oleaut32: Rewrite debugstr_vt.
[wine/multimedia.git] / dlls / oleaut32 / variant.c
blobef3b7bf4b8169e594aebf3d29e961683002372e1
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include "config.h"
30 #include <string.h>
31 #include <stdlib.h>
32 #include <stdarg.h>
34 #define COBJMACROS
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
38 #include "windef.h"
39 #include "winbase.h"
40 #include "wine/unicode.h"
41 #include "winerror.h"
42 #include "variant.h"
43 #include "resource.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
48 static const char * const variant_types[] =
50 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
51 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
52 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
53 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
54 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
55 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
56 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
57 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
58 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID",
59 "VT_VERSIONED_STREAM"
62 static const char * const variant_flags[16] =
64 "",
65 "|VT_VECTOR",
66 "|VT_ARRAY",
67 "|VT_VECTOR|VT_ARRAY",
68 "|VT_BYREF",
69 "|VT_VECTOR|VT_ARRAY",
70 "|VT_ARRAY|VT_BYREF",
71 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
72 "|VT_RESERVED",
73 "|VT_VECTOR|VT_RESERVED",
74 "|VT_ARRAY|VT_RESERVED",
75 "|VT_VECTOR|VT_ARRAY|VT_RESERVED",
76 "|VT_BYREF|VT_RESERVED",
77 "|VT_VECTOR|VT_ARRAY|VT_RESERVED",
78 "|VT_ARRAY|VT_BYREF|VT_RESERVED",
79 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_RESERVED",
82 const char *debugstr_vt(VARTYPE vt)
84 if(vt & ~VT_TYPEMASK)
85 return wine_dbg_sprintf("%s%s", debugstr_vt(vt&VT_TYPEMASK), variant_flags[vt>>12]);
87 if(vt <= sizeof(variant_types)/sizeof(*variant_types))
88 return variant_types[vt];
90 if(vt == VT_BSTR_BLOB)
91 return "VT_BSTR_BLOB";
93 return wine_dbg_sprintf("vt(invalid %x)", vt);
96 const char *debugstr_variant(const VARIANT *v)
98 if(!v)
99 return "(null)";
101 switch(V_VT(v)) {
102 case VT_EMPTY:
103 return wine_dbg_sprintf("%p {VT_EMPTY}", v);
104 case VT_NULL:
105 return wine_dbg_sprintf("%p {VT_NULL}", v);
106 case VT_I1:
107 return wine_dbg_sprintf("%p {VT_I1: %d}", v, V_I1(v));
108 case VT_I2:
109 return wine_dbg_sprintf("%p {VT_I2: %d}", v, V_I2(v));
110 case VT_I4:
111 return wine_dbg_sprintf("%p {VT_I4: %d}", v, V_I4(v));
112 case VT_R4:
113 return wine_dbg_sprintf("%p {VT_R4: %f}", v, V_R4(v));
114 case VT_R8:
115 return wine_dbg_sprintf("%p {VT_R8: %lf}", v, V_R8(v));
116 case VT_BSTR:
117 return wine_dbg_sprintf("%p {VT_BSTR: %s}", v, debugstr_w(V_BSTR(v)));
118 case VT_DISPATCH:
119 return wine_dbg_sprintf("%p {VT_DISPATCH: %p}", v, V_DISPATCH(v));
120 case VT_ERROR:
121 return wine_dbg_sprintf("%p {VT_ERROR: %08x}", v, V_ERROR(v));
122 case VT_BOOL:
123 return wine_dbg_sprintf("%p {VT_BOOL: %x}", v, V_BOOL(v));
124 case VT_UINT:
125 return wine_dbg_sprintf("%p {VT_UINT: %u}", v, V_UINT(v));
126 default:
127 return wine_dbg_sprintf("%p {vt %s}", v, debugstr_vt(V_VT(v)));
131 /* Convert a variant from one type to another */
132 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
133 VARIANTARG* ps, VARTYPE vt)
135 HRESULT res = DISP_E_TYPEMISMATCH;
136 VARTYPE vtFrom = V_TYPE(ps);
137 DWORD dwFlags = 0;
139 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
140 debugstr_variant(ps), debugstr_vt(vt));
142 if (vt == VT_BSTR || vtFrom == VT_BSTR)
144 /* All flags passed to low level function are only used for
145 * changing to or from strings. Map these here.
147 if (wFlags & VARIANT_LOCALBOOL)
148 dwFlags |= VAR_LOCALBOOL;
149 if (wFlags & VARIANT_CALENDAR_HIJRI)
150 dwFlags |= VAR_CALENDAR_HIJRI;
151 if (wFlags & VARIANT_CALENDAR_THAI)
152 dwFlags |= VAR_CALENDAR_THAI;
153 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
154 dwFlags |= VAR_CALENDAR_GREGORIAN;
155 if (wFlags & VARIANT_NOUSEROVERRIDE)
156 dwFlags |= LOCALE_NOUSEROVERRIDE;
157 if (wFlags & VARIANT_USE_NLS)
158 dwFlags |= LOCALE_USE_NLS;
161 /* Map int/uint to i4/ui4 */
162 if (vt == VT_INT)
163 vt = VT_I4;
164 else if (vt == VT_UINT)
165 vt = VT_UI4;
167 if (vtFrom == VT_INT)
168 vtFrom = VT_I4;
169 else if (vtFrom == VT_UINT)
170 vtFrom = VT_UI4;
172 if (vt == vtFrom)
173 return VariantCopy(pd, ps);
175 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
177 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
178 * accessing the default object property.
180 return DISP_E_TYPEMISMATCH;
183 switch (vt)
185 case VT_EMPTY:
186 if (vtFrom == VT_NULL)
187 return DISP_E_TYPEMISMATCH;
188 /* ... Fall through */
189 case VT_NULL:
190 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
192 res = VariantClear( pd );
193 if (vt == VT_NULL && SUCCEEDED(res))
194 V_VT(pd) = VT_NULL;
196 return res;
198 case VT_I1:
199 switch (vtFrom)
201 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
202 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
203 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
204 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
205 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
206 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
207 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
208 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
209 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
210 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
211 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
212 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
213 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
214 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
215 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
216 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
218 break;
220 case VT_I2:
221 switch (vtFrom)
223 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
224 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
225 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
226 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
227 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
228 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
229 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
230 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
231 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
232 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
233 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
234 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
235 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
236 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
237 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
238 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
240 break;
242 case VT_I4:
243 switch (vtFrom)
245 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
246 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
247 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
248 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
249 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
250 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
251 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
252 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
253 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
254 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
255 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
256 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
257 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
258 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
259 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
260 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
262 break;
264 case VT_UI1:
265 switch (vtFrom)
267 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
268 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
269 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
270 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
271 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
272 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
273 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
274 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
275 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
276 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
277 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
278 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
279 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
280 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
281 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
282 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
284 break;
286 case VT_UI2:
287 switch (vtFrom)
289 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
290 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
291 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
292 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
293 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
294 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
295 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
296 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
297 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
298 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
299 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
300 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
301 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
302 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
303 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
304 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
306 break;
308 case VT_UI4:
309 switch (vtFrom)
311 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
312 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
313 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
314 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
315 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
316 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
317 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
318 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
319 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
320 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
321 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
322 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
323 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
324 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
325 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
326 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
328 break;
330 case VT_UI8:
331 switch (vtFrom)
333 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
334 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
335 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
336 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
337 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
338 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
339 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
340 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
341 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
342 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
343 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
344 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
345 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
346 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
347 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
348 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
350 break;
352 case VT_I8:
353 switch (vtFrom)
355 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
356 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
357 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
358 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
359 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
360 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
361 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
362 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
363 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
364 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
365 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
366 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
367 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
368 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
369 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
370 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
372 break;
374 case VT_R4:
375 switch (vtFrom)
377 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
378 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
379 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
380 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
381 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
382 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
383 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
384 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
385 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
386 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
387 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
388 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
389 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
390 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
391 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
392 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
394 break;
396 case VT_R8:
397 switch (vtFrom)
399 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
400 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
401 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
402 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
403 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
404 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
405 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
406 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
407 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
408 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
409 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
410 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
411 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
412 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
413 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
414 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
416 break;
418 case VT_DATE:
419 switch (vtFrom)
421 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
422 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
423 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
424 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
425 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
426 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
427 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
428 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
429 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
430 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
431 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
432 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
433 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
434 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
435 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
436 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
438 break;
440 case VT_BOOL:
441 switch (vtFrom)
443 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
444 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
445 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
446 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
447 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
448 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
449 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
450 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
451 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
452 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
453 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
454 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
455 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
456 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
457 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
458 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
460 break;
462 case VT_BSTR:
463 switch (vtFrom)
465 case VT_EMPTY:
466 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
467 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
468 case VT_BOOL:
469 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
470 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
471 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
472 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
473 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
474 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
475 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
476 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
477 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
478 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
479 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
480 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
481 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
482 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
483 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
484 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
485 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
487 break;
489 case VT_CY:
490 switch (vtFrom)
492 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
493 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
494 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
495 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
496 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
497 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
498 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
499 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
500 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
501 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
502 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
503 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
504 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
505 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
506 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
507 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
509 break;
511 case VT_DECIMAL:
512 switch (vtFrom)
514 case VT_EMPTY:
515 case VT_BOOL:
516 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
517 DEC_HI32(&V_DECIMAL(pd)) = 0;
518 DEC_MID32(&V_DECIMAL(pd)) = 0;
519 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
520 * VT_NULL and VT_EMPTY always give a 0 value.
522 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
523 return S_OK;
524 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
525 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
526 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
527 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
528 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
529 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
530 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
531 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
532 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
533 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
534 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
535 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
536 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
537 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
539 break;
541 case VT_UNKNOWN:
542 switch (vtFrom)
544 case VT_DISPATCH:
545 if (V_DISPATCH(ps) == NULL)
546 V_UNKNOWN(pd) = NULL;
547 else
548 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
549 break;
551 break;
553 case VT_DISPATCH:
554 switch (vtFrom)
556 case VT_UNKNOWN:
557 if (V_UNKNOWN(ps) == NULL)
558 V_DISPATCH(pd) = NULL;
559 else
560 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
561 break;
563 break;
565 case VT_RECORD:
566 break;
568 return res;
571 /* Coerce to/from an array */
572 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
574 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
575 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
577 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
578 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
580 if (V_VT(ps) == vt)
581 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
583 return DISP_E_TYPEMISMATCH;
586 /******************************************************************************
587 * Check if a variants type is valid.
589 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
591 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
593 vt &= VT_TYPEMASK;
595 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
597 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
599 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
600 return DISP_E_BADVARTYPE;
601 if (vt != (VARTYPE)15)
602 return S_OK;
605 return DISP_E_BADVARTYPE;
608 /******************************************************************************
609 * VariantInit [OLEAUT32.8]
611 * Initialise a variant.
613 * PARAMS
614 * pVarg [O] Variant to initialise
616 * RETURNS
617 * Nothing.
619 * NOTES
620 * This function simply sets the type of the variant to VT_EMPTY. It does not
621 * free any existing value, use VariantClear() for that.
623 void WINAPI VariantInit(VARIANTARG* pVarg)
625 TRACE("(%p)\n", pVarg);
627 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
628 V_VT(pVarg) = VT_EMPTY;
631 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
633 HRESULT hres;
635 TRACE("(%s)\n", debugstr_variant(pVarg));
637 hres = VARIANT_ValidateType(V_VT(pVarg));
638 if (FAILED(hres))
639 return hres;
641 switch (V_VT(pVarg))
643 case VT_DISPATCH:
644 case VT_UNKNOWN:
645 if (V_UNKNOWN(pVarg))
646 IUnknown_Release(V_UNKNOWN(pVarg));
647 break;
648 case VT_UNKNOWN | VT_BYREF:
649 case VT_DISPATCH | VT_BYREF:
650 if(*V_UNKNOWNREF(pVarg))
651 IUnknown_Release(*V_UNKNOWNREF(pVarg));
652 break;
653 case VT_BSTR:
654 SysFreeString(V_BSTR(pVarg));
655 break;
656 case VT_BSTR | VT_BYREF:
657 SysFreeString(*V_BSTRREF(pVarg));
658 break;
659 case VT_VARIANT | VT_BYREF:
660 VariantClear(V_VARIANTREF(pVarg));
661 break;
662 case VT_RECORD:
663 case VT_RECORD | VT_BYREF:
665 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
666 if (pBr->pRecInfo)
668 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
669 IRecordInfo_Release(pBr->pRecInfo);
671 break;
673 default:
674 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
676 if (V_ISBYREF(pVarg))
678 if (*V_ARRAYREF(pVarg))
679 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
681 else if (V_ARRAY(pVarg))
682 hres = SafeArrayDestroy(V_ARRAY(pVarg));
684 break;
687 V_VT(pVarg) = VT_EMPTY;
688 return hres;
691 /******************************************************************************
692 * VariantClear [OLEAUT32.9]
694 * Clear a variant.
696 * PARAMS
697 * pVarg [I/O] Variant to clear
699 * RETURNS
700 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
701 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
703 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
705 HRESULT hres;
707 TRACE("(%s)\n", debugstr_variant(pVarg));
709 hres = VARIANT_ValidateType(V_VT(pVarg));
711 if (SUCCEEDED(hres))
713 if (!V_ISBYREF(pVarg))
715 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
717 hres = SafeArrayDestroy(V_ARRAY(pVarg));
719 else if (V_VT(pVarg) == VT_BSTR)
721 SysFreeString(V_BSTR(pVarg));
723 else if (V_VT(pVarg) == VT_RECORD)
725 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
726 if (pBr->pRecInfo)
728 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
729 IRecordInfo_Release(pBr->pRecInfo);
732 else if (V_VT(pVarg) == VT_DISPATCH ||
733 V_VT(pVarg) == VT_UNKNOWN)
735 if (V_UNKNOWN(pVarg))
736 IUnknown_Release(V_UNKNOWN(pVarg));
739 V_VT(pVarg) = VT_EMPTY;
741 return hres;
744 /******************************************************************************
745 * Copy an IRecordInfo object contained in a variant.
747 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
749 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
750 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
751 HRESULT hr = S_OK;
752 ULONG size;
754 if (!src_rec->pRecInfo)
756 if (src_rec->pvRecord) return E_INVALIDARG;
757 return S_OK;
760 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
761 if (FAILED(hr)) return hr;
763 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
764 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
765 could free it later. */
766 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
767 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
769 dest_rec->pRecInfo = src_rec->pRecInfo;
770 IRecordInfo_AddRef(src_rec->pRecInfo);
772 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
775 /******************************************************************************
776 * VariantCopy [OLEAUT32.10]
778 * Copy a variant.
780 * PARAMS
781 * pvargDest [O] Destination for copy
782 * pvargSrc [I] Source variant to copy
784 * RETURNS
785 * Success: S_OK. pvargDest contains a copy of pvargSrc.
786 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
787 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
788 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
789 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
791 * NOTES
792 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
793 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
794 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
795 * fails, so does this function.
796 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
797 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
798 * is copied rather than just any pointers to it.
799 * - For by-value object types the object pointer is copied and the objects
800 * reference count increased using IUnknown_AddRef().
801 * - For all by-reference types, only the referencing pointer is copied.
803 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
805 HRESULT hres = S_OK;
807 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
809 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
810 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
811 return DISP_E_BADVARTYPE;
813 if (pvargSrc != pvargDest &&
814 SUCCEEDED(hres = VariantClear(pvargDest)))
816 *pvargDest = *pvargSrc; /* Shallow copy the value */
818 if (!V_ISBYREF(pvargSrc))
820 switch (V_VT(pvargSrc))
822 case VT_BSTR:
823 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
824 if (!V_BSTR(pvargDest))
825 hres = E_OUTOFMEMORY;
826 break;
827 case VT_RECORD:
828 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
829 break;
830 case VT_DISPATCH:
831 case VT_UNKNOWN:
832 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
833 if (V_UNKNOWN(pvargSrc))
834 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
835 break;
836 default:
837 if (V_ISARRAY(pvargSrc))
838 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
842 return hres;
845 /* Return the byte size of a variants data */
846 static inline size_t VARIANT_DataSize(const VARIANT* pv)
848 switch (V_TYPE(pv))
850 case VT_I1:
851 case VT_UI1: return sizeof(BYTE);
852 case VT_I2:
853 case VT_UI2: return sizeof(SHORT);
854 case VT_INT:
855 case VT_UINT:
856 case VT_I4:
857 case VT_UI4: return sizeof(LONG);
858 case VT_I8:
859 case VT_UI8: return sizeof(LONGLONG);
860 case VT_R4: return sizeof(float);
861 case VT_R8: return sizeof(double);
862 case VT_DATE: return sizeof(DATE);
863 case VT_BOOL: return sizeof(VARIANT_BOOL);
864 case VT_DISPATCH:
865 case VT_UNKNOWN:
866 case VT_BSTR: return sizeof(void*);
867 case VT_CY: return sizeof(CY);
868 case VT_ERROR: return sizeof(SCODE);
870 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
871 return 0;
874 /******************************************************************************
875 * VariantCopyInd [OLEAUT32.11]
877 * Copy a variant, dereferencing it if it is by-reference.
879 * PARAMS
880 * pvargDest [O] Destination for copy
881 * pvargSrc [I] Source variant to copy
883 * RETURNS
884 * Success: S_OK. pvargDest contains a copy of pvargSrc.
885 * Failure: An HRESULT error code indicating the error.
887 * NOTES
888 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
889 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
890 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
891 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
892 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
894 * NOTES
895 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
896 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
897 * value.
898 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
899 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
900 * to it. If clearing pvargDest fails, so does this function.
902 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
904 VARIANTARG vTmp, *pSrc = pvargSrc;
905 VARTYPE vt;
906 HRESULT hres = S_OK;
908 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
910 if (!V_ISBYREF(pvargSrc))
911 return VariantCopy(pvargDest, pvargSrc);
913 /* Argument checking is more lax than VariantCopy()... */
914 vt = V_TYPE(pvargSrc);
915 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
916 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
917 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
919 /* OK */
921 else
922 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
924 if (pvargSrc == pvargDest)
926 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
927 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
929 vTmp = *pvargSrc;
930 pSrc = &vTmp;
931 V_VT(pvargDest) = VT_EMPTY;
933 else
935 /* Copy into another variant. Free the variant in pvargDest */
936 if (FAILED(hres = VariantClear(pvargDest)))
938 TRACE("VariantClear() of destination failed\n");
939 return hres;
943 if (V_ISARRAY(pSrc))
945 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
946 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
948 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
950 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
951 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
953 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
955 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
957 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
958 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
960 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
961 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
962 if (*V_UNKNOWNREF(pSrc))
963 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
965 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
967 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
968 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
969 hres = E_INVALIDARG; /* Don't dereference more than one level */
970 else
971 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
973 /* Use the dereferenced variants type value, not VT_VARIANT */
974 goto VariantCopyInd_Return;
976 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
978 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
979 sizeof(DECIMAL) - sizeof(USHORT));
981 else
983 /* Copy the pointed to data into this variant */
984 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
987 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
989 VariantCopyInd_Return:
991 if (pSrc != pvargSrc)
992 VariantClear(pSrc);
994 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
995 return hres;
998 /******************************************************************************
999 * VariantChangeType [OLEAUT32.12]
1001 * Change the type of a variant.
1003 * PARAMS
1004 * pvargDest [O] Destination for the converted variant
1005 * pvargSrc [O] Source variant to change the type of
1006 * wFlags [I] VARIANT_ flags from "oleauto.h"
1007 * vt [I] Variant type to change pvargSrc into
1009 * RETURNS
1010 * Success: S_OK. pvargDest contains the converted value.
1011 * Failure: An HRESULT error code describing the failure.
1013 * NOTES
1014 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
1015 * See VariantChangeTypeEx.
1017 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
1018 USHORT wFlags, VARTYPE vt)
1020 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
1023 /******************************************************************************
1024 * VariantChangeTypeEx [OLEAUT32.147]
1026 * Change the type of a variant.
1028 * PARAMS
1029 * pvargDest [O] Destination for the converted variant
1030 * pvargSrc [O] Source variant to change the type of
1031 * lcid [I] LCID for the conversion
1032 * wFlags [I] VARIANT_ flags from "oleauto.h"
1033 * vt [I] Variant type to change pvargSrc into
1035 * RETURNS
1036 * Success: S_OK. pvargDest contains the converted value.
1037 * Failure: An HRESULT error code describing the failure.
1039 * NOTES
1040 * pvargDest and pvargSrc can point to the same variant to perform an in-place
1041 * conversion. If the conversion is successful, pvargSrc will be freed.
1043 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
1044 LCID lcid, USHORT wFlags, VARTYPE vt)
1046 HRESULT res = S_OK;
1048 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
1049 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
1051 if (vt == VT_CLSID)
1052 res = DISP_E_BADVARTYPE;
1053 else
1055 res = VARIANT_ValidateType(V_VT(pvargSrc));
1057 if (SUCCEEDED(res))
1059 res = VARIANT_ValidateType(vt);
1061 if (SUCCEEDED(res))
1063 VARIANTARG vTmp, vSrcDeref;
1065 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1066 res = DISP_E_TYPEMISMATCH;
1067 else
1069 V_VT(&vTmp) = VT_EMPTY;
1070 V_VT(&vSrcDeref) = VT_EMPTY;
1071 VariantClear(&vTmp);
1072 VariantClear(&vSrcDeref);
1075 if (SUCCEEDED(res))
1077 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1078 if (SUCCEEDED(res))
1080 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1081 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1082 else
1083 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1085 if (SUCCEEDED(res)) {
1086 V_VT(&vTmp) = vt;
1087 res = VariantCopy(pvargDest, &vTmp);
1089 VariantClear(&vTmp);
1090 VariantClear(&vSrcDeref);
1097 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1098 return res;
1101 /* Date Conversions */
1103 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1105 /* Convert a VT_DATE value to a Julian Date */
1106 static inline int VARIANT_JulianFromDate(int dateIn)
1108 int julianDays = dateIn;
1110 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1111 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1112 return julianDays;
1115 /* Convert a Julian Date to a VT_DATE value */
1116 static inline int VARIANT_DateFromJulian(int dateIn)
1118 int julianDays = dateIn;
1120 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1121 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1122 return julianDays;
1125 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1126 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1128 int j, i, l, n;
1130 l = jd + 68569;
1131 n = l * 4 / 146097;
1132 l -= (n * 146097 + 3) / 4;
1133 i = (4000 * (l + 1)) / 1461001;
1134 l += 31 - (i * 1461) / 4;
1135 j = (l * 80) / 2447;
1136 *day = l - (j * 2447) / 80;
1137 l = j / 11;
1138 *month = (j + 2) - (12 * l);
1139 *year = 100 * (n - 49) + i + l;
1142 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1143 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1145 int m12 = (month - 14) / 12;
1147 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1148 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1151 /* Macros for accessing DOS format date/time fields */
1152 #define DOS_YEAR(x) (1980 + (x >> 9))
1153 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1154 #define DOS_DAY(x) (x & 0x1f)
1155 #define DOS_HOUR(x) (x >> 11)
1156 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1157 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1158 /* Create a DOS format date/time */
1159 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1160 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1162 /* Roll a date forwards or backwards to correct it */
1163 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1165 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1166 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1168 /* interpret values signed */
1169 iYear = lpUd->st.wYear;
1170 iMonth = lpUd->st.wMonth;
1171 iDay = lpUd->st.wDay;
1172 iHour = lpUd->st.wHour;
1173 iMinute = lpUd->st.wMinute;
1174 iSecond = lpUd->st.wSecond;
1176 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1177 iYear, iHour, iMinute, iSecond);
1179 if (iYear > 9999 || iYear < -9999)
1180 return E_INVALIDARG; /* Invalid value */
1181 /* Year 0 to 29 are treated as 2000 + year */
1182 if (iYear >= 0 && iYear < 30)
1183 iYear += 2000;
1184 /* Remaining years < 100 are treated as 1900 + year */
1185 else if (iYear >= 30 && iYear < 100)
1186 iYear += 1900;
1188 iMinute += iSecond / 60;
1189 iSecond = iSecond % 60;
1190 iHour += iMinute / 60;
1191 iMinute = iMinute % 60;
1192 iDay += iHour / 24;
1193 iHour = iHour % 24;
1194 iYear += iMonth / 12;
1195 iMonth = iMonth % 12;
1196 if (iMonth<=0) {iMonth+=12; iYear--;}
1197 while (iDay > days[iMonth])
1199 if (iMonth == 2 && IsLeapYear(iYear))
1200 iDay -= 29;
1201 else
1202 iDay -= days[iMonth];
1203 iMonth++;
1204 iYear += iMonth / 12;
1205 iMonth = iMonth % 12;
1207 while (iDay <= 0)
1209 iMonth--;
1210 if (iMonth<=0) {iMonth+=12; iYear--;}
1211 if (iMonth == 2 && IsLeapYear(iYear))
1212 iDay += 29;
1213 else
1214 iDay += days[iMonth];
1217 if (iSecond<0){iSecond+=60; iMinute--;}
1218 if (iMinute<0){iMinute+=60; iHour--;}
1219 if (iHour<0) {iHour+=24; iDay--;}
1220 if (iYear<=0) iYear+=2000;
1222 lpUd->st.wYear = iYear;
1223 lpUd->st.wMonth = iMonth;
1224 lpUd->st.wDay = iDay;
1225 lpUd->st.wHour = iHour;
1226 lpUd->st.wMinute = iMinute;
1227 lpUd->st.wSecond = iSecond;
1229 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1230 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1231 return S_OK;
1234 /**********************************************************************
1235 * DosDateTimeToVariantTime [OLEAUT32.14]
1237 * Convert a Dos format date and time into variant VT_DATE format.
1239 * PARAMS
1240 * wDosDate [I] Dos format date
1241 * wDosTime [I] Dos format time
1242 * pDateOut [O] Destination for VT_DATE format
1244 * RETURNS
1245 * Success: TRUE. pDateOut contains the converted time.
1246 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1248 * NOTES
1249 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1250 * - Dos format times are accurate to only 2 second precision.
1251 * - The format of a Dos Date is:
1252 *| Bits Values Meaning
1253 *| ---- ------ -------
1254 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1255 *| the days in the month rolls forward the extra days.
1256 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1257 *| year. 13-15 are invalid.
1258 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1259 * - The format of a Dos Time is:
1260 *| Bits Values Meaning
1261 *| ---- ------ -------
1262 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1263 *| 5-10 0-59 Minutes. 60-63 are invalid.
1264 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1266 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1267 double *pDateOut)
1269 UDATE ud;
1271 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1272 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1273 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1274 pDateOut);
1276 ud.st.wYear = DOS_YEAR(wDosDate);
1277 ud.st.wMonth = DOS_MONTH(wDosDate);
1278 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1279 return FALSE;
1280 ud.st.wDay = DOS_DAY(wDosDate);
1281 ud.st.wHour = DOS_HOUR(wDosTime);
1282 ud.st.wMinute = DOS_MINUTE(wDosTime);
1283 ud.st.wSecond = DOS_SECOND(wDosTime);
1284 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1285 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1286 return FALSE; /* Invalid values in Dos*/
1288 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1291 /**********************************************************************
1292 * VariantTimeToDosDateTime [OLEAUT32.13]
1294 * Convert a variant format date into a Dos format date and time.
1296 * dateIn [I] VT_DATE time format
1297 * pwDosDate [O] Destination for Dos format date
1298 * pwDosTime [O] Destination for Dos format time
1300 * RETURNS
1301 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1302 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1304 * NOTES
1305 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1307 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1309 UDATE ud;
1311 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1313 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1314 return FALSE;
1316 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1317 return FALSE;
1319 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1320 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1322 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1323 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1324 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1325 return TRUE;
1328 /***********************************************************************
1329 * SystemTimeToVariantTime [OLEAUT32.184]
1331 * Convert a System format date and time into variant VT_DATE format.
1333 * PARAMS
1334 * lpSt [I] System format date and time
1335 * pDateOut [O] Destination for VT_DATE format date
1337 * RETURNS
1338 * Success: TRUE. *pDateOut contains the converted value.
1339 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1341 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1343 UDATE ud;
1345 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1346 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1348 if (lpSt->wMonth > 12)
1349 return FALSE;
1350 if (lpSt->wDay > 31)
1351 return FALSE;
1352 if ((short)lpSt->wYear < 0)
1353 return FALSE;
1355 ud.st = *lpSt;
1356 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1359 /***********************************************************************
1360 * VariantTimeToSystemTime [OLEAUT32.185]
1362 * Convert a variant VT_DATE into a System format date and time.
1364 * PARAMS
1365 * datein [I] Variant VT_DATE format date
1366 * lpSt [O] Destination for System format date and time
1368 * RETURNS
1369 * Success: TRUE. *lpSt contains the converted value.
1370 * Failure: FALSE, if dateIn is too large or small.
1372 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1374 UDATE ud;
1376 TRACE("(%g,%p)\n", dateIn, lpSt);
1378 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1379 return FALSE;
1381 *lpSt = ud.st;
1382 return TRUE;
1385 /***********************************************************************
1386 * VarDateFromUdateEx [OLEAUT32.319]
1388 * Convert an unpacked format date and time to a variant VT_DATE.
1390 * PARAMS
1391 * pUdateIn [I] Unpacked format date and time to convert
1392 * lcid [I] Locale identifier for the conversion
1393 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1394 * pDateOut [O] Destination for variant VT_DATE.
1396 * RETURNS
1397 * Success: S_OK. *pDateOut contains the converted value.
1398 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1400 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1402 UDATE ud;
1403 double dateVal, dateSign;
1405 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1406 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1407 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1408 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1409 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1411 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1412 FIXME("lcid possibly not handled, treating as en-us\n");
1414 ud = *pUdateIn;
1416 if (dwFlags & VAR_VALIDDATE)
1417 WARN("Ignoring VAR_VALIDDATE\n");
1419 if (FAILED(VARIANT_RollUdate(&ud)))
1420 return E_INVALIDARG;
1422 /* Date */
1423 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1425 /* Sign */
1426 dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1428 /* Time */
1429 dateVal += ud.st.wHour / 24.0 * dateSign;
1430 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1431 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1433 TRACE("Returning %g\n", dateVal);
1434 *pDateOut = dateVal;
1435 return S_OK;
1438 /***********************************************************************
1439 * VarDateFromUdate [OLEAUT32.330]
1441 * Convert an unpacked format date and time to a variant VT_DATE.
1443 * PARAMS
1444 * pUdateIn [I] Unpacked format date and time to convert
1445 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1446 * pDateOut [O] Destination for variant VT_DATE.
1448 * RETURNS
1449 * Success: S_OK. *pDateOut contains the converted value.
1450 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1452 * NOTES
1453 * This function uses the United States English locale for the conversion. Use
1454 * VarDateFromUdateEx() for alternate locales.
1456 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1458 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1460 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1463 /***********************************************************************
1464 * VarUdateFromDate [OLEAUT32.331]
1466 * Convert a variant VT_DATE into an unpacked format date and time.
1468 * PARAMS
1469 * datein [I] Variant VT_DATE format date
1470 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1471 * lpUdate [O] Destination for unpacked format date and time
1473 * RETURNS
1474 * Success: S_OK. *lpUdate contains the converted value.
1475 * Failure: E_INVALIDARG, if dateIn is too large or small.
1477 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1479 /* Cumulative totals of days per month */
1480 static const USHORT cumulativeDays[] =
1482 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1484 double datePart, timePart;
1485 int julianDays;
1487 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1489 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1490 return E_INVALIDARG;
1492 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1493 /* Compensate for int truncation (always downwards) */
1494 timePart = fabs(dateIn - datePart) + 0.00000000001;
1495 if (timePart >= 1.0)
1496 timePart -= 0.00000000001;
1498 /* Date */
1499 julianDays = VARIANT_JulianFromDate(dateIn);
1500 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1501 &lpUdate->st.wDay);
1503 datePart = (datePart + 1.5) / 7.0;
1504 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1505 if (lpUdate->st.wDayOfWeek == 0)
1506 lpUdate->st.wDayOfWeek = 5;
1507 else if (lpUdate->st.wDayOfWeek == 1)
1508 lpUdate->st.wDayOfWeek = 6;
1509 else
1510 lpUdate->st.wDayOfWeek -= 2;
1512 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1513 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1514 else
1515 lpUdate->wDayOfYear = 0;
1517 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1518 lpUdate->wDayOfYear += lpUdate->st.wDay;
1520 /* Time */
1521 timePart *= 24.0;
1522 lpUdate->st.wHour = timePart;
1523 timePart -= lpUdate->st.wHour;
1524 timePart *= 60.0;
1525 lpUdate->st.wMinute = timePart;
1526 timePart -= lpUdate->st.wMinute;
1527 timePart *= 60.0;
1528 lpUdate->st.wSecond = timePart;
1529 timePart -= lpUdate->st.wSecond;
1530 lpUdate->st.wMilliseconds = 0;
1531 if (timePart > 0.5)
1533 /* Round the milliseconds, adjusting the time/date forward if needed */
1534 if (lpUdate->st.wSecond < 59)
1535 lpUdate->st.wSecond++;
1536 else
1538 lpUdate->st.wSecond = 0;
1539 if (lpUdate->st.wMinute < 59)
1540 lpUdate->st.wMinute++;
1541 else
1543 lpUdate->st.wMinute = 0;
1544 if (lpUdate->st.wHour < 23)
1545 lpUdate->st.wHour++;
1546 else
1548 lpUdate->st.wHour = 0;
1549 /* Roll over a whole day */
1550 if (++lpUdate->st.wDay > 28)
1551 VARIANT_RollUdate(lpUdate);
1556 return S_OK;
1559 #define GET_NUMBER_TEXT(fld,name) \
1560 buff[0] = 0; \
1561 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1562 WARN("buffer too small for " #fld "\n"); \
1563 else \
1564 if (buff[0]) lpChars->name = buff[0]; \
1565 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1567 /* Get the valid number characters for an lcid */
1568 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1570 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1571 static CRITICAL_SECTION csLastChars = { NULL, -1, 0, 0, 0, 0 };
1572 static VARIANT_NUMBER_CHARS lastChars;
1573 static LCID lastLcid = -1;
1574 static DWORD lastFlags = 0;
1575 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1576 WCHAR buff[4];
1578 /* To make caching thread-safe, a critical section is needed */
1579 EnterCriticalSection(&csLastChars);
1581 /* Asking for default locale entries is very expensive: It is a registry
1582 server call. So cache one locally, as Microsoft does it too */
1583 if(lcid == lastLcid && dwFlags == lastFlags)
1585 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1586 LeaveCriticalSection(&csLastChars);
1587 return;
1590 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1591 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1592 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1593 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1594 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1595 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1596 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1598 /* Local currency symbols are often 2 characters */
1599 lpChars->cCurrencyLocal2 = '\0';
1600 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1602 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1603 case 2: lpChars->cCurrencyLocal = buff[0];
1604 break;
1605 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1607 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1608 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1610 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1611 lastLcid = lcid;
1612 lastFlags = dwFlags;
1613 LeaveCriticalSection(&csLastChars);
1616 /* Number Parsing States */
1617 #define B_PROCESSING_EXPONENT 0x1
1618 #define B_NEGATIVE_EXPONENT 0x2
1619 #define B_EXPONENT_START 0x4
1620 #define B_INEXACT_ZEROS 0x8
1621 #define B_LEADING_ZERO 0x10
1622 #define B_PROCESSING_HEX 0x20
1623 #define B_PROCESSING_OCT 0x40
1625 /**********************************************************************
1626 * VarParseNumFromStr [OLEAUT32.46]
1628 * Parse a string containing a number into a NUMPARSE structure.
1630 * PARAMS
1631 * lpszStr [I] String to parse number from
1632 * lcid [I] Locale Id for the conversion
1633 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1634 * pNumprs [I/O] Destination for parsed number
1635 * rgbDig [O] Destination for digits read in
1637 * RETURNS
1638 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1639 * the number.
1640 * Failure: E_INVALIDARG, if any parameter is invalid.
1641 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1642 * incorrectly.
1643 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1645 * NOTES
1646 * pNumprs must have the following fields set:
1647 * cDig: Set to the size of rgbDig.
1648 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1649 * from "oleauto.h".
1651 * FIXME
1652 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1653 * numerals, so this has not been implemented.
1655 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1656 NUMPARSE *pNumprs, BYTE *rgbDig)
1658 VARIANT_NUMBER_CHARS chars;
1659 BYTE rgbTmp[1024];
1660 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1661 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1662 int cchUsed = 0;
1664 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1666 if (!pNumprs || !rgbDig)
1667 return E_INVALIDARG;
1669 if (pNumprs->cDig < iMaxDigits)
1670 iMaxDigits = pNumprs->cDig;
1672 pNumprs->cDig = 0;
1673 pNumprs->dwOutFlags = 0;
1674 pNumprs->cchUsed = 0;
1675 pNumprs->nBaseShift = 0;
1676 pNumprs->nPwr10 = 0;
1678 if (!lpszStr)
1679 return DISP_E_TYPEMISMATCH;
1681 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1683 /* First consume all the leading symbols and space from the string */
1684 while (1)
1686 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1688 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1691 cchUsed++;
1692 lpszStr++;
1693 } while (isspaceW(*lpszStr));
1695 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1696 *lpszStr == chars.cPositiveSymbol &&
1697 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1699 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1700 cchUsed++;
1701 lpszStr++;
1703 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1704 *lpszStr == chars.cNegativeSymbol &&
1705 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1707 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1708 cchUsed++;
1709 lpszStr++;
1711 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1712 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1713 *lpszStr == chars.cCurrencyLocal &&
1714 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1716 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1717 cchUsed++;
1718 lpszStr++;
1719 /* Only accept currency characters */
1720 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1721 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1723 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1724 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1726 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1727 cchUsed++;
1728 lpszStr++;
1730 else
1731 break;
1734 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1736 /* Only accept non-currency characters */
1737 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1738 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1741 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1742 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1744 dwState |= B_PROCESSING_HEX;
1745 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1746 cchUsed=cchUsed+2;
1747 lpszStr=lpszStr+2;
1749 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1750 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1752 dwState |= B_PROCESSING_OCT;
1753 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1754 cchUsed=cchUsed+2;
1755 lpszStr=lpszStr+2;
1758 /* Strip Leading zeros */
1759 while (*lpszStr == '0')
1761 dwState |= B_LEADING_ZERO;
1762 cchUsed++;
1763 lpszStr++;
1766 while (*lpszStr)
1768 if (isdigitW(*lpszStr))
1770 if (dwState & B_PROCESSING_EXPONENT)
1772 int exponentSize = 0;
1773 if (dwState & B_EXPONENT_START)
1775 if (!isdigitW(*lpszStr))
1776 break; /* No exponent digits - invalid */
1777 while (*lpszStr == '0')
1779 /* Skip leading zero's in the exponent */
1780 cchUsed++;
1781 lpszStr++;
1785 while (isdigitW(*lpszStr))
1787 exponentSize *= 10;
1788 exponentSize += *lpszStr - '0';
1789 cchUsed++;
1790 lpszStr++;
1792 if (dwState & B_NEGATIVE_EXPONENT)
1793 exponentSize = -exponentSize;
1794 /* Add the exponent into the powers of 10 */
1795 pNumprs->nPwr10 += exponentSize;
1796 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1797 lpszStr--; /* back up to allow processing of next char */
1799 else
1801 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1802 && !(dwState & B_PROCESSING_OCT))
1804 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1806 if (*lpszStr != '0')
1807 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1809 /* This digit can't be represented, but count it in nPwr10 */
1810 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1811 pNumprs->nPwr10--;
1812 else
1813 pNumprs->nPwr10++;
1815 else
1817 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1818 return DISP_E_TYPEMISMATCH;
1821 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1822 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1824 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1826 pNumprs->cDig++;
1827 cchUsed++;
1830 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1832 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1833 cchUsed++;
1835 else if (*lpszStr == chars.cDecimalPoint &&
1836 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1837 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1839 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1840 cchUsed++;
1842 /* If we have no digits so far, skip leading zeros */
1843 if (!pNumprs->cDig)
1845 while (lpszStr[1] == '0')
1847 dwState |= B_LEADING_ZERO;
1848 cchUsed++;
1849 lpszStr++;
1850 pNumprs->nPwr10--;
1854 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1855 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1856 dwState & B_PROCESSING_HEX)
1858 if (pNumprs->cDig >= iMaxDigits)
1860 return DISP_E_OVERFLOW;
1862 else
1864 if (*lpszStr >= 'a')
1865 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1866 else
1867 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1869 pNumprs->cDig++;
1870 cchUsed++;
1872 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1873 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1874 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1876 dwState |= B_PROCESSING_EXPONENT;
1877 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1878 cchUsed++;
1880 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1882 cchUsed++; /* Ignore positive exponent */
1884 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1886 dwState |= B_NEGATIVE_EXPONENT;
1887 cchUsed++;
1889 else
1890 break; /* Stop at an unrecognised character */
1892 lpszStr++;
1895 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1897 /* Ensure a 0 on its own gets stored */
1898 pNumprs->cDig = 1;
1899 rgbTmp[0] = 0;
1902 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1904 pNumprs->cchUsed = cchUsed;
1905 WARN("didn't completely parse exponent\n");
1906 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1909 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1911 if (dwState & B_INEXACT_ZEROS)
1912 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1913 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1915 /* copy all of the digits into the output digit buffer */
1916 /* this is exactly what windows does although it also returns */
1917 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1918 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1920 if (dwState & B_PROCESSING_HEX) {
1921 /* hex numbers have always the same format */
1922 pNumprs->nPwr10=0;
1923 pNumprs->nBaseShift=4;
1924 } else {
1925 if (dwState & B_PROCESSING_OCT) {
1926 /* oct numbers have always the same format */
1927 pNumprs->nPwr10=0;
1928 pNumprs->nBaseShift=3;
1929 } else {
1930 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1932 pNumprs->nPwr10++;
1933 pNumprs->cDig--;
1937 } else
1939 /* Remove trailing zeros from the last (whole number or decimal) part */
1940 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1942 pNumprs->nPwr10++;
1943 pNumprs->cDig--;
1947 if (pNumprs->cDig <= iMaxDigits)
1948 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1949 else
1950 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1952 /* Copy the digits we processed into rgbDig */
1953 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1955 /* Consume any trailing symbols and space */
1956 while (1)
1958 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1960 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1963 cchUsed++;
1964 lpszStr++;
1965 } while (isspaceW(*lpszStr));
1967 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1968 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1969 *lpszStr == chars.cPositiveSymbol)
1971 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1972 cchUsed++;
1973 lpszStr++;
1975 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1976 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1977 *lpszStr == chars.cNegativeSymbol)
1979 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1980 cchUsed++;
1981 lpszStr++;
1983 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1984 pNumprs->dwOutFlags & NUMPRS_PARENS)
1986 cchUsed++;
1987 lpszStr++;
1988 pNumprs->dwOutFlags |= NUMPRS_NEG;
1990 else
1991 break;
1994 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1996 pNumprs->cchUsed = cchUsed;
1997 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
2000 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
2001 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
2003 if (!pNumprs->cDig)
2004 return DISP_E_TYPEMISMATCH; /* No Number found */
2006 pNumprs->cchUsed = cchUsed;
2007 return S_OK;
2010 /* VTBIT flags indicating an integer value */
2011 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
2012 /* VTBIT flags indicating a real number value */
2013 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
2015 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
2016 #define FITS_AS_I1(x) ((x) >> 8 == 0)
2017 #define FITS_AS_I2(x) ((x) >> 16 == 0)
2018 #define FITS_AS_I4(x) ((x) >> 32 == 0)
2020 /**********************************************************************
2021 * VarNumFromParseNum [OLEAUT32.47]
2023 * Convert a NUMPARSE structure into a numeric Variant type.
2025 * PARAMS
2026 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
2027 * rgbDig [I] Source for the numbers digits
2028 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
2029 * pVarDst [O] Destination for the converted Variant value.
2031 * RETURNS
2032 * Success: S_OK. pVarDst contains the converted value.
2033 * Failure: E_INVALIDARG, if any parameter is invalid.
2034 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
2036 * NOTES
2037 * - The smallest favoured type present in dwVtBits that can represent the
2038 * number in pNumprs without losing precision is used.
2039 * - Signed types are preferred over unsigned types of the same size.
2040 * - Preferred types in order are: integer, float, double, currency then decimal.
2041 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
2042 * for details of the rounding method.
2043 * - pVarDst is not cleared before the result is stored in it.
2044 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2045 * design?): If some other VTBIT's for integers are specified together
2046 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2047 * the number to the smallest requested integer truncating this way the
2048 * number. Wine doesn't implement this "feature" (yet?).
2050 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
2051 ULONG dwVtBits, VARIANT *pVarDst)
2053 /* Scale factors and limits for double arithmetic */
2054 static const double dblMultipliers[11] = {
2055 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2056 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2058 static const double dblMinimums[11] = {
2059 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2060 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2061 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2063 static const double dblMaximums[11] = {
2064 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2065 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2066 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2069 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2071 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2073 if (pNumprs->nBaseShift)
2075 /* nBaseShift indicates a hex or octal number */
2076 ULONG64 ul64 = 0;
2077 LONG64 l64;
2078 int i;
2080 /* Convert the hex or octal number string into a UI64 */
2081 for (i = 0; i < pNumprs->cDig; i++)
2083 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2085 TRACE("Overflow multiplying digits\n");
2086 return DISP_E_OVERFLOW;
2088 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2091 /* also make a negative representation */
2092 l64=-ul64;
2094 /* Try signed and unsigned types in size order */
2095 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2097 V_VT(pVarDst) = VT_I1;
2098 V_I1(pVarDst) = ul64;
2099 return S_OK;
2101 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2103 V_VT(pVarDst) = VT_UI1;
2104 V_UI1(pVarDst) = ul64;
2105 return S_OK;
2107 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2109 V_VT(pVarDst) = VT_I2;
2110 V_I2(pVarDst) = ul64;
2111 return S_OK;
2113 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2115 V_VT(pVarDst) = VT_UI2;
2116 V_UI2(pVarDst) = ul64;
2117 return S_OK;
2119 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2121 V_VT(pVarDst) = VT_I4;
2122 V_I4(pVarDst) = ul64;
2123 return S_OK;
2125 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2127 V_VT(pVarDst) = VT_UI4;
2128 V_UI4(pVarDst) = ul64;
2129 return S_OK;
2131 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2133 V_VT(pVarDst) = VT_I8;
2134 V_I8(pVarDst) = ul64;
2135 return S_OK;
2137 else if (dwVtBits & VTBIT_UI8)
2139 V_VT(pVarDst) = VT_UI8;
2140 V_UI8(pVarDst) = ul64;
2141 return S_OK;
2143 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2145 V_VT(pVarDst) = VT_DECIMAL;
2146 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2147 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2148 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2149 return S_OK;
2151 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2153 V_VT(pVarDst) = VT_R4;
2154 if (ul64 <= I4_MAX)
2155 V_R4(pVarDst) = ul64;
2156 else
2157 V_R4(pVarDst) = l64;
2158 return S_OK;
2160 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2162 V_VT(pVarDst) = VT_R8;
2163 if (ul64 <= I4_MAX)
2164 V_R8(pVarDst) = ul64;
2165 else
2166 V_R8(pVarDst) = l64;
2167 return S_OK;
2170 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2171 return DISP_E_OVERFLOW;
2174 /* Count the number of relevant fractional and whole digits stored,
2175 * And compute the divisor/multiplier to scale the number by.
2177 if (pNumprs->nPwr10 < 0)
2179 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2181 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2182 wholeNumberDigits = 0;
2183 fractionalDigits = pNumprs->cDig;
2184 divisor10 = -pNumprs->nPwr10;
2186 else
2188 /* An exactly represented real number e.g. 1.024 */
2189 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2190 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2191 divisor10 = pNumprs->cDig - wholeNumberDigits;
2194 else if (pNumprs->nPwr10 == 0)
2196 /* An exactly represented whole number e.g. 1024 */
2197 wholeNumberDigits = pNumprs->cDig;
2198 fractionalDigits = 0;
2200 else /* pNumprs->nPwr10 > 0 */
2202 /* A whole number followed by nPwr10 0's e.g. 102400 */
2203 wholeNumberDigits = pNumprs->cDig;
2204 fractionalDigits = 0;
2205 multiplier10 = pNumprs->nPwr10;
2208 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2209 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2210 multiplier10, divisor10);
2212 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2213 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2215 /* We have one or more integer output choices, and either:
2216 * 1) An integer input value, or
2217 * 2) A real number input value but no floating output choices.
2218 * Alternately, we have a DECIMAL output available and an integer input.
2220 * So, place the integer value into pVarDst, using the smallest type
2221 * possible and preferring signed over unsigned types.
2223 BOOL bOverflow = FALSE, bNegative;
2224 ULONG64 ul64 = 0;
2225 int i;
2227 /* Convert the integer part of the number into a UI8 */
2228 for (i = 0; i < wholeNumberDigits; i++)
2230 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2232 TRACE("Overflow multiplying digits\n");
2233 bOverflow = TRUE;
2234 break;
2236 ul64 = ul64 * 10 + rgbDig[i];
2239 /* Account for the scale of the number */
2240 if (!bOverflow && multiplier10)
2242 for (i = 0; i < multiplier10; i++)
2244 if (ul64 > (UI8_MAX / 10))
2246 TRACE("Overflow scaling number\n");
2247 bOverflow = TRUE;
2248 break;
2250 ul64 = ul64 * 10;
2254 /* If we have any fractional digits, round the value.
2255 * Note we don't have to do this if divisor10 is < 1,
2256 * because this means the fractional part must be < 0.5
2258 if (!bOverflow && fractionalDigits && divisor10 > 0)
2260 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2261 BOOL bAdjust = FALSE;
2263 TRACE("first decimal value is %d\n", *fracDig);
2265 if (*fracDig > 5)
2266 bAdjust = TRUE; /* > 0.5 */
2267 else if (*fracDig == 5)
2269 for (i = 1; i < fractionalDigits; i++)
2271 if (fracDig[i])
2273 bAdjust = TRUE; /* > 0.5 */
2274 break;
2277 /* If exactly 0.5, round only odd values */
2278 if (i == fractionalDigits && (ul64 & 1))
2279 bAdjust = TRUE;
2282 if (bAdjust)
2284 if (ul64 == UI8_MAX)
2286 TRACE("Overflow after rounding\n");
2287 bOverflow = TRUE;
2289 ul64++;
2293 /* Zero is not a negative number */
2294 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2296 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2298 /* For negative integers, try the signed types in size order */
2299 if (!bOverflow && bNegative)
2301 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2303 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2305 V_VT(pVarDst) = VT_I1;
2306 V_I1(pVarDst) = -ul64;
2307 return S_OK;
2309 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2311 V_VT(pVarDst) = VT_I2;
2312 V_I2(pVarDst) = -ul64;
2313 return S_OK;
2315 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2317 V_VT(pVarDst) = VT_I4;
2318 V_I4(pVarDst) = -ul64;
2319 return S_OK;
2321 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2323 V_VT(pVarDst) = VT_I8;
2324 V_I8(pVarDst) = -ul64;
2325 return S_OK;
2327 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2329 /* Decimal is only output choice left - fast path */
2330 V_VT(pVarDst) = VT_DECIMAL;
2331 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2332 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2333 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2334 return S_OK;
2338 else if (!bOverflow)
2340 /* For positive integers, try signed then unsigned types in size order */
2341 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2343 V_VT(pVarDst) = VT_I1;
2344 V_I1(pVarDst) = ul64;
2345 return S_OK;
2347 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2349 V_VT(pVarDst) = VT_UI1;
2350 V_UI1(pVarDst) = ul64;
2351 return S_OK;
2353 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2355 V_VT(pVarDst) = VT_I2;
2356 V_I2(pVarDst) = ul64;
2357 return S_OK;
2359 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2361 V_VT(pVarDst) = VT_UI2;
2362 V_UI2(pVarDst) = ul64;
2363 return S_OK;
2365 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2367 V_VT(pVarDst) = VT_I4;
2368 V_I4(pVarDst) = ul64;
2369 return S_OK;
2371 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2373 V_VT(pVarDst) = VT_UI4;
2374 V_UI4(pVarDst) = ul64;
2375 return S_OK;
2377 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2379 V_VT(pVarDst) = VT_I8;
2380 V_I8(pVarDst) = ul64;
2381 return S_OK;
2383 else if (dwVtBits & VTBIT_UI8)
2385 V_VT(pVarDst) = VT_UI8;
2386 V_UI8(pVarDst) = ul64;
2387 return S_OK;
2389 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2391 /* Decimal is only output choice left - fast path */
2392 V_VT(pVarDst) = VT_DECIMAL;
2393 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2394 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2395 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2396 return S_OK;
2401 if (dwVtBits & REAL_VTBITS)
2403 /* Try to put the number into a float or real */
2404 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2405 double whole = 0.0;
2406 int i;
2408 /* Convert the number into a double */
2409 for (i = 0; i < pNumprs->cDig; i++)
2410 whole = whole * 10.0 + rgbDig[i];
2412 TRACE("Whole double value is %16.16g\n", whole);
2414 /* Account for the scale */
2415 while (multiplier10 > 10)
2417 if (whole > dblMaximums[10])
2419 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2420 bOverflow = TRUE;
2421 break;
2423 whole = whole * dblMultipliers[10];
2424 multiplier10 -= 10;
2426 if (multiplier10 && !bOverflow)
2428 if (whole > dblMaximums[multiplier10])
2430 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2431 bOverflow = TRUE;
2433 else
2434 whole = whole * dblMultipliers[multiplier10];
2437 if (!bOverflow)
2438 TRACE("Scaled double value is %16.16g\n", whole);
2440 while (divisor10 > 10 && !bOverflow)
2442 if (whole < dblMinimums[10] && whole != 0)
2444 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2445 bOverflow = TRUE;
2446 break;
2448 whole = whole / dblMultipliers[10];
2449 divisor10 -= 10;
2451 if (divisor10 && !bOverflow)
2453 if (whole < dblMinimums[divisor10] && whole != 0)
2455 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2456 bOverflow = TRUE;
2458 else
2459 whole = whole / dblMultipliers[divisor10];
2461 if (!bOverflow)
2462 TRACE("Final double value is %16.16g\n", whole);
2464 if (dwVtBits & VTBIT_R4 &&
2465 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2467 TRACE("Set R4 to final value\n");
2468 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2469 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2470 return S_OK;
2473 if (dwVtBits & VTBIT_R8)
2475 TRACE("Set R8 to final value\n");
2476 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2477 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2478 return S_OK;
2481 if (dwVtBits & VTBIT_CY)
2483 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2485 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2486 TRACE("Set CY to final value\n");
2487 return S_OK;
2489 TRACE("Value Overflows CY\n");
2493 if (dwVtBits & VTBIT_DECIMAL)
2495 int i;
2496 ULONG carry;
2497 ULONG64 tmp;
2498 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2500 DECIMAL_SETZERO(*pDec);
2501 DEC_LO32(pDec) = 0;
2503 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2504 DEC_SIGN(pDec) = DECIMAL_NEG;
2505 else
2506 DEC_SIGN(pDec) = DECIMAL_POS;
2508 /* Factor the significant digits */
2509 for (i = 0; i < pNumprs->cDig; i++)
2511 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2512 carry = (ULONG)(tmp >> 32);
2513 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2514 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2515 carry = (ULONG)(tmp >> 32);
2516 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2517 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2518 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2520 if (tmp >> 32 & UI4_MAX)
2522 VarNumFromParseNum_DecOverflow:
2523 TRACE("Overflow\n");
2524 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2525 return DISP_E_OVERFLOW;
2529 /* Account for the scale of the number */
2530 while (multiplier10 > 0)
2532 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2533 carry = (ULONG)(tmp >> 32);
2534 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2535 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2536 carry = (ULONG)(tmp >> 32);
2537 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2538 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2539 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2541 if (tmp >> 32 & UI4_MAX)
2542 goto VarNumFromParseNum_DecOverflow;
2543 multiplier10--;
2545 DEC_SCALE(pDec) = divisor10;
2547 V_VT(pVarDst) = VT_DECIMAL;
2548 return S_OK;
2550 return DISP_E_OVERFLOW; /* No more output choices */
2553 /**********************************************************************
2554 * VarCat [OLEAUT32.318]
2556 * Concatenates one variant onto another.
2558 * PARAMS
2559 * left [I] First variant
2560 * right [I] Second variant
2561 * result [O] Result variant
2563 * RETURNS
2564 * Success: S_OK.
2565 * Failure: An HRESULT error code indicating the error.
2567 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2569 VARTYPE leftvt,rightvt,resultvt;
2570 HRESULT hres;
2571 static WCHAR str_true[32];
2572 static WCHAR str_false[32];
2573 static const WCHAR sz_empty[] = {'\0'};
2574 leftvt = V_VT(left);
2575 rightvt = V_VT(right);
2577 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2579 if (!str_true[0]) {
2580 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2581 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2584 /* when both left and right are NULL the result is NULL */
2585 if (leftvt == VT_NULL && rightvt == VT_NULL)
2587 V_VT(out) = VT_NULL;
2588 return S_OK;
2591 hres = S_OK;
2592 resultvt = VT_EMPTY;
2594 /* There are many special case for errors and return types */
2595 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2596 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2597 hres = DISP_E_TYPEMISMATCH;
2598 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2599 leftvt == VT_R4 || leftvt == VT_R8 ||
2600 leftvt == VT_CY || leftvt == VT_BOOL ||
2601 leftvt == VT_BSTR || leftvt == VT_I1 ||
2602 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2603 leftvt == VT_UI4 || leftvt == VT_I8 ||
2604 leftvt == VT_UI8 || leftvt == VT_INT ||
2605 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2606 leftvt == VT_NULL || leftvt == VT_DATE ||
2607 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2609 (rightvt == VT_I2 || rightvt == VT_I4 ||
2610 rightvt == VT_R4 || rightvt == VT_R8 ||
2611 rightvt == VT_CY || rightvt == VT_BOOL ||
2612 rightvt == VT_BSTR || rightvt == VT_I1 ||
2613 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2614 rightvt == VT_UI4 || rightvt == VT_I8 ||
2615 rightvt == VT_UI8 || rightvt == VT_INT ||
2616 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2617 rightvt == VT_NULL || rightvt == VT_DATE ||
2618 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2619 resultvt = VT_BSTR;
2620 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2621 hres = DISP_E_TYPEMISMATCH;
2622 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2623 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2624 hres = DISP_E_TYPEMISMATCH;
2625 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2626 rightvt == VT_DECIMAL)
2627 hres = DISP_E_BADVARTYPE;
2628 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2629 hres = DISP_E_TYPEMISMATCH;
2630 else if (leftvt == VT_VARIANT)
2631 hres = DISP_E_TYPEMISMATCH;
2632 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2633 leftvt == VT_NULL || leftvt == VT_I2 ||
2634 leftvt == VT_I4 || leftvt == VT_R4 ||
2635 leftvt == VT_R8 || leftvt == VT_CY ||
2636 leftvt == VT_DATE || leftvt == VT_BSTR ||
2637 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2638 leftvt == VT_I1 || leftvt == VT_UI1 ||
2639 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2640 leftvt == VT_I8 || leftvt == VT_UI8 ||
2641 leftvt == VT_INT || leftvt == VT_UINT))
2642 hres = DISP_E_TYPEMISMATCH;
2643 else
2644 hres = DISP_E_BADVARTYPE;
2646 /* if result type is not S_OK, then no need to go further */
2647 if (hres != S_OK)
2649 V_VT(out) = resultvt;
2650 return hres;
2652 /* Else proceed with formatting inputs to strings */
2653 else
2655 VARIANT bstrvar_left, bstrvar_right;
2656 V_VT(out) = VT_BSTR;
2658 VariantInit(&bstrvar_left);
2659 VariantInit(&bstrvar_right);
2661 /* Convert left side variant to string */
2662 if (leftvt != VT_BSTR)
2664 if (leftvt == VT_BOOL)
2666 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2667 V_VT(&bstrvar_left) = VT_BSTR;
2668 if (V_BOOL(left))
2669 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2670 else
2671 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2673 /* Fill with empty string for later concat with right side */
2674 else if (leftvt == VT_NULL)
2676 V_VT(&bstrvar_left) = VT_BSTR;
2677 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2679 else
2681 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2682 if (hres != S_OK) {
2683 VariantClear(&bstrvar_left);
2684 VariantClear(&bstrvar_right);
2685 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2686 rightvt == VT_NULL || rightvt == VT_I2 ||
2687 rightvt == VT_I4 || rightvt == VT_R4 ||
2688 rightvt == VT_R8 || rightvt == VT_CY ||
2689 rightvt == VT_DATE || rightvt == VT_BSTR ||
2690 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2691 rightvt == VT_I1 || rightvt == VT_UI1 ||
2692 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2693 rightvt == VT_I8 || rightvt == VT_UI8 ||
2694 rightvt == VT_INT || rightvt == VT_UINT))
2695 return DISP_E_BADVARTYPE;
2696 return hres;
2701 /* convert right side variant to string */
2702 if (rightvt != VT_BSTR)
2704 if (rightvt == VT_BOOL)
2706 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2707 V_VT(&bstrvar_right) = VT_BSTR;
2708 if (V_BOOL(right))
2709 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2710 else
2711 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2713 /* Fill with empty string for later concat with right side */
2714 else if (rightvt == VT_NULL)
2716 V_VT(&bstrvar_right) = VT_BSTR;
2717 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2719 else
2721 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2722 if (hres != S_OK) {
2723 VariantClear(&bstrvar_left);
2724 VariantClear(&bstrvar_right);
2725 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2726 leftvt == VT_NULL || leftvt == VT_I2 ||
2727 leftvt == VT_I4 || leftvt == VT_R4 ||
2728 leftvt == VT_R8 || leftvt == VT_CY ||
2729 leftvt == VT_DATE || leftvt == VT_BSTR ||
2730 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2731 leftvt == VT_I1 || leftvt == VT_UI1 ||
2732 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2733 leftvt == VT_I8 || leftvt == VT_UI8 ||
2734 leftvt == VT_INT || leftvt == VT_UINT))
2735 return DISP_E_BADVARTYPE;
2736 return hres;
2741 /* Concat the resulting strings together */
2742 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2743 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2744 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2745 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2746 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2747 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2748 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2749 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2751 VariantClear(&bstrvar_left);
2752 VariantClear(&bstrvar_right);
2753 return S_OK;
2758 /* Wrapper around VariantChangeTypeEx() which permits changing a
2759 variant with VT_RESERVED flag set. Needed by VarCmp. */
2760 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2761 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2763 VARIANTARG vtmpsrc = *pvargSrc;
2765 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2766 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2769 /**********************************************************************
2770 * VarCmp [OLEAUT32.176]
2772 * Compare two variants.
2774 * PARAMS
2775 * left [I] First variant
2776 * right [I] Second variant
2777 * lcid [I] LCID (locale identifier) for the comparison
2778 * flags [I] Flags to be used in the comparison:
2779 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2780 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2782 * RETURNS
2783 * VARCMP_LT: left variant is less than right variant.
2784 * VARCMP_EQ: input variants are equal.
2785 * VARCMP_GT: left variant is greater than right variant.
2786 * VARCMP_NULL: either one of the input variants is NULL.
2787 * Failure: An HRESULT error code indicating the error.
2789 * NOTES
2790 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2791 * UI8 and UINT as input variants. INT is accepted only as left variant.
2793 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2794 * an ERROR variant will trigger an error.
2796 * Both input variants can have VT_RESERVED flag set which is ignored
2797 * unless one and only one of the variants is a BSTR and the other one
2798 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2799 * different meaning:
2800 * - BSTR and other: BSTR is always greater than the other variant.
2801 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2802 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2803 * comparison will take place else the BSTR is always greater.
2804 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2805 * variant is ignored and the return value depends only on the sign
2806 * of the BSTR if it is a number else the BSTR is always greater. A
2807 * positive BSTR is greater, a negative one is smaller than the other
2808 * variant.
2810 * SEE
2811 * VarBstrCmp for the lcid and flags usage.
2813 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2815 VARTYPE lvt, rvt, vt;
2816 VARIANT rv,lv;
2817 DWORD xmask;
2818 HRESULT rc;
2820 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2822 lvt = V_VT(left) & VT_TYPEMASK;
2823 rvt = V_VT(right) & VT_TYPEMASK;
2824 xmask = (1 << lvt) | (1 << rvt);
2826 /* If we have any flag set except VT_RESERVED bail out.
2827 Same for the left input variant type > VT_INT and for the
2828 right input variant type > VT_I8. Yes, VT_INT is only supported
2829 as left variant. Go figure */
2830 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2831 lvt > VT_INT || rvt > VT_I8) {
2832 return DISP_E_BADVARTYPE;
2835 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2836 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2837 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2838 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2839 return DISP_E_TYPEMISMATCH;
2841 /* If both variants are VT_ERROR return VARCMP_EQ */
2842 if (xmask == VTBIT_ERROR)
2843 return VARCMP_EQ;
2844 else if (xmask & VTBIT_ERROR)
2845 return DISP_E_TYPEMISMATCH;
2847 if (xmask & VTBIT_NULL)
2848 return VARCMP_NULL;
2850 VariantInit(&lv);
2851 VariantInit(&rv);
2853 /* Two BSTRs, ignore VT_RESERVED */
2854 if (xmask == VTBIT_BSTR)
2855 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2857 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2858 if (xmask & VTBIT_BSTR) {
2859 VARIANT *bstrv, *nonbv;
2860 VARTYPE nonbvt;
2861 int swap = 0;
2863 /* Swap the variants so the BSTR is always on the left */
2864 if (lvt == VT_BSTR) {
2865 bstrv = left;
2866 nonbv = right;
2867 nonbvt = rvt;
2868 } else {
2869 swap = 1;
2870 bstrv = right;
2871 nonbv = left;
2872 nonbvt = lvt;
2875 /* BSTR and EMPTY: ignore VT_RESERVED */
2876 if (nonbvt == VT_EMPTY)
2877 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2878 else {
2879 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2880 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2882 if (!breserv && !nreserv)
2883 /* No VT_RESERVED set ==> BSTR always greater */
2884 rc = VARCMP_GT;
2885 else if (breserv && !nreserv) {
2886 /* BSTR has VT_RESERVED set. Do a string comparison */
2887 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2888 if (FAILED(rc))
2889 return rc;
2890 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2891 VariantClear(&rv);
2892 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2893 /* Non NULL nor empty BSTR */
2894 /* If the BSTR is not a number the BSTR is greater */
2895 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2896 if (FAILED(rc))
2897 rc = VARCMP_GT;
2898 else if (breserv && nreserv)
2899 /* FIXME: This is strange: with both VT_RESERVED set it
2900 looks like the result depends only on the sign of
2901 the BSTR number */
2902 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2903 else
2904 /* Numeric comparison, will be handled below.
2905 VARCMP_NULL used only to break out. */
2906 rc = VARCMP_NULL;
2907 VariantClear(&lv);
2908 VariantClear(&rv);
2909 } else
2910 /* Empty or NULL BSTR */
2911 rc = VARCMP_GT;
2913 /* Fixup the return code if we swapped left and right */
2914 if (swap) {
2915 if (rc == VARCMP_GT)
2916 rc = VARCMP_LT;
2917 else if (rc == VARCMP_LT)
2918 rc = VARCMP_GT;
2920 if (rc != VARCMP_NULL)
2921 return rc;
2924 if (xmask & VTBIT_DECIMAL)
2925 vt = VT_DECIMAL;
2926 else if (xmask & VTBIT_BSTR)
2927 vt = VT_R8;
2928 else if (xmask & VTBIT_R4)
2929 vt = VT_R4;
2930 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2931 vt = VT_R8;
2932 else if (xmask & VTBIT_CY)
2933 vt = VT_CY;
2934 else
2935 /* default to I8 */
2936 vt = VT_I8;
2938 /* Coerce the variants */
2939 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2940 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2941 /* Overflow, change to R8 */
2942 vt = VT_R8;
2943 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2945 if (FAILED(rc))
2946 return rc;
2947 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2948 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2949 /* Overflow, change to R8 */
2950 vt = VT_R8;
2951 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2952 if (FAILED(rc))
2953 return rc;
2954 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2956 if (FAILED(rc))
2957 return rc;
2959 #define _VARCMP(a,b) \
2960 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2962 switch (vt) {
2963 case VT_CY:
2964 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2965 case VT_DECIMAL:
2966 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2967 case VT_I8:
2968 return _VARCMP(V_I8(&lv), V_I8(&rv));
2969 case VT_R4:
2970 return _VARCMP(V_R4(&lv), V_R4(&rv));
2971 case VT_R8:
2972 return _VARCMP(V_R8(&lv), V_R8(&rv));
2973 default:
2974 /* We should never get here */
2975 return E_FAIL;
2977 #undef _VARCMP
2980 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
2982 HRESULT hres;
2983 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
2985 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
2986 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
2987 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
2988 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
2989 NULL, NULL);
2990 } else {
2991 hres = DISP_E_TYPEMISMATCH;
2993 return hres;
2996 /**********************************************************************
2997 * VarAnd [OLEAUT32.142]
2999 * Computes the logical AND of two variants.
3001 * PARAMS
3002 * left [I] First variant
3003 * right [I] Second variant
3004 * result [O] Result variant
3006 * RETURNS
3007 * Success: S_OK.
3008 * Failure: An HRESULT error code indicating the error.
3010 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3012 HRESULT hres = S_OK;
3013 VARTYPE resvt = VT_EMPTY;
3014 VARTYPE leftvt,rightvt;
3015 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3016 VARIANT varLeft, varRight;
3017 VARIANT tempLeft, tempRight;
3019 VariantInit(&varLeft);
3020 VariantInit(&varRight);
3021 VariantInit(&tempLeft);
3022 VariantInit(&tempRight);
3024 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3026 /* Handle VT_DISPATCH by storing and taking address of returned value */
3027 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3029 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3030 if (FAILED(hres)) goto VarAnd_Exit;
3031 left = &tempLeft;
3033 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3035 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3036 if (FAILED(hres)) goto VarAnd_Exit;
3037 right = &tempRight;
3040 leftvt = V_VT(left)&VT_TYPEMASK;
3041 rightvt = V_VT(right)&VT_TYPEMASK;
3042 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3043 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3045 if (leftExtraFlags != rightExtraFlags)
3047 hres = DISP_E_BADVARTYPE;
3048 goto VarAnd_Exit;
3050 ExtraFlags = leftExtraFlags;
3052 /* Native VarAnd always returns an error when using extra
3053 * flags or if the variant combination is I8 and INT.
3055 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
3056 (leftvt == VT_INT && rightvt == VT_I8) ||
3057 ExtraFlags != 0)
3059 hres = DISP_E_BADVARTYPE;
3060 goto VarAnd_Exit;
3063 /* Determine return type */
3064 else if (leftvt == VT_I8 || rightvt == VT_I8)
3065 resvt = VT_I8;
3066 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
3067 leftvt == VT_UINT || rightvt == VT_UINT ||
3068 leftvt == VT_INT || rightvt == VT_INT ||
3069 leftvt == VT_UINT || rightvt == VT_UINT ||
3070 leftvt == VT_R4 || rightvt == VT_R4 ||
3071 leftvt == VT_R8 || rightvt == VT_R8 ||
3072 leftvt == VT_CY || rightvt == VT_CY ||
3073 leftvt == VT_DATE || rightvt == VT_DATE ||
3074 leftvt == VT_I1 || rightvt == VT_I1 ||
3075 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3076 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3077 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3078 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3079 resvt = VT_I4;
3080 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3081 leftvt == VT_I2 || rightvt == VT_I2 ||
3082 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3083 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3084 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3085 (leftvt == VT_UI1 && rightvt == VT_UI1))
3086 resvt = VT_UI1;
3087 else
3088 resvt = VT_I2;
3089 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3090 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3091 resvt = VT_BOOL;
3092 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3093 leftvt == VT_BSTR || rightvt == VT_BSTR)
3094 resvt = VT_NULL;
3095 else
3097 hres = DISP_E_BADVARTYPE;
3098 goto VarAnd_Exit;
3101 if (leftvt == VT_NULL || rightvt == VT_NULL)
3104 * Special cases for when left variant is VT_NULL
3105 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3107 if (leftvt == VT_NULL)
3109 VARIANT_BOOL b;
3110 switch(rightvt)
3112 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3113 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3114 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3115 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3116 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3117 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3118 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3119 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3120 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3121 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3122 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3123 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3124 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3125 case VT_CY:
3126 if(V_CY(right).int64)
3127 resvt = VT_NULL;
3128 break;
3129 case VT_DECIMAL:
3130 if (DEC_HI32(&V_DECIMAL(right)) ||
3131 DEC_LO64(&V_DECIMAL(right)))
3132 resvt = VT_NULL;
3133 break;
3134 case VT_BSTR:
3135 hres = VarBoolFromStr(V_BSTR(right),
3136 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3137 if (FAILED(hres))
3138 return hres;
3139 else if (b)
3140 V_VT(result) = VT_NULL;
3141 else
3143 V_VT(result) = VT_BOOL;
3144 V_BOOL(result) = b;
3146 goto VarAnd_Exit;
3149 V_VT(result) = resvt;
3150 goto VarAnd_Exit;
3153 hres = VariantCopy(&varLeft, left);
3154 if (FAILED(hres)) goto VarAnd_Exit;
3156 hres = VariantCopy(&varRight, right);
3157 if (FAILED(hres)) goto VarAnd_Exit;
3159 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3160 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3161 else
3163 double d;
3165 if (V_VT(&varLeft) == VT_BSTR &&
3166 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3167 LOCALE_USER_DEFAULT, 0, &d)))
3168 hres = VariantChangeType(&varLeft,&varLeft,
3169 VARIANT_LOCALBOOL, VT_BOOL);
3170 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3171 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3172 if (FAILED(hres)) goto VarAnd_Exit;
3175 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3176 V_VT(&varRight) = VT_I4; /* Don't overflow */
3177 else
3179 double d;
3181 if (V_VT(&varRight) == VT_BSTR &&
3182 FAILED(VarR8FromStr(V_BSTR(&varRight),
3183 LOCALE_USER_DEFAULT, 0, &d)))
3184 hres = VariantChangeType(&varRight, &varRight,
3185 VARIANT_LOCALBOOL, VT_BOOL);
3186 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3187 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3188 if (FAILED(hres)) goto VarAnd_Exit;
3191 V_VT(result) = resvt;
3192 switch(resvt)
3194 case VT_I8:
3195 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3196 break;
3197 case VT_I4:
3198 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3199 break;
3200 case VT_I2:
3201 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3202 break;
3203 case VT_UI1:
3204 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3205 break;
3206 case VT_BOOL:
3207 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3208 break;
3209 default:
3210 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3211 leftvt,rightvt);
3214 VarAnd_Exit:
3215 VariantClear(&varLeft);
3216 VariantClear(&varRight);
3217 VariantClear(&tempLeft);
3218 VariantClear(&tempRight);
3220 return hres;
3223 /**********************************************************************
3224 * VarAdd [OLEAUT32.141]
3226 * Add two variants.
3228 * PARAMS
3229 * left [I] First variant
3230 * right [I] Second variant
3231 * result [O] Result variant
3233 * RETURNS
3234 * Success: S_OK.
3235 * Failure: An HRESULT error code indicating the error.
3237 * NOTES
3238 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3239 * UI8, INT and UINT as input variants.
3241 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3242 * same here.
3244 * FIXME
3245 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3246 * case.
3248 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3250 HRESULT hres;
3251 VARTYPE lvt, rvt, resvt, tvt;
3252 VARIANT lv, rv, tv;
3253 VARIANT tempLeft, tempRight;
3254 double r8res;
3256 /* Variant priority for coercion. Sorted from lowest to highest.
3257 VT_ERROR shows an invalid input variant type. */
3258 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3259 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3260 vt_ERROR };
3261 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3262 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3263 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3264 VT_NULL, VT_ERROR };
3266 /* Mapping for coercion from input variant to priority of result variant. */
3267 static const VARTYPE coerce[] = {
3268 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3269 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3270 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3271 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3272 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3273 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3274 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3275 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3278 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3280 VariantInit(&lv);
3281 VariantInit(&rv);
3282 VariantInit(&tv);
3283 VariantInit(&tempLeft);
3284 VariantInit(&tempRight);
3286 /* Handle VT_DISPATCH by storing and taking address of returned value */
3287 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3289 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3291 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3292 if (FAILED(hres)) goto end;
3293 left = &tempLeft;
3295 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3297 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3298 if (FAILED(hres)) goto end;
3299 right = &tempRight;
3303 lvt = V_VT(left)&VT_TYPEMASK;
3304 rvt = V_VT(right)&VT_TYPEMASK;
3306 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3307 Same for any input variant type > VT_I8 */
3308 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3309 lvt > VT_I8 || rvt > VT_I8) {
3310 hres = DISP_E_BADVARTYPE;
3311 goto end;
3314 /* Determine the variant type to coerce to. */
3315 if (coerce[lvt] > coerce[rvt]) {
3316 resvt = prio2vt[coerce[lvt]];
3317 tvt = prio2vt[coerce[rvt]];
3318 } else {
3319 resvt = prio2vt[coerce[rvt]];
3320 tvt = prio2vt[coerce[lvt]];
3323 /* Special cases where the result variant type is defined by both
3324 input variants and not only that with the highest priority */
3325 if (resvt == VT_BSTR) {
3326 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3327 resvt = VT_BSTR;
3328 else
3329 resvt = VT_R8;
3331 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3332 resvt = VT_R8;
3334 /* For overflow detection use the biggest compatible type for the
3335 addition */
3336 switch (resvt) {
3337 case VT_ERROR:
3338 hres = DISP_E_BADVARTYPE;
3339 goto end;
3340 case VT_NULL:
3341 hres = S_OK;
3342 V_VT(result) = VT_NULL;
3343 goto end;
3344 case VT_DISPATCH:
3345 FIXME("cannot handle variant type VT_DISPATCH\n");
3346 hres = DISP_E_TYPEMISMATCH;
3347 goto end;
3348 case VT_EMPTY:
3349 resvt = VT_I2;
3350 /* Fall through */
3351 case VT_UI1:
3352 case VT_I2:
3353 case VT_I4:
3354 case VT_I8:
3355 tvt = VT_I8;
3356 break;
3357 case VT_DATE:
3358 case VT_R4:
3359 tvt = VT_R8;
3360 break;
3361 default:
3362 tvt = resvt;
3365 /* Now coerce the variants */
3366 hres = VariantChangeType(&lv, left, 0, tvt);
3367 if (FAILED(hres))
3368 goto end;
3369 hres = VariantChangeType(&rv, right, 0, tvt);
3370 if (FAILED(hres))
3371 goto end;
3373 /* Do the math */
3374 hres = S_OK;
3375 V_VT(result) = resvt;
3376 switch (tvt) {
3377 case VT_DECIMAL:
3378 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3379 &V_DECIMAL(result));
3380 goto end;
3381 case VT_CY:
3382 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3383 goto end;
3384 case VT_BSTR:
3385 /* We do not add those, we concatenate them. */
3386 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3387 goto end;
3388 case VT_I8:
3389 /* Overflow detection */
3390 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3391 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3392 V_VT(result) = VT_R8;
3393 V_R8(result) = r8res;
3394 goto end;
3395 } else {
3396 V_VT(&tv) = tvt;
3397 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3399 break;
3400 case VT_R8:
3401 V_VT(&tv) = tvt;
3402 /* FIXME: overflow detection */
3403 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3404 break;
3405 default:
3406 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3407 break;
3409 if (resvt != tvt) {
3410 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3411 /* Overflow! Change to the vartype with the next higher priority.
3412 With one exception: I4 ==> R8 even if it would fit in I8 */
3413 if (resvt == VT_I4)
3414 resvt = VT_R8;
3415 else
3416 resvt = prio2vt[coerce[resvt] + 1];
3417 hres = VariantChangeType(result, &tv, 0, resvt);
3419 } else
3420 hres = VariantCopy(result, &tv);
3422 end:
3423 if (hres != S_OK) {
3424 V_VT(result) = VT_EMPTY;
3425 V_I4(result) = 0; /* No V_EMPTY */
3427 VariantClear(&lv);
3428 VariantClear(&rv);
3429 VariantClear(&tv);
3430 VariantClear(&tempLeft);
3431 VariantClear(&tempRight);
3432 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3433 return hres;
3436 /**********************************************************************
3437 * VarMul [OLEAUT32.156]
3439 * Multiply two variants.
3441 * PARAMS
3442 * left [I] First variant
3443 * right [I] Second variant
3444 * result [O] Result variant
3446 * RETURNS
3447 * Success: S_OK.
3448 * Failure: An HRESULT error code indicating the error.
3450 * NOTES
3451 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3452 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3454 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3455 * same here.
3457 * FIXME
3458 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3459 * case.
3461 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3463 HRESULT hres;
3464 VARTYPE lvt, rvt, resvt, tvt;
3465 VARIANT lv, rv, tv;
3466 VARIANT tempLeft, tempRight;
3467 double r8res;
3469 /* Variant priority for coercion. Sorted from lowest to highest.
3470 VT_ERROR shows an invalid input variant type. */
3471 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3472 vt_DECIMAL, vt_NULL, vt_ERROR };
3473 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3474 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3475 VT_DECIMAL, VT_NULL, VT_ERROR };
3477 /* Mapping for coercion from input variant to priority of result variant. */
3478 static const VARTYPE coerce[] = {
3479 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3480 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3481 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3482 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3483 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3484 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3485 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3486 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3489 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3491 VariantInit(&lv);
3492 VariantInit(&rv);
3493 VariantInit(&tv);
3494 VariantInit(&tempLeft);
3495 VariantInit(&tempRight);
3497 /* Handle VT_DISPATCH by storing and taking address of returned value */
3498 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3500 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3501 if (FAILED(hres)) goto end;
3502 left = &tempLeft;
3504 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3506 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3507 if (FAILED(hres)) goto end;
3508 right = &tempRight;
3511 lvt = V_VT(left)&VT_TYPEMASK;
3512 rvt = V_VT(right)&VT_TYPEMASK;
3514 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3515 Same for any input variant type > VT_I8 */
3516 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3517 lvt > VT_I8 || rvt > VT_I8) {
3518 hres = DISP_E_BADVARTYPE;
3519 goto end;
3522 /* Determine the variant type to coerce to. */
3523 if (coerce[lvt] > coerce[rvt]) {
3524 resvt = prio2vt[coerce[lvt]];
3525 tvt = prio2vt[coerce[rvt]];
3526 } else {
3527 resvt = prio2vt[coerce[rvt]];
3528 tvt = prio2vt[coerce[lvt]];
3531 /* Special cases where the result variant type is defined by both
3532 input variants and not only that with the highest priority */
3533 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3534 resvt = VT_R8;
3535 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3536 resvt = VT_I2;
3538 /* For overflow detection use the biggest compatible type for the
3539 multiplication */
3540 switch (resvt) {
3541 case VT_ERROR:
3542 hres = DISP_E_BADVARTYPE;
3543 goto end;
3544 case VT_NULL:
3545 hres = S_OK;
3546 V_VT(result) = VT_NULL;
3547 goto end;
3548 case VT_UI1:
3549 case VT_I2:
3550 case VT_I4:
3551 case VT_I8:
3552 tvt = VT_I8;
3553 break;
3554 case VT_R4:
3555 tvt = VT_R8;
3556 break;
3557 default:
3558 tvt = resvt;
3561 /* Now coerce the variants */
3562 hres = VariantChangeType(&lv, left, 0, tvt);
3563 if (FAILED(hres))
3564 goto end;
3565 hres = VariantChangeType(&rv, right, 0, tvt);
3566 if (FAILED(hres))
3567 goto end;
3569 /* Do the math */
3570 hres = S_OK;
3571 V_VT(&tv) = tvt;
3572 V_VT(result) = resvt;
3573 switch (tvt) {
3574 case VT_DECIMAL:
3575 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3576 &V_DECIMAL(result));
3577 goto end;
3578 case VT_CY:
3579 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3580 goto end;
3581 case VT_I8:
3582 /* Overflow detection */
3583 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3584 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3585 V_VT(result) = VT_R8;
3586 V_R8(result) = r8res;
3587 goto end;
3588 } else
3589 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3590 break;
3591 case VT_R8:
3592 /* FIXME: overflow detection */
3593 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3594 break;
3595 default:
3596 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3597 break;
3599 if (resvt != tvt) {
3600 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3601 /* Overflow! Change to the vartype with the next higher priority.
3602 With one exception: I4 ==> R8 even if it would fit in I8 */
3603 if (resvt == VT_I4)
3604 resvt = VT_R8;
3605 else
3606 resvt = prio2vt[coerce[resvt] + 1];
3608 } else
3609 hres = VariantCopy(result, &tv);
3611 end:
3612 if (hres != S_OK) {
3613 V_VT(result) = VT_EMPTY;
3614 V_I4(result) = 0; /* No V_EMPTY */
3616 VariantClear(&lv);
3617 VariantClear(&rv);
3618 VariantClear(&tv);
3619 VariantClear(&tempLeft);
3620 VariantClear(&tempRight);
3621 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3622 return hres;
3625 /**********************************************************************
3626 * VarDiv [OLEAUT32.143]
3628 * Divides one variant with another.
3630 * PARAMS
3631 * left [I] First variant
3632 * right [I] Second variant
3633 * result [O] Result variant
3635 * RETURNS
3636 * Success: S_OK.
3637 * Failure: An HRESULT error code indicating the error.
3639 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3641 HRESULT hres = S_OK;
3642 VARTYPE resvt = VT_EMPTY;
3643 VARTYPE leftvt,rightvt;
3644 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3645 VARIANT lv,rv;
3646 VARIANT tempLeft, tempRight;
3648 VariantInit(&tempLeft);
3649 VariantInit(&tempRight);
3650 VariantInit(&lv);
3651 VariantInit(&rv);
3653 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3655 /* Handle VT_DISPATCH by storing and taking address of returned value */
3656 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3658 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3659 if (FAILED(hres)) goto end;
3660 left = &tempLeft;
3662 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3664 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3665 if (FAILED(hres)) goto end;
3666 right = &tempRight;
3669 leftvt = V_VT(left)&VT_TYPEMASK;
3670 rightvt = V_VT(right)&VT_TYPEMASK;
3671 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3672 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3674 if (leftExtraFlags != rightExtraFlags)
3676 hres = DISP_E_BADVARTYPE;
3677 goto end;
3679 ExtraFlags = leftExtraFlags;
3681 /* Native VarDiv always returns an error when using extra flags */
3682 if (ExtraFlags != 0)
3684 hres = DISP_E_BADVARTYPE;
3685 goto end;
3688 /* Determine return type */
3689 if (!(rightvt == VT_EMPTY))
3691 if (leftvt == VT_NULL || rightvt == VT_NULL)
3693 V_VT(result) = VT_NULL;
3694 hres = S_OK;
3695 goto end;
3697 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3698 resvt = VT_DECIMAL;
3699 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3700 leftvt == VT_CY || rightvt == VT_CY ||
3701 leftvt == VT_DATE || rightvt == VT_DATE ||
3702 leftvt == VT_I4 || rightvt == VT_I4 ||
3703 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3704 leftvt == VT_I2 || rightvt == VT_I2 ||
3705 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3706 leftvt == VT_R8 || rightvt == VT_R8 ||
3707 leftvt == VT_UI1 || rightvt == VT_UI1)
3709 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3710 (leftvt == VT_R4 && rightvt == VT_UI1))
3711 resvt = VT_R4;
3712 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3713 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3714 (leftvt == VT_BOOL || leftvt == VT_I2)))
3715 resvt = VT_R4;
3716 else
3717 resvt = VT_R8;
3719 else if (leftvt == VT_R4 || rightvt == VT_R4)
3720 resvt = VT_R4;
3722 else if (leftvt == VT_NULL && rightvt == VT_EMPTY)
3724 V_VT(result) = VT_NULL;
3725 hres = S_OK;
3726 goto end;
3728 else
3730 hres = DISP_E_BADVARTYPE;
3731 goto end;
3734 /* coerce to the result type */
3735 hres = VariantChangeType(&lv, left, 0, resvt);
3736 if (hres != S_OK) goto end;
3738 hres = VariantChangeType(&rv, right, 0, resvt);
3739 if (hres != S_OK) goto end;
3741 /* do the math */
3742 V_VT(result) = resvt;
3743 switch (resvt)
3745 case VT_R4:
3746 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3748 hres = DISP_E_OVERFLOW;
3749 V_VT(result) = VT_EMPTY;
3751 else if (V_R4(&rv) == 0.0)
3753 hres = DISP_E_DIVBYZERO;
3754 V_VT(result) = VT_EMPTY;
3756 else
3757 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3758 break;
3759 case VT_R8:
3760 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3762 hres = DISP_E_OVERFLOW;
3763 V_VT(result) = VT_EMPTY;
3765 else if (V_R8(&rv) == 0.0)
3767 hres = DISP_E_DIVBYZERO;
3768 V_VT(result) = VT_EMPTY;
3770 else
3771 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3772 break;
3773 case VT_DECIMAL:
3774 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3775 break;
3778 end:
3779 VariantClear(&lv);
3780 VariantClear(&rv);
3781 VariantClear(&tempLeft);
3782 VariantClear(&tempRight);
3783 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3784 return hres;
3787 /**********************************************************************
3788 * VarSub [OLEAUT32.159]
3790 * Subtract two variants.
3792 * PARAMS
3793 * left [I] First variant
3794 * right [I] Second variant
3795 * result [O] Result variant
3797 * RETURNS
3798 * Success: S_OK.
3799 * Failure: An HRESULT error code indicating the error.
3801 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3803 HRESULT hres = S_OK;
3804 VARTYPE resvt = VT_EMPTY;
3805 VARTYPE leftvt,rightvt;
3806 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3807 VARIANT lv,rv;
3808 VARIANT tempLeft, tempRight;
3810 VariantInit(&lv);
3811 VariantInit(&rv);
3812 VariantInit(&tempLeft);
3813 VariantInit(&tempRight);
3815 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3817 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3818 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3819 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3821 if (NULL == V_DISPATCH(left)) {
3822 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3823 hres = DISP_E_BADVARTYPE;
3824 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3825 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3826 hres = DISP_E_BADVARTYPE;
3827 else switch (V_VT(right) & VT_TYPEMASK)
3829 case VT_VARIANT:
3830 case VT_UNKNOWN:
3831 case 15:
3832 case VT_I1:
3833 case VT_UI2:
3834 case VT_UI4:
3835 hres = DISP_E_BADVARTYPE;
3837 if (FAILED(hres)) goto end;
3839 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3840 if (FAILED(hres)) goto end;
3841 left = &tempLeft;
3843 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3844 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3845 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3847 if (NULL == V_DISPATCH(right))
3849 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3850 hres = DISP_E_BADVARTYPE;
3851 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3852 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3853 hres = DISP_E_BADVARTYPE;
3854 else switch (V_VT(left) & VT_TYPEMASK)
3856 case VT_VARIANT:
3857 case VT_UNKNOWN:
3858 case 15:
3859 case VT_I1:
3860 case VT_UI2:
3861 case VT_UI4:
3862 hres = DISP_E_BADVARTYPE;
3864 if (FAILED(hres)) goto end;
3866 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3867 if (FAILED(hres)) goto end;
3868 right = &tempRight;
3871 leftvt = V_VT(left)&VT_TYPEMASK;
3872 rightvt = V_VT(right)&VT_TYPEMASK;
3873 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3874 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3876 if (leftExtraFlags != rightExtraFlags)
3878 hres = DISP_E_BADVARTYPE;
3879 goto end;
3881 ExtraFlags = leftExtraFlags;
3883 /* determine return type and return code */
3884 /* All extra flags produce errors */
3885 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3886 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3887 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3888 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3889 ExtraFlags == VT_VECTOR ||
3890 ExtraFlags == VT_BYREF ||
3891 ExtraFlags == VT_RESERVED)
3893 hres = DISP_E_BADVARTYPE;
3894 goto end;
3896 else if (ExtraFlags >= VT_ARRAY)
3898 hres = DISP_E_TYPEMISMATCH;
3899 goto end;
3901 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3902 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3903 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3904 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3905 leftvt == VT_I1 || rightvt == VT_I1 ||
3906 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3907 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3908 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3909 leftvt == VT_INT || rightvt == VT_INT ||
3910 leftvt == VT_UINT || rightvt == VT_UINT ||
3911 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3912 leftvt == VT_RECORD || rightvt == VT_RECORD)
3914 if (leftvt == VT_RECORD && rightvt == VT_I8)
3915 hres = DISP_E_TYPEMISMATCH;
3916 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3917 hres = DISP_E_TYPEMISMATCH;
3918 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3919 hres = DISP_E_TYPEMISMATCH;
3920 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3921 hres = DISP_E_TYPEMISMATCH;
3922 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3923 hres = DISP_E_BADVARTYPE;
3924 else
3925 hres = DISP_E_BADVARTYPE;
3926 goto end;
3928 /* The following flags/types are invalid for left variant */
3929 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3930 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3931 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3933 hres = DISP_E_BADVARTYPE;
3934 goto end;
3936 /* The following flags/types are invalid for right variant */
3937 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3938 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3939 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3941 hres = DISP_E_BADVARTYPE;
3942 goto end;
3944 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3945 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3946 resvt = VT_NULL;
3947 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3948 leftvt == VT_ERROR || rightvt == VT_ERROR)
3950 hres = DISP_E_TYPEMISMATCH;
3951 goto end;
3953 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3954 resvt = VT_NULL;
3955 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3956 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3957 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3958 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3959 resvt = VT_R8;
3960 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3961 resvt = VT_DECIMAL;
3962 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3963 resvt = VT_DATE;
3964 else if (leftvt == VT_CY || rightvt == VT_CY)
3965 resvt = VT_CY;
3966 else if (leftvt == VT_R8 || rightvt == VT_R8)
3967 resvt = VT_R8;
3968 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3969 resvt = VT_R8;
3970 else if (leftvt == VT_R4 || rightvt == VT_R4)
3972 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3973 leftvt == VT_I8 || rightvt == VT_I8)
3974 resvt = VT_R8;
3975 else
3976 resvt = VT_R4;
3978 else if (leftvt == VT_I8 || rightvt == VT_I8)
3979 resvt = VT_I8;
3980 else if (leftvt == VT_I4 || rightvt == VT_I4)
3981 resvt = VT_I4;
3982 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3983 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3984 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3985 resvt = VT_I2;
3986 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3987 resvt = VT_UI1;
3988 else
3990 hres = DISP_E_TYPEMISMATCH;
3991 goto end;
3994 /* coerce to the result type */
3995 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3996 hres = VariantChangeType(&lv, left, 0, VT_R8);
3997 else
3998 hres = VariantChangeType(&lv, left, 0, resvt);
3999 if (hres != S_OK) goto end;
4000 if (leftvt == VT_DATE && rightvt == VT_BSTR)
4001 hres = VariantChangeType(&rv, right, 0, VT_R8);
4002 else
4003 hres = VariantChangeType(&rv, right, 0, resvt);
4004 if (hres != S_OK) goto end;
4006 /* do the math */
4007 V_VT(result) = resvt;
4008 switch (resvt)
4010 case VT_NULL:
4011 break;
4012 case VT_DATE:
4013 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
4014 break;
4015 case VT_CY:
4016 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
4017 break;
4018 case VT_R4:
4019 V_R4(result) = V_R4(&lv) - V_R4(&rv);
4020 break;
4021 case VT_I8:
4022 V_I8(result) = V_I8(&lv) - V_I8(&rv);
4023 break;
4024 case VT_I4:
4025 V_I4(result) = V_I4(&lv) - V_I4(&rv);
4026 break;
4027 case VT_I2:
4028 V_I2(result) = V_I2(&lv) - V_I2(&rv);
4029 break;
4030 case VT_I1:
4031 V_I1(result) = V_I1(&lv) - V_I1(&rv);
4032 break;
4033 case VT_UI1:
4034 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
4035 break;
4036 case VT_R8:
4037 V_R8(result) = V_R8(&lv) - V_R8(&rv);
4038 break;
4039 case VT_DECIMAL:
4040 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
4041 break;
4044 end:
4045 VariantClear(&lv);
4046 VariantClear(&rv);
4047 VariantClear(&tempLeft);
4048 VariantClear(&tempRight);
4049 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
4050 return hres;
4054 /**********************************************************************
4055 * VarOr [OLEAUT32.157]
4057 * Perform a logical or (OR) operation on two variants.
4059 * PARAMS
4060 * pVarLeft [I] First variant
4061 * pVarRight [I] Variant to OR with pVarLeft
4062 * pVarOut [O] Destination for OR result
4064 * RETURNS
4065 * Success: S_OK. pVarOut contains the result of the operation with its type
4066 * taken from the table listed under VarXor().
4067 * Failure: An HRESULT error code indicating the error.
4069 * NOTES
4070 * See the Notes section of VarXor() for further information.
4072 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4074 VARTYPE vt = VT_I4;
4075 VARIANT varLeft, varRight, varStr;
4076 HRESULT hRet;
4077 VARIANT tempLeft, tempRight;
4079 VariantInit(&tempLeft);
4080 VariantInit(&tempRight);
4081 VariantInit(&varLeft);
4082 VariantInit(&varRight);
4083 VariantInit(&varStr);
4085 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4087 /* Handle VT_DISPATCH by storing and taking address of returned value */
4088 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4090 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4091 if (FAILED(hRet)) goto VarOr_Exit;
4092 pVarLeft = &tempLeft;
4094 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4096 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4097 if (FAILED(hRet)) goto VarOr_Exit;
4098 pVarRight = &tempRight;
4101 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4102 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4103 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4104 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4106 hRet = DISP_E_BADVARTYPE;
4107 goto VarOr_Exit;
4110 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4112 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4114 /* NULL OR Zero is NULL, NULL OR value is value */
4115 if (V_VT(pVarLeft) == VT_NULL)
4116 pVarLeft = pVarRight; /* point to the non-NULL var */
4118 V_VT(pVarOut) = VT_NULL;
4119 V_I4(pVarOut) = 0;
4121 switch (V_VT(pVarLeft))
4123 case VT_DATE: case VT_R8:
4124 if (V_R8(pVarLeft))
4125 goto VarOr_AsEmpty;
4126 hRet = S_OK;
4127 goto VarOr_Exit;
4128 case VT_BOOL:
4129 if (V_BOOL(pVarLeft))
4130 *pVarOut = *pVarLeft;
4131 hRet = S_OK;
4132 goto VarOr_Exit;
4133 case VT_I2: case VT_UI2:
4134 if (V_I2(pVarLeft))
4135 goto VarOr_AsEmpty;
4136 hRet = S_OK;
4137 goto VarOr_Exit;
4138 case VT_I1:
4139 if (V_I1(pVarLeft))
4140 goto VarOr_AsEmpty;
4141 hRet = S_OK;
4142 goto VarOr_Exit;
4143 case VT_UI1:
4144 if (V_UI1(pVarLeft))
4145 *pVarOut = *pVarLeft;
4146 hRet = S_OK;
4147 goto VarOr_Exit;
4148 case VT_R4:
4149 if (V_R4(pVarLeft))
4150 goto VarOr_AsEmpty;
4151 hRet = S_OK;
4152 goto VarOr_Exit;
4153 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4154 if (V_I4(pVarLeft))
4155 goto VarOr_AsEmpty;
4156 hRet = S_OK;
4157 goto VarOr_Exit;
4158 case VT_CY:
4159 if (V_CY(pVarLeft).int64)
4160 goto VarOr_AsEmpty;
4161 hRet = S_OK;
4162 goto VarOr_Exit;
4163 case VT_I8: case VT_UI8:
4164 if (V_I8(pVarLeft))
4165 goto VarOr_AsEmpty;
4166 hRet = S_OK;
4167 goto VarOr_Exit;
4168 case VT_DECIMAL:
4169 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4170 goto VarOr_AsEmpty;
4171 hRet = S_OK;
4172 goto VarOr_Exit;
4173 case VT_BSTR:
4175 VARIANT_BOOL b;
4177 if (!V_BSTR(pVarLeft))
4179 hRet = DISP_E_BADVARTYPE;
4180 goto VarOr_Exit;
4183 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4184 if (SUCCEEDED(hRet) && b)
4186 V_VT(pVarOut) = VT_BOOL;
4187 V_BOOL(pVarOut) = b;
4189 goto VarOr_Exit;
4191 case VT_NULL: case VT_EMPTY:
4192 V_VT(pVarOut) = VT_NULL;
4193 hRet = S_OK;
4194 goto VarOr_Exit;
4195 default:
4196 hRet = DISP_E_BADVARTYPE;
4197 goto VarOr_Exit;
4201 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4203 if (V_VT(pVarLeft) == VT_EMPTY)
4204 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4206 VarOr_AsEmpty:
4207 /* Since one argument is empty (0), OR'ing it with the other simply
4208 * gives the others value (as 0|x => x). So just convert the other
4209 * argument to the required result type.
4211 switch (V_VT(pVarLeft))
4213 case VT_BSTR:
4214 if (!V_BSTR(pVarLeft))
4216 hRet = DISP_E_BADVARTYPE;
4217 goto VarOr_Exit;
4220 hRet = VariantCopy(&varStr, pVarLeft);
4221 if (FAILED(hRet))
4222 goto VarOr_Exit;
4223 pVarLeft = &varStr;
4224 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4225 if (FAILED(hRet))
4226 goto VarOr_Exit;
4227 /* Fall Through ... */
4228 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4229 V_VT(pVarOut) = VT_I2;
4230 break;
4231 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4232 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4233 case VT_INT: case VT_UINT: case VT_UI8:
4234 V_VT(pVarOut) = VT_I4;
4235 break;
4236 case VT_I8:
4237 V_VT(pVarOut) = VT_I8;
4238 break;
4239 default:
4240 hRet = DISP_E_BADVARTYPE;
4241 goto VarOr_Exit;
4243 hRet = VariantCopy(&varLeft, pVarLeft);
4244 if (FAILED(hRet))
4245 goto VarOr_Exit;
4246 pVarLeft = &varLeft;
4247 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4248 goto VarOr_Exit;
4251 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4253 V_VT(pVarOut) = VT_BOOL;
4254 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4255 hRet = S_OK;
4256 goto VarOr_Exit;
4259 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4261 V_VT(pVarOut) = VT_UI1;
4262 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4263 hRet = S_OK;
4264 goto VarOr_Exit;
4267 if (V_VT(pVarLeft) == VT_BSTR)
4269 hRet = VariantCopy(&varStr, pVarLeft);
4270 if (FAILED(hRet))
4271 goto VarOr_Exit;
4272 pVarLeft = &varStr;
4273 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4274 if (FAILED(hRet))
4275 goto VarOr_Exit;
4278 if (V_VT(pVarLeft) == VT_BOOL &&
4279 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4281 vt = VT_BOOL;
4283 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4284 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4285 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4286 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4288 vt = VT_I2;
4290 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4292 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4294 hRet = DISP_E_TYPEMISMATCH;
4295 goto VarOr_Exit;
4297 vt = VT_I8;
4300 hRet = VariantCopy(&varLeft, pVarLeft);
4301 if (FAILED(hRet))
4302 goto VarOr_Exit;
4304 hRet = VariantCopy(&varRight, pVarRight);
4305 if (FAILED(hRet))
4306 goto VarOr_Exit;
4308 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4309 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4310 else
4312 double d;
4314 if (V_VT(&varLeft) == VT_BSTR &&
4315 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4316 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4317 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4318 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4319 if (FAILED(hRet))
4320 goto VarOr_Exit;
4323 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4324 V_VT(&varRight) = VT_I4; /* Don't overflow */
4325 else
4327 double d;
4329 if (V_VT(&varRight) == VT_BSTR &&
4330 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4331 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4332 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4333 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4334 if (FAILED(hRet))
4335 goto VarOr_Exit;
4338 V_VT(pVarOut) = vt;
4339 if (vt == VT_I8)
4341 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4343 else if (vt == VT_I4)
4345 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4347 else
4349 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4352 VarOr_Exit:
4353 VariantClear(&varStr);
4354 VariantClear(&varLeft);
4355 VariantClear(&varRight);
4356 VariantClear(&tempLeft);
4357 VariantClear(&tempRight);
4358 return hRet;
4361 /**********************************************************************
4362 * VarAbs [OLEAUT32.168]
4364 * Convert a variant to its absolute value.
4366 * PARAMS
4367 * pVarIn [I] Source variant
4368 * pVarOut [O] Destination for converted value
4370 * RETURNS
4371 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4372 * Failure: An HRESULT error code indicating the error.
4374 * NOTES
4375 * - This function does not process by-reference variants.
4376 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4377 * according to the following table:
4378 *| Input Type Output Type
4379 *| ---------- -----------
4380 *| VT_BOOL VT_I2
4381 *| VT_BSTR VT_R8
4382 *| (All others) Unchanged
4384 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4386 VARIANT varIn;
4387 HRESULT hRet = S_OK;
4388 VARIANT temp;
4390 VariantInit(&temp);
4392 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4394 /* Handle VT_DISPATCH by storing and taking address of returned value */
4395 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4397 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4398 if (FAILED(hRet)) goto VarAbs_Exit;
4399 pVarIn = &temp;
4402 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4403 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4404 V_VT(pVarIn) == VT_ERROR)
4406 hRet = DISP_E_TYPEMISMATCH;
4407 goto VarAbs_Exit;
4409 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4411 #define ABS_CASE(typ,min) \
4412 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4413 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4414 break
4416 switch (V_VT(pVarIn))
4418 ABS_CASE(I1,I1_MIN);
4419 case VT_BOOL:
4420 V_VT(pVarOut) = VT_I2;
4421 /* BOOL->I2, Fall through ... */
4422 ABS_CASE(I2,I2_MIN);
4423 case VT_INT:
4424 ABS_CASE(I4,I4_MIN);
4425 ABS_CASE(I8,I8_MIN);
4426 ABS_CASE(R4,R4_MIN);
4427 case VT_BSTR:
4428 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4429 if (FAILED(hRet))
4430 break;
4431 V_VT(pVarOut) = VT_R8;
4432 pVarIn = &varIn;
4433 /* Fall through ... */
4434 case VT_DATE:
4435 ABS_CASE(R8,R8_MIN);
4436 case VT_CY:
4437 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4438 break;
4439 case VT_DECIMAL:
4440 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4441 break;
4442 case VT_UI1:
4443 case VT_UI2:
4444 case VT_UINT:
4445 case VT_UI4:
4446 case VT_UI8:
4447 /* No-Op */
4448 break;
4449 case VT_EMPTY:
4450 V_VT(pVarOut) = VT_I2;
4451 case VT_NULL:
4452 V_I2(pVarOut) = 0;
4453 break;
4454 default:
4455 hRet = DISP_E_BADVARTYPE;
4458 VarAbs_Exit:
4459 VariantClear(&temp);
4460 return hRet;
4463 /**********************************************************************
4464 * VarFix [OLEAUT32.169]
4466 * Truncate a variants value to a whole number.
4468 * PARAMS
4469 * pVarIn [I] Source variant
4470 * pVarOut [O] Destination for converted value
4472 * RETURNS
4473 * Success: S_OK. pVarOut contains the converted value.
4474 * Failure: An HRESULT error code indicating the error.
4476 * NOTES
4477 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4478 * according to the following table:
4479 *| Input Type Output Type
4480 *| ---------- -----------
4481 *| VT_BOOL VT_I2
4482 *| VT_EMPTY VT_I2
4483 *| VT_BSTR VT_R8
4484 *| All Others Unchanged
4485 * - The difference between this function and VarInt() is that VarInt() rounds
4486 * negative numbers away from 0, while this function rounds them towards zero.
4488 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4490 HRESULT hRet = S_OK;
4491 VARIANT temp;
4493 VariantInit(&temp);
4495 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4497 /* Handle VT_DISPATCH by storing and taking address of returned value */
4498 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4500 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4501 if (FAILED(hRet)) goto VarFix_Exit;
4502 pVarIn = &temp;
4504 V_VT(pVarOut) = V_VT(pVarIn);
4506 switch (V_VT(pVarIn))
4508 case VT_UI1:
4509 V_UI1(pVarOut) = V_UI1(pVarIn);
4510 break;
4511 case VT_BOOL:
4512 V_VT(pVarOut) = VT_I2;
4513 /* Fall through */
4514 case VT_I2:
4515 V_I2(pVarOut) = V_I2(pVarIn);
4516 break;
4517 case VT_I4:
4518 V_I4(pVarOut) = V_I4(pVarIn);
4519 break;
4520 case VT_I8:
4521 V_I8(pVarOut) = V_I8(pVarIn);
4522 break;
4523 case VT_R4:
4524 if (V_R4(pVarIn) < 0.0f)
4525 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4526 else
4527 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4528 break;
4529 case VT_BSTR:
4530 V_VT(pVarOut) = VT_R8;
4531 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4532 pVarIn = pVarOut;
4533 /* Fall through */
4534 case VT_DATE:
4535 case VT_R8:
4536 if (V_R8(pVarIn) < 0.0)
4537 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4538 else
4539 V_R8(pVarOut) = floor(V_R8(pVarIn));
4540 break;
4541 case VT_CY:
4542 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4543 break;
4544 case VT_DECIMAL:
4545 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4546 break;
4547 case VT_EMPTY:
4548 V_VT(pVarOut) = VT_I2;
4549 V_I2(pVarOut) = 0;
4550 break;
4551 case VT_NULL:
4552 /* No-Op */
4553 break;
4554 default:
4555 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4556 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4557 hRet = DISP_E_BADVARTYPE;
4558 else
4559 hRet = DISP_E_TYPEMISMATCH;
4561 VarFix_Exit:
4562 if (FAILED(hRet))
4563 V_VT(pVarOut) = VT_EMPTY;
4564 VariantClear(&temp);
4566 return hRet;
4569 /**********************************************************************
4570 * VarInt [OLEAUT32.172]
4572 * Truncate a variants value to a whole number.
4574 * PARAMS
4575 * pVarIn [I] Source variant
4576 * pVarOut [O] Destination for converted value
4578 * RETURNS
4579 * Success: S_OK. pVarOut contains the converted value.
4580 * Failure: An HRESULT error code indicating the error.
4582 * NOTES
4583 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4584 * according to the following table:
4585 *| Input Type Output Type
4586 *| ---------- -----------
4587 *| VT_BOOL VT_I2
4588 *| VT_EMPTY VT_I2
4589 *| VT_BSTR VT_R8
4590 *| All Others Unchanged
4591 * - The difference between this function and VarFix() is that VarFix() rounds
4592 * negative numbers towards 0, while this function rounds them away from zero.
4594 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4596 HRESULT hRet = S_OK;
4597 VARIANT temp;
4599 VariantInit(&temp);
4601 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4603 /* Handle VT_DISPATCH by storing and taking address of returned value */
4604 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4606 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4607 if (FAILED(hRet)) goto VarInt_Exit;
4608 pVarIn = &temp;
4610 V_VT(pVarOut) = V_VT(pVarIn);
4612 switch (V_VT(pVarIn))
4614 case VT_R4:
4615 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4616 break;
4617 case VT_BSTR:
4618 V_VT(pVarOut) = VT_R8;
4619 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4620 pVarIn = pVarOut;
4621 /* Fall through */
4622 case VT_DATE:
4623 case VT_R8:
4624 V_R8(pVarOut) = floor(V_R8(pVarIn));
4625 break;
4626 case VT_CY:
4627 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4628 break;
4629 case VT_DECIMAL:
4630 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4631 break;
4632 default:
4633 hRet = VarFix(pVarIn, pVarOut);
4635 VarInt_Exit:
4636 VariantClear(&temp);
4638 return hRet;
4641 /**********************************************************************
4642 * VarXor [OLEAUT32.167]
4644 * Perform a logical exclusive-or (XOR) operation on two variants.
4646 * PARAMS
4647 * pVarLeft [I] First variant
4648 * pVarRight [I] Variant to XOR with pVarLeft
4649 * pVarOut [O] Destination for XOR result
4651 * RETURNS
4652 * Success: S_OK. pVarOut contains the result of the operation with its type
4653 * taken from the table below).
4654 * Failure: An HRESULT error code indicating the error.
4656 * NOTES
4657 * - Neither pVarLeft or pVarRight are modified by this function.
4658 * - This function does not process by-reference variants.
4659 * - Input types of VT_BSTR may be numeric strings or boolean text.
4660 * - The type of result stored in pVarOut depends on the types of pVarLeft
4661 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4662 * or VT_NULL if the function succeeds.
4663 * - Type promotion is inconsistent and as a result certain combinations of
4664 * values will return DISP_E_OVERFLOW even when they could be represented.
4665 * This matches the behaviour of native oleaut32.
4667 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4669 VARTYPE vt;
4670 VARIANT varLeft, varRight;
4671 VARIANT tempLeft, tempRight;
4672 double d;
4673 HRESULT hRet;
4675 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4677 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4678 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4679 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4680 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4681 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4682 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4683 return DISP_E_BADVARTYPE;
4685 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4687 /* NULL XOR anything valid is NULL */
4688 V_VT(pVarOut) = VT_NULL;
4689 return S_OK;
4692 VariantInit(&tempLeft);
4693 VariantInit(&tempRight);
4695 /* Handle VT_DISPATCH by storing and taking address of returned value */
4696 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4698 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4699 if (FAILED(hRet)) goto VarXor_Exit;
4700 pVarLeft = &tempLeft;
4702 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4704 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4705 if (FAILED(hRet)) goto VarXor_Exit;
4706 pVarRight = &tempRight;
4709 /* Copy our inputs so we don't disturb anything */
4710 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4712 hRet = VariantCopy(&varLeft, pVarLeft);
4713 if (FAILED(hRet))
4714 goto VarXor_Exit;
4716 hRet = VariantCopy(&varRight, pVarRight);
4717 if (FAILED(hRet))
4718 goto VarXor_Exit;
4720 /* Try any strings first as numbers, then as VT_BOOL */
4721 if (V_VT(&varLeft) == VT_BSTR)
4723 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4724 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4725 FAILED(hRet) ? VT_BOOL : VT_I4);
4726 if (FAILED(hRet))
4727 goto VarXor_Exit;
4730 if (V_VT(&varRight) == VT_BSTR)
4732 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4733 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4734 FAILED(hRet) ? VT_BOOL : VT_I4);
4735 if (FAILED(hRet))
4736 goto VarXor_Exit;
4739 /* Determine the result type */
4740 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4742 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4744 hRet = DISP_E_TYPEMISMATCH;
4745 goto VarXor_Exit;
4747 vt = VT_I8;
4749 else
4751 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4753 case (VT_BOOL << 16) | VT_BOOL:
4754 vt = VT_BOOL;
4755 break;
4756 case (VT_UI1 << 16) | VT_UI1:
4757 vt = VT_UI1;
4758 break;
4759 case (VT_EMPTY << 16) | VT_EMPTY:
4760 case (VT_EMPTY << 16) | VT_UI1:
4761 case (VT_EMPTY << 16) | VT_I2:
4762 case (VT_EMPTY << 16) | VT_BOOL:
4763 case (VT_UI1 << 16) | VT_EMPTY:
4764 case (VT_UI1 << 16) | VT_I2:
4765 case (VT_UI1 << 16) | VT_BOOL:
4766 case (VT_I2 << 16) | VT_EMPTY:
4767 case (VT_I2 << 16) | VT_UI1:
4768 case (VT_I2 << 16) | VT_I2:
4769 case (VT_I2 << 16) | VT_BOOL:
4770 case (VT_BOOL << 16) | VT_EMPTY:
4771 case (VT_BOOL << 16) | VT_UI1:
4772 case (VT_BOOL << 16) | VT_I2:
4773 vt = VT_I2;
4774 break;
4775 default:
4776 vt = VT_I4;
4777 break;
4781 /* VT_UI4 does not overflow */
4782 if (vt != VT_I8)
4784 if (V_VT(&varLeft) == VT_UI4)
4785 V_VT(&varLeft) = VT_I4;
4786 if (V_VT(&varRight) == VT_UI4)
4787 V_VT(&varRight) = VT_I4;
4790 /* Convert our input copies to the result type */
4791 if (V_VT(&varLeft) != vt)
4792 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4793 if (FAILED(hRet))
4794 goto VarXor_Exit;
4796 if (V_VT(&varRight) != vt)
4797 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4798 if (FAILED(hRet))
4799 goto VarXor_Exit;
4801 V_VT(pVarOut) = vt;
4803 /* Calculate the result */
4804 switch (vt)
4806 case VT_I8:
4807 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4808 break;
4809 case VT_I4:
4810 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4811 break;
4812 case VT_BOOL:
4813 case VT_I2:
4814 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4815 break;
4816 case VT_UI1:
4817 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4818 break;
4821 VarXor_Exit:
4822 VariantClear(&varLeft);
4823 VariantClear(&varRight);
4824 VariantClear(&tempLeft);
4825 VariantClear(&tempRight);
4826 return hRet;
4829 /**********************************************************************
4830 * VarEqv [OLEAUT32.172]
4832 * Determine if two variants contain the same value.
4834 * PARAMS
4835 * pVarLeft [I] First variant to compare
4836 * pVarRight [I] Variant to compare to pVarLeft
4837 * pVarOut [O] Destination for comparison result
4839 * RETURNS
4840 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4841 * if equivalent or non-zero otherwise.
4842 * Failure: An HRESULT error code indicating the error.
4844 * NOTES
4845 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4846 * the result.
4848 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4850 HRESULT hRet;
4852 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4854 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4855 if (SUCCEEDED(hRet))
4857 if (V_VT(pVarOut) == VT_I8)
4858 V_I8(pVarOut) = ~V_I8(pVarOut);
4859 else
4860 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4862 return hRet;
4865 /**********************************************************************
4866 * VarNeg [OLEAUT32.173]
4868 * Negate the value of a variant.
4870 * PARAMS
4871 * pVarIn [I] Source variant
4872 * pVarOut [O] Destination for converted value
4874 * RETURNS
4875 * Success: S_OK. pVarOut contains the converted value.
4876 * Failure: An HRESULT error code indicating the error.
4878 * NOTES
4879 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4880 * according to the following table:
4881 *| Input Type Output Type
4882 *| ---------- -----------
4883 *| VT_EMPTY VT_I2
4884 *| VT_UI1 VT_I2
4885 *| VT_BOOL VT_I2
4886 *| VT_BSTR VT_R8
4887 *| All Others Unchanged (unless promoted)
4888 * - Where the negated value of a variant does not fit in its base type, the type
4889 * is promoted according to the following table:
4890 *| Input Type Promoted To
4891 *| ---------- -----------
4892 *| VT_I2 VT_I4
4893 *| VT_I4 VT_R8
4894 *| VT_I8 VT_R8
4895 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4896 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4897 * for types which are not valid. Since this is in contravention of the
4898 * meaning of those error codes and unlikely to be relied on by applications,
4899 * this implementation returns errors consistent with the other high level
4900 * variant math functions.
4902 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4904 HRESULT hRet = S_OK;
4905 VARIANT temp;
4907 VariantInit(&temp);
4909 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4911 /* Handle VT_DISPATCH by storing and taking address of returned value */
4912 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4914 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4915 if (FAILED(hRet)) goto VarNeg_Exit;
4916 pVarIn = &temp;
4918 V_VT(pVarOut) = V_VT(pVarIn);
4920 switch (V_VT(pVarIn))
4922 case VT_UI1:
4923 V_VT(pVarOut) = VT_I2;
4924 V_I2(pVarOut) = -V_UI1(pVarIn);
4925 break;
4926 case VT_BOOL:
4927 V_VT(pVarOut) = VT_I2;
4928 /* Fall through */
4929 case VT_I2:
4930 if (V_I2(pVarIn) == I2_MIN)
4932 V_VT(pVarOut) = VT_I4;
4933 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4935 else
4936 V_I2(pVarOut) = -V_I2(pVarIn);
4937 break;
4938 case VT_I4:
4939 if (V_I4(pVarIn) == I4_MIN)
4941 V_VT(pVarOut) = VT_R8;
4942 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4944 else
4945 V_I4(pVarOut) = -V_I4(pVarIn);
4946 break;
4947 case VT_I8:
4948 if (V_I8(pVarIn) == I8_MIN)
4950 V_VT(pVarOut) = VT_R8;
4951 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4952 V_R8(pVarOut) *= -1.0;
4954 else
4955 V_I8(pVarOut) = -V_I8(pVarIn);
4956 break;
4957 case VT_R4:
4958 V_R4(pVarOut) = -V_R4(pVarIn);
4959 break;
4960 case VT_DATE:
4961 case VT_R8:
4962 V_R8(pVarOut) = -V_R8(pVarIn);
4963 break;
4964 case VT_CY:
4965 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4966 break;
4967 case VT_DECIMAL:
4968 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4969 break;
4970 case VT_BSTR:
4971 V_VT(pVarOut) = VT_R8;
4972 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4973 V_R8(pVarOut) = -V_R8(pVarOut);
4974 break;
4975 case VT_EMPTY:
4976 V_VT(pVarOut) = VT_I2;
4977 V_I2(pVarOut) = 0;
4978 break;
4979 case VT_NULL:
4980 /* No-Op */
4981 break;
4982 default:
4983 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4984 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4985 hRet = DISP_E_BADVARTYPE;
4986 else
4987 hRet = DISP_E_TYPEMISMATCH;
4989 VarNeg_Exit:
4990 if (FAILED(hRet))
4991 V_VT(pVarOut) = VT_EMPTY;
4992 VariantClear(&temp);
4994 return hRet;
4997 /**********************************************************************
4998 * VarNot [OLEAUT32.174]
5000 * Perform a not operation on a variant.
5002 * PARAMS
5003 * pVarIn [I] Source variant
5004 * pVarOut [O] Destination for converted value
5006 * RETURNS
5007 * Success: S_OK. pVarOut contains the converted value.
5008 * Failure: An HRESULT error code indicating the error.
5010 * NOTES
5011 * - Strictly speaking, this function performs a bitwise ones complement
5012 * on the variants value (after possibly converting to VT_I4, see below).
5013 * This only behaves like a boolean not operation if the value in
5014 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
5015 * - To perform a genuine not operation, convert the variant to a VT_BOOL
5016 * before calling this function.
5017 * - This function does not process by-reference variants.
5018 * - The type of the value stored in pVarOut depends on the type of pVarIn,
5019 * according to the following table:
5020 *| Input Type Output Type
5021 *| ---------- -----------
5022 *| VT_EMPTY VT_I2
5023 *| VT_R4 VT_I4
5024 *| VT_R8 VT_I4
5025 *| VT_BSTR VT_I4
5026 *| VT_DECIMAL VT_I4
5027 *| VT_CY VT_I4
5028 *| (All others) Unchanged
5030 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
5032 VARIANT varIn;
5033 HRESULT hRet = S_OK;
5034 VARIANT temp;
5036 VariantInit(&temp);
5038 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
5040 /* Handle VT_DISPATCH by storing and taking address of returned value */
5041 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5043 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5044 if (FAILED(hRet)) goto VarNot_Exit;
5045 pVarIn = &temp;
5048 if (V_VT(pVarIn) == VT_BSTR)
5050 V_VT(&varIn) = VT_R8;
5051 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
5052 if (FAILED(hRet))
5054 V_VT(&varIn) = VT_BOOL;
5055 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
5057 if (FAILED(hRet)) goto VarNot_Exit;
5058 pVarIn = &varIn;
5061 V_VT(pVarOut) = V_VT(pVarIn);
5063 switch (V_VT(pVarIn))
5065 case VT_I1:
5066 V_I4(pVarOut) = ~V_I1(pVarIn);
5067 V_VT(pVarOut) = VT_I4;
5068 break;
5069 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
5070 case VT_BOOL:
5071 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
5072 case VT_UI2:
5073 V_I4(pVarOut) = ~V_UI2(pVarIn);
5074 V_VT(pVarOut) = VT_I4;
5075 break;
5076 case VT_DECIMAL:
5077 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
5078 if (FAILED(hRet))
5079 break;
5080 pVarIn = &varIn;
5081 /* Fall through ... */
5082 case VT_INT:
5083 V_VT(pVarOut) = VT_I4;
5084 /* Fall through ... */
5085 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5086 case VT_UINT:
5087 case VT_UI4:
5088 V_I4(pVarOut) = ~V_UI4(pVarIn);
5089 V_VT(pVarOut) = VT_I4;
5090 break;
5091 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5092 case VT_UI8:
5093 V_I4(pVarOut) = ~V_UI8(pVarIn);
5094 V_VT(pVarOut) = VT_I4;
5095 break;
5096 case VT_R4:
5097 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5098 V_I4(pVarOut) = ~V_I4(pVarOut);
5099 V_VT(pVarOut) = VT_I4;
5100 break;
5101 case VT_DATE:
5102 case VT_R8:
5103 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5104 V_I4(pVarOut) = ~V_I4(pVarOut);
5105 V_VT(pVarOut) = VT_I4;
5106 break;
5107 case VT_CY:
5108 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5109 V_I4(pVarOut) = ~V_I4(pVarOut);
5110 V_VT(pVarOut) = VT_I4;
5111 break;
5112 case VT_EMPTY:
5113 V_I2(pVarOut) = ~0;
5114 V_VT(pVarOut) = VT_I2;
5115 break;
5116 case VT_NULL:
5117 /* No-Op */
5118 break;
5119 default:
5120 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5121 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5122 hRet = DISP_E_BADVARTYPE;
5123 else
5124 hRet = DISP_E_TYPEMISMATCH;
5126 VarNot_Exit:
5127 if (FAILED(hRet))
5128 V_VT(pVarOut) = VT_EMPTY;
5129 VariantClear(&temp);
5131 return hRet;
5134 /**********************************************************************
5135 * VarRound [OLEAUT32.175]
5137 * Perform a round operation on a variant.
5139 * PARAMS
5140 * pVarIn [I] Source variant
5141 * deci [I] Number of decimals to round to
5142 * pVarOut [O] Destination for converted value
5144 * RETURNS
5145 * Success: S_OK. pVarOut contains the converted value.
5146 * Failure: An HRESULT error code indicating the error.
5148 * NOTES
5149 * - Floating point values are rounded to the desired number of decimals.
5150 * - Some integer types are just copied to the return variable.
5151 * - Some other integer types are not handled and fail.
5153 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5155 VARIANT varIn;
5156 HRESULT hRet = S_OK;
5157 float factor;
5158 VARIANT temp;
5160 VariantInit(&temp);
5162 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5164 /* Handle VT_DISPATCH by storing and taking address of returned value */
5165 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5167 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5168 if (FAILED(hRet)) goto VarRound_Exit;
5169 pVarIn = &temp;
5172 switch (V_VT(pVarIn))
5174 /* cases that fail on windows */
5175 case VT_I1:
5176 case VT_I8:
5177 case VT_UI2:
5178 case VT_UI4:
5179 hRet = DISP_E_BADVARTYPE;
5180 break;
5182 /* cases just copying in to out */
5183 case VT_UI1:
5184 V_VT(pVarOut) = V_VT(pVarIn);
5185 V_UI1(pVarOut) = V_UI1(pVarIn);
5186 break;
5187 case VT_I2:
5188 V_VT(pVarOut) = V_VT(pVarIn);
5189 V_I2(pVarOut) = V_I2(pVarIn);
5190 break;
5191 case VT_I4:
5192 V_VT(pVarOut) = V_VT(pVarIn);
5193 V_I4(pVarOut) = V_I4(pVarIn);
5194 break;
5195 case VT_NULL:
5196 V_VT(pVarOut) = V_VT(pVarIn);
5197 /* value unchanged */
5198 break;
5200 /* cases that change type */
5201 case VT_EMPTY:
5202 V_VT(pVarOut) = VT_I2;
5203 V_I2(pVarOut) = 0;
5204 break;
5205 case VT_BOOL:
5206 V_VT(pVarOut) = VT_I2;
5207 V_I2(pVarOut) = V_BOOL(pVarIn);
5208 break;
5209 case VT_BSTR:
5210 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5211 if (FAILED(hRet))
5212 break;
5213 V_VT(&varIn)=VT_R8;
5214 pVarIn = &varIn;
5215 /* Fall through ... */
5217 /* cases we need to do math */
5218 case VT_R8:
5219 if (V_R8(pVarIn)>0) {
5220 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5221 } else {
5222 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5224 V_VT(pVarOut) = V_VT(pVarIn);
5225 break;
5226 case VT_R4:
5227 if (V_R4(pVarIn)>0) {
5228 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5229 } else {
5230 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5232 V_VT(pVarOut) = V_VT(pVarIn);
5233 break;
5234 case VT_DATE:
5235 if (V_DATE(pVarIn)>0) {
5236 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5237 } else {
5238 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5240 V_VT(pVarOut) = V_VT(pVarIn);
5241 break;
5242 case VT_CY:
5243 if (deci>3)
5244 factor=1;
5245 else
5246 factor=pow(10, 4-deci);
5248 if (V_CY(pVarIn).int64>0) {
5249 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5250 } else {
5251 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5253 V_VT(pVarOut) = V_VT(pVarIn);
5254 break;
5256 /* cases we don't know yet */
5257 default:
5258 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5259 V_VT(pVarIn) & VT_TYPEMASK, deci);
5260 hRet = DISP_E_BADVARTYPE;
5262 VarRound_Exit:
5263 if (FAILED(hRet))
5264 V_VT(pVarOut) = VT_EMPTY;
5265 VariantClear(&temp);
5267 TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5268 return hRet;
5271 /**********************************************************************
5272 * VarIdiv [OLEAUT32.153]
5274 * Converts input variants to integers and divides them.
5276 * PARAMS
5277 * left [I] Left hand variant
5278 * right [I] Right hand variant
5279 * result [O] Destination for quotient
5281 * RETURNS
5282 * Success: S_OK. result contains the quotient.
5283 * Failure: An HRESULT error code indicating the error.
5285 * NOTES
5286 * If either expression is null, null is returned, as per MSDN
5288 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5290 HRESULT hres = S_OK;
5291 VARTYPE resvt = VT_EMPTY;
5292 VARTYPE leftvt,rightvt;
5293 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5294 VARIANT lv,rv;
5295 VARIANT tempLeft, tempRight;
5297 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5299 VariantInit(&lv);
5300 VariantInit(&rv);
5301 VariantInit(&tempLeft);
5302 VariantInit(&tempRight);
5304 leftvt = V_VT(left)&VT_TYPEMASK;
5305 rightvt = V_VT(right)&VT_TYPEMASK;
5306 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5307 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5309 if (leftExtraFlags != rightExtraFlags)
5311 hres = DISP_E_BADVARTYPE;
5312 goto end;
5314 ExtraFlags = leftExtraFlags;
5316 /* Native VarIdiv always returns an error when using extra
5317 * flags or if the variant combination is I8 and INT.
5319 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5320 (leftvt == VT_INT && rightvt == VT_I8) ||
5321 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5322 ExtraFlags != 0)
5324 hres = DISP_E_BADVARTYPE;
5325 goto end;
5328 /* Determine variant type */
5329 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5331 V_VT(result) = VT_NULL;
5332 hres = S_OK;
5333 goto end;
5335 else if (leftvt == VT_I8 || rightvt == VT_I8)
5336 resvt = VT_I8;
5337 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5338 leftvt == VT_INT || rightvt == VT_INT ||
5339 leftvt == VT_UINT || rightvt == VT_UINT ||
5340 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5341 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5342 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5343 leftvt == VT_I1 || rightvt == VT_I1 ||
5344 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5345 leftvt == VT_DATE || rightvt == VT_DATE ||
5346 leftvt == VT_CY || rightvt == VT_CY ||
5347 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5348 leftvt == VT_R8 || rightvt == VT_R8 ||
5349 leftvt == VT_R4 || rightvt == VT_R4)
5350 resvt = VT_I4;
5351 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5352 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5353 leftvt == VT_EMPTY)
5354 resvt = VT_I2;
5355 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5356 resvt = VT_UI1;
5357 else
5359 hres = DISP_E_BADVARTYPE;
5360 goto end;
5363 /* coerce to the result type */
5364 hres = VariantChangeType(&lv, left, 0, resvt);
5365 if (hres != S_OK) goto end;
5366 hres = VariantChangeType(&rv, right, 0, resvt);
5367 if (hres != S_OK) goto end;
5369 /* do the math */
5370 V_VT(result) = resvt;
5371 switch (resvt)
5373 case VT_UI1:
5374 if (V_UI1(&rv) == 0)
5376 hres = DISP_E_DIVBYZERO;
5377 V_VT(result) = VT_EMPTY;
5379 else
5380 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5381 break;
5382 case VT_I2:
5383 if (V_I2(&rv) == 0)
5385 hres = DISP_E_DIVBYZERO;
5386 V_VT(result) = VT_EMPTY;
5388 else
5389 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5390 break;
5391 case VT_I4:
5392 if (V_I4(&rv) == 0)
5394 hres = DISP_E_DIVBYZERO;
5395 V_VT(result) = VT_EMPTY;
5397 else
5398 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5399 break;
5400 case VT_I8:
5401 if (V_I8(&rv) == 0)
5403 hres = DISP_E_DIVBYZERO;
5404 V_VT(result) = VT_EMPTY;
5406 else
5407 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5408 break;
5409 default:
5410 FIXME("Couldn't integer divide variant types %d,%d\n",
5411 leftvt,rightvt);
5414 end:
5415 VariantClear(&lv);
5416 VariantClear(&rv);
5417 VariantClear(&tempLeft);
5418 VariantClear(&tempRight);
5420 return hres;
5424 /**********************************************************************
5425 * VarMod [OLEAUT32.155]
5427 * Perform the modulus operation of the right hand variant on the left
5429 * PARAMS
5430 * left [I] Left hand variant
5431 * right [I] Right hand variant
5432 * result [O] Destination for converted value
5434 * RETURNS
5435 * Success: S_OK. result contains the remainder.
5436 * Failure: An HRESULT error code indicating the error.
5438 * NOTE:
5439 * If an error occurs the type of result will be modified but the value will not be.
5440 * Doesn't support arrays or any special flags yet.
5442 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5444 BOOL lOk = TRUE;
5445 HRESULT rc = E_FAIL;
5446 int resT = 0;
5447 VARIANT lv,rv;
5448 VARIANT tempLeft, tempRight;
5450 VariantInit(&tempLeft);
5451 VariantInit(&tempRight);
5452 VariantInit(&lv);
5453 VariantInit(&rv);
5455 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5457 /* Handle VT_DISPATCH by storing and taking address of returned value */
5458 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5460 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5461 if (FAILED(rc)) goto end;
5462 left = &tempLeft;
5464 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5466 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5467 if (FAILED(rc)) goto end;
5468 right = &tempRight;
5471 /* check for invalid inputs */
5472 lOk = TRUE;
5473 switch (V_VT(left) & VT_TYPEMASK) {
5474 case VT_BOOL :
5475 case VT_I1 :
5476 case VT_I2 :
5477 case VT_I4 :
5478 case VT_I8 :
5479 case VT_INT :
5480 case VT_UI1 :
5481 case VT_UI2 :
5482 case VT_UI4 :
5483 case VT_UI8 :
5484 case VT_UINT :
5485 case VT_R4 :
5486 case VT_R8 :
5487 case VT_CY :
5488 case VT_EMPTY:
5489 case VT_DATE :
5490 case VT_BSTR :
5491 case VT_DECIMAL:
5492 break;
5493 case VT_VARIANT:
5494 case VT_UNKNOWN:
5495 V_VT(result) = VT_EMPTY;
5496 rc = DISP_E_TYPEMISMATCH;
5497 goto end;
5498 case VT_ERROR:
5499 rc = DISP_E_TYPEMISMATCH;
5500 goto end;
5501 case VT_RECORD:
5502 V_VT(result) = VT_EMPTY;
5503 rc = DISP_E_TYPEMISMATCH;
5504 goto end;
5505 case VT_NULL:
5506 break;
5507 default:
5508 V_VT(result) = VT_EMPTY;
5509 rc = DISP_E_BADVARTYPE;
5510 goto end;
5514 switch (V_VT(right) & VT_TYPEMASK) {
5515 case VT_BOOL :
5516 case VT_I1 :
5517 case VT_I2 :
5518 case VT_I4 :
5519 case VT_I8 :
5520 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5522 V_VT(result) = VT_EMPTY;
5523 rc = DISP_E_TYPEMISMATCH;
5524 goto end;
5526 case VT_INT :
5527 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5529 V_VT(result) = VT_EMPTY;
5530 rc = DISP_E_TYPEMISMATCH;
5531 goto end;
5533 case VT_UI1 :
5534 case VT_UI2 :
5535 case VT_UI4 :
5536 case VT_UI8 :
5537 case VT_UINT :
5538 case VT_R4 :
5539 case VT_R8 :
5540 case VT_CY :
5541 if(V_VT(left) == VT_EMPTY)
5543 V_VT(result) = VT_I4;
5544 rc = S_OK;
5545 goto end;
5547 case VT_EMPTY:
5548 case VT_DATE :
5549 case VT_DECIMAL:
5550 if(V_VT(left) == VT_ERROR)
5552 V_VT(result) = VT_EMPTY;
5553 rc = DISP_E_TYPEMISMATCH;
5554 goto end;
5556 case VT_BSTR:
5557 if(V_VT(left) == VT_NULL)
5559 V_VT(result) = VT_NULL;
5560 rc = S_OK;
5561 goto end;
5563 break;
5565 case VT_VOID:
5566 V_VT(result) = VT_EMPTY;
5567 rc = DISP_E_BADVARTYPE;
5568 goto end;
5569 case VT_NULL:
5570 if(V_VT(left) == VT_VOID)
5572 V_VT(result) = VT_EMPTY;
5573 rc = DISP_E_BADVARTYPE;
5574 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5575 lOk)
5577 V_VT(result) = VT_NULL;
5578 rc = S_OK;
5579 } else
5581 V_VT(result) = VT_NULL;
5582 rc = DISP_E_BADVARTYPE;
5584 goto end;
5585 case VT_VARIANT:
5586 case VT_UNKNOWN:
5587 V_VT(result) = VT_EMPTY;
5588 rc = DISP_E_TYPEMISMATCH;
5589 goto end;
5590 case VT_ERROR:
5591 rc = DISP_E_TYPEMISMATCH;
5592 goto end;
5593 case VT_RECORD:
5594 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5596 V_VT(result) = VT_EMPTY;
5597 rc = DISP_E_BADVARTYPE;
5598 } else
5600 V_VT(result) = VT_EMPTY;
5601 rc = DISP_E_TYPEMISMATCH;
5603 goto end;
5604 default:
5605 V_VT(result) = VT_EMPTY;
5606 rc = DISP_E_BADVARTYPE;
5607 goto end;
5610 /* determine the result type */
5611 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5612 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5613 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5614 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5615 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5616 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5617 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5618 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5619 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5620 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5621 else resT = VT_I4; /* most outputs are I4 */
5623 /* convert to I8 for the modulo */
5624 rc = VariantChangeType(&lv, left, 0, VT_I8);
5625 if(FAILED(rc))
5627 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5628 goto end;
5631 rc = VariantChangeType(&rv, right, 0, VT_I8);
5632 if(FAILED(rc))
5634 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5635 goto end;
5638 /* if right is zero set VT_EMPTY and return divide by zero */
5639 if(V_I8(&rv) == 0)
5641 V_VT(result) = VT_EMPTY;
5642 rc = DISP_E_DIVBYZERO;
5643 goto end;
5646 /* perform the modulo operation */
5647 V_VT(result) = VT_I8;
5648 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5650 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5651 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5652 wine_dbgstr_longlong(V_I8(result)));
5654 /* convert left and right to the destination type */
5655 rc = VariantChangeType(result, result, 0, resT);
5656 if(FAILED(rc))
5658 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5659 /* fall to end of function */
5662 end:
5663 VariantClear(&lv);
5664 VariantClear(&rv);
5665 VariantClear(&tempLeft);
5666 VariantClear(&tempRight);
5667 return rc;
5670 /**********************************************************************
5671 * VarPow [OLEAUT32.158]
5673 * Computes the power of one variant to another variant.
5675 * PARAMS
5676 * left [I] First variant
5677 * right [I] Second variant
5678 * result [O] Result variant
5680 * RETURNS
5681 * Success: S_OK.
5682 * Failure: An HRESULT error code indicating the error.
5684 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5686 HRESULT hr = S_OK;
5687 VARIANT dl,dr;
5688 VARTYPE resvt = VT_EMPTY;
5689 VARTYPE leftvt,rightvt;
5690 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5691 VARIANT tempLeft, tempRight;
5693 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5695 VariantInit(&dl);
5696 VariantInit(&dr);
5697 VariantInit(&tempLeft);
5698 VariantInit(&tempRight);
5700 /* Handle VT_DISPATCH by storing and taking address of returned value */
5701 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5703 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5704 if (FAILED(hr)) goto end;
5705 left = &tempLeft;
5707 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5709 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5710 if (FAILED(hr)) goto end;
5711 right = &tempRight;
5714 leftvt = V_VT(left)&VT_TYPEMASK;
5715 rightvt = V_VT(right)&VT_TYPEMASK;
5716 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5717 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5719 if (leftExtraFlags != rightExtraFlags)
5721 hr = DISP_E_BADVARTYPE;
5722 goto end;
5724 ExtraFlags = leftExtraFlags;
5726 /* Native VarPow always returns an error when using extra flags */
5727 if (ExtraFlags != 0)
5729 hr = DISP_E_BADVARTYPE;
5730 goto end;
5733 /* Determine return type */
5734 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5735 V_VT(result) = VT_NULL;
5736 hr = S_OK;
5737 goto end;
5739 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5740 leftvt == VT_I4 || leftvt == VT_R4 ||
5741 leftvt == VT_R8 || leftvt == VT_CY ||
5742 leftvt == VT_DATE || leftvt == VT_BSTR ||
5743 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5744 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5745 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5746 rightvt == VT_I4 || rightvt == VT_R4 ||
5747 rightvt == VT_R8 || rightvt == VT_CY ||
5748 rightvt == VT_DATE || rightvt == VT_BSTR ||
5749 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5750 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5751 resvt = VT_R8;
5752 else
5754 hr = DISP_E_BADVARTYPE;
5755 goto end;
5758 hr = VariantChangeType(&dl,left,0,resvt);
5759 if (FAILED(hr)) {
5760 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5761 hr = E_FAIL;
5762 goto end;
5765 hr = VariantChangeType(&dr,right,0,resvt);
5766 if (FAILED(hr)) {
5767 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5768 hr = E_FAIL;
5769 goto end;
5772 V_VT(result) = VT_R8;
5773 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5775 end:
5776 VariantClear(&dl);
5777 VariantClear(&dr);
5778 VariantClear(&tempLeft);
5779 VariantClear(&tempRight);
5781 return hr;
5784 /**********************************************************************
5785 * VarImp [OLEAUT32.154]
5787 * Bitwise implication of two variants.
5789 * PARAMS
5790 * left [I] First variant
5791 * right [I] Second variant
5792 * result [O] Result variant
5794 * RETURNS
5795 * Success: S_OK.
5796 * Failure: An HRESULT error code indicating the error.
5798 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5800 HRESULT hres = S_OK;
5801 VARTYPE resvt = VT_EMPTY;
5802 VARTYPE leftvt,rightvt;
5803 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5804 VARIANT lv,rv;
5805 double d;
5806 VARIANT tempLeft, tempRight;
5808 VariantInit(&lv);
5809 VariantInit(&rv);
5810 VariantInit(&tempLeft);
5811 VariantInit(&tempRight);
5813 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5815 /* Handle VT_DISPATCH by storing and taking address of returned value */
5816 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5818 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5819 if (FAILED(hres)) goto VarImp_Exit;
5820 left = &tempLeft;
5822 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5824 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5825 if (FAILED(hres)) goto VarImp_Exit;
5826 right = &tempRight;
5829 leftvt = V_VT(left)&VT_TYPEMASK;
5830 rightvt = V_VT(right)&VT_TYPEMASK;
5831 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5832 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5834 if (leftExtraFlags != rightExtraFlags)
5836 hres = DISP_E_BADVARTYPE;
5837 goto VarImp_Exit;
5839 ExtraFlags = leftExtraFlags;
5841 /* Native VarImp always returns an error when using extra
5842 * flags or if the variants are I8 and INT.
5844 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5845 ExtraFlags != 0)
5847 hres = DISP_E_BADVARTYPE;
5848 goto VarImp_Exit;
5851 /* Determine result type */
5852 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5853 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5855 V_VT(result) = VT_NULL;
5856 hres = S_OK;
5857 goto VarImp_Exit;
5859 else if (leftvt == VT_I8 || rightvt == VT_I8)
5860 resvt = VT_I8;
5861 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5862 leftvt == VT_INT || rightvt == VT_INT ||
5863 leftvt == VT_UINT || rightvt == VT_UINT ||
5864 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5865 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5866 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5867 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5868 leftvt == VT_DATE || rightvt == VT_DATE ||
5869 leftvt == VT_CY || rightvt == VT_CY ||
5870 leftvt == VT_R8 || rightvt == VT_R8 ||
5871 leftvt == VT_R4 || rightvt == VT_R4 ||
5872 leftvt == VT_I1 || rightvt == VT_I1)
5873 resvt = VT_I4;
5874 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5875 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5876 (leftvt == VT_NULL && rightvt == VT_UI1))
5877 resvt = VT_UI1;
5878 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5879 leftvt == VT_I2 || rightvt == VT_I2 ||
5880 leftvt == VT_UI1 || rightvt == VT_UI1)
5881 resvt = VT_I2;
5882 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5883 leftvt == VT_BSTR || rightvt == VT_BSTR)
5884 resvt = VT_BOOL;
5886 /* VT_NULL requires special handling for when the opposite
5887 * variant is equal to something other than -1.
5888 * (NULL Imp 0 = NULL, NULL Imp n = n)
5890 if (leftvt == VT_NULL)
5892 VARIANT_BOOL b;
5893 switch(rightvt)
5895 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5896 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5897 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5898 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5899 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5900 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5901 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5902 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5903 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5904 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5905 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5906 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5907 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5908 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5909 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5910 case VT_DECIMAL:
5911 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5912 resvt = VT_NULL;
5913 break;
5914 case VT_BSTR:
5915 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5916 if (FAILED(hres)) goto VarImp_Exit;
5917 else if (!b)
5918 V_VT(result) = VT_NULL;
5919 else
5921 V_VT(result) = VT_BOOL;
5922 V_BOOL(result) = b;
5924 goto VarImp_Exit;
5926 if (resvt == VT_NULL)
5928 V_VT(result) = resvt;
5929 goto VarImp_Exit;
5931 else
5933 hres = VariantChangeType(result,right,0,resvt);
5934 goto VarImp_Exit;
5938 /* Special handling is required when NULL is the right variant.
5939 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5941 else if (rightvt == VT_NULL)
5943 VARIANT_BOOL b;
5944 switch(leftvt)
5946 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5947 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5948 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5949 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5950 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5951 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5952 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5953 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5954 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5955 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5956 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5957 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5958 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5959 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5960 case VT_DECIMAL:
5961 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5962 resvt = VT_NULL;
5963 break;
5964 case VT_BSTR:
5965 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5966 if (FAILED(hres)) goto VarImp_Exit;
5967 else if (b == VARIANT_TRUE)
5968 resvt = VT_NULL;
5970 if (resvt == VT_NULL)
5972 V_VT(result) = resvt;
5973 goto VarImp_Exit;
5977 hres = VariantCopy(&lv, left);
5978 if (FAILED(hres)) goto VarImp_Exit;
5980 if (rightvt == VT_NULL)
5982 memset( &rv, 0, sizeof(rv) );
5983 V_VT(&rv) = resvt;
5985 else
5987 hres = VariantCopy(&rv, right);
5988 if (FAILED(hres)) goto VarImp_Exit;
5991 if (V_VT(&lv) == VT_BSTR &&
5992 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5993 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5994 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5995 hres = VariantChangeType(&lv,&lv,0,resvt);
5996 if (FAILED(hres)) goto VarImp_Exit;
5998 if (V_VT(&rv) == VT_BSTR &&
5999 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
6000 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
6001 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
6002 hres = VariantChangeType(&rv, &rv, 0, resvt);
6003 if (FAILED(hres)) goto VarImp_Exit;
6005 /* do the math */
6006 V_VT(result) = resvt;
6007 switch (resvt)
6009 case VT_I8:
6010 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
6011 break;
6012 case VT_I4:
6013 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
6014 break;
6015 case VT_I2:
6016 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
6017 break;
6018 case VT_UI1:
6019 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
6020 break;
6021 case VT_BOOL:
6022 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
6023 break;
6024 default:
6025 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
6026 leftvt,rightvt);
6029 VarImp_Exit:
6031 VariantClear(&lv);
6032 VariantClear(&rv);
6033 VariantClear(&tempLeft);
6034 VariantClear(&tempRight);
6036 return hres;