv
, 0, resvt
);
5984 if (FAILED(hres
)) goto VarImp_Exit
;
5987 V_VT(result
) = resvt
;
5991 V_I8(result
) = (~V_I8(&lv
)) | V_I8(&rv
);
5994 V_I4(result
) = (~V_I4(&lv
)) | V_I4(&rv
);
5997 V_I2(result
) = (~V_I2(&lv
)) | V_I2(&rv
);
6000 V_UI1(result
) = (~V_UI1(&lv
)) | V_UI1(&rv
);
6003 V_BOOL(result
) = (~V_BOOL(&lv
)) | V_BOOL(&rv
);
6006 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
6014 VariantClear(&tempLeft
);
6015 VariantClear(&tempRight
);