oleaut32: Return FALSE from SystemTimeToVariantTime if day > 31 or year is negative.
[wine/multimedia.git] / dlls / oleaut32 / variant.c
blobd4c6f6cb7575ae0c049ba48bbd8c6d2aa79674ef
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include "config.h"
30 #include <string.h>
31 #include <stdlib.h>
32 #include <stdarg.h>
34 #define COBJMACROS
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
38 #include "windef.h"
39 #include "winbase.h"
40 #include "wine/unicode.h"
41 #include "winerror.h"
42 #include "variant.h"
43 #include "resource.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
48 const char * const wine_vtypes[VT_CLSID+1] =
50 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
51 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
52 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
53 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
54 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
55 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
56 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
57 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
58 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
61 const char * const wine_vflags[16] =
63 "",
64 "|VT_VECTOR",
65 "|VT_ARRAY",
66 "|VT_VECTOR|VT_ARRAY",
67 "|VT_BYREF",
68 "|VT_VECTOR|VT_ARRAY",
69 "|VT_ARRAY|VT_BYREF",
70 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
71 "|VT_HARDTYPE",
72 "|VT_VECTOR|VT_HARDTYPE",
73 "|VT_ARRAY|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
75 "|VT_BYREF|VT_HARDTYPE",
76 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
77 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
78 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
81 /* Convert a variant from one type to another */
82 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
83 VARIANTARG* ps, VARTYPE vt)
85 HRESULT res = DISP_E_TYPEMISMATCH;
86 VARTYPE vtFrom = V_TYPE(ps);
87 DWORD dwFlags = 0;
89 TRACE("(%p->(%s%s),0x%08x,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
90 debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
91 debugstr_vt(vt), debugstr_vf(vt));
93 if (vt == VT_BSTR || vtFrom == VT_BSTR)
95 /* All flags passed to low level function are only used for
96 * changing to or from strings. Map these here.
98 if (wFlags & VARIANT_LOCALBOOL)
99 dwFlags |= VAR_LOCALBOOL;
100 if (wFlags & VARIANT_CALENDAR_HIJRI)
101 dwFlags |= VAR_CALENDAR_HIJRI;
102 if (wFlags & VARIANT_CALENDAR_THAI)
103 dwFlags |= VAR_CALENDAR_THAI;
104 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
105 dwFlags |= VAR_CALENDAR_GREGORIAN;
106 if (wFlags & VARIANT_NOUSEROVERRIDE)
107 dwFlags |= LOCALE_NOUSEROVERRIDE;
108 if (wFlags & VARIANT_USE_NLS)
109 dwFlags |= LOCALE_USE_NLS;
112 /* Map int/uint to i4/ui4 */
113 if (vt == VT_INT)
114 vt = VT_I4;
115 else if (vt == VT_UINT)
116 vt = VT_UI4;
118 if (vtFrom == VT_INT)
119 vtFrom = VT_I4;
120 else if (vtFrom == VT_UINT)
121 vtFrom = VT_UI4;
123 if (vt == vtFrom)
124 return VariantCopy(pd, ps);
126 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
128 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
129 * accessing the default object property.
131 return DISP_E_TYPEMISMATCH;
134 switch (vt)
136 case VT_EMPTY:
137 if (vtFrom == VT_NULL)
138 return DISP_E_TYPEMISMATCH;
139 /* ... Fall through */
140 case VT_NULL:
141 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
143 res = VariantClear( pd );
144 if (vt == VT_NULL && SUCCEEDED(res))
145 V_VT(pd) = VT_NULL;
147 return res;
149 case VT_I1:
150 switch (vtFrom)
152 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
153 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
154 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
155 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
156 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
157 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
158 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
159 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
160 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
161 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
162 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
163 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
164 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
165 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
166 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
167 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
169 break;
171 case VT_I2:
172 switch (vtFrom)
174 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
175 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
176 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
177 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
178 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
179 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
180 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
181 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
182 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
183 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
184 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
185 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
186 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
187 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
188 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
189 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
191 break;
193 case VT_I4:
194 switch (vtFrom)
196 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
197 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
198 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
199 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
200 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
201 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
202 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
203 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
204 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
205 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
206 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
207 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
208 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
209 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
210 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
211 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
213 break;
215 case VT_UI1:
216 switch (vtFrom)
218 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
219 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
220 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
221 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
222 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
223 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
224 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
225 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
226 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
227 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
228 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
229 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
230 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
231 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
232 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
233 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
235 break;
237 case VT_UI2:
238 switch (vtFrom)
240 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
241 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
242 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
243 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
244 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
245 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
246 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
247 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
248 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
249 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
250 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
251 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
252 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
253 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
254 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
255 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
257 break;
259 case VT_UI4:
260 switch (vtFrom)
262 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
263 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
264 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
265 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
266 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
267 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
268 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
269 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
270 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
271 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
272 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
273 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
274 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
275 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
276 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
277 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
279 break;
281 case VT_UI8:
282 switch (vtFrom)
284 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
285 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
286 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
287 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
288 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
289 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
290 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
291 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
292 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
293 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
294 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
295 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
296 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
297 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
298 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
299 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
301 break;
303 case VT_I8:
304 switch (vtFrom)
306 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
307 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
308 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
309 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
310 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
311 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
312 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
313 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
314 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
315 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
316 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
317 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
318 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
319 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
320 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
321 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
323 break;
325 case VT_R4:
326 switch (vtFrom)
328 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
329 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
330 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
331 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
332 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
333 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
334 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
335 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
336 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
337 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
338 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
339 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
340 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
341 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
342 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
343 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
345 break;
347 case VT_R8:
348 switch (vtFrom)
350 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
351 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
352 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
353 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
354 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
355 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
356 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
357 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
358 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
359 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
360 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
361 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
362 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
363 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
364 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
365 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
367 break;
369 case VT_DATE:
370 switch (vtFrom)
372 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
373 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
374 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
375 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
376 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
377 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
378 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
379 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
380 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
381 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
382 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
383 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
384 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
385 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
386 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
387 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
389 break;
391 case VT_BOOL:
392 switch (vtFrom)
394 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
395 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
396 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
397 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
398 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
399 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
400 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
401 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
402 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
403 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
404 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
405 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
406 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
407 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
408 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
409 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
411 break;
413 case VT_BSTR:
414 switch (vtFrom)
416 case VT_EMPTY:
417 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
418 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
419 case VT_BOOL:
420 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
421 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
422 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
423 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
424 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
425 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
426 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
427 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
428 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
429 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
430 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
431 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
432 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
434 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
435 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
436 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
438 break;
440 case VT_CY:
441 switch (vtFrom)
443 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
444 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
445 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
446 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
447 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
448 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
449 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
450 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
451 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
452 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
453 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
454 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
455 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
456 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
457 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
458 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
460 break;
462 case VT_DECIMAL:
463 switch (vtFrom)
465 case VT_EMPTY:
466 case VT_BOOL:
467 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
468 DEC_HI32(&V_DECIMAL(pd)) = 0;
469 DEC_MID32(&V_DECIMAL(pd)) = 0;
470 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
471 * VT_NULL and VT_EMPTY always give a 0 value.
473 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
474 return S_OK;
475 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
476 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
477 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
478 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
479 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
480 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
481 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
482 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
483 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
484 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
485 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
486 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
487 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
488 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
490 break;
492 case VT_UNKNOWN:
493 switch (vtFrom)
495 case VT_DISPATCH:
496 if (V_DISPATCH(ps) == NULL)
497 V_UNKNOWN(pd) = NULL;
498 else
499 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
500 break;
502 break;
504 case VT_DISPATCH:
505 switch (vtFrom)
507 case VT_UNKNOWN:
508 if (V_UNKNOWN(ps) == NULL)
509 V_DISPATCH(pd) = NULL;
510 else
511 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
512 break;
514 break;
516 case VT_RECORD:
517 break;
519 return res;
522 /* Coerce to/from an array */
523 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
525 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
526 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
528 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
529 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
531 if (V_VT(ps) == vt)
532 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
534 return DISP_E_TYPEMISMATCH;
537 /******************************************************************************
538 * Check if a variants type is valid.
540 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
542 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
544 vt &= VT_TYPEMASK;
546 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
548 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
550 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
551 return DISP_E_BADVARTYPE;
552 if (vt != (VARTYPE)15)
553 return S_OK;
556 return DISP_E_BADVARTYPE;
559 /******************************************************************************
560 * VariantInit [OLEAUT32.8]
562 * Initialise a variant.
564 * PARAMS
565 * pVarg [O] Variant to initialise
567 * RETURNS
568 * Nothing.
570 * NOTES
571 * This function simply sets the type of the variant to VT_EMPTY. It does not
572 * free any existing value, use VariantClear() for that.
574 void WINAPI VariantInit(VARIANTARG* pVarg)
576 TRACE("(%p)\n", pVarg);
578 V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
581 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
583 HRESULT hres;
585 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
587 hres = VARIANT_ValidateType(V_VT(pVarg));
588 if (FAILED(hres))
589 return hres;
591 switch (V_VT(pVarg))
593 case VT_DISPATCH:
594 case VT_UNKNOWN:
595 if (V_UNKNOWN(pVarg))
596 IUnknown_Release(V_UNKNOWN(pVarg));
597 break;
598 case VT_UNKNOWN | VT_BYREF:
599 case VT_DISPATCH | VT_BYREF:
600 if(*V_UNKNOWNREF(pVarg))
601 IUnknown_Release(*V_UNKNOWNREF(pVarg));
602 break;
603 case VT_BSTR:
604 SysFreeString(V_BSTR(pVarg));
605 break;
606 case VT_BSTR | VT_BYREF:
607 SysFreeString(*V_BSTRREF(pVarg));
608 break;
609 case VT_VARIANT | VT_BYREF:
610 VariantClear(V_VARIANTREF(pVarg));
611 break;
612 case VT_RECORD:
613 case VT_RECORD | VT_BYREF:
615 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
616 if (pBr->pRecInfo)
618 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
619 IRecordInfo_Release(pBr->pRecInfo);
621 break;
623 default:
624 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
626 if (V_ISBYREF(pVarg))
628 if (*V_ARRAYREF(pVarg))
629 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
631 else if (V_ARRAY(pVarg))
632 hres = SafeArrayDestroy(V_ARRAY(pVarg));
634 break;
637 V_VT(pVarg) = VT_EMPTY;
638 return hres;
641 /******************************************************************************
642 * VariantClear [OLEAUT32.9]
644 * Clear a variant.
646 * PARAMS
647 * pVarg [I/O] Variant to clear
649 * RETURNS
650 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
651 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
653 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
655 HRESULT hres;
657 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
659 hres = VARIANT_ValidateType(V_VT(pVarg));
661 if (SUCCEEDED(hres))
663 if (!V_ISBYREF(pVarg))
665 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
667 hres = SafeArrayDestroy(V_ARRAY(pVarg));
669 else if (V_VT(pVarg) == VT_BSTR)
671 SysFreeString(V_BSTR(pVarg));
673 else if (V_VT(pVarg) == VT_RECORD)
675 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
676 if (pBr->pRecInfo)
678 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
679 IRecordInfo_Release(pBr->pRecInfo);
682 else if (V_VT(pVarg) == VT_DISPATCH ||
683 V_VT(pVarg) == VT_UNKNOWN)
685 if (V_UNKNOWN(pVarg))
686 IUnknown_Release(V_UNKNOWN(pVarg));
689 V_VT(pVarg) = VT_EMPTY;
691 return hres;
694 /******************************************************************************
695 * Copy an IRecordInfo object contained in a variant.
697 static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
699 HRESULT hres = S_OK;
701 if (pBr->pRecInfo)
703 ULONG ulSize;
705 hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
706 if (SUCCEEDED(hres))
708 PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
709 if (!pvRecord)
710 hres = E_OUTOFMEMORY;
711 else
713 memcpy(pvRecord, pBr->pvRecord, ulSize);
714 pBr->pvRecord = pvRecord;
716 hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
717 if (SUCCEEDED(hres))
718 IRecordInfo_AddRef(pBr->pRecInfo);
722 else if (pBr->pvRecord)
723 hres = E_INVALIDARG;
724 return hres;
727 /******************************************************************************
728 * VariantCopy [OLEAUT32.10]
730 * Copy a variant.
732 * PARAMS
733 * pvargDest [O] Destination for copy
734 * pvargSrc [I] Source variant to copy
736 * RETURNS
737 * Success: S_OK. pvargDest contains a copy of pvargSrc.
738 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
739 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
740 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
741 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
743 * NOTES
744 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
745 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
746 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
747 * fails, so does this function.
748 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
749 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
750 * is copied rather than just any pointers to it.
751 * - For by-value object types the object pointer is copied and the objects
752 * reference count increased using IUnknown_AddRef().
753 * - For all by-reference types, only the referencing pointer is copied.
755 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
757 HRESULT hres = S_OK;
759 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
760 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
761 debugstr_VF(pvargSrc));
763 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
764 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
765 return DISP_E_BADVARTYPE;
767 if (pvargSrc != pvargDest &&
768 SUCCEEDED(hres = VariantClear(pvargDest)))
770 *pvargDest = *pvargSrc; /* Shallow copy the value */
772 if (!V_ISBYREF(pvargSrc))
774 if (V_ISARRAY(pvargSrc))
776 if (V_ARRAY(pvargSrc))
777 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
779 else if (V_VT(pvargSrc) == VT_BSTR)
781 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
782 if (!V_BSTR(pvargDest))
784 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc)));
785 hres = E_OUTOFMEMORY;
788 else if (V_VT(pvargSrc) == VT_RECORD)
790 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
792 else if (V_VT(pvargSrc) == VT_DISPATCH ||
793 V_VT(pvargSrc) == VT_UNKNOWN)
795 if (V_UNKNOWN(pvargSrc))
796 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
800 return hres;
803 /* Return the byte size of a variants data */
804 static inline size_t VARIANT_DataSize(const VARIANT* pv)
806 switch (V_TYPE(pv))
808 case VT_I1:
809 case VT_UI1: return sizeof(BYTE);
810 case VT_I2:
811 case VT_UI2: return sizeof(SHORT);
812 case VT_INT:
813 case VT_UINT:
814 case VT_I4:
815 case VT_UI4: return sizeof(LONG);
816 case VT_I8:
817 case VT_UI8: return sizeof(LONGLONG);
818 case VT_R4: return sizeof(float);
819 case VT_R8: return sizeof(double);
820 case VT_DATE: return sizeof(DATE);
821 case VT_BOOL: return sizeof(VARIANT_BOOL);
822 case VT_DISPATCH:
823 case VT_UNKNOWN:
824 case VT_BSTR: return sizeof(void*);
825 case VT_CY: return sizeof(CY);
826 case VT_ERROR: return sizeof(SCODE);
828 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
829 return 0;
832 /******************************************************************************
833 * VariantCopyInd [OLEAUT32.11]
835 * Copy a variant, dereferencing it if it is by-reference.
837 * PARAMS
838 * pvargDest [O] Destination for copy
839 * pvargSrc [I] Source variant to copy
841 * RETURNS
842 * Success: S_OK. pvargDest contains a copy of pvargSrc.
843 * Failure: An HRESULT error code indicating the error.
845 * NOTES
846 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
847 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
848 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
849 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
850 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
852 * NOTES
853 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
854 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
855 * value.
856 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
857 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
858 * to it. If clearing pvargDest fails, so does this function.
860 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
862 VARIANTARG vTmp, *pSrc = pvargSrc;
863 VARTYPE vt;
864 HRESULT hres = S_OK;
866 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
867 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
868 debugstr_VF(pvargSrc));
870 if (!V_ISBYREF(pvargSrc))
871 return VariantCopy(pvargDest, pvargSrc);
873 /* Argument checking is more lax than VariantCopy()... */
874 vt = V_TYPE(pvargSrc);
875 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
876 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
877 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
879 /* OK */
881 else
882 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
884 if (pvargSrc == pvargDest)
886 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
887 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
889 vTmp = *pvargSrc;
890 pSrc = &vTmp;
891 V_VT(pvargDest) = VT_EMPTY;
893 else
895 /* Copy into another variant. Free the variant in pvargDest */
896 if (FAILED(hres = VariantClear(pvargDest)))
898 TRACE("VariantClear() of destination failed\n");
899 return hres;
903 if (V_ISARRAY(pSrc))
905 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
906 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
908 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
910 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
911 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
913 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
915 V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
916 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
918 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
919 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
921 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
922 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
923 if (*V_UNKNOWNREF(pSrc))
924 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
926 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
928 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
929 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
930 hres = E_INVALIDARG; /* Don't dereference more than one level */
931 else
932 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
934 /* Use the dereferenced variants type value, not VT_VARIANT */
935 goto VariantCopyInd_Return;
937 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
939 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
940 sizeof(DECIMAL) - sizeof(USHORT));
942 else
944 /* Copy the pointed to data into this variant */
945 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
948 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
950 VariantCopyInd_Return:
952 if (pSrc != pvargSrc)
953 VariantClear(pSrc);
955 TRACE("returning 0x%08x, %p->(%s%s)\n", hres, pvargDest,
956 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
957 return hres;
960 /******************************************************************************
961 * VariantChangeType [OLEAUT32.12]
963 * Change the type of a variant.
965 * PARAMS
966 * pvargDest [O] Destination for the converted variant
967 * pvargSrc [O] Source variant to change the type of
968 * wFlags [I] VARIANT_ flags from "oleauto.h"
969 * vt [I] Variant type to change pvargSrc into
971 * RETURNS
972 * Success: S_OK. pvargDest contains the converted value.
973 * Failure: An HRESULT error code describing the failure.
975 * NOTES
976 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
977 * See VariantChangeTypeEx.
979 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
980 USHORT wFlags, VARTYPE vt)
982 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
985 /******************************************************************************
986 * VariantChangeTypeEx [OLEAUT32.147]
988 * Change the type of a variant.
990 * PARAMS
991 * pvargDest [O] Destination for the converted variant
992 * pvargSrc [O] Source variant to change the type of
993 * lcid [I] LCID for the conversion
994 * wFlags [I] VARIANT_ flags from "oleauto.h"
995 * vt [I] Variant type to change pvargSrc into
997 * RETURNS
998 * Success: S_OK. pvargDest contains the converted value.
999 * Failure: An HRESULT error code describing the failure.
1001 * NOTES
1002 * pvargDest and pvargSrc can point to the same variant to perform an in-place
1003 * conversion. If the conversion is successful, pvargSrc will be freed.
1005 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
1006 LCID lcid, USHORT wFlags, VARTYPE vt)
1008 HRESULT res = S_OK;
1010 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%04x,%s%s)\n", pvargDest,
1011 debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
1012 debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
1013 debugstr_vt(vt), debugstr_vf(vt));
1015 if (vt == VT_CLSID)
1016 res = DISP_E_BADVARTYPE;
1017 else
1019 res = VARIANT_ValidateType(V_VT(pvargSrc));
1021 if (SUCCEEDED(res))
1023 res = VARIANT_ValidateType(vt);
1025 if (SUCCEEDED(res))
1027 VARIANTARG vTmp, vSrcDeref;
1029 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1030 res = DISP_E_TYPEMISMATCH;
1031 else
1033 V_VT(&vTmp) = VT_EMPTY;
1034 V_VT(&vSrcDeref) = VT_EMPTY;
1035 VariantClear(&vTmp);
1036 VariantClear(&vSrcDeref);
1039 if (SUCCEEDED(res))
1041 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1042 if (SUCCEEDED(res))
1044 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1045 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1046 else
1047 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1049 if (SUCCEEDED(res)) {
1050 V_VT(&vTmp) = vt;
1051 VariantCopy(pvargDest, &vTmp);
1053 VariantClear(&vTmp);
1054 VariantClear(&vSrcDeref);
1061 TRACE("returning 0x%08x, %p->(%s%s)\n", res, pvargDest,
1062 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
1063 return res;
1066 /* Date Conversions */
1068 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1070 /* Convert a VT_DATE value to a Julian Date */
1071 static inline int VARIANT_JulianFromDate(int dateIn)
1073 int julianDays = dateIn;
1075 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1076 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1077 return julianDays;
1080 /* Convert a Julian Date to a VT_DATE value */
1081 static inline int VARIANT_DateFromJulian(int dateIn)
1083 int julianDays = dateIn;
1085 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1086 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1087 return julianDays;
1090 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1091 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1093 int j, i, l, n;
1095 l = jd + 68569;
1096 n = l * 4 / 146097;
1097 l -= (n * 146097 + 3) / 4;
1098 i = (4000 * (l + 1)) / 1461001;
1099 l += 31 - (i * 1461) / 4;
1100 j = (l * 80) / 2447;
1101 *day = l - (j * 2447) / 80;
1102 l = j / 11;
1103 *month = (j + 2) - (12 * l);
1104 *year = 100 * (n - 49) + i + l;
1107 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1108 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1110 int m12 = (month - 14) / 12;
1112 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1113 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1116 /* Macros for accessing DOS format date/time fields */
1117 #define DOS_YEAR(x) (1980 + (x >> 9))
1118 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1119 #define DOS_DAY(x) (x & 0x1f)
1120 #define DOS_HOUR(x) (x >> 11)
1121 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1122 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1123 /* Create a DOS format date/time */
1124 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1125 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1127 /* Roll a date forwards or backwards to correct it */
1128 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1130 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1131 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1133 /* interpret values signed */
1134 iYear = lpUd->st.wYear;
1135 iMonth = lpUd->st.wMonth;
1136 iDay = lpUd->st.wDay;
1137 iHour = lpUd->st.wHour;
1138 iMinute = lpUd->st.wMinute;
1139 iSecond = lpUd->st.wSecond;
1141 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1142 iYear, iHour, iMinute, iSecond);
1144 if (iYear > 9999 || iYear < -9999)
1145 return E_INVALIDARG; /* Invalid value */
1146 /* Year 0 to 29 are treated as 2000 + year */
1147 if (iYear >= 0 && iYear < 30)
1148 iYear += 2000;
1149 /* Remaining years < 100 are treated as 1900 + year */
1150 else if (iYear >= 30 && iYear < 100)
1151 iYear += 1900;
1153 iMinute += iSecond / 60;
1154 iSecond = iSecond % 60;
1155 iHour += iMinute / 60;
1156 iMinute = iMinute % 60;
1157 iDay += iHour / 24;
1158 iHour = iHour % 24;
1159 iYear += iMonth / 12;
1160 iMonth = iMonth % 12;
1161 if (iMonth<=0) {iMonth+=12; iYear--;}
1162 while (iDay > days[iMonth])
1164 if (iMonth == 2 && IsLeapYear(iYear))
1165 iDay -= 29;
1166 else
1167 iDay -= days[iMonth];
1168 iMonth++;
1169 iYear += iMonth / 12;
1170 iMonth = iMonth % 12;
1172 while (iDay <= 0)
1174 iMonth--;
1175 if (iMonth<=0) {iMonth+=12; iYear--;}
1176 if (iMonth == 2 && IsLeapYear(iYear))
1177 iDay += 29;
1178 else
1179 iDay += days[iMonth];
1182 if (iSecond<0){iSecond+=60; iMinute--;}
1183 if (iMinute<0){iMinute+=60; iHour--;}
1184 if (iHour<0) {iHour+=24; iDay--;}
1185 if (iYear<=0) iYear+=2000;
1187 lpUd->st.wYear = iYear;
1188 lpUd->st.wMonth = iMonth;
1189 lpUd->st.wDay = iDay;
1190 lpUd->st.wHour = iHour;
1191 lpUd->st.wMinute = iMinute;
1192 lpUd->st.wSecond = iSecond;
1194 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1195 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1196 return S_OK;
1199 /**********************************************************************
1200 * DosDateTimeToVariantTime [OLEAUT32.14]
1202 * Convert a Dos format date and time into variant VT_DATE format.
1204 * PARAMS
1205 * wDosDate [I] Dos format date
1206 * wDosTime [I] Dos format time
1207 * pDateOut [O] Destination for VT_DATE format
1209 * RETURNS
1210 * Success: TRUE. pDateOut contains the converted time.
1211 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1213 * NOTES
1214 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1215 * - Dos format times are accurate to only 2 second precision.
1216 * - The format of a Dos Date is:
1217 *| Bits Values Meaning
1218 *| ---- ------ -------
1219 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1220 *| the days in the month rolls forward the extra days.
1221 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1222 *| year. 13-15 are invalid.
1223 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1224 * - The format of a Dos Time is:
1225 *| Bits Values Meaning
1226 *| ---- ------ -------
1227 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1228 *| 5-10 0-59 Minutes. 60-63 are invalid.
1229 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1231 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1232 double *pDateOut)
1234 UDATE ud;
1236 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1237 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1238 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1239 pDateOut);
1241 ud.st.wYear = DOS_YEAR(wDosDate);
1242 ud.st.wMonth = DOS_MONTH(wDosDate);
1243 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1244 return FALSE;
1245 ud.st.wDay = DOS_DAY(wDosDate);
1246 ud.st.wHour = DOS_HOUR(wDosTime);
1247 ud.st.wMinute = DOS_MINUTE(wDosTime);
1248 ud.st.wSecond = DOS_SECOND(wDosTime);
1249 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1250 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1251 return FALSE; /* Invalid values in Dos*/
1253 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1256 /**********************************************************************
1257 * VariantTimeToDosDateTime [OLEAUT32.13]
1259 * Convert a variant format date into a Dos format date and time.
1261 * dateIn [I] VT_DATE time format
1262 * pwDosDate [O] Destination for Dos format date
1263 * pwDosTime [O] Destination for Dos format time
1265 * RETURNS
1266 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1267 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1269 * NOTES
1270 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1272 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1274 UDATE ud;
1276 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1278 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1279 return FALSE;
1281 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1282 return FALSE;
1284 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1285 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1287 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1288 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1289 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1290 return TRUE;
1293 /***********************************************************************
1294 * SystemTimeToVariantTime [OLEAUT32.184]
1296 * Convert a System format date and time into variant VT_DATE format.
1298 * PARAMS
1299 * lpSt [I] System format date and time
1300 * pDateOut [O] Destination for VT_DATE format date
1302 * RETURNS
1303 * Success: TRUE. *pDateOut contains the converted value.
1304 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1306 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1308 UDATE ud;
1310 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1311 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1313 if (lpSt->wMonth > 12)
1314 return FALSE;
1315 if (lpSt->wDay > 31)
1316 return FALSE;
1317 if ((short)lpSt->wYear < 0)
1318 return FALSE;
1320 ud.st = *lpSt;
1321 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1324 /***********************************************************************
1325 * VariantTimeToSystemTime [OLEAUT32.185]
1327 * Convert a variant VT_DATE into a System format date and time.
1329 * PARAMS
1330 * datein [I] Variant VT_DATE format date
1331 * lpSt [O] Destination for System format date and time
1333 * RETURNS
1334 * Success: TRUE. *lpSt contains the converted value.
1335 * Failure: FALSE, if dateIn is too large or small.
1337 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1339 UDATE ud;
1341 TRACE("(%g,%p)\n", dateIn, lpSt);
1343 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1344 return FALSE;
1346 *lpSt = ud.st;
1347 return TRUE;
1350 /***********************************************************************
1351 * VarDateFromUdateEx [OLEAUT32.319]
1353 * Convert an unpacked format date and time to a variant VT_DATE.
1355 * PARAMS
1356 * pUdateIn [I] Unpacked format date and time to convert
1357 * lcid [I] Locale identifier for the conversion
1358 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1359 * pDateOut [O] Destination for variant VT_DATE.
1361 * RETURNS
1362 * Success: S_OK. *pDateOut contains the converted value.
1363 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1365 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1367 UDATE ud;
1368 double dateVal, dateSign;
1370 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1371 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1372 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1373 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1374 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1376 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1377 FIXME("lcid possibly not handled, treating as en-us\n");
1379 ud = *pUdateIn;
1381 if (dwFlags & VAR_VALIDDATE)
1382 WARN("Ignoring VAR_VALIDDATE\n");
1384 if (FAILED(VARIANT_RollUdate(&ud)))
1385 return E_INVALIDARG;
1387 /* Date */
1388 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1390 /* Sign */
1391 dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1393 /* Time */
1394 dateVal += ud.st.wHour / 24.0 * dateSign;
1395 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1396 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1398 TRACE("Returning %g\n", dateVal);
1399 *pDateOut = dateVal;
1400 return S_OK;
1403 /***********************************************************************
1404 * VarDateFromUdate [OLEAUT32.330]
1406 * Convert an unpacked format date and time to a variant VT_DATE.
1408 * PARAMS
1409 * pUdateIn [I] Unpacked format date and time to convert
1410 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1411 * pDateOut [O] Destination for variant VT_DATE.
1413 * RETURNS
1414 * Success: S_OK. *pDateOut contains the converted value.
1415 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1417 * NOTES
1418 * This function uses the United States English locale for the conversion. Use
1419 * VarDateFromUdateEx() for alternate locales.
1421 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1423 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1425 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1428 /***********************************************************************
1429 * VarUdateFromDate [OLEAUT32.331]
1431 * Convert a variant VT_DATE into an unpacked format date and time.
1433 * PARAMS
1434 * datein [I] Variant VT_DATE format date
1435 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1436 * lpUdate [O] Destination for unpacked format date and time
1438 * RETURNS
1439 * Success: S_OK. *lpUdate contains the converted value.
1440 * Failure: E_INVALIDARG, if dateIn is too large or small.
1442 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1444 /* Cumulative totals of days per month */
1445 static const USHORT cumulativeDays[] =
1447 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1449 double datePart, timePart;
1450 int julianDays;
1452 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1454 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1455 return E_INVALIDARG;
1457 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1458 /* Compensate for int truncation (always downwards) */
1459 timePart = fabs(dateIn - datePart) + 0.00000000001;
1460 if (timePart >= 1.0)
1461 timePart -= 0.00000000001;
1463 /* Date */
1464 julianDays = VARIANT_JulianFromDate(dateIn);
1465 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1466 &lpUdate->st.wDay);
1468 datePart = (datePart + 1.5) / 7.0;
1469 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1470 if (lpUdate->st.wDayOfWeek == 0)
1471 lpUdate->st.wDayOfWeek = 5;
1472 else if (lpUdate->st.wDayOfWeek == 1)
1473 lpUdate->st.wDayOfWeek = 6;
1474 else
1475 lpUdate->st.wDayOfWeek -= 2;
1477 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1478 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1479 else
1480 lpUdate->wDayOfYear = 0;
1482 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1483 lpUdate->wDayOfYear += lpUdate->st.wDay;
1485 /* Time */
1486 timePart *= 24.0;
1487 lpUdate->st.wHour = timePart;
1488 timePart -= lpUdate->st.wHour;
1489 timePart *= 60.0;
1490 lpUdate->st.wMinute = timePart;
1491 timePart -= lpUdate->st.wMinute;
1492 timePart *= 60.0;
1493 lpUdate->st.wSecond = timePart;
1494 timePart -= lpUdate->st.wSecond;
1495 lpUdate->st.wMilliseconds = 0;
1496 if (timePart > 0.5)
1498 /* Round the milliseconds, adjusting the time/date forward if needed */
1499 if (lpUdate->st.wSecond < 59)
1500 lpUdate->st.wSecond++;
1501 else
1503 lpUdate->st.wSecond = 0;
1504 if (lpUdate->st.wMinute < 59)
1505 lpUdate->st.wMinute++;
1506 else
1508 lpUdate->st.wMinute = 0;
1509 if (lpUdate->st.wHour < 23)
1510 lpUdate->st.wHour++;
1511 else
1513 lpUdate->st.wHour = 0;
1514 /* Roll over a whole day */
1515 if (++lpUdate->st.wDay > 28)
1516 VARIANT_RollUdate(lpUdate);
1521 return S_OK;
1524 #define GET_NUMBER_TEXT(fld,name) \
1525 buff[0] = 0; \
1526 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1527 WARN("buffer too small for " #fld "\n"); \
1528 else \
1529 if (buff[0]) lpChars->name = buff[0]; \
1530 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1532 /* Get the valid number characters for an lcid */
1533 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1535 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1536 static CRITICAL_SECTION csLastChars = { NULL, -1, 0, 0, 0, 0 };
1537 static VARIANT_NUMBER_CHARS lastChars;
1538 static LCID lastLcid = -1;
1539 static DWORD lastFlags = 0;
1540 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1541 WCHAR buff[4];
1543 /* To make caching thread-safe, a critical section is needed */
1544 EnterCriticalSection(&csLastChars);
1546 /* Asking for default locale entries is very expensive: It is a registry
1547 server call. So cache one locally, as Microsoft does it too */
1548 if(lcid == lastLcid && dwFlags == lastFlags)
1550 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1551 LeaveCriticalSection(&csLastChars);
1552 return;
1555 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1556 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1557 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1558 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1559 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1560 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1561 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1563 /* Local currency symbols are often 2 characters */
1564 lpChars->cCurrencyLocal2 = '\0';
1565 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1567 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1568 case 2: lpChars->cCurrencyLocal = buff[0];
1569 break;
1570 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1572 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1573 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1575 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1576 lastLcid = lcid;
1577 lastFlags = dwFlags;
1578 LeaveCriticalSection(&csLastChars);
1581 /* Number Parsing States */
1582 #define B_PROCESSING_EXPONENT 0x1
1583 #define B_NEGATIVE_EXPONENT 0x2
1584 #define B_EXPONENT_START 0x4
1585 #define B_INEXACT_ZEROS 0x8
1586 #define B_LEADING_ZERO 0x10
1587 #define B_PROCESSING_HEX 0x20
1588 #define B_PROCESSING_OCT 0x40
1590 /**********************************************************************
1591 * VarParseNumFromStr [OLEAUT32.46]
1593 * Parse a string containing a number into a NUMPARSE structure.
1595 * PARAMS
1596 * lpszStr [I] String to parse number from
1597 * lcid [I] Locale Id for the conversion
1598 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1599 * pNumprs [I/O] Destination for parsed number
1600 * rgbDig [O] Destination for digits read in
1602 * RETURNS
1603 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1604 * the number.
1605 * Failure: E_INVALIDARG, if any parameter is invalid.
1606 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1607 * incorrectly.
1608 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1610 * NOTES
1611 * pNumprs must have the following fields set:
1612 * cDig: Set to the size of rgbDig.
1613 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1614 * from "oleauto.h".
1616 * FIXME
1617 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1618 * numerals, so this has not been implemented.
1620 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1621 NUMPARSE *pNumprs, BYTE *rgbDig)
1623 VARIANT_NUMBER_CHARS chars;
1624 BYTE rgbTmp[1024];
1625 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1626 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1627 int cchUsed = 0;
1629 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1631 if (!pNumprs || !rgbDig)
1632 return E_INVALIDARG;
1634 if (pNumprs->cDig < iMaxDigits)
1635 iMaxDigits = pNumprs->cDig;
1637 pNumprs->cDig = 0;
1638 pNumprs->dwOutFlags = 0;
1639 pNumprs->cchUsed = 0;
1640 pNumprs->nBaseShift = 0;
1641 pNumprs->nPwr10 = 0;
1643 if (!lpszStr)
1644 return DISP_E_TYPEMISMATCH;
1646 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1648 /* First consume all the leading symbols and space from the string */
1649 while (1)
1651 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1653 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1656 cchUsed++;
1657 lpszStr++;
1658 } while (isspaceW(*lpszStr));
1660 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1661 *lpszStr == chars.cPositiveSymbol &&
1662 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1664 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1665 cchUsed++;
1666 lpszStr++;
1668 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1669 *lpszStr == chars.cNegativeSymbol &&
1670 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1672 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1673 cchUsed++;
1674 lpszStr++;
1676 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1677 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1678 *lpszStr == chars.cCurrencyLocal &&
1679 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1681 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1682 cchUsed++;
1683 lpszStr++;
1684 /* Only accept currency characters */
1685 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1686 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1688 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1689 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1691 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1692 cchUsed++;
1693 lpszStr++;
1695 else
1696 break;
1699 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1701 /* Only accept non-currency characters */
1702 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1703 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1706 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1707 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1709 dwState |= B_PROCESSING_HEX;
1710 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1711 cchUsed=cchUsed+2;
1712 lpszStr=lpszStr+2;
1714 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1715 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1717 dwState |= B_PROCESSING_OCT;
1718 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1719 cchUsed=cchUsed+2;
1720 lpszStr=lpszStr+2;
1723 /* Strip Leading zeros */
1724 while (*lpszStr == '0')
1726 dwState |= B_LEADING_ZERO;
1727 cchUsed++;
1728 lpszStr++;
1731 while (*lpszStr)
1733 if (isdigitW(*lpszStr))
1735 if (dwState & B_PROCESSING_EXPONENT)
1737 int exponentSize = 0;
1738 if (dwState & B_EXPONENT_START)
1740 if (!isdigitW(*lpszStr))
1741 break; /* No exponent digits - invalid */
1742 while (*lpszStr == '0')
1744 /* Skip leading zero's in the exponent */
1745 cchUsed++;
1746 lpszStr++;
1750 while (isdigitW(*lpszStr))
1752 exponentSize *= 10;
1753 exponentSize += *lpszStr - '0';
1754 cchUsed++;
1755 lpszStr++;
1757 if (dwState & B_NEGATIVE_EXPONENT)
1758 exponentSize = -exponentSize;
1759 /* Add the exponent into the powers of 10 */
1760 pNumprs->nPwr10 += exponentSize;
1761 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1762 lpszStr--; /* back up to allow processing of next char */
1764 else
1766 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1767 && !(dwState & B_PROCESSING_OCT))
1769 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1771 if (*lpszStr != '0')
1772 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1774 /* This digit can't be represented, but count it in nPwr10 */
1775 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1776 pNumprs->nPwr10--;
1777 else
1778 pNumprs->nPwr10++;
1780 else
1782 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1783 return DISP_E_TYPEMISMATCH;
1786 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1787 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1789 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1791 pNumprs->cDig++;
1792 cchUsed++;
1795 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1797 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1798 cchUsed++;
1800 else if (*lpszStr == chars.cDecimalPoint &&
1801 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1802 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1804 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1805 cchUsed++;
1807 /* If we have no digits so far, skip leading zeros */
1808 if (!pNumprs->cDig)
1810 while (lpszStr[1] == '0')
1812 dwState |= B_LEADING_ZERO;
1813 cchUsed++;
1814 lpszStr++;
1815 pNumprs->nPwr10--;
1819 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1820 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1821 dwState & B_PROCESSING_HEX)
1823 if (pNumprs->cDig >= iMaxDigits)
1825 return DISP_E_OVERFLOW;
1827 else
1829 if (*lpszStr >= 'a')
1830 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1831 else
1832 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1834 pNumprs->cDig++;
1835 cchUsed++;
1837 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1838 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1839 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1841 dwState |= B_PROCESSING_EXPONENT;
1842 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1843 cchUsed++;
1845 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1847 cchUsed++; /* Ignore positive exponent */
1849 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1851 dwState |= B_NEGATIVE_EXPONENT;
1852 cchUsed++;
1854 else
1855 break; /* Stop at an unrecognised character */
1857 lpszStr++;
1860 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1862 /* Ensure a 0 on its own gets stored */
1863 pNumprs->cDig = 1;
1864 rgbTmp[0] = 0;
1867 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1869 pNumprs->cchUsed = cchUsed;
1870 WARN("didn't completely parse exponent\n");
1871 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1874 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1876 if (dwState & B_INEXACT_ZEROS)
1877 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1878 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1880 /* copy all of the digits into the output digit buffer */
1881 /* this is exactly what windows does although it also returns */
1882 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1883 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1885 if (dwState & B_PROCESSING_HEX) {
1886 /* hex numbers have always the same format */
1887 pNumprs->nPwr10=0;
1888 pNumprs->nBaseShift=4;
1889 } else {
1890 if (dwState & B_PROCESSING_OCT) {
1891 /* oct numbers have always the same format */
1892 pNumprs->nPwr10=0;
1893 pNumprs->nBaseShift=3;
1894 } else {
1895 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1897 pNumprs->nPwr10++;
1898 pNumprs->cDig--;
1902 } else
1904 /* Remove trailing zeros from the last (whole number or decimal) part */
1905 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1907 pNumprs->nPwr10++;
1908 pNumprs->cDig--;
1912 if (pNumprs->cDig <= iMaxDigits)
1913 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1914 else
1915 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1917 /* Copy the digits we processed into rgbDig */
1918 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1920 /* Consume any trailing symbols and space */
1921 while (1)
1923 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1925 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1928 cchUsed++;
1929 lpszStr++;
1930 } while (isspaceW(*lpszStr));
1932 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1933 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1934 *lpszStr == chars.cPositiveSymbol)
1936 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1937 cchUsed++;
1938 lpszStr++;
1940 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1941 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1942 *lpszStr == chars.cNegativeSymbol)
1944 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1945 cchUsed++;
1946 lpszStr++;
1948 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1949 pNumprs->dwOutFlags & NUMPRS_PARENS)
1951 cchUsed++;
1952 lpszStr++;
1953 pNumprs->dwOutFlags |= NUMPRS_NEG;
1955 else
1956 break;
1959 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1961 pNumprs->cchUsed = cchUsed;
1962 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1965 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1966 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1968 if (!pNumprs->cDig)
1969 return DISP_E_TYPEMISMATCH; /* No Number found */
1971 pNumprs->cchUsed = cchUsed;
1972 return S_OK;
1975 /* VTBIT flags indicating an integer value */
1976 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1977 /* VTBIT flags indicating a real number value */
1978 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1980 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1981 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1982 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1983 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1985 /**********************************************************************
1986 * VarNumFromParseNum [OLEAUT32.47]
1988 * Convert a NUMPARSE structure into a numeric Variant type.
1990 * PARAMS
1991 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1992 * rgbDig [I] Source for the numbers digits
1993 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1994 * pVarDst [O] Destination for the converted Variant value.
1996 * RETURNS
1997 * Success: S_OK. pVarDst contains the converted value.
1998 * Failure: E_INVALIDARG, if any parameter is invalid.
1999 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
2001 * NOTES
2002 * - The smallest favoured type present in dwVtBits that can represent the
2003 * number in pNumprs without losing precision is used.
2004 * - Signed types are preferred over unsigned types of the same size.
2005 * - Preferred types in order are: integer, float, double, currency then decimal.
2006 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
2007 * for details of the rounding method.
2008 * - pVarDst is not cleared before the result is stored in it.
2009 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2010 * design?): If some other VTBIT's for integers are specified together
2011 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2012 * the number to the smallest requested integer truncating this way the
2013 * number. Wine doesn't implement this "feature" (yet?).
2015 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
2016 ULONG dwVtBits, VARIANT *pVarDst)
2018 /* Scale factors and limits for double arithmetic */
2019 static const double dblMultipliers[11] = {
2020 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2021 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2023 static const double dblMinimums[11] = {
2024 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2025 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2026 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2028 static const double dblMaximums[11] = {
2029 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2030 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2031 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2034 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2036 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2038 if (pNumprs->nBaseShift)
2040 /* nBaseShift indicates a hex or octal number */
2041 ULONG64 ul64 = 0;
2042 LONG64 l64;
2043 int i;
2045 /* Convert the hex or octal number string into a UI64 */
2046 for (i = 0; i < pNumprs->cDig; i++)
2048 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2050 TRACE("Overflow multiplying digits\n");
2051 return DISP_E_OVERFLOW;
2053 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2056 /* also make a negative representation */
2057 l64=-ul64;
2059 /* Try signed and unsigned types in size order */
2060 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2062 V_VT(pVarDst) = VT_I1;
2063 V_I1(pVarDst) = ul64;
2064 return S_OK;
2066 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2068 V_VT(pVarDst) = VT_UI1;
2069 V_UI1(pVarDst) = ul64;
2070 return S_OK;
2072 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2074 V_VT(pVarDst) = VT_I2;
2075 V_I2(pVarDst) = ul64;
2076 return S_OK;
2078 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2080 V_VT(pVarDst) = VT_UI2;
2081 V_UI2(pVarDst) = ul64;
2082 return S_OK;
2084 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2086 V_VT(pVarDst) = VT_I4;
2087 V_I4(pVarDst) = ul64;
2088 return S_OK;
2090 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2092 V_VT(pVarDst) = VT_UI4;
2093 V_UI4(pVarDst) = ul64;
2094 return S_OK;
2096 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2098 V_VT(pVarDst) = VT_I8;
2099 V_I8(pVarDst) = ul64;
2100 return S_OK;
2102 else if (dwVtBits & VTBIT_UI8)
2104 V_VT(pVarDst) = VT_UI8;
2105 V_UI8(pVarDst) = ul64;
2106 return S_OK;
2108 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2110 V_VT(pVarDst) = VT_DECIMAL;
2111 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2112 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2113 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2114 return S_OK;
2116 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2118 V_VT(pVarDst) = VT_R4;
2119 if (ul64 <= I4_MAX)
2120 V_R4(pVarDst) = ul64;
2121 else
2122 V_R4(pVarDst) = l64;
2123 return S_OK;
2125 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2127 V_VT(pVarDst) = VT_R8;
2128 if (ul64 <= I4_MAX)
2129 V_R8(pVarDst) = ul64;
2130 else
2131 V_R8(pVarDst) = l64;
2132 return S_OK;
2135 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2136 return DISP_E_OVERFLOW;
2139 /* Count the number of relevant fractional and whole digits stored,
2140 * And compute the divisor/multiplier to scale the number by.
2142 if (pNumprs->nPwr10 < 0)
2144 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2146 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2147 wholeNumberDigits = 0;
2148 fractionalDigits = pNumprs->cDig;
2149 divisor10 = -pNumprs->nPwr10;
2151 else
2153 /* An exactly represented real number e.g. 1.024 */
2154 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2155 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2156 divisor10 = pNumprs->cDig - wholeNumberDigits;
2159 else if (pNumprs->nPwr10 == 0)
2161 /* An exactly represented whole number e.g. 1024 */
2162 wholeNumberDigits = pNumprs->cDig;
2163 fractionalDigits = 0;
2165 else /* pNumprs->nPwr10 > 0 */
2167 /* A whole number followed by nPwr10 0's e.g. 102400 */
2168 wholeNumberDigits = pNumprs->cDig;
2169 fractionalDigits = 0;
2170 multiplier10 = pNumprs->nPwr10;
2173 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2174 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2175 multiplier10, divisor10);
2177 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2178 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2180 /* We have one or more integer output choices, and either:
2181 * 1) An integer input value, or
2182 * 2) A real number input value but no floating output choices.
2183 * Alternately, we have a DECIMAL output available and an integer input.
2185 * So, place the integer value into pVarDst, using the smallest type
2186 * possible and preferring signed over unsigned types.
2188 BOOL bOverflow = FALSE, bNegative;
2189 ULONG64 ul64 = 0;
2190 int i;
2192 /* Convert the integer part of the number into a UI8 */
2193 for (i = 0; i < wholeNumberDigits; i++)
2195 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2197 TRACE("Overflow multiplying digits\n");
2198 bOverflow = TRUE;
2199 break;
2201 ul64 = ul64 * 10 + rgbDig[i];
2204 /* Account for the scale of the number */
2205 if (!bOverflow && multiplier10)
2207 for (i = 0; i < multiplier10; i++)
2209 if (ul64 > (UI8_MAX / 10))
2211 TRACE("Overflow scaling number\n");
2212 bOverflow = TRUE;
2213 break;
2215 ul64 = ul64 * 10;
2219 /* If we have any fractional digits, round the value.
2220 * Note we don't have to do this if divisor10 is < 1,
2221 * because this means the fractional part must be < 0.5
2223 if (!bOverflow && fractionalDigits && divisor10 > 0)
2225 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2226 BOOL bAdjust = FALSE;
2228 TRACE("first decimal value is %d\n", *fracDig);
2230 if (*fracDig > 5)
2231 bAdjust = TRUE; /* > 0.5 */
2232 else if (*fracDig == 5)
2234 for (i = 1; i < fractionalDigits; i++)
2236 if (fracDig[i])
2238 bAdjust = TRUE; /* > 0.5 */
2239 break;
2242 /* If exactly 0.5, round only odd values */
2243 if (i == fractionalDigits && (ul64 & 1))
2244 bAdjust = TRUE;
2247 if (bAdjust)
2249 if (ul64 == UI8_MAX)
2251 TRACE("Overflow after rounding\n");
2252 bOverflow = TRUE;
2254 ul64++;
2258 /* Zero is not a negative number */
2259 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2261 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2263 /* For negative integers, try the signed types in size order */
2264 if (!bOverflow && bNegative)
2266 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2268 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2270 V_VT(pVarDst) = VT_I1;
2271 V_I1(pVarDst) = -ul64;
2272 return S_OK;
2274 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2276 V_VT(pVarDst) = VT_I2;
2277 V_I2(pVarDst) = -ul64;
2278 return S_OK;
2280 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2282 V_VT(pVarDst) = VT_I4;
2283 V_I4(pVarDst) = -ul64;
2284 return S_OK;
2286 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2288 V_VT(pVarDst) = VT_I8;
2289 V_I8(pVarDst) = -ul64;
2290 return S_OK;
2292 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2294 /* Decimal is only output choice left - fast path */
2295 V_VT(pVarDst) = VT_DECIMAL;
2296 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2297 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2298 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2299 return S_OK;
2303 else if (!bOverflow)
2305 /* For positive integers, try signed then unsigned types in size order */
2306 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2308 V_VT(pVarDst) = VT_I1;
2309 V_I1(pVarDst) = ul64;
2310 return S_OK;
2312 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2314 V_VT(pVarDst) = VT_UI1;
2315 V_UI1(pVarDst) = ul64;
2316 return S_OK;
2318 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2320 V_VT(pVarDst) = VT_I2;
2321 V_I2(pVarDst) = ul64;
2322 return S_OK;
2324 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2326 V_VT(pVarDst) = VT_UI2;
2327 V_UI2(pVarDst) = ul64;
2328 return S_OK;
2330 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2332 V_VT(pVarDst) = VT_I4;
2333 V_I4(pVarDst) = ul64;
2334 return S_OK;
2336 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2338 V_VT(pVarDst) = VT_UI4;
2339 V_UI4(pVarDst) = ul64;
2340 return S_OK;
2342 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2344 V_VT(pVarDst) = VT_I8;
2345 V_I8(pVarDst) = ul64;
2346 return S_OK;
2348 else if (dwVtBits & VTBIT_UI8)
2350 V_VT(pVarDst) = VT_UI8;
2351 V_UI8(pVarDst) = ul64;
2352 return S_OK;
2354 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2356 /* Decimal is only output choice left - fast path */
2357 V_VT(pVarDst) = VT_DECIMAL;
2358 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2359 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2360 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2361 return S_OK;
2366 if (dwVtBits & REAL_VTBITS)
2368 /* Try to put the number into a float or real */
2369 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2370 double whole = 0.0;
2371 int i;
2373 /* Convert the number into a double */
2374 for (i = 0; i < pNumprs->cDig; i++)
2375 whole = whole * 10.0 + rgbDig[i];
2377 TRACE("Whole double value is %16.16g\n", whole);
2379 /* Account for the scale */
2380 while (multiplier10 > 10)
2382 if (whole > dblMaximums[10])
2384 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2385 bOverflow = TRUE;
2386 break;
2388 whole = whole * dblMultipliers[10];
2389 multiplier10 -= 10;
2391 if (multiplier10 && !bOverflow)
2393 if (whole > dblMaximums[multiplier10])
2395 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2396 bOverflow = TRUE;
2398 else
2399 whole = whole * dblMultipliers[multiplier10];
2402 if (!bOverflow)
2403 TRACE("Scaled double value is %16.16g\n", whole);
2405 while (divisor10 > 10 && !bOverflow)
2407 if (whole < dblMinimums[10] && whole != 0)
2409 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2410 bOverflow = TRUE;
2411 break;
2413 whole = whole / dblMultipliers[10];
2414 divisor10 -= 10;
2416 if (divisor10 && !bOverflow)
2418 if (whole < dblMinimums[divisor10] && whole != 0)
2420 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2421 bOverflow = TRUE;
2423 else
2424 whole = whole / dblMultipliers[divisor10];
2426 if (!bOverflow)
2427 TRACE("Final double value is %16.16g\n", whole);
2429 if (dwVtBits & VTBIT_R4 &&
2430 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2432 TRACE("Set R4 to final value\n");
2433 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2434 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2435 return S_OK;
2438 if (dwVtBits & VTBIT_R8)
2440 TRACE("Set R8 to final value\n");
2441 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2442 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2443 return S_OK;
2446 if (dwVtBits & VTBIT_CY)
2448 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2450 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2451 TRACE("Set CY to final value\n");
2452 return S_OK;
2454 TRACE("Value Overflows CY\n");
2458 if (dwVtBits & VTBIT_DECIMAL)
2460 int i;
2461 ULONG carry;
2462 ULONG64 tmp;
2463 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2465 DECIMAL_SETZERO(*pDec);
2466 DEC_LO32(pDec) = 0;
2468 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2469 DEC_SIGN(pDec) = DECIMAL_NEG;
2470 else
2471 DEC_SIGN(pDec) = DECIMAL_POS;
2473 /* Factor the significant digits */
2474 for (i = 0; i < pNumprs->cDig; i++)
2476 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2477 carry = (ULONG)(tmp >> 32);
2478 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2479 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2480 carry = (ULONG)(tmp >> 32);
2481 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2482 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2483 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2485 if (tmp >> 32 & UI4_MAX)
2487 VarNumFromParseNum_DecOverflow:
2488 TRACE("Overflow\n");
2489 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2490 return DISP_E_OVERFLOW;
2494 /* Account for the scale of the number */
2495 while (multiplier10 > 0)
2497 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2498 carry = (ULONG)(tmp >> 32);
2499 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2500 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2501 carry = (ULONG)(tmp >> 32);
2502 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2503 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2504 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2506 if (tmp >> 32 & UI4_MAX)
2507 goto VarNumFromParseNum_DecOverflow;
2508 multiplier10--;
2510 DEC_SCALE(pDec) = divisor10;
2512 V_VT(pVarDst) = VT_DECIMAL;
2513 return S_OK;
2515 return DISP_E_OVERFLOW; /* No more output choices */
2518 /**********************************************************************
2519 * VarCat [OLEAUT32.318]
2521 * Concatenates one variant onto another.
2523 * PARAMS
2524 * left [I] First variant
2525 * right [I] Second variant
2526 * result [O] Result variant
2528 * RETURNS
2529 * Success: S_OK.
2530 * Failure: An HRESULT error code indicating the error.
2532 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2534 VARTYPE leftvt,rightvt,resultvt;
2535 HRESULT hres;
2536 static WCHAR str_true[32];
2537 static WCHAR str_false[32];
2538 static const WCHAR sz_empty[] = {'\0'};
2539 leftvt = V_VT(left);
2540 rightvt = V_VT(right);
2542 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2543 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
2545 if (!str_true[0]) {
2546 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2547 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2550 /* when both left and right are NULL the result is NULL */
2551 if (leftvt == VT_NULL && rightvt == VT_NULL)
2553 V_VT(out) = VT_NULL;
2554 return S_OK;
2557 hres = S_OK;
2558 resultvt = VT_EMPTY;
2560 /* There are many special case for errors and return types */
2561 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2562 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2563 hres = DISP_E_TYPEMISMATCH;
2564 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2565 leftvt == VT_R4 || leftvt == VT_R8 ||
2566 leftvt == VT_CY || leftvt == VT_BOOL ||
2567 leftvt == VT_BSTR || leftvt == VT_I1 ||
2568 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2569 leftvt == VT_UI4 || leftvt == VT_I8 ||
2570 leftvt == VT_UI8 || leftvt == VT_INT ||
2571 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2572 leftvt == VT_NULL || leftvt == VT_DATE ||
2573 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2575 (rightvt == VT_I2 || rightvt == VT_I4 ||
2576 rightvt == VT_R4 || rightvt == VT_R8 ||
2577 rightvt == VT_CY || rightvt == VT_BOOL ||
2578 rightvt == VT_BSTR || rightvt == VT_I1 ||
2579 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2580 rightvt == VT_UI4 || rightvt == VT_I8 ||
2581 rightvt == VT_UI8 || rightvt == VT_INT ||
2582 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2583 rightvt == VT_NULL || rightvt == VT_DATE ||
2584 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2585 resultvt = VT_BSTR;
2586 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2587 hres = DISP_E_TYPEMISMATCH;
2588 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2589 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2590 hres = DISP_E_TYPEMISMATCH;
2591 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2592 rightvt == VT_DECIMAL)
2593 hres = DISP_E_BADVARTYPE;
2594 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2595 hres = DISP_E_TYPEMISMATCH;
2596 else if (leftvt == VT_VARIANT)
2597 hres = DISP_E_TYPEMISMATCH;
2598 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2599 leftvt == VT_NULL || leftvt == VT_I2 ||
2600 leftvt == VT_I4 || leftvt == VT_R4 ||
2601 leftvt == VT_R8 || leftvt == VT_CY ||
2602 leftvt == VT_DATE || leftvt == VT_BSTR ||
2603 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2604 leftvt == VT_I1 || leftvt == VT_UI1 ||
2605 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2606 leftvt == VT_I8 || leftvt == VT_UI8 ||
2607 leftvt == VT_INT || leftvt == VT_UINT))
2608 hres = DISP_E_TYPEMISMATCH;
2609 else
2610 hres = DISP_E_BADVARTYPE;
2612 /* if result type is not S_OK, then no need to go further */
2613 if (hres != S_OK)
2615 V_VT(out) = resultvt;
2616 return hres;
2618 /* Else proceed with formatting inputs to strings */
2619 else
2621 VARIANT bstrvar_left, bstrvar_right;
2622 V_VT(out) = VT_BSTR;
2624 VariantInit(&bstrvar_left);
2625 VariantInit(&bstrvar_right);
2627 /* Convert left side variant to string */
2628 if (leftvt != VT_BSTR)
2630 if (leftvt == VT_BOOL)
2632 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2633 V_VT(&bstrvar_left) = VT_BSTR;
2634 if (V_BOOL(left))
2635 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2636 else
2637 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2639 /* Fill with empty string for later concat with right side */
2640 else if (leftvt == VT_NULL)
2642 V_VT(&bstrvar_left) = VT_BSTR;
2643 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2645 else
2647 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2648 if (hres != S_OK) {
2649 VariantClear(&bstrvar_left);
2650 VariantClear(&bstrvar_right);
2651 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2652 rightvt == VT_NULL || rightvt == VT_I2 ||
2653 rightvt == VT_I4 || rightvt == VT_R4 ||
2654 rightvt == VT_R8 || rightvt == VT_CY ||
2655 rightvt == VT_DATE || rightvt == VT_BSTR ||
2656 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2657 rightvt == VT_I1 || rightvt == VT_UI1 ||
2658 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2659 rightvt == VT_I8 || rightvt == VT_UI8 ||
2660 rightvt == VT_INT || rightvt == VT_UINT))
2661 return DISP_E_BADVARTYPE;
2662 return hres;
2667 /* convert right side variant to string */
2668 if (rightvt != VT_BSTR)
2670 if (rightvt == VT_BOOL)
2672 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2673 V_VT(&bstrvar_right) = VT_BSTR;
2674 if (V_BOOL(right))
2675 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2676 else
2677 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2679 /* Fill with empty string for later concat with right side */
2680 else if (rightvt == VT_NULL)
2682 V_VT(&bstrvar_right) = VT_BSTR;
2683 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2685 else
2687 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2688 if (hres != S_OK) {
2689 VariantClear(&bstrvar_left);
2690 VariantClear(&bstrvar_right);
2691 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2692 leftvt == VT_NULL || leftvt == VT_I2 ||
2693 leftvt == VT_I4 || leftvt == VT_R4 ||
2694 leftvt == VT_R8 || leftvt == VT_CY ||
2695 leftvt == VT_DATE || leftvt == VT_BSTR ||
2696 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2697 leftvt == VT_I1 || leftvt == VT_UI1 ||
2698 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2699 leftvt == VT_I8 || leftvt == VT_UI8 ||
2700 leftvt == VT_INT || leftvt == VT_UINT))
2701 return DISP_E_BADVARTYPE;
2702 return hres;
2707 /* Concat the resulting strings together */
2708 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2709 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2710 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2711 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2712 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2713 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2714 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2715 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2717 VariantClear(&bstrvar_left);
2718 VariantClear(&bstrvar_right);
2719 return S_OK;
2724 /* Wrapper around VariantChangeTypeEx() which permits changing a
2725 variant with VT_RESERVED flag set. Needed by VarCmp. */
2726 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2727 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2729 VARIANTARG vtmpsrc = *pvargSrc;
2731 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2732 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2735 /**********************************************************************
2736 * VarCmp [OLEAUT32.176]
2738 * Compare two variants.
2740 * PARAMS
2741 * left [I] First variant
2742 * right [I] Second variant
2743 * lcid [I] LCID (locale identifier) for the comparison
2744 * flags [I] Flags to be used in the comparison:
2745 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2746 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2748 * RETURNS
2749 * VARCMP_LT: left variant is less than right variant.
2750 * VARCMP_EQ: input variants are equal.
2751 * VARCMP_GT: left variant is greater than right variant.
2752 * VARCMP_NULL: either one of the input variants is NULL.
2753 * Failure: An HRESULT error code indicating the error.
2755 * NOTES
2756 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2757 * UI8 and UINT as input variants. INT is accepted only as left variant.
2759 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2760 * an ERROR variant will trigger an error.
2762 * Both input variants can have VT_RESERVED flag set which is ignored
2763 * unless one and only one of the variants is a BSTR and the other one
2764 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2765 * different meaning:
2766 * - BSTR and other: BSTR is always greater than the other variant.
2767 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2768 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2769 * comparison will take place else the BSTR is always greater.
2770 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2771 * variant is ignored and the return value depends only on the sign
2772 * of the BSTR if it is a number else the BSTR is always greater. A
2773 * positive BSTR is greater, a negative one is smaller than the other
2774 * variant.
2776 * SEE
2777 * VarBstrCmp for the lcid and flags usage.
2779 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2781 VARTYPE lvt, rvt, vt;
2782 VARIANT rv,lv;
2783 DWORD xmask;
2784 HRESULT rc;
2786 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%08x)\n", left, debugstr_VT(left),
2787 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
2789 lvt = V_VT(left) & VT_TYPEMASK;
2790 rvt = V_VT(right) & VT_TYPEMASK;
2791 xmask = (1 << lvt) | (1 << rvt);
2793 /* If we have any flag set except VT_RESERVED bail out.
2794 Same for the left input variant type > VT_INT and for the
2795 right input variant type > VT_I8. Yes, VT_INT is only supported
2796 as left variant. Go figure */
2797 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2798 lvt > VT_INT || rvt > VT_I8) {
2799 return DISP_E_BADVARTYPE;
2802 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2803 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2804 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2805 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2806 return DISP_E_TYPEMISMATCH;
2808 /* If both variants are VT_ERROR return VARCMP_EQ */
2809 if (xmask == VTBIT_ERROR)
2810 return VARCMP_EQ;
2811 else if (xmask & VTBIT_ERROR)
2812 return DISP_E_TYPEMISMATCH;
2814 if (xmask & VTBIT_NULL)
2815 return VARCMP_NULL;
2817 VariantInit(&lv);
2818 VariantInit(&rv);
2820 /* Two BSTRs, ignore VT_RESERVED */
2821 if (xmask == VTBIT_BSTR)
2822 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2824 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2825 if (xmask & VTBIT_BSTR) {
2826 VARIANT *bstrv, *nonbv;
2827 VARTYPE nonbvt;
2828 int swap = 0;
2830 /* Swap the variants so the BSTR is always on the left */
2831 if (lvt == VT_BSTR) {
2832 bstrv = left;
2833 nonbv = right;
2834 nonbvt = rvt;
2835 } else {
2836 swap = 1;
2837 bstrv = right;
2838 nonbv = left;
2839 nonbvt = lvt;
2842 /* BSTR and EMPTY: ignore VT_RESERVED */
2843 if (nonbvt == VT_EMPTY)
2844 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2845 else {
2846 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2847 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2849 if (!breserv && !nreserv)
2850 /* No VT_RESERVED set ==> BSTR always greater */
2851 rc = VARCMP_GT;
2852 else if (breserv && !nreserv) {
2853 /* BSTR has VT_RESERVED set. Do a string comparison */
2854 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2855 if (FAILED(rc))
2856 return rc;
2857 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2858 VariantClear(&rv);
2859 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2860 /* Non NULL nor empty BSTR */
2861 /* If the BSTR is not a number the BSTR is greater */
2862 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2863 if (FAILED(rc))
2864 rc = VARCMP_GT;
2865 else if (breserv && nreserv)
2866 /* FIXME: This is strange: with both VT_RESERVED set it
2867 looks like the result depends only on the sign of
2868 the BSTR number */
2869 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2870 else
2871 /* Numeric comparison, will be handled below.
2872 VARCMP_NULL used only to break out. */
2873 rc = VARCMP_NULL;
2874 VariantClear(&lv);
2875 VariantClear(&rv);
2876 } else
2877 /* Empty or NULL BSTR */
2878 rc = VARCMP_GT;
2880 /* Fixup the return code if we swapped left and right */
2881 if (swap) {
2882 if (rc == VARCMP_GT)
2883 rc = VARCMP_LT;
2884 else if (rc == VARCMP_LT)
2885 rc = VARCMP_GT;
2887 if (rc != VARCMP_NULL)
2888 return rc;
2891 if (xmask & VTBIT_DECIMAL)
2892 vt = VT_DECIMAL;
2893 else if (xmask & VTBIT_BSTR)
2894 vt = VT_R8;
2895 else if (xmask & VTBIT_R4)
2896 vt = VT_R4;
2897 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2898 vt = VT_R8;
2899 else if (xmask & VTBIT_CY)
2900 vt = VT_CY;
2901 else
2902 /* default to I8 */
2903 vt = VT_I8;
2905 /* Coerce the variants */
2906 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2907 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2908 /* Overflow, change to R8 */
2909 vt = VT_R8;
2910 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2912 if (FAILED(rc))
2913 return rc;
2914 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2915 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2916 /* Overflow, change to R8 */
2917 vt = VT_R8;
2918 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2919 if (FAILED(rc))
2920 return rc;
2921 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2923 if (FAILED(rc))
2924 return rc;
2926 #define _VARCMP(a,b) \
2927 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2929 switch (vt) {
2930 case VT_CY:
2931 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2932 case VT_DECIMAL:
2933 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2934 case VT_I8:
2935 return _VARCMP(V_I8(&lv), V_I8(&rv));
2936 case VT_R4:
2937 return _VARCMP(V_R4(&lv), V_R4(&rv));
2938 case VT_R8:
2939 return _VARCMP(V_R8(&lv), V_R8(&rv));
2940 default:
2941 /* We should never get here */
2942 return E_FAIL;
2944 #undef _VARCMP
2947 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
2949 HRESULT hres;
2950 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
2952 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
2953 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
2954 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
2955 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
2956 NULL, NULL);
2957 } else {
2958 hres = DISP_E_TYPEMISMATCH;
2960 return hres;
2963 /**********************************************************************
2964 * VarAnd [OLEAUT32.142]
2966 * Computes the logical AND of two variants.
2968 * PARAMS
2969 * left [I] First variant
2970 * right [I] Second variant
2971 * result [O] Result variant
2973 * RETURNS
2974 * Success: S_OK.
2975 * Failure: An HRESULT error code indicating the error.
2977 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2979 HRESULT hres = S_OK;
2980 VARTYPE resvt = VT_EMPTY;
2981 VARTYPE leftvt,rightvt;
2982 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2983 VARIANT varLeft, varRight;
2984 VARIANT tempLeft, tempRight;
2986 VariantInit(&varLeft);
2987 VariantInit(&varRight);
2988 VariantInit(&tempLeft);
2989 VariantInit(&tempRight);
2991 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2992 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2994 /* Handle VT_DISPATCH by storing and taking address of returned value */
2995 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2997 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2998 if (FAILED(hres)) goto VarAnd_Exit;
2999 left = &tempLeft;
3001 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3003 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3004 if (FAILED(hres)) goto VarAnd_Exit;
3005 right = &tempRight;
3008 leftvt = V_VT(left)&VT_TYPEMASK;
3009 rightvt = V_VT(right)&VT_TYPEMASK;
3010 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3011 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3013 if (leftExtraFlags != rightExtraFlags)
3015 hres = DISP_E_BADVARTYPE;
3016 goto VarAnd_Exit;
3018 ExtraFlags = leftExtraFlags;
3020 /* Native VarAnd always returns an error when using extra
3021 * flags or if the variant combination is I8 and INT.
3023 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
3024 (leftvt == VT_INT && rightvt == VT_I8) ||
3025 ExtraFlags != 0)
3027 hres = DISP_E_BADVARTYPE;
3028 goto VarAnd_Exit;
3031 /* Determine return type */
3032 else if (leftvt == VT_I8 || rightvt == VT_I8)
3033 resvt = VT_I8;
3034 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
3035 leftvt == VT_UINT || rightvt == VT_UINT ||
3036 leftvt == VT_INT || rightvt == VT_INT ||
3037 leftvt == VT_UINT || rightvt == VT_UINT ||
3038 leftvt == VT_R4 || rightvt == VT_R4 ||
3039 leftvt == VT_R8 || rightvt == VT_R8 ||
3040 leftvt == VT_CY || rightvt == VT_CY ||
3041 leftvt == VT_DATE || rightvt == VT_DATE ||
3042 leftvt == VT_I1 || rightvt == VT_I1 ||
3043 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3044 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3045 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3046 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3047 resvt = VT_I4;
3048 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3049 leftvt == VT_I2 || rightvt == VT_I2 ||
3050 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3051 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3052 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3053 (leftvt == VT_UI1 && rightvt == VT_UI1))
3054 resvt = VT_UI1;
3055 else
3056 resvt = VT_I2;
3057 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3058 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3059 resvt = VT_BOOL;
3060 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3061 leftvt == VT_BSTR || rightvt == VT_BSTR)
3062 resvt = VT_NULL;
3063 else
3065 hres = DISP_E_BADVARTYPE;
3066 goto VarAnd_Exit;
3069 if (leftvt == VT_NULL || rightvt == VT_NULL)
3072 * Special cases for when left variant is VT_NULL
3073 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3075 if (leftvt == VT_NULL)
3077 VARIANT_BOOL b;
3078 switch(rightvt)
3080 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3081 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3082 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3083 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3084 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3085 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3086 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3087 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3088 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3089 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3090 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3091 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3092 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3093 case VT_CY:
3094 if(V_CY(right).int64)
3095 resvt = VT_NULL;
3096 break;
3097 case VT_DECIMAL:
3098 if (DEC_HI32(&V_DECIMAL(right)) ||
3099 DEC_LO64(&V_DECIMAL(right)))
3100 resvt = VT_NULL;
3101 break;
3102 case VT_BSTR:
3103 hres = VarBoolFromStr(V_BSTR(right),
3104 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3105 if (FAILED(hres))
3106 return hres;
3107 else if (b)
3108 V_VT(result) = VT_NULL;
3109 else
3111 V_VT(result) = VT_BOOL;
3112 V_BOOL(result) = b;
3114 goto VarAnd_Exit;
3117 V_VT(result) = resvt;
3118 goto VarAnd_Exit;
3121 hres = VariantCopy(&varLeft, left);
3122 if (FAILED(hres)) goto VarAnd_Exit;
3124 hres = VariantCopy(&varRight, right);
3125 if (FAILED(hres)) goto VarAnd_Exit;
3127 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3128 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3129 else
3131 double d;
3133 if (V_VT(&varLeft) == VT_BSTR &&
3134 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3135 LOCALE_USER_DEFAULT, 0, &d)))
3136 hres = VariantChangeType(&varLeft,&varLeft,
3137 VARIANT_LOCALBOOL, VT_BOOL);
3138 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3139 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3140 if (FAILED(hres)) goto VarAnd_Exit;
3143 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3144 V_VT(&varRight) = VT_I4; /* Don't overflow */
3145 else
3147 double d;
3149 if (V_VT(&varRight) == VT_BSTR &&
3150 FAILED(VarR8FromStr(V_BSTR(&varRight),
3151 LOCALE_USER_DEFAULT, 0, &d)))
3152 hres = VariantChangeType(&varRight, &varRight,
3153 VARIANT_LOCALBOOL, VT_BOOL);
3154 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3155 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3156 if (FAILED(hres)) goto VarAnd_Exit;
3159 V_VT(result) = resvt;
3160 switch(resvt)
3162 case VT_I8:
3163 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3164 break;
3165 case VT_I4:
3166 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3167 break;
3168 case VT_I2:
3169 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3170 break;
3171 case VT_UI1:
3172 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3173 break;
3174 case VT_BOOL:
3175 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3176 break;
3177 default:
3178 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3179 leftvt,rightvt);
3182 VarAnd_Exit:
3183 VariantClear(&varLeft);
3184 VariantClear(&varRight);
3185 VariantClear(&tempLeft);
3186 VariantClear(&tempRight);
3188 return hres;
3191 /**********************************************************************
3192 * VarAdd [OLEAUT32.141]
3194 * Add two variants.
3196 * PARAMS
3197 * left [I] First variant
3198 * right [I] Second variant
3199 * result [O] Result variant
3201 * RETURNS
3202 * Success: S_OK.
3203 * Failure: An HRESULT error code indicating the error.
3205 * NOTES
3206 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3207 * UI8, INT and UINT as input variants.
3209 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3210 * same here.
3212 * FIXME
3213 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3214 * case.
3216 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3218 HRESULT hres;
3219 VARTYPE lvt, rvt, resvt, tvt;
3220 VARIANT lv, rv, tv;
3221 VARIANT tempLeft, tempRight;
3222 double r8res;
3224 /* Variant priority for coercion. Sorted from lowest to highest.
3225 VT_ERROR shows an invalid input variant type. */
3226 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3227 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3228 vt_ERROR };
3229 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3230 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3231 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3232 VT_NULL, VT_ERROR };
3234 /* Mapping for coercion from input variant to priority of result variant. */
3235 static const VARTYPE coerce[] = {
3236 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3237 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3238 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3239 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3240 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3241 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3242 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3243 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3246 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3247 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
3248 result);
3250 VariantInit(&lv);
3251 VariantInit(&rv);
3252 VariantInit(&tv);
3253 VariantInit(&tempLeft);
3254 VariantInit(&tempRight);
3256 /* Handle VT_DISPATCH by storing and taking address of returned value */
3257 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3259 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3261 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3262 if (FAILED(hres)) goto end;
3263 left = &tempLeft;
3265 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3267 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3268 if (FAILED(hres)) goto end;
3269 right = &tempRight;
3273 lvt = V_VT(left)&VT_TYPEMASK;
3274 rvt = V_VT(right)&VT_TYPEMASK;
3276 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3277 Same for any input variant type > VT_I8 */
3278 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3279 lvt > VT_I8 || rvt > VT_I8) {
3280 hres = DISP_E_BADVARTYPE;
3281 goto end;
3284 /* Determine the variant type to coerce to. */
3285 if (coerce[lvt] > coerce[rvt]) {
3286 resvt = prio2vt[coerce[lvt]];
3287 tvt = prio2vt[coerce[rvt]];
3288 } else {
3289 resvt = prio2vt[coerce[rvt]];
3290 tvt = prio2vt[coerce[lvt]];
3293 /* Special cases where the result variant type is defined by both
3294 input variants and not only that with the highest priority */
3295 if (resvt == VT_BSTR) {
3296 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3297 resvt = VT_BSTR;
3298 else
3299 resvt = VT_R8;
3301 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3302 resvt = VT_R8;
3304 /* For overflow detection use the biggest compatible type for the
3305 addition */
3306 switch (resvt) {
3307 case VT_ERROR:
3308 hres = DISP_E_BADVARTYPE;
3309 goto end;
3310 case VT_NULL:
3311 hres = S_OK;
3312 V_VT(result) = VT_NULL;
3313 goto end;
3314 case VT_DISPATCH:
3315 FIXME("cannot handle variant type VT_DISPATCH\n");
3316 hres = DISP_E_TYPEMISMATCH;
3317 goto end;
3318 case VT_EMPTY:
3319 resvt = VT_I2;
3320 /* Fall through */
3321 case VT_UI1:
3322 case VT_I2:
3323 case VT_I4:
3324 case VT_I8:
3325 tvt = VT_I8;
3326 break;
3327 case VT_DATE:
3328 case VT_R4:
3329 tvt = VT_R8;
3330 break;
3331 default:
3332 tvt = resvt;
3335 /* Now coerce the variants */
3336 hres = VariantChangeType(&lv, left, 0, tvt);
3337 if (FAILED(hres))
3338 goto end;
3339 hres = VariantChangeType(&rv, right, 0, tvt);
3340 if (FAILED(hres))
3341 goto end;
3343 /* Do the math */
3344 hres = S_OK;
3345 V_VT(result) = resvt;
3346 switch (tvt) {
3347 case VT_DECIMAL:
3348 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3349 &V_DECIMAL(result));
3350 goto end;
3351 case VT_CY:
3352 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3353 goto end;
3354 case VT_BSTR:
3355 /* We do not add those, we concatenate them. */
3356 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3357 goto end;
3358 case VT_I8:
3359 /* Overflow detection */
3360 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3361 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3362 V_VT(result) = VT_R8;
3363 V_R8(result) = r8res;
3364 goto end;
3365 } else {
3366 V_VT(&tv) = tvt;
3367 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3369 break;
3370 case VT_R8:
3371 V_VT(&tv) = tvt;
3372 /* FIXME: overflow detection */
3373 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3374 break;
3375 default:
3376 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3377 break;
3379 if (resvt != tvt) {
3380 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3381 /* Overflow! Change to the vartype with the next higher priority.
3382 With one exception: I4 ==> R8 even if it would fit in I8 */
3383 if (resvt == VT_I4)
3384 resvt = VT_R8;
3385 else
3386 resvt = prio2vt[coerce[resvt] + 1];
3387 hres = VariantChangeType(result, &tv, 0, resvt);
3389 } else
3390 hres = VariantCopy(result, &tv);
3392 end:
3393 if (hres != S_OK) {
3394 V_VT(result) = VT_EMPTY;
3395 V_I4(result) = 0; /* No V_EMPTY */
3397 VariantClear(&lv);
3398 VariantClear(&rv);
3399 VariantClear(&tv);
3400 VariantClear(&tempLeft);
3401 VariantClear(&tempRight);
3402 TRACE("returning 0x%8x (variant type %s)\n", hres, debugstr_VT(result));
3403 return hres;
3406 /**********************************************************************
3407 * VarMul [OLEAUT32.156]
3409 * Multiply two variants.
3411 * PARAMS
3412 * left [I] First variant
3413 * right [I] Second variant
3414 * result [O] Result variant
3416 * RETURNS
3417 * Success: S_OK.
3418 * Failure: An HRESULT error code indicating the error.
3420 * NOTES
3421 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3422 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3424 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3425 * same here.
3427 * FIXME
3428 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3429 * case.
3431 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3433 HRESULT hres;
3434 VARTYPE lvt, rvt, resvt, tvt;
3435 VARIANT lv, rv, tv;
3436 VARIANT tempLeft, tempRight;
3437 double r8res;
3439 /* Variant priority for coercion. Sorted from lowest to highest.
3440 VT_ERROR shows an invalid input variant type. */
3441 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3442 vt_DECIMAL, vt_NULL, vt_ERROR };
3443 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3444 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3445 VT_DECIMAL, VT_NULL, VT_ERROR };
3447 /* Mapping for coercion from input variant to priority of result variant. */
3448 static const VARTYPE coerce[] = {
3449 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3450 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3451 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3452 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3453 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3454 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3455 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3456 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3459 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3460 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right),
3461 result);
3463 VariantInit(&lv);
3464 VariantInit(&rv);
3465 VariantInit(&tv);
3466 VariantInit(&tempLeft);
3467 VariantInit(&tempRight);
3469 /* Handle VT_DISPATCH by storing and taking address of returned value */
3470 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3472 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3473 if (FAILED(hres)) goto end;
3474 left = &tempLeft;
3476 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3478 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3479 if (FAILED(hres)) goto end;
3480 right = &tempRight;
3483 lvt = V_VT(left)&VT_TYPEMASK;
3484 rvt = V_VT(right)&VT_TYPEMASK;
3486 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3487 Same for any input variant type > VT_I8 */
3488 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3489 lvt > VT_I8 || rvt > VT_I8) {
3490 hres = DISP_E_BADVARTYPE;
3491 goto end;
3494 /* Determine the variant type to coerce to. */
3495 if (coerce[lvt] > coerce[rvt]) {
3496 resvt = prio2vt[coerce[lvt]];
3497 tvt = prio2vt[coerce[rvt]];
3498 } else {
3499 resvt = prio2vt[coerce[rvt]];
3500 tvt = prio2vt[coerce[lvt]];
3503 /* Special cases where the result variant type is defined by both
3504 input variants and not only that with the highest priority */
3505 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3506 resvt = VT_R8;
3507 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3508 resvt = VT_I2;
3510 /* For overflow detection use the biggest compatible type for the
3511 multiplication */
3512 switch (resvt) {
3513 case VT_ERROR:
3514 hres = DISP_E_BADVARTYPE;
3515 goto end;
3516 case VT_NULL:
3517 hres = S_OK;
3518 V_VT(result) = VT_NULL;
3519 goto end;
3520 case VT_UI1:
3521 case VT_I2:
3522 case VT_I4:
3523 case VT_I8:
3524 tvt = VT_I8;
3525 break;
3526 case VT_R4:
3527 tvt = VT_R8;
3528 break;
3529 default:
3530 tvt = resvt;
3533 /* Now coerce the variants */
3534 hres = VariantChangeType(&lv, left, 0, tvt);
3535 if (FAILED(hres))
3536 goto end;
3537 hres = VariantChangeType(&rv, right, 0, tvt);
3538 if (FAILED(hres))
3539 goto end;
3541 /* Do the math */
3542 hres = S_OK;
3543 V_VT(&tv) = tvt;
3544 V_VT(result) = resvt;
3545 switch (tvt) {
3546 case VT_DECIMAL:
3547 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3548 &V_DECIMAL(result));
3549 goto end;
3550 case VT_CY:
3551 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3552 goto end;
3553 case VT_I8:
3554 /* Overflow detection */
3555 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3556 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3557 V_VT(result) = VT_R8;
3558 V_R8(result) = r8res;
3559 goto end;
3560 } else
3561 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3562 break;
3563 case VT_R8:
3564 /* FIXME: overflow detection */
3565 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3566 break;
3567 default:
3568 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3569 break;
3571 if (resvt != tvt) {
3572 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3573 /* Overflow! Change to the vartype with the next higher priority.
3574 With one exception: I4 ==> R8 even if it would fit in I8 */
3575 if (resvt == VT_I4)
3576 resvt = VT_R8;
3577 else
3578 resvt = prio2vt[coerce[resvt] + 1];
3580 } else
3581 hres = VariantCopy(result, &tv);
3583 end:
3584 if (hres != S_OK) {
3585 V_VT(result) = VT_EMPTY;
3586 V_I4(result) = 0; /* No V_EMPTY */
3588 VariantClear(&lv);
3589 VariantClear(&rv);
3590 VariantClear(&tv);
3591 VariantClear(&tempLeft);
3592 VariantClear(&tempRight);
3593 TRACE("returning 0x%8x (variant type %s)\n", hres, debugstr_VT(result));
3594 return hres;
3597 /**********************************************************************
3598 * VarDiv [OLEAUT32.143]
3600 * Divides one variant with another.
3602 * PARAMS
3603 * left [I] First variant
3604 * right [I] Second variant
3605 * result [O] Result variant
3607 * RETURNS
3608 * Success: S_OK.
3609 * Failure: An HRESULT error code indicating the error.
3611 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3613 HRESULT hres = S_OK;
3614 VARTYPE resvt = VT_EMPTY;
3615 VARTYPE leftvt,rightvt;
3616 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3617 VARIANT lv,rv;
3618 VARIANT tempLeft, tempRight;
3620 VariantInit(&tempLeft);
3621 VariantInit(&tempRight);
3622 VariantInit(&lv);
3623 VariantInit(&rv);
3625 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3626 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3628 /* Handle VT_DISPATCH by storing and taking address of returned value */
3629 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3631 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3632 if (FAILED(hres)) goto end;
3633 left = &tempLeft;
3635 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3637 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3638 if (FAILED(hres)) goto end;
3639 right = &tempRight;
3642 leftvt = V_VT(left)&VT_TYPEMASK;
3643 rightvt = V_VT(right)&VT_TYPEMASK;
3644 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3645 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3647 if (leftExtraFlags != rightExtraFlags)
3649 hres = DISP_E_BADVARTYPE;
3650 goto end;
3652 ExtraFlags = leftExtraFlags;
3654 /* Native VarDiv always returns an error when using extra flags */
3655 if (ExtraFlags != 0)
3657 hres = DISP_E_BADVARTYPE;
3658 goto end;
3661 /* Determine return type */
3662 if (!(rightvt == VT_EMPTY))
3664 if (leftvt == VT_NULL || rightvt == VT_NULL)
3666 V_VT(result) = VT_NULL;
3667 hres = S_OK;
3668 goto end;
3670 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3671 resvt = VT_DECIMAL;
3672 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3673 leftvt == VT_CY || rightvt == VT_CY ||
3674 leftvt == VT_DATE || rightvt == VT_DATE ||
3675 leftvt == VT_I4 || rightvt == VT_I4 ||
3676 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3677 leftvt == VT_I2 || rightvt == VT_I2 ||
3678 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3679 leftvt == VT_R8 || rightvt == VT_R8 ||
3680 leftvt == VT_UI1 || rightvt == VT_UI1)
3682 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3683 (leftvt == VT_R4 && rightvt == VT_UI1))
3684 resvt = VT_R4;
3685 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3686 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3687 (leftvt == VT_BOOL || leftvt == VT_I2)))
3688 resvt = VT_R4;
3689 else
3690 resvt = VT_R8;
3692 else if (leftvt == VT_R4 || rightvt == VT_R4)
3693 resvt = VT_R4;
3695 else if (leftvt == VT_NULL && rightvt == VT_EMPTY)
3697 V_VT(result) = VT_NULL;
3698 hres = S_OK;
3699 goto end;
3701 else
3703 hres = DISP_E_BADVARTYPE;
3704 goto end;
3707 /* coerce to the result type */
3708 hres = VariantChangeType(&lv, left, 0, resvt);
3709 if (hres != S_OK) goto end;
3711 hres = VariantChangeType(&rv, right, 0, resvt);
3712 if (hres != S_OK) goto end;
3714 /* do the math */
3715 V_VT(result) = resvt;
3716 switch (resvt)
3718 case VT_R4:
3719 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3721 hres = DISP_E_OVERFLOW;
3722 V_VT(result) = VT_EMPTY;
3724 else if (V_R4(&rv) == 0.0)
3726 hres = DISP_E_DIVBYZERO;
3727 V_VT(result) = VT_EMPTY;
3729 else
3730 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3731 break;
3732 case VT_R8:
3733 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3735 hres = DISP_E_OVERFLOW;
3736 V_VT(result) = VT_EMPTY;
3738 else if (V_R8(&rv) == 0.0)
3740 hres = DISP_E_DIVBYZERO;
3741 V_VT(result) = VT_EMPTY;
3743 else
3744 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3745 break;
3746 case VT_DECIMAL:
3747 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3748 break;
3751 end:
3752 VariantClear(&lv);
3753 VariantClear(&rv);
3754 VariantClear(&tempLeft);
3755 VariantClear(&tempRight);
3756 TRACE("returning 0x%8x (variant type %s)\n", hres, debugstr_VT(result));
3757 return hres;
3760 /**********************************************************************
3761 * VarSub [OLEAUT32.159]
3763 * Subtract two variants.
3765 * PARAMS
3766 * left [I] First variant
3767 * right [I] Second variant
3768 * result [O] Result variant
3770 * RETURNS
3771 * Success: S_OK.
3772 * Failure: An HRESULT error code indicating the error.
3774 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3776 HRESULT hres = S_OK;
3777 VARTYPE resvt = VT_EMPTY;
3778 VARTYPE leftvt,rightvt;
3779 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3780 VARIANT lv,rv;
3781 VARIANT tempLeft, tempRight;
3783 VariantInit(&lv);
3784 VariantInit(&rv);
3785 VariantInit(&tempLeft);
3786 VariantInit(&tempRight);
3788 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3789 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3791 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3792 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3793 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3795 if (NULL == V_DISPATCH(left)) {
3796 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3797 hres = DISP_E_BADVARTYPE;
3798 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3799 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3800 hres = DISP_E_BADVARTYPE;
3801 else switch (V_VT(right) & VT_TYPEMASK)
3803 case VT_VARIANT:
3804 case VT_UNKNOWN:
3805 case 15:
3806 case VT_I1:
3807 case VT_UI2:
3808 case VT_UI4:
3809 hres = DISP_E_BADVARTYPE;
3811 if (FAILED(hres)) goto end;
3813 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3814 if (FAILED(hres)) goto end;
3815 left = &tempLeft;
3817 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3818 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3819 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3821 if (NULL == V_DISPATCH(right))
3823 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3824 hres = DISP_E_BADVARTYPE;
3825 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3826 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3827 hres = DISP_E_BADVARTYPE;
3828 else switch (V_VT(left) & VT_TYPEMASK)
3830 case VT_VARIANT:
3831 case VT_UNKNOWN:
3832 case 15:
3833 case VT_I1:
3834 case VT_UI2:
3835 case VT_UI4:
3836 hres = DISP_E_BADVARTYPE;
3838 if (FAILED(hres)) goto end;
3840 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3841 if (FAILED(hres)) goto end;
3842 right = &tempRight;
3845 leftvt = V_VT(left)&VT_TYPEMASK;
3846 rightvt = V_VT(right)&VT_TYPEMASK;
3847 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3848 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3850 if (leftExtraFlags != rightExtraFlags)
3852 hres = DISP_E_BADVARTYPE;
3853 goto end;
3855 ExtraFlags = leftExtraFlags;
3857 /* determine return type and return code */
3858 /* All extra flags produce errors */
3859 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3860 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3861 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3862 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3863 ExtraFlags == VT_VECTOR ||
3864 ExtraFlags == VT_BYREF ||
3865 ExtraFlags == VT_RESERVED)
3867 hres = DISP_E_BADVARTYPE;
3868 goto end;
3870 else if (ExtraFlags >= VT_ARRAY)
3872 hres = DISP_E_TYPEMISMATCH;
3873 goto end;
3875 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3876 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3877 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3878 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3879 leftvt == VT_I1 || rightvt == VT_I1 ||
3880 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3881 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3882 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3883 leftvt == VT_INT || rightvt == VT_INT ||
3884 leftvt == VT_UINT || rightvt == VT_UINT ||
3885 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3886 leftvt == VT_RECORD || rightvt == VT_RECORD)
3888 if (leftvt == VT_RECORD && rightvt == VT_I8)
3889 hres = DISP_E_TYPEMISMATCH;
3890 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3891 hres = DISP_E_TYPEMISMATCH;
3892 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3893 hres = DISP_E_TYPEMISMATCH;
3894 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3895 hres = DISP_E_TYPEMISMATCH;
3896 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3897 hres = DISP_E_BADVARTYPE;
3898 else
3899 hres = DISP_E_BADVARTYPE;
3900 goto end;
3902 /* The following flags/types are invalid for left variant */
3903 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3904 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3905 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3907 hres = DISP_E_BADVARTYPE;
3908 goto end;
3910 /* The following flags/types are invalid for right variant */
3911 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3912 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3913 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3915 hres = DISP_E_BADVARTYPE;
3916 goto end;
3918 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3919 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3920 resvt = VT_NULL;
3921 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3922 leftvt == VT_ERROR || rightvt == VT_ERROR)
3924 hres = DISP_E_TYPEMISMATCH;
3925 goto end;
3927 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3928 resvt = VT_NULL;
3929 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3930 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3931 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3932 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3933 resvt = VT_R8;
3934 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3935 resvt = VT_DECIMAL;
3936 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3937 resvt = VT_DATE;
3938 else if (leftvt == VT_CY || rightvt == VT_CY)
3939 resvt = VT_CY;
3940 else if (leftvt == VT_R8 || rightvt == VT_R8)
3941 resvt = VT_R8;
3942 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3943 resvt = VT_R8;
3944 else if (leftvt == VT_R4 || rightvt == VT_R4)
3946 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3947 leftvt == VT_I8 || rightvt == VT_I8)
3948 resvt = VT_R8;
3949 else
3950 resvt = VT_R4;
3952 else if (leftvt == VT_I8 || rightvt == VT_I8)
3953 resvt = VT_I8;
3954 else if (leftvt == VT_I4 || rightvt == VT_I4)
3955 resvt = VT_I4;
3956 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3957 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3958 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3959 resvt = VT_I2;
3960 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3961 resvt = VT_UI1;
3962 else
3964 hres = DISP_E_TYPEMISMATCH;
3965 goto end;
3968 /* coerce to the result type */
3969 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3970 hres = VariantChangeType(&lv, left, 0, VT_R8);
3971 else
3972 hres = VariantChangeType(&lv, left, 0, resvt);
3973 if (hres != S_OK) goto end;
3974 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3975 hres = VariantChangeType(&rv, right, 0, VT_R8);
3976 else
3977 hres = VariantChangeType(&rv, right, 0, resvt);
3978 if (hres != S_OK) goto end;
3980 /* do the math */
3981 V_VT(result) = resvt;
3982 switch (resvt)
3984 case VT_NULL:
3985 break;
3986 case VT_DATE:
3987 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3988 break;
3989 case VT_CY:
3990 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3991 break;
3992 case VT_R4:
3993 V_R4(result) = V_R4(&lv) - V_R4(&rv);
3994 break;
3995 case VT_I8:
3996 V_I8(result) = V_I8(&lv) - V_I8(&rv);
3997 break;
3998 case VT_I4:
3999 V_I4(result) = V_I4(&lv) - V_I4(&rv);
4000 break;
4001 case VT_I2:
4002 V_I2(result) = V_I2(&lv) - V_I2(&rv);
4003 break;
4004 case VT_I1:
4005 V_I1(result) = V_I1(&lv) - V_I1(&rv);
4006 break;
4007 case VT_UI1:
4008 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
4009 break;
4010 case VT_R8:
4011 V_R8(result) = V_R8(&lv) - V_R8(&rv);
4012 break;
4013 case VT_DECIMAL:
4014 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
4015 break;
4018 end:
4019 VariantClear(&lv);
4020 VariantClear(&rv);
4021 VariantClear(&tempLeft);
4022 VariantClear(&tempRight);
4023 TRACE("returning 0x%8x (variant type %s)\n", hres, debugstr_VT(result));
4024 return hres;
4028 /**********************************************************************
4029 * VarOr [OLEAUT32.157]
4031 * Perform a logical or (OR) operation on two variants.
4033 * PARAMS
4034 * pVarLeft [I] First variant
4035 * pVarRight [I] Variant to OR with pVarLeft
4036 * pVarOut [O] Destination for OR result
4038 * RETURNS
4039 * Success: S_OK. pVarOut contains the result of the operation with its type
4040 * taken from the table listed under VarXor().
4041 * Failure: An HRESULT error code indicating the error.
4043 * NOTES
4044 * See the Notes section of VarXor() for further information.
4046 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4048 VARTYPE vt = VT_I4;
4049 VARIANT varLeft, varRight, varStr;
4050 HRESULT hRet;
4051 VARIANT tempLeft, tempRight;
4053 VariantInit(&tempLeft);
4054 VariantInit(&tempRight);
4055 VariantInit(&varLeft);
4056 VariantInit(&varRight);
4057 VariantInit(&varStr);
4059 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
4060 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
4061 debugstr_VF(pVarRight), pVarOut);
4063 /* Handle VT_DISPATCH by storing and taking address of returned value */
4064 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4066 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4067 if (FAILED(hRet)) goto VarOr_Exit;
4068 pVarLeft = &tempLeft;
4070 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4072 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4073 if (FAILED(hRet)) goto VarOr_Exit;
4074 pVarRight = &tempRight;
4077 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4078 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4079 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4080 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4082 hRet = DISP_E_BADVARTYPE;
4083 goto VarOr_Exit;
4086 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4088 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4090 /* NULL OR Zero is NULL, NULL OR value is value */
4091 if (V_VT(pVarLeft) == VT_NULL)
4092 pVarLeft = pVarRight; /* point to the non-NULL var */
4094 V_VT(pVarOut) = VT_NULL;
4095 V_I4(pVarOut) = 0;
4097 switch (V_VT(pVarLeft))
4099 case VT_DATE: case VT_R8:
4100 if (V_R8(pVarLeft))
4101 goto VarOr_AsEmpty;
4102 hRet = S_OK;
4103 goto VarOr_Exit;
4104 case VT_BOOL:
4105 if (V_BOOL(pVarLeft))
4106 *pVarOut = *pVarLeft;
4107 hRet = S_OK;
4108 goto VarOr_Exit;
4109 case VT_I2: case VT_UI2:
4110 if (V_I2(pVarLeft))
4111 goto VarOr_AsEmpty;
4112 hRet = S_OK;
4113 goto VarOr_Exit;
4114 case VT_I1:
4115 if (V_I1(pVarLeft))
4116 goto VarOr_AsEmpty;
4117 hRet = S_OK;
4118 goto VarOr_Exit;
4119 case VT_UI1:
4120 if (V_UI1(pVarLeft))
4121 *pVarOut = *pVarLeft;
4122 hRet = S_OK;
4123 goto VarOr_Exit;
4124 case VT_R4:
4125 if (V_R4(pVarLeft))
4126 goto VarOr_AsEmpty;
4127 hRet = S_OK;
4128 goto VarOr_Exit;
4129 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4130 if (V_I4(pVarLeft))
4131 goto VarOr_AsEmpty;
4132 hRet = S_OK;
4133 goto VarOr_Exit;
4134 case VT_CY:
4135 if (V_CY(pVarLeft).int64)
4136 goto VarOr_AsEmpty;
4137 hRet = S_OK;
4138 goto VarOr_Exit;
4139 case VT_I8: case VT_UI8:
4140 if (V_I8(pVarLeft))
4141 goto VarOr_AsEmpty;
4142 hRet = S_OK;
4143 goto VarOr_Exit;
4144 case VT_DECIMAL:
4145 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4146 goto VarOr_AsEmpty;
4147 hRet = S_OK;
4148 goto VarOr_Exit;
4149 case VT_BSTR:
4151 VARIANT_BOOL b;
4153 if (!V_BSTR(pVarLeft))
4155 hRet = DISP_E_BADVARTYPE;
4156 goto VarOr_Exit;
4159 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4160 if (SUCCEEDED(hRet) && b)
4162 V_VT(pVarOut) = VT_BOOL;
4163 V_BOOL(pVarOut) = b;
4165 goto VarOr_Exit;
4167 case VT_NULL: case VT_EMPTY:
4168 V_VT(pVarOut) = VT_NULL;
4169 hRet = S_OK;
4170 goto VarOr_Exit;
4171 default:
4172 hRet = DISP_E_BADVARTYPE;
4173 goto VarOr_Exit;
4177 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4179 if (V_VT(pVarLeft) == VT_EMPTY)
4180 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4182 VarOr_AsEmpty:
4183 /* Since one argument is empty (0), OR'ing it with the other simply
4184 * gives the others value (as 0|x => x). So just convert the other
4185 * argument to the required result type.
4187 switch (V_VT(pVarLeft))
4189 case VT_BSTR:
4190 if (!V_BSTR(pVarLeft))
4192 hRet = DISP_E_BADVARTYPE;
4193 goto VarOr_Exit;
4196 hRet = VariantCopy(&varStr, pVarLeft);
4197 if (FAILED(hRet))
4198 goto VarOr_Exit;
4199 pVarLeft = &varStr;
4200 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4201 if (FAILED(hRet))
4202 goto VarOr_Exit;
4203 /* Fall Through ... */
4204 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4205 V_VT(pVarOut) = VT_I2;
4206 break;
4207 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4208 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4209 case VT_INT: case VT_UINT: case VT_UI8:
4210 V_VT(pVarOut) = VT_I4;
4211 break;
4212 case VT_I8:
4213 V_VT(pVarOut) = VT_I8;
4214 break;
4215 default:
4216 hRet = DISP_E_BADVARTYPE;
4217 goto VarOr_Exit;
4219 hRet = VariantCopy(&varLeft, pVarLeft);
4220 if (FAILED(hRet))
4221 goto VarOr_Exit;
4222 pVarLeft = &varLeft;
4223 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4224 goto VarOr_Exit;
4227 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4229 V_VT(pVarOut) = VT_BOOL;
4230 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4231 hRet = S_OK;
4232 goto VarOr_Exit;
4235 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4237 V_VT(pVarOut) = VT_UI1;
4238 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4239 hRet = S_OK;
4240 goto VarOr_Exit;
4243 if (V_VT(pVarLeft) == VT_BSTR)
4245 hRet = VariantCopy(&varStr, pVarLeft);
4246 if (FAILED(hRet))
4247 goto VarOr_Exit;
4248 pVarLeft = &varStr;
4249 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4250 if (FAILED(hRet))
4251 goto VarOr_Exit;
4254 if (V_VT(pVarLeft) == VT_BOOL &&
4255 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4257 vt = VT_BOOL;
4259 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4260 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4261 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4262 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4264 vt = VT_I2;
4266 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4268 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4270 hRet = DISP_E_TYPEMISMATCH;
4271 goto VarOr_Exit;
4273 vt = VT_I8;
4276 hRet = VariantCopy(&varLeft, pVarLeft);
4277 if (FAILED(hRet))
4278 goto VarOr_Exit;
4280 hRet = VariantCopy(&varRight, pVarRight);
4281 if (FAILED(hRet))
4282 goto VarOr_Exit;
4284 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4285 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4286 else
4288 double d;
4290 if (V_VT(&varLeft) == VT_BSTR &&
4291 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4292 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4293 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4294 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4295 if (FAILED(hRet))
4296 goto VarOr_Exit;
4299 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4300 V_VT(&varRight) = VT_I4; /* Don't overflow */
4301 else
4303 double d;
4305 if (V_VT(&varRight) == VT_BSTR &&
4306 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4307 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4308 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4309 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4310 if (FAILED(hRet))
4311 goto VarOr_Exit;
4314 V_VT(pVarOut) = vt;
4315 if (vt == VT_I8)
4317 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4319 else if (vt == VT_I4)
4321 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4323 else
4325 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4328 VarOr_Exit:
4329 VariantClear(&varStr);
4330 VariantClear(&varLeft);
4331 VariantClear(&varRight);
4332 VariantClear(&tempLeft);
4333 VariantClear(&tempRight);
4334 return hRet;
4337 /**********************************************************************
4338 * VarAbs [OLEAUT32.168]
4340 * Convert a variant to its absolute value.
4342 * PARAMS
4343 * pVarIn [I] Source variant
4344 * pVarOut [O] Destination for converted value
4346 * RETURNS
4347 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4348 * Failure: An HRESULT error code indicating the error.
4350 * NOTES
4351 * - This function does not process by-reference variants.
4352 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4353 * according to the following table:
4354 *| Input Type Output Type
4355 *| ---------- -----------
4356 *| VT_BOOL VT_I2
4357 *| VT_BSTR VT_R8
4358 *| (All others) Unchanged
4360 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4362 VARIANT varIn;
4363 HRESULT hRet = S_OK;
4364 VARIANT temp;
4366 VariantInit(&temp);
4368 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4369 debugstr_VF(pVarIn), pVarOut);
4371 /* Handle VT_DISPATCH by storing and taking address of returned value */
4372 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4374 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4375 if (FAILED(hRet)) goto VarAbs_Exit;
4376 pVarIn = &temp;
4379 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4380 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4381 V_VT(pVarIn) == VT_ERROR)
4383 hRet = DISP_E_TYPEMISMATCH;
4384 goto VarAbs_Exit;
4386 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4388 #define ABS_CASE(typ,min) \
4389 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4390 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4391 break
4393 switch (V_VT(pVarIn))
4395 ABS_CASE(I1,I1_MIN);
4396 case VT_BOOL:
4397 V_VT(pVarOut) = VT_I2;
4398 /* BOOL->I2, Fall through ... */
4399 ABS_CASE(I2,I2_MIN);
4400 case VT_INT:
4401 ABS_CASE(I4,I4_MIN);
4402 ABS_CASE(I8,I8_MIN);
4403 ABS_CASE(R4,R4_MIN);
4404 case VT_BSTR:
4405 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4406 if (FAILED(hRet))
4407 break;
4408 V_VT(pVarOut) = VT_R8;
4409 pVarIn = &varIn;
4410 /* Fall through ... */
4411 case VT_DATE:
4412 ABS_CASE(R8,R8_MIN);
4413 case VT_CY:
4414 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4415 break;
4416 case VT_DECIMAL:
4417 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4418 break;
4419 case VT_UI1:
4420 case VT_UI2:
4421 case VT_UINT:
4422 case VT_UI4:
4423 case VT_UI8:
4424 /* No-Op */
4425 break;
4426 case VT_EMPTY:
4427 V_VT(pVarOut) = VT_I2;
4428 case VT_NULL:
4429 V_I2(pVarOut) = 0;
4430 break;
4431 default:
4432 hRet = DISP_E_BADVARTYPE;
4435 VarAbs_Exit:
4436 VariantClear(&temp);
4437 return hRet;
4440 /**********************************************************************
4441 * VarFix [OLEAUT32.169]
4443 * Truncate a variants value to a whole number.
4445 * PARAMS
4446 * pVarIn [I] Source variant
4447 * pVarOut [O] Destination for converted value
4449 * RETURNS
4450 * Success: S_OK. pVarOut contains the converted value.
4451 * Failure: An HRESULT error code indicating the error.
4453 * NOTES
4454 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4455 * according to the following table:
4456 *| Input Type Output Type
4457 *| ---------- -----------
4458 *| VT_BOOL VT_I2
4459 *| VT_EMPTY VT_I2
4460 *| VT_BSTR VT_R8
4461 *| All Others Unchanged
4462 * - The difference between this function and VarInt() is that VarInt() rounds
4463 * negative numbers away from 0, while this function rounds them towards zero.
4465 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4467 HRESULT hRet = S_OK;
4468 VARIANT temp;
4470 VariantInit(&temp);
4472 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4473 debugstr_VF(pVarIn), pVarOut);
4475 /* Handle VT_DISPATCH by storing and taking address of returned value */
4476 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4478 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4479 if (FAILED(hRet)) goto VarFix_Exit;
4480 pVarIn = &temp;
4482 V_VT(pVarOut) = V_VT(pVarIn);
4484 switch (V_VT(pVarIn))
4486 case VT_UI1:
4487 V_UI1(pVarOut) = V_UI1(pVarIn);
4488 break;
4489 case VT_BOOL:
4490 V_VT(pVarOut) = VT_I2;
4491 /* Fall through */
4492 case VT_I2:
4493 V_I2(pVarOut) = V_I2(pVarIn);
4494 break;
4495 case VT_I4:
4496 V_I4(pVarOut) = V_I4(pVarIn);
4497 break;
4498 case VT_I8:
4499 V_I8(pVarOut) = V_I8(pVarIn);
4500 break;
4501 case VT_R4:
4502 if (V_R4(pVarIn) < 0.0f)
4503 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4504 else
4505 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4506 break;
4507 case VT_BSTR:
4508 V_VT(pVarOut) = VT_R8;
4509 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4510 pVarIn = pVarOut;
4511 /* Fall through */
4512 case VT_DATE:
4513 case VT_R8:
4514 if (V_R8(pVarIn) < 0.0)
4515 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4516 else
4517 V_R8(pVarOut) = floor(V_R8(pVarIn));
4518 break;
4519 case VT_CY:
4520 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4521 break;
4522 case VT_DECIMAL:
4523 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4524 break;
4525 case VT_EMPTY:
4526 V_VT(pVarOut) = VT_I2;
4527 V_I2(pVarOut) = 0;
4528 break;
4529 case VT_NULL:
4530 /* No-Op */
4531 break;
4532 default:
4533 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4534 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4535 hRet = DISP_E_BADVARTYPE;
4536 else
4537 hRet = DISP_E_TYPEMISMATCH;
4539 VarFix_Exit:
4540 if (FAILED(hRet))
4541 V_VT(pVarOut) = VT_EMPTY;
4542 VariantClear(&temp);
4544 return hRet;
4547 /**********************************************************************
4548 * VarInt [OLEAUT32.172]
4550 * Truncate a variants value to a whole number.
4552 * PARAMS
4553 * pVarIn [I] Source variant
4554 * pVarOut [O] Destination for converted value
4556 * RETURNS
4557 * Success: S_OK. pVarOut contains the converted value.
4558 * Failure: An HRESULT error code indicating the error.
4560 * NOTES
4561 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4562 * according to the following table:
4563 *| Input Type Output Type
4564 *| ---------- -----------
4565 *| VT_BOOL VT_I2
4566 *| VT_EMPTY VT_I2
4567 *| VT_BSTR VT_R8
4568 *| All Others Unchanged
4569 * - The difference between this function and VarFix() is that VarFix() rounds
4570 * negative numbers towards 0, while this function rounds them away from zero.
4572 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4574 HRESULT hRet = S_OK;
4575 VARIANT temp;
4577 VariantInit(&temp);
4579 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4580 debugstr_VF(pVarIn), pVarOut);
4582 /* Handle VT_DISPATCH by storing and taking address of returned value */
4583 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4585 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4586 if (FAILED(hRet)) goto VarInt_Exit;
4587 pVarIn = &temp;
4589 V_VT(pVarOut) = V_VT(pVarIn);
4591 switch (V_VT(pVarIn))
4593 case VT_R4:
4594 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4595 break;
4596 case VT_BSTR:
4597 V_VT(pVarOut) = VT_R8;
4598 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4599 pVarIn = pVarOut;
4600 /* Fall through */
4601 case VT_DATE:
4602 case VT_R8:
4603 V_R8(pVarOut) = floor(V_R8(pVarIn));
4604 break;
4605 case VT_CY:
4606 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4607 break;
4608 case VT_DECIMAL:
4609 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4610 break;
4611 default:
4612 hRet = VarFix(pVarIn, pVarOut);
4614 VarInt_Exit:
4615 VariantClear(&temp);
4617 return hRet;
4620 /**********************************************************************
4621 * VarXor [OLEAUT32.167]
4623 * Perform a logical exclusive-or (XOR) operation on two variants.
4625 * PARAMS
4626 * pVarLeft [I] First variant
4627 * pVarRight [I] Variant to XOR with pVarLeft
4628 * pVarOut [O] Destination for XOR result
4630 * RETURNS
4631 * Success: S_OK. pVarOut contains the result of the operation with its type
4632 * taken from the table below).
4633 * Failure: An HRESULT error code indicating the error.
4635 * NOTES
4636 * - Neither pVarLeft or pVarRight are modified by this function.
4637 * - This function does not process by-reference variants.
4638 * - Input types of VT_BSTR may be numeric strings or boolean text.
4639 * - The type of result stored in pVarOut depends on the types of pVarLeft
4640 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4641 * or VT_NULL if the function succeeds.
4642 * - Type promotion is inconsistent and as a result certain combinations of
4643 * values will return DISP_E_OVERFLOW even when they could be represented.
4644 * This matches the behaviour of native oleaut32.
4646 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4648 VARTYPE vt;
4649 VARIANT varLeft, varRight;
4650 VARIANT tempLeft, tempRight;
4651 double d;
4652 HRESULT hRet;
4654 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
4655 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
4656 debugstr_VF(pVarRight), pVarOut);
4658 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4659 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4660 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4661 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4662 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4663 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4664 return DISP_E_BADVARTYPE;
4666 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4668 /* NULL XOR anything valid is NULL */
4669 V_VT(pVarOut) = VT_NULL;
4670 return S_OK;
4673 VariantInit(&tempLeft);
4674 VariantInit(&tempRight);
4676 /* Handle VT_DISPATCH by storing and taking address of returned value */
4677 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4679 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4680 if (FAILED(hRet)) goto VarXor_Exit;
4681 pVarLeft = &tempLeft;
4683 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4685 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4686 if (FAILED(hRet)) goto VarXor_Exit;
4687 pVarRight = &tempRight;
4690 /* Copy our inputs so we don't disturb anything */
4691 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4693 hRet = VariantCopy(&varLeft, pVarLeft);
4694 if (FAILED(hRet))
4695 goto VarXor_Exit;
4697 hRet = VariantCopy(&varRight, pVarRight);
4698 if (FAILED(hRet))
4699 goto VarXor_Exit;
4701 /* Try any strings first as numbers, then as VT_BOOL */
4702 if (V_VT(&varLeft) == VT_BSTR)
4704 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4705 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4706 FAILED(hRet) ? VT_BOOL : VT_I4);
4707 if (FAILED(hRet))
4708 goto VarXor_Exit;
4711 if (V_VT(&varRight) == VT_BSTR)
4713 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4714 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4715 FAILED(hRet) ? VT_BOOL : VT_I4);
4716 if (FAILED(hRet))
4717 goto VarXor_Exit;
4720 /* Determine the result type */
4721 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4723 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4725 hRet = DISP_E_TYPEMISMATCH;
4726 goto VarXor_Exit;
4728 vt = VT_I8;
4730 else
4732 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4734 case (VT_BOOL << 16) | VT_BOOL:
4735 vt = VT_BOOL;
4736 break;
4737 case (VT_UI1 << 16) | VT_UI1:
4738 vt = VT_UI1;
4739 break;
4740 case (VT_EMPTY << 16) | VT_EMPTY:
4741 case (VT_EMPTY << 16) | VT_UI1:
4742 case (VT_EMPTY << 16) | VT_I2:
4743 case (VT_EMPTY << 16) | VT_BOOL:
4744 case (VT_UI1 << 16) | VT_EMPTY:
4745 case (VT_UI1 << 16) | VT_I2:
4746 case (VT_UI1 << 16) | VT_BOOL:
4747 case (VT_I2 << 16) | VT_EMPTY:
4748 case (VT_I2 << 16) | VT_UI1:
4749 case (VT_I2 << 16) | VT_I2:
4750 case (VT_I2 << 16) | VT_BOOL:
4751 case (VT_BOOL << 16) | VT_EMPTY:
4752 case (VT_BOOL << 16) | VT_UI1:
4753 case (VT_BOOL << 16) | VT_I2:
4754 vt = VT_I2;
4755 break;
4756 default:
4757 vt = VT_I4;
4758 break;
4762 /* VT_UI4 does not overflow */
4763 if (vt != VT_I8)
4765 if (V_VT(&varLeft) == VT_UI4)
4766 V_VT(&varLeft) = VT_I4;
4767 if (V_VT(&varRight) == VT_UI4)
4768 V_VT(&varRight) = VT_I4;
4771 /* Convert our input copies to the result type */
4772 if (V_VT(&varLeft) != vt)
4773 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4774 if (FAILED(hRet))
4775 goto VarXor_Exit;
4777 if (V_VT(&varRight) != vt)
4778 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4779 if (FAILED(hRet))
4780 goto VarXor_Exit;
4782 V_VT(pVarOut) = vt;
4784 /* Calculate the result */
4785 switch (vt)
4787 case VT_I8:
4788 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4789 break;
4790 case VT_I4:
4791 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4792 break;
4793 case VT_BOOL:
4794 case VT_I2:
4795 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4796 break;
4797 case VT_UI1:
4798 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4799 break;
4802 VarXor_Exit:
4803 VariantClear(&varLeft);
4804 VariantClear(&varRight);
4805 VariantClear(&tempLeft);
4806 VariantClear(&tempRight);
4807 return hRet;
4810 /**********************************************************************
4811 * VarEqv [OLEAUT32.172]
4813 * Determine if two variants contain the same value.
4815 * PARAMS
4816 * pVarLeft [I] First variant to compare
4817 * pVarRight [I] Variant to compare to pVarLeft
4818 * pVarOut [O] Destination for comparison result
4820 * RETURNS
4821 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4822 * if equivalent or non-zero otherwise.
4823 * Failure: An HRESULT error code indicating the error.
4825 * NOTES
4826 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4827 * the result.
4829 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4831 HRESULT hRet;
4833 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
4834 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
4835 debugstr_VF(pVarRight), pVarOut);
4837 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4838 if (SUCCEEDED(hRet))
4840 if (V_VT(pVarOut) == VT_I8)
4841 V_I8(pVarOut) = ~V_I8(pVarOut);
4842 else
4843 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4845 return hRet;
4848 /**********************************************************************
4849 * VarNeg [OLEAUT32.173]
4851 * Negate the value of a variant.
4853 * PARAMS
4854 * pVarIn [I] Source variant
4855 * pVarOut [O] Destination for converted value
4857 * RETURNS
4858 * Success: S_OK. pVarOut contains the converted value.
4859 * Failure: An HRESULT error code indicating the error.
4861 * NOTES
4862 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4863 * according to the following table:
4864 *| Input Type Output Type
4865 *| ---------- -----------
4866 *| VT_EMPTY VT_I2
4867 *| VT_UI1 VT_I2
4868 *| VT_BOOL VT_I2
4869 *| VT_BSTR VT_R8
4870 *| All Others Unchanged (unless promoted)
4871 * - Where the negated value of a variant does not fit in its base type, the type
4872 * is promoted according to the following table:
4873 *| Input Type Promoted To
4874 *| ---------- -----------
4875 *| VT_I2 VT_I4
4876 *| VT_I4 VT_R8
4877 *| VT_I8 VT_R8
4878 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4879 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4880 * for types which are not valid. Since this is in contravention of the
4881 * meaning of those error codes and unlikely to be relied on by applications,
4882 * this implementation returns errors consistent with the other high level
4883 * variant math functions.
4885 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4887 HRESULT hRet = S_OK;
4888 VARIANT temp;
4890 VariantInit(&temp);
4892 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
4893 debugstr_VF(pVarIn), pVarOut);
4895 /* Handle VT_DISPATCH by storing and taking address of returned value */
4896 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4898 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4899 if (FAILED(hRet)) goto VarNeg_Exit;
4900 pVarIn = &temp;
4902 V_VT(pVarOut) = V_VT(pVarIn);
4904 switch (V_VT(pVarIn))
4906 case VT_UI1:
4907 V_VT(pVarOut) = VT_I2;
4908 V_I2(pVarOut) = -V_UI1(pVarIn);
4909 break;
4910 case VT_BOOL:
4911 V_VT(pVarOut) = VT_I2;
4912 /* Fall through */
4913 case VT_I2:
4914 if (V_I2(pVarIn) == I2_MIN)
4916 V_VT(pVarOut) = VT_I4;
4917 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4919 else
4920 V_I2(pVarOut) = -V_I2(pVarIn);
4921 break;
4922 case VT_I4:
4923 if (V_I4(pVarIn) == I4_MIN)
4925 V_VT(pVarOut) = VT_R8;
4926 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4928 else
4929 V_I4(pVarOut) = -V_I4(pVarIn);
4930 break;
4931 case VT_I8:
4932 if (V_I8(pVarIn) == I8_MIN)
4934 V_VT(pVarOut) = VT_R8;
4935 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4936 V_R8(pVarOut) *= -1.0;
4938 else
4939 V_I8(pVarOut) = -V_I8(pVarIn);
4940 break;
4941 case VT_R4:
4942 V_R4(pVarOut) = -V_R4(pVarIn);
4943 break;
4944 case VT_DATE:
4945 case VT_R8:
4946 V_R8(pVarOut) = -V_R8(pVarIn);
4947 break;
4948 case VT_CY:
4949 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4950 break;
4951 case VT_DECIMAL:
4952 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4953 break;
4954 case VT_BSTR:
4955 V_VT(pVarOut) = VT_R8;
4956 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4957 V_R8(pVarOut) = -V_R8(pVarOut);
4958 break;
4959 case VT_EMPTY:
4960 V_VT(pVarOut) = VT_I2;
4961 V_I2(pVarOut) = 0;
4962 break;
4963 case VT_NULL:
4964 /* No-Op */
4965 break;
4966 default:
4967 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4968 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4969 hRet = DISP_E_BADVARTYPE;
4970 else
4971 hRet = DISP_E_TYPEMISMATCH;
4973 VarNeg_Exit:
4974 if (FAILED(hRet))
4975 V_VT(pVarOut) = VT_EMPTY;
4976 VariantClear(&temp);
4978 return hRet;
4981 /**********************************************************************
4982 * VarNot [OLEAUT32.174]
4984 * Perform a not operation on a variant.
4986 * PARAMS
4987 * pVarIn [I] Source variant
4988 * pVarOut [O] Destination for converted value
4990 * RETURNS
4991 * Success: S_OK. pVarOut contains the converted value.
4992 * Failure: An HRESULT error code indicating the error.
4994 * NOTES
4995 * - Strictly speaking, this function performs a bitwise ones complement
4996 * on the variants value (after possibly converting to VT_I4, see below).
4997 * This only behaves like a boolean not operation if the value in
4998 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4999 * - To perform a genuine not operation, convert the variant to a VT_BOOL
5000 * before calling this function.
5001 * - This function does not process by-reference variants.
5002 * - The type of the value stored in pVarOut depends on the type of pVarIn,
5003 * according to the following table:
5004 *| Input Type Output Type
5005 *| ---------- -----------
5006 *| VT_EMPTY VT_I2
5007 *| VT_R4 VT_I4
5008 *| VT_R8 VT_I4
5009 *| VT_BSTR VT_I4
5010 *| VT_DECIMAL VT_I4
5011 *| VT_CY VT_I4
5012 *| (All others) Unchanged
5014 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
5016 VARIANT varIn;
5017 HRESULT hRet = S_OK;
5018 VARIANT temp;
5020 VariantInit(&temp);
5022 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
5023 debugstr_VF(pVarIn), pVarOut);
5025 /* Handle VT_DISPATCH by storing and taking address of returned value */
5026 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5028 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5029 if (FAILED(hRet)) goto VarNot_Exit;
5030 pVarIn = &temp;
5033 if (V_VT(pVarIn) == VT_BSTR)
5035 V_VT(&varIn) = VT_R8;
5036 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
5037 if (FAILED(hRet))
5039 V_VT(&varIn) = VT_BOOL;
5040 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
5042 if (FAILED(hRet)) goto VarNot_Exit;
5043 pVarIn = &varIn;
5046 V_VT(pVarOut) = V_VT(pVarIn);
5048 switch (V_VT(pVarIn))
5050 case VT_I1:
5051 V_I4(pVarOut) = ~V_I1(pVarIn);
5052 V_VT(pVarOut) = VT_I4;
5053 break;
5054 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
5055 case VT_BOOL:
5056 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
5057 case VT_UI2:
5058 V_I4(pVarOut) = ~V_UI2(pVarIn);
5059 V_VT(pVarOut) = VT_I4;
5060 break;
5061 case VT_DECIMAL:
5062 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
5063 if (FAILED(hRet))
5064 break;
5065 pVarIn = &varIn;
5066 /* Fall through ... */
5067 case VT_INT:
5068 V_VT(pVarOut) = VT_I4;
5069 /* Fall through ... */
5070 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5071 case VT_UINT:
5072 case VT_UI4:
5073 V_I4(pVarOut) = ~V_UI4(pVarIn);
5074 V_VT(pVarOut) = VT_I4;
5075 break;
5076 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5077 case VT_UI8:
5078 V_I4(pVarOut) = ~V_UI8(pVarIn);
5079 V_VT(pVarOut) = VT_I4;
5080 break;
5081 case VT_R4:
5082 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5083 V_I4(pVarOut) = ~V_I4(pVarOut);
5084 V_VT(pVarOut) = VT_I4;
5085 break;
5086 case VT_DATE:
5087 case VT_R8:
5088 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5089 V_I4(pVarOut) = ~V_I4(pVarOut);
5090 V_VT(pVarOut) = VT_I4;
5091 break;
5092 case VT_CY:
5093 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5094 V_I4(pVarOut) = ~V_I4(pVarOut);
5095 V_VT(pVarOut) = VT_I4;
5096 break;
5097 case VT_EMPTY:
5098 V_I2(pVarOut) = ~0;
5099 V_VT(pVarOut) = VT_I2;
5100 break;
5101 case VT_NULL:
5102 /* No-Op */
5103 break;
5104 default:
5105 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5106 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5107 hRet = DISP_E_BADVARTYPE;
5108 else
5109 hRet = DISP_E_TYPEMISMATCH;
5111 VarNot_Exit:
5112 if (FAILED(hRet))
5113 V_VT(pVarOut) = VT_EMPTY;
5114 VariantClear(&temp);
5116 return hRet;
5119 /**********************************************************************
5120 * VarRound [OLEAUT32.175]
5122 * Perform a round operation on a variant.
5124 * PARAMS
5125 * pVarIn [I] Source variant
5126 * deci [I] Number of decimals to round to
5127 * pVarOut [O] Destination for converted value
5129 * RETURNS
5130 * Success: S_OK. pVarOut contains the converted value.
5131 * Failure: An HRESULT error code indicating the error.
5133 * NOTES
5134 * - Floating point values are rounded to the desired number of decimals.
5135 * - Some integer types are just copied to the return variable.
5136 * - Some other integer types are not handled and fail.
5138 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5140 VARIANT varIn;
5141 HRESULT hRet = S_OK;
5142 float factor;
5143 VARIANT temp;
5145 VariantInit(&temp);
5147 TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci);
5149 /* Handle VT_DISPATCH by storing and taking address of returned value */
5150 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5152 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5153 if (FAILED(hRet)) goto VarRound_Exit;
5154 pVarIn = &temp;
5157 switch (V_VT(pVarIn))
5159 /* cases that fail on windows */
5160 case VT_I1:
5161 case VT_I8:
5162 case VT_UI2:
5163 case VT_UI4:
5164 hRet = DISP_E_BADVARTYPE;
5165 break;
5167 /* cases just copying in to out */
5168 case VT_UI1:
5169 V_VT(pVarOut) = V_VT(pVarIn);
5170 V_UI1(pVarOut) = V_UI1(pVarIn);
5171 break;
5172 case VT_I2:
5173 V_VT(pVarOut) = V_VT(pVarIn);
5174 V_I2(pVarOut) = V_I2(pVarIn);
5175 break;
5176 case VT_I4:
5177 V_VT(pVarOut) = V_VT(pVarIn);
5178 V_I4(pVarOut) = V_I4(pVarIn);
5179 break;
5180 case VT_NULL:
5181 V_VT(pVarOut) = V_VT(pVarIn);
5182 /* value unchanged */
5183 break;
5185 /* cases that change type */
5186 case VT_EMPTY:
5187 V_VT(pVarOut) = VT_I2;
5188 V_I2(pVarOut) = 0;
5189 break;
5190 case VT_BOOL:
5191 V_VT(pVarOut) = VT_I2;
5192 V_I2(pVarOut) = V_BOOL(pVarIn);
5193 break;
5194 case VT_BSTR:
5195 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5196 if (FAILED(hRet))
5197 break;
5198 V_VT(&varIn)=VT_R8;
5199 pVarIn = &varIn;
5200 /* Fall through ... */
5202 /* cases we need to do math */
5203 case VT_R8:
5204 if (V_R8(pVarIn)>0) {
5205 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5206 } else {
5207 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5209 V_VT(pVarOut) = V_VT(pVarIn);
5210 break;
5211 case VT_R4:
5212 if (V_R4(pVarIn)>0) {
5213 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5214 } else {
5215 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5217 V_VT(pVarOut) = V_VT(pVarIn);
5218 break;
5219 case VT_DATE:
5220 if (V_DATE(pVarIn)>0) {
5221 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5222 } else {
5223 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5225 V_VT(pVarOut) = V_VT(pVarIn);
5226 break;
5227 case VT_CY:
5228 if (deci>3)
5229 factor=1;
5230 else
5231 factor=pow(10, 4-deci);
5233 if (V_CY(pVarIn).int64>0) {
5234 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5235 } else {
5236 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5238 V_VT(pVarOut) = V_VT(pVarIn);
5239 break;
5241 /* cases we don't know yet */
5242 default:
5243 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5244 V_VT(pVarIn) & VT_TYPEMASK, deci);
5245 hRet = DISP_E_BADVARTYPE;
5247 VarRound_Exit:
5248 if (FAILED(hRet))
5249 V_VT(pVarOut) = VT_EMPTY;
5250 VariantClear(&temp);
5252 TRACE("returning 0x%08x (%s%s),%f\n", hRet, debugstr_VT(pVarOut),
5253 debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) :
5254 (V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0);
5256 return hRet;
5259 /**********************************************************************
5260 * VarIdiv [OLEAUT32.153]
5262 * Converts input variants to integers and divides them.
5264 * PARAMS
5265 * left [I] Left hand variant
5266 * right [I] Right hand variant
5267 * result [O] Destination for quotient
5269 * RETURNS
5270 * Success: S_OK. result contains the quotient.
5271 * Failure: An HRESULT error code indicating the error.
5273 * NOTES
5274 * If either expression is null, null is returned, as per MSDN
5276 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5278 HRESULT hres = S_OK;
5279 VARTYPE resvt = VT_EMPTY;
5280 VARTYPE leftvt,rightvt;
5281 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5282 VARIANT lv,rv;
5283 VARIANT tempLeft, tempRight;
5285 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
5286 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
5288 VariantInit(&lv);
5289 VariantInit(&rv);
5290 VariantInit(&tempLeft);
5291 VariantInit(&tempRight);
5293 leftvt = V_VT(left)&VT_TYPEMASK;
5294 rightvt = V_VT(right)&VT_TYPEMASK;
5295 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5296 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5298 if (leftExtraFlags != rightExtraFlags)
5300 hres = DISP_E_BADVARTYPE;
5301 goto end;
5303 ExtraFlags = leftExtraFlags;
5305 /* Native VarIdiv always returns an error when using extra
5306 * flags or if the variant combination is I8 and INT.
5308 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5309 (leftvt == VT_INT && rightvt == VT_I8) ||
5310 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5311 ExtraFlags != 0)
5313 hres = DISP_E_BADVARTYPE;
5314 goto end;
5317 /* Determine variant type */
5318 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5320 V_VT(result) = VT_NULL;
5321 hres = S_OK;
5322 goto end;
5324 else if (leftvt == VT_I8 || rightvt == VT_I8)
5325 resvt = VT_I8;
5326 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5327 leftvt == VT_INT || rightvt == VT_INT ||
5328 leftvt == VT_UINT || rightvt == VT_UINT ||
5329 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5330 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5331 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5332 leftvt == VT_I1 || rightvt == VT_I1 ||
5333 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5334 leftvt == VT_DATE || rightvt == VT_DATE ||
5335 leftvt == VT_CY || rightvt == VT_CY ||
5336 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5337 leftvt == VT_R8 || rightvt == VT_R8 ||
5338 leftvt == VT_R4 || rightvt == VT_R4)
5339 resvt = VT_I4;
5340 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5341 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5342 leftvt == VT_EMPTY)
5343 resvt = VT_I2;
5344 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5345 resvt = VT_UI1;
5346 else
5348 hres = DISP_E_BADVARTYPE;
5349 goto end;
5352 /* coerce to the result type */
5353 hres = VariantChangeType(&lv, left, 0, resvt);
5354 if (hres != S_OK) goto end;
5355 hres = VariantChangeType(&rv, right, 0, resvt);
5356 if (hres != S_OK) goto end;
5358 /* do the math */
5359 V_VT(result) = resvt;
5360 switch (resvt)
5362 case VT_UI1:
5363 if (V_UI1(&rv) == 0)
5365 hres = DISP_E_DIVBYZERO;
5366 V_VT(result) = VT_EMPTY;
5368 else
5369 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5370 break;
5371 case VT_I2:
5372 if (V_I2(&rv) == 0)
5374 hres = DISP_E_DIVBYZERO;
5375 V_VT(result) = VT_EMPTY;
5377 else
5378 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5379 break;
5380 case VT_I4:
5381 if (V_I4(&rv) == 0)
5383 hres = DISP_E_DIVBYZERO;
5384 V_VT(result) = VT_EMPTY;
5386 else
5387 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5388 break;
5389 case VT_I8:
5390 if (V_I8(&rv) == 0)
5392 hres = DISP_E_DIVBYZERO;
5393 V_VT(result) = VT_EMPTY;
5395 else
5396 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5397 break;
5398 default:
5399 FIXME("Couldn't integer divide variant types %d,%d\n",
5400 leftvt,rightvt);
5403 end:
5404 VariantClear(&lv);
5405 VariantClear(&rv);
5406 VariantClear(&tempLeft);
5407 VariantClear(&tempRight);
5409 return hres;
5413 /**********************************************************************
5414 * VarMod [OLEAUT32.155]
5416 * Perform the modulus operation of the right hand variant on the left
5418 * PARAMS
5419 * left [I] Left hand variant
5420 * right [I] Right hand variant
5421 * result [O] Destination for converted value
5423 * RETURNS
5424 * Success: S_OK. result contains the remainder.
5425 * Failure: An HRESULT error code indicating the error.
5427 * NOTE:
5428 * If an error occurs the type of result will be modified but the value will not be.
5429 * Doesn't support arrays or any special flags yet.
5431 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5433 BOOL lOk = TRUE;
5434 HRESULT rc = E_FAIL;
5435 int resT = 0;
5436 VARIANT lv,rv;
5437 VARIANT tempLeft, tempRight;
5439 VariantInit(&tempLeft);
5440 VariantInit(&tempRight);
5441 VariantInit(&lv);
5442 VariantInit(&rv);
5444 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
5445 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
5447 /* Handle VT_DISPATCH by storing and taking address of returned value */
5448 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5450 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5451 if (FAILED(rc)) goto end;
5452 left = &tempLeft;
5454 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5456 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5457 if (FAILED(rc)) goto end;
5458 right = &tempRight;
5461 /* check for invalid inputs */
5462 lOk = TRUE;
5463 switch (V_VT(left) & VT_TYPEMASK) {
5464 case VT_BOOL :
5465 case VT_I1 :
5466 case VT_I2 :
5467 case VT_I4 :
5468 case VT_I8 :
5469 case VT_INT :
5470 case VT_UI1 :
5471 case VT_UI2 :
5472 case VT_UI4 :
5473 case VT_UI8 :
5474 case VT_UINT :
5475 case VT_R4 :
5476 case VT_R8 :
5477 case VT_CY :
5478 case VT_EMPTY:
5479 case VT_DATE :
5480 case VT_BSTR :
5481 case VT_DECIMAL:
5482 break;
5483 case VT_VARIANT:
5484 case VT_UNKNOWN:
5485 V_VT(result) = VT_EMPTY;
5486 rc = DISP_E_TYPEMISMATCH;
5487 goto end;
5488 case VT_ERROR:
5489 rc = DISP_E_TYPEMISMATCH;
5490 goto end;
5491 case VT_RECORD:
5492 V_VT(result) = VT_EMPTY;
5493 rc = DISP_E_TYPEMISMATCH;
5494 goto end;
5495 case VT_NULL:
5496 break;
5497 default:
5498 V_VT(result) = VT_EMPTY;
5499 rc = DISP_E_BADVARTYPE;
5500 goto end;
5504 switch (V_VT(right) & VT_TYPEMASK) {
5505 case VT_BOOL :
5506 case VT_I1 :
5507 case VT_I2 :
5508 case VT_I4 :
5509 case VT_I8 :
5510 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5512 V_VT(result) = VT_EMPTY;
5513 rc = DISP_E_TYPEMISMATCH;
5514 goto end;
5516 case VT_INT :
5517 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5519 V_VT(result) = VT_EMPTY;
5520 rc = DISP_E_TYPEMISMATCH;
5521 goto end;
5523 case VT_UI1 :
5524 case VT_UI2 :
5525 case VT_UI4 :
5526 case VT_UI8 :
5527 case VT_UINT :
5528 case VT_R4 :
5529 case VT_R8 :
5530 case VT_CY :
5531 if(V_VT(left) == VT_EMPTY)
5533 V_VT(result) = VT_I4;
5534 rc = S_OK;
5535 goto end;
5537 case VT_EMPTY:
5538 case VT_DATE :
5539 case VT_DECIMAL:
5540 if(V_VT(left) == VT_ERROR)
5542 V_VT(result) = VT_EMPTY;
5543 rc = DISP_E_TYPEMISMATCH;
5544 goto end;
5546 case VT_BSTR:
5547 if(V_VT(left) == VT_NULL)
5549 V_VT(result) = VT_NULL;
5550 rc = S_OK;
5551 goto end;
5553 break;
5555 case VT_VOID:
5556 V_VT(result) = VT_EMPTY;
5557 rc = DISP_E_BADVARTYPE;
5558 goto end;
5559 case VT_NULL:
5560 if(V_VT(left) == VT_VOID)
5562 V_VT(result) = VT_EMPTY;
5563 rc = DISP_E_BADVARTYPE;
5564 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5565 lOk)
5567 V_VT(result) = VT_NULL;
5568 rc = S_OK;
5569 } else
5571 V_VT(result) = VT_NULL;
5572 rc = DISP_E_BADVARTYPE;
5574 goto end;
5575 case VT_VARIANT:
5576 case VT_UNKNOWN:
5577 V_VT(result) = VT_EMPTY;
5578 rc = DISP_E_TYPEMISMATCH;
5579 goto end;
5580 case VT_ERROR:
5581 rc = DISP_E_TYPEMISMATCH;
5582 goto end;
5583 case VT_RECORD:
5584 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5586 V_VT(result) = VT_EMPTY;
5587 rc = DISP_E_BADVARTYPE;
5588 } else
5590 V_VT(result) = VT_EMPTY;
5591 rc = DISP_E_TYPEMISMATCH;
5593 goto end;
5594 default:
5595 V_VT(result) = VT_EMPTY;
5596 rc = DISP_E_BADVARTYPE;
5597 goto end;
5600 /* determine the result type */
5601 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5602 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5603 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5604 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5605 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5606 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5607 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5608 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5609 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5610 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5611 else resT = VT_I4; /* most outputs are I4 */
5613 /* convert to I8 for the modulo */
5614 rc = VariantChangeType(&lv, left, 0, VT_I8);
5615 if(FAILED(rc))
5617 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5618 goto end;
5621 rc = VariantChangeType(&rv, right, 0, VT_I8);
5622 if(FAILED(rc))
5624 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5625 goto end;
5628 /* if right is zero set VT_EMPTY and return divide by zero */
5629 if(V_I8(&rv) == 0)
5631 V_VT(result) = VT_EMPTY;
5632 rc = DISP_E_DIVBYZERO;
5633 goto end;
5636 /* perform the modulo operation */
5637 V_VT(result) = VT_I8;
5638 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5640 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5641 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5642 wine_dbgstr_longlong(V_I8(result)));
5644 /* convert left and right to the destination type */
5645 rc = VariantChangeType(result, result, 0, resT);
5646 if(FAILED(rc))
5648 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5649 /* fall to end of function */
5652 end:
5653 VariantClear(&lv);
5654 VariantClear(&rv);
5655 VariantClear(&tempLeft);
5656 VariantClear(&tempRight);
5657 return rc;
5660 /**********************************************************************
5661 * VarPow [OLEAUT32.158]
5663 * Computes the power of one variant to another variant.
5665 * PARAMS
5666 * left [I] First variant
5667 * right [I] Second variant
5668 * result [O] Result variant
5670 * RETURNS
5671 * Success: S_OK.
5672 * Failure: An HRESULT error code indicating the error.
5674 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5676 HRESULT hr = S_OK;
5677 VARIANT dl,dr;
5678 VARTYPE resvt = VT_EMPTY;
5679 VARTYPE leftvt,rightvt;
5680 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5681 VARIANT tempLeft, tempRight;
5683 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
5684 right, debugstr_VT(right), debugstr_VF(right), result);
5686 VariantInit(&dl);
5687 VariantInit(&dr);
5688 VariantInit(&tempLeft);
5689 VariantInit(&tempRight);
5691 /* Handle VT_DISPATCH by storing and taking address of returned value */
5692 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5694 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5695 if (FAILED(hr)) goto end;
5696 left = &tempLeft;
5698 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5700 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5701 if (FAILED(hr)) goto end;
5702 right = &tempRight;
5705 leftvt = V_VT(left)&VT_TYPEMASK;
5706 rightvt = V_VT(right)&VT_TYPEMASK;
5707 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5708 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5710 if (leftExtraFlags != rightExtraFlags)
5712 hr = DISP_E_BADVARTYPE;
5713 goto end;
5715 ExtraFlags = leftExtraFlags;
5717 /* Native VarPow always returns an error when using extra flags */
5718 if (ExtraFlags != 0)
5720 hr = DISP_E_BADVARTYPE;
5721 goto end;
5724 /* Determine return type */
5725 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5726 V_VT(result) = VT_NULL;
5727 hr = S_OK;
5728 goto end;
5730 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5731 leftvt == VT_I4 || leftvt == VT_R4 ||
5732 leftvt == VT_R8 || leftvt == VT_CY ||
5733 leftvt == VT_DATE || leftvt == VT_BSTR ||
5734 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5735 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5736 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5737 rightvt == VT_I4 || rightvt == VT_R4 ||
5738 rightvt == VT_R8 || rightvt == VT_CY ||
5739 rightvt == VT_DATE || rightvt == VT_BSTR ||
5740 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5741 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5742 resvt = VT_R8;
5743 else
5745 hr = DISP_E_BADVARTYPE;
5746 goto end;
5749 hr = VariantChangeType(&dl,left,0,resvt);
5750 if (FAILED(hr)) {
5751 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5752 hr = E_FAIL;
5753 goto end;
5756 hr = VariantChangeType(&dr,right,0,resvt);
5757 if (FAILED(hr)) {
5758 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5759 hr = E_FAIL;
5760 goto end;
5763 V_VT(result) = VT_R8;
5764 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5766 end:
5767 VariantClear(&dl);
5768 VariantClear(&dr);
5769 VariantClear(&tempLeft);
5770 VariantClear(&tempRight);
5772 return hr;
5775 /**********************************************************************
5776 * VarImp [OLEAUT32.154]
5778 * Bitwise implication of two variants.
5780 * PARAMS
5781 * left [I] First variant
5782 * right [I] Second variant
5783 * result [O] Result variant
5785 * RETURNS
5786 * Success: S_OK.
5787 * Failure: An HRESULT error code indicating the error.
5789 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5791 HRESULT hres = S_OK;
5792 VARTYPE resvt = VT_EMPTY;
5793 VARTYPE leftvt,rightvt;
5794 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5795 VARIANT lv,rv;
5796 double d;
5797 VARIANT tempLeft, tempRight;
5799 VariantInit(&lv);
5800 VariantInit(&rv);
5801 VariantInit(&tempLeft);
5802 VariantInit(&tempRight);
5804 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
5805 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
5807 /* Handle VT_DISPATCH by storing and taking address of returned value */
5808 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5810 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5811 if (FAILED(hres)) goto VarImp_Exit;
5812 left = &tempLeft;
5814 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5816 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5817 if (FAILED(hres)) goto VarImp_Exit;
5818 right = &tempRight;
5821 leftvt = V_VT(left)&VT_TYPEMASK;
5822 rightvt = V_VT(right)&VT_TYPEMASK;
5823 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5824 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5826 if (leftExtraFlags != rightExtraFlags)
5828 hres = DISP_E_BADVARTYPE;
5829 goto VarImp_Exit;
5831 ExtraFlags = leftExtraFlags;
5833 /* Native VarImp always returns an error when using extra
5834 * flags or if the variants are I8 and INT.
5836 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5837 ExtraFlags != 0)
5839 hres = DISP_E_BADVARTYPE;
5840 goto VarImp_Exit;
5843 /* Determine result type */
5844 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5845 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5847 V_VT(result) = VT_NULL;
5848 hres = S_OK;
5849 goto VarImp_Exit;
5851 else if (leftvt == VT_I8 || rightvt == VT_I8)
5852 resvt = VT_I8;
5853 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5854 leftvt == VT_INT || rightvt == VT_INT ||
5855 leftvt == VT_UINT || rightvt == VT_UINT ||
5856 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5857 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5858 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5859 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5860 leftvt == VT_DATE || rightvt == VT_DATE ||
5861 leftvt == VT_CY || rightvt == VT_CY ||
5862 leftvt == VT_R8 || rightvt == VT_R8 ||
5863 leftvt == VT_R4 || rightvt == VT_R4 ||
5864 leftvt == VT_I1 || rightvt == VT_I1)
5865 resvt = VT_I4;
5866 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5867 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5868 (leftvt == VT_NULL && rightvt == VT_UI1))
5869 resvt = VT_UI1;
5870 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5871 leftvt == VT_I2 || rightvt == VT_I2 ||
5872 leftvt == VT_UI1 || rightvt == VT_UI1)
5873 resvt = VT_I2;
5874 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5875 leftvt == VT_BSTR || rightvt == VT_BSTR)
5876 resvt = VT_BOOL;
5878 /* VT_NULL requires special handling for when the opposite
5879 * variant is equal to something other than -1.
5880 * (NULL Imp 0 = NULL, NULL Imp n = n)
5882 if (leftvt == VT_NULL)
5884 VARIANT_BOOL b;
5885 switch(rightvt)
5887 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5888 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5889 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5890 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5891 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5892 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5893 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5894 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5895 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5896 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5897 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5898 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5899 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5900 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5901 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5902 case VT_DECIMAL:
5903 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5904 resvt = VT_NULL;
5905 break;
5906 case VT_BSTR:
5907 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5908 if (FAILED(hres)) goto VarImp_Exit;
5909 else if (!b)
5910 V_VT(result) = VT_NULL;
5911 else
5913 V_VT(result) = VT_BOOL;
5914 V_BOOL(result) = b;
5916 goto VarImp_Exit;
5918 if (resvt == VT_NULL)
5920 V_VT(result) = resvt;
5921 goto VarImp_Exit;
5923 else
5925 hres = VariantChangeType(result,right,0,resvt);
5926 goto VarImp_Exit;
5930 /* Special handling is required when NULL is the right variant.
5931 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5933 else if (rightvt == VT_NULL)
5935 VARIANT_BOOL b;
5936 switch(leftvt)
5938 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5939 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5940 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5941 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5942 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5943 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5944 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5945 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5946 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5947 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5948 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5949 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5950 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5951 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5952 case VT_DECIMAL:
5953 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5954 resvt = VT_NULL;
5955 break;
5956 case VT_BSTR:
5957 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5958 if (FAILED(hres)) goto VarImp_Exit;
5959 else if (b == VARIANT_TRUE)
5960 resvt = VT_NULL;
5962 if (resvt == VT_NULL)
5964 V_VT(result) = resvt;
5965 goto VarImp_Exit;
5969 hres = VariantCopy(&lv, left);
5970 if (FAILED(hres)) goto VarImp_Exit;
5972 if (rightvt == VT_NULL)
5974 memset( &rv, 0, sizeof(rv) );
5975 V_VT(&rv) = resvt;
5977 else
5979 hres = VariantCopy(&rv, right);
5980 if (FAILED(hres)) goto VarImp_Exit;
5983 if (V_VT(&lv) == VT_BSTR &&
5984 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5985 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5986 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5987 hres = VariantChangeType(&lv,&lv,0,resvt);
5988 if (FAILED(hres)) goto VarImp_Exit;
5990 if (V_VT(&rv) == VT_BSTR &&
5991 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5992 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5993 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5994 hres = VariantChangeType(&rv, &rv, 0, resvt);
5995 if (FAILED(hres)) goto VarImp_Exit;
5997 /* do the math */
5998 V_VT(result) = resvt;
5999 switch (resvt)
6001 case VT_I8:
6002 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
6003 break;
6004 case VT_I4:
6005 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
6006 break;
6007 case VT_I2:
6008 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
6009 break;
6010 case VT_UI1:
6011 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
6012 break;
6013 case VT_BOOL:
6014 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
6015 break;
6016 default:
6017 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
6018 leftvt,rightvt);
6021 VarImp_Exit:
6023 VariantClear(&lv);
6024 VariantClear(&rv);
6025 VariantClear(&tempLeft);
6026 VariantClear(&tempRight);
6028 return hres;