oleaut: Reduce an ERR down to a WARN since a NULL interface pointer
[wine/multimedia.git] / dlls / oleaut32 / variant.c
blob4a2dd90dbe269986534261cc5e913f2bd49ea718
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
8 * The alorithm for conversion from Julian days to day/month/year is based on
9 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
10 * Copyright 1994-7 Regents of the University of California
12 * This library is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
17 * This library is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with this library; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 #include "config.h"
29 #include <string.h>
30 #include <stdlib.h>
31 #include <stdarg.h>
33 #define COBJMACROS
34 #define NONAMELESSUNION
35 #define NONAMELESSSTRUCT
37 #include "windef.h"
38 #include "winbase.h"
39 #include "wine/unicode.h"
40 #include "winerror.h"
41 #include "variant.h"
42 #include "wine/debug.h"
44 WINE_DEFAULT_DEBUG_CHANNEL(variant);
46 const char* wine_vtypes[VT_CLSID+1] =
48 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
49 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
50 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
51 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
52 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
53 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
54 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
55 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
56 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
59 const char* wine_vflags[16] =
61 "",
62 "|VT_VECTOR",
63 "|VT_ARRAY",
64 "|VT_VECTOR|VT_ARRAY",
65 "|VT_BYREF",
66 "|VT_VECTOR|VT_ARRAY",
67 "|VT_ARRAY|VT_BYREF",
68 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
69 "|VT_HARDTYPE",
70 "|VT_VECTOR|VT_HARDTYPE",
71 "|VT_ARRAY|VT_HARDTYPE",
72 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
73 "|VT_BYREF|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
75 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
76 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
79 /* Convert a variant from one type to another */
80 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
81 VARIANTARG* ps, VARTYPE vt)
83 HRESULT res = DISP_E_TYPEMISMATCH;
84 VARTYPE vtFrom = V_TYPE(ps);
85 DWORD dwFlags = 0;
87 TRACE("(%p->(%s%s),0x%08lx,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
88 debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
89 debugstr_vt(vt), debugstr_vf(vt));
91 if (vt == VT_BSTR || vtFrom == VT_BSTR)
93 /* All flags passed to low level function are only used for
94 * changing to or from strings. Map these here.
96 if (wFlags & VARIANT_LOCALBOOL)
97 dwFlags |= VAR_LOCALBOOL;
98 if (wFlags & VARIANT_CALENDAR_HIJRI)
99 dwFlags |= VAR_CALENDAR_HIJRI;
100 if (wFlags & VARIANT_CALENDAR_THAI)
101 dwFlags |= VAR_CALENDAR_THAI;
102 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
103 dwFlags |= VAR_CALENDAR_GREGORIAN;
104 if (wFlags & VARIANT_NOUSEROVERRIDE)
105 dwFlags |= LOCALE_NOUSEROVERRIDE;
106 if (wFlags & VARIANT_USE_NLS)
107 dwFlags |= LOCALE_USE_NLS;
110 /* Map int/uint to i4/ui4 */
111 if (vt == VT_INT)
112 vt = VT_I4;
113 else if (vt == VT_UINT)
114 vt = VT_UI4;
116 if (vtFrom == VT_INT)
117 vtFrom = VT_I4;
118 else if (vtFrom == VT_UINT)
119 vtFrom = VT_UI4;
121 if (vt == vtFrom)
122 return VariantCopy(pd, ps);
124 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
126 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
127 * accessing the default object property.
129 return DISP_E_TYPEMISMATCH;
132 switch (vt)
134 case VT_EMPTY:
135 if (vtFrom == VT_NULL)
136 return DISP_E_TYPEMISMATCH;
137 /* ... Fall through */
138 case VT_NULL:
139 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
141 res = VariantClear( pd );
142 if (vt == VT_NULL && SUCCEEDED(res))
143 V_VT(pd) = VT_NULL;
145 return res;
147 case VT_I1:
148 switch (vtFrom)
150 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
151 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
152 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
153 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
154 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
155 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
156 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
157 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
158 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
159 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
160 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
161 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
162 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
163 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
164 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
165 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
167 break;
169 case VT_I2:
170 switch (vtFrom)
172 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
173 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
174 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
175 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
176 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
177 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
178 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
179 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
180 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
181 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
182 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
183 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
184 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
185 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
186 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
187 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
189 break;
191 case VT_I4:
192 switch (vtFrom)
194 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
195 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
196 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
197 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
198 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
199 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
200 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
201 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
202 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
203 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
204 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
205 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
206 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
207 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
208 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
209 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
211 break;
213 case VT_UI1:
214 switch (vtFrom)
216 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
217 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
218 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
219 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
220 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
221 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
222 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
223 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
224 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
225 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
226 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
227 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
228 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
229 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
230 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
231 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
233 break;
235 case VT_UI2:
236 switch (vtFrom)
238 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
239 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
240 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
241 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
242 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
243 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
244 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
245 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
246 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
247 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
248 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
249 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
250 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
251 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
252 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
253 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
255 break;
257 case VT_UI4:
258 switch (vtFrom)
260 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
261 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
262 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
263 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
264 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
265 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
266 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
267 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
268 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
269 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
270 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
271 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
272 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
273 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
274 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
275 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
277 break;
279 case VT_UI8:
280 switch (vtFrom)
282 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
283 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
284 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
285 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
286 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
287 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
288 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
289 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
290 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
291 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
292 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
293 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
294 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
295 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
296 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
297 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
299 break;
301 case VT_I8:
302 switch (vtFrom)
304 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
305 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
306 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
307 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
308 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
309 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
310 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
311 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
312 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
313 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
314 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
315 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
316 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
317 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
318 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
319 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
321 break;
323 case VT_R4:
324 switch (vtFrom)
326 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
327 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
328 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
329 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
330 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
331 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
332 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
333 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
334 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
335 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
336 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
337 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
338 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
339 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
340 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
341 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
343 break;
345 case VT_R8:
346 switch (vtFrom)
348 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
349 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
350 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
351 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
352 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
353 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
354 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
355 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
356 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
357 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
358 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
359 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
360 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
361 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
362 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
363 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
365 break;
367 case VT_DATE:
368 switch (vtFrom)
370 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
371 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
372 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
373 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
374 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
375 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
376 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
377 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
378 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
379 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
380 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
381 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
382 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
383 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
384 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
385 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
387 break;
389 case VT_BOOL:
390 switch (vtFrom)
392 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
393 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
394 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
395 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
396 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
397 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
398 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
399 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
400 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
401 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
402 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
403 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
404 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
405 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
406 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
407 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
409 break;
411 case VT_BSTR:
412 switch (vtFrom)
414 case VT_EMPTY:
415 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
416 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
417 case VT_BOOL:
418 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
419 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
420 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
421 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
422 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
423 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
424 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
425 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
426 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
427 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
428 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
429 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
430 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
431 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
432 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
434 /* case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd)); */
436 break;
438 case VT_CY:
439 switch (vtFrom)
441 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
442 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
443 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
444 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
445 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
446 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
447 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
448 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
449 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
450 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
451 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
452 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
453 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
454 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
455 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
456 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
458 break;
460 case VT_DECIMAL:
461 switch (vtFrom)
463 case VT_EMPTY:
464 case VT_BOOL:
465 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
466 DEC_HI32(&V_DECIMAL(pd)) = 0;
467 DEC_MID32(&V_DECIMAL(pd)) = 0;
468 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
469 * VT_NULL and VT_EMPTY always give a 0 value.
471 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
472 return S_OK;
473 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
474 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
475 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
476 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
477 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
478 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
479 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
480 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
481 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
482 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
483 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
484 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
485 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
486 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
488 break;
490 case VT_UNKNOWN:
491 switch (vtFrom)
493 case VT_DISPATCH:
494 if (V_DISPATCH(ps) == NULL)
495 V_UNKNOWN(pd) = NULL;
496 else
497 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
498 break;
500 break;
502 case VT_DISPATCH:
503 switch (vtFrom)
505 case VT_UNKNOWN:
506 if (V_UNKNOWN(ps) == NULL)
507 V_DISPATCH(pd) = NULL;
508 else
509 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
510 break;
512 break;
514 case VT_RECORD:
515 break;
517 return res;
520 /* Coerce to/from an array */
521 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
523 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
524 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
526 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
527 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps));
529 if (V_VT(ps) == vt)
530 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
532 return DISP_E_TYPEMISMATCH;
535 /******************************************************************************
536 * Check if a variants type is valid.
538 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
540 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
542 vt &= VT_TYPEMASK;
544 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
546 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
548 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
549 return DISP_E_BADVARTYPE;
550 if (vt != (VARTYPE)15)
551 return S_OK;
554 return DISP_E_BADVARTYPE;
557 /******************************************************************************
558 * VariantInit [OLEAUT32.8]
560 * Initialise a variant.
562 * PARAMS
563 * pVarg [O] Variant to initialise
565 * RETURNS
566 * Nothing.
568 * NOTES
569 * This function simply sets the type of the variant to VT_EMPTY. It does not
570 * free any existing value, use VariantClear() for that.
572 void WINAPI VariantInit(VARIANTARG* pVarg)
574 TRACE("(%p)\n", pVarg);
576 V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
579 /******************************************************************************
580 * VariantClear [OLEAUT32.9]
582 * Clear a variant.
584 * PARAMS
585 * pVarg [I/O] Variant to clear
587 * RETURNS
588 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
589 * Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type.
591 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
593 HRESULT hres = S_OK;
595 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
597 hres = VARIANT_ValidateType(V_VT(pVarg));
599 if (SUCCEEDED(hres))
601 if (!V_ISBYREF(pVarg))
603 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
605 if (V_ARRAY(pVarg))
606 hres = SafeArrayDestroy(V_ARRAY(pVarg));
608 else if (V_VT(pVarg) == VT_BSTR)
610 if (V_BSTR(pVarg))
611 SysFreeString(V_BSTR(pVarg));
613 else if (V_VT(pVarg) == VT_RECORD)
615 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
616 if (pBr->pRecInfo)
618 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
619 IRecordInfo_Release(pBr->pRecInfo);
622 else if (V_VT(pVarg) == VT_DISPATCH ||
623 V_VT(pVarg) == VT_UNKNOWN)
625 if (V_UNKNOWN(pVarg))
626 IUnknown_Release(V_UNKNOWN(pVarg));
628 else if (V_VT(pVarg) == VT_VARIANT)
630 if (V_VARIANTREF(pVarg))
631 VariantClear(V_VARIANTREF(pVarg));
634 V_VT(pVarg) = VT_EMPTY;
636 return hres;
639 /******************************************************************************
640 * Copy an IRecordInfo object contained in a variant.
642 static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
644 HRESULT hres = S_OK;
646 if (pBr->pRecInfo)
648 ULONG ulSize;
650 hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
651 if (SUCCEEDED(hres))
653 PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
654 if (!pvRecord)
655 hres = E_OUTOFMEMORY;
656 else
658 memcpy(pvRecord, pBr->pvRecord, ulSize);
659 pBr->pvRecord = pvRecord;
661 hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
662 if (SUCCEEDED(hres))
663 IRecordInfo_AddRef(pBr->pRecInfo);
667 else if (pBr->pvRecord)
668 hres = E_INVALIDARG;
669 return hres;
672 /******************************************************************************
673 * VariantCopy [OLEAUT32.10]
675 * Copy a variant.
677 * PARAMS
678 * pvargDest [O] Destination for copy
679 * pvargSrc [I] Source variant to copy
681 * RETURNS
682 * Success: S_OK. pvargDest contains a copy of pvargSrc.
683 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
684 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
685 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
686 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
688 * NOTES
689 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
690 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
691 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
692 * fails, so does this function.
693 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
694 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
695 * is copied rather than just any pointers to it.
696 * - For by-value object types the object pointer is copied and the objects
697 * reference count increased using IUnknown_AddRef().
698 * - For all by-reference types, only the referencing pointer is copied.
700 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
702 HRESULT hres = S_OK;
704 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
705 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
706 debugstr_VF(pvargSrc));
708 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
709 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
710 return DISP_E_BADVARTYPE;
712 if (pvargSrc != pvargDest &&
713 SUCCEEDED(hres = VariantClear(pvargDest)))
715 *pvargDest = *pvargSrc; /* Shallow copy the value */
717 if (!V_ISBYREF(pvargSrc))
719 if (V_ISARRAY(pvargSrc))
721 if (V_ARRAY(pvargSrc))
722 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
724 else if (V_VT(pvargSrc) == VT_BSTR)
726 if (V_BSTR(pvargSrc))
728 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
729 if (!V_BSTR(pvargDest))
731 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc)));
732 hres = E_OUTOFMEMORY;
736 else if (V_VT(pvargSrc) == VT_RECORD)
738 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
740 else if (V_VT(pvargSrc) == VT_DISPATCH ||
741 V_VT(pvargSrc) == VT_UNKNOWN)
743 if (V_UNKNOWN(pvargSrc))
744 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
748 return hres;
751 /* Return the byte size of a variants data */
752 static inline size_t VARIANT_DataSize(const VARIANT* pv)
754 switch (V_TYPE(pv))
756 case VT_I1:
757 case VT_UI1: return sizeof(BYTE);
758 case VT_I2:
759 case VT_UI2: return sizeof(SHORT);
760 case VT_INT:
761 case VT_UINT:
762 case VT_I4:
763 case VT_UI4: return sizeof(LONG);
764 case VT_I8:
765 case VT_UI8: return sizeof(LONGLONG);
766 case VT_R4: return sizeof(float);
767 case VT_R8: return sizeof(double);
768 case VT_DATE: return sizeof(DATE);
769 case VT_BOOL: return sizeof(VARIANT_BOOL);
770 case VT_DISPATCH:
771 case VT_UNKNOWN:
772 case VT_BSTR: return sizeof(void*);
773 case VT_CY: return sizeof(CY);
774 case VT_ERROR: return sizeof(SCODE);
776 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
777 return 0;
780 /******************************************************************************
781 * VariantCopyInd [OLEAUT32.11]
783 * Copy a variant, dereferencing it it is by-reference.
785 * PARAMS
786 * pvargDest [O] Destination for copy
787 * pvargSrc [I] Source variant to copy
789 * RETURNS
790 * Success: S_OK. pvargDest contains a copy of pvargSrc.
791 * Failure: An HRESULT error code indicating the error.
793 * NOTES
794 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
795 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
796 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
797 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
798 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
800 * NOTES
801 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
802 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
803 * value.
804 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
805 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
806 * to it. If clearing pvargDest fails, so does this function.
808 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
810 VARIANTARG vTmp, *pSrc = pvargSrc;
811 VARTYPE vt;
812 HRESULT hres = S_OK;
814 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
815 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
816 debugstr_VF(pvargSrc));
818 if (!V_ISBYREF(pvargSrc))
819 return VariantCopy(pvargDest, pvargSrc);
821 /* Argument checking is more lax than VariantCopy()... */
822 vt = V_TYPE(pvargSrc);
823 if (V_ISARRAY(pvargSrc) ||
824 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
825 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
827 /* OK */
829 else
830 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
832 if (pvargSrc == pvargDest)
834 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
835 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
837 vTmp = *pvargSrc;
838 pSrc = &vTmp;
839 V_VT(pvargDest) = VT_EMPTY;
841 else
843 /* Copy into another variant. Free the variant in pvargDest */
844 if (FAILED(hres = VariantClear(pvargDest)))
846 TRACE("VariantClear() of destination failed\n");
847 return hres;
851 if (V_ISARRAY(pSrc))
853 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
854 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
856 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
858 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
859 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
861 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
863 V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
864 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
866 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
867 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
869 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
870 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
871 if (*V_UNKNOWNREF(pSrc))
872 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
874 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
876 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
877 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
878 hres = E_INVALIDARG; /* Don't dereference more than one level */
879 else
880 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
882 /* Use the dereferenced variants type value, not VT_VARIANT */
883 goto VariantCopyInd_Return;
885 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
887 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
888 sizeof(DECIMAL) - sizeof(USHORT));
890 else
892 /* Copy the pointed to data into this variant */
893 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
896 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
898 VariantCopyInd_Return:
900 if (pSrc != pvargSrc)
901 VariantClear(pSrc);
903 TRACE("returning 0x%08lx, %p->(%s%s)\n", hres, pvargDest,
904 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
905 return hres;
908 /******************************************************************************
909 * VariantChangeType [OLEAUT32.12]
911 * Change the type of a variant.
913 * PARAMS
914 * pvargDest [O] Destination for the converted variant
915 * pvargSrc [O] Source variant to change the type of
916 * wFlags [I] VARIANT_ flags from "oleauto.h"
917 * vt [I] Variant type to change pvargSrc into
919 * RETURNS
920 * Success: S_OK. pvargDest contains the converted value.
921 * Failure: An HRESULT error code describing the failure.
923 * NOTES
924 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
925 * See VariantChangeTypeEx.
927 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
928 USHORT wFlags, VARTYPE vt)
930 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
933 /******************************************************************************
934 * VariantChangeTypeEx [OLEAUT32.147]
936 * Change the type of a variant.
938 * PARAMS
939 * pvargDest [O] Destination for the converted variant
940 * pvargSrc [O] Source variant to change the type of
941 * lcid [I] LCID for the conversion
942 * wFlags [I] VARIANT_ flags from "oleauto.h"
943 * vt [I] Variant type to change pvargSrc into
945 * RETURNS
946 * Success: S_OK. pvargDest contains the converted value.
947 * Failure: An HRESULT error code describing the failure.
949 * NOTES
950 * pvargDest and pvargSrc can point to the same variant to perform an in-place
951 * conversion. If the conversion is successful, pvargSrc will be freed.
953 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
954 LCID lcid, USHORT wFlags, VARTYPE vt)
956 HRESULT res = S_OK;
958 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%04x,%s%s)\n", pvargDest,
959 debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
960 debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
961 debugstr_vt(vt), debugstr_vf(vt));
963 if (vt == VT_CLSID)
964 res = DISP_E_BADVARTYPE;
965 else
967 res = VARIANT_ValidateType(V_VT(pvargSrc));
969 if (SUCCEEDED(res))
971 res = VARIANT_ValidateType(vt);
973 if (SUCCEEDED(res))
975 VARIANTARG vTmp, vSrcDeref;
977 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
978 res = DISP_E_TYPEMISMATCH;
979 else
981 V_VT(&vTmp) = VT_EMPTY;
982 V_VT(&vSrcDeref) = VT_EMPTY;
983 VariantClear(&vTmp);
984 VariantClear(&vSrcDeref);
987 if (SUCCEEDED(res))
989 res = VariantCopyInd(&vSrcDeref, pvargSrc);
990 if (SUCCEEDED(res))
992 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
993 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
994 else
995 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
997 if (SUCCEEDED(res)) {
998 V_VT(&vTmp) = vt;
999 VariantCopy(pvargDest, &vTmp);
1001 VariantClear(&vTmp);
1002 VariantClear(&vSrcDeref);
1009 TRACE("returning 0x%08lx, %p->(%s%s)\n", res, pvargDest,
1010 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
1011 return res;
1014 /* Date Conversions */
1016 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1018 /* Convert a VT_DATE value to a Julian Date */
1019 static inline int VARIANT_JulianFromDate(int dateIn)
1021 int julianDays = dateIn;
1023 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1024 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1025 return julianDays;
1028 /* Convert a Julian Date to a VT_DATE value */
1029 static inline int VARIANT_DateFromJulian(int dateIn)
1031 int julianDays = dateIn;
1033 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1034 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1035 return julianDays;
1038 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1039 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1041 int j, i, l, n;
1043 l = jd + 68569;
1044 n = l * 4 / 146097;
1045 l -= (n * 146097 + 3) / 4;
1046 i = (4000 * (l + 1)) / 1461001;
1047 l += 31 - (i * 1461) / 4;
1048 j = (l * 80) / 2447;
1049 *day = l - (j * 2447) / 80;
1050 l = j / 11;
1051 *month = (j + 2) - (12 * l);
1052 *year = 100 * (n - 49) + i + l;
1055 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1056 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1058 int m12 = (month - 14) / 12;
1060 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1061 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1064 /* Macros for accessing DOS format date/time fields */
1065 #define DOS_YEAR(x) (1980 + (x >> 9))
1066 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1067 #define DOS_DAY(x) (x & 0x1f)
1068 #define DOS_HOUR(x) (x >> 11)
1069 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1070 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1071 /* Create a DOS format date/time */
1072 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1073 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1075 /* Roll a date forwards or backwards to correct it */
1076 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1078 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1080 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1081 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1083 /* Years < 100 are treated as 1900 + year */
1084 if (lpUd->st.wYear < 100)
1085 lpUd->st.wYear += 1900;
1087 if (!lpUd->st.wMonth)
1089 /* Roll back to December of the previous year */
1090 lpUd->st.wMonth = 12;
1091 lpUd->st.wYear--;
1093 else while (lpUd->st.wMonth > 12)
1095 /* Roll forward the correct number of months */
1096 lpUd->st.wYear++;
1097 lpUd->st.wMonth -= 12;
1100 if (lpUd->st.wYear > 9999 || lpUd->st.wHour > 23 ||
1101 lpUd->st.wMinute > 59 || lpUd->st.wSecond > 59)
1102 return E_INVALIDARG; /* Invalid values */
1104 if (!lpUd->st.wDay)
1106 /* Roll back the date one day */
1107 if (lpUd->st.wMonth == 1)
1109 /* Roll back to December 31 of the previous year */
1110 lpUd->st.wDay = 31;
1111 lpUd->st.wMonth = 12;
1112 lpUd->st.wYear--;
1114 else
1116 lpUd->st.wMonth--; /* Previous month */
1117 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1118 lpUd->st.wDay = 29; /* Februaury has 29 days on leap years */
1119 else
1120 lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */
1123 else if (lpUd->st.wDay > 28)
1125 int rollForward = 0;
1127 /* Possibly need to roll the date forward */
1128 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1129 rollForward = lpUd->st.wDay - 29; /* Februaury has 29 days on leap years */
1130 else
1131 rollForward = lpUd->st.wDay - days[lpUd->st.wMonth];
1133 if (rollForward > 0)
1135 lpUd->st.wDay = rollForward;
1136 lpUd->st.wMonth++;
1137 if (lpUd->st.wMonth > 12)
1139 lpUd->st.wMonth = 1; /* Roll forward into January of the next year */
1140 lpUd->st.wYear++;
1144 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1145 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1146 return S_OK;
1149 /**********************************************************************
1150 * DosDateTimeToVariantTime [OLEAUT32.14]
1152 * Convert a Dos format date and time into variant VT_DATE format.
1154 * PARAMS
1155 * wDosDate [I] Dos format date
1156 * wDosTime [I] Dos format time
1157 * pDateOut [O] Destination for VT_DATE format
1159 * RETURNS
1160 * Success: TRUE. pDateOut contains the converted time.
1161 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1163 * NOTES
1164 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1165 * - Dos format times are accurate to only 2 second precision.
1166 * - The format of a Dos Date is:
1167 *| Bits Values Meaning
1168 *| ---- ------ -------
1169 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1170 *| the days in the month rolls forward the extra days.
1171 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1172 *| year. 13-15 are invalid.
1173 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1174 * - The format of a Dos Time is:
1175 *| Bits Values Meaning
1176 *| ---- ------ -------
1177 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1178 *| 5-10 0-59 Minutes. 60-63 are invalid.
1179 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1181 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1182 double *pDateOut)
1184 UDATE ud;
1186 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1187 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1188 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1189 pDateOut);
1191 ud.st.wYear = DOS_YEAR(wDosDate);
1192 ud.st.wMonth = DOS_MONTH(wDosDate);
1193 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1194 return FALSE;
1195 ud.st.wDay = DOS_DAY(wDosDate);
1196 ud.st.wHour = DOS_HOUR(wDosTime);
1197 ud.st.wMinute = DOS_MINUTE(wDosTime);
1198 ud.st.wSecond = DOS_SECOND(wDosTime);
1199 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1201 return !VarDateFromUdate(&ud, 0, pDateOut);
1204 /**********************************************************************
1205 * VariantTimeToDosDateTime [OLEAUT32.13]
1207 * Convert a variant format date into a Dos format date and time.
1209 * dateIn [I] VT_DATE time format
1210 * pwDosDate [O] Destination for Dos format date
1211 * pwDosTime [O] Destination for Dos format time
1213 * RETURNS
1214 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1215 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1217 * NOTES
1218 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1220 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1222 UDATE ud;
1224 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1226 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1227 return FALSE;
1229 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1230 return FALSE;
1232 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1233 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1235 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1236 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1237 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1238 return TRUE;
1241 /***********************************************************************
1242 * SystemTimeToVariantTime [OLEAUT32.184]
1244 * Convert a System format date and time into variant VT_DATE format.
1246 * PARAMS
1247 * lpSt [I] System format date and time
1248 * pDateOut [O] Destination for VT_DATE format date
1250 * RETURNS
1251 * Success: TRUE. *pDateOut contains the converted value.
1252 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1254 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1256 UDATE ud;
1258 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1259 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1261 if (lpSt->wMonth > 12)
1262 return FALSE;
1264 memcpy(&ud.st, lpSt, sizeof(ud.st));
1265 return !VarDateFromUdate(&ud, 0, pDateOut);
1268 /***********************************************************************
1269 * VariantTimeToSystemTime [OLEAUT32.185]
1271 * Convert a variant VT_DATE into a System format date and time.
1273 * PARAMS
1274 * datein [I] Variant VT_DATE format date
1275 * lpSt [O] Destination for System format date and time
1277 * RETURNS
1278 * Success: TRUE. *lpSt contains the converted value.
1279 * Failure: FALSE, if dateIn is too large or small.
1281 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1283 UDATE ud;
1285 TRACE("(%g,%p)\n", dateIn, lpSt);
1287 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1288 return FALSE;
1290 memcpy(lpSt, &ud.st, sizeof(ud.st));
1291 return TRUE;
1294 /***********************************************************************
1295 * VarDateFromUdateEx [OLEAUT32.319]
1297 * Convert an unpacked format date and time to a variant VT_DATE.
1299 * PARAMS
1300 * pUdateIn [I] Unpacked format date and time to convert
1301 * lcid [I] Locale identifier for the conversion
1302 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1303 * pDateOut [O] Destination for variant VT_DATE.
1305 * RETURNS
1306 * Success: S_OK. *pDateOut contains the converted value.
1307 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1309 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1311 UDATE ud;
1312 double dateVal;
1314 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08lx,0x%08lx,%p)\n", pUdateIn,
1315 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1316 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1317 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1318 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1320 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1321 FIXME("lcid possibly not handled, treating as en-us\n");
1323 memcpy(&ud, pUdateIn, sizeof(ud));
1325 if (dwFlags & VAR_VALIDDATE)
1326 WARN("Ignoring VAR_VALIDDATE\n");
1328 if (FAILED(VARIANT_RollUdate(&ud)))
1329 return E_INVALIDARG;
1331 /* Date */
1332 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1334 /* Time */
1335 dateVal += ud.st.wHour / 24.0;
1336 dateVal += ud.st.wMinute / 1440.0;
1337 dateVal += ud.st.wSecond / 86400.0;
1338 dateVal += ud.st.wMilliseconds / 86400000.0;
1340 TRACE("Returning %g\n", dateVal);
1341 *pDateOut = dateVal;
1342 return S_OK;
1345 /***********************************************************************
1346 * VarDateFromUdate [OLEAUT32.330]
1348 * Convert an unpacked format date and time to a variant VT_DATE.
1350 * PARAMS
1351 * pUdateIn [I] Unpacked format date and time to convert
1352 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1353 * pDateOut [O] Destination for variant VT_DATE.
1355 * RETURNS
1356 * Success: S_OK. *pDateOut contains the converted value.
1357 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1359 * NOTES
1360 * This function uses the United States English locale for the conversion. Use
1361 * VarDateFromUdateEx() for alternate locales.
1363 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1365 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1367 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1370 /***********************************************************************
1371 * VarUdateFromDate [OLEAUT32.331]
1373 * Convert a variant VT_DATE into an unpacked format date and time.
1375 * PARAMS
1376 * datein [I] Variant VT_DATE format date
1377 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1378 * lpUdate [O] Destination for unpacked format date and time
1380 * RETURNS
1381 * Success: S_OK. *lpUdate contains the converted value.
1382 * Failure: E_INVALIDARG, if dateIn is too large or small.
1384 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1386 /* Cumulative totals of days per month */
1387 static const USHORT cumulativeDays[] =
1389 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1391 double datePart, timePart;
1392 int julianDays;
1394 TRACE("(%g,0x%08lx,%p)\n", dateIn, dwFlags, lpUdate);
1396 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1397 return E_INVALIDARG;
1399 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1400 /* Compensate for int truncation (always downwards) */
1401 timePart = dateIn - datePart + 0.00000000001;
1402 if (timePart >= 1.0)
1403 timePart -= 0.00000000001;
1405 /* Date */
1406 julianDays = VARIANT_JulianFromDate(dateIn);
1407 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1408 &lpUdate->st.wDay);
1410 datePart = (datePart + 1.5) / 7.0;
1411 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1412 if (lpUdate->st.wDayOfWeek == 0)
1413 lpUdate->st.wDayOfWeek = 5;
1414 else if (lpUdate->st.wDayOfWeek == 1)
1415 lpUdate->st.wDayOfWeek = 6;
1416 else
1417 lpUdate->st.wDayOfWeek -= 2;
1419 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1420 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1421 else
1422 lpUdate->wDayOfYear = 0;
1424 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1425 lpUdate->wDayOfYear += lpUdate->st.wDay;
1427 /* Time */
1428 timePart *= 24.0;
1429 lpUdate->st.wHour = timePart;
1430 timePart -= lpUdate->st.wHour;
1431 timePart *= 60.0;
1432 lpUdate->st.wMinute = timePart;
1433 timePart -= lpUdate->st.wMinute;
1434 timePart *= 60.0;
1435 lpUdate->st.wSecond = timePart;
1436 timePart -= lpUdate->st.wSecond;
1437 lpUdate->st.wMilliseconds = 0;
1438 if (timePart > 0.5)
1440 /* Round the milliseconds, adjusting the time/date forward if needed */
1441 if (lpUdate->st.wSecond < 59)
1442 lpUdate->st.wSecond++;
1443 else
1445 lpUdate->st.wSecond = 0;
1446 if (lpUdate->st.wMinute < 59)
1447 lpUdate->st.wMinute++;
1448 else
1450 lpUdate->st.wMinute = 0;
1451 if (lpUdate->st.wHour < 23)
1452 lpUdate->st.wHour++;
1453 else
1455 lpUdate->st.wHour = 0;
1456 /* Roll over a whole day */
1457 if (++lpUdate->st.wDay > 28)
1458 VARIANT_RollUdate(lpUdate);
1463 return S_OK;
1466 #define GET_NUMBER_TEXT(fld,name) \
1467 buff[0] = 0; \
1468 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1469 WARN("buffer too small for " #fld "\n"); \
1470 else \
1471 if (buff[0]) lpChars->name = buff[0]; \
1472 TRACE("lcid 0x%lx, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1474 /* Get the valid number characters for an lcid */
1475 void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1477 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1478 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1479 WCHAR buff[4];
1481 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1482 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1483 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1484 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1485 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeperator);
1486 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1487 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeperator);
1489 /* Local currency symbols are often 2 characters */
1490 lpChars->cCurrencyLocal2 = '\0';
1491 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1493 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1494 case 2: lpChars->cCurrencyLocal = buff[0];
1495 break;
1496 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1498 TRACE("lcid 0x%lx, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1499 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1502 /* Number Parsing States */
1503 #define B_PROCESSING_EXPONENT 0x1
1504 #define B_NEGATIVE_EXPONENT 0x2
1505 #define B_EXPONENT_START 0x4
1506 #define B_INEXACT_ZEROS 0x8
1507 #define B_LEADING_ZERO 0x10
1508 #define B_PROCESSING_HEX 0x20
1509 #define B_PROCESSING_OCT 0x40
1511 /**********************************************************************
1512 * VarParseNumFromStr [OLEAUT32.46]
1514 * Parse a string containing a number into a NUMPARSE structure.
1516 * PARAMS
1517 * lpszStr [I] String to parse number from
1518 * lcid [I] Locale Id for the conversion
1519 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1520 * pNumprs [I/O] Destination for parsed number
1521 * rgbDig [O] Destination for digits read in
1523 * RETURNS
1524 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1525 * the number.
1526 * Failure: E_INVALIDARG, if any parameter is invalid.
1527 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1528 * incorrectly.
1529 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1531 * NOTES
1532 * pNumprs must have the following fields set:
1533 * cDig: Set to the size of rgbDig.
1534 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1535 * from "oleauto.h".
1537 * FIXME
1538 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1539 * numerals, so this has not been implemented.
1541 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1542 NUMPARSE *pNumprs, BYTE *rgbDig)
1544 VARIANT_NUMBER_CHARS chars;
1545 BYTE rgbTmp[1024];
1546 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1547 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1548 int cchUsed = 0;
1550 TRACE("(%s,%ld,0x%08lx,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1552 if (!pNumprs || !rgbDig)
1553 return E_INVALIDARG;
1555 if (pNumprs->cDig < iMaxDigits)
1556 iMaxDigits = pNumprs->cDig;
1558 pNumprs->cDig = 0;
1559 pNumprs->dwOutFlags = 0;
1560 pNumprs->cchUsed = 0;
1561 pNumprs->nBaseShift = 0;
1562 pNumprs->nPwr10 = 0;
1564 if (!lpszStr)
1565 return DISP_E_TYPEMISMATCH;
1567 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1569 /* First consume all the leading symbols and space from the string */
1570 while (1)
1572 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1574 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1577 cchUsed++;
1578 lpszStr++;
1579 } while (isspaceW(*lpszStr));
1581 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1582 *lpszStr == chars.cPositiveSymbol &&
1583 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1585 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1586 cchUsed++;
1587 lpszStr++;
1589 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1590 *lpszStr == chars.cNegativeSymbol &&
1591 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1593 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1594 cchUsed++;
1595 lpszStr++;
1597 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1598 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1599 *lpszStr == chars.cCurrencyLocal &&
1600 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1602 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1603 cchUsed++;
1604 lpszStr++;
1605 /* Only accept currency characters */
1606 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1607 chars.cDigitSeperator = chars.cCurrencyDigitSeperator;
1609 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1610 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1612 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1613 cchUsed++;
1614 lpszStr++;
1616 else
1617 break;
1620 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1622 /* Only accept non-currency characters */
1623 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1624 chars.cCurrencyDigitSeperator = chars.cDigitSeperator;
1627 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1628 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1630 dwState |= B_PROCESSING_HEX;
1631 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1632 cchUsed=cchUsed+2;
1633 lpszStr=lpszStr+2;
1635 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1636 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1638 dwState |= B_PROCESSING_OCT;
1639 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1640 cchUsed=cchUsed+2;
1641 lpszStr=lpszStr+2;
1644 /* Strip Leading zeros */
1645 while (*lpszStr == '0')
1647 dwState |= B_LEADING_ZERO;
1648 cchUsed++;
1649 lpszStr++;
1652 while (*lpszStr)
1654 if (isdigitW(*lpszStr))
1656 if (dwState & B_PROCESSING_EXPONENT)
1658 int exponentSize = 0;
1659 if (dwState & B_EXPONENT_START)
1661 if (!isdigitW(*lpszStr))
1662 break; /* No exponent digits - invalid */
1663 while (*lpszStr == '0')
1665 /* Skip leading zero's in the exponent */
1666 cchUsed++;
1667 lpszStr++;
1671 while (isdigitW(*lpszStr))
1673 exponentSize *= 10;
1674 exponentSize += *lpszStr - '0';
1675 cchUsed++;
1676 lpszStr++;
1678 if (dwState & B_NEGATIVE_EXPONENT)
1679 exponentSize = -exponentSize;
1680 /* Add the exponent into the powers of 10 */
1681 pNumprs->nPwr10 += exponentSize;
1682 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1683 lpszStr--; /* back up to allow processing of next char */
1685 else
1687 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1688 && !(dwState & B_PROCESSING_OCT))
1690 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1692 if (*lpszStr != '0')
1693 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1695 /* This digit can't be represented, but count it in nPwr10 */
1696 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1697 pNumprs->nPwr10--;
1698 else
1699 pNumprs->nPwr10++;
1701 else
1703 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1704 return DISP_E_TYPEMISMATCH;
1707 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1708 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1710 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1712 pNumprs->cDig++;
1713 cchUsed++;
1716 else if (*lpszStr == chars.cDigitSeperator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1718 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1719 cchUsed++;
1721 else if (*lpszStr == chars.cDecimalPoint &&
1722 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1723 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1725 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1726 cchUsed++;
1728 /* If we have no digits so far, skip leading zeros */
1729 if (!pNumprs->cDig)
1731 while (lpszStr[1] == '0')
1733 dwState |= B_LEADING_ZERO;
1734 cchUsed++;
1735 lpszStr++;
1736 pNumprs->nPwr10--;
1740 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1741 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1742 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1744 dwState |= B_PROCESSING_EXPONENT;
1745 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1746 cchUsed++;
1748 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1750 cchUsed++; /* Ignore positive exponent */
1752 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1754 dwState |= B_NEGATIVE_EXPONENT;
1755 cchUsed++;
1757 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1758 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1759 dwState & B_PROCESSING_HEX)
1761 if (pNumprs->cDig >= iMaxDigits)
1763 return DISP_E_OVERFLOW;
1765 else
1767 if (*lpszStr >= 'a')
1768 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1769 else
1770 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1772 pNumprs->cDig++;
1773 cchUsed++;
1775 else
1776 break; /* Stop at an unrecognised character */
1778 lpszStr++;
1781 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1783 /* Ensure a 0 on its own gets stored */
1784 pNumprs->cDig = 1;
1785 rgbTmp[0] = 0;
1788 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1790 pNumprs->cchUsed = cchUsed;
1791 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1794 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1796 if (dwState & B_INEXACT_ZEROS)
1797 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1798 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1800 /* copy all of the digits into the output digit buffer */
1801 /* this is exactly what windows does although it also returns */
1802 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1803 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1805 if (dwState & B_PROCESSING_HEX) {
1806 /* hex numbers have always the same format */
1807 pNumprs->nPwr10=0;
1808 pNumprs->nBaseShift=4;
1809 } else {
1810 if (dwState & B_PROCESSING_OCT) {
1811 /* oct numbers have always the same format */
1812 pNumprs->nPwr10=0;
1813 pNumprs->nBaseShift=3;
1814 } else {
1815 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1817 pNumprs->nPwr10++;
1818 pNumprs->cDig--;
1822 } else
1824 /* Remove trailing zeros from the last (whole number or decimal) part */
1825 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1827 pNumprs->nPwr10++;
1828 pNumprs->cDig--;
1832 if (pNumprs->cDig <= iMaxDigits)
1833 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1834 else
1835 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1837 /* Copy the digits we processed into rgbDig */
1838 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1840 /* Consume any trailing symbols and space */
1841 while (1)
1843 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1845 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1848 cchUsed++;
1849 lpszStr++;
1850 } while (isspaceW(*lpszStr));
1852 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1853 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1854 *lpszStr == chars.cPositiveSymbol)
1856 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1857 cchUsed++;
1858 lpszStr++;
1860 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1861 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1862 *lpszStr == chars.cNegativeSymbol)
1864 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1865 cchUsed++;
1866 lpszStr++;
1868 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1869 pNumprs->dwOutFlags & NUMPRS_PARENS)
1871 cchUsed++;
1872 lpszStr++;
1873 pNumprs->dwOutFlags |= NUMPRS_NEG;
1875 else
1876 break;
1879 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1881 pNumprs->cchUsed = cchUsed;
1882 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1885 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1886 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1888 if (!pNumprs->cDig)
1889 return DISP_E_TYPEMISMATCH; /* No Number found */
1891 pNumprs->cchUsed = cchUsed;
1892 return S_OK;
1895 /* VTBIT flags indicating an integer value */
1896 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1897 /* VTBIT flags indicating a real number value */
1898 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1900 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1901 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1902 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1903 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1905 /**********************************************************************
1906 * VarNumFromParseNum [OLEAUT32.47]
1908 * Convert a NUMPARSE structure into a numeric Variant type.
1910 * PARAMS
1911 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1912 * rgbDig [I] Source for the numbers digits
1913 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1914 * pVarDst [O] Destination for the converted Variant value.
1916 * RETURNS
1917 * Success: S_OK. pVarDst contains the converted value.
1918 * Failure: E_INVALIDARG, if any parameter is invalid.
1919 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1921 * NOTES
1922 * - The smallest favoured type present in dwVtBits that can represent the
1923 * number in pNumprs without losing precision is used.
1924 * - Signed types are preferrred over unsigned types of the same size.
1925 * - Preferred types in order are: integer, float, double, currency then decimal.
1926 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1927 * for details of the rounding method.
1928 * - pVarDst is not cleared before the result is stored in it.
1929 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1930 * design?): If some other VTBIT's for integers are specified together
1931 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1932 * the number to the smallest requested integer truncating this way the
1933 * number. Wine dosn't implement this "feature" (yet?).
1935 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1936 ULONG dwVtBits, VARIANT *pVarDst)
1938 /* Scale factors and limits for double arithmetic */
1939 static const double dblMultipliers[11] = {
1940 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1941 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1943 static const double dblMinimums[11] = {
1944 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1945 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1946 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1948 static const double dblMaximums[11] = {
1949 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1950 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1951 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1954 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
1956 TRACE("(%p,%p,0x%lx,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
1958 if (pNumprs->nBaseShift)
1960 /* nBaseShift indicates a hex or octal number */
1961 ULONG64 ul64 = 0;
1962 LONG64 l64;
1963 int i;
1965 /* Convert the hex or octal number string into a UI64 */
1966 for (i = 0; i < pNumprs->cDig; i++)
1968 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
1970 TRACE("Overflow multiplying digits\n");
1971 return DISP_E_OVERFLOW;
1973 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
1976 /* also make a negative representation */
1977 l64=-ul64;
1979 /* Try signed and unsigned types in size order */
1980 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
1982 V_VT(pVarDst) = VT_I1;
1983 V_I1(pVarDst) = ul64;
1984 return S_OK;
1986 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
1988 V_VT(pVarDst) = VT_UI1;
1989 V_UI1(pVarDst) = ul64;
1990 return S_OK;
1992 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
1994 V_VT(pVarDst) = VT_I2;
1995 V_I2(pVarDst) = ul64;
1996 return S_OK;
1998 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2000 V_VT(pVarDst) = VT_UI2;
2001 V_UI2(pVarDst) = ul64;
2002 return S_OK;
2004 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2006 V_VT(pVarDst) = VT_I4;
2007 V_I4(pVarDst) = ul64;
2008 return S_OK;
2010 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2012 V_VT(pVarDst) = VT_UI4;
2013 V_UI4(pVarDst) = ul64;
2014 return S_OK;
2016 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2018 V_VT(pVarDst) = VT_I8;
2019 V_I8(pVarDst) = ul64;
2020 return S_OK;
2022 else if (dwVtBits & VTBIT_UI8)
2024 V_VT(pVarDst) = VT_UI8;
2025 V_UI8(pVarDst) = ul64;
2026 return S_OK;
2028 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2030 V_VT(pVarDst) = VT_DECIMAL;
2031 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2032 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2033 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2034 return S_OK;
2036 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2038 V_VT(pVarDst) = VT_R4;
2039 if (ul64 <= I4_MAX)
2040 V_R4(pVarDst) = ul64;
2041 else
2042 V_R4(pVarDst) = l64;
2043 return S_OK;
2045 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2047 V_VT(pVarDst) = VT_R8;
2048 if (ul64 <= I4_MAX)
2049 V_R8(pVarDst) = ul64;
2050 else
2051 V_R8(pVarDst) = l64;
2052 return S_OK;
2055 TRACE("Overflow: possible return types: 0x%lx, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2056 return DISP_E_OVERFLOW;
2059 /* Count the number of relevant fractional and whole digits stored,
2060 * And compute the divisor/multiplier to scale the number by.
2062 if (pNumprs->nPwr10 < 0)
2064 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2066 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2067 wholeNumberDigits = 0;
2068 fractionalDigits = pNumprs->cDig;
2069 divisor10 = -pNumprs->nPwr10;
2071 else
2073 /* An exactly represented real number e.g. 1.024 */
2074 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2075 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2076 divisor10 = pNumprs->cDig - wholeNumberDigits;
2079 else if (pNumprs->nPwr10 == 0)
2081 /* An exactly represented whole number e.g. 1024 */
2082 wholeNumberDigits = pNumprs->cDig;
2083 fractionalDigits = 0;
2085 else /* pNumprs->nPwr10 > 0 */
2087 /* A whole number followed by nPwr10 0's e.g. 102400 */
2088 wholeNumberDigits = pNumprs->cDig;
2089 fractionalDigits = 0;
2090 multiplier10 = pNumprs->nPwr10;
2093 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d ", pNumprs->cDig,
2094 pNumprs->nPwr10, wholeNumberDigits, fractionalDigits);
2095 TRACE("mult %d; div %d\n", multiplier10, divisor10);
2097 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2098 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2100 /* We have one or more integer output choices, and either:
2101 * 1) An integer input value, or
2102 * 2) A real number input value but no floating output choices.
2103 * Alternately, we have a DECIMAL output available and an integer input.
2105 * So, place the integer value into pVarDst, using the smallest type
2106 * possible and preferring signed over unsigned types.
2108 BOOL bOverflow = FALSE, bNegative;
2109 ULONG64 ul64 = 0;
2110 int i;
2112 /* Convert the integer part of the number into a UI8 */
2113 for (i = 0; i < wholeNumberDigits; i++)
2115 if (ul64 > (UI8_MAX / 10 - rgbDig[i]))
2117 TRACE("Overflow multiplying digits\n");
2118 bOverflow = TRUE;
2119 break;
2121 ul64 = ul64 * 10 + rgbDig[i];
2124 /* Account for the scale of the number */
2125 if (!bOverflow && multiplier10)
2127 for (i = 0; i < multiplier10; i++)
2129 if (ul64 > (UI8_MAX / 10))
2131 TRACE("Overflow scaling number\n");
2132 bOverflow = TRUE;
2133 break;
2135 ul64 = ul64 * 10;
2139 /* If we have any fractional digits, round the value.
2140 * Note we don't have to do this if divisor10 is < 1,
2141 * because this means the fractional part must be < 0.5
2143 if (!bOverflow && fractionalDigits && divisor10 > 0)
2145 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2146 BOOL bAdjust = FALSE;
2148 TRACE("first decimal value is %d\n", *fracDig);
2150 if (*fracDig > 5)
2151 bAdjust = TRUE; /* > 0.5 */
2152 else if (*fracDig == 5)
2154 for (i = 1; i < fractionalDigits; i++)
2156 if (fracDig[i])
2158 bAdjust = TRUE; /* > 0.5 */
2159 break;
2162 /* If exactly 0.5, round only odd values */
2163 if (i == fractionalDigits && (ul64 & 1))
2164 bAdjust = TRUE;
2167 if (bAdjust)
2169 if (ul64 == UI8_MAX)
2171 TRACE("Overflow after rounding\n");
2172 bOverflow = TRUE;
2174 ul64++;
2178 /* Zero is not a negative number */
2179 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE;
2181 TRACE("Integer value is %lld, bNeg %d\n", ul64, bNegative);
2183 /* For negative integers, try the signed types in size order */
2184 if (!bOverflow && bNegative)
2186 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2188 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2190 V_VT(pVarDst) = VT_I1;
2191 V_I1(pVarDst) = -ul64;
2192 return S_OK;
2194 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2196 V_VT(pVarDst) = VT_I2;
2197 V_I2(pVarDst) = -ul64;
2198 return S_OK;
2200 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2202 V_VT(pVarDst) = VT_I4;
2203 V_I4(pVarDst) = -ul64;
2204 return S_OK;
2206 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2208 V_VT(pVarDst) = VT_I8;
2209 V_I8(pVarDst) = -ul64;
2210 return S_OK;
2212 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2214 /* Decimal is only output choice left - fast path */
2215 V_VT(pVarDst) = VT_DECIMAL;
2216 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2217 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2218 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2219 return S_OK;
2223 else if (!bOverflow)
2225 /* For positive integers, try signed then unsigned types in size order */
2226 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2228 V_VT(pVarDst) = VT_I1;
2229 V_I1(pVarDst) = ul64;
2230 return S_OK;
2232 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2234 V_VT(pVarDst) = VT_UI1;
2235 V_UI1(pVarDst) = ul64;
2236 return S_OK;
2238 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2240 V_VT(pVarDst) = VT_I2;
2241 V_I2(pVarDst) = ul64;
2242 return S_OK;
2244 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2246 V_VT(pVarDst) = VT_UI2;
2247 V_UI2(pVarDst) = ul64;
2248 return S_OK;
2250 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2252 V_VT(pVarDst) = VT_I4;
2253 V_I4(pVarDst) = ul64;
2254 return S_OK;
2256 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2258 V_VT(pVarDst) = VT_UI4;
2259 V_UI4(pVarDst) = ul64;
2260 return S_OK;
2262 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2264 V_VT(pVarDst) = VT_I8;
2265 V_I8(pVarDst) = ul64;
2266 return S_OK;
2268 else if (dwVtBits & VTBIT_UI8)
2270 V_VT(pVarDst) = VT_UI8;
2271 V_UI8(pVarDst) = ul64;
2272 return S_OK;
2274 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2276 /* Decimal is only output choice left - fast path */
2277 V_VT(pVarDst) = VT_DECIMAL;
2278 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2279 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2280 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2281 return S_OK;
2286 if (dwVtBits & REAL_VTBITS)
2288 /* Try to put the number into a float or real */
2289 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2290 double whole = 0.0;
2291 int i;
2293 /* Convert the number into a double */
2294 for (i = 0; i < pNumprs->cDig; i++)
2295 whole = whole * 10.0 + rgbDig[i];
2297 TRACE("Whole double value is %16.16g\n", whole);
2299 /* Account for the scale */
2300 while (multiplier10 > 10)
2302 if (whole > dblMaximums[10])
2304 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2305 bOverflow = TRUE;
2306 break;
2308 whole = whole * dblMultipliers[10];
2309 multiplier10 -= 10;
2311 if (multiplier10)
2313 if (whole > dblMaximums[multiplier10])
2315 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2316 bOverflow = TRUE;
2318 else
2319 whole = whole * dblMultipliers[multiplier10];
2322 TRACE("Scaled double value is %16.16g\n", whole);
2324 while (divisor10 > 10)
2326 if (whole < dblMinimums[10] && whole != 0)
2328 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2329 bOverflow = TRUE;
2330 break;
2332 whole = whole / dblMultipliers[10];
2333 divisor10 -= 10;
2335 if (divisor10)
2337 if (whole < dblMinimums[divisor10] && whole != 0)
2339 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2340 bOverflow = TRUE;
2342 else
2343 whole = whole / dblMultipliers[divisor10];
2345 if (!bOverflow)
2346 TRACE("Final double value is %16.16g\n", whole);
2348 if (dwVtBits & VTBIT_R4 &&
2349 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2351 TRACE("Set R4 to final value\n");
2352 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2353 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2354 return S_OK;
2357 if (dwVtBits & VTBIT_R8)
2359 TRACE("Set R8 to final value\n");
2360 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2361 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2362 return S_OK;
2365 if (dwVtBits & VTBIT_CY)
2367 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2369 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2370 TRACE("Set CY to final value\n");
2371 return S_OK;
2373 TRACE("Value Overflows CY\n");
2377 if (dwVtBits & VTBIT_DECIMAL)
2379 int i;
2380 ULONG carry;
2381 ULONG64 tmp;
2382 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2384 DECIMAL_SETZERO(*pDec);
2385 DEC_LO32(pDec) = 0;
2387 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2388 DEC_SIGN(pDec) = DECIMAL_NEG;
2389 else
2390 DEC_SIGN(pDec) = DECIMAL_POS;
2392 /* Factor the significant digits */
2393 for (i = 0; i < pNumprs->cDig; i++)
2395 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2396 carry = (ULONG)(tmp >> 32);
2397 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2398 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2399 carry = (ULONG)(tmp >> 32);
2400 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2401 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2402 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2404 if (tmp >> 32 & UI4_MAX)
2406 VarNumFromParseNum_DecOverflow:
2407 TRACE("Overflow\n");
2408 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2409 return DISP_E_OVERFLOW;
2413 /* Account for the scale of the number */
2414 while (multiplier10 > 0)
2416 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2417 carry = (ULONG)(tmp >> 32);
2418 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2419 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2420 carry = (ULONG)(tmp >> 32);
2421 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2422 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2423 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2425 if (tmp >> 32 & UI4_MAX)
2426 goto VarNumFromParseNum_DecOverflow;
2427 multiplier10--;
2429 DEC_SCALE(pDec) = divisor10;
2431 V_VT(pVarDst) = VT_DECIMAL;
2432 return S_OK;
2434 return DISP_E_OVERFLOW; /* No more output choices */
2437 /**********************************************************************
2438 * VarCat [OLEAUT32.318]
2440 * Concatenates one variant onto another.
2442 * PARAMS
2443 * left [I] First variant
2444 * right [I] Second variant
2445 * result [O] Result variant
2447 * RETURNS
2448 * Success: S_OK.
2449 * Failure: An HRESULT error code indicating the error.
2451 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2453 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2454 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
2456 /* Should we VariantClear out? */
2457 /* Can we handle array, vector, by ref etc. */
2458 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL &&
2459 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2461 V_VT(out) = VT_NULL;
2462 return S_OK;
2465 if (V_VT(left) == VT_BSTR && V_VT(right) == VT_BSTR)
2467 V_VT(out) = VT_BSTR;
2468 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2469 return S_OK;
2471 if (V_VT(left) == VT_BSTR) {
2472 VARIANT bstrvar;
2473 HRESULT hres;
2475 V_VT(out) = VT_BSTR;
2476 VariantInit(&bstrvar);
2477 hres = VariantChangeTypeEx(&bstrvar,right,0,0,VT_BSTR);
2478 if (hres) {
2479 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2480 return hres;
2482 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar), &V_BSTR(out));
2483 return S_OK;
2485 if (V_VT(right) == VT_BSTR) {
2486 VARIANT bstrvar;
2487 HRESULT hres;
2489 V_VT(out) = VT_BSTR;
2490 VariantInit(&bstrvar);
2491 hres = VariantChangeTypeEx(&bstrvar,left,0,0,VT_BSTR);
2492 if (hres) {
2493 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2494 return hres;
2496 VarBstrCat (V_BSTR(&bstrvar), V_BSTR(right), &V_BSTR(out));
2497 return S_OK;
2499 FIXME ("types %d / %d not supported\n",V_VT(left)&VT_TYPEMASK, V_VT(right)&VT_TYPEMASK);
2500 return S_OK;
2503 /* Wrapper around VariantChangeTypeEx() which permits changing a
2504 variant with VT_RESERVED flag set. Needed by VarCmp. */
2505 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2506 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2508 HRESULT res;
2509 VARTYPE flags;
2511 flags = V_VT(pvargSrc) & ~VT_TYPEMASK;
2512 V_VT(pvargSrc) &= ~VT_RESERVED;
2513 res = VariantChangeTypeEx(pvargDest,pvargSrc,lcid,wFlags,vt);
2514 V_VT(pvargSrc) |= flags;
2516 return res;
2519 /**********************************************************************
2520 * VarCmp [OLEAUT32.176]
2522 * Compare two variants.
2524 * PARAMS
2525 * left [I] First variant
2526 * right [I] Second variant
2527 * lcid [I] LCID (locale identifier) for the comparison
2528 * flags [I] Flags to be used in the comparision:
2529 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2530 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2532 * RETURNS
2533 * VARCMP_LT: left variant is less than right variant.
2534 * VARCMP_EQ: input variants are equal.
2535 * VARCMP_LT: left variant is greater than right variant.
2536 * VARCMP_NULL: either one of the input variants is NULL.
2537 * Failure: An HRESULT error code indicating the error.
2539 * NOTES
2540 * Native VarCmp up to and including WinXP dosn't like as input variants
2541 * I1, UI2, VT_UI4, UI8 and UINT. INT is accepted only as left variant.
2543 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2544 * an ERROR variant will trigger an error.
2546 * Both input variants can have VT_RESERVED flag set which is ignored
2547 * unless one and only one of the variants is a BSTR and the other one
2548 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2549 * different meaning:
2550 * - BSTR and other: BSTR is always greater than the other variant.
2551 * - BSTR|VT_RESERVED and other: a string comparision is performed.
2552 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2553 * comparision will take place else the BSTR is always greater.
2554 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2555 * variant is ignored and the return value depends only on the sign
2556 * of the BSTR if it is a number else the BSTR is always greater. A
2557 * positive BSTR is greater, a negative one is smaller than the other
2558 * variant.
2560 * SEE
2561 * VarBstrCmp for the lcid and flags usage.
2563 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2565 VARTYPE lvt, rvt, vt;
2566 VARIANT rv,lv;
2567 DWORD xmask;
2568 HRESULT rc;
2570 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%08lx)\n", left, debugstr_VT(left),
2571 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
2573 lvt = V_VT(left) & VT_TYPEMASK;
2574 rvt = V_VT(right) & VT_TYPEMASK;
2575 xmask = (1 << lvt) | (1 << rvt);
2577 /* If we have any flag set except VT_RESERVED bail out.
2578 Same for the left input variant type > VT_INT and for the
2579 right input variant type > VT_I8. Yes, VT_INT is only supported
2580 as left variant. Go figure */
2581 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2582 lvt > VT_INT || rvt > VT_I8) {
2583 return DISP_E_BADVARTYPE;
2586 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2587 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2588 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2589 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2590 return DISP_E_TYPEMISMATCH;
2592 /* If both variants are VT_ERROR return VARCMP_EQ */
2593 if (xmask == VTBIT_ERROR)
2594 return VARCMP_EQ;
2595 else if (xmask & VTBIT_ERROR)
2596 return DISP_E_TYPEMISMATCH;
2598 if (xmask & VTBIT_NULL)
2599 return VARCMP_NULL;
2601 VariantInit(&lv);
2602 VariantInit(&rv);
2604 /* Two BSTRs, ignore VT_RESERVED */
2605 if (xmask == VTBIT_BSTR)
2606 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2608 /* A BSTR and an other variant; we have to take care of VT_RESERVED */
2609 if (xmask & VTBIT_BSTR) {
2610 VARIANT *bstrv, *nonbv;
2611 VARTYPE nonbvt;
2612 int swap = 0;
2614 /* Swap the variants so the BSTR is always on the left */
2615 if (lvt == VT_BSTR) {
2616 bstrv = left;
2617 nonbv = right;
2618 nonbvt = rvt;
2619 } else {
2620 swap = 1;
2621 bstrv = right;
2622 nonbv = left;
2623 nonbvt = lvt;
2626 /* BSTR and EMPTY: ignore VT_RESERVED */
2627 if (nonbvt == VT_EMPTY)
2628 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2629 else {
2630 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2631 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2633 if (!breserv && !nreserv)
2634 /* No VT_RESERVED set ==> BSTR always greater */
2635 rc = VARCMP_GT;
2636 else if (breserv && !nreserv) {
2637 /* BSTR has VT_RESERVED set. Do a string comparision */
2638 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2639 if (FAILED(rc))
2640 return rc;
2641 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2642 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2643 /* Non NULL nor empty BSTR */
2644 /* If the BSTR is not a number the BSTR is greater */
2645 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2646 if (FAILED(rc))
2647 rc = VARCMP_GT;
2648 else if (breserv && nreserv)
2649 /* FIXME: This is strange: with both VT_RESERVED set it
2650 looks like the result depends only on the sign of
2651 the BSTR number */
2652 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2653 else
2654 /* Numeric comparision, will be handled below.
2655 VARCMP_NULL used only to break out. */
2656 rc = VARCMP_NULL;
2657 VariantClear(&lv);
2658 VariantClear(&rv);
2659 } else
2660 /* Empty or NULL BSTR */
2661 rc = VARCMP_GT;
2663 /* Fixup the return code if we swapped left and right */
2664 if (swap) {
2665 if (rc == VARCMP_GT)
2666 rc = VARCMP_LT;
2667 else if (rc == VARCMP_LT)
2668 rc = VARCMP_GT;
2670 if (rc != VARCMP_NULL)
2671 return rc;
2674 if (xmask & VTBIT_DECIMAL)
2675 vt = VT_DECIMAL;
2676 else if (xmask & VTBIT_BSTR)
2677 vt = VT_R8;
2678 else if (xmask & VTBIT_R4)
2679 vt = VT_R4;
2680 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2681 vt = VT_R8;
2682 else if (xmask & VTBIT_CY)
2683 vt = VT_CY;
2684 else
2685 /* default to I8 */
2686 vt = VT_I8;
2688 /* Coerce the variants */
2689 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2690 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2691 /* Overflow, change to R8 */
2692 vt = VT_R8;
2693 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2695 if (FAILED(rc))
2696 return rc;
2697 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2698 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2699 /* Overflow, change to R8 */
2700 vt = VT_R8;
2701 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2702 if (FAILED(rc))
2703 return rc;
2704 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2706 if (FAILED(rc))
2707 return rc;
2709 #define _VARCMP(a,b) \
2710 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2712 switch (vt) {
2713 case VT_CY:
2714 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2715 case VT_DECIMAL:
2716 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2717 case VT_I8:
2718 return _VARCMP(V_I8(&lv), V_I8(&rv));
2719 case VT_R4:
2720 return _VARCMP(V_R4(&lv), V_R4(&rv));
2721 case VT_R8:
2722 return _VARCMP(V_R8(&lv), V_R8(&rv));
2723 default:
2724 /* We should never get here */
2725 return E_FAIL;
2727 #undef _VARCMP
2730 /**********************************************************************
2731 * VarAnd [OLEAUT32.142]
2733 * Computes the logical AND of two variants.
2735 * PARAMS
2736 * left [I] First variant
2737 * right [I] Second variant
2738 * result [O] Result variant
2740 * RETURNS
2741 * Success: S_OK.
2742 * Failure: An HRESULT error code indicating the error.
2744 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2746 HRESULT rc = E_FAIL;
2748 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2749 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2751 if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL &&
2752 (V_VT(right)&VT_TYPEMASK) == VT_BOOL) {
2754 V_VT(result) = VT_BOOL;
2755 if (V_BOOL(left) && V_BOOL(right)) {
2756 V_BOOL(result) = VARIANT_TRUE;
2757 } else {
2758 V_BOOL(result) = VARIANT_FALSE;
2760 rc = S_OK;
2762 } else {
2763 /* Integers */
2764 BOOL lOk = TRUE;
2765 BOOL rOk = TRUE;
2766 LONGLONG lVal = -1;
2767 LONGLONG rVal = -1;
2768 LONGLONG res = -1;
2769 int resT = 0; /* Testing has shown I2 & I2 == I2, all else
2770 becomes I4, even unsigned ints (incl. UI2) */
2772 lOk = TRUE;
2773 switch (V_VT(left)&VT_TYPEMASK) {
2774 case VT_I1 : lVal = V_I1(left); resT=VT_I4; break;
2775 case VT_I2 : lVal = V_I2(left); resT=VT_I2; break;
2776 case VT_I4 :
2777 case VT_INT : lVal = V_I4(left); resT=VT_I4; break;
2778 case VT_UI1 : lVal = V_UI1(left); resT=VT_I4; break;
2779 case VT_UI2 : lVal = V_UI2(left); resT=VT_I4; break;
2780 case VT_UI4 :
2781 case VT_UINT : lVal = V_UI4(left); resT=VT_I4; break;
2782 case VT_BOOL : rVal = V_BOOL(left); resT=VT_I4; break;
2783 default: lOk = FALSE;
2786 rOk = TRUE;
2787 switch (V_VT(right)&VT_TYPEMASK) {
2788 case VT_I1 : rVal = V_I1(right); resT=VT_I4; break;
2789 case VT_I2 : rVal = V_I2(right); resT=max(VT_I2, resT); break;
2790 case VT_I4 :
2791 case VT_INT : rVal = V_I4(right); resT=VT_I4; break;
2792 case VT_UI1 : rVal = V_UI1(right); resT=VT_I4; break;
2793 case VT_UI2 : rVal = V_UI2(right); resT=VT_I4; break;
2794 case VT_UI4 :
2795 case VT_UINT : rVal = V_UI4(right); resT=VT_I4; break;
2796 case VT_BOOL : rVal = V_BOOL(right); resT=VT_I4; break;
2797 default: rOk = FALSE;
2800 if (lOk && rOk) {
2801 res = (lVal & rVal);
2802 V_VT(result) = resT;
2803 switch (resT) {
2804 case VT_I2 : V_I2(result) = res; break;
2805 case VT_I4 : V_I4(result) = res; break;
2806 default:
2807 FIXME("Unexpected result variant type %x\n", resT);
2808 V_I4(result) = res;
2810 rc = S_OK;
2812 } else {
2813 FIXME("VarAnd stub\n");
2817 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2818 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2819 return rc;
2822 /**********************************************************************
2823 * VarAdd [OLEAUT32.141]
2825 * Add two variants.
2827 * PARAMS
2828 * left [I] First variant
2829 * right [I] Second variant
2830 * result [O] Result variant
2832 * RETURNS
2833 * Success: S_OK.
2834 * Failure: An HRESULT error code indicating the error.
2836 * NOTES
2837 * Native VarAdd up to and including WinXP dosn't like as input variants
2838 * I1, UI2, UI4, UI8, INT and UINT.
2840 * Native VarAdd dosn't check for NULL in/out pointers and crashes. We do the
2841 * same here.
2843 * FIXME
2844 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
2845 * case.
2847 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2849 HRESULT hres;
2850 VARTYPE lvt, rvt, resvt, tvt;
2851 VARIANT lv, rv, tv;
2852 double r8res;
2854 /* Variant priority for coercion. Sorted from lowest to highest.
2855 VT_ERROR shows an invalid input variant type. */
2856 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
2857 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
2858 vt_ERROR };
2859 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
2860 VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
2861 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
2862 VT_NULL, VT_ERROR };
2864 /* Mapping for coercion from input variant to priority of result variant. */
2865 static VARTYPE coerce[] = {
2866 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
2867 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
2868 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
2869 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
2870 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
2871 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
2872 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
2873 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
2876 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2877 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
2878 result);
2880 VariantInit(&lv);
2881 VariantInit(&rv);
2882 VariantInit(&tv);
2883 lvt = V_VT(left)&VT_TYPEMASK;
2884 rvt = V_VT(right)&VT_TYPEMASK;
2886 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
2887 Same for any input variant type > VT_I8 */
2888 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
2889 lvt > VT_I8 || rvt > VT_I8) {
2890 hres = DISP_E_BADVARTYPE;
2891 goto end;
2894 /* Determine the variant type to coerce to. */
2895 if (coerce[lvt] > coerce[rvt]) {
2896 resvt = prio2vt[coerce[lvt]];
2897 tvt = prio2vt[coerce[rvt]];
2898 } else {
2899 resvt = prio2vt[coerce[rvt]];
2900 tvt = prio2vt[coerce[lvt]];
2903 /* Special cases where the result variant type is defined by both
2904 input variants and not only that with the highest priority */
2905 if (resvt == VT_BSTR) {
2906 if (tvt == VT_EMPTY || tvt == VT_BSTR)
2907 resvt = VT_BSTR;
2908 else
2909 resvt = VT_R8;
2911 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
2912 resvt = VT_R8;
2914 /* For overflow detection use the biggest compatible type for the
2915 addition */
2916 switch (resvt) {
2917 case VT_ERROR:
2918 hres = DISP_E_BADVARTYPE;
2919 goto end;
2920 case VT_NULL:
2921 hres = S_OK;
2922 V_VT(result) = VT_NULL;
2923 goto end;
2924 case VT_DISPATCH:
2925 FIXME("cannot handle variant type VT_DISPATCH\n");
2926 hres = DISP_E_TYPEMISMATCH;
2927 goto end;
2928 case VT_EMPTY:
2929 resvt = VT_I2;
2930 /* Fall through */
2931 case VT_UI1:
2932 case VT_I2:
2933 case VT_I4:
2934 case VT_I8:
2935 tvt = VT_I8;
2936 break;
2937 case VT_DATE:
2938 case VT_R4:
2939 tvt = VT_R8;
2940 break;
2941 default:
2942 tvt = resvt;
2945 /* Now coerce the variants */
2946 hres = VariantChangeType(&lv, left, 0, tvt);
2947 if (FAILED(hres))
2948 goto end;
2949 hres = VariantChangeType(&rv, right, 0, tvt);
2950 if (FAILED(hres))
2951 goto end;
2953 /* Do the math */
2954 hres = S_OK;
2955 V_VT(&tv) = tvt;
2956 V_VT(result) = resvt;
2957 switch (tvt) {
2958 case VT_DECIMAL:
2959 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
2960 &V_DECIMAL(result));
2961 goto end;
2962 case VT_CY:
2963 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
2964 goto end;
2965 case VT_BSTR:
2966 /* We do not add those, we concatenate them. */
2967 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
2968 goto end;
2969 case VT_I8:
2970 /* Overflow detection */
2971 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
2972 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
2973 V_VT(result) = VT_R8;
2974 V_R8(result) = r8res;
2975 goto end;
2976 } else
2977 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
2978 break;
2979 case VT_R8:
2980 /* FIXME: overflow detection */
2981 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
2982 break;
2983 default:
2984 ERR("We shouldn't get here! tvt = %d!\n", tvt);
2985 break;
2987 if (resvt != tvt) {
2988 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
2989 /* Overflow! Change to the vartype with the next higher priority.
2990 With one exception: I4 ==> R8 even if it would fit in I8 */
2991 if (resvt == VT_I4)
2992 resvt = VT_R8;
2993 else
2994 resvt = prio2vt[coerce[resvt] + 1];
2995 hres = VariantChangeType(result, &tv, 0, resvt);
2997 } else
2998 hres = VariantCopy(result, &tv);
3000 end:
3001 if (hres != S_OK) {
3002 V_VT(result) = VT_EMPTY;
3003 V_I4(result) = 0; /* No V_EMPTY */
3005 VariantClear(&lv);
3006 VariantClear(&rv);
3007 VariantClear(&tv);
3008 TRACE("returning 0x%8lx (variant type %s)\n", hres, debugstr_VT(result));
3009 return hres;
3012 /**********************************************************************
3013 * VarMul [OLEAUT32.156]
3015 * Multiply two variants.
3017 * PARAMS
3018 * left [I] First variant
3019 * right [I] Second variant
3020 * result [O] Result variant
3022 * RETURNS
3023 * Success: S_OK.
3024 * Failure: An HRESULT error code indicating the error.
3026 * NOTES
3027 * Native VarMul up to and including WinXP dosn't like as input variants
3028 * I1, UI2, UI4, UI8, INT and UINT. But it can multiply apples with oranges.
3030 * Native VarMul dosn't check for NULL in/out pointers and crashes. We do the
3031 * same here.
3033 * FIXME
3034 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3035 * case.
3037 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3039 HRESULT hres;
3040 VARTYPE lvt, rvt, resvt, tvt;
3041 VARIANT lv, rv, tv;
3042 double r8res;
3044 /* Variant priority for coercion. Sorted from lowest to highest.
3045 VT_ERROR shows an invalid input variant type. */
3046 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3047 vt_DECIMAL, vt_NULL, vt_ERROR };
3048 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3049 VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3050 VT_DECIMAL, VT_NULL, VT_ERROR };
3052 /* Mapping for coercion from input variant to priority of result variant. */
3053 static VARTYPE coerce[] = {
3054 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3055 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3056 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3057 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3058 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3059 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3060 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3061 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3064 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3065 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
3066 result);
3068 VariantInit(&lv);
3069 VariantInit(&rv);
3070 VariantInit(&tv);
3071 lvt = V_VT(left)&VT_TYPEMASK;
3072 rvt = V_VT(right)&VT_TYPEMASK;
3074 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3075 Same for any input variant type > VT_I8 */
3076 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3077 lvt > VT_I8 || rvt > VT_I8) {
3078 hres = DISP_E_BADVARTYPE;
3079 goto end;
3082 /* Determine the variant type to coerce to. */
3083 if (coerce[lvt] > coerce[rvt]) {
3084 resvt = prio2vt[coerce[lvt]];
3085 tvt = prio2vt[coerce[rvt]];
3086 } else {
3087 resvt = prio2vt[coerce[rvt]];
3088 tvt = prio2vt[coerce[lvt]];
3091 /* Special cases where the result variant type is defined by both
3092 input variants and not only that with the highest priority */
3093 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3094 resvt = VT_R8;
3095 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3096 resvt = VT_I2;
3098 /* For overflow detection use the biggest compatible type for the
3099 multiplication */
3100 switch (resvt) {
3101 case VT_ERROR:
3102 hres = DISP_E_BADVARTYPE;
3103 goto end;
3104 case VT_NULL:
3105 hres = S_OK;
3106 V_VT(result) = VT_NULL;
3107 goto end;
3108 case VT_UI1:
3109 case VT_I2:
3110 case VT_I4:
3111 case VT_I8:
3112 tvt = VT_I8;
3113 break;
3114 case VT_R4:
3115 tvt = VT_R8;
3116 break;
3117 default:
3118 tvt = resvt;
3121 /* Now coerce the variants */
3122 hres = VariantChangeType(&lv, left, 0, tvt);
3123 if (FAILED(hres))
3124 goto end;
3125 hres = VariantChangeType(&rv, right, 0, tvt);
3126 if (FAILED(hres))
3127 goto end;
3129 /* Do the math */
3130 hres = S_OK;
3131 V_VT(&tv) = tvt;
3132 V_VT(result) = resvt;
3133 switch (tvt) {
3134 case VT_DECIMAL:
3135 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3136 &V_DECIMAL(result));
3137 goto end;
3138 case VT_CY:
3139 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3140 goto end;
3141 case VT_I8:
3142 /* Overflow detection */
3143 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3144 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3145 V_VT(result) = VT_R8;
3146 V_R8(result) = r8res;
3147 goto end;
3148 } else
3149 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3150 break;
3151 case VT_R8:
3152 /* FIXME: overflow detection */
3153 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3154 break;
3155 default:
3156 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3157 break;
3159 if (resvt != tvt) {
3160 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3161 /* Overflow! Change to the vartype with the next higher priority.
3162 With one exception: I4 ==> R8 even if it would fit in I8 */
3163 if (resvt == VT_I4)
3164 resvt = VT_R8;
3165 else
3166 resvt = prio2vt[coerce[resvt] + 1];
3168 } else
3169 hres = VariantCopy(result, &tv);
3171 end:
3172 if (hres != S_OK) {
3173 V_VT(result) = VT_EMPTY;
3174 V_I4(result) = 0; /* No V_EMPTY */
3176 VariantClear(&lv);
3177 VariantClear(&rv);
3178 VariantClear(&tv);
3179 TRACE("returning 0x%8lx (variant type %s)\n", hres, debugstr_VT(result));
3180 return hres;
3183 /**********************************************************************
3184 * VarDiv [OLEAUT32.143]
3186 * Divides one variant with another.
3188 * PARAMS
3189 * left [I] First variant
3190 * right [I] Second variant
3191 * result [O] Result variant
3193 * RETURNS
3194 * Success: S_OK.
3195 * Failure: An HRESULT error code indicating the error.
3197 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3199 HRESULT rc = E_FAIL;
3200 VARTYPE lvt,rvt,resvt;
3201 VARIANT lv,rv;
3202 BOOL found;
3204 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3205 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3207 VariantInit(&lv);VariantInit(&rv);
3208 lvt = V_VT(left)&VT_TYPEMASK;
3209 rvt = V_VT(right)&VT_TYPEMASK;
3210 found = FALSE;resvt = VT_VOID;
3211 if (((1<<lvt) | (1<<rvt)) & (VTBIT_R4|VTBIT_R8|VTBIT_CY)) {
3212 found = TRUE;
3213 resvt = VT_R8;
3215 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_DECIMAL))) {
3216 found = TRUE;
3217 resvt = VT_DECIMAL;
3219 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_INT|VTBIT_UINT))) {
3220 found = TRUE;
3221 resvt = VT_I4;
3223 if (!found) {
3224 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
3225 return E_FAIL;
3227 rc = VariantChangeType(&lv, left, 0, resvt);
3228 if (FAILED(rc)) {
3229 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
3230 return rc;
3232 rc = VariantChangeType(&rv, right, 0, resvt);
3233 if (FAILED(rc)) {
3234 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
3235 return rc;
3237 switch (resvt) {
3238 case VT_R8:
3239 if (V_R8(&rv) == 0) return DISP_E_DIVBYZERO;
3240 V_VT(result) = resvt;
3241 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3242 rc = S_OK;
3243 break;
3244 case VT_DECIMAL:
3245 rc = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3246 V_VT(result) = resvt;
3247 break;
3248 case VT_I4:
3249 if (V_I4(&rv) == 0) return DISP_E_DIVBYZERO;
3250 V_VT(result) = resvt;
3251 V_I4(result) = V_I4(&lv) / V_I4(&rv);
3252 rc = S_OK;
3253 break;
3255 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
3256 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3257 return rc;
3260 /**********************************************************************
3261 * VarSub [OLEAUT32.159]
3263 * Subtract two variants.
3265 * PARAMS
3266 * left [I] First variant
3267 * right [I] Second variant
3268 * result [O] Result variant
3270 * RETURNS
3271 * Success: S_OK.
3272 * Failure: An HRESULT error code indicating the error.
3274 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3276 HRESULT rc = E_FAIL;
3277 VARTYPE lvt,rvt,resvt;
3278 VARIANT lv,rv;
3279 BOOL found;
3281 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3282 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3284 VariantInit(&lv);VariantInit(&rv);
3285 lvt = V_VT(left)&VT_TYPEMASK;
3286 rvt = V_VT(right)&VT_TYPEMASK;
3287 found = FALSE;resvt = VT_VOID;
3288 if (((1<<lvt) | (1<<rvt)) & (VTBIT_DATE|VTBIT_R4|VTBIT_R8)) {
3289 found = TRUE;
3290 resvt = VT_R8;
3292 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_DECIMAL))) {
3293 found = TRUE;
3294 resvt = VT_DECIMAL;
3296 if (!found && (((1<<lvt) | (1<<rvt)) & (VTBIT_I1|VTBIT_I2|VTBIT_UI1|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_INT|VTBIT_UINT))) {
3297 found = TRUE;
3298 resvt = VT_I4;
3300 if (!found) {
3301 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
3302 return E_FAIL;
3304 rc = VariantChangeType(&lv, left, 0, resvt);
3305 if (FAILED(rc)) {
3306 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
3307 return rc;
3309 rc = VariantChangeType(&rv, right, 0, resvt);
3310 if (FAILED(rc)) {
3311 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
3312 return rc;
3314 switch (resvt) {
3315 case VT_R8:
3316 V_VT(result) = resvt;
3317 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3318 rc = S_OK;
3319 break;
3320 case VT_DECIMAL:
3321 rc = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3322 V_VT(result) = resvt;
3323 break;
3324 case VT_I4:
3325 V_VT(result) = resvt;
3326 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3327 rc = S_OK;
3328 break;
3330 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
3331 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3332 return rc;
3335 /**********************************************************************
3336 * VarOr [OLEAUT32.157]
3338 * Perform a logical or (OR) operation on two variants.
3340 * PARAMS
3341 * pVarLeft [I] First variant
3342 * pVarRight [I] Variant to OR with pVarLeft
3343 * pVarOut [O] Destination for OR result
3345 * RETURNS
3346 * Success: S_OK. pVarOut contains the result of the operation with its type
3347 * taken from the table listed under VarXor().
3348 * Failure: An HRESULT error code indicating the error.
3350 * NOTES
3351 * See the Notes section of VarXor() for further information.
3353 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3355 VARTYPE vt = VT_I4;
3356 VARIANT varLeft, varRight, varStr;
3357 HRESULT hRet;
3359 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3360 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3361 debugstr_VF(pVarRight), pVarOut);
3363 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3364 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3365 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
3366 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
3367 return DISP_E_BADVARTYPE;
3369 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
3371 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3373 /* NULL OR Zero is NULL, NULL OR value is value */
3374 if (V_VT(pVarLeft) == VT_NULL)
3375 pVarLeft = pVarRight; /* point to the non-NULL var */
3377 V_VT(pVarOut) = VT_NULL;
3378 V_I4(pVarOut) = 0;
3380 switch (V_VT(pVarLeft))
3382 case VT_DATE: case VT_R8:
3383 if (V_R8(pVarLeft))
3384 goto VarOr_AsEmpty;
3385 return S_OK;
3386 case VT_BOOL:
3387 if (V_BOOL(pVarLeft))
3388 *pVarOut = *pVarLeft;
3389 return S_OK;
3390 case VT_I2: case VT_UI2:
3391 if (V_I2(pVarLeft))
3392 goto VarOr_AsEmpty;
3393 return S_OK;
3394 case VT_I1:
3395 if (V_I1(pVarLeft))
3396 goto VarOr_AsEmpty;
3397 return S_OK;
3398 case VT_UI1:
3399 if (V_UI1(pVarLeft))
3400 *pVarOut = *pVarLeft;
3401 return S_OK;
3402 case VT_R4:
3403 if (V_R4(pVarLeft))
3404 goto VarOr_AsEmpty;
3405 return S_OK;
3406 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
3407 if (V_I4(pVarLeft))
3408 goto VarOr_AsEmpty;
3409 return S_OK;
3410 case VT_CY:
3411 if (V_CY(pVarLeft).int64)
3412 goto VarOr_AsEmpty;
3413 return S_OK;
3414 case VT_I8: case VT_UI8:
3415 if (V_I8(pVarLeft))
3416 goto VarOr_AsEmpty;
3417 return S_OK;
3418 case VT_DECIMAL:
3419 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
3420 goto VarOr_AsEmpty;
3421 return S_OK;
3422 case VT_BSTR:
3424 VARIANT_BOOL b;
3426 if (!V_BSTR(pVarLeft))
3427 return DISP_E_BADVARTYPE;
3429 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3430 if (SUCCEEDED(hRet) && b)
3432 V_VT(pVarOut) = VT_BOOL;
3433 V_BOOL(pVarOut) = b;
3435 return hRet;
3437 case VT_NULL: case VT_EMPTY:
3438 V_VT(pVarOut) = VT_NULL;
3439 return S_OK;
3440 default:
3441 return DISP_E_BADVARTYPE;
3445 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
3447 if (V_VT(pVarLeft) == VT_EMPTY)
3448 pVarLeft = pVarRight; /* point to the non-EMPTY var */
3450 VarOr_AsEmpty:
3451 /* Since one argument is empty (0), OR'ing it with the other simply
3452 * gives the others value (as 0|x => x). So just convert the other
3453 * argument to the required result type.
3455 switch (V_VT(pVarLeft))
3457 case VT_BSTR:
3458 if (!V_BSTR(pVarLeft))
3459 return DISP_E_BADVARTYPE;
3461 hRet = VariantCopy(&varStr, pVarLeft);
3462 if (FAILED(hRet))
3463 goto VarOr_Exit;
3464 pVarLeft = &varStr;
3465 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3466 if (FAILED(hRet))
3467 goto VarOr_Exit;
3468 /* Fall Through ... */
3469 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
3470 V_VT(pVarOut) = VT_I2;
3471 break;
3472 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
3473 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
3474 case VT_INT: case VT_UINT: case VT_UI8:
3475 V_VT(pVarOut) = VT_I4;
3476 break;
3477 case VT_I8:
3478 V_VT(pVarOut) = VT_I8;
3479 break;
3480 default:
3481 return DISP_E_BADVARTYPE;
3483 hRet = VariantCopy(&varLeft, pVarLeft);
3484 if (FAILED(hRet))
3485 goto VarOr_Exit;
3486 pVarLeft = &varLeft;
3487 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
3488 goto VarOr_Exit;
3491 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
3493 V_VT(pVarOut) = VT_BOOL;
3494 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
3495 return S_OK;
3498 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
3500 V_VT(pVarOut) = VT_UI1;
3501 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
3502 return S_OK;
3505 if (V_VT(pVarLeft) == VT_BSTR)
3507 hRet = VariantCopy(&varStr, pVarLeft);
3508 if (FAILED(hRet))
3509 goto VarOr_Exit;
3510 pVarLeft = &varStr;
3511 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
3512 if (FAILED(hRet))
3513 goto VarOr_Exit;
3516 if (V_VT(pVarLeft) == VT_BOOL &&
3517 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
3519 vt = VT_BOOL;
3521 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
3522 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
3523 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
3524 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
3526 vt = VT_I2;
3528 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
3530 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3531 return DISP_E_TYPEMISMATCH;
3532 vt = VT_I8;
3535 hRet = VariantCopy(&varLeft, pVarLeft);
3536 if (FAILED(hRet))
3537 goto VarOr_Exit;
3539 hRet = VariantCopy(&varRight, pVarRight);
3540 if (FAILED(hRet))
3541 goto VarOr_Exit;
3543 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3544 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3545 else
3547 double d;
3549 if (V_VT(&varLeft) == VT_BSTR &&
3550 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
3551 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
3552 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
3553 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3554 if (FAILED(hRet))
3555 goto VarOr_Exit;
3558 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
3559 V_VT(&varRight) = VT_I4; /* Don't overflow */
3560 else
3562 double d;
3564 if (V_VT(&varRight) == VT_BSTR &&
3565 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
3566 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
3567 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
3568 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
3569 if (FAILED(hRet))
3570 goto VarOr_Exit;
3573 V_VT(pVarOut) = vt;
3574 if (vt == VT_I8)
3576 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
3578 else if (vt == VT_I4)
3580 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
3582 else
3584 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
3587 VarOr_Exit:
3588 VariantClear(&varStr);
3589 VariantClear(&varLeft);
3590 VariantClear(&varRight);
3591 return hRet;
3594 /**********************************************************************
3595 * VarAbs [OLEAUT32.168]
3597 * Convert a variant to its absolute value.
3599 * PARAMS
3600 * pVarIn [I] Source variant
3601 * pVarOut [O] Destination for converted value
3603 * RETURNS
3604 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
3605 * Failure: An HRESULT error code indicating the error.
3607 * NOTES
3608 * - This function does not process by-reference variants.
3609 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3610 * according to the following table:
3611 *| Input Type Output Type
3612 *| ---------- -----------
3613 *| VT_BOOL VT_I2
3614 *| VT_BSTR VT_R8
3615 *| (All others) Unchanged
3617 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
3619 VARIANT varIn;
3620 HRESULT hRet = S_OK;
3622 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3623 debugstr_VF(pVarIn), pVarOut);
3625 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
3626 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
3627 V_VT(pVarIn) == VT_ERROR)
3628 return DISP_E_TYPEMISMATCH;
3630 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
3632 #define ABS_CASE(typ,min) \
3633 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
3634 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
3635 break
3637 switch (V_VT(pVarIn))
3639 ABS_CASE(I1,I1_MIN);
3640 case VT_BOOL:
3641 V_VT(pVarOut) = VT_I2;
3642 /* BOOL->I2, Fall through ... */
3643 ABS_CASE(I2,I2_MIN);
3644 case VT_INT:
3645 ABS_CASE(I4,I4_MIN);
3646 ABS_CASE(I8,I8_MIN);
3647 ABS_CASE(R4,R4_MIN);
3648 case VT_BSTR:
3649 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3650 if (FAILED(hRet))
3651 break;
3652 V_VT(pVarOut) = VT_R8;
3653 pVarIn = &varIn;
3654 /* Fall through ... */
3655 case VT_DATE:
3656 ABS_CASE(R8,R8_MIN);
3657 case VT_CY:
3658 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
3659 break;
3660 case VT_DECIMAL:
3661 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
3662 break;
3663 case VT_UI1:
3664 case VT_UI2:
3665 case VT_UINT:
3666 case VT_UI4:
3667 case VT_UI8:
3668 /* No-Op */
3669 break;
3670 case VT_EMPTY:
3671 V_VT(pVarOut) = VT_I2;
3672 case VT_NULL:
3673 V_I2(pVarOut) = 0;
3674 break;
3675 default:
3676 hRet = DISP_E_BADVARTYPE;
3679 return hRet;
3682 /**********************************************************************
3683 * VarFix [OLEAUT32.169]
3685 * Truncate a variants value to a whole number.
3687 * PARAMS
3688 * pVarIn [I] Source variant
3689 * pVarOut [O] Destination for converted value
3691 * RETURNS
3692 * Success: S_OK. pVarOut contains the converted value.
3693 * Failure: An HRESULT error code indicating the error.
3695 * NOTES
3696 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3697 * according to the following table:
3698 *| Input Type Output Type
3699 *| ---------- -----------
3700 *| VT_BOOL VT_I2
3701 *| VT_EMPTY VT_I2
3702 *| VT_BSTR VT_R8
3703 *| All Others Unchanged
3704 * - The difference between this function and VarInt() is that VarInt() rounds
3705 * negative numbers away from 0, while this function rounds them towards zero.
3707 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
3709 HRESULT hRet = S_OK;
3711 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3712 debugstr_VF(pVarIn), pVarOut);
3714 V_VT(pVarOut) = V_VT(pVarIn);
3716 switch (V_VT(pVarIn))
3718 case VT_UI1:
3719 V_UI1(pVarOut) = V_UI1(pVarIn);
3720 break;
3721 case VT_BOOL:
3722 V_VT(pVarOut) = VT_I2;
3723 /* Fall through */
3724 case VT_I2:
3725 V_I2(pVarOut) = V_I2(pVarIn);
3726 break;
3727 case VT_I4:
3728 V_I4(pVarOut) = V_I4(pVarIn);
3729 break;
3730 case VT_I8:
3731 V_I8(pVarOut) = V_I8(pVarIn);
3732 break;
3733 case VT_R4:
3734 if (V_R4(pVarIn) < 0.0f)
3735 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
3736 else
3737 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3738 break;
3739 case VT_BSTR:
3740 V_VT(pVarOut) = VT_R8;
3741 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3742 pVarIn = pVarOut;
3743 /* Fall through */
3744 case VT_DATE:
3745 case VT_R8:
3746 if (V_R8(pVarIn) < 0.0)
3747 V_R8(pVarOut) = ceil(V_R8(pVarIn));
3748 else
3749 V_R8(pVarOut) = floor(V_R8(pVarIn));
3750 break;
3751 case VT_CY:
3752 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
3753 break;
3754 case VT_DECIMAL:
3755 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3756 break;
3757 case VT_EMPTY:
3758 V_VT(pVarOut) = VT_I2;
3759 V_I2(pVarOut) = 0;
3760 break;
3761 case VT_NULL:
3762 /* No-Op */
3763 break;
3764 default:
3765 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3766 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3767 hRet = DISP_E_BADVARTYPE;
3768 else
3769 hRet = DISP_E_TYPEMISMATCH;
3771 if (FAILED(hRet))
3772 V_VT(pVarOut) = VT_EMPTY;
3774 return hRet;
3777 /**********************************************************************
3778 * VarInt [OLEAUT32.172]
3780 * Truncate a variants value to a whole number.
3782 * PARAMS
3783 * pVarIn [I] Source variant
3784 * pVarOut [O] Destination for converted value
3786 * RETURNS
3787 * Success: S_OK. pVarOut contains the converted value.
3788 * Failure: An HRESULT error code indicating the error.
3790 * NOTES
3791 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3792 * according to the following table:
3793 *| Input Type Output Type
3794 *| ---------- -----------
3795 *| VT_BOOL VT_I2
3796 *| VT_EMPTY VT_I2
3797 *| VT_BSTR VT_R8
3798 *| All Others Unchanged
3799 * - The difference between this function and VarFix() is that VarFix() rounds
3800 * negative numbers towards 0, while this function rounds them away from zero.
3802 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
3804 HRESULT hRet = S_OK;
3806 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3807 debugstr_VF(pVarIn), pVarOut);
3809 V_VT(pVarOut) = V_VT(pVarIn);
3811 switch (V_VT(pVarIn))
3813 case VT_R4:
3814 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3815 break;
3816 case VT_BSTR:
3817 V_VT(pVarOut) = VT_R8;
3818 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3819 pVarIn = pVarOut;
3820 /* Fall through */
3821 case VT_DATE:
3822 case VT_R8:
3823 V_R8(pVarOut) = floor(V_R8(pVarIn));
3824 break;
3825 case VT_CY:
3826 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
3827 break;
3828 case VT_DECIMAL:
3829 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3830 break;
3831 default:
3832 return VarFix(pVarIn, pVarOut);
3835 return hRet;
3838 /**********************************************************************
3839 * VarXor [OLEAUT32.167]
3841 * Perform a logical exclusive-or (XOR) operation on two variants.
3843 * PARAMS
3844 * pVarLeft [I] First variant
3845 * pVarRight [I] Variant to XOR with pVarLeft
3846 * pVarOut [O] Destination for XOR result
3848 * RETURNS
3849 * Success: S_OK. pVarOut contains the result of the operation with its type
3850 * taken from the table below).
3851 * Failure: An HRESULT error code indicating the error.
3853 * NOTES
3854 * - Neither pVarLeft or pVarRight are modified by this function.
3855 * - This function does not process by-reference variants.
3856 * - Input types of VT_BSTR may be numeric strings or boolean text.
3857 * - The type of result stored in pVarOut depends on the types of pVarLeft
3858 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
3859 * or VT_NULL if the function succeeds.
3860 * - Type promotion is inconsistent and as a result certain combinations of
3861 * values will return DISP_E_OVERFLOW even when they could be represented.
3862 * This matches the behaviour of native oleaut32.
3864 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3866 VARTYPE vt;
3867 VARIANT varLeft, varRight;
3868 double d;
3869 HRESULT hRet;
3871 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3872 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3873 debugstr_VF(pVarRight), pVarOut);
3875 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3876 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
3877 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
3878 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3879 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
3880 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
3881 return DISP_E_BADVARTYPE;
3883 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3885 /* NULL XOR anything valid is NULL */
3886 V_VT(pVarOut) = VT_NULL;
3887 return S_OK;
3890 /* Copy our inputs so we don't disturb anything */
3891 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
3893 hRet = VariantCopy(&varLeft, pVarLeft);
3894 if (FAILED(hRet))
3895 goto VarXor_Exit;
3897 hRet = VariantCopy(&varRight, pVarRight);
3898 if (FAILED(hRet))
3899 goto VarXor_Exit;
3901 /* Try any strings first as numbers, then as VT_BOOL */
3902 if (V_VT(&varLeft) == VT_BSTR)
3904 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
3905 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
3906 FAILED(hRet) ? VT_BOOL : VT_I4);
3907 if (FAILED(hRet))
3908 goto VarXor_Exit;
3911 if (V_VT(&varRight) == VT_BSTR)
3913 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
3914 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
3915 FAILED(hRet) ? VT_BOOL : VT_I4);
3916 if (FAILED(hRet))
3917 goto VarXor_Exit;
3920 /* Determine the result type */
3921 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
3923 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3924 return DISP_E_TYPEMISMATCH;
3925 vt = VT_I8;
3927 else
3929 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
3931 case (VT_BOOL << 16) | VT_BOOL:
3932 vt = VT_BOOL;
3933 break;
3934 case (VT_UI1 << 16) | VT_UI1:
3935 vt = VT_UI1;
3936 break;
3937 case (VT_EMPTY << 16) | VT_EMPTY:
3938 case (VT_EMPTY << 16) | VT_UI1:
3939 case (VT_EMPTY << 16) | VT_I2:
3940 case (VT_EMPTY << 16) | VT_BOOL:
3941 case (VT_UI1 << 16) | VT_EMPTY:
3942 case (VT_UI1 << 16) | VT_I2:
3943 case (VT_UI1 << 16) | VT_BOOL:
3944 case (VT_I2 << 16) | VT_EMPTY:
3945 case (VT_I2 << 16) | VT_UI1:
3946 case (VT_I2 << 16) | VT_I2:
3947 case (VT_I2 << 16) | VT_BOOL:
3948 case (VT_BOOL << 16) | VT_EMPTY:
3949 case (VT_BOOL << 16) | VT_UI1:
3950 case (VT_BOOL << 16) | VT_I2:
3951 vt = VT_I2;
3952 break;
3953 default:
3954 vt = VT_I4;
3955 break;
3959 /* VT_UI4 does not overflow */
3960 if (vt != VT_I8)
3962 if (V_VT(&varLeft) == VT_UI4)
3963 V_VT(&varLeft) = VT_I4;
3964 if (V_VT(&varRight) == VT_UI4)
3965 V_VT(&varRight) = VT_I4;
3968 /* Convert our input copies to the result type */
3969 if (V_VT(&varLeft) != vt)
3970 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
3971 if (FAILED(hRet))
3972 goto VarXor_Exit;
3974 if (V_VT(&varRight) != vt)
3975 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
3976 if (FAILED(hRet))
3977 goto VarXor_Exit;
3979 V_VT(pVarOut) = vt;
3981 /* Calculate the result */
3982 switch (vt)
3984 case VT_I8:
3985 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
3986 break;
3987 case VT_I4:
3988 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
3989 break;
3990 case VT_BOOL:
3991 case VT_I2:
3992 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
3993 break;
3994 case VT_UI1:
3995 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
3996 break;
3999 VarXor_Exit:
4000 VariantClear(&varLeft);
4001 VariantClear(&varRight);
4002 return hRet;
4005 /**********************************************************************
4006 * VarEqv [OLEAUT32.172]
4008 * Determine if two variants contain the same value.
4010 * PARAMS
4011 * pVarLeft [I] First variant to compare
4012 * pVarRight [I] Variant to compare to pVarLeft
4013 * pVarOut [O] Destination for comparison result
4015 * RETURNS
4016 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4017 * if equivalent or non-zero otherwise.
4018 * Failure: An HRESULT error code indicating the error.
4020 * NOTES
4021 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4022 * the result.
4024 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4026 HRESULT hRet;
4028 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
4029 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
4030 debugstr_VF(pVarRight), pVarOut);
4032 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4033 if (SUCCEEDED(hRet))
4035 if (V_VT(pVarOut) == VT_I8)
4036 V_I8(pVarOut) = ~V_I8(pVarOut);
4037 else
4038 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4040 return hRet;
4043 /**********************************************************************
4044 * VarNeg [OLEAUT32.173]
4046 * Negate the value of a variant.
4048 * PARAMS
4049 * pVarIn [I] Source variant
4050 * pVarOut [O] Destination for converted value
4052 * RETURNS
4053 * Success: S_OK. pVarOut contains the converted value.
4054 * Failure: An HRESULT error code indicating the error.
4056 * NOTES
4057 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4058 * according to the following table:
4059 *| Input Type Output Type
4060 *| ---------- -----------
4061 *| VT_EMPTY VT_I2
4062 *| VT_UI1 VT_I2
4063 *| VT_BOOL VT_I2
4064 *| VT_BSTR VT_R8
4065 *| All Others Unchanged (unless promoted)
4066 * - Where the negated value of a variant does not fit in its base type, the type
4067 * is promoted according to the following table:
4068 *| Input Type Promoted To
4069 *| ---------- -----------
4070 *| VT_I2 VT_I4
4071 *| VT_I4 VT_R8
4072 *| VT_I8 VT_R8
4073 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4074 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4075 * for types which are not valid. Since this is in contravention of the
4076 * meaning of those error codes and unlikely to be relied on by applications,
4077 * this implementation returns errors consistent with the other high level
4078 * variant math functions.
4080 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4082 HRESULT hRet = S_OK;
4084 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4085 debugstr_VF(pVarIn), pVarOut);
4087 V_VT(pVarOut) = V_VT(pVarIn);
4089 switch (V_VT(pVarIn))
4091 case VT_UI1:
4092 V_VT(pVarOut) = VT_I2;
4093 V_I2(pVarOut) = -V_UI1(pVarIn);
4094 break;
4095 case VT_BOOL:
4096 V_VT(pVarOut) = VT_I2;
4097 /* Fall through */
4098 case VT_I2:
4099 if (V_I2(pVarIn) == I2_MIN)
4101 V_VT(pVarOut) = VT_I4;
4102 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4104 else
4105 V_I2(pVarOut) = -V_I2(pVarIn);
4106 break;
4107 case VT_I4:
4108 if (V_I4(pVarIn) == I4_MIN)
4110 V_VT(pVarOut) = VT_R8;
4111 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4113 else
4114 V_I4(pVarOut) = -V_I4(pVarIn);
4115 break;
4116 case VT_I8:
4117 if (V_I8(pVarIn) == I8_MIN)
4119 V_VT(pVarOut) = VT_R8;
4120 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4121 V_R8(pVarOut) *= -1.0;
4123 else
4124 V_I8(pVarOut) = -V_I8(pVarIn);
4125 break;
4126 case VT_R4:
4127 V_R4(pVarOut) = -V_R4(pVarIn);
4128 break;
4129 case VT_DATE:
4130 case VT_R8:
4131 V_R8(pVarOut) = -V_R8(pVarIn);
4132 break;
4133 case VT_CY:
4134 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4135 break;
4136 case VT_DECIMAL:
4137 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4138 break;
4139 case VT_BSTR:
4140 V_VT(pVarOut) = VT_R8;
4141 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4142 V_R8(pVarOut) = -V_R8(pVarOut);
4143 break;
4144 case VT_EMPTY:
4145 V_VT(pVarOut) = VT_I2;
4146 V_I2(pVarOut) = 0;
4147 break;
4148 case VT_NULL:
4149 /* No-Op */
4150 break;
4151 default:
4152 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4153 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4154 hRet = DISP_E_BADVARTYPE;
4155 else
4156 hRet = DISP_E_TYPEMISMATCH;
4158 if (FAILED(hRet))
4159 V_VT(pVarOut) = VT_EMPTY;
4161 return hRet;
4164 /**********************************************************************
4165 * VarNot [OLEAUT32.174]
4167 * Perform a not operation on a variant.
4169 * PARAMS
4170 * pVarIn [I] Source variant
4171 * pVarOut [O] Destination for converted value
4173 * RETURNS
4174 * Success: S_OK. pVarOut contains the converted value.
4175 * Failure: An HRESULT error code indicating the error.
4177 * NOTES
4178 * - Strictly speaking, this function performs a bitwise ones complement
4179 * on the variants value (after possibly converting to VT_I4, see below).
4180 * This only behaves like a boolean not operation if the value in
4181 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4182 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4183 * before calling this function.
4184 * - This function does not process by-reference variants.
4185 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4186 * according to the following table:
4187 *| Input Type Output Type
4188 *| ---------- -----------
4189 *| VT_EMPTY VT_I2
4190 *| VT_R4 VT_I4
4191 *| VT_R8 VT_I4
4192 *| VT_BSTR VT_I4
4193 *| VT_DECIMAL VT_I4
4194 *| VT_CY VT_I4
4195 *| (All others) Unchanged
4197 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4199 VARIANT varIn;
4200 HRESULT hRet = S_OK;
4202 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4203 debugstr_VF(pVarIn), pVarOut);
4205 V_VT(pVarOut) = V_VT(pVarIn);
4207 switch (V_VT(pVarIn))
4209 case VT_I1:
4210 V_I4(pVarOut) = ~V_I1(pVarIn);
4211 V_VT(pVarOut) = VT_I4;
4212 break;
4213 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
4214 case VT_BOOL:
4215 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
4216 case VT_UI2:
4217 V_I4(pVarOut) = ~V_UI2(pVarIn);
4218 V_VT(pVarOut) = VT_I4;
4219 break;
4220 case VT_DECIMAL:
4221 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
4222 if (FAILED(hRet))
4223 break;
4224 pVarIn = &varIn;
4225 /* Fall through ... */
4226 case VT_INT:
4227 V_VT(pVarOut) = VT_I4;
4228 /* Fall through ... */
4229 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
4230 case VT_UINT:
4231 case VT_UI4:
4232 V_I4(pVarOut) = ~V_UI4(pVarIn);
4233 V_VT(pVarOut) = VT_I4;
4234 break;
4235 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
4236 case VT_UI8:
4237 V_I4(pVarOut) = ~V_UI8(pVarIn);
4238 V_VT(pVarOut) = VT_I4;
4239 break;
4240 case VT_R4:
4241 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
4242 V_I4(pVarOut) = ~V_I4(pVarOut);
4243 V_VT(pVarOut) = VT_I4;
4244 break;
4245 case VT_BSTR:
4246 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4247 if (FAILED(hRet))
4248 break;
4249 pVarIn = &varIn;
4250 /* Fall through ... */
4251 case VT_DATE:
4252 case VT_R8:
4253 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
4254 V_I4(pVarOut) = ~V_I4(pVarOut);
4255 V_VT(pVarOut) = VT_I4;
4256 break;
4257 case VT_CY:
4258 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
4259 V_I4(pVarOut) = ~V_I4(pVarOut);
4260 V_VT(pVarOut) = VT_I4;
4261 break;
4262 case VT_EMPTY:
4263 V_I2(pVarOut) = ~0;
4264 V_VT(pVarOut) = VT_I2;
4265 break;
4266 case VT_NULL:
4267 /* No-Op */
4268 break;
4269 default:
4270 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4271 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4272 hRet = DISP_E_BADVARTYPE;
4273 else
4274 hRet = DISP_E_TYPEMISMATCH;
4276 if (FAILED(hRet))
4277 V_VT(pVarOut) = VT_EMPTY;
4279 return hRet;
4282 /**********************************************************************
4283 * VarRound [OLEAUT32.175]
4285 * Perform a round operation on a variant.
4287 * PARAMS
4288 * pVarIn [I] Source variant
4289 * deci [I] Number of decimals to round to
4290 * pVarOut [O] Destination for converted value
4292 * RETURNS
4293 * Success: S_OK. pVarOut contains the converted value.
4294 * Failure: An HRESULT error code indicating the error.
4296 * NOTES
4297 * - Floating point values are rounded to the desired number of decimals.
4298 * - Some integer types are just copied to the return variable.
4299 * - Some other integer types are not handled and fail.
4301 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
4303 VARIANT varIn;
4304 HRESULT hRet = S_OK;
4305 float factor;
4307 TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci);
4309 switch (V_VT(pVarIn))
4311 /* cases that fail on windows */
4312 case VT_I1:
4313 case VT_I8:
4314 case VT_UI2:
4315 case VT_UI4:
4316 hRet = DISP_E_BADVARTYPE;
4317 break;
4319 /* cases just copying in to out */
4320 case VT_UI1:
4321 V_VT(pVarOut) = V_VT(pVarIn);
4322 V_UI1(pVarOut) = V_UI1(pVarIn);
4323 break;
4324 case VT_I2:
4325 V_VT(pVarOut) = V_VT(pVarIn);
4326 V_I2(pVarOut) = V_I2(pVarIn);
4327 break;
4328 case VT_I4:
4329 V_VT(pVarOut) = V_VT(pVarIn);
4330 V_I4(pVarOut) = V_I4(pVarIn);
4331 break;
4332 case VT_NULL:
4333 V_VT(pVarOut) = V_VT(pVarIn);
4334 /* value unchanged */
4335 break;
4337 /* cases that change type */
4338 case VT_EMPTY:
4339 V_VT(pVarOut) = VT_I2;
4340 V_I2(pVarOut) = 0;
4341 break;
4342 case VT_BOOL:
4343 V_VT(pVarOut) = VT_I2;
4344 V_I2(pVarOut) = V_BOOL(pVarIn);
4345 break;
4346 case VT_BSTR:
4347 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4348 if (FAILED(hRet))
4349 break;
4350 V_VT(&varIn)=VT_R8;
4351 pVarIn = &varIn;
4352 /* Fall through ... */
4354 /* cases we need to do math */
4355 case VT_R8:
4356 if (V_R8(pVarIn)>0) {
4357 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4358 } else {
4359 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4361 V_VT(pVarOut) = V_VT(pVarIn);
4362 break;
4363 case VT_R4:
4364 if (V_R4(pVarIn)>0) {
4365 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4366 } else {
4367 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4369 V_VT(pVarOut) = V_VT(pVarIn);
4370 break;
4371 case VT_DATE:
4372 if (V_DATE(pVarIn)>0) {
4373 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
4374 } else {
4375 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
4377 V_VT(pVarOut) = V_VT(pVarIn);
4378 break;
4379 case VT_CY:
4380 if (deci>3)
4381 factor=1;
4382 else
4383 factor=pow(10, 4-deci);
4385 if (V_CY(pVarIn).int64>0) {
4386 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
4387 } else {
4388 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
4390 V_VT(pVarOut) = V_VT(pVarIn);
4391 break;
4393 /* cases we don't know yet */
4394 default:
4395 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
4396 V_VT(pVarIn) & VT_TYPEMASK, deci);
4397 hRet = DISP_E_BADVARTYPE;
4400 if (FAILED(hRet))
4401 V_VT(pVarOut) = VT_EMPTY;
4403 TRACE("returning 0x%08lx (%s%s),%f\n", hRet, debugstr_VT(pVarOut),
4404 debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) :
4405 (V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0);
4407 return hRet;
4410 /**********************************************************************
4411 * VarIdiv [OLEAUT32.153]
4413 * Converts input variants to integers and divides them.
4415 * PARAMS
4416 * left [I] Left hand variant
4417 * right [I] Right hand variant
4418 * result [O] Destination for quotient
4420 * RETURNS
4421 * Success: S_OK. result contains the quotient.
4422 * Failure: An HRESULT error code indicating the error.
4424 * NOTES
4425 * If either expression is null, null is returned, as per MSDN
4427 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4429 VARIANT lv, rv;
4430 HRESULT hr;
4432 VariantInit(&lv);
4433 VariantInit(&rv);
4435 if ((V_VT(left) == VT_NULL) || (V_VT(right) == VT_NULL)) {
4436 hr = VariantChangeType(result, result, 0, VT_NULL);
4437 if (FAILED(hr)) {
4438 /* This should never happen */
4439 FIXME("Failed to convert return value to VT_NULL.\n");
4440 return hr;
4442 return S_OK;
4445 hr = VariantChangeType(&lv, left, 0, VT_I4);
4446 if (FAILED(hr)) {
4447 return hr;
4449 hr = VariantChangeType(&rv, right, 0, VT_I4);
4450 if (FAILED(hr)) {
4451 return hr;
4454 hr = VarDiv(&lv, &rv, result);
4455 return hr;
4459 /**********************************************************************
4460 * VarMod [OLEAUT32.155]
4462 * Perform the modulus operation of the right hand variant on the left
4464 * PARAMS
4465 * left [I] Left hand variant
4466 * right [I] Right hand variant
4467 * result [O] Destination for converted value
4469 * RETURNS
4470 * Success: S_OK. result contains the remainder.
4471 * Failure: An HRESULT error code indicating the error.
4473 * NOTE:
4474 * If an error occurs the type of result will be modified but the value will not be.
4475 * Doesn't support arrays or any special flags yet.
4477 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4479 BOOL lOk = TRUE;
4480 BOOL rOk = TRUE;
4481 HRESULT rc = E_FAIL;
4482 int resT = 0;
4483 VARIANT lv,rv;
4485 VariantInit(&lv);
4486 VariantInit(&rv);
4488 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
4489 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
4491 /* check for invalid inputs */
4492 lOk = TRUE;
4493 switch (V_VT(left) & VT_TYPEMASK) {
4494 case VT_BOOL :
4495 case VT_I1 :
4496 case VT_I2 :
4497 case VT_I4 :
4498 case VT_I8 :
4499 case VT_INT :
4500 case VT_UI1 :
4501 case VT_UI2 :
4502 case VT_UI4 :
4503 case VT_UI8 :
4504 case VT_UINT :
4505 case VT_R4 :
4506 case VT_R8 :
4507 case VT_CY :
4508 case VT_EMPTY:
4509 case VT_DATE :
4510 case VT_BSTR :
4511 break;
4512 case VT_VARIANT:
4513 case VT_UNKNOWN:
4514 V_VT(result) = VT_EMPTY;
4515 return DISP_E_TYPEMISMATCH;
4516 case VT_DECIMAL:
4517 V_VT(result) = VT_EMPTY;
4518 return DISP_E_OVERFLOW;
4519 case VT_ERROR:
4520 return DISP_E_TYPEMISMATCH;
4521 case VT_RECORD:
4522 V_VT(result) = VT_EMPTY;
4523 return DISP_E_TYPEMISMATCH;
4524 case VT_NULL:
4525 break;
4526 default:
4527 V_VT(result) = VT_EMPTY;
4528 return DISP_E_BADVARTYPE;
4532 rOk = TRUE;
4533 switch (V_VT(right) & VT_TYPEMASK) {
4534 case VT_BOOL :
4535 case VT_I1 :
4536 case VT_I2 :
4537 case VT_I4 :
4538 case VT_I8 :
4539 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
4541 V_VT(result) = VT_EMPTY;
4542 return DISP_E_TYPEMISMATCH;
4544 case VT_INT :
4545 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
4547 V_VT(result) = VT_EMPTY;
4548 return DISP_E_TYPEMISMATCH;
4550 case VT_UI1 :
4551 case VT_UI2 :
4552 case VT_UI4 :
4553 case VT_UI8 :
4554 case VT_UINT :
4555 case VT_R4 :
4556 case VT_R8 :
4557 case VT_CY :
4558 if(V_VT(left) == VT_EMPTY)
4560 V_VT(result) = VT_I4;
4561 return S_OK;
4563 case VT_EMPTY:
4564 case VT_DATE :
4565 case VT_BSTR:
4566 if(V_VT(left) == VT_NULL)
4568 V_VT(result) = VT_NULL;
4569 return S_OK;
4571 break;
4573 case VT_VOID:
4574 V_VT(result) = VT_EMPTY;
4575 return DISP_E_BADVARTYPE;
4576 case VT_NULL:
4577 if(V_VT(left) == VT_VOID)
4579 V_VT(result) = VT_EMPTY;
4580 return DISP_E_BADVARTYPE;
4581 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
4582 lOk)
4584 V_VT(result) = VT_NULL;
4585 return S_OK;
4586 } else
4588 V_VT(result) = VT_NULL;
4589 return DISP_E_BADVARTYPE;
4591 case VT_VARIANT:
4592 case VT_UNKNOWN:
4593 V_VT(result) = VT_EMPTY;
4594 return DISP_E_TYPEMISMATCH;
4595 case VT_DECIMAL:
4596 if(V_VT(left) == VT_ERROR)
4598 V_VT(result) = VT_EMPTY;
4599 return DISP_E_TYPEMISMATCH;
4600 } else
4602 V_VT(result) = VT_EMPTY;
4603 return DISP_E_OVERFLOW;
4605 case VT_ERROR:
4606 return DISP_E_TYPEMISMATCH;
4607 case VT_RECORD:
4608 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
4610 V_VT(result) = VT_EMPTY;
4611 return DISP_E_BADVARTYPE;
4612 } else
4614 V_VT(result) = VT_EMPTY;
4615 return DISP_E_TYPEMISMATCH;
4617 default:
4618 V_VT(result) = VT_EMPTY;
4619 return DISP_E_BADVARTYPE;
4622 /* determine the result type */
4623 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
4624 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4625 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
4626 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
4627 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4628 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4629 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
4630 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4631 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4632 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
4633 else resT = VT_I4; /* most outputs are I4 */
4635 /* convert to I8 for the modulo */
4636 rc = VariantChangeType(&lv, left, 0, VT_I8);
4637 if(FAILED(rc))
4639 FIXME("Could not convert left type %d to %d? rc == 0x%lX\n", V_VT(left), VT_I8, rc);
4640 return rc;
4643 rc = VariantChangeType(&rv, right, 0, VT_I8);
4644 if(FAILED(rc))
4646 FIXME("Could not convert right type %d to %d? rc == 0x%lX\n", V_VT(right), VT_I8, rc);
4647 return rc;
4650 /* if right is zero set VT_EMPTY and return divide by zero */
4651 if(V_I8(&rv) == 0)
4653 V_VT(result) = VT_EMPTY;
4654 return DISP_E_DIVBYZERO;
4657 /* perform the modulo operation */
4658 V_VT(result) = VT_I8;
4659 V_I8(result) = V_I8(&lv) % V_I8(&rv);
4661 TRACE("V_I8(left) == %ld, V_I8(right) == %ld, V_I8(result) == %ld\n", (long)V_I8(&lv), (long)V_I8(&rv), (long)V_I8(result));
4663 /* convert left and right to the destination type */
4664 rc = VariantChangeType(result, result, 0, resT);
4665 if(FAILED(rc))
4667 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
4668 return rc;
4671 return S_OK;
4674 /**********************************************************************
4675 * VarPow [OLEAUT32.158]
4677 * Computes the power of one variant to another variant.
4679 * PARAMS
4680 * left [I] First variant
4681 * right [I] Second variant
4682 * result [O] Result variant
4684 * RETURNS
4685 * Success: S_OK.
4686 * Failure: An HRESULT error code indicating the error.
4688 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4690 HRESULT hr;
4691 VARIANT dl,dr;
4693 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
4694 right, debugstr_VT(right), debugstr_VF(right), result);
4696 hr = VariantChangeType(&dl,left,0,VT_R8);
4697 if (!SUCCEEDED(hr)) {
4698 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
4699 return E_FAIL;
4701 hr = VariantChangeType(&dr,right,0,VT_R8);
4702 if (!SUCCEEDED(hr)) {
4703 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
4704 return E_FAIL;
4706 V_VT(result) = VT_R8;
4707 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
4708 return S_OK;