dwrite/tests: Test character spacing applied to cluster metrics.
[wine/multimedia.git] / dlls / oleaut32 / variant.c
blobfeba6c5ad94a9d7180af95fa20c056172a2671ff
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include "config.h"
30 #include <string.h>
31 #include <stdlib.h>
32 #include <stdarg.h>
34 #define COBJMACROS
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
38 #include "windef.h"
39 #include "winbase.h"
40 #include "wine/unicode.h"
41 #include "winerror.h"
42 #include "variant.h"
43 #include "resource.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
48 /* Convert a variant from one type to another */
49 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
50 VARIANTARG* ps, VARTYPE vt)
52 HRESULT res = DISP_E_TYPEMISMATCH;
53 VARTYPE vtFrom = V_TYPE(ps);
54 DWORD dwFlags = 0;
56 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
57 debugstr_variant(ps), debugstr_vt(vt));
59 if (vt == VT_BSTR || vtFrom == VT_BSTR)
61 /* All flags passed to low level function are only used for
62 * changing to or from strings. Map these here.
64 if (wFlags & VARIANT_LOCALBOOL)
65 dwFlags |= VAR_LOCALBOOL;
66 if (wFlags & VARIANT_CALENDAR_HIJRI)
67 dwFlags |= VAR_CALENDAR_HIJRI;
68 if (wFlags & VARIANT_CALENDAR_THAI)
69 dwFlags |= VAR_CALENDAR_THAI;
70 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
71 dwFlags |= VAR_CALENDAR_GREGORIAN;
72 if (wFlags & VARIANT_NOUSEROVERRIDE)
73 dwFlags |= LOCALE_NOUSEROVERRIDE;
74 if (wFlags & VARIANT_USE_NLS)
75 dwFlags |= LOCALE_USE_NLS;
78 /* Map int/uint to i4/ui4 */
79 if (vt == VT_INT)
80 vt = VT_I4;
81 else if (vt == VT_UINT)
82 vt = VT_UI4;
84 if (vtFrom == VT_INT)
85 vtFrom = VT_I4;
86 else if (vtFrom == VT_UINT)
87 vtFrom = VT_UI4;
89 if (vt == vtFrom)
90 return VariantCopy(pd, ps);
92 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
94 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
95 * accessing the default object property.
97 return DISP_E_TYPEMISMATCH;
100 switch (vt)
102 case VT_EMPTY:
103 if (vtFrom == VT_NULL)
104 return DISP_E_TYPEMISMATCH;
105 /* ... Fall through */
106 case VT_NULL:
107 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
109 res = VariantClear( pd );
110 if (vt == VT_NULL && SUCCEEDED(res))
111 V_VT(pd) = VT_NULL;
113 return res;
115 case VT_I1:
116 switch (vtFrom)
118 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
119 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
120 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
121 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
122 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
123 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
124 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
125 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
126 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
127 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
128 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
129 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
130 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
131 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
132 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
133 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
135 break;
137 case VT_I2:
138 switch (vtFrom)
140 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
141 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
142 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
143 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
144 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
145 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
146 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
147 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
148 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
149 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
150 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
151 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
152 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
153 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
154 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
155 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
157 break;
159 case VT_I4:
160 switch (vtFrom)
162 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
163 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
164 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
165 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
166 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
167 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
168 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
169 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
170 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
171 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
172 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
173 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
174 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
175 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
176 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
177 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
179 break;
181 case VT_UI1:
182 switch (vtFrom)
184 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
185 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
186 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
187 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
188 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
189 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
190 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
191 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
192 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
193 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
194 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
195 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
196 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
197 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
198 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
199 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
201 break;
203 case VT_UI2:
204 switch (vtFrom)
206 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
207 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
208 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
209 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
210 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
211 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
212 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
213 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
214 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
215 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
216 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
217 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
218 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
219 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
220 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
221 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
223 break;
225 case VT_UI4:
226 switch (vtFrom)
228 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
229 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
230 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
231 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
232 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
233 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
234 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
235 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
236 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
237 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
238 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
239 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
240 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
241 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
242 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
243 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
245 break;
247 case VT_UI8:
248 switch (vtFrom)
250 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
251 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
252 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
253 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
254 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
255 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
256 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
257 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
258 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
259 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
260 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
261 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
262 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
263 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
264 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
265 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
267 break;
269 case VT_I8:
270 switch (vtFrom)
272 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
273 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
274 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
275 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
276 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
277 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
278 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
279 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
280 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
281 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
282 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
283 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
284 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
285 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
286 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
287 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
289 break;
291 case VT_R4:
292 switch (vtFrom)
294 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
295 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
296 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
297 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
298 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
299 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
300 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
301 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
302 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
303 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
304 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
305 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
306 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
307 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
308 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
309 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
311 break;
313 case VT_R8:
314 switch (vtFrom)
316 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
317 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
318 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
319 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
320 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
321 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
322 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
323 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
324 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
325 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
326 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
327 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
328 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
329 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
330 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
331 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
333 break;
335 case VT_DATE:
336 switch (vtFrom)
338 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
339 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
340 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
341 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
342 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
343 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
344 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
345 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
346 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
347 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
348 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
349 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
350 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
351 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
352 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
353 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
355 break;
357 case VT_BOOL:
358 switch (vtFrom)
360 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
361 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
362 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
363 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
364 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
365 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
366 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
367 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
368 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
369 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
370 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
371 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
372 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
373 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
374 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
375 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
377 break;
379 case VT_BSTR:
380 switch (vtFrom)
382 case VT_EMPTY:
383 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
384 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
385 case VT_BOOL:
386 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
387 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
388 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
389 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
390 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
391 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
392 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
393 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
394 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
395 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
396 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
397 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
398 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
399 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
400 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
401 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
402 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
404 break;
406 case VT_CY:
407 switch (vtFrom)
409 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
410 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
411 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
412 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
413 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
414 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
415 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
416 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
417 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
418 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
419 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
420 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
421 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
422 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
423 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
424 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
426 break;
428 case VT_DECIMAL:
429 switch (vtFrom)
431 case VT_EMPTY:
432 case VT_BOOL:
433 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
434 DEC_HI32(&V_DECIMAL(pd)) = 0;
435 DEC_MID32(&V_DECIMAL(pd)) = 0;
436 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
437 * VT_NULL and VT_EMPTY always give a 0 value.
439 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
440 return S_OK;
441 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
442 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
443 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
444 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
445 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
446 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
447 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
448 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
449 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
450 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
451 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
452 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
453 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
454 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
456 break;
458 case VT_UNKNOWN:
459 switch (vtFrom)
461 case VT_DISPATCH:
462 if (V_DISPATCH(ps) == NULL)
463 V_UNKNOWN(pd) = NULL;
464 else
465 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
466 break;
468 break;
470 case VT_DISPATCH:
471 switch (vtFrom)
473 case VT_UNKNOWN:
474 if (V_UNKNOWN(ps) == NULL)
475 V_DISPATCH(pd) = NULL;
476 else
477 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
478 break;
480 break;
482 case VT_RECORD:
483 break;
485 return res;
488 /* Coerce to/from an array */
489 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
491 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
492 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
494 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
495 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
497 if (V_VT(ps) == vt)
498 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
500 return DISP_E_TYPEMISMATCH;
503 /******************************************************************************
504 * Check if a variants type is valid.
506 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
508 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
510 vt &= VT_TYPEMASK;
512 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
514 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
516 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
517 return DISP_E_BADVARTYPE;
518 if (vt != (VARTYPE)15)
519 return S_OK;
522 return DISP_E_BADVARTYPE;
525 /******************************************************************************
526 * VariantInit [OLEAUT32.8]
528 * Initialise a variant.
530 * PARAMS
531 * pVarg [O] Variant to initialise
533 * RETURNS
534 * Nothing.
536 * NOTES
537 * This function simply sets the type of the variant to VT_EMPTY. It does not
538 * free any existing value, use VariantClear() for that.
540 void WINAPI VariantInit(VARIANTARG* pVarg)
542 TRACE("(%p)\n", pVarg);
544 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
545 V_VT(pVarg) = VT_EMPTY;
548 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
550 HRESULT hres;
552 TRACE("(%s)\n", debugstr_variant(pVarg));
554 hres = VARIANT_ValidateType(V_VT(pVarg));
555 if (FAILED(hres))
556 return hres;
558 switch (V_VT(pVarg))
560 case VT_DISPATCH:
561 case VT_UNKNOWN:
562 if (V_UNKNOWN(pVarg))
563 IUnknown_Release(V_UNKNOWN(pVarg));
564 break;
565 case VT_UNKNOWN | VT_BYREF:
566 case VT_DISPATCH | VT_BYREF:
567 if(*V_UNKNOWNREF(pVarg))
568 IUnknown_Release(*V_UNKNOWNREF(pVarg));
569 break;
570 case VT_BSTR:
571 SysFreeString(V_BSTR(pVarg));
572 break;
573 case VT_BSTR | VT_BYREF:
574 SysFreeString(*V_BSTRREF(pVarg));
575 break;
576 case VT_VARIANT | VT_BYREF:
577 VariantClear(V_VARIANTREF(pVarg));
578 break;
579 case VT_RECORD:
580 case VT_RECORD | VT_BYREF:
582 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
583 if (pBr->pRecInfo)
585 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
586 IRecordInfo_Release(pBr->pRecInfo);
588 break;
590 default:
591 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
593 if (V_ISBYREF(pVarg))
595 if (*V_ARRAYREF(pVarg))
596 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
598 else if (V_ARRAY(pVarg))
599 hres = SafeArrayDestroy(V_ARRAY(pVarg));
601 break;
604 V_VT(pVarg) = VT_EMPTY;
605 return hres;
608 /******************************************************************************
609 * VariantClear [OLEAUT32.9]
611 * Clear a variant.
613 * PARAMS
614 * pVarg [I/O] Variant to clear
616 * RETURNS
617 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
618 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
620 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
622 HRESULT hres;
624 TRACE("(%s)\n", debugstr_variant(pVarg));
626 hres = VARIANT_ValidateType(V_VT(pVarg));
628 if (SUCCEEDED(hres))
630 if (!V_ISBYREF(pVarg))
632 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
634 hres = SafeArrayDestroy(V_ARRAY(pVarg));
636 else if (V_VT(pVarg) == VT_BSTR)
638 SysFreeString(V_BSTR(pVarg));
640 else if (V_VT(pVarg) == VT_RECORD)
642 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
643 if (pBr->pRecInfo)
645 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
646 IRecordInfo_Release(pBr->pRecInfo);
649 else if (V_VT(pVarg) == VT_DISPATCH ||
650 V_VT(pVarg) == VT_UNKNOWN)
652 if (V_UNKNOWN(pVarg))
653 IUnknown_Release(V_UNKNOWN(pVarg));
656 V_VT(pVarg) = VT_EMPTY;
658 return hres;
661 /******************************************************************************
662 * Copy an IRecordInfo object contained in a variant.
664 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
666 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
667 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
668 HRESULT hr = S_OK;
669 ULONG size;
671 if (!src_rec->pRecInfo)
673 if (src_rec->pvRecord) return E_INVALIDARG;
674 return S_OK;
677 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
678 if (FAILED(hr)) return hr;
680 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
681 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
682 could free it later. */
683 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
684 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
686 dest_rec->pRecInfo = src_rec->pRecInfo;
687 IRecordInfo_AddRef(src_rec->pRecInfo);
689 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
692 /******************************************************************************
693 * VariantCopy [OLEAUT32.10]
695 * Copy a variant.
697 * PARAMS
698 * pvargDest [O] Destination for copy
699 * pvargSrc [I] Source variant to copy
701 * RETURNS
702 * Success: S_OK. pvargDest contains a copy of pvargSrc.
703 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
704 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
705 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
706 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
708 * NOTES
709 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
710 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
711 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
712 * fails, so does this function.
713 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
714 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
715 * is copied rather than just any pointers to it.
716 * - For by-value object types the object pointer is copied and the objects
717 * reference count increased using IUnknown_AddRef().
718 * - For all by-reference types, only the referencing pointer is copied.
720 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
722 HRESULT hres = S_OK;
724 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
726 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
727 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
728 return DISP_E_BADVARTYPE;
730 if (pvargSrc != pvargDest &&
731 SUCCEEDED(hres = VariantClear(pvargDest)))
733 *pvargDest = *pvargSrc; /* Shallow copy the value */
735 if (!V_ISBYREF(pvargSrc))
737 switch (V_VT(pvargSrc))
739 case VT_BSTR:
740 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
741 if (!V_BSTR(pvargDest))
742 hres = E_OUTOFMEMORY;
743 break;
744 case VT_RECORD:
745 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
746 break;
747 case VT_DISPATCH:
748 case VT_UNKNOWN:
749 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
750 if (V_UNKNOWN(pvargSrc))
751 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
752 break;
753 default:
754 if (V_ISARRAY(pvargSrc))
755 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
759 return hres;
762 /* Return the byte size of a variants data */
763 static inline size_t VARIANT_DataSize(const VARIANT* pv)
765 switch (V_TYPE(pv))
767 case VT_I1:
768 case VT_UI1: return sizeof(BYTE);
769 case VT_I2:
770 case VT_UI2: return sizeof(SHORT);
771 case VT_INT:
772 case VT_UINT:
773 case VT_I4:
774 case VT_UI4: return sizeof(LONG);
775 case VT_I8:
776 case VT_UI8: return sizeof(LONGLONG);
777 case VT_R4: return sizeof(float);
778 case VT_R8: return sizeof(double);
779 case VT_DATE: return sizeof(DATE);
780 case VT_BOOL: return sizeof(VARIANT_BOOL);
781 case VT_DISPATCH:
782 case VT_UNKNOWN:
783 case VT_BSTR: return sizeof(void*);
784 case VT_CY: return sizeof(CY);
785 case VT_ERROR: return sizeof(SCODE);
787 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
788 return 0;
791 /******************************************************************************
792 * VariantCopyInd [OLEAUT32.11]
794 * Copy a variant, dereferencing it if it is by-reference.
796 * PARAMS
797 * pvargDest [O] Destination for copy
798 * pvargSrc [I] Source variant to copy
800 * RETURNS
801 * Success: S_OK. pvargDest contains a copy of pvargSrc.
802 * Failure: An HRESULT error code indicating the error.
804 * NOTES
805 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
806 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
807 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
808 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
809 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
811 * NOTES
812 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
813 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
814 * value.
815 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
816 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
817 * to it. If clearing pvargDest fails, so does this function.
819 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
821 VARIANTARG vTmp, *pSrc = pvargSrc;
822 VARTYPE vt;
823 HRESULT hres = S_OK;
825 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
827 if (!V_ISBYREF(pvargSrc))
828 return VariantCopy(pvargDest, pvargSrc);
830 /* Argument checking is more lax than VariantCopy()... */
831 vt = V_TYPE(pvargSrc);
832 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
833 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
834 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
836 /* OK */
838 else
839 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
841 if (pvargSrc == pvargDest)
843 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
844 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
846 vTmp = *pvargSrc;
847 pSrc = &vTmp;
848 V_VT(pvargDest) = VT_EMPTY;
850 else
852 /* Copy into another variant. Free the variant in pvargDest */
853 if (FAILED(hres = VariantClear(pvargDest)))
855 TRACE("VariantClear() of destination failed\n");
856 return hres;
860 if (V_ISARRAY(pSrc))
862 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
863 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
865 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
867 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
868 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
870 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
872 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
874 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
875 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
877 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
878 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
879 if (*V_UNKNOWNREF(pSrc))
880 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
882 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
884 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
885 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
886 hres = E_INVALIDARG; /* Don't dereference more than one level */
887 else
888 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
890 /* Use the dereferenced variants type value, not VT_VARIANT */
891 goto VariantCopyInd_Return;
893 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
895 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
896 sizeof(DECIMAL) - sizeof(USHORT));
898 else
900 /* Copy the pointed to data into this variant */
901 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
904 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
906 VariantCopyInd_Return:
908 if (pSrc != pvargSrc)
909 VariantClear(pSrc);
911 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
912 return hres;
915 /******************************************************************************
916 * VariantChangeType [OLEAUT32.12]
918 * Change the type of a variant.
920 * PARAMS
921 * pvargDest [O] Destination for the converted variant
922 * pvargSrc [O] Source variant to change the type of
923 * wFlags [I] VARIANT_ flags from "oleauto.h"
924 * vt [I] Variant type to change pvargSrc into
926 * RETURNS
927 * Success: S_OK. pvargDest contains the converted value.
928 * Failure: An HRESULT error code describing the failure.
930 * NOTES
931 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
932 * See VariantChangeTypeEx.
934 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
935 USHORT wFlags, VARTYPE vt)
937 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
940 /******************************************************************************
941 * VariantChangeTypeEx [OLEAUT32.147]
943 * Change the type of a variant.
945 * PARAMS
946 * pvargDest [O] Destination for the converted variant
947 * pvargSrc [O] Source variant to change the type of
948 * lcid [I] LCID for the conversion
949 * wFlags [I] VARIANT_ flags from "oleauto.h"
950 * vt [I] Variant type to change pvargSrc into
952 * RETURNS
953 * Success: S_OK. pvargDest contains the converted value.
954 * Failure: An HRESULT error code describing the failure.
956 * NOTES
957 * pvargDest and pvargSrc can point to the same variant to perform an in-place
958 * conversion. If the conversion is successful, pvargSrc will be freed.
960 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
961 LCID lcid, USHORT wFlags, VARTYPE vt)
963 HRESULT res = S_OK;
965 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
966 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
968 if (vt == VT_CLSID)
969 res = DISP_E_BADVARTYPE;
970 else
972 res = VARIANT_ValidateType(V_VT(pvargSrc));
974 if (SUCCEEDED(res))
976 res = VARIANT_ValidateType(vt);
978 if (SUCCEEDED(res))
980 VARIANTARG vTmp, vSrcDeref;
982 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
983 res = DISP_E_TYPEMISMATCH;
984 else
986 V_VT(&vTmp) = VT_EMPTY;
987 V_VT(&vSrcDeref) = VT_EMPTY;
988 VariantClear(&vTmp);
989 VariantClear(&vSrcDeref);
992 if (SUCCEEDED(res))
994 res = VariantCopyInd(&vSrcDeref, pvargSrc);
995 if (SUCCEEDED(res))
997 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
998 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
999 else
1000 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1002 if (SUCCEEDED(res)) {
1003 V_VT(&vTmp) = vt;
1004 res = VariantCopy(pvargDest, &vTmp);
1006 VariantClear(&vTmp);
1007 VariantClear(&vSrcDeref);
1014 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1015 return res;
1018 /* Date Conversions */
1020 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1022 /* Convert a VT_DATE value to a Julian Date */
1023 static inline int VARIANT_JulianFromDate(int dateIn)
1025 int julianDays = dateIn;
1027 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1028 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1029 return julianDays;
1032 /* Convert a Julian Date to a VT_DATE value */
1033 static inline int VARIANT_DateFromJulian(int dateIn)
1035 int julianDays = dateIn;
1037 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1038 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1039 return julianDays;
1042 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1043 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1045 int j, i, l, n;
1047 l = jd + 68569;
1048 n = l * 4 / 146097;
1049 l -= (n * 146097 + 3) / 4;
1050 i = (4000 * (l + 1)) / 1461001;
1051 l += 31 - (i * 1461) / 4;
1052 j = (l * 80) / 2447;
1053 *day = l - (j * 2447) / 80;
1054 l = j / 11;
1055 *month = (j + 2) - (12 * l);
1056 *year = 100 * (n - 49) + i + l;
1059 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1060 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1062 int m12 = (month - 14) / 12;
1064 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1065 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1068 /* Macros for accessing DOS format date/time fields */
1069 #define DOS_YEAR(x) (1980 + (x >> 9))
1070 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1071 #define DOS_DAY(x) (x & 0x1f)
1072 #define DOS_HOUR(x) (x >> 11)
1073 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1074 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1075 /* Create a DOS format date/time */
1076 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1077 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1079 /* Roll a date forwards or backwards to correct it */
1080 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1082 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1083 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1085 /* interpret values signed */
1086 iYear = lpUd->st.wYear;
1087 iMonth = lpUd->st.wMonth;
1088 iDay = lpUd->st.wDay;
1089 iHour = lpUd->st.wHour;
1090 iMinute = lpUd->st.wMinute;
1091 iSecond = lpUd->st.wSecond;
1093 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1094 iYear, iHour, iMinute, iSecond);
1096 if (iYear > 9999 || iYear < -9999)
1097 return E_INVALIDARG; /* Invalid value */
1098 /* Year 0 to 29 are treated as 2000 + year */
1099 if (iYear >= 0 && iYear < 30)
1100 iYear += 2000;
1101 /* Remaining years < 100 are treated as 1900 + year */
1102 else if (iYear >= 30 && iYear < 100)
1103 iYear += 1900;
1105 iMinute += iSecond / 60;
1106 iSecond = iSecond % 60;
1107 iHour += iMinute / 60;
1108 iMinute = iMinute % 60;
1109 iDay += iHour / 24;
1110 iHour = iHour % 24;
1111 iYear += iMonth / 12;
1112 iMonth = iMonth % 12;
1113 if (iMonth<=0) {iMonth+=12; iYear--;}
1114 while (iDay > days[iMonth])
1116 if (iMonth == 2 && IsLeapYear(iYear))
1117 iDay -= 29;
1118 else
1119 iDay -= days[iMonth];
1120 iMonth++;
1121 iYear += iMonth / 12;
1122 iMonth = iMonth % 12;
1124 while (iDay <= 0)
1126 iMonth--;
1127 if (iMonth<=0) {iMonth+=12; iYear--;}
1128 if (iMonth == 2 && IsLeapYear(iYear))
1129 iDay += 29;
1130 else
1131 iDay += days[iMonth];
1134 if (iSecond<0){iSecond+=60; iMinute--;}
1135 if (iMinute<0){iMinute+=60; iHour--;}
1136 if (iHour<0) {iHour+=24; iDay--;}
1137 if (iYear<=0) iYear+=2000;
1139 lpUd->st.wYear = iYear;
1140 lpUd->st.wMonth = iMonth;
1141 lpUd->st.wDay = iDay;
1142 lpUd->st.wHour = iHour;
1143 lpUd->st.wMinute = iMinute;
1144 lpUd->st.wSecond = iSecond;
1146 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1147 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1148 return S_OK;
1151 /**********************************************************************
1152 * DosDateTimeToVariantTime [OLEAUT32.14]
1154 * Convert a Dos format date and time into variant VT_DATE format.
1156 * PARAMS
1157 * wDosDate [I] Dos format date
1158 * wDosTime [I] Dos format time
1159 * pDateOut [O] Destination for VT_DATE format
1161 * RETURNS
1162 * Success: TRUE. pDateOut contains the converted time.
1163 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1165 * NOTES
1166 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1167 * - Dos format times are accurate to only 2 second precision.
1168 * - The format of a Dos Date is:
1169 *| Bits Values Meaning
1170 *| ---- ------ -------
1171 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1172 *| the days in the month rolls forward the extra days.
1173 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1174 *| year. 13-15 are invalid.
1175 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1176 * - The format of a Dos Time is:
1177 *| Bits Values Meaning
1178 *| ---- ------ -------
1179 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1180 *| 5-10 0-59 Minutes. 60-63 are invalid.
1181 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1183 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1184 double *pDateOut)
1186 UDATE ud;
1188 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1189 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1190 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1191 pDateOut);
1193 ud.st.wYear = DOS_YEAR(wDosDate);
1194 ud.st.wMonth = DOS_MONTH(wDosDate);
1195 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1196 return FALSE;
1197 ud.st.wDay = DOS_DAY(wDosDate);
1198 ud.st.wHour = DOS_HOUR(wDosTime);
1199 ud.st.wMinute = DOS_MINUTE(wDosTime);
1200 ud.st.wSecond = DOS_SECOND(wDosTime);
1201 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1202 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1203 return FALSE; /* Invalid values in Dos*/
1205 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1208 /**********************************************************************
1209 * VariantTimeToDosDateTime [OLEAUT32.13]
1211 * Convert a variant format date into a Dos format date and time.
1213 * dateIn [I] VT_DATE time format
1214 * pwDosDate [O] Destination for Dos format date
1215 * pwDosTime [O] Destination for Dos format time
1217 * RETURNS
1218 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1219 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1221 * NOTES
1222 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1224 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1226 UDATE ud;
1228 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1230 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1231 return FALSE;
1233 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1234 return FALSE;
1236 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1237 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1239 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1240 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1241 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1242 return TRUE;
1245 /***********************************************************************
1246 * SystemTimeToVariantTime [OLEAUT32.184]
1248 * Convert a System format date and time into variant VT_DATE format.
1250 * PARAMS
1251 * lpSt [I] System format date and time
1252 * pDateOut [O] Destination for VT_DATE format date
1254 * RETURNS
1255 * Success: TRUE. *pDateOut contains the converted value.
1256 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1258 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1260 UDATE ud;
1262 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1263 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1265 if (lpSt->wMonth > 12)
1266 return FALSE;
1267 if (lpSt->wDay > 31)
1268 return FALSE;
1269 if ((short)lpSt->wYear < 0)
1270 return FALSE;
1272 ud.st = *lpSt;
1273 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1276 /***********************************************************************
1277 * VariantTimeToSystemTime [OLEAUT32.185]
1279 * Convert a variant VT_DATE into a System format date and time.
1281 * PARAMS
1282 * datein [I] Variant VT_DATE format date
1283 * lpSt [O] Destination for System format date and time
1285 * RETURNS
1286 * Success: TRUE. *lpSt contains the converted value.
1287 * Failure: FALSE, if dateIn is too large or small.
1289 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1291 UDATE ud;
1293 TRACE("(%g,%p)\n", dateIn, lpSt);
1295 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1296 return FALSE;
1298 *lpSt = ud.st;
1299 return TRUE;
1302 /***********************************************************************
1303 * VarDateFromUdateEx [OLEAUT32.319]
1305 * Convert an unpacked format date and time to a variant VT_DATE.
1307 * PARAMS
1308 * pUdateIn [I] Unpacked format date and time to convert
1309 * lcid [I] Locale identifier for the conversion
1310 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1311 * pDateOut [O] Destination for variant VT_DATE.
1313 * RETURNS
1314 * Success: S_OK. *pDateOut contains the converted value.
1315 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1317 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1319 UDATE ud;
1320 double dateVal = 0;
1322 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1323 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1324 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1325 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1326 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1328 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1329 FIXME("lcid possibly not handled, treating as en-us\n");
1330 if (dwFlags & ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
1331 FIXME("unsupported flags: %x\n", dwFlags);
1333 ud = *pUdateIn;
1335 if (dwFlags & VAR_VALIDDATE)
1336 WARN("Ignoring VAR_VALIDDATE\n");
1338 if (FAILED(VARIANT_RollUdate(&ud)))
1339 return E_INVALIDARG;
1341 /* Date */
1342 if (!(dwFlags & VAR_TIMEVALUEONLY))
1343 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1345 if ((dwFlags & VAR_TIMEVALUEONLY) || !(dwFlags & VAR_DATEVALUEONLY))
1347 double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1349 /* Time */
1350 dateVal += ud.st.wHour / 24.0 * dateSign;
1351 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1352 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1355 TRACE("Returning %g\n", dateVal);
1356 *pDateOut = dateVal;
1357 return S_OK;
1360 /***********************************************************************
1361 * VarDateFromUdate [OLEAUT32.330]
1363 * Convert an unpacked format date and time to a variant VT_DATE.
1365 * PARAMS
1366 * pUdateIn [I] Unpacked format date and time to convert
1367 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1368 * pDateOut [O] Destination for variant VT_DATE.
1370 * RETURNS
1371 * Success: S_OK. *pDateOut contains the converted value.
1372 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1374 * NOTES
1375 * This function uses the United States English locale for the conversion. Use
1376 * VarDateFromUdateEx() for alternate locales.
1378 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1380 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1382 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1385 /***********************************************************************
1386 * VarUdateFromDate [OLEAUT32.331]
1388 * Convert a variant VT_DATE into an unpacked format date and time.
1390 * PARAMS
1391 * datein [I] Variant VT_DATE format date
1392 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1393 * lpUdate [O] Destination for unpacked format date and time
1395 * RETURNS
1396 * Success: S_OK. *lpUdate contains the converted value.
1397 * Failure: E_INVALIDARG, if dateIn is too large or small.
1399 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1401 /* Cumulative totals of days per month */
1402 static const USHORT cumulativeDays[] =
1404 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1406 double datePart, timePart;
1407 int julianDays;
1409 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1411 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1412 return E_INVALIDARG;
1414 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1415 /* Compensate for int truncation (always downwards) */
1416 timePart = fabs(dateIn - datePart) + 0.00000000001;
1417 if (timePart >= 1.0)
1418 timePart -= 0.00000000001;
1420 /* Date */
1421 julianDays = VARIANT_JulianFromDate(dateIn);
1422 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1423 &lpUdate->st.wDay);
1425 datePart = (datePart + 1.5) / 7.0;
1426 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1427 if (lpUdate->st.wDayOfWeek == 0)
1428 lpUdate->st.wDayOfWeek = 5;
1429 else if (lpUdate->st.wDayOfWeek == 1)
1430 lpUdate->st.wDayOfWeek = 6;
1431 else
1432 lpUdate->st.wDayOfWeek -= 2;
1434 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1435 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1436 else
1437 lpUdate->wDayOfYear = 0;
1439 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1440 lpUdate->wDayOfYear += lpUdate->st.wDay;
1442 /* Time */
1443 timePart *= 24.0;
1444 lpUdate->st.wHour = timePart;
1445 timePart -= lpUdate->st.wHour;
1446 timePart *= 60.0;
1447 lpUdate->st.wMinute = timePart;
1448 timePart -= lpUdate->st.wMinute;
1449 timePart *= 60.0;
1450 lpUdate->st.wSecond = timePart;
1451 timePart -= lpUdate->st.wSecond;
1452 lpUdate->st.wMilliseconds = 0;
1453 if (timePart > 0.5)
1455 /* Round the milliseconds, adjusting the time/date forward if needed */
1456 if (lpUdate->st.wSecond < 59)
1457 lpUdate->st.wSecond++;
1458 else
1460 lpUdate->st.wSecond = 0;
1461 if (lpUdate->st.wMinute < 59)
1462 lpUdate->st.wMinute++;
1463 else
1465 lpUdate->st.wMinute = 0;
1466 if (lpUdate->st.wHour < 23)
1467 lpUdate->st.wHour++;
1468 else
1470 lpUdate->st.wHour = 0;
1471 /* Roll over a whole day */
1472 if (++lpUdate->st.wDay > 28)
1473 VARIANT_RollUdate(lpUdate);
1478 return S_OK;
1481 #define GET_NUMBER_TEXT(fld,name) \
1482 buff[0] = 0; \
1483 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1484 WARN("buffer too small for " #fld "\n"); \
1485 else \
1486 if (buff[0]) lpChars->name = buff[0]; \
1487 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1489 /* Get the valid number characters for an lcid */
1490 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1492 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1493 static CRITICAL_SECTION csLastChars = { NULL, -1, 0, 0, 0, 0 };
1494 static VARIANT_NUMBER_CHARS lastChars;
1495 static LCID lastLcid = -1;
1496 static DWORD lastFlags = 0;
1497 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1498 WCHAR buff[4];
1500 /* To make caching thread-safe, a critical section is needed */
1501 EnterCriticalSection(&csLastChars);
1503 /* Asking for default locale entries is very expensive: It is a registry
1504 server call. So cache one locally, as Microsoft does it too */
1505 if(lcid == lastLcid && dwFlags == lastFlags)
1507 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1508 LeaveCriticalSection(&csLastChars);
1509 return;
1512 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1513 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1514 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1515 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1516 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1517 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1518 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1520 /* Local currency symbols are often 2 characters */
1521 lpChars->cCurrencyLocal2 = '\0';
1522 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1524 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1525 case 2: lpChars->cCurrencyLocal = buff[0];
1526 break;
1527 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1529 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1530 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1532 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1533 lastLcid = lcid;
1534 lastFlags = dwFlags;
1535 LeaveCriticalSection(&csLastChars);
1538 /* Number Parsing States */
1539 #define B_PROCESSING_EXPONENT 0x1
1540 #define B_NEGATIVE_EXPONENT 0x2
1541 #define B_EXPONENT_START 0x4
1542 #define B_INEXACT_ZEROS 0x8
1543 #define B_LEADING_ZERO 0x10
1544 #define B_PROCESSING_HEX 0x20
1545 #define B_PROCESSING_OCT 0x40
1547 /**********************************************************************
1548 * VarParseNumFromStr [OLEAUT32.46]
1550 * Parse a string containing a number into a NUMPARSE structure.
1552 * PARAMS
1553 * lpszStr [I] String to parse number from
1554 * lcid [I] Locale Id for the conversion
1555 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1556 * pNumprs [I/O] Destination for parsed number
1557 * rgbDig [O] Destination for digits read in
1559 * RETURNS
1560 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1561 * the number.
1562 * Failure: E_INVALIDARG, if any parameter is invalid.
1563 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1564 * incorrectly.
1565 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1567 * NOTES
1568 * pNumprs must have the following fields set:
1569 * cDig: Set to the size of rgbDig.
1570 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1571 * from "oleauto.h".
1573 * FIXME
1574 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1575 * numerals, so this has not been implemented.
1577 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1578 NUMPARSE *pNumprs, BYTE *rgbDig)
1580 VARIANT_NUMBER_CHARS chars;
1581 BYTE rgbTmp[1024];
1582 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1583 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1584 int cchUsed = 0;
1586 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1588 if (!pNumprs || !rgbDig)
1589 return E_INVALIDARG;
1591 if (pNumprs->cDig < iMaxDigits)
1592 iMaxDigits = pNumprs->cDig;
1594 pNumprs->cDig = 0;
1595 pNumprs->dwOutFlags = 0;
1596 pNumprs->cchUsed = 0;
1597 pNumprs->nBaseShift = 0;
1598 pNumprs->nPwr10 = 0;
1600 if (!lpszStr)
1601 return DISP_E_TYPEMISMATCH;
1603 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1605 /* First consume all the leading symbols and space from the string */
1606 while (1)
1608 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1610 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1613 cchUsed++;
1614 lpszStr++;
1615 } while (isspaceW(*lpszStr));
1617 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1618 *lpszStr == chars.cPositiveSymbol &&
1619 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1621 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1622 cchUsed++;
1623 lpszStr++;
1625 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1626 *lpszStr == chars.cNegativeSymbol &&
1627 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1629 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1630 cchUsed++;
1631 lpszStr++;
1633 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1634 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1635 *lpszStr == chars.cCurrencyLocal &&
1636 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1638 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1639 cchUsed++;
1640 lpszStr++;
1641 /* Only accept currency characters */
1642 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1643 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1645 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1646 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1648 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1649 cchUsed++;
1650 lpszStr++;
1652 else
1653 break;
1656 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1658 /* Only accept non-currency characters */
1659 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1660 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1663 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1664 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1666 dwState |= B_PROCESSING_HEX;
1667 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1668 cchUsed=cchUsed+2;
1669 lpszStr=lpszStr+2;
1671 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1672 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1674 dwState |= B_PROCESSING_OCT;
1675 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1676 cchUsed=cchUsed+2;
1677 lpszStr=lpszStr+2;
1680 /* Strip Leading zeros */
1681 while (*lpszStr == '0')
1683 dwState |= B_LEADING_ZERO;
1684 cchUsed++;
1685 lpszStr++;
1688 while (*lpszStr)
1690 if (isdigitW(*lpszStr))
1692 if (dwState & B_PROCESSING_EXPONENT)
1694 int exponentSize = 0;
1695 if (dwState & B_EXPONENT_START)
1697 if (!isdigitW(*lpszStr))
1698 break; /* No exponent digits - invalid */
1699 while (*lpszStr == '0')
1701 /* Skip leading zero's in the exponent */
1702 cchUsed++;
1703 lpszStr++;
1707 while (isdigitW(*lpszStr))
1709 exponentSize *= 10;
1710 exponentSize += *lpszStr - '0';
1711 cchUsed++;
1712 lpszStr++;
1714 if (dwState & B_NEGATIVE_EXPONENT)
1715 exponentSize = -exponentSize;
1716 /* Add the exponent into the powers of 10 */
1717 pNumprs->nPwr10 += exponentSize;
1718 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1719 lpszStr--; /* back up to allow processing of next char */
1721 else
1723 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1724 && !(dwState & B_PROCESSING_OCT))
1726 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1728 if (*lpszStr != '0')
1729 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1731 /* This digit can't be represented, but count it in nPwr10 */
1732 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1733 pNumprs->nPwr10--;
1734 else
1735 pNumprs->nPwr10++;
1737 else
1739 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9')))
1740 break;
1742 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1743 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1745 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1747 pNumprs->cDig++;
1748 cchUsed++;
1751 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1753 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1754 cchUsed++;
1756 else if (*lpszStr == chars.cDecimalPoint &&
1757 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1758 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1760 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1761 cchUsed++;
1763 /* If we have no digits so far, skip leading zeros */
1764 if (!pNumprs->cDig)
1766 while (lpszStr[1] == '0')
1768 dwState |= B_LEADING_ZERO;
1769 cchUsed++;
1770 lpszStr++;
1771 pNumprs->nPwr10--;
1775 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1776 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1777 dwState & B_PROCESSING_HEX)
1779 if (pNumprs->cDig >= iMaxDigits)
1781 return DISP_E_OVERFLOW;
1783 else
1785 if (*lpszStr >= 'a')
1786 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1787 else
1788 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1790 pNumprs->cDig++;
1791 cchUsed++;
1793 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1794 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1795 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1797 dwState |= B_PROCESSING_EXPONENT;
1798 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1799 cchUsed++;
1801 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1803 cchUsed++; /* Ignore positive exponent */
1805 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1807 dwState |= B_NEGATIVE_EXPONENT;
1808 cchUsed++;
1810 else
1811 break; /* Stop at an unrecognised character */
1813 lpszStr++;
1816 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1818 /* Ensure a 0 on its own gets stored */
1819 pNumprs->cDig = 1;
1820 rgbTmp[0] = 0;
1823 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1825 pNumprs->cchUsed = cchUsed;
1826 WARN("didn't completely parse exponent\n");
1827 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1830 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1832 if (dwState & B_INEXACT_ZEROS)
1833 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1834 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1836 /* copy all of the digits into the output digit buffer */
1837 /* this is exactly what windows does although it also returns */
1838 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1839 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1841 if (dwState & B_PROCESSING_HEX) {
1842 /* hex numbers have always the same format */
1843 pNumprs->nPwr10=0;
1844 pNumprs->nBaseShift=4;
1845 } else {
1846 if (dwState & B_PROCESSING_OCT) {
1847 /* oct numbers have always the same format */
1848 pNumprs->nPwr10=0;
1849 pNumprs->nBaseShift=3;
1850 } else {
1851 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1853 pNumprs->nPwr10++;
1854 pNumprs->cDig--;
1858 } else
1860 /* Remove trailing zeros from the last (whole number or decimal) part */
1861 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1863 pNumprs->nPwr10++;
1864 pNumprs->cDig--;
1868 if (pNumprs->cDig <= iMaxDigits)
1869 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1870 else
1871 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1873 /* Copy the digits we processed into rgbDig */
1874 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1876 /* Consume any trailing symbols and space */
1877 while (1)
1879 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1881 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1884 cchUsed++;
1885 lpszStr++;
1886 } while (isspaceW(*lpszStr));
1888 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1889 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1890 *lpszStr == chars.cPositiveSymbol)
1892 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1893 cchUsed++;
1894 lpszStr++;
1896 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1897 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1898 *lpszStr == chars.cNegativeSymbol)
1900 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1901 cchUsed++;
1902 lpszStr++;
1904 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1905 pNumprs->dwOutFlags & NUMPRS_PARENS)
1907 cchUsed++;
1908 lpszStr++;
1909 pNumprs->dwOutFlags |= NUMPRS_NEG;
1911 else
1912 break;
1915 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1917 pNumprs->cchUsed = cchUsed;
1918 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1921 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1922 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1924 if (!pNumprs->cDig)
1925 return DISP_E_TYPEMISMATCH; /* No Number found */
1927 pNumprs->cchUsed = cchUsed;
1928 return S_OK;
1931 /* VTBIT flags indicating an integer value */
1932 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1933 /* VTBIT flags indicating a real number value */
1934 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1936 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1937 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1938 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1939 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1941 /**********************************************************************
1942 * VarNumFromParseNum [OLEAUT32.47]
1944 * Convert a NUMPARSE structure into a numeric Variant type.
1946 * PARAMS
1947 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1948 * rgbDig [I] Source for the numbers digits
1949 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1950 * pVarDst [O] Destination for the converted Variant value.
1952 * RETURNS
1953 * Success: S_OK. pVarDst contains the converted value.
1954 * Failure: E_INVALIDARG, if any parameter is invalid.
1955 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1957 * NOTES
1958 * - The smallest favoured type present in dwVtBits that can represent the
1959 * number in pNumprs without losing precision is used.
1960 * - Signed types are preferred over unsigned types of the same size.
1961 * - Preferred types in order are: integer, float, double, currency then decimal.
1962 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1963 * for details of the rounding method.
1964 * - pVarDst is not cleared before the result is stored in it.
1965 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1966 * design?): If some other VTBIT's for integers are specified together
1967 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1968 * the number to the smallest requested integer truncating this way the
1969 * number. Wine doesn't implement this "feature" (yet?).
1971 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1972 ULONG dwVtBits, VARIANT *pVarDst)
1974 /* Scale factors and limits for double arithmetic */
1975 static const double dblMultipliers[11] = {
1976 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1977 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1979 static const double dblMinimums[11] = {
1980 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1981 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1982 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1984 static const double dblMaximums[11] = {
1985 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1986 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1987 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1990 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
1992 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
1994 if (pNumprs->nBaseShift)
1996 /* nBaseShift indicates a hex or octal number */
1997 ULONG64 ul64 = 0;
1998 LONG64 l64;
1999 int i;
2001 /* Convert the hex or octal number string into a UI64 */
2002 for (i = 0; i < pNumprs->cDig; i++)
2004 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2006 TRACE("Overflow multiplying digits\n");
2007 return DISP_E_OVERFLOW;
2009 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2012 /* also make a negative representation */
2013 l64=-ul64;
2015 /* Try signed and unsigned types in size order */
2016 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2018 V_VT(pVarDst) = VT_I1;
2019 V_I1(pVarDst) = ul64;
2020 return S_OK;
2022 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2024 V_VT(pVarDst) = VT_UI1;
2025 V_UI1(pVarDst) = ul64;
2026 return S_OK;
2028 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2030 V_VT(pVarDst) = VT_I2;
2031 V_I2(pVarDst) = ul64;
2032 return S_OK;
2034 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2036 V_VT(pVarDst) = VT_UI2;
2037 V_UI2(pVarDst) = ul64;
2038 return S_OK;
2040 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2042 V_VT(pVarDst) = VT_I4;
2043 V_I4(pVarDst) = ul64;
2044 return S_OK;
2046 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2048 V_VT(pVarDst) = VT_UI4;
2049 V_UI4(pVarDst) = ul64;
2050 return S_OK;
2052 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2054 V_VT(pVarDst) = VT_I8;
2055 V_I8(pVarDst) = ul64;
2056 return S_OK;
2058 else if (dwVtBits & VTBIT_UI8)
2060 V_VT(pVarDst) = VT_UI8;
2061 V_UI8(pVarDst) = ul64;
2062 return S_OK;
2064 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2066 V_VT(pVarDst) = VT_DECIMAL;
2067 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2068 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2069 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2070 return S_OK;
2072 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2074 V_VT(pVarDst) = VT_R4;
2075 if (ul64 <= I4_MAX)
2076 V_R4(pVarDst) = ul64;
2077 else
2078 V_R4(pVarDst) = l64;
2079 return S_OK;
2081 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2083 V_VT(pVarDst) = VT_R8;
2084 if (ul64 <= I4_MAX)
2085 V_R8(pVarDst) = ul64;
2086 else
2087 V_R8(pVarDst) = l64;
2088 return S_OK;
2091 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2092 return DISP_E_OVERFLOW;
2095 /* Count the number of relevant fractional and whole digits stored,
2096 * And compute the divisor/multiplier to scale the number by.
2098 if (pNumprs->nPwr10 < 0)
2100 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2102 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2103 wholeNumberDigits = 0;
2104 fractionalDigits = pNumprs->cDig;
2105 divisor10 = -pNumprs->nPwr10;
2107 else
2109 /* An exactly represented real number e.g. 1.024 */
2110 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2111 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2112 divisor10 = pNumprs->cDig - wholeNumberDigits;
2115 else if (pNumprs->nPwr10 == 0)
2117 /* An exactly represented whole number e.g. 1024 */
2118 wholeNumberDigits = pNumprs->cDig;
2119 fractionalDigits = 0;
2121 else /* pNumprs->nPwr10 > 0 */
2123 /* A whole number followed by nPwr10 0's e.g. 102400 */
2124 wholeNumberDigits = pNumprs->cDig;
2125 fractionalDigits = 0;
2126 multiplier10 = pNumprs->nPwr10;
2129 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2130 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2131 multiplier10, divisor10);
2133 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2134 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2136 /* We have one or more integer output choices, and either:
2137 * 1) An integer input value, or
2138 * 2) A real number input value but no floating output choices.
2139 * Alternately, we have a DECIMAL output available and an integer input.
2141 * So, place the integer value into pVarDst, using the smallest type
2142 * possible and preferring signed over unsigned types.
2144 BOOL bOverflow = FALSE, bNegative;
2145 ULONG64 ul64 = 0;
2146 int i;
2148 /* Convert the integer part of the number into a UI8 */
2149 for (i = 0; i < wholeNumberDigits; i++)
2151 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2153 TRACE("Overflow multiplying digits\n");
2154 bOverflow = TRUE;
2155 break;
2157 ul64 = ul64 * 10 + rgbDig[i];
2160 /* Account for the scale of the number */
2161 if (!bOverflow && multiplier10)
2163 for (i = 0; i < multiplier10; i++)
2165 if (ul64 > (UI8_MAX / 10))
2167 TRACE("Overflow scaling number\n");
2168 bOverflow = TRUE;
2169 break;
2171 ul64 = ul64 * 10;
2175 /* If we have any fractional digits, round the value.
2176 * Note we don't have to do this if divisor10 is < 1,
2177 * because this means the fractional part must be < 0.5
2179 if (!bOverflow && fractionalDigits && divisor10 > 0)
2181 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2182 BOOL bAdjust = FALSE;
2184 TRACE("first decimal value is %d\n", *fracDig);
2186 if (*fracDig > 5)
2187 bAdjust = TRUE; /* > 0.5 */
2188 else if (*fracDig == 5)
2190 for (i = 1; i < fractionalDigits; i++)
2192 if (fracDig[i])
2194 bAdjust = TRUE; /* > 0.5 */
2195 break;
2198 /* If exactly 0.5, round only odd values */
2199 if (i == fractionalDigits && (ul64 & 1))
2200 bAdjust = TRUE;
2203 if (bAdjust)
2205 if (ul64 == UI8_MAX)
2207 TRACE("Overflow after rounding\n");
2208 bOverflow = TRUE;
2210 ul64++;
2214 /* Zero is not a negative number */
2215 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2217 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2219 /* For negative integers, try the signed types in size order */
2220 if (!bOverflow && bNegative)
2222 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2224 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2226 V_VT(pVarDst) = VT_I1;
2227 V_I1(pVarDst) = -ul64;
2228 return S_OK;
2230 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2232 V_VT(pVarDst) = VT_I2;
2233 V_I2(pVarDst) = -ul64;
2234 return S_OK;
2236 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2238 V_VT(pVarDst) = VT_I4;
2239 V_I4(pVarDst) = -ul64;
2240 return S_OK;
2242 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2244 V_VT(pVarDst) = VT_I8;
2245 V_I8(pVarDst) = -ul64;
2246 return S_OK;
2248 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2250 /* Decimal is only output choice left - fast path */
2251 V_VT(pVarDst) = VT_DECIMAL;
2252 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2253 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2254 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2255 return S_OK;
2259 else if (!bOverflow)
2261 /* For positive integers, try signed then unsigned types in size order */
2262 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2264 V_VT(pVarDst) = VT_I1;
2265 V_I1(pVarDst) = ul64;
2266 return S_OK;
2268 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2270 V_VT(pVarDst) = VT_UI1;
2271 V_UI1(pVarDst) = ul64;
2272 return S_OK;
2274 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2276 V_VT(pVarDst) = VT_I2;
2277 V_I2(pVarDst) = ul64;
2278 return S_OK;
2280 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2282 V_VT(pVarDst) = VT_UI2;
2283 V_UI2(pVarDst) = ul64;
2284 return S_OK;
2286 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2288 V_VT(pVarDst) = VT_I4;
2289 V_I4(pVarDst) = ul64;
2290 return S_OK;
2292 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2294 V_VT(pVarDst) = VT_UI4;
2295 V_UI4(pVarDst) = ul64;
2296 return S_OK;
2298 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2300 V_VT(pVarDst) = VT_I8;
2301 V_I8(pVarDst) = ul64;
2302 return S_OK;
2304 else if (dwVtBits & VTBIT_UI8)
2306 V_VT(pVarDst) = VT_UI8;
2307 V_UI8(pVarDst) = ul64;
2308 return S_OK;
2310 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2312 /* Decimal is only output choice left - fast path */
2313 V_VT(pVarDst) = VT_DECIMAL;
2314 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2315 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2316 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2317 return S_OK;
2322 if (dwVtBits & REAL_VTBITS)
2324 /* Try to put the number into a float or real */
2325 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2326 double whole = 0.0;
2327 int i;
2329 /* Convert the number into a double */
2330 for (i = 0; i < pNumprs->cDig; i++)
2331 whole = whole * 10.0 + rgbDig[i];
2333 TRACE("Whole double value is %16.16g\n", whole);
2335 /* Account for the scale */
2336 while (multiplier10 > 10)
2338 if (whole > dblMaximums[10])
2340 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2341 bOverflow = TRUE;
2342 break;
2344 whole = whole * dblMultipliers[10];
2345 multiplier10 -= 10;
2347 if (multiplier10 && !bOverflow)
2349 if (whole > dblMaximums[multiplier10])
2351 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2352 bOverflow = TRUE;
2354 else
2355 whole = whole * dblMultipliers[multiplier10];
2358 if (!bOverflow)
2359 TRACE("Scaled double value is %16.16g\n", whole);
2361 while (divisor10 > 10 && !bOverflow)
2363 if (whole < dblMinimums[10] && whole != 0)
2365 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2366 bOverflow = TRUE;
2367 break;
2369 whole = whole / dblMultipliers[10];
2370 divisor10 -= 10;
2372 if (divisor10 && !bOverflow)
2374 if (whole < dblMinimums[divisor10] && whole != 0)
2376 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2377 bOverflow = TRUE;
2379 else
2380 whole = whole / dblMultipliers[divisor10];
2382 if (!bOverflow)
2383 TRACE("Final double value is %16.16g\n", whole);
2385 if (dwVtBits & VTBIT_R4 &&
2386 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2388 TRACE("Set R4 to final value\n");
2389 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2390 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2391 return S_OK;
2394 if (dwVtBits & VTBIT_R8)
2396 TRACE("Set R8 to final value\n");
2397 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2398 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2399 return S_OK;
2402 if (dwVtBits & VTBIT_CY)
2404 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2406 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2407 TRACE("Set CY to final value\n");
2408 return S_OK;
2410 TRACE("Value Overflows CY\n");
2414 if (dwVtBits & VTBIT_DECIMAL)
2416 int i;
2417 ULONG carry;
2418 ULONG64 tmp;
2419 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2421 DECIMAL_SETZERO(*pDec);
2422 DEC_LO32(pDec) = 0;
2424 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2425 DEC_SIGN(pDec) = DECIMAL_NEG;
2426 else
2427 DEC_SIGN(pDec) = DECIMAL_POS;
2429 /* Factor the significant digits */
2430 for (i = 0; i < pNumprs->cDig; i++)
2432 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2433 carry = (ULONG)(tmp >> 32);
2434 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2435 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2436 carry = (ULONG)(tmp >> 32);
2437 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2438 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2439 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2441 if (tmp >> 32 & UI4_MAX)
2443 VarNumFromParseNum_DecOverflow:
2444 TRACE("Overflow\n");
2445 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2446 return DISP_E_OVERFLOW;
2450 /* Account for the scale of the number */
2451 while (multiplier10 > 0)
2453 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2454 carry = (ULONG)(tmp >> 32);
2455 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2456 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2457 carry = (ULONG)(tmp >> 32);
2458 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2459 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2460 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2462 if (tmp >> 32 & UI4_MAX)
2463 goto VarNumFromParseNum_DecOverflow;
2464 multiplier10--;
2466 DEC_SCALE(pDec) = divisor10;
2468 V_VT(pVarDst) = VT_DECIMAL;
2469 return S_OK;
2471 return DISP_E_OVERFLOW; /* No more output choices */
2474 /**********************************************************************
2475 * VarCat [OLEAUT32.318]
2477 * Concatenates one variant onto another.
2479 * PARAMS
2480 * left [I] First variant
2481 * right [I] Second variant
2482 * result [O] Result variant
2484 * RETURNS
2485 * Success: S_OK.
2486 * Failure: An HRESULT error code indicating the error.
2488 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2490 VARTYPE leftvt,rightvt,resultvt;
2491 HRESULT hres;
2492 static WCHAR str_true[32];
2493 static WCHAR str_false[32];
2494 static const WCHAR sz_empty[] = {'\0'};
2495 leftvt = V_VT(left);
2496 rightvt = V_VT(right);
2498 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2500 if (!str_true[0]) {
2501 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2502 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2505 /* when both left and right are NULL the result is NULL */
2506 if (leftvt == VT_NULL && rightvt == VT_NULL)
2508 V_VT(out) = VT_NULL;
2509 return S_OK;
2512 hres = S_OK;
2513 resultvt = VT_EMPTY;
2515 /* There are many special case for errors and return types */
2516 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2517 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2518 hres = DISP_E_TYPEMISMATCH;
2519 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2520 leftvt == VT_R4 || leftvt == VT_R8 ||
2521 leftvt == VT_CY || leftvt == VT_BOOL ||
2522 leftvt == VT_BSTR || leftvt == VT_I1 ||
2523 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2524 leftvt == VT_UI4 || leftvt == VT_I8 ||
2525 leftvt == VT_UI8 || leftvt == VT_INT ||
2526 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2527 leftvt == VT_NULL || leftvt == VT_DATE ||
2528 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2530 (rightvt == VT_I2 || rightvt == VT_I4 ||
2531 rightvt == VT_R4 || rightvt == VT_R8 ||
2532 rightvt == VT_CY || rightvt == VT_BOOL ||
2533 rightvt == VT_BSTR || rightvt == VT_I1 ||
2534 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2535 rightvt == VT_UI4 || rightvt == VT_I8 ||
2536 rightvt == VT_UI8 || rightvt == VT_INT ||
2537 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2538 rightvt == VT_NULL || rightvt == VT_DATE ||
2539 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2540 resultvt = VT_BSTR;
2541 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2542 hres = DISP_E_TYPEMISMATCH;
2543 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2544 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2545 hres = DISP_E_TYPEMISMATCH;
2546 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2547 rightvt == VT_DECIMAL)
2548 hres = DISP_E_BADVARTYPE;
2549 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2550 hres = DISP_E_TYPEMISMATCH;
2551 else if (leftvt == VT_VARIANT)
2552 hres = DISP_E_TYPEMISMATCH;
2553 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2554 leftvt == VT_NULL || leftvt == VT_I2 ||
2555 leftvt == VT_I4 || leftvt == VT_R4 ||
2556 leftvt == VT_R8 || leftvt == VT_CY ||
2557 leftvt == VT_DATE || leftvt == VT_BSTR ||
2558 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2559 leftvt == VT_I1 || leftvt == VT_UI1 ||
2560 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2561 leftvt == VT_I8 || leftvt == VT_UI8 ||
2562 leftvt == VT_INT || leftvt == VT_UINT))
2563 hres = DISP_E_TYPEMISMATCH;
2564 else
2565 hres = DISP_E_BADVARTYPE;
2567 /* if result type is not S_OK, then no need to go further */
2568 if (hres != S_OK)
2570 V_VT(out) = resultvt;
2571 return hres;
2573 /* Else proceed with formatting inputs to strings */
2574 else
2576 VARIANT bstrvar_left, bstrvar_right;
2577 V_VT(out) = VT_BSTR;
2579 VariantInit(&bstrvar_left);
2580 VariantInit(&bstrvar_right);
2582 /* Convert left side variant to string */
2583 if (leftvt != VT_BSTR)
2585 if (leftvt == VT_BOOL)
2587 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2588 V_VT(&bstrvar_left) = VT_BSTR;
2589 if (V_BOOL(left))
2590 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2591 else
2592 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2594 /* Fill with empty string for later concat with right side */
2595 else if (leftvt == VT_NULL)
2597 V_VT(&bstrvar_left) = VT_BSTR;
2598 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2600 else
2602 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2603 if (hres != S_OK) {
2604 VariantClear(&bstrvar_left);
2605 VariantClear(&bstrvar_right);
2606 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2607 rightvt == VT_NULL || rightvt == VT_I2 ||
2608 rightvt == VT_I4 || rightvt == VT_R4 ||
2609 rightvt == VT_R8 || rightvt == VT_CY ||
2610 rightvt == VT_DATE || rightvt == VT_BSTR ||
2611 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2612 rightvt == VT_I1 || rightvt == VT_UI1 ||
2613 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2614 rightvt == VT_I8 || rightvt == VT_UI8 ||
2615 rightvt == VT_INT || rightvt == VT_UINT))
2616 return DISP_E_BADVARTYPE;
2617 return hres;
2622 /* convert right side variant to string */
2623 if (rightvt != VT_BSTR)
2625 if (rightvt == VT_BOOL)
2627 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2628 V_VT(&bstrvar_right) = VT_BSTR;
2629 if (V_BOOL(right))
2630 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2631 else
2632 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2634 /* Fill with empty string for later concat with right side */
2635 else if (rightvt == VT_NULL)
2637 V_VT(&bstrvar_right) = VT_BSTR;
2638 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2640 else
2642 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2643 if (hres != S_OK) {
2644 VariantClear(&bstrvar_left);
2645 VariantClear(&bstrvar_right);
2646 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2647 leftvt == VT_NULL || leftvt == VT_I2 ||
2648 leftvt == VT_I4 || leftvt == VT_R4 ||
2649 leftvt == VT_R8 || leftvt == VT_CY ||
2650 leftvt == VT_DATE || leftvt == VT_BSTR ||
2651 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2652 leftvt == VT_I1 || leftvt == VT_UI1 ||
2653 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2654 leftvt == VT_I8 || leftvt == VT_UI8 ||
2655 leftvt == VT_INT || leftvt == VT_UINT))
2656 return DISP_E_BADVARTYPE;
2657 return hres;
2662 /* Concat the resulting strings together */
2663 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2664 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2665 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2666 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2667 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2668 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2669 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2670 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2672 VariantClear(&bstrvar_left);
2673 VariantClear(&bstrvar_right);
2674 return S_OK;
2679 /* Wrapper around VariantChangeTypeEx() which permits changing a
2680 variant with VT_RESERVED flag set. Needed by VarCmp. */
2681 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2682 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2684 VARIANTARG vtmpsrc = *pvargSrc;
2686 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2687 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2690 /**********************************************************************
2691 * VarCmp [OLEAUT32.176]
2693 * Compare two variants.
2695 * PARAMS
2696 * left [I] First variant
2697 * right [I] Second variant
2698 * lcid [I] LCID (locale identifier) for the comparison
2699 * flags [I] Flags to be used in the comparison:
2700 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2701 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2703 * RETURNS
2704 * VARCMP_LT: left variant is less than right variant.
2705 * VARCMP_EQ: input variants are equal.
2706 * VARCMP_GT: left variant is greater than right variant.
2707 * VARCMP_NULL: either one of the input variants is NULL.
2708 * Failure: An HRESULT error code indicating the error.
2710 * NOTES
2711 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2712 * UI8 and UINT as input variants. INT is accepted only as left variant.
2714 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2715 * an ERROR variant will trigger an error.
2717 * Both input variants can have VT_RESERVED flag set which is ignored
2718 * unless one and only one of the variants is a BSTR and the other one
2719 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2720 * different meaning:
2721 * - BSTR and other: BSTR is always greater than the other variant.
2722 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2723 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2724 * comparison will take place else the BSTR is always greater.
2725 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2726 * variant is ignored and the return value depends only on the sign
2727 * of the BSTR if it is a number else the BSTR is always greater. A
2728 * positive BSTR is greater, a negative one is smaller than the other
2729 * variant.
2731 * SEE
2732 * VarBstrCmp for the lcid and flags usage.
2734 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2736 VARTYPE lvt, rvt, vt;
2737 VARIANT rv,lv;
2738 DWORD xmask;
2739 HRESULT rc;
2741 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2743 lvt = V_VT(left) & VT_TYPEMASK;
2744 rvt = V_VT(right) & VT_TYPEMASK;
2745 xmask = (1 << lvt) | (1 << rvt);
2747 /* If we have any flag set except VT_RESERVED bail out.
2748 Same for the left input variant type > VT_INT and for the
2749 right input variant type > VT_I8. Yes, VT_INT is only supported
2750 as left variant. Go figure */
2751 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2752 lvt > VT_INT || rvt > VT_I8) {
2753 return DISP_E_BADVARTYPE;
2756 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2757 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2758 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2759 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2760 return DISP_E_TYPEMISMATCH;
2762 /* If both variants are VT_ERROR return VARCMP_EQ */
2763 if (xmask == VTBIT_ERROR)
2764 return VARCMP_EQ;
2765 else if (xmask & VTBIT_ERROR)
2766 return DISP_E_TYPEMISMATCH;
2768 if (xmask & VTBIT_NULL)
2769 return VARCMP_NULL;
2771 VariantInit(&lv);
2772 VariantInit(&rv);
2774 /* Two BSTRs, ignore VT_RESERVED */
2775 if (xmask == VTBIT_BSTR)
2776 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2778 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2779 if (xmask & VTBIT_BSTR) {
2780 VARIANT *bstrv, *nonbv;
2781 VARTYPE nonbvt;
2782 int swap = 0;
2784 /* Swap the variants so the BSTR is always on the left */
2785 if (lvt == VT_BSTR) {
2786 bstrv = left;
2787 nonbv = right;
2788 nonbvt = rvt;
2789 } else {
2790 swap = 1;
2791 bstrv = right;
2792 nonbv = left;
2793 nonbvt = lvt;
2796 /* BSTR and EMPTY: ignore VT_RESERVED */
2797 if (nonbvt == VT_EMPTY)
2798 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2799 else {
2800 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2801 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2803 if (!breserv && !nreserv)
2804 /* No VT_RESERVED set ==> BSTR always greater */
2805 rc = VARCMP_GT;
2806 else if (breserv && !nreserv) {
2807 /* BSTR has VT_RESERVED set. Do a string comparison */
2808 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2809 if (FAILED(rc))
2810 return rc;
2811 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2812 VariantClear(&rv);
2813 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2814 /* Non NULL nor empty BSTR */
2815 /* If the BSTR is not a number the BSTR is greater */
2816 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2817 if (FAILED(rc))
2818 rc = VARCMP_GT;
2819 else if (breserv && nreserv)
2820 /* FIXME: This is strange: with both VT_RESERVED set it
2821 looks like the result depends only on the sign of
2822 the BSTR number */
2823 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2824 else
2825 /* Numeric comparison, will be handled below.
2826 VARCMP_NULL used only to break out. */
2827 rc = VARCMP_NULL;
2828 VariantClear(&lv);
2829 VariantClear(&rv);
2830 } else
2831 /* Empty or NULL BSTR */
2832 rc = VARCMP_GT;
2834 /* Fixup the return code if we swapped left and right */
2835 if (swap) {
2836 if (rc == VARCMP_GT)
2837 rc = VARCMP_LT;
2838 else if (rc == VARCMP_LT)
2839 rc = VARCMP_GT;
2841 if (rc != VARCMP_NULL)
2842 return rc;
2845 if (xmask & VTBIT_DECIMAL)
2846 vt = VT_DECIMAL;
2847 else if (xmask & VTBIT_BSTR)
2848 vt = VT_R8;
2849 else if (xmask & VTBIT_R4)
2850 vt = VT_R4;
2851 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2852 vt = VT_R8;
2853 else if (xmask & VTBIT_CY)
2854 vt = VT_CY;
2855 else
2856 /* default to I8 */
2857 vt = VT_I8;
2859 /* Coerce the variants */
2860 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2861 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2862 /* Overflow, change to R8 */
2863 vt = VT_R8;
2864 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2866 if (FAILED(rc))
2867 return rc;
2868 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2869 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2870 /* Overflow, change to R8 */
2871 vt = VT_R8;
2872 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2873 if (FAILED(rc))
2874 return rc;
2875 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2877 if (FAILED(rc))
2878 return rc;
2880 #define _VARCMP(a,b) \
2881 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2883 switch (vt) {
2884 case VT_CY:
2885 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2886 case VT_DECIMAL:
2887 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2888 case VT_I8:
2889 return _VARCMP(V_I8(&lv), V_I8(&rv));
2890 case VT_R4:
2891 return _VARCMP(V_R4(&lv), V_R4(&rv));
2892 case VT_R8:
2893 return _VARCMP(V_R8(&lv), V_R8(&rv));
2894 default:
2895 /* We should never get here */
2896 return E_FAIL;
2898 #undef _VARCMP
2901 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
2903 HRESULT hres;
2904 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
2906 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
2907 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
2908 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
2909 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
2910 NULL, NULL);
2911 } else {
2912 hres = DISP_E_TYPEMISMATCH;
2914 return hres;
2917 /**********************************************************************
2918 * VarAnd [OLEAUT32.142]
2920 * Computes the logical AND of two variants.
2922 * PARAMS
2923 * left [I] First variant
2924 * right [I] Second variant
2925 * result [O] Result variant
2927 * RETURNS
2928 * Success: S_OK.
2929 * Failure: An HRESULT error code indicating the error.
2931 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2933 HRESULT hres = S_OK;
2934 VARTYPE resvt = VT_EMPTY;
2935 VARTYPE leftvt,rightvt;
2936 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2937 VARIANT varLeft, varRight;
2938 VARIANT tempLeft, tempRight;
2940 VariantInit(&varLeft);
2941 VariantInit(&varRight);
2942 VariantInit(&tempLeft);
2943 VariantInit(&tempRight);
2945 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
2947 /* Handle VT_DISPATCH by storing and taking address of returned value */
2948 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2950 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2951 if (FAILED(hres)) goto VarAnd_Exit;
2952 left = &tempLeft;
2954 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2956 hres = VARIANT_FetchDispatchValue(right, &tempRight);
2957 if (FAILED(hres)) goto VarAnd_Exit;
2958 right = &tempRight;
2961 leftvt = V_VT(left)&VT_TYPEMASK;
2962 rightvt = V_VT(right)&VT_TYPEMASK;
2963 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2964 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
2966 if (leftExtraFlags != rightExtraFlags)
2968 hres = DISP_E_BADVARTYPE;
2969 goto VarAnd_Exit;
2971 ExtraFlags = leftExtraFlags;
2973 /* Native VarAnd always returns an error when using extra
2974 * flags or if the variant combination is I8 and INT.
2976 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
2977 (leftvt == VT_INT && rightvt == VT_I8) ||
2978 ExtraFlags != 0)
2980 hres = DISP_E_BADVARTYPE;
2981 goto VarAnd_Exit;
2984 /* Determine return type */
2985 else if (leftvt == VT_I8 || rightvt == VT_I8)
2986 resvt = VT_I8;
2987 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
2988 leftvt == VT_UINT || rightvt == VT_UINT ||
2989 leftvt == VT_INT || rightvt == VT_INT ||
2990 leftvt == VT_R4 || rightvt == VT_R4 ||
2991 leftvt == VT_R8 || rightvt == VT_R8 ||
2992 leftvt == VT_CY || rightvt == VT_CY ||
2993 leftvt == VT_DATE || rightvt == VT_DATE ||
2994 leftvt == VT_I1 || rightvt == VT_I1 ||
2995 leftvt == VT_UI2 || rightvt == VT_UI2 ||
2996 leftvt == VT_UI4 || rightvt == VT_UI4 ||
2997 leftvt == VT_UI8 || rightvt == VT_UI8 ||
2998 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
2999 resvt = VT_I4;
3000 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3001 leftvt == VT_I2 || rightvt == VT_I2 ||
3002 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3003 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3004 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3005 (leftvt == VT_UI1 && rightvt == VT_UI1))
3006 resvt = VT_UI1;
3007 else
3008 resvt = VT_I2;
3009 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3010 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3011 resvt = VT_BOOL;
3012 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3013 leftvt == VT_BSTR || rightvt == VT_BSTR)
3014 resvt = VT_NULL;
3015 else
3017 hres = DISP_E_BADVARTYPE;
3018 goto VarAnd_Exit;
3021 if (leftvt == VT_NULL || rightvt == VT_NULL)
3024 * Special cases for when left variant is VT_NULL
3025 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3027 if (leftvt == VT_NULL)
3029 VARIANT_BOOL b;
3030 switch(rightvt)
3032 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3033 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3034 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3035 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3036 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3037 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3038 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3039 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3040 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3041 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3042 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3043 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3044 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3045 case VT_CY:
3046 if(V_CY(right).int64)
3047 resvt = VT_NULL;
3048 break;
3049 case VT_DECIMAL:
3050 if (DEC_HI32(&V_DECIMAL(right)) ||
3051 DEC_LO64(&V_DECIMAL(right)))
3052 resvt = VT_NULL;
3053 break;
3054 case VT_BSTR:
3055 hres = VarBoolFromStr(V_BSTR(right),
3056 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3057 if (FAILED(hres))
3058 return hres;
3059 else if (b)
3060 V_VT(result) = VT_NULL;
3061 else
3063 V_VT(result) = VT_BOOL;
3064 V_BOOL(result) = b;
3066 goto VarAnd_Exit;
3069 V_VT(result) = resvt;
3070 goto VarAnd_Exit;
3073 hres = VariantCopy(&varLeft, left);
3074 if (FAILED(hres)) goto VarAnd_Exit;
3076 hres = VariantCopy(&varRight, right);
3077 if (FAILED(hres)) goto VarAnd_Exit;
3079 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3080 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3081 else
3083 double d;
3085 if (V_VT(&varLeft) == VT_BSTR &&
3086 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3087 LOCALE_USER_DEFAULT, 0, &d)))
3088 hres = VariantChangeType(&varLeft,&varLeft,
3089 VARIANT_LOCALBOOL, VT_BOOL);
3090 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3091 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3092 if (FAILED(hres)) goto VarAnd_Exit;
3095 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3096 V_VT(&varRight) = VT_I4; /* Don't overflow */
3097 else
3099 double d;
3101 if (V_VT(&varRight) == VT_BSTR &&
3102 FAILED(VarR8FromStr(V_BSTR(&varRight),
3103 LOCALE_USER_DEFAULT, 0, &d)))
3104 hres = VariantChangeType(&varRight, &varRight,
3105 VARIANT_LOCALBOOL, VT_BOOL);
3106 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3107 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3108 if (FAILED(hres)) goto VarAnd_Exit;
3111 V_VT(result) = resvt;
3112 switch(resvt)
3114 case VT_I8:
3115 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3116 break;
3117 case VT_I4:
3118 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3119 break;
3120 case VT_I2:
3121 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3122 break;
3123 case VT_UI1:
3124 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3125 break;
3126 case VT_BOOL:
3127 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3128 break;
3129 default:
3130 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3131 leftvt,rightvt);
3134 VarAnd_Exit:
3135 VariantClear(&varLeft);
3136 VariantClear(&varRight);
3137 VariantClear(&tempLeft);
3138 VariantClear(&tempRight);
3140 return hres;
3143 /**********************************************************************
3144 * VarAdd [OLEAUT32.141]
3146 * Add two variants.
3148 * PARAMS
3149 * left [I] First variant
3150 * right [I] Second variant
3151 * result [O] Result variant
3153 * RETURNS
3154 * Success: S_OK.
3155 * Failure: An HRESULT error code indicating the error.
3157 * NOTES
3158 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3159 * UI8, INT and UINT as input variants.
3161 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3162 * same here.
3164 * FIXME
3165 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3166 * case.
3168 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3170 HRESULT hres;
3171 VARTYPE lvt, rvt, resvt, tvt;
3172 VARIANT lv, rv, tv;
3173 VARIANT tempLeft, tempRight;
3174 double r8res;
3176 /* Variant priority for coercion. Sorted from lowest to highest.
3177 VT_ERROR shows an invalid input variant type. */
3178 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3179 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3180 vt_ERROR };
3181 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3182 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3183 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3184 VT_NULL, VT_ERROR };
3186 /* Mapping for coercion from input variant to priority of result variant. */
3187 static const VARTYPE coerce[] = {
3188 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3189 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3190 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3191 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3192 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3193 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3194 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3195 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3198 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3200 VariantInit(&lv);
3201 VariantInit(&rv);
3202 VariantInit(&tv);
3203 VariantInit(&tempLeft);
3204 VariantInit(&tempRight);
3206 /* Handle VT_DISPATCH by storing and taking address of returned value */
3207 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3209 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3211 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3212 if (FAILED(hres)) goto end;
3213 left = &tempLeft;
3215 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3217 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3218 if (FAILED(hres)) goto end;
3219 right = &tempRight;
3223 lvt = V_VT(left)&VT_TYPEMASK;
3224 rvt = V_VT(right)&VT_TYPEMASK;
3226 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3227 Same for any input variant type > VT_I8 */
3228 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3229 lvt > VT_I8 || rvt > VT_I8) {
3230 hres = DISP_E_BADVARTYPE;
3231 goto end;
3234 /* Determine the variant type to coerce to. */
3235 if (coerce[lvt] > coerce[rvt]) {
3236 resvt = prio2vt[coerce[lvt]];
3237 tvt = prio2vt[coerce[rvt]];
3238 } else {
3239 resvt = prio2vt[coerce[rvt]];
3240 tvt = prio2vt[coerce[lvt]];
3243 /* Special cases where the result variant type is defined by both
3244 input variants and not only that with the highest priority */
3245 if (resvt == VT_BSTR) {
3246 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3247 resvt = VT_BSTR;
3248 else
3249 resvt = VT_R8;
3251 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3252 resvt = VT_R8;
3254 /* For overflow detection use the biggest compatible type for the
3255 addition */
3256 switch (resvt) {
3257 case VT_ERROR:
3258 hres = DISP_E_BADVARTYPE;
3259 goto end;
3260 case VT_NULL:
3261 hres = S_OK;
3262 V_VT(result) = VT_NULL;
3263 goto end;
3264 case VT_DISPATCH:
3265 FIXME("cannot handle variant type VT_DISPATCH\n");
3266 hres = DISP_E_TYPEMISMATCH;
3267 goto end;
3268 case VT_EMPTY:
3269 resvt = VT_I2;
3270 /* Fall through */
3271 case VT_UI1:
3272 case VT_I2:
3273 case VT_I4:
3274 case VT_I8:
3275 tvt = VT_I8;
3276 break;
3277 case VT_DATE:
3278 case VT_R4:
3279 tvt = VT_R8;
3280 break;
3281 default:
3282 tvt = resvt;
3285 /* Now coerce the variants */
3286 hres = VariantChangeType(&lv, left, 0, tvt);
3287 if (FAILED(hres))
3288 goto end;
3289 hres = VariantChangeType(&rv, right, 0, tvt);
3290 if (FAILED(hres))
3291 goto end;
3293 /* Do the math */
3294 hres = S_OK;
3295 V_VT(result) = resvt;
3296 switch (tvt) {
3297 case VT_DECIMAL:
3298 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3299 &V_DECIMAL(result));
3300 goto end;
3301 case VT_CY:
3302 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3303 goto end;
3304 case VT_BSTR:
3305 /* We do not add those, we concatenate them. */
3306 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3307 goto end;
3308 case VT_I8:
3309 /* Overflow detection */
3310 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3311 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3312 V_VT(result) = VT_R8;
3313 V_R8(result) = r8res;
3314 goto end;
3315 } else {
3316 V_VT(&tv) = tvt;
3317 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3319 break;
3320 case VT_R8:
3321 V_VT(&tv) = tvt;
3322 /* FIXME: overflow detection */
3323 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3324 break;
3325 default:
3326 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3327 break;
3329 if (resvt != tvt) {
3330 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3331 /* Overflow! Change to the vartype with the next higher priority.
3332 With one exception: I4 ==> R8 even if it would fit in I8 */
3333 if (resvt == VT_I4)
3334 resvt = VT_R8;
3335 else
3336 resvt = prio2vt[coerce[resvt] + 1];
3337 hres = VariantChangeType(result, &tv, 0, resvt);
3339 } else
3340 hres = VariantCopy(result, &tv);
3342 end:
3343 if (hres != S_OK) {
3344 V_VT(result) = VT_EMPTY;
3345 V_I4(result) = 0; /* No V_EMPTY */
3347 VariantClear(&lv);
3348 VariantClear(&rv);
3349 VariantClear(&tv);
3350 VariantClear(&tempLeft);
3351 VariantClear(&tempRight);
3352 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3353 return hres;
3356 /**********************************************************************
3357 * VarMul [OLEAUT32.156]
3359 * Multiply two variants.
3361 * PARAMS
3362 * left [I] First variant
3363 * right [I] Second variant
3364 * result [O] Result variant
3366 * RETURNS
3367 * Success: S_OK.
3368 * Failure: An HRESULT error code indicating the error.
3370 * NOTES
3371 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3372 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3374 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3375 * same here.
3377 * FIXME
3378 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3379 * case.
3381 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3383 HRESULT hres;
3384 VARTYPE lvt, rvt, resvt, tvt;
3385 VARIANT lv, rv, tv;
3386 VARIANT tempLeft, tempRight;
3387 double r8res;
3389 /* Variant priority for coercion. Sorted from lowest to highest.
3390 VT_ERROR shows an invalid input variant type. */
3391 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3392 vt_DECIMAL, vt_NULL, vt_ERROR };
3393 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3394 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3395 VT_DECIMAL, VT_NULL, VT_ERROR };
3397 /* Mapping for coercion from input variant to priority of result variant. */
3398 static const VARTYPE coerce[] = {
3399 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3400 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3401 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3402 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3403 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3404 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3405 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3406 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3409 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3411 VariantInit(&lv);
3412 VariantInit(&rv);
3413 VariantInit(&tv);
3414 VariantInit(&tempLeft);
3415 VariantInit(&tempRight);
3417 /* Handle VT_DISPATCH by storing and taking address of returned value */
3418 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3420 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3421 if (FAILED(hres)) goto end;
3422 left = &tempLeft;
3424 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3426 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3427 if (FAILED(hres)) goto end;
3428 right = &tempRight;
3431 lvt = V_VT(left)&VT_TYPEMASK;
3432 rvt = V_VT(right)&VT_TYPEMASK;
3434 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3435 Same for any input variant type > VT_I8 */
3436 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3437 lvt > VT_I8 || rvt > VT_I8) {
3438 hres = DISP_E_BADVARTYPE;
3439 goto end;
3442 /* Determine the variant type to coerce to. */
3443 if (coerce[lvt] > coerce[rvt]) {
3444 resvt = prio2vt[coerce[lvt]];
3445 tvt = prio2vt[coerce[rvt]];
3446 } else {
3447 resvt = prio2vt[coerce[rvt]];
3448 tvt = prio2vt[coerce[lvt]];
3451 /* Special cases where the result variant type is defined by both
3452 input variants and not only that with the highest priority */
3453 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3454 resvt = VT_R8;
3455 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3456 resvt = VT_I2;
3458 /* For overflow detection use the biggest compatible type for the
3459 multiplication */
3460 switch (resvt) {
3461 case VT_ERROR:
3462 hres = DISP_E_BADVARTYPE;
3463 goto end;
3464 case VT_NULL:
3465 hres = S_OK;
3466 V_VT(result) = VT_NULL;
3467 goto end;
3468 case VT_UI1:
3469 case VT_I2:
3470 case VT_I4:
3471 case VT_I8:
3472 tvt = VT_I8;
3473 break;
3474 case VT_R4:
3475 tvt = VT_R8;
3476 break;
3477 default:
3478 tvt = resvt;
3481 /* Now coerce the variants */
3482 hres = VariantChangeType(&lv, left, 0, tvt);
3483 if (FAILED(hres))
3484 goto end;
3485 hres = VariantChangeType(&rv, right, 0, tvt);
3486 if (FAILED(hres))
3487 goto end;
3489 /* Do the math */
3490 hres = S_OK;
3491 V_VT(&tv) = tvt;
3492 V_VT(result) = resvt;
3493 switch (tvt) {
3494 case VT_DECIMAL:
3495 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3496 &V_DECIMAL(result));
3497 goto end;
3498 case VT_CY:
3499 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3500 goto end;
3501 case VT_I8:
3502 /* Overflow detection */
3503 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3504 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3505 V_VT(result) = VT_R8;
3506 V_R8(result) = r8res;
3507 goto end;
3508 } else
3509 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3510 break;
3511 case VT_R8:
3512 /* FIXME: overflow detection */
3513 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3514 break;
3515 default:
3516 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3517 break;
3519 if (resvt != tvt) {
3520 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3521 /* Overflow! Change to the vartype with the next higher priority.
3522 With one exception: I4 ==> R8 even if it would fit in I8 */
3523 if (resvt == VT_I4)
3524 resvt = VT_R8;
3525 else
3526 resvt = prio2vt[coerce[resvt] + 1];
3528 } else
3529 hres = VariantCopy(result, &tv);
3531 end:
3532 if (hres != S_OK) {
3533 V_VT(result) = VT_EMPTY;
3534 V_I4(result) = 0; /* No V_EMPTY */
3536 VariantClear(&lv);
3537 VariantClear(&rv);
3538 VariantClear(&tv);
3539 VariantClear(&tempLeft);
3540 VariantClear(&tempRight);
3541 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3542 return hres;
3545 /**********************************************************************
3546 * VarDiv [OLEAUT32.143]
3548 * Divides one variant with another.
3550 * PARAMS
3551 * left [I] First variant
3552 * right [I] Second variant
3553 * result [O] Result variant
3555 * RETURNS
3556 * Success: S_OK.
3557 * Failure: An HRESULT error code indicating the error.
3559 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3561 HRESULT hres = S_OK;
3562 VARTYPE resvt = VT_EMPTY;
3563 VARTYPE leftvt,rightvt;
3564 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3565 VARIANT lv,rv;
3566 VARIANT tempLeft, tempRight;
3568 VariantInit(&tempLeft);
3569 VariantInit(&tempRight);
3570 VariantInit(&lv);
3571 VariantInit(&rv);
3573 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3575 /* Handle VT_DISPATCH by storing and taking address of returned value */
3576 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3578 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3579 if (FAILED(hres)) goto end;
3580 left = &tempLeft;
3582 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3584 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3585 if (FAILED(hres)) goto end;
3586 right = &tempRight;
3589 leftvt = V_VT(left)&VT_TYPEMASK;
3590 rightvt = V_VT(right)&VT_TYPEMASK;
3591 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3592 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3594 if (leftExtraFlags != rightExtraFlags)
3596 hres = DISP_E_BADVARTYPE;
3597 goto end;
3599 ExtraFlags = leftExtraFlags;
3601 /* Native VarDiv always returns an error when using extra flags */
3602 if (ExtraFlags != 0)
3604 hres = DISP_E_BADVARTYPE;
3605 goto end;
3608 /* Determine return type */
3609 if (!(rightvt == VT_EMPTY))
3611 if (leftvt == VT_NULL || rightvt == VT_NULL)
3613 V_VT(result) = VT_NULL;
3614 hres = S_OK;
3615 goto end;
3617 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3618 resvt = VT_DECIMAL;
3619 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3620 leftvt == VT_CY || rightvt == VT_CY ||
3621 leftvt == VT_DATE || rightvt == VT_DATE ||
3622 leftvt == VT_I4 || rightvt == VT_I4 ||
3623 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3624 leftvt == VT_I2 || rightvt == VT_I2 ||
3625 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3626 leftvt == VT_R8 || rightvt == VT_R8 ||
3627 leftvt == VT_UI1 || rightvt == VT_UI1)
3629 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3630 (leftvt == VT_R4 && rightvt == VT_UI1))
3631 resvt = VT_R4;
3632 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3633 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3634 (leftvt == VT_BOOL || leftvt == VT_I2)))
3635 resvt = VT_R4;
3636 else
3637 resvt = VT_R8;
3639 else if (leftvt == VT_R4 || rightvt == VT_R4)
3640 resvt = VT_R4;
3642 else if (leftvt == VT_NULL && rightvt == VT_EMPTY)
3644 V_VT(result) = VT_NULL;
3645 hres = S_OK;
3646 goto end;
3648 else
3650 hres = DISP_E_BADVARTYPE;
3651 goto end;
3654 /* coerce to the result type */
3655 hres = VariantChangeType(&lv, left, 0, resvt);
3656 if (hres != S_OK) goto end;
3658 hres = VariantChangeType(&rv, right, 0, resvt);
3659 if (hres != S_OK) goto end;
3661 /* do the math */
3662 V_VT(result) = resvt;
3663 switch (resvt)
3665 case VT_R4:
3666 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3668 hres = DISP_E_OVERFLOW;
3669 V_VT(result) = VT_EMPTY;
3671 else if (V_R4(&rv) == 0.0)
3673 hres = DISP_E_DIVBYZERO;
3674 V_VT(result) = VT_EMPTY;
3676 else
3677 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3678 break;
3679 case VT_R8:
3680 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3682 hres = DISP_E_OVERFLOW;
3683 V_VT(result) = VT_EMPTY;
3685 else if (V_R8(&rv) == 0.0)
3687 hres = DISP_E_DIVBYZERO;
3688 V_VT(result) = VT_EMPTY;
3690 else
3691 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3692 break;
3693 case VT_DECIMAL:
3694 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3695 break;
3698 end:
3699 VariantClear(&lv);
3700 VariantClear(&rv);
3701 VariantClear(&tempLeft);
3702 VariantClear(&tempRight);
3703 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3704 return hres;
3707 /**********************************************************************
3708 * VarSub [OLEAUT32.159]
3710 * Subtract two variants.
3712 * PARAMS
3713 * left [I] First variant
3714 * right [I] Second variant
3715 * result [O] Result variant
3717 * RETURNS
3718 * Success: S_OK.
3719 * Failure: An HRESULT error code indicating the error.
3721 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3723 HRESULT hres = S_OK;
3724 VARTYPE resvt = VT_EMPTY;
3725 VARTYPE leftvt,rightvt;
3726 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3727 VARIANT lv,rv;
3728 VARIANT tempLeft, tempRight;
3730 VariantInit(&lv);
3731 VariantInit(&rv);
3732 VariantInit(&tempLeft);
3733 VariantInit(&tempRight);
3735 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3737 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3738 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3739 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3741 if (NULL == V_DISPATCH(left)) {
3742 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3743 hres = DISP_E_BADVARTYPE;
3744 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3745 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3746 hres = DISP_E_BADVARTYPE;
3747 else switch (V_VT(right) & VT_TYPEMASK)
3749 case VT_VARIANT:
3750 case VT_UNKNOWN:
3751 case 15:
3752 case VT_I1:
3753 case VT_UI2:
3754 case VT_UI4:
3755 hres = DISP_E_BADVARTYPE;
3757 if (FAILED(hres)) goto end;
3759 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3760 if (FAILED(hres)) goto end;
3761 left = &tempLeft;
3763 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3764 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3765 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3767 if (NULL == V_DISPATCH(right))
3769 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3770 hres = DISP_E_BADVARTYPE;
3771 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3772 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3773 hres = DISP_E_BADVARTYPE;
3774 else switch (V_VT(left) & VT_TYPEMASK)
3776 case VT_VARIANT:
3777 case VT_UNKNOWN:
3778 case 15:
3779 case VT_I1:
3780 case VT_UI2:
3781 case VT_UI4:
3782 hres = DISP_E_BADVARTYPE;
3784 if (FAILED(hres)) goto end;
3786 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3787 if (FAILED(hres)) goto end;
3788 right = &tempRight;
3791 leftvt = V_VT(left)&VT_TYPEMASK;
3792 rightvt = V_VT(right)&VT_TYPEMASK;
3793 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3794 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3796 if (leftExtraFlags != rightExtraFlags)
3798 hres = DISP_E_BADVARTYPE;
3799 goto end;
3801 ExtraFlags = leftExtraFlags;
3803 /* determine return type and return code */
3804 /* All extra flags produce errors */
3805 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3806 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3807 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3808 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3809 ExtraFlags == VT_VECTOR ||
3810 ExtraFlags == VT_BYREF ||
3811 ExtraFlags == VT_RESERVED)
3813 hres = DISP_E_BADVARTYPE;
3814 goto end;
3816 else if (ExtraFlags >= VT_ARRAY)
3818 hres = DISP_E_TYPEMISMATCH;
3819 goto end;
3821 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3822 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3823 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3824 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3825 leftvt == VT_I1 || rightvt == VT_I1 ||
3826 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3827 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3828 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3829 leftvt == VT_INT || rightvt == VT_INT ||
3830 leftvt == VT_UINT || rightvt == VT_UINT ||
3831 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3832 leftvt == VT_RECORD || rightvt == VT_RECORD)
3834 if (leftvt == VT_RECORD && rightvt == VT_I8)
3835 hres = DISP_E_TYPEMISMATCH;
3836 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3837 hres = DISP_E_TYPEMISMATCH;
3838 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3839 hres = DISP_E_TYPEMISMATCH;
3840 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3841 hres = DISP_E_TYPEMISMATCH;
3842 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3843 hres = DISP_E_BADVARTYPE;
3844 else
3845 hres = DISP_E_BADVARTYPE;
3846 goto end;
3848 /* The following flags/types are invalid for left variant */
3849 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3850 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3851 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3853 hres = DISP_E_BADVARTYPE;
3854 goto end;
3856 /* The following flags/types are invalid for right variant */
3857 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3858 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3859 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3861 hres = DISP_E_BADVARTYPE;
3862 goto end;
3864 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3865 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3866 resvt = VT_NULL;
3867 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3868 leftvt == VT_ERROR || rightvt == VT_ERROR)
3870 hres = DISP_E_TYPEMISMATCH;
3871 goto end;
3873 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3874 resvt = VT_NULL;
3875 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3876 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3877 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3878 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3879 resvt = VT_R8;
3880 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3881 resvt = VT_DECIMAL;
3882 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3883 resvt = VT_DATE;
3884 else if (leftvt == VT_CY || rightvt == VT_CY)
3885 resvt = VT_CY;
3886 else if (leftvt == VT_R8 || rightvt == VT_R8)
3887 resvt = VT_R8;
3888 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3889 resvt = VT_R8;
3890 else if (leftvt == VT_R4 || rightvt == VT_R4)
3892 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3893 leftvt == VT_I8 || rightvt == VT_I8)
3894 resvt = VT_R8;
3895 else
3896 resvt = VT_R4;
3898 else if (leftvt == VT_I8 || rightvt == VT_I8)
3899 resvt = VT_I8;
3900 else if (leftvt == VT_I4 || rightvt == VT_I4)
3901 resvt = VT_I4;
3902 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3903 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3904 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3905 resvt = VT_I2;
3906 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3907 resvt = VT_UI1;
3908 else
3910 hres = DISP_E_TYPEMISMATCH;
3911 goto end;
3914 /* coerce to the result type */
3915 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3916 hres = VariantChangeType(&lv, left, 0, VT_R8);
3917 else
3918 hres = VariantChangeType(&lv, left, 0, resvt);
3919 if (hres != S_OK) goto end;
3920 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3921 hres = VariantChangeType(&rv, right, 0, VT_R8);
3922 else
3923 hres = VariantChangeType(&rv, right, 0, resvt);
3924 if (hres != S_OK) goto end;
3926 /* do the math */
3927 V_VT(result) = resvt;
3928 switch (resvt)
3930 case VT_NULL:
3931 break;
3932 case VT_DATE:
3933 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3934 break;
3935 case VT_CY:
3936 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3937 break;
3938 case VT_R4:
3939 V_R4(result) = V_R4(&lv) - V_R4(&rv);
3940 break;
3941 case VT_I8:
3942 V_I8(result) = V_I8(&lv) - V_I8(&rv);
3943 break;
3944 case VT_I4:
3945 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3946 break;
3947 case VT_I2:
3948 V_I2(result) = V_I2(&lv) - V_I2(&rv);
3949 break;
3950 case VT_I1:
3951 V_I1(result) = V_I1(&lv) - V_I1(&rv);
3952 break;
3953 case VT_UI1:
3954 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3955 break;
3956 case VT_R8:
3957 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3958 break;
3959 case VT_DECIMAL:
3960 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3961 break;
3964 end:
3965 VariantClear(&lv);
3966 VariantClear(&rv);
3967 VariantClear(&tempLeft);
3968 VariantClear(&tempRight);
3969 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3970 return hres;
3974 /**********************************************************************
3975 * VarOr [OLEAUT32.157]
3977 * Perform a logical or (OR) operation on two variants.
3979 * PARAMS
3980 * pVarLeft [I] First variant
3981 * pVarRight [I] Variant to OR with pVarLeft
3982 * pVarOut [O] Destination for OR result
3984 * RETURNS
3985 * Success: S_OK. pVarOut contains the result of the operation with its type
3986 * taken from the table listed under VarXor().
3987 * Failure: An HRESULT error code indicating the error.
3989 * NOTES
3990 * See the Notes section of VarXor() for further information.
3992 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3994 VARTYPE vt = VT_I4;
3995 VARIANT varLeft, varRight, varStr;
3996 HRESULT hRet;
3997 VARIANT tempLeft, tempRight;
3999 VariantInit(&tempLeft);
4000 VariantInit(&tempRight);
4001 VariantInit(&varLeft);
4002 VariantInit(&varRight);
4003 VariantInit(&varStr);
4005 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4007 /* Handle VT_DISPATCH by storing and taking address of returned value */
4008 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4010 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4011 if (FAILED(hRet)) goto VarOr_Exit;
4012 pVarLeft = &tempLeft;
4014 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4016 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4017 if (FAILED(hRet)) goto VarOr_Exit;
4018 pVarRight = &tempRight;
4021 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4022 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4023 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4024 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4026 hRet = DISP_E_BADVARTYPE;
4027 goto VarOr_Exit;
4030 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4032 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4034 /* NULL OR Zero is NULL, NULL OR value is value */
4035 if (V_VT(pVarLeft) == VT_NULL)
4036 pVarLeft = pVarRight; /* point to the non-NULL var */
4038 V_VT(pVarOut) = VT_NULL;
4039 V_I4(pVarOut) = 0;
4041 switch (V_VT(pVarLeft))
4043 case VT_DATE: case VT_R8:
4044 if (V_R8(pVarLeft))
4045 goto VarOr_AsEmpty;
4046 hRet = S_OK;
4047 goto VarOr_Exit;
4048 case VT_BOOL:
4049 if (V_BOOL(pVarLeft))
4050 *pVarOut = *pVarLeft;
4051 hRet = S_OK;
4052 goto VarOr_Exit;
4053 case VT_I2: case VT_UI2:
4054 if (V_I2(pVarLeft))
4055 goto VarOr_AsEmpty;
4056 hRet = S_OK;
4057 goto VarOr_Exit;
4058 case VT_I1:
4059 if (V_I1(pVarLeft))
4060 goto VarOr_AsEmpty;
4061 hRet = S_OK;
4062 goto VarOr_Exit;
4063 case VT_UI1:
4064 if (V_UI1(pVarLeft))
4065 *pVarOut = *pVarLeft;
4066 hRet = S_OK;
4067 goto VarOr_Exit;
4068 case VT_R4:
4069 if (V_R4(pVarLeft))
4070 goto VarOr_AsEmpty;
4071 hRet = S_OK;
4072 goto VarOr_Exit;
4073 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4074 if (V_I4(pVarLeft))
4075 goto VarOr_AsEmpty;
4076 hRet = S_OK;
4077 goto VarOr_Exit;
4078 case VT_CY:
4079 if (V_CY(pVarLeft).int64)
4080 goto VarOr_AsEmpty;
4081 hRet = S_OK;
4082 goto VarOr_Exit;
4083 case VT_I8: case VT_UI8:
4084 if (V_I8(pVarLeft))
4085 goto VarOr_AsEmpty;
4086 hRet = S_OK;
4087 goto VarOr_Exit;
4088 case VT_DECIMAL:
4089 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4090 goto VarOr_AsEmpty;
4091 hRet = S_OK;
4092 goto VarOr_Exit;
4093 case VT_BSTR:
4095 VARIANT_BOOL b;
4097 if (!V_BSTR(pVarLeft))
4099 hRet = DISP_E_BADVARTYPE;
4100 goto VarOr_Exit;
4103 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4104 if (SUCCEEDED(hRet) && b)
4106 V_VT(pVarOut) = VT_BOOL;
4107 V_BOOL(pVarOut) = b;
4109 goto VarOr_Exit;
4111 case VT_NULL: case VT_EMPTY:
4112 V_VT(pVarOut) = VT_NULL;
4113 hRet = S_OK;
4114 goto VarOr_Exit;
4115 default:
4116 hRet = DISP_E_BADVARTYPE;
4117 goto VarOr_Exit;
4121 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4123 if (V_VT(pVarLeft) == VT_EMPTY)
4124 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4126 VarOr_AsEmpty:
4127 /* Since one argument is empty (0), OR'ing it with the other simply
4128 * gives the others value (as 0|x => x). So just convert the other
4129 * argument to the required result type.
4131 switch (V_VT(pVarLeft))
4133 case VT_BSTR:
4134 if (!V_BSTR(pVarLeft))
4136 hRet = DISP_E_BADVARTYPE;
4137 goto VarOr_Exit;
4140 hRet = VariantCopy(&varStr, pVarLeft);
4141 if (FAILED(hRet))
4142 goto VarOr_Exit;
4143 pVarLeft = &varStr;
4144 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4145 if (FAILED(hRet))
4146 goto VarOr_Exit;
4147 /* Fall Through ... */
4148 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4149 V_VT(pVarOut) = VT_I2;
4150 break;
4151 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4152 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4153 case VT_INT: case VT_UINT: case VT_UI8:
4154 V_VT(pVarOut) = VT_I4;
4155 break;
4156 case VT_I8:
4157 V_VT(pVarOut) = VT_I8;
4158 break;
4159 default:
4160 hRet = DISP_E_BADVARTYPE;
4161 goto VarOr_Exit;
4163 hRet = VariantCopy(&varLeft, pVarLeft);
4164 if (FAILED(hRet))
4165 goto VarOr_Exit;
4166 pVarLeft = &varLeft;
4167 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4168 goto VarOr_Exit;
4171 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4173 V_VT(pVarOut) = VT_BOOL;
4174 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4175 hRet = S_OK;
4176 goto VarOr_Exit;
4179 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4181 V_VT(pVarOut) = VT_UI1;
4182 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4183 hRet = S_OK;
4184 goto VarOr_Exit;
4187 if (V_VT(pVarLeft) == VT_BSTR)
4189 hRet = VariantCopy(&varStr, pVarLeft);
4190 if (FAILED(hRet))
4191 goto VarOr_Exit;
4192 pVarLeft = &varStr;
4193 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4194 if (FAILED(hRet))
4195 goto VarOr_Exit;
4198 if (V_VT(pVarLeft) == VT_BOOL &&
4199 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4201 vt = VT_BOOL;
4203 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4204 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4205 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4206 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4208 vt = VT_I2;
4210 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4212 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4214 hRet = DISP_E_TYPEMISMATCH;
4215 goto VarOr_Exit;
4217 vt = VT_I8;
4220 hRet = VariantCopy(&varLeft, pVarLeft);
4221 if (FAILED(hRet))
4222 goto VarOr_Exit;
4224 hRet = VariantCopy(&varRight, pVarRight);
4225 if (FAILED(hRet))
4226 goto VarOr_Exit;
4228 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4229 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4230 else
4232 double d;
4234 if (V_VT(&varLeft) == VT_BSTR &&
4235 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4236 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4237 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4238 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4239 if (FAILED(hRet))
4240 goto VarOr_Exit;
4243 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4244 V_VT(&varRight) = VT_I4; /* Don't overflow */
4245 else
4247 double d;
4249 if (V_VT(&varRight) == VT_BSTR &&
4250 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4251 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4252 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4253 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4254 if (FAILED(hRet))
4255 goto VarOr_Exit;
4258 V_VT(pVarOut) = vt;
4259 if (vt == VT_I8)
4261 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4263 else if (vt == VT_I4)
4265 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4267 else
4269 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4272 VarOr_Exit:
4273 VariantClear(&varStr);
4274 VariantClear(&varLeft);
4275 VariantClear(&varRight);
4276 VariantClear(&tempLeft);
4277 VariantClear(&tempRight);
4278 return hRet;
4281 /**********************************************************************
4282 * VarAbs [OLEAUT32.168]
4284 * Convert a variant to its absolute value.
4286 * PARAMS
4287 * pVarIn [I] Source variant
4288 * pVarOut [O] Destination for converted value
4290 * RETURNS
4291 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4292 * Failure: An HRESULT error code indicating the error.
4294 * NOTES
4295 * - This function does not process by-reference variants.
4296 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4297 * according to the following table:
4298 *| Input Type Output Type
4299 *| ---------- -----------
4300 *| VT_BOOL VT_I2
4301 *| VT_BSTR VT_R8
4302 *| (All others) Unchanged
4304 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4306 VARIANT varIn;
4307 HRESULT hRet = S_OK;
4308 VARIANT temp;
4310 VariantInit(&temp);
4312 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4314 /* Handle VT_DISPATCH by storing and taking address of returned value */
4315 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4317 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4318 if (FAILED(hRet)) goto VarAbs_Exit;
4319 pVarIn = &temp;
4322 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4323 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4324 V_VT(pVarIn) == VT_ERROR)
4326 hRet = DISP_E_TYPEMISMATCH;
4327 goto VarAbs_Exit;
4329 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4331 #define ABS_CASE(typ,min) \
4332 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4333 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4334 break
4336 switch (V_VT(pVarIn))
4338 ABS_CASE(I1,I1_MIN);
4339 case VT_BOOL:
4340 V_VT(pVarOut) = VT_I2;
4341 /* BOOL->I2, Fall through ... */
4342 ABS_CASE(I2,I2_MIN);
4343 case VT_INT:
4344 ABS_CASE(I4,I4_MIN);
4345 ABS_CASE(I8,I8_MIN);
4346 ABS_CASE(R4,R4_MIN);
4347 case VT_BSTR:
4348 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4349 if (FAILED(hRet))
4350 break;
4351 V_VT(pVarOut) = VT_R8;
4352 pVarIn = &varIn;
4353 /* Fall through ... */
4354 case VT_DATE:
4355 ABS_CASE(R8,R8_MIN);
4356 case VT_CY:
4357 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4358 break;
4359 case VT_DECIMAL:
4360 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4361 break;
4362 case VT_UI1:
4363 case VT_UI2:
4364 case VT_UINT:
4365 case VT_UI4:
4366 case VT_UI8:
4367 /* No-Op */
4368 break;
4369 case VT_EMPTY:
4370 V_VT(pVarOut) = VT_I2;
4371 case VT_NULL:
4372 V_I2(pVarOut) = 0;
4373 break;
4374 default:
4375 hRet = DISP_E_BADVARTYPE;
4378 VarAbs_Exit:
4379 VariantClear(&temp);
4380 return hRet;
4383 /**********************************************************************
4384 * VarFix [OLEAUT32.169]
4386 * Truncate a variants value to a whole number.
4388 * PARAMS
4389 * pVarIn [I] Source variant
4390 * pVarOut [O] Destination for converted value
4392 * RETURNS
4393 * Success: S_OK. pVarOut contains the converted value.
4394 * Failure: An HRESULT error code indicating the error.
4396 * NOTES
4397 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4398 * according to the following table:
4399 *| Input Type Output Type
4400 *| ---------- -----------
4401 *| VT_BOOL VT_I2
4402 *| VT_EMPTY VT_I2
4403 *| VT_BSTR VT_R8
4404 *| All Others Unchanged
4405 * - The difference between this function and VarInt() is that VarInt() rounds
4406 * negative numbers away from 0, while this function rounds them towards zero.
4408 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4410 HRESULT hRet = S_OK;
4411 VARIANT temp;
4413 VariantInit(&temp);
4415 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4417 /* Handle VT_DISPATCH by storing and taking address of returned value */
4418 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4420 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4421 if (FAILED(hRet)) goto VarFix_Exit;
4422 pVarIn = &temp;
4424 V_VT(pVarOut) = V_VT(pVarIn);
4426 switch (V_VT(pVarIn))
4428 case VT_UI1:
4429 V_UI1(pVarOut) = V_UI1(pVarIn);
4430 break;
4431 case VT_BOOL:
4432 V_VT(pVarOut) = VT_I2;
4433 /* Fall through */
4434 case VT_I2:
4435 V_I2(pVarOut) = V_I2(pVarIn);
4436 break;
4437 case VT_I4:
4438 V_I4(pVarOut) = V_I4(pVarIn);
4439 break;
4440 case VT_I8:
4441 V_I8(pVarOut) = V_I8(pVarIn);
4442 break;
4443 case VT_R4:
4444 if (V_R4(pVarIn) < 0.0f)
4445 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4446 else
4447 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4448 break;
4449 case VT_BSTR:
4450 V_VT(pVarOut) = VT_R8;
4451 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4452 pVarIn = pVarOut;
4453 /* Fall through */
4454 case VT_DATE:
4455 case VT_R8:
4456 if (V_R8(pVarIn) < 0.0)
4457 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4458 else
4459 V_R8(pVarOut) = floor(V_R8(pVarIn));
4460 break;
4461 case VT_CY:
4462 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4463 break;
4464 case VT_DECIMAL:
4465 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4466 break;
4467 case VT_EMPTY:
4468 V_VT(pVarOut) = VT_I2;
4469 V_I2(pVarOut) = 0;
4470 break;
4471 case VT_NULL:
4472 /* No-Op */
4473 break;
4474 default:
4475 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4476 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4477 hRet = DISP_E_BADVARTYPE;
4478 else
4479 hRet = DISP_E_TYPEMISMATCH;
4481 VarFix_Exit:
4482 if (FAILED(hRet))
4483 V_VT(pVarOut) = VT_EMPTY;
4484 VariantClear(&temp);
4486 return hRet;
4489 /**********************************************************************
4490 * VarInt [OLEAUT32.172]
4492 * Truncate a variants value to a whole number.
4494 * PARAMS
4495 * pVarIn [I] Source variant
4496 * pVarOut [O] Destination for converted value
4498 * RETURNS
4499 * Success: S_OK. pVarOut contains the converted value.
4500 * Failure: An HRESULT error code indicating the error.
4502 * NOTES
4503 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4504 * according to the following table:
4505 *| Input Type Output Type
4506 *| ---------- -----------
4507 *| VT_BOOL VT_I2
4508 *| VT_EMPTY VT_I2
4509 *| VT_BSTR VT_R8
4510 *| All Others Unchanged
4511 * - The difference between this function and VarFix() is that VarFix() rounds
4512 * negative numbers towards 0, while this function rounds them away from zero.
4514 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4516 HRESULT hRet = S_OK;
4517 VARIANT temp;
4519 VariantInit(&temp);
4521 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4523 /* Handle VT_DISPATCH by storing and taking address of returned value */
4524 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4526 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4527 if (FAILED(hRet)) goto VarInt_Exit;
4528 pVarIn = &temp;
4530 V_VT(pVarOut) = V_VT(pVarIn);
4532 switch (V_VT(pVarIn))
4534 case VT_R4:
4535 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4536 break;
4537 case VT_BSTR:
4538 V_VT(pVarOut) = VT_R8;
4539 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4540 pVarIn = pVarOut;
4541 /* Fall through */
4542 case VT_DATE:
4543 case VT_R8:
4544 V_R8(pVarOut) = floor(V_R8(pVarIn));
4545 break;
4546 case VT_CY:
4547 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4548 break;
4549 case VT_DECIMAL:
4550 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4551 break;
4552 default:
4553 hRet = VarFix(pVarIn, pVarOut);
4555 VarInt_Exit:
4556 VariantClear(&temp);
4558 return hRet;
4561 /**********************************************************************
4562 * VarXor [OLEAUT32.167]
4564 * Perform a logical exclusive-or (XOR) operation on two variants.
4566 * PARAMS
4567 * pVarLeft [I] First variant
4568 * pVarRight [I] Variant to XOR with pVarLeft
4569 * pVarOut [O] Destination for XOR result
4571 * RETURNS
4572 * Success: S_OK. pVarOut contains the result of the operation with its type
4573 * taken from the table below).
4574 * Failure: An HRESULT error code indicating the error.
4576 * NOTES
4577 * - Neither pVarLeft or pVarRight are modified by this function.
4578 * - This function does not process by-reference variants.
4579 * - Input types of VT_BSTR may be numeric strings or boolean text.
4580 * - The type of result stored in pVarOut depends on the types of pVarLeft
4581 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4582 * or VT_NULL if the function succeeds.
4583 * - Type promotion is inconsistent and as a result certain combinations of
4584 * values will return DISP_E_OVERFLOW even when they could be represented.
4585 * This matches the behaviour of native oleaut32.
4587 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4589 VARTYPE vt;
4590 VARIANT varLeft, varRight;
4591 VARIANT tempLeft, tempRight;
4592 double d;
4593 HRESULT hRet;
4595 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4597 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4598 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4599 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4600 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4601 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4602 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4603 return DISP_E_BADVARTYPE;
4605 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4607 /* NULL XOR anything valid is NULL */
4608 V_VT(pVarOut) = VT_NULL;
4609 return S_OK;
4612 VariantInit(&tempLeft);
4613 VariantInit(&tempRight);
4615 /* Handle VT_DISPATCH by storing and taking address of returned value */
4616 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4618 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4619 if (FAILED(hRet)) goto VarXor_Exit;
4620 pVarLeft = &tempLeft;
4622 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4624 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4625 if (FAILED(hRet)) goto VarXor_Exit;
4626 pVarRight = &tempRight;
4629 /* Copy our inputs so we don't disturb anything */
4630 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4632 hRet = VariantCopy(&varLeft, pVarLeft);
4633 if (FAILED(hRet))
4634 goto VarXor_Exit;
4636 hRet = VariantCopy(&varRight, pVarRight);
4637 if (FAILED(hRet))
4638 goto VarXor_Exit;
4640 /* Try any strings first as numbers, then as VT_BOOL */
4641 if (V_VT(&varLeft) == VT_BSTR)
4643 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4644 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4645 FAILED(hRet) ? VT_BOOL : VT_I4);
4646 if (FAILED(hRet))
4647 goto VarXor_Exit;
4650 if (V_VT(&varRight) == VT_BSTR)
4652 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4653 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4654 FAILED(hRet) ? VT_BOOL : VT_I4);
4655 if (FAILED(hRet))
4656 goto VarXor_Exit;
4659 /* Determine the result type */
4660 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4662 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4664 hRet = DISP_E_TYPEMISMATCH;
4665 goto VarXor_Exit;
4667 vt = VT_I8;
4669 else
4671 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4673 case (VT_BOOL << 16) | VT_BOOL:
4674 vt = VT_BOOL;
4675 break;
4676 case (VT_UI1 << 16) | VT_UI1:
4677 vt = VT_UI1;
4678 break;
4679 case (VT_EMPTY << 16) | VT_EMPTY:
4680 case (VT_EMPTY << 16) | VT_UI1:
4681 case (VT_EMPTY << 16) | VT_I2:
4682 case (VT_EMPTY << 16) | VT_BOOL:
4683 case (VT_UI1 << 16) | VT_EMPTY:
4684 case (VT_UI1 << 16) | VT_I2:
4685 case (VT_UI1 << 16) | VT_BOOL:
4686 case (VT_I2 << 16) | VT_EMPTY:
4687 case (VT_I2 << 16) | VT_UI1:
4688 case (VT_I2 << 16) | VT_I2:
4689 case (VT_I2 << 16) | VT_BOOL:
4690 case (VT_BOOL << 16) | VT_EMPTY:
4691 case (VT_BOOL << 16) | VT_UI1:
4692 case (VT_BOOL << 16) | VT_I2:
4693 vt = VT_I2;
4694 break;
4695 default:
4696 vt = VT_I4;
4697 break;
4701 /* VT_UI4 does not overflow */
4702 if (vt != VT_I8)
4704 if (V_VT(&varLeft) == VT_UI4)
4705 V_VT(&varLeft) = VT_I4;
4706 if (V_VT(&varRight) == VT_UI4)
4707 V_VT(&varRight) = VT_I4;
4710 /* Convert our input copies to the result type */
4711 if (V_VT(&varLeft) != vt)
4712 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4713 if (FAILED(hRet))
4714 goto VarXor_Exit;
4716 if (V_VT(&varRight) != vt)
4717 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4718 if (FAILED(hRet))
4719 goto VarXor_Exit;
4721 V_VT(pVarOut) = vt;
4723 /* Calculate the result */
4724 switch (vt)
4726 case VT_I8:
4727 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4728 break;
4729 case VT_I4:
4730 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4731 break;
4732 case VT_BOOL:
4733 case VT_I2:
4734 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4735 break;
4736 case VT_UI1:
4737 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4738 break;
4741 VarXor_Exit:
4742 VariantClear(&varLeft);
4743 VariantClear(&varRight);
4744 VariantClear(&tempLeft);
4745 VariantClear(&tempRight);
4746 return hRet;
4749 /**********************************************************************
4750 * VarEqv [OLEAUT32.172]
4752 * Determine if two variants contain the same value.
4754 * PARAMS
4755 * pVarLeft [I] First variant to compare
4756 * pVarRight [I] Variant to compare to pVarLeft
4757 * pVarOut [O] Destination for comparison result
4759 * RETURNS
4760 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4761 * if equivalent or non-zero otherwise.
4762 * Failure: An HRESULT error code indicating the error.
4764 * NOTES
4765 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4766 * the result.
4768 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4770 HRESULT hRet;
4772 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4774 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4775 if (SUCCEEDED(hRet))
4777 if (V_VT(pVarOut) == VT_I8)
4778 V_I8(pVarOut) = ~V_I8(pVarOut);
4779 else
4780 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4782 return hRet;
4785 /**********************************************************************
4786 * VarNeg [OLEAUT32.173]
4788 * Negate the value of a variant.
4790 * PARAMS
4791 * pVarIn [I] Source variant
4792 * pVarOut [O] Destination for converted value
4794 * RETURNS
4795 * Success: S_OK. pVarOut contains the converted value.
4796 * Failure: An HRESULT error code indicating the error.
4798 * NOTES
4799 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4800 * according to the following table:
4801 *| Input Type Output Type
4802 *| ---------- -----------
4803 *| VT_EMPTY VT_I2
4804 *| VT_UI1 VT_I2
4805 *| VT_BOOL VT_I2
4806 *| VT_BSTR VT_R8
4807 *| All Others Unchanged (unless promoted)
4808 * - Where the negated value of a variant does not fit in its base type, the type
4809 * is promoted according to the following table:
4810 *| Input Type Promoted To
4811 *| ---------- -----------
4812 *| VT_I2 VT_I4
4813 *| VT_I4 VT_R8
4814 *| VT_I8 VT_R8
4815 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4816 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4817 * for types which are not valid. Since this is in contravention of the
4818 * meaning of those error codes and unlikely to be relied on by applications,
4819 * this implementation returns errors consistent with the other high level
4820 * variant math functions.
4822 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4824 HRESULT hRet = S_OK;
4825 VARIANT temp;
4827 VariantInit(&temp);
4829 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4831 /* Handle VT_DISPATCH by storing and taking address of returned value */
4832 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4834 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4835 if (FAILED(hRet)) goto VarNeg_Exit;
4836 pVarIn = &temp;
4838 V_VT(pVarOut) = V_VT(pVarIn);
4840 switch (V_VT(pVarIn))
4842 case VT_UI1:
4843 V_VT(pVarOut) = VT_I2;
4844 V_I2(pVarOut) = -V_UI1(pVarIn);
4845 break;
4846 case VT_BOOL:
4847 V_VT(pVarOut) = VT_I2;
4848 /* Fall through */
4849 case VT_I2:
4850 if (V_I2(pVarIn) == I2_MIN)
4852 V_VT(pVarOut) = VT_I4;
4853 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4855 else
4856 V_I2(pVarOut) = -V_I2(pVarIn);
4857 break;
4858 case VT_I4:
4859 if (V_I4(pVarIn) == I4_MIN)
4861 V_VT(pVarOut) = VT_R8;
4862 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4864 else
4865 V_I4(pVarOut) = -V_I4(pVarIn);
4866 break;
4867 case VT_I8:
4868 if (V_I8(pVarIn) == I8_MIN)
4870 V_VT(pVarOut) = VT_R8;
4871 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4872 V_R8(pVarOut) *= -1.0;
4874 else
4875 V_I8(pVarOut) = -V_I8(pVarIn);
4876 break;
4877 case VT_R4:
4878 V_R4(pVarOut) = -V_R4(pVarIn);
4879 break;
4880 case VT_DATE:
4881 case VT_R8:
4882 V_R8(pVarOut) = -V_R8(pVarIn);
4883 break;
4884 case VT_CY:
4885 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4886 break;
4887 case VT_DECIMAL:
4888 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4889 break;
4890 case VT_BSTR:
4891 V_VT(pVarOut) = VT_R8;
4892 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4893 V_R8(pVarOut) = -V_R8(pVarOut);
4894 break;
4895 case VT_EMPTY:
4896 V_VT(pVarOut) = VT_I2;
4897 V_I2(pVarOut) = 0;
4898 break;
4899 case VT_NULL:
4900 /* No-Op */
4901 break;
4902 default:
4903 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4904 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4905 hRet = DISP_E_BADVARTYPE;
4906 else
4907 hRet = DISP_E_TYPEMISMATCH;
4909 VarNeg_Exit:
4910 if (FAILED(hRet))
4911 V_VT(pVarOut) = VT_EMPTY;
4912 VariantClear(&temp);
4914 return hRet;
4917 /**********************************************************************
4918 * VarNot [OLEAUT32.174]
4920 * Perform a not operation on a variant.
4922 * PARAMS
4923 * pVarIn [I] Source variant
4924 * pVarOut [O] Destination for converted value
4926 * RETURNS
4927 * Success: S_OK. pVarOut contains the converted value.
4928 * Failure: An HRESULT error code indicating the error.
4930 * NOTES
4931 * - Strictly speaking, this function performs a bitwise ones complement
4932 * on the variants value (after possibly converting to VT_I4, see below).
4933 * This only behaves like a boolean not operation if the value in
4934 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4935 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4936 * before calling this function.
4937 * - This function does not process by-reference variants.
4938 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4939 * according to the following table:
4940 *| Input Type Output Type
4941 *| ---------- -----------
4942 *| VT_EMPTY VT_I2
4943 *| VT_R4 VT_I4
4944 *| VT_R8 VT_I4
4945 *| VT_BSTR VT_I4
4946 *| VT_DECIMAL VT_I4
4947 *| VT_CY VT_I4
4948 *| (All others) Unchanged
4950 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4952 VARIANT varIn;
4953 HRESULT hRet = S_OK;
4954 VARIANT temp;
4956 VariantInit(&temp);
4958 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4960 /* Handle VT_DISPATCH by storing and taking address of returned value */
4961 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4963 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4964 if (FAILED(hRet)) goto VarNot_Exit;
4965 pVarIn = &temp;
4968 if (V_VT(pVarIn) == VT_BSTR)
4970 V_VT(&varIn) = VT_R8;
4971 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
4972 if (FAILED(hRet))
4974 V_VT(&varIn) = VT_BOOL;
4975 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
4977 if (FAILED(hRet)) goto VarNot_Exit;
4978 pVarIn = &varIn;
4981 V_VT(pVarOut) = V_VT(pVarIn);
4983 switch (V_VT(pVarIn))
4985 case VT_I1:
4986 V_I4(pVarOut) = ~V_I1(pVarIn);
4987 V_VT(pVarOut) = VT_I4;
4988 break;
4989 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
4990 case VT_BOOL:
4991 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
4992 case VT_UI2:
4993 V_I4(pVarOut) = ~V_UI2(pVarIn);
4994 V_VT(pVarOut) = VT_I4;
4995 break;
4996 case VT_DECIMAL:
4997 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
4998 if (FAILED(hRet))
4999 break;
5000 pVarIn = &varIn;
5001 /* Fall through ... */
5002 case VT_INT:
5003 V_VT(pVarOut) = VT_I4;
5004 /* Fall through ... */
5005 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5006 case VT_UINT:
5007 case VT_UI4:
5008 V_I4(pVarOut) = ~V_UI4(pVarIn);
5009 V_VT(pVarOut) = VT_I4;
5010 break;
5011 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5012 case VT_UI8:
5013 V_I4(pVarOut) = ~V_UI8(pVarIn);
5014 V_VT(pVarOut) = VT_I4;
5015 break;
5016 case VT_R4:
5017 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5018 V_I4(pVarOut) = ~V_I4(pVarOut);
5019 V_VT(pVarOut) = VT_I4;
5020 break;
5021 case VT_DATE:
5022 case VT_R8:
5023 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5024 V_I4(pVarOut) = ~V_I4(pVarOut);
5025 V_VT(pVarOut) = VT_I4;
5026 break;
5027 case VT_CY:
5028 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5029 V_I4(pVarOut) = ~V_I4(pVarOut);
5030 V_VT(pVarOut) = VT_I4;
5031 break;
5032 case VT_EMPTY:
5033 V_I2(pVarOut) = ~0;
5034 V_VT(pVarOut) = VT_I2;
5035 break;
5036 case VT_NULL:
5037 /* No-Op */
5038 break;
5039 default:
5040 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5041 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5042 hRet = DISP_E_BADVARTYPE;
5043 else
5044 hRet = DISP_E_TYPEMISMATCH;
5046 VarNot_Exit:
5047 if (FAILED(hRet))
5048 V_VT(pVarOut) = VT_EMPTY;
5049 VariantClear(&temp);
5051 return hRet;
5054 /**********************************************************************
5055 * VarRound [OLEAUT32.175]
5057 * Perform a round operation on a variant.
5059 * PARAMS
5060 * pVarIn [I] Source variant
5061 * deci [I] Number of decimals to round to
5062 * pVarOut [O] Destination for converted value
5064 * RETURNS
5065 * Success: S_OK. pVarOut contains the converted value.
5066 * Failure: An HRESULT error code indicating the error.
5068 * NOTES
5069 * - Floating point values are rounded to the desired number of decimals.
5070 * - Some integer types are just copied to the return variable.
5071 * - Some other integer types are not handled and fail.
5073 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5075 VARIANT varIn;
5076 HRESULT hRet = S_OK;
5077 float factor;
5078 VARIANT temp;
5080 VariantInit(&temp);
5082 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5084 /* Handle VT_DISPATCH by storing and taking address of returned value */
5085 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5087 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5088 if (FAILED(hRet)) goto VarRound_Exit;
5089 pVarIn = &temp;
5092 switch (V_VT(pVarIn))
5094 /* cases that fail on windows */
5095 case VT_I1:
5096 case VT_I8:
5097 case VT_UI2:
5098 case VT_UI4:
5099 hRet = DISP_E_BADVARTYPE;
5100 break;
5102 /* cases just copying in to out */
5103 case VT_UI1:
5104 V_VT(pVarOut) = V_VT(pVarIn);
5105 V_UI1(pVarOut) = V_UI1(pVarIn);
5106 break;
5107 case VT_I2:
5108 V_VT(pVarOut) = V_VT(pVarIn);
5109 V_I2(pVarOut) = V_I2(pVarIn);
5110 break;
5111 case VT_I4:
5112 V_VT(pVarOut) = V_VT(pVarIn);
5113 V_I4(pVarOut) = V_I4(pVarIn);
5114 break;
5115 case VT_NULL:
5116 V_VT(pVarOut) = V_VT(pVarIn);
5117 /* value unchanged */
5118 break;
5120 /* cases that change type */
5121 case VT_EMPTY:
5122 V_VT(pVarOut) = VT_I2;
5123 V_I2(pVarOut) = 0;
5124 break;
5125 case VT_BOOL:
5126 V_VT(pVarOut) = VT_I2;
5127 V_I2(pVarOut) = V_BOOL(pVarIn);
5128 break;
5129 case VT_BSTR:
5130 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5131 if (FAILED(hRet))
5132 break;
5133 V_VT(&varIn)=VT_R8;
5134 pVarIn = &varIn;
5135 /* Fall through ... */
5137 /* cases we need to do math */
5138 case VT_R8:
5139 if (V_R8(pVarIn)>0) {
5140 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5141 } else {
5142 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5144 V_VT(pVarOut) = V_VT(pVarIn);
5145 break;
5146 case VT_R4:
5147 if (V_R4(pVarIn)>0) {
5148 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5149 } else {
5150 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5152 V_VT(pVarOut) = V_VT(pVarIn);
5153 break;
5154 case VT_DATE:
5155 if (V_DATE(pVarIn)>0) {
5156 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5157 } else {
5158 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5160 V_VT(pVarOut) = V_VT(pVarIn);
5161 break;
5162 case VT_CY:
5163 if (deci>3)
5164 factor=1;
5165 else
5166 factor=pow(10, 4-deci);
5168 if (V_CY(pVarIn).int64>0) {
5169 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5170 } else {
5171 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5173 V_VT(pVarOut) = V_VT(pVarIn);
5174 break;
5176 /* cases we don't know yet */
5177 default:
5178 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5179 V_VT(pVarIn) & VT_TYPEMASK, deci);
5180 hRet = DISP_E_BADVARTYPE;
5182 VarRound_Exit:
5183 if (FAILED(hRet))
5184 V_VT(pVarOut) = VT_EMPTY;
5185 VariantClear(&temp);
5187 TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5188 return hRet;
5191 /**********************************************************************
5192 * VarIdiv [OLEAUT32.153]
5194 * Converts input variants to integers and divides them.
5196 * PARAMS
5197 * left [I] Left hand variant
5198 * right [I] Right hand variant
5199 * result [O] Destination for quotient
5201 * RETURNS
5202 * Success: S_OK. result contains the quotient.
5203 * Failure: An HRESULT error code indicating the error.
5205 * NOTES
5206 * If either expression is null, null is returned, as per MSDN
5208 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5210 HRESULT hres = S_OK;
5211 VARTYPE resvt = VT_EMPTY;
5212 VARTYPE leftvt,rightvt;
5213 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5214 VARIANT lv,rv;
5215 VARIANT tempLeft, tempRight;
5217 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5219 VariantInit(&lv);
5220 VariantInit(&rv);
5221 VariantInit(&tempLeft);
5222 VariantInit(&tempRight);
5224 leftvt = V_VT(left)&VT_TYPEMASK;
5225 rightvt = V_VT(right)&VT_TYPEMASK;
5226 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5227 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5229 if (leftExtraFlags != rightExtraFlags)
5231 hres = DISP_E_BADVARTYPE;
5232 goto end;
5234 ExtraFlags = leftExtraFlags;
5236 /* Native VarIdiv always returns an error when using extra
5237 * flags or if the variant combination is I8 and INT.
5239 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5240 (leftvt == VT_INT && rightvt == VT_I8) ||
5241 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5242 ExtraFlags != 0)
5244 hres = DISP_E_BADVARTYPE;
5245 goto end;
5248 /* Determine variant type */
5249 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5251 V_VT(result) = VT_NULL;
5252 hres = S_OK;
5253 goto end;
5255 else if (leftvt == VT_I8 || rightvt == VT_I8)
5256 resvt = VT_I8;
5257 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5258 leftvt == VT_INT || rightvt == VT_INT ||
5259 leftvt == VT_UINT || rightvt == VT_UINT ||
5260 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5261 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5262 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5263 leftvt == VT_I1 || rightvt == VT_I1 ||
5264 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5265 leftvt == VT_DATE || rightvt == VT_DATE ||
5266 leftvt == VT_CY || rightvt == VT_CY ||
5267 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5268 leftvt == VT_R8 || rightvt == VT_R8 ||
5269 leftvt == VT_R4 || rightvt == VT_R4)
5270 resvt = VT_I4;
5271 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5272 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5273 leftvt == VT_EMPTY)
5274 resvt = VT_I2;
5275 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5276 resvt = VT_UI1;
5277 else
5279 hres = DISP_E_BADVARTYPE;
5280 goto end;
5283 /* coerce to the result type */
5284 hres = VariantChangeType(&lv, left, 0, resvt);
5285 if (hres != S_OK) goto end;
5286 hres = VariantChangeType(&rv, right, 0, resvt);
5287 if (hres != S_OK) goto end;
5289 /* do the math */
5290 V_VT(result) = resvt;
5291 switch (resvt)
5293 case VT_UI1:
5294 if (V_UI1(&rv) == 0)
5296 hres = DISP_E_DIVBYZERO;
5297 V_VT(result) = VT_EMPTY;
5299 else
5300 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5301 break;
5302 case VT_I2:
5303 if (V_I2(&rv) == 0)
5305 hres = DISP_E_DIVBYZERO;
5306 V_VT(result) = VT_EMPTY;
5308 else
5309 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5310 break;
5311 case VT_I4:
5312 if (V_I4(&rv) == 0)
5314 hres = DISP_E_DIVBYZERO;
5315 V_VT(result) = VT_EMPTY;
5317 else
5318 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5319 break;
5320 case VT_I8:
5321 if (V_I8(&rv) == 0)
5323 hres = DISP_E_DIVBYZERO;
5324 V_VT(result) = VT_EMPTY;
5326 else
5327 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5328 break;
5329 default:
5330 FIXME("Couldn't integer divide variant types %d,%d\n",
5331 leftvt,rightvt);
5334 end:
5335 VariantClear(&lv);
5336 VariantClear(&rv);
5337 VariantClear(&tempLeft);
5338 VariantClear(&tempRight);
5340 return hres;
5344 /**********************************************************************
5345 * VarMod [OLEAUT32.155]
5347 * Perform the modulus operation of the right hand variant on the left
5349 * PARAMS
5350 * left [I] Left hand variant
5351 * right [I] Right hand variant
5352 * result [O] Destination for converted value
5354 * RETURNS
5355 * Success: S_OK. result contains the remainder.
5356 * Failure: An HRESULT error code indicating the error.
5358 * NOTE:
5359 * If an error occurs the type of result will be modified but the value will not be.
5360 * Doesn't support arrays or any special flags yet.
5362 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5364 BOOL lOk = TRUE;
5365 HRESULT rc = E_FAIL;
5366 int resT = 0;
5367 VARIANT lv,rv;
5368 VARIANT tempLeft, tempRight;
5370 VariantInit(&tempLeft);
5371 VariantInit(&tempRight);
5372 VariantInit(&lv);
5373 VariantInit(&rv);
5375 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5377 /* Handle VT_DISPATCH by storing and taking address of returned value */
5378 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5380 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5381 if (FAILED(rc)) goto end;
5382 left = &tempLeft;
5384 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5386 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5387 if (FAILED(rc)) goto end;
5388 right = &tempRight;
5391 /* check for invalid inputs */
5392 lOk = TRUE;
5393 switch (V_VT(left) & VT_TYPEMASK) {
5394 case VT_BOOL :
5395 case VT_I1 :
5396 case VT_I2 :
5397 case VT_I4 :
5398 case VT_I8 :
5399 case VT_INT :
5400 case VT_UI1 :
5401 case VT_UI2 :
5402 case VT_UI4 :
5403 case VT_UI8 :
5404 case VT_UINT :
5405 case VT_R4 :
5406 case VT_R8 :
5407 case VT_CY :
5408 case VT_EMPTY:
5409 case VT_DATE :
5410 case VT_BSTR :
5411 case VT_DECIMAL:
5412 break;
5413 case VT_VARIANT:
5414 case VT_UNKNOWN:
5415 V_VT(result) = VT_EMPTY;
5416 rc = DISP_E_TYPEMISMATCH;
5417 goto end;
5418 case VT_ERROR:
5419 rc = DISP_E_TYPEMISMATCH;
5420 goto end;
5421 case VT_RECORD:
5422 V_VT(result) = VT_EMPTY;
5423 rc = DISP_E_TYPEMISMATCH;
5424 goto end;
5425 case VT_NULL:
5426 break;
5427 default:
5428 V_VT(result) = VT_EMPTY;
5429 rc = DISP_E_BADVARTYPE;
5430 goto end;
5434 switch (V_VT(right) & VT_TYPEMASK) {
5435 case VT_BOOL :
5436 case VT_I1 :
5437 case VT_I2 :
5438 case VT_I4 :
5439 case VT_I8 :
5440 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5442 V_VT(result) = VT_EMPTY;
5443 rc = DISP_E_TYPEMISMATCH;
5444 goto end;
5446 case VT_INT :
5447 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5449 V_VT(result) = VT_EMPTY;
5450 rc = DISP_E_TYPEMISMATCH;
5451 goto end;
5453 case VT_UI1 :
5454 case VT_UI2 :
5455 case VT_UI4 :
5456 case VT_UI8 :
5457 case VT_UINT :
5458 case VT_R4 :
5459 case VT_R8 :
5460 case VT_CY :
5461 if(V_VT(left) == VT_EMPTY)
5463 V_VT(result) = VT_I4;
5464 rc = S_OK;
5465 goto end;
5467 case VT_EMPTY:
5468 case VT_DATE :
5469 case VT_DECIMAL:
5470 if(V_VT(left) == VT_ERROR)
5472 V_VT(result) = VT_EMPTY;
5473 rc = DISP_E_TYPEMISMATCH;
5474 goto end;
5476 case VT_BSTR:
5477 if(V_VT(left) == VT_NULL)
5479 V_VT(result) = VT_NULL;
5480 rc = S_OK;
5481 goto end;
5483 break;
5485 case VT_VOID:
5486 V_VT(result) = VT_EMPTY;
5487 rc = DISP_E_BADVARTYPE;
5488 goto end;
5489 case VT_NULL:
5490 if(V_VT(left) == VT_VOID)
5492 V_VT(result) = VT_EMPTY;
5493 rc = DISP_E_BADVARTYPE;
5494 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5495 lOk)
5497 V_VT(result) = VT_NULL;
5498 rc = S_OK;
5499 } else
5501 V_VT(result) = VT_NULL;
5502 rc = DISP_E_BADVARTYPE;
5504 goto end;
5505 case VT_VARIANT:
5506 case VT_UNKNOWN:
5507 V_VT(result) = VT_EMPTY;
5508 rc = DISP_E_TYPEMISMATCH;
5509 goto end;
5510 case VT_ERROR:
5511 rc = DISP_E_TYPEMISMATCH;
5512 goto end;
5513 case VT_RECORD:
5514 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5516 V_VT(result) = VT_EMPTY;
5517 rc = DISP_E_BADVARTYPE;
5518 } else
5520 V_VT(result) = VT_EMPTY;
5521 rc = DISP_E_TYPEMISMATCH;
5523 goto end;
5524 default:
5525 V_VT(result) = VT_EMPTY;
5526 rc = DISP_E_BADVARTYPE;
5527 goto end;
5530 /* determine the result type */
5531 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5532 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5533 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5534 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5535 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5536 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5537 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5538 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5539 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5540 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5541 else resT = VT_I4; /* most outputs are I4 */
5543 /* convert to I8 for the modulo */
5544 rc = VariantChangeType(&lv, left, 0, VT_I8);
5545 if(FAILED(rc))
5547 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5548 goto end;
5551 rc = VariantChangeType(&rv, right, 0, VT_I8);
5552 if(FAILED(rc))
5554 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5555 goto end;
5558 /* if right is zero set VT_EMPTY and return divide by zero */
5559 if(V_I8(&rv) == 0)
5561 V_VT(result) = VT_EMPTY;
5562 rc = DISP_E_DIVBYZERO;
5563 goto end;
5566 /* perform the modulo operation */
5567 V_VT(result) = VT_I8;
5568 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5570 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5571 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5572 wine_dbgstr_longlong(V_I8(result)));
5574 /* convert left and right to the destination type */
5575 rc = VariantChangeType(result, result, 0, resT);
5576 if(FAILED(rc))
5578 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5579 /* fall to end of function */
5582 end:
5583 VariantClear(&lv);
5584 VariantClear(&rv);
5585 VariantClear(&tempLeft);
5586 VariantClear(&tempRight);
5587 return rc;
5590 /**********************************************************************
5591 * VarPow [OLEAUT32.158]
5593 * Computes the power of one variant to another variant.
5595 * PARAMS
5596 * left [I] First variant
5597 * right [I] Second variant
5598 * result [O] Result variant
5600 * RETURNS
5601 * Success: S_OK.
5602 * Failure: An HRESULT error code indicating the error.
5604 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5606 HRESULT hr = S_OK;
5607 VARIANT dl,dr;
5608 VARTYPE resvt = VT_EMPTY;
5609 VARTYPE leftvt,rightvt;
5610 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5611 VARIANT tempLeft, tempRight;
5613 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5615 VariantInit(&dl);
5616 VariantInit(&dr);
5617 VariantInit(&tempLeft);
5618 VariantInit(&tempRight);
5620 /* Handle VT_DISPATCH by storing and taking address of returned value */
5621 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5623 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5624 if (FAILED(hr)) goto end;
5625 left = &tempLeft;
5627 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5629 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5630 if (FAILED(hr)) goto end;
5631 right = &tempRight;
5634 leftvt = V_VT(left)&VT_TYPEMASK;
5635 rightvt = V_VT(right)&VT_TYPEMASK;
5636 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5637 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5639 if (leftExtraFlags != rightExtraFlags)
5641 hr = DISP_E_BADVARTYPE;
5642 goto end;
5644 ExtraFlags = leftExtraFlags;
5646 /* Native VarPow always returns an error when using extra flags */
5647 if (ExtraFlags != 0)
5649 hr = DISP_E_BADVARTYPE;
5650 goto end;
5653 /* Determine return type */
5654 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5655 V_VT(result) = VT_NULL;
5656 hr = S_OK;
5657 goto end;
5659 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5660 leftvt == VT_I4 || leftvt == VT_R4 ||
5661 leftvt == VT_R8 || leftvt == VT_CY ||
5662 leftvt == VT_DATE || leftvt == VT_BSTR ||
5663 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5664 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5665 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5666 rightvt == VT_I4 || rightvt == VT_R4 ||
5667 rightvt == VT_R8 || rightvt == VT_CY ||
5668 rightvt == VT_DATE || rightvt == VT_BSTR ||
5669 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5670 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5671 resvt = VT_R8;
5672 else
5674 hr = DISP_E_BADVARTYPE;
5675 goto end;
5678 hr = VariantChangeType(&dl,left,0,resvt);
5679 if (FAILED(hr)) {
5680 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5681 hr = E_FAIL;
5682 goto end;
5685 hr = VariantChangeType(&dr,right,0,resvt);
5686 if (FAILED(hr)) {
5687 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5688 hr = E_FAIL;
5689 goto end;
5692 V_VT(result) = VT_R8;
5693 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5695 end:
5696 VariantClear(&dl);
5697 VariantClear(&dr);
5698 VariantClear(&tempLeft);
5699 VariantClear(&tempRight);
5701 return hr;
5704 /**********************************************************************
5705 * VarImp [OLEAUT32.154]
5707 * Bitwise implication of two variants.
5709 * PARAMS
5710 * left [I] First variant
5711 * right [I] Second variant
5712 * result [O] Result variant
5714 * RETURNS
5715 * Success: S_OK.
5716 * Failure: An HRESULT error code indicating the error.
5718 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5720 HRESULT hres = S_OK;
5721 VARTYPE resvt = VT_EMPTY;
5722 VARTYPE leftvt,rightvt;
5723 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5724 VARIANT lv,rv;
5725 double d;
5726 VARIANT tempLeft, tempRight;
5728 VariantInit(&lv);
5729 VariantInit(&rv);
5730 VariantInit(&tempLeft);
5731 VariantInit(&tempRight);
5733 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5735 /* Handle VT_DISPATCH by storing and taking address of returned value */
5736 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5738 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5739 if (FAILED(hres)) goto VarImp_Exit;
5740 left = &tempLeft;
5742 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5744 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5745 if (FAILED(hres)) goto VarImp_Exit;
5746 right = &tempRight;
5749 leftvt = V_VT(left)&VT_TYPEMASK;
5750 rightvt = V_VT(right)&VT_TYPEMASK;
5751 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5752 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5754 if (leftExtraFlags != rightExtraFlags)
5756 hres = DISP_E_BADVARTYPE;
5757 goto VarImp_Exit;
5759 ExtraFlags = leftExtraFlags;
5761 /* Native VarImp always returns an error when using extra
5762 * flags or if the variants are I8 and INT.
5764 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5765 ExtraFlags != 0)
5767 hres = DISP_E_BADVARTYPE;
5768 goto VarImp_Exit;
5771 /* Determine result type */
5772 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5773 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5775 V_VT(result) = VT_NULL;
5776 hres = S_OK;
5777 goto VarImp_Exit;
5779 else if (leftvt == VT_I8 || rightvt == VT_I8)
5780 resvt = VT_I8;
5781 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5782 leftvt == VT_INT || rightvt == VT_INT ||
5783 leftvt == VT_UINT || rightvt == VT_UINT ||
5784 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5785 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5786 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5787 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5788 leftvt == VT_DATE || rightvt == VT_DATE ||
5789 leftvt == VT_CY || rightvt == VT_CY ||
5790 leftvt == VT_R8 || rightvt == VT_R8 ||
5791 leftvt == VT_R4 || rightvt == VT_R4 ||
5792 leftvt == VT_I1 || rightvt == VT_I1)
5793 resvt = VT_I4;
5794 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5795 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5796 (leftvt == VT_NULL && rightvt == VT_UI1))
5797 resvt = VT_UI1;
5798 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5799 leftvt == VT_I2 || rightvt == VT_I2 ||
5800 leftvt == VT_UI1 || rightvt == VT_UI1)
5801 resvt = VT_I2;
5802 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5803 leftvt == VT_BSTR || rightvt == VT_BSTR)
5804 resvt = VT_BOOL;
5806 /* VT_NULL requires special handling for when the opposite
5807 * variant is equal to something other than -1.
5808 * (NULL Imp 0 = NULL, NULL Imp n = n)
5810 if (leftvt == VT_NULL)
5812 VARIANT_BOOL b;
5813 switch(rightvt)
5815 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5816 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5817 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5818 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5819 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5820 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5821 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5822 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5823 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5824 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5825 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5826 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5827 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5828 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5829 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5830 case VT_DECIMAL:
5831 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5832 resvt = VT_NULL;
5833 break;
5834 case VT_BSTR:
5835 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5836 if (FAILED(hres)) goto VarImp_Exit;
5837 else if (!b)
5838 V_VT(result) = VT_NULL;
5839 else
5841 V_VT(result) = VT_BOOL;
5842 V_BOOL(result) = b;
5844 goto VarImp_Exit;
5846 if (resvt == VT_NULL)
5848 V_VT(result) = resvt;
5849 goto VarImp_Exit;
5851 else
5853 hres = VariantChangeType(result,right,0,resvt);
5854 goto VarImp_Exit;
5858 /* Special handling is required when NULL is the right variant.
5859 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5861 else if (rightvt == VT_NULL)
5863 VARIANT_BOOL b;
5864 switch(leftvt)
5866 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5867 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5868 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5869 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5870 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5871 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5872 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5873 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5874 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5875 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5876 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5877 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5878 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5879 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5880 case VT_DECIMAL:
5881 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5882 resvt = VT_NULL;
5883 break;
5884 case VT_BSTR:
5885 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5886 if (FAILED(hres)) goto VarImp_Exit;
5887 else if (b == VARIANT_TRUE)
5888 resvt = VT_NULL;
5890 if (resvt == VT_NULL)
5892 V_VT(result) = resvt;
5893 goto VarImp_Exit;
5897 hres = VariantCopy(&lv, left);
5898 if (FAILED(hres)) goto VarImp_Exit;
5900 if (rightvt == VT_NULL)
5902 memset( &rv, 0, sizeof(rv) );
5903 V_VT(&rv) = resvt;
5905 else
5907 hres = VariantCopy(&rv, right);
5908 if (FAILED(hres)) goto VarImp_Exit;
5911 if (V_VT(&lv) == VT_BSTR &&
5912 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5913 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5914 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5915 hres = VariantChangeType(&lv,&lv,0,resvt);
5916 if (FAILED(hres)) goto VarImp_Exit;
5918 if (V_VT(&rv) == VT_BSTR &&
5919 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5920 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5921 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5922 hres = VariantChangeType(&rv, &rv, 0, resvt);
5923 if (FAILED(hres)) goto VarImp_Exit;
5925 /* do the math */
5926 V_VT(result) = resvt;
5927 switch (resvt)
5929 case VT_I8:
5930 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5931 break;
5932 case VT_I4:
5933 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5934 break;
5935 case VT_I2:
5936 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
5937 break;
5938 case VT_UI1:
5939 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
5940 break;
5941 case VT_BOOL:
5942 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
5943 break;
5944 default:
5945 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5946 leftvt,rightvt);
5949 VarImp_Exit:
5951 VariantClear(&lv);
5952 VariantClear(&rv);
5953 VariantClear(&tempLeft);
5954 VariantClear(&tempRight);
5956 return hres;