Correct errors with move to kernel time functions.
[wine/multimedia.git] / dlls / oleaut32 / variant.c
blob82f73b13a75bf15c912ad337ec999cb9b96d4a69
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * The alorithm for conversion from Julian days to day/month/year is based on
7 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
8 * Copyright 1994-7 Regents of the University of California
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include "config.h"
27 #include <string.h>
28 #include <stdlib.h>
29 #include <stdarg.h>
31 #define NONAMELESSUNION
32 #define NONAMELESSSTRUCT
33 #include "windef.h"
34 #include "winbase.h"
35 #include "oleauto.h"
36 #include "wine/debug.h"
37 #include "wine/unicode.h"
38 #include "winerror.h"
39 #include "variant.h"
41 WINE_DEFAULT_DEBUG_CHANNEL(ole);
43 const char* wine_vtypes[VT_CLSID] =
45 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
46 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
47 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
48 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
49 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR""32","33","34","35",
50 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
51 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
52 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
53 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
56 const char* wine_vflags[16] =
58 "",
59 "|VT_VECTOR",
60 "|VT_ARRAY",
61 "|VT_VECTOR|VT_ARRAY",
62 "|VT_BYREF",
63 "|VT_VECTOR|VT_ARRAY",
64 "|VT_ARRAY|VT_BYREF",
65 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
66 "|VT_HARDTYPE",
67 "|VT_VECTOR|VT_HARDTYPE",
68 "|VT_ARRAY|VT_HARDTYPE",
69 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
70 "|VT_BYREF|VT_HARDTYPE",
71 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
72 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
73 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
76 /* Convert a variant from one type to another */
77 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
78 VARIANTARG* ps, VARTYPE vt)
80 HRESULT res = DISP_E_TYPEMISMATCH;
81 VARTYPE vtFrom = V_TYPE(ps);
82 DWORD dwFlags = 0;
84 TRACE("(%p->(%s%s),0x%08lx,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd),
85 debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps),
86 debugstr_vt(vt), debugstr_vf(vt));
88 if (vt == VT_BSTR || vtFrom == VT_BSTR)
90 /* All flags passed to low level function are only used for
91 * changing to or from strings. Map these here.
93 if (wFlags & VARIANT_LOCALBOOL)
94 dwFlags |= VAR_LOCALBOOL;
95 if (wFlags & VARIANT_CALENDAR_HIJRI)
96 dwFlags |= VAR_CALENDAR_HIJRI;
97 if (wFlags & VARIANT_CALENDAR_THAI)
98 dwFlags |= VAR_CALENDAR_THAI;
99 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
100 dwFlags |= VAR_CALENDAR_GREGORIAN;
101 if (wFlags & VARIANT_NOUSEROVERRIDE)
102 dwFlags |= LOCALE_NOUSEROVERRIDE;
103 if (wFlags & VARIANT_USE_NLS)
104 dwFlags |= LOCALE_USE_NLS;
107 /* Map int/uint to i4/ui4 */
108 if (vt == VT_INT)
109 vt = VT_I4;
110 else if (vt == VT_UINT)
111 vt = VT_UI4;
113 if (vtFrom == VT_INT)
114 vtFrom = VT_I4;
115 else if (vtFrom == VT_UINT)
116 vtFrom = VT_UI4;
118 if (vt == vtFrom)
119 return VariantCopy(pd, ps);
121 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
123 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
124 * accessing the default object property.
126 return DISP_E_TYPEMISMATCH;
129 switch (vt)
131 case VT_EMPTY:
132 if (vtFrom == VT_NULL)
133 return DISP_E_TYPEMISMATCH;
134 /* ... Fall through */
135 case VT_NULL:
136 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
138 res = VariantClear( pd );
139 if (vt == VT_NULL && SUCCEEDED(res))
140 V_VT(pd) = VT_NULL;
142 return res;
144 case VT_I1:
145 switch (vtFrom)
147 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
148 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
149 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
150 case VT_UI1: return VarI1FromUI1(V_UI1(ps), &V_I1(pd));
151 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
152 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
153 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
154 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
155 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
156 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
157 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
158 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
159 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
160 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
161 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
162 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
164 break;
166 case VT_I2:
167 switch (vtFrom)
169 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
170 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
171 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
172 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
173 case VT_UI2: return VarI2FromUI2(V_UI2(ps), &V_I2(pd));
174 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
175 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
176 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
177 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
178 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
179 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
180 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
181 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
182 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
183 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
184 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
186 break;
188 case VT_I4:
189 switch (vtFrom)
191 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
192 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
193 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
194 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
195 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
196 case VT_UI4: return VarI4FromUI4(V_UI4(ps), &V_I4(pd));
197 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
198 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
199 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
200 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
201 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
202 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
203 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
204 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
205 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
206 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
208 break;
210 case VT_UI1:
211 switch (vtFrom)
213 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
214 case VT_I1: return VarUI1FromI1(V_I1(ps), &V_UI1(pd));
215 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
216 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
217 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
218 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
219 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
220 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
221 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
222 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
223 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
224 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
225 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
226 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
227 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
228 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
230 break;
232 case VT_UI2:
233 switch (vtFrom)
235 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
236 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
237 case VT_I2: return VarUI2FromI2(V_I2(ps), &V_UI2(pd));
238 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
239 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
240 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
241 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
242 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
243 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
244 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
245 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
246 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
247 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
248 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
249 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
250 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
252 break;
254 case VT_UI4:
255 switch (vtFrom)
257 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
258 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
259 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
260 case VT_I4: return VarUI4FromI4(V_I4(ps), &V_UI4(pd));
261 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
262 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
263 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
264 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
265 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
266 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
267 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
268 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
269 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
270 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
271 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
272 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
274 break;
276 case VT_UI8:
277 switch (vtFrom)
279 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
280 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
281 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
282 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
283 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
284 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
285 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
286 case VT_I8: return VarUI8FromI8(V_I8(ps), &V_UI8(pd));
287 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
288 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
289 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
290 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
291 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
292 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
293 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
294 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
296 break;
298 case VT_I8:
299 switch (vtFrom)
301 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
302 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
303 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
304 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
305 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
306 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
307 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
308 case VT_UI8: return VarI8FromUI8(V_I8(ps), &V_I8(pd));
309 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
310 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
311 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
312 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
313 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
314 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
315 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
316 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
318 break;
320 case VT_R4:
321 switch (vtFrom)
323 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
324 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
325 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
326 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
327 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
328 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
329 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
330 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
331 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
332 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
333 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
334 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
335 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
336 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
337 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
338 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
340 break;
342 case VT_R8:
343 switch (vtFrom)
345 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
346 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
347 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
348 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
349 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
350 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
351 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
352 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
353 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
354 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
355 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
356 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
357 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
358 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
359 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
360 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
362 break;
364 case VT_DATE:
365 switch (vtFrom)
367 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
368 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
369 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
370 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
371 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
372 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
373 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
374 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
375 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
376 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
377 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
378 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
379 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
380 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
381 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
382 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
384 break;
386 case VT_BOOL:
387 switch (vtFrom)
389 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
390 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
391 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
392 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
393 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
394 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
395 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
396 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
397 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
398 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
399 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
400 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
401 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
402 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
403 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
404 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
406 break;
408 case VT_BSTR:
409 switch (vtFrom)
411 case VT_EMPTY:
412 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
413 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
414 case VT_BOOL:
415 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
416 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
417 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
418 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
419 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
420 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
421 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
422 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
423 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
424 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
425 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
426 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
427 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
428 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
429 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
430 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
431 /* case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd)); */
433 break;
435 case VT_CY:
436 switch (vtFrom)
438 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
439 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
440 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
441 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
442 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
443 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
444 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
445 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
446 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
447 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
448 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
449 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
450 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
451 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
452 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
453 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
455 break;
457 case VT_DECIMAL:
458 switch (vtFrom)
460 case VT_EMPTY:
461 case VT_BOOL:
462 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
463 DEC_HI32(&V_DECIMAL(pd)) = 0;
464 DEC_MID32(&V_DECIMAL(pd)) = 0;
465 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
466 * VT_NULL and VT_EMPTY always give a 0 value.
468 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
469 return S_OK;
470 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
471 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
472 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
473 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
474 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
475 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
476 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
477 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
478 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
479 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
480 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
481 case VT_CY: return VarDecFromCy(V_CY(pd), &V_DECIMAL(ps));
482 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(ps));
483 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
485 break;
487 case VT_UNKNOWN:
488 switch (vtFrom)
490 case VT_DISPATCH:
491 if (V_DISPATCH(ps) == NULL)
492 V_UNKNOWN(pd) = NULL;
493 else
494 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
495 break;
497 break;
499 case VT_DISPATCH:
500 switch (vtFrom)
502 case VT_UNKNOWN:
503 if (V_UNKNOWN(ps) == NULL)
504 V_DISPATCH(pd) = NULL;
505 else
506 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
507 break;
509 break;
511 case VT_RECORD:
512 break;
514 return res;
517 /* Coerce to/from an array */
518 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
520 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
521 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
523 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
524 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps));
526 if (V_VT(ps) == vt)
527 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
529 return DISP_E_TYPEMISMATCH;
532 /******************************************************************************
533 * Check if a variants type is valid.
535 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
537 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
539 vt &= VT_TYPEMASK;
541 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
543 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
545 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
546 return DISP_E_BADVARTYPE;
547 if (vt != (VARTYPE)15)
548 return S_OK;
551 return DISP_E_BADVARTYPE;
554 /******************************************************************************
555 * VariantInit [OLEAUT32.8]
557 * Initialise a variant.
559 * PARAMS
560 * pVarg [O] Variant to initialise
562 * RETURNS
563 * Nothing.
565 * NOTES
566 * This function simply sets the type of the variant to VT_EMPTY. It does not
567 * free any existing value, use VariantClear() for that.
569 void WINAPI VariantInit(VARIANTARG* pVarg)
571 TRACE("(%p)\n", pVarg);
573 V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */
576 /******************************************************************************
577 * VariantClear [OLEAUT32.9]
579 * Clear a variant.
581 * PARAMS
582 * pVarg [I/O] Variant to clear
584 * RETURNS
585 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
586 * Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type.
588 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
590 HRESULT hres = S_OK;
592 TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg));
594 hres = VARIANT_ValidateType(V_VT(pVarg));
596 if (SUCCEEDED(hres))
598 if (!V_ISBYREF(pVarg))
600 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
602 if (V_ARRAY(pVarg))
603 hres = SafeArrayDestroy(V_ARRAY(pVarg));
605 else if (V_VT(pVarg) == VT_BSTR)
607 if (V_BSTR(pVarg))
608 SysFreeString(V_BSTR(pVarg));
610 else if (V_VT(pVarg) == VT_RECORD)
612 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
613 if (pBr->pRecInfo)
615 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
616 IRecordInfo_Release(pBr->pRecInfo);
619 else if (V_VT(pVarg) == VT_DISPATCH ||
620 V_VT(pVarg) == VT_UNKNOWN)
622 if (V_UNKNOWN(pVarg))
623 IUnknown_Release(V_UNKNOWN(pVarg));
625 else if (V_VT(pVarg) == VT_VARIANT)
627 if (V_VARIANTREF(pVarg))
628 VariantClear(V_VARIANTREF(pVarg));
631 V_VT(pVarg) = VT_EMPTY;
633 return hres;
636 /******************************************************************************
637 * Copy an IRecordInfo object contained in a variant.
639 static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr)
641 HRESULT hres = S_OK;
643 if (pBr->pRecInfo)
645 ULONG ulSize;
647 hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize);
648 if (SUCCEEDED(hres))
650 PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize);
651 if (!pvRecord)
652 hres = E_OUTOFMEMORY;
653 else
655 memcpy(pvRecord, pBr->pvRecord, ulSize);
656 pBr->pvRecord = pvRecord;
658 hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord);
659 if (SUCCEEDED(hres))
660 IRecordInfo_AddRef(pBr->pRecInfo);
664 else if (pBr->pvRecord)
665 hres = E_INVALIDARG;
666 return hres;
669 /******************************************************************************
670 * VariantCopy [OLEAUT32.10]
672 * Copy a variant.
674 * PARAMS
675 * pvargDest [O] Destination for copy
676 * pvargSrc [I] Source variant to copy
678 * RETURNS
679 * Success: S_OK. pvargDest contains a copy of pvargSrc.
680 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
681 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
682 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
683 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
685 * NOTES
686 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
687 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
688 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
689 * fails, so does this function.
690 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
691 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
692 * is copied rather than just any pointers to it.
693 * - For by-value object types the object pointer is copied and the objects
694 * reference count increased using IUnknown_AddRef().
695 * - For all by-reference types, only the referencing pointer is copied.
697 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
699 HRESULT hres = S_OK;
701 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
702 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
703 debugstr_VF(pvargSrc));
705 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
706 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
707 return DISP_E_BADVARTYPE;
709 if (pvargSrc != pvargDest &&
710 SUCCEEDED(hres = VariantClear(pvargDest)))
712 *pvargDest = *pvargSrc; /* Shallow copy the value */
714 if (!V_ISBYREF(pvargSrc))
716 if (V_ISARRAY(pvargSrc))
718 if (V_ARRAY(pvargSrc))
719 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
721 else if (V_VT(pvargSrc) == VT_BSTR)
723 if (V_BSTR(pvargSrc))
725 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
726 if (!V_BSTR(pvargDest))
728 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc)));
729 hres = E_OUTOFMEMORY;
733 else if (V_VT(pvargSrc) == VT_RECORD)
735 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
737 else if (V_VT(pvargSrc) == VT_DISPATCH ||
738 V_VT(pvargSrc) == VT_UNKNOWN)
740 if (V_UNKNOWN(pvargSrc))
741 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
745 return hres;
748 /* Return the byte size of a variants data */
749 static inline size_t VARIANT_DataSize(const VARIANT* pv)
751 switch (V_TYPE(pv))
753 case VT_I1:
754 case VT_UI1: return sizeof(BYTE); break;
755 case VT_I2:
756 case VT_UI2: return sizeof(SHORT); break;
757 case VT_INT:
758 case VT_UINT:
759 case VT_I4:
760 case VT_UI4: return sizeof(LONG); break;
761 case VT_I8:
762 case VT_UI8: return sizeof(LONGLONG); break;
763 case VT_R4: return sizeof(float); break;
764 case VT_R8: return sizeof(double); break;
765 case VT_DATE: return sizeof(DATE); break;
766 case VT_BOOL: return sizeof(VARIANT_BOOL); break;
767 case VT_DISPATCH:
768 case VT_UNKNOWN:
769 case VT_BSTR: return sizeof(void*); break;
770 case VT_CY: return sizeof(CY); break;
771 case VT_ERROR: return sizeof(SCODE); break;
773 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv));
774 return 0;
777 /******************************************************************************
778 * VariantCopyInd [OLEAUT32.11]
780 * Copy a variant, dereferencing it it is by-reference.
782 * PARAMS
783 * pvargDest [O] Destination for copy
784 * pvargSrc [I] Source variant to copy
786 * RETURNS
787 * Success: S_OK. pvargDest contains a copy of pvargSrc.
788 * Failure: An HRESULT error code indicating the error.
790 * NOTES
791 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
792 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
793 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
794 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
795 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
797 * NOTES
798 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
799 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
800 * value.
801 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
802 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
803 * to it. If clearing pvargDest fails, so does this function.
805 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
807 VARIANTARG vTmp, *pSrc = pvargSrc;
808 VARTYPE vt;
809 HRESULT hres = S_OK;
811 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest),
812 debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc),
813 debugstr_VF(pvargSrc));
815 if (!V_ISBYREF(pvargSrc))
816 return VariantCopy(pvargDest, pvargSrc);
818 /* Argument checking is more lax than VariantCopy()... */
819 vt = V_TYPE(pvargSrc);
820 if (V_ISARRAY(pvargSrc) ||
821 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
822 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
824 /* OK */
826 else
827 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
829 if (pvargSrc == pvargDest)
831 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
832 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
834 vTmp = *pvargSrc;
835 pSrc = &vTmp;
836 V_VT(pvargDest) = VT_EMPTY;
838 else
840 /* Copy into another variant. Free the variant in pvargDest */
841 if (FAILED(hres = VariantClear(pvargDest)))
843 TRACE("VariantClear() of destination failed\n");
844 return hres;
848 if (V_ISARRAY(pSrc))
850 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
851 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
853 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
855 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
856 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
858 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
860 V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal);
861 hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal));
863 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
864 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
866 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
867 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
868 if (*V_UNKNOWNREF(pSrc))
869 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
871 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
873 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
874 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
875 hres = E_INVALIDARG; /* Don't dereference more than one level */
876 else
877 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
879 /* Use the dereferenced variants type value, not VT_VARIANT */
880 goto VariantCopyInd_Return;
882 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
884 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
885 sizeof(DECIMAL) - sizeof(USHORT));
887 else
889 /* Copy the pointed to data into this variant */
890 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
893 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
895 VariantCopyInd_Return:
897 if (pSrc != pvargSrc)
898 VariantClear(pSrc);
900 TRACE("returning 0x%08lx, %p->(%s%s)\n", hres, pvargDest,
901 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
902 return hres;
905 /******************************************************************************
906 * VariantChangeType [OLEAUT32.12]
908 * Change the type of a variant.
910 * PARAMS
911 * pvargDest [O] Destination for the converted variant
912 * pvargSrc [O] Source variant to change the type of
913 * wFlags [I] VARIANT_ flags from "oleauto.h"
914 * vt [I] Variant type to change pvargSrc into
916 * RETURNS
917 * Success: S_OK. pvargDest contains the converted value.
918 * Failure: An HRESULT error code describing the failure.
920 * NOTES
921 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
922 * See VariantChangeTypeEx.
924 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
925 USHORT wFlags, VARTYPE vt)
927 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
930 /******************************************************************************
931 * VariantChangeTypeEx [OLEAUT32.147]
933 * Change the type of a variant.
935 * PARAMS
936 * pvargDest [O] Destination for the converted variant
937 * pvargSrc [O] Source variant to change the type of
938 * lcid [I] LCID for the conversion
939 * wFlags [I] VARIANT_ flags from "oleauto.h"
940 * vt [I] Variant type to change pvargSrc into
942 * RETURNS
943 * Success: S_OK. pvargDest contains the converted value.
944 * Failure: An HRESULT error code describing the failure.
946 * NOTES
947 * pvargDest and pvargSrc can point to the same variant to perform an in-place
948 * conversion. If the conversion is successful, pvargSrc will be freed.
950 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
951 LCID lcid, USHORT wFlags, VARTYPE vt)
953 HRESULT res = S_OK;
955 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%04x,%s%s)\n", pvargDest,
956 debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc,
957 debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags,
958 debugstr_vt(vt), debugstr_vf(vt));
960 if (vt == VT_CLSID)
961 res = DISP_E_BADVARTYPE;
962 else
964 res = VARIANT_ValidateType(V_VT(pvargSrc));
966 if (SUCCEEDED(res))
968 res = VARIANT_ValidateType(vt);
970 if (SUCCEEDED(res))
972 VARIANTARG vTmp;
974 V_VT(&vTmp) = VT_EMPTY;
975 res = VariantCopyInd(&vTmp, pvargSrc);
977 if (SUCCEEDED(res))
979 res = VariantClear(pvargDest);
981 if (SUCCEEDED(res))
983 if (V_ISARRAY(&vTmp) || (vt & VT_ARRAY))
984 res = VARIANT_CoerceArray(pvargDest, &vTmp, vt);
985 else
986 res = VARIANT_Coerce(pvargDest, lcid, wFlags, &vTmp, vt);
988 if (SUCCEEDED(res))
989 V_VT(pvargDest) = vt;
991 VariantClear(&vTmp);
997 TRACE("returning 0x%08lx, %p->(%s%s)\n", res, pvargDest,
998 debugstr_VT(pvargDest), debugstr_VF(pvargDest));
999 return res;
1002 /* Date Conversions */
1004 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1006 /* Convert a VT_DATE value to a Julian Date */
1007 static inline int VARIANT_JulianFromDate(int dateIn)
1009 int julianDays = dateIn;
1011 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1012 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1013 return julianDays;
1016 /* Convert a Julian Date to a VT_DATE value */
1017 static inline int VARIANT_DateFromJulian(int dateIn)
1019 int julianDays = dateIn;
1021 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1022 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1023 return julianDays;
1026 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1027 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1029 int j, i, l, n;
1031 l = jd + 68569;
1032 n = l * 4 / 146097;
1033 l -= (n * 146097 + 3) / 4;
1034 i = (4000 * (l + 1)) / 1461001;
1035 l += 31 - (i * 1461) / 4;
1036 j = (l * 80) / 2447;
1037 *day = l - (j * 2447) / 80;
1038 l = j / 11;
1039 *month = (j + 2) - (12 * l);
1040 *year = 100 * (n - 49) + i + l;
1043 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1044 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1046 int m12 = (month - 14) / 12;
1048 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1049 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1052 /* Macros for accessing DOS format date/time fields */
1053 #define DOS_YEAR(x) (1980 + (x >> 9))
1054 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1055 #define DOS_DAY(x) (x & 0x1f)
1056 #define DOS_HOUR(x) (x >> 11)
1057 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1058 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1059 /* Create a DOS format date/time */
1060 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1061 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1063 /* Roll a date forwards or backwards to correct it */
1064 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1066 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1068 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1069 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1071 /* Years < 100 are treated as 1900 + year */
1072 if (lpUd->st.wYear < 100)
1073 lpUd->st.wYear += 1900;
1075 if (!lpUd->st.wMonth)
1077 /* Roll back to December of the previous year */
1078 lpUd->st.wMonth = 12;
1079 lpUd->st.wYear--;
1081 else while (lpUd->st.wMonth > 12)
1083 /* Roll forward the correct number of months */
1084 lpUd->st.wYear++;
1085 lpUd->st.wMonth -= 12;
1088 if (lpUd->st.wYear > 9999 || lpUd->st.wHour > 23 ||
1089 lpUd->st.wMinute > 59 || lpUd->st.wSecond > 59)
1090 return E_INVALIDARG; /* Invalid values */
1092 if (!lpUd->st.wDay)
1094 /* Roll back the date one day */
1095 if (lpUd->st.wMonth == 1)
1097 /* Roll back to December 31 of the previous year */
1098 lpUd->st.wDay = 31;
1099 lpUd->st.wMonth = 12;
1100 lpUd->st.wYear--;
1102 else
1104 lpUd->st.wMonth--; /* Previous month */
1105 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1106 lpUd->st.wDay = 29; /* Februaury has 29 days on leap years */
1107 else
1108 lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */
1111 else if (lpUd->st.wDay > 28)
1113 int rollForward = 0;
1115 /* Possibly need to roll the date forward */
1116 if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear))
1117 rollForward = lpUd->st.wDay - 29; /* Februaury has 29 days on leap years */
1118 else
1119 rollForward = lpUd->st.wDay - days[lpUd->st.wMonth];
1121 if (rollForward > 0)
1123 lpUd->st.wDay = rollForward;
1124 lpUd->st.wMonth++;
1125 if (lpUd->st.wMonth > 12)
1127 lpUd->st.wMonth = 1; /* Roll forward into January of the next year */
1128 lpUd->st.wYear++;
1132 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1133 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1134 return S_OK;
1137 /**********************************************************************
1138 * DosDateTimeToVariantTime [OLEAUT32.14]
1140 * Convert a Dos format date and time into variant VT_DATE format.
1142 * PARAMS
1143 * wDosDate [I] Dos format date
1144 * wDosTime [I] Dos format time
1145 * pDateOut [O] Destination for VT_DATE format
1147 * RETURNS
1148 * Success: TRUE. pDateOut contains the converted time.
1149 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1151 * NOTES
1152 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1153 * - Dos format times are accurate to only 2 second precision.
1154 * - The format of a Dos Date is:
1155 *| Bits Values Meaning
1156 *| ---- ------ -------
1157 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1158 *| the days in the month rolls forward the extra days.
1159 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1160 *| year. 13-15 are invalid.
1161 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1162 * - The format of a Dos Time is:
1163 *| Bits Values Meaning
1164 *| ---- ------ -------
1165 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1166 *| 5-10 0-59 Minutes. 60-63 are invalid.
1167 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1169 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1170 double *pDateOut)
1172 UDATE ud;
1174 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1175 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1176 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1177 pDateOut);
1179 ud.st.wYear = DOS_YEAR(wDosDate);
1180 ud.st.wMonth = DOS_MONTH(wDosDate);
1181 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1182 return FALSE;
1183 ud.st.wDay = DOS_DAY(wDosDate);
1184 ud.st.wHour = DOS_HOUR(wDosTime);
1185 ud.st.wMinute = DOS_MINUTE(wDosTime);
1186 ud.st.wSecond = DOS_SECOND(wDosTime);
1187 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1189 return !VarDateFromUdate(&ud, 0, pDateOut);
1192 /**********************************************************************
1193 * VariantTimeToDosDateTime [OLEAUT32.13]
1195 * Convert a variant format date into a Dos format date and time.
1197 * dateIn [I] VT_DATE time format
1198 * pwDosDate [O] Destination for Dos format date
1199 * pwDosTime [O] Destination for Dos format time
1201 * RETURNS
1202 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1203 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1205 * NOTES
1206 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1208 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1210 UDATE ud;
1212 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1214 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1215 return FALSE;
1217 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1218 return FALSE;
1220 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1221 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1223 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1224 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1225 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1226 return TRUE;
1229 /***********************************************************************
1230 * SystemTimeToVariantTime [OLEAUT32.184]
1232 * Convert a System format date and time into variant VT_DATE format.
1234 * PARAMS
1235 * lpSt [I] System format date and time
1236 * pDateOut [O] Destination for VT_DATE format date
1238 * RETURNS
1239 * Success: TRUE. *pDateOut contains the converted value.
1240 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1242 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1244 UDATE ud;
1246 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1247 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1249 if (lpSt->wMonth > 12)
1250 return FALSE;
1252 memcpy(&ud.st, lpSt, sizeof(ud.st));
1253 return !VarDateFromUdate(&ud, 0, pDateOut);
1256 /***********************************************************************
1257 * VariantTimeToSystemTime [OLEAUT32.185]
1259 * Convert a variant VT_DATE into a System format date and time.
1261 * PARAMS
1262 * datein [I] Variant VT_DATE format date
1263 * lpSt [O] Destination for System format date and time
1265 * RETURNS
1266 * Success: TRUE. *lpSt contains the converted value.
1267 * Failure: FALSE, if dateIn is too large or small.
1269 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1271 UDATE ud;
1273 TRACE("(%g,%p)\n", dateIn, lpSt);
1275 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1276 return FALSE;
1278 memcpy(lpSt, &ud.st, sizeof(ud.st));
1279 return TRUE;
1282 /***********************************************************************
1283 * VarDateFromUdate [OLEAUT32.330]
1285 * Convert an unpacked format date and time to a variant VT_DATE.
1287 * PARAMS
1288 * pUdateIn [I] Unpacked format date and time to convert
1289 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1290 * pDateOut [O] Destination for variant VT_DATE.
1292 * RETURNS
1293 * Success: S_OK. *pDateOut contains the converted value.
1294 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1296 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1298 UDATE ud;
1299 double dateVal;
1301 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08lx,%p)\n", pUdateIn,
1302 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1303 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1304 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1305 pUdateIn->wDayOfYear, dwFlags, pDateOut);
1307 memcpy(&ud, pUdateIn, sizeof(ud));
1309 if (dwFlags & VAR_VALIDDATE)
1310 WARN("Ignoring VAR_VALIDDATE\n");
1312 if (FAILED(VARIANT_RollUdate(&ud)))
1313 return E_INVALIDARG;
1315 /* Date */
1316 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1318 /* Time */
1319 dateVal += ud.st.wHour / 24.0;
1320 dateVal += ud.st.wMinute / 1440.0;
1321 dateVal += ud.st.wSecond / 86400.0;
1322 dateVal += ud.st.wMilliseconds / 86400000.0;
1324 TRACE("Returning %g\n", dateVal);
1325 *pDateOut = dateVal;
1326 return S_OK;
1329 /***********************************************************************
1330 * VarUdateFromDate [OLEAUT32.331]
1332 * Convert a variant VT_DATE into an unpacked format date and time.
1334 * PARAMS
1335 * datein [I] Variant VT_DATE format date
1336 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1337 * lpUdate [O] Destination for unpacked format date and time
1339 * RETURNS
1340 * Success: S_OK. *lpUdate contains the converted value.
1341 * Failure: E_INVALIDARG, if dateIn is too large or small.
1343 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1345 /* Cumulative totals of days per month */
1346 static const USHORT cumulativeDays[] =
1348 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1350 double datePart, timePart;
1351 int julianDays;
1353 TRACE("(%g,0x%08lx,%p)\n", dateIn, dwFlags, lpUdate);
1355 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1356 return E_INVALIDARG;
1358 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1359 /* Compensate for int truncation (always downwards) */
1360 timePart = dateIn - datePart + 0.00000000001;
1361 if (timePart >= 1.0)
1362 timePart -= 0.00000000001;
1364 /* Date */
1365 julianDays = VARIANT_JulianFromDate(dateIn);
1366 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1367 &lpUdate->st.wDay);
1369 datePart = (datePart + 1.5) / 7.0;
1370 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1371 if (lpUdate->st.wDayOfWeek == 0)
1372 lpUdate->st.wDayOfWeek = 5;
1373 else if (lpUdate->st.wDayOfWeek == 1)
1374 lpUdate->st.wDayOfWeek = 6;
1375 else
1376 lpUdate->st.wDayOfWeek -= 2;
1378 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1379 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1380 else
1381 lpUdate->wDayOfYear = 0;
1383 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1384 lpUdate->wDayOfYear += lpUdate->st.wDay;
1386 /* Time */
1387 timePart *= 24.0;
1388 lpUdate->st.wHour = timePart;
1389 timePart -= lpUdate->st.wHour;
1390 timePart *= 60.0;
1391 lpUdate->st.wMinute = timePart;
1392 timePart -= lpUdate->st.wMinute;
1393 timePart *= 60.0;
1394 lpUdate->st.wSecond = timePart;
1395 timePart -= lpUdate->st.wSecond;
1396 lpUdate->st.wMilliseconds = 0;
1397 if (timePart > 0.5)
1399 /* Round the milliseconds, adjusting the time/date forward if needed */
1400 if (lpUdate->st.wSecond < 59)
1401 lpUdate->st.wSecond++;
1402 else
1404 lpUdate->st.wSecond = 0;
1405 if (lpUdate->st.wMinute < 59)
1406 lpUdate->st.wMinute++;
1407 else
1409 lpUdate->st.wMinute = 0;
1410 if (lpUdate->st.wHour < 23)
1411 lpUdate->st.wHour++;
1412 else
1414 lpUdate->st.wHour = 0;
1415 /* Roll over a whole day */
1416 if (++lpUdate->st.wDay > 28)
1417 VARIANT_RollUdate(lpUdate);
1422 return S_OK;
1425 #define GET_NUMBER_TEXT(fld,name) \
1426 buff[0] = 0; \
1427 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1428 WARN("buffer too small for " #fld "\n"); \
1429 else \
1430 if (buff[0]) lpChars->name = buff[0]; \
1431 TRACE("lcid 0x%lx, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1433 /* Get the valid number characters for an lcid */
1434 void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1436 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1437 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1438 WCHAR buff[4];
1440 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1441 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1442 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1443 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1444 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeperator);
1445 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1446 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeperator);
1448 /* Local currency symbols are often 2 characters */
1449 lpChars->cCurrencyLocal2 = '\0';
1450 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1452 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1453 case 2: lpChars->cCurrencyLocal = buff[0];
1454 break;
1455 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1457 TRACE("lcid 0x%lx, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1458 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1461 /* Number Parsing States */
1462 #define B_PROCESSING_EXPONENT 0x1
1463 #define B_NEGATIVE_EXPONENT 0x2
1464 #define B_EXPONENT_START 0x4
1465 #define B_INEXACT_ZEROS 0x8
1466 #define B_LEADING_ZERO 0x10
1467 #define B_PROCESSING_HEX 0x20
1468 #define B_PROCESSING_OCT 0x40
1470 /**********************************************************************
1471 * VarParseNumFromStr [OLEAUT32.46]
1473 * Parse a string containing a number into a NUMPARSE structure.
1475 * PARAMS
1476 * lpszStr [I] String to parse number from
1477 * lcid [I] Locale Id for the conversion
1478 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1479 * pNumprs [I/O] Destination for parsed number
1480 * rgbDig [O] Destination for digits read in
1482 * RETURNS
1483 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1484 * the number.
1485 * Failure: E_INVALIDARG, if any parameter is invalid.
1486 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1487 * incorrectly.
1488 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1490 * NOTES
1491 * pNumprs must have the following fields set:
1492 * cDig: Set to the size of rgbDig.
1493 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1494 * from "oleauto.h".
1496 * FIXME
1497 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1498 * numerals, so this has not been implemented.
1500 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1501 NUMPARSE *pNumprs, BYTE *rgbDig)
1503 VARIANT_NUMBER_CHARS chars;
1504 BYTE rgbTmp[1024];
1505 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1506 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1507 int cchUsed = 0;
1509 TRACE("(%s,%ld,0x%08lx,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1511 if (!pNumprs || !rgbDig)
1512 return E_INVALIDARG;
1514 if (pNumprs->cDig < iMaxDigits)
1515 iMaxDigits = pNumprs->cDig;
1517 pNumprs->cDig = 0;
1518 pNumprs->dwOutFlags = 0;
1519 pNumprs->cchUsed = 0;
1520 pNumprs->nBaseShift = 0;
1521 pNumprs->nPwr10 = 0;
1523 if (!lpszStr)
1524 return DISP_E_TYPEMISMATCH;
1526 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1528 /* First consume all the leading symbols and space from the string */
1529 while (1)
1531 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1533 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1536 cchUsed++;
1537 lpszStr++;
1538 } while (isspaceW(*lpszStr));
1540 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1541 *lpszStr == chars.cPositiveSymbol &&
1542 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1544 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1545 cchUsed++;
1546 lpszStr++;
1548 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1549 *lpszStr == chars.cNegativeSymbol &&
1550 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1552 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1553 cchUsed++;
1554 lpszStr++;
1556 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1557 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1558 *lpszStr == chars.cCurrencyLocal &&
1559 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1561 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1562 cchUsed++;
1563 lpszStr++;
1564 /* Only accept currency characters */
1565 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1566 chars.cDigitSeperator = chars.cCurrencyDigitSeperator;
1568 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1569 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1571 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1572 cchUsed++;
1573 lpszStr++;
1575 else
1576 break;
1579 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1581 /* Only accept non-currency characters */
1582 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1583 chars.cCurrencyDigitSeperator = chars.cDigitSeperator;
1586 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1587 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1589 dwState |= B_PROCESSING_HEX;
1590 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1591 cchUsed=cchUsed+2;
1592 lpszStr=lpszStr+2;
1594 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1595 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1597 dwState |= B_PROCESSING_OCT;
1598 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1599 cchUsed=cchUsed+2;
1600 lpszStr=lpszStr+2;
1603 /* Strip Leading zeros */
1604 while (*lpszStr == '0')
1606 dwState |= B_LEADING_ZERO;
1607 cchUsed++;
1608 lpszStr++;
1611 while (*lpszStr)
1613 if (isdigitW(*lpszStr))
1615 if (dwState & B_PROCESSING_EXPONENT)
1617 int exponentSize = 0;
1618 if (dwState & B_EXPONENT_START)
1620 while (*lpszStr == '0')
1622 /* Skip leading zero's in the exponent */
1623 cchUsed++;
1624 lpszStr++;
1626 if (!isdigitW(*lpszStr))
1627 break; /* No exponent digits - invalid */
1630 while (isdigitW(*lpszStr))
1632 exponentSize *= 10;
1633 exponentSize += *lpszStr - '0';
1634 cchUsed++;
1635 lpszStr++;
1637 if (dwState & B_NEGATIVE_EXPONENT)
1638 exponentSize = -exponentSize;
1639 /* Add the exponent into the powers of 10 */
1640 pNumprs->nPwr10 += exponentSize;
1641 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1642 lpszStr--; /* back up to allow processing of next char */
1644 else
1646 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1647 && !(dwState & B_PROCESSING_OCT))
1649 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1651 if (*lpszStr != '0')
1652 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1654 /* This digit can't be represented, but count it in nPwr10 */
1655 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1656 pNumprs->nPwr10--;
1657 else
1658 pNumprs->nPwr10++;
1660 else
1662 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1663 return DISP_E_TYPEMISMATCH;
1666 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1667 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1669 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1671 pNumprs->cDig++;
1672 cchUsed++;
1675 else if (*lpszStr == chars.cDigitSeperator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1677 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1678 cchUsed++;
1680 else if (*lpszStr == chars.cDecimalPoint &&
1681 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1682 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1684 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1685 cchUsed++;
1687 /* Remove trailing zeros from the whole number part */
1688 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1690 pNumprs->nPwr10++;
1691 pNumprs->cDig--;
1694 /* If we have no digits so far, skip leading zeros */
1695 if (!pNumprs->cDig)
1697 while (lpszStr[1] == '0')
1699 dwState |= B_LEADING_ZERO;
1700 cchUsed++;
1701 lpszStr++;
1705 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1706 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1707 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1709 dwState |= B_PROCESSING_EXPONENT;
1710 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1711 cchUsed++;
1713 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1715 cchUsed++; /* Ignore positive exponent */
1717 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1719 dwState |= B_NEGATIVE_EXPONENT;
1720 cchUsed++;
1722 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1723 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1724 dwState & B_PROCESSING_HEX)
1726 if (pNumprs->cDig >= iMaxDigits)
1728 return DISP_E_OVERFLOW;
1730 else
1732 if (*lpszStr >= 'a')
1733 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1734 else
1735 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1737 pNumprs->cDig++;
1738 cchUsed++;
1740 else
1741 break; /* Stop at an unrecognised character */
1743 lpszStr++;
1746 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1748 /* Ensure a 0 on its own gets stored */
1749 pNumprs->cDig = 1;
1750 rgbTmp[0] = 0;
1753 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1755 pNumprs->cchUsed = cchUsed;
1756 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1759 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1761 if (dwState & B_INEXACT_ZEROS)
1762 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1763 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1765 /* copy all of the digits into the output digit buffer */
1766 /* this is exactly what windows does although it also returns */
1767 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1768 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1770 if (dwState & B_PROCESSING_HEX) {
1771 /* hex numbers have always the same format */
1772 pNumprs->nPwr10=0;
1773 pNumprs->nBaseShift=4;
1774 } else {
1775 if (dwState & B_PROCESSING_OCT) {
1776 /* oct numbers have always the same format */
1777 pNumprs->nPwr10=0;
1778 pNumprs->nBaseShift=3;
1779 } else {
1780 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1782 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1783 pNumprs->nPwr10--;
1784 else
1785 pNumprs->nPwr10++;
1787 pNumprs->cDig--;
1791 } else
1793 /* Remove trailing zeros from the last (whole number or decimal) part */
1794 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1796 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1797 pNumprs->nPwr10--;
1798 else
1799 pNumprs->nPwr10++;
1801 pNumprs->cDig--;
1805 if (pNumprs->cDig <= iMaxDigits)
1806 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1807 else
1808 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1810 /* Copy the digits we processed into rgbDig */
1811 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1813 /* Consume any trailing symbols and space */
1814 while (1)
1816 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1818 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1821 cchUsed++;
1822 lpszStr++;
1823 } while (isspaceW(*lpszStr));
1825 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1826 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1827 *lpszStr == chars.cPositiveSymbol)
1829 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1830 cchUsed++;
1831 lpszStr++;
1833 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1834 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1835 *lpszStr == chars.cNegativeSymbol)
1837 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1838 cchUsed++;
1839 lpszStr++;
1841 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1842 pNumprs->dwOutFlags & NUMPRS_PARENS)
1844 cchUsed++;
1845 lpszStr++;
1846 pNumprs->dwOutFlags |= NUMPRS_NEG;
1848 else
1849 break;
1852 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1854 pNumprs->cchUsed = cchUsed;
1855 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1858 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1859 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1861 if (!pNumprs->cDig)
1862 return DISP_E_TYPEMISMATCH; /* No Number found */
1864 pNumprs->cchUsed = cchUsed;
1865 return S_OK;
1868 /* VTBIT flags indicating an integer value */
1869 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1870 /* VTBIT flags indicating a real number value */
1871 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1873 /**********************************************************************
1874 * VarNumFromParseNum [OLEAUT32.47]
1876 * Convert a NUMPARSE structure into a numeric Variant type.
1878 * PARAMS
1879 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1880 * rgbDig [I] Source for the numbers digits
1881 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1882 * pVarDst [O] Destination for the converted Variant value.
1884 * RETURNS
1885 * Success: S_OK. pVarDst contains the converted value.
1886 * Failure: E_INVALIDARG, if any parameter is invalid.
1887 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1889 * NOTES
1890 * - The smallest favoured type present in dwVtBits that can represent the
1891 * number in pNumprs without losing precision is used.
1892 * - Signed types are preferrred over unsigned types of the same size.
1893 * - Preferred types in order are: integer, float, double, currency then decimal.
1894 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1895 * for details of the rounding method.
1896 * - pVarDst is not cleared before the result is stored in it.
1898 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1899 ULONG dwVtBits, VARIANT *pVarDst)
1901 /* Scale factors and limits for double arithmetic */
1902 static const double dblMultipliers[11] = {
1903 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1904 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1906 static const double dblMinimums[11] = {
1907 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1908 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1909 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1911 static const double dblMaximums[11] = {
1912 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1913 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1914 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1917 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
1919 TRACE("(%p,%p,0x%lx,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
1921 if (pNumprs->nBaseShift)
1923 /* nBaseShift indicates a hex or octal number */
1924 ULONG64 ul64 = 0;
1925 LONG64 l64;
1926 int i;
1928 /* Convert the hex or octal number string into a UI64 */
1929 for (i = 0; i < pNumprs->cDig; i++)
1931 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
1933 TRACE("Overflow multiplying digits\n");
1934 return DISP_E_OVERFLOW;
1936 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
1939 /* also make a negative representation */
1940 l64=-ul64;
1942 /* Try signed and unsigned types in size order */
1943 if (dwVtBits & VTBIT_I1 && ((ul64 <= I1_MAX)||(l64 >= I1_MIN)))
1945 V_VT(pVarDst) = VT_I1;
1946 if (ul64 <= I1_MAX)
1947 V_I1(pVarDst) = ul64;
1948 else
1949 V_I1(pVarDst) = l64;
1950 return S_OK;
1952 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
1954 V_VT(pVarDst) = VT_UI1;
1955 V_UI1(pVarDst) = ul64;
1956 return S_OK;
1958 else if (dwVtBits & VTBIT_I2 && ((ul64 <= I2_MAX)||(l64 >= I2_MIN)))
1960 V_VT(pVarDst) = VT_I2;
1961 if (ul64 <= I2_MAX)
1962 V_I2(pVarDst) = ul64;
1963 else
1964 V_I2(pVarDst) = l64;
1965 return S_OK;
1967 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
1969 V_VT(pVarDst) = VT_UI2;
1970 V_UI2(pVarDst) = ul64;
1971 return S_OK;
1973 else if (dwVtBits & VTBIT_I4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
1975 V_VT(pVarDst) = VT_I4;
1976 if (ul64 <= I4_MAX)
1977 V_I4(pVarDst) = ul64;
1978 else
1979 V_I4(pVarDst) = l64;
1980 return S_OK;
1982 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
1984 V_VT(pVarDst) = VT_UI4;
1985 V_UI4(pVarDst) = ul64;
1986 return S_OK;
1988 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I4_MAX)||(l64>=I4_MIN)))
1990 V_VT(pVarDst) = VT_I8;
1991 V_I8(pVarDst) = ul64;
1992 return S_OK;
1994 else if (dwVtBits & VTBIT_UI8)
1996 V_VT(pVarDst) = VT_UI8;
1997 V_UI8(pVarDst) = ul64;
1998 return S_OK;
2000 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2002 V_VT(pVarDst) = VT_DECIMAL;
2003 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2004 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2005 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2006 return S_OK;
2008 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2010 V_VT(pVarDst) = VT_R4;
2011 if (ul64 <= I4_MAX)
2012 V_R4(pVarDst) = ul64;
2013 else
2014 V_R4(pVarDst) = l64;
2015 return S_OK;
2017 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2019 V_VT(pVarDst) = VT_R8;
2020 if (ul64 <= I4_MAX)
2021 V_R8(pVarDst) = ul64;
2022 else
2023 V_R8(pVarDst) = l64;
2024 return S_OK;
2027 TRACE("Overflow: possible return types: 0x%lx, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2028 return DISP_E_OVERFLOW;
2031 /* Count the number of relevant fractional and whole digits stored,
2032 * And compute the divisor/multiplier to scale the number by.
2034 if (pNumprs->nPwr10 < 0)
2036 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2038 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2039 wholeNumberDigits = 0;
2040 fractionalDigits = pNumprs->cDig;
2041 divisor10 = -pNumprs->nPwr10;
2043 else
2045 /* An exactly represented real number e.g. 1.024 */
2046 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2047 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2048 divisor10 = pNumprs->cDig - wholeNumberDigits;
2051 else if (pNumprs->nPwr10 == 0)
2053 /* An exactly represented whole number e.g. 1024 */
2054 wholeNumberDigits = pNumprs->cDig;
2055 fractionalDigits = 0;
2057 else /* pNumprs->nPwr10 > 0 */
2059 /* A whole number followed by nPwr10 0's e.g. 102400 */
2060 wholeNumberDigits = pNumprs->cDig;
2061 fractionalDigits = 0;
2062 multiplier10 = pNumprs->nPwr10;
2065 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d ", pNumprs->cDig,
2066 pNumprs->nPwr10, wholeNumberDigits, fractionalDigits);
2067 TRACE("mult %d; div %d\n", multiplier10, divisor10);
2069 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2070 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2072 /* We have one or more integer output choices, and either:
2073 * 1) An integer input value, or
2074 * 2) A real number input value but no floating output choices.
2075 * Alternately, we have a DECIMAL output available and an integer input.
2077 * So, place the integer value into pVarDst, using the smallest type
2078 * possible and preferring signed over unsigned types.
2080 BOOL bOverflow = FALSE, bNegative;
2081 ULONG64 ul64 = 0;
2082 int i;
2084 /* Convert the integer part of the number into a UI8 */
2085 for (i = 0; i < wholeNumberDigits; i++)
2087 if (ul64 > (UI8_MAX / 10 - rgbDig[i]))
2089 TRACE("Overflow multiplying digits\n");
2090 bOverflow = TRUE;
2091 break;
2093 ul64 = ul64 * 10 + rgbDig[i];
2096 /* Account for the scale of the number */
2097 if (!bOverflow && multiplier10)
2099 for (i = 0; i < multiplier10; i++)
2101 if (ul64 > (UI8_MAX / 10))
2103 TRACE("Overflow scaling number\n");
2104 bOverflow = TRUE;
2105 break;
2107 ul64 = ul64 * 10;
2111 /* If we have any fractional digits, round the value.
2112 * Note we don't have to do this if divisor10 is < 1,
2113 * because this means the fractional part must be < 0.5
2115 if (!bOverflow && fractionalDigits && divisor10 > 0)
2117 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2118 BOOL bAdjust = FALSE;
2120 TRACE("first decimal value is %d\n", *fracDig);
2122 if (*fracDig > 5)
2123 bAdjust = TRUE; /* > 0.5 */
2124 else if (*fracDig == 5)
2126 for (i = 1; i < fractionalDigits; i++)
2128 if (fracDig[i])
2130 bAdjust = TRUE; /* > 0.5 */
2131 break;
2134 /* If exactly 0.5, round only odd values */
2135 if (i == fractionalDigits && (ul64 & 1))
2136 bAdjust = TRUE;
2139 if (bAdjust)
2141 if (ul64 == UI8_MAX)
2143 TRACE("Overflow after rounding\n");
2144 bOverflow = TRUE;
2146 ul64++;
2150 /* Zero is not a negative number */
2151 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE;
2153 TRACE("Integer value is %lld, bNeg %d\n", ul64, bNegative);
2155 /* For negative integers, try the signed types in size order */
2156 if (!bOverflow && bNegative)
2158 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2160 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2162 V_VT(pVarDst) = VT_I1;
2163 V_I1(pVarDst) = -ul64;
2164 return S_OK;
2166 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2168 V_VT(pVarDst) = VT_I2;
2169 V_I2(pVarDst) = -ul64;
2170 return S_OK;
2172 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2174 V_VT(pVarDst) = VT_I4;
2175 V_I4(pVarDst) = -ul64;
2176 return S_OK;
2178 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2180 V_VT(pVarDst) = VT_I8;
2181 V_I8(pVarDst) = -ul64;
2182 return S_OK;
2184 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2186 /* Decimal is only output choice left - fast path */
2187 V_VT(pVarDst) = VT_DECIMAL;
2188 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2189 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2190 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2191 return S_OK;
2195 else if (!bOverflow)
2197 /* For positive integers, try signed then unsigned types in size order */
2198 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2200 V_VT(pVarDst) = VT_I1;
2201 V_I1(pVarDst) = ul64;
2202 return S_OK;
2204 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2206 V_VT(pVarDst) = VT_UI1;
2207 V_UI1(pVarDst) = ul64;
2208 return S_OK;
2210 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2212 V_VT(pVarDst) = VT_I2;
2213 V_I2(pVarDst) = ul64;
2214 return S_OK;
2216 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2218 V_VT(pVarDst) = VT_UI2;
2219 V_UI2(pVarDst) = ul64;
2220 return S_OK;
2222 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2224 V_VT(pVarDst) = VT_I4;
2225 V_I4(pVarDst) = ul64;
2226 return S_OK;
2228 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2230 V_VT(pVarDst) = VT_UI4;
2231 V_UI4(pVarDst) = ul64;
2232 return S_OK;
2234 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2236 V_VT(pVarDst) = VT_I8;
2237 V_I8(pVarDst) = ul64;
2238 return S_OK;
2240 else if (dwVtBits & VTBIT_UI8)
2242 V_VT(pVarDst) = VT_UI8;
2243 V_UI8(pVarDst) = ul64;
2244 return S_OK;
2246 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2248 /* Decimal is only output choice left - fast path */
2249 V_VT(pVarDst) = VT_DECIMAL;
2250 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2251 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2252 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2253 return S_OK;
2258 if (dwVtBits & REAL_VTBITS)
2260 /* Try to put the number into a float or real */
2261 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2262 double whole = 0.0;
2263 int i;
2265 /* Convert the number into a double */
2266 for (i = 0; i < pNumprs->cDig; i++)
2267 whole = whole * 10.0 + rgbDig[i];
2269 TRACE("Whole double value is %16.16g\n", whole);
2271 /* Account for the scale */
2272 while (multiplier10 > 10)
2274 if (whole > dblMaximums[10])
2276 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2277 bOverflow = TRUE;
2278 break;
2280 whole = whole * dblMultipliers[10];
2281 multiplier10 -= 10;
2283 if (multiplier10)
2285 if (whole > dblMaximums[multiplier10])
2287 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2288 bOverflow = TRUE;
2290 else
2291 whole = whole * dblMultipliers[multiplier10];
2294 TRACE("Scaled double value is %16.16g\n", whole);
2296 while (divisor10 > 10)
2298 if (whole < dblMinimums[10])
2300 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2301 bOverflow = TRUE;
2302 break;
2304 whole = whole / dblMultipliers[10];
2305 divisor10 -= 10;
2307 if (divisor10)
2309 if (whole < dblMinimums[divisor10])
2311 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2312 bOverflow = TRUE;
2314 else
2315 whole = whole / dblMultipliers[divisor10];
2317 if (!bOverflow)
2318 TRACE("Final double value is %16.16g\n", whole);
2320 if (dwVtBits & VTBIT_R4 &&
2321 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2323 TRACE("Set R4 to final value\n");
2324 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2325 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2326 return S_OK;
2329 if (dwVtBits & VTBIT_R8)
2331 TRACE("Set R8 to final value\n");
2332 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2333 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2334 return S_OK;
2337 if (dwVtBits & VTBIT_CY)
2339 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2341 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2342 TRACE("Set CY to final value\n");
2343 return S_OK;
2345 TRACE("Value Overflows CY\n");
2349 if (dwVtBits & VTBIT_DECIMAL)
2351 int i;
2352 ULONG carry;
2353 ULONG64 tmp;
2354 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2356 DECIMAL_SETZERO(pDec);
2357 DEC_LO32(pDec) = 0;
2359 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2360 DEC_SIGN(pDec) = DECIMAL_NEG;
2361 else
2362 DEC_SIGN(pDec) = DECIMAL_POS;
2364 /* Factor the significant digits */
2365 for (i = 0; i < pNumprs->cDig; i++)
2367 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2368 carry = (ULONG)(tmp >> 32);
2369 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2370 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2371 carry = (ULONG)(tmp >> 32);
2372 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2373 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2374 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2376 if (tmp >> 32 & UI4_MAX)
2378 VarNumFromParseNum_DecOverflow:
2379 TRACE("Overflow\n");
2380 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2381 return DISP_E_OVERFLOW;
2385 /* Account for the scale of the number */
2386 while (multiplier10 > 0)
2388 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2389 carry = (ULONG)(tmp >> 32);
2390 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2391 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2392 carry = (ULONG)(tmp >> 32);
2393 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2394 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2395 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2397 if (tmp >> 32 & UI4_MAX)
2398 goto VarNumFromParseNum_DecOverflow;
2399 multiplier10--;
2401 DEC_SCALE(pDec) = divisor10;
2403 V_VT(pVarDst) = VT_DECIMAL;
2404 return S_OK;
2406 return DISP_E_OVERFLOW; /* No more output choices */
2409 /**********************************************************************
2410 * VarCat [OLEAUT32.318]
2412 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2414 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2415 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out);
2417 /* Should we VariantClear out? */
2418 /* Can we handle array, vector, by ref etc. */
2419 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL &&
2420 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2422 V_VT(out) = VT_NULL;
2423 return S_OK;
2426 if (V_VT(left) == VT_BSTR && V_VT(right) == VT_BSTR)
2428 V_VT(out) = VT_BSTR;
2429 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2430 return S_OK;
2432 if (V_VT(left) == VT_BSTR) {
2433 VARIANT bstrvar;
2434 HRESULT hres;
2436 V_VT(out) = VT_BSTR;
2437 hres = VariantChangeTypeEx(&bstrvar,right,0,0,VT_BSTR);
2438 if (hres) {
2439 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2440 return hres;
2442 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar), &V_BSTR(out));
2443 return S_OK;
2445 if (V_VT(right) == VT_BSTR) {
2446 VARIANT bstrvar;
2447 HRESULT hres;
2449 V_VT(out) = VT_BSTR;
2450 hres = VariantChangeTypeEx(&bstrvar,left,0,0,VT_BSTR);
2451 if (hres) {
2452 FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right));
2453 return hres;
2455 VarBstrCat (V_BSTR(&bstrvar), V_BSTR(right), &V_BSTR(out));
2456 return S_OK;
2458 FIXME ("types %d / %d not supported\n",V_VT(left)&VT_TYPEMASK, V_VT(right)&VT_TYPEMASK);
2459 return S_OK;
2462 /**********************************************************************
2463 * VarCmp [OLEAUT32.176]
2465 * flags can be:
2466 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS
2467 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2470 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2472 BOOL lOk = TRUE;
2473 BOOL rOk = TRUE;
2474 LONGLONG lVal = -1;
2475 LONGLONG rVal = -1;
2476 VARIANT rv,lv;
2477 DWORD xmask;
2478 HRESULT rc;
2480 TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%08lx)\n", left, debugstr_VT(left),
2481 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags);
2483 VariantInit(&lv);VariantInit(&rv);
2484 V_VT(right) &= ~0x8000; /* hack since we sometime get this flag. */
2485 V_VT(left) &= ~0x8000; /* hack since we sometime get this flag. */
2487 /* If either are null, then return VARCMP_NULL */
2488 if ((V_VT(left)&VT_TYPEMASK) == VT_NULL ||
2489 (V_VT(right)&VT_TYPEMASK) == VT_NULL)
2490 return VARCMP_NULL;
2492 /* Strings - use VarBstrCmp */
2493 if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR &&
2494 (V_VT(right)&VT_TYPEMASK) == VT_BSTR) {
2495 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2498 xmask = (1<<(V_VT(left)&VT_TYPEMASK))|(1<<(V_VT(right)&VT_TYPEMASK));
2499 if (xmask & (1<<VT_R8)) {
2500 rc = VariantChangeType(&lv,left,0,VT_R8);
2501 if (FAILED(rc)) return rc;
2502 rc = VariantChangeType(&rv,right,0,VT_R8);
2503 if (FAILED(rc)) return rc;
2505 if (V_R8(&lv) == V_R8(&rv)) return VARCMP_EQ;
2506 if (V_R8(&lv) < V_R8(&rv)) return VARCMP_LT;
2507 if (V_R8(&lv) > V_R8(&rv)) return VARCMP_GT;
2508 return E_FAIL; /* can't get here */
2510 if (xmask & (1<<VT_R4)) {
2511 rc = VariantChangeType(&lv,left,0,VT_R4);
2512 if (FAILED(rc)) return rc;
2513 rc = VariantChangeType(&rv,right,0,VT_R4);
2514 if (FAILED(rc)) return rc;
2516 if (V_R4(&lv) == V_R4(&rv)) return VARCMP_EQ;
2517 if (V_R4(&lv) < V_R4(&rv)) return VARCMP_LT;
2518 if (V_R4(&lv) > V_R4(&rv)) return VARCMP_GT;
2519 return E_FAIL; /* can't get here */
2522 /* Integers - Ideally like to use VarDecCmp, but no Dec support yet
2523 Use LONGLONG to maximize ranges */
2524 lOk = TRUE;
2525 switch (V_VT(left)&VT_TYPEMASK) {
2526 case VT_I1 : lVal = V_UNION(left,cVal); break;
2527 case VT_I2 : lVal = V_UNION(left,iVal); break;
2528 case VT_I4 : lVal = V_UNION(left,lVal); break;
2529 case VT_INT : lVal = V_UNION(left,lVal); break;
2530 case VT_UI1 : lVal = V_UNION(left,bVal); break;
2531 case VT_UI2 : lVal = V_UNION(left,uiVal); break;
2532 case VT_UI4 : lVal = V_UNION(left,ulVal); break;
2533 case VT_UINT : lVal = V_UNION(left,ulVal); break;
2534 case VT_BOOL : lVal = V_UNION(left,boolVal); break;
2535 default: lOk = FALSE;
2538 rOk = TRUE;
2539 switch (V_VT(right)&VT_TYPEMASK) {
2540 case VT_I1 : rVal = V_UNION(right,cVal); break;
2541 case VT_I2 : rVal = V_UNION(right,iVal); break;
2542 case VT_I4 : rVal = V_UNION(right,lVal); break;
2543 case VT_INT : rVal = V_UNION(right,lVal); break;
2544 case VT_UI1 : rVal = V_UNION(right,bVal); break;
2545 case VT_UI2 : rVal = V_UNION(right,uiVal); break;
2546 case VT_UI4 : rVal = V_UNION(right,ulVal); break;
2547 case VT_UINT : rVal = V_UNION(right,ulVal); break;
2548 case VT_BOOL : rVal = V_UNION(right,boolVal); break;
2549 default: rOk = FALSE;
2552 if (lOk && rOk) {
2553 if (lVal < rVal) {
2554 return VARCMP_LT;
2555 } else if (lVal > rVal) {
2556 return VARCMP_GT;
2557 } else {
2558 return VARCMP_EQ;
2562 /* Strings - use VarBstrCmp */
2563 if ((V_VT(left)&VT_TYPEMASK) == VT_DATE &&
2564 (V_VT(right)&VT_TYPEMASK) == VT_DATE) {
2566 if (floor(V_UNION(left,date)) == floor(V_UNION(right,date))) {
2567 /* Due to floating point rounding errors, calculate varDate in whole numbers) */
2568 double wholePart = 0.0;
2569 double leftR;
2570 double rightR;
2572 /* Get the fraction * 24*60*60 to make it into whole seconds */
2573 wholePart = (double) floor( V_UNION(left,date) );
2574 if (wholePart == 0) wholePart = 1;
2575 leftR = floor(fmod( V_UNION(left,date), wholePart ) * (24*60*60));
2577 wholePart = (double) floor( V_UNION(right,date) );
2578 if (wholePart == 0) wholePart = 1;
2579 rightR = floor(fmod( V_UNION(right,date), wholePart ) * (24*60*60));
2581 if (leftR < rightR) {
2582 return VARCMP_LT;
2583 } else if (leftR > rightR) {
2584 return VARCMP_GT;
2585 } else {
2586 return VARCMP_EQ;
2589 } else if (V_UNION(left,date) < V_UNION(right,date)) {
2590 return VARCMP_LT;
2591 } else if (V_UNION(left,date) > V_UNION(right,date)) {
2592 return VARCMP_GT;
2595 FIXME("VarCmp partial implementation, doesn't support vt 0x%x / 0x%x\n",V_VT(left), V_VT(right));
2596 return E_FAIL;
2599 /**********************************************************************
2600 * VarAnd [OLEAUT32.142]
2603 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2605 HRESULT rc = E_FAIL;
2607 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2608 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2610 if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL &&
2611 (V_VT(right)&VT_TYPEMASK) == VT_BOOL) {
2613 V_VT(result) = VT_BOOL;
2614 if (V_BOOL(left) && V_BOOL(right)) {
2615 V_BOOL(result) = VARIANT_TRUE;
2616 } else {
2617 V_BOOL(result) = VARIANT_FALSE;
2619 rc = S_OK;
2621 } else {
2622 /* Integers */
2623 BOOL lOk = TRUE;
2624 BOOL rOk = TRUE;
2625 LONGLONG lVal = -1;
2626 LONGLONG rVal = -1;
2627 LONGLONG res = -1;
2628 int resT = 0; /* Testing has shown I2 & I2 == I2, all else
2629 becomes I4, even unsigned ints (incl. UI2) */
2631 lOk = TRUE;
2632 switch (V_VT(left)&VT_TYPEMASK) {
2633 case VT_I1 : lVal = V_UNION(left,cVal); resT=VT_I4; break;
2634 case VT_I2 : lVal = V_UNION(left,iVal); resT=VT_I2; break;
2635 case VT_I4 : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2636 case VT_INT : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2637 case VT_UI1 : lVal = V_UNION(left,bVal); resT=VT_I4; break;
2638 case VT_UI2 : lVal = V_UNION(left,uiVal); resT=VT_I4; break;
2639 case VT_UI4 : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2640 case VT_UINT : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2641 case VT_BOOL : rVal = V_UNION(left,boolVal); resT=VT_I4; break;
2642 default: lOk = FALSE;
2645 rOk = TRUE;
2646 switch (V_VT(right)&VT_TYPEMASK) {
2647 case VT_I1 : rVal = V_UNION(right,cVal); resT=VT_I4; break;
2648 case VT_I2 : rVal = V_UNION(right,iVal); resT=max(VT_I2, resT); break;
2649 case VT_I4 : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2650 case VT_INT : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2651 case VT_UI1 : rVal = V_UNION(right,bVal); resT=VT_I4; break;
2652 case VT_UI2 : rVal = V_UNION(right,uiVal); resT=VT_I4; break;
2653 case VT_UI4 : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2654 case VT_UINT : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2655 case VT_BOOL : rVal = V_UNION(right,boolVal); resT=VT_I4; break;
2656 default: rOk = FALSE;
2659 if (lOk && rOk) {
2660 res = (lVal & rVal);
2661 V_VT(result) = resT;
2662 switch (resT) {
2663 case VT_I2 : V_UNION(result,iVal) = res; break;
2664 case VT_I4 : V_UNION(result,lVal) = res; break;
2665 default:
2666 FIXME("Unexpected result variant type %x\n", resT);
2667 V_UNION(result,lVal) = res;
2669 rc = S_OK;
2671 } else {
2672 FIXME("VarAnd stub\n");
2676 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2677 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2678 return rc;
2681 /**********************************************************************
2682 * VarAdd [OLEAUT32.141]
2683 * FIXME: From MSDN: If ... Then
2684 * Both expressions are of the string type Concatenated.
2685 * One expression is a string type and the other a character Addition.
2686 * One expression is numeric and the other is a string Addition.
2687 * Both expressions are numeric Addition.
2688 * Either expression is NULL NULL is returned.
2689 * Both expressions are empty Integer subtype is returned.
2692 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2694 HRESULT rc = E_FAIL;
2696 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2697 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2699 if ((V_VT(left)&VT_TYPEMASK) == VT_EMPTY)
2700 return VariantCopy(result,right);
2702 if ((V_VT(right)&VT_TYPEMASK) == VT_EMPTY)
2703 return VariantCopy(result,left);
2705 /* check if we add doubles */
2706 if (((V_VT(left)&VT_TYPEMASK) == VT_R8) || ((V_VT(right)&VT_TYPEMASK) == VT_R8)) {
2707 BOOL lOk = TRUE;
2708 BOOL rOk = TRUE;
2709 double lVal = -1;
2710 double rVal = -1;
2711 double res = -1;
2713 lOk = TRUE;
2714 switch (V_VT(left)&VT_TYPEMASK) {
2715 case VT_I1 : lVal = V_UNION(left,cVal); break;
2716 case VT_I2 : lVal = V_UNION(left,iVal); break;
2717 case VT_I4 : lVal = V_UNION(left,lVal); break;
2718 case VT_INT : lVal = V_UNION(left,lVal); break;
2719 case VT_UI1 : lVal = V_UNION(left,bVal); break;
2720 case VT_UI2 : lVal = V_UNION(left,uiVal); break;
2721 case VT_UI4 : lVal = V_UNION(left,ulVal); break;
2722 case VT_UINT : lVal = V_UNION(left,ulVal); break;
2723 case VT_R4 : lVal = V_UNION(left,fltVal); break;
2724 case VT_R8 : lVal = V_UNION(left,dblVal); break;
2725 case VT_NULL : lVal = 0.0; break;
2726 default: lOk = FALSE;
2729 rOk = TRUE;
2730 switch (V_VT(right)&VT_TYPEMASK) {
2731 case VT_I1 : rVal = V_UNION(right,cVal); break;
2732 case VT_I2 : rVal = V_UNION(right,iVal); break;
2733 case VT_I4 : rVal = V_UNION(right,lVal); break;
2734 case VT_INT : rVal = V_UNION(right,lVal); break;
2735 case VT_UI1 : rVal = V_UNION(right,bVal); break;
2736 case VT_UI2 : rVal = V_UNION(right,uiVal); break;
2737 case VT_UI4 : rVal = V_UNION(right,ulVal); break;
2738 case VT_UINT : rVal = V_UNION(right,ulVal); break;
2739 case VT_R4 : rVal = V_UNION(right,fltVal);break;
2740 case VT_R8 : rVal = V_UNION(right,dblVal);break;
2741 case VT_NULL : rVal = 0.0; break;
2742 default: rOk = FALSE;
2745 if (lOk && rOk) {
2746 res = (lVal + rVal);
2747 V_VT(result) = VT_R8;
2748 V_UNION(result,dblVal) = res;
2749 rc = S_OK;
2750 } else {
2751 FIXME("Unhandled type pair %d / %d in double addition.\n",
2752 (V_VT(left)&VT_TYPEMASK),
2753 (V_VT(right)&VT_TYPEMASK)
2756 return rc;
2759 /* now check if we add floats. VT_R8 can no longer happen here! */
2760 if (((V_VT(left)&VT_TYPEMASK) == VT_R4) || ((V_VT(right)&VT_TYPEMASK) == VT_R4)) {
2761 BOOL lOk = TRUE;
2762 BOOL rOk = TRUE;
2763 float lVal = -1;
2764 float rVal = -1;
2765 float res = -1;
2767 lOk = TRUE;
2768 switch (V_VT(left)&VT_TYPEMASK) {
2769 case VT_I1 : lVal = V_UNION(left,cVal); break;
2770 case VT_I2 : lVal = V_UNION(left,iVal); break;
2771 case VT_I4 : lVal = V_UNION(left,lVal); break;
2772 case VT_INT : lVal = V_UNION(left,lVal); break;
2773 case VT_UI1 : lVal = V_UNION(left,bVal); break;
2774 case VT_UI2 : lVal = V_UNION(left,uiVal); break;
2775 case VT_UI4 : lVal = V_UNION(left,ulVal); break;
2776 case VT_UINT : lVal = V_UNION(left,ulVal); break;
2777 case VT_R4 : lVal = V_UNION(left,fltVal); break;
2778 case VT_NULL : lVal = 0.0; break;
2779 default: lOk = FALSE;
2782 rOk = TRUE;
2783 switch (V_VT(right)&VT_TYPEMASK) {
2784 case VT_I1 : rVal = V_UNION(right,cVal); break;
2785 case VT_I2 : rVal = V_UNION(right,iVal); break;
2786 case VT_I4 : rVal = V_UNION(right,lVal); break;
2787 case VT_INT : rVal = V_UNION(right,lVal); break;
2788 case VT_UI1 : rVal = V_UNION(right,bVal); break;
2789 case VT_UI2 : rVal = V_UNION(right,uiVal); break;
2790 case VT_UI4 : rVal = V_UNION(right,ulVal); break;
2791 case VT_UINT : rVal = V_UNION(right,ulVal); break;
2792 case VT_R4 : rVal = V_UNION(right,fltVal);break;
2793 case VT_NULL : rVal = 0.0; break;
2794 default: rOk = FALSE;
2797 if (lOk && rOk) {
2798 res = (lVal + rVal);
2799 V_VT(result) = VT_R4;
2800 V_UNION(result,fltVal) = res;
2801 rc = S_OK;
2802 } else {
2803 FIXME("Unhandled type pair %d / %d in float addition.\n",
2804 (V_VT(left)&VT_TYPEMASK),
2805 (V_VT(right)&VT_TYPEMASK)
2808 return rc;
2811 /* Handle strings as concat */
2812 if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR &&
2813 (V_VT(right)&VT_TYPEMASK) == VT_BSTR) {
2814 V_VT(result) = VT_BSTR;
2815 return VarBstrCat(V_BSTR(left), V_BSTR(right), &V_BSTR(result));
2816 } else {
2818 /* Integers */
2819 BOOL lOk = TRUE;
2820 BOOL rOk = TRUE;
2821 LONGLONG lVal = -1;
2822 LONGLONG rVal = -1;
2823 LONGLONG res = -1;
2824 int resT = 0; /* Testing has shown I2 + I2 == I2, all else
2825 becomes I4 */
2827 lOk = TRUE;
2828 switch (V_VT(left)&VT_TYPEMASK) {
2829 case VT_I1 : lVal = V_UNION(left,cVal); resT=VT_I4; break;
2830 case VT_I2 : lVal = V_UNION(left,iVal); resT=VT_I2; break;
2831 case VT_I4 : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2832 case VT_INT : lVal = V_UNION(left,lVal); resT=VT_I4; break;
2833 case VT_UI1 : lVal = V_UNION(left,bVal); resT=VT_I4; break;
2834 case VT_UI2 : lVal = V_UNION(left,uiVal); resT=VT_I4; break;
2835 case VT_UI4 : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2836 case VT_UINT : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
2837 case VT_NULL : lVal = 0; resT = VT_I4; break;
2838 default: lOk = FALSE;
2841 rOk = TRUE;
2842 switch (V_VT(right)&VT_TYPEMASK) {
2843 case VT_I1 : rVal = V_UNION(right,cVal); resT=VT_I4; break;
2844 case VT_I2 : rVal = V_UNION(right,iVal); resT=max(VT_I2, resT); break;
2845 case VT_I4 : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2846 case VT_INT : rVal = V_UNION(right,lVal); resT=VT_I4; break;
2847 case VT_UI1 : rVal = V_UNION(right,bVal); resT=VT_I4; break;
2848 case VT_UI2 : rVal = V_UNION(right,uiVal); resT=VT_I4; break;
2849 case VT_UI4 : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2850 case VT_UINT : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
2851 case VT_NULL : rVal = 0; resT=VT_I4; break;
2852 default: rOk = FALSE;
2855 if (lOk && rOk) {
2856 res = (lVal + rVal);
2857 V_VT(result) = resT;
2858 switch (resT) {
2859 case VT_I2 : V_UNION(result,iVal) = res; break;
2860 case VT_I4 : V_UNION(result,lVal) = res; break;
2861 default:
2862 FIXME("Unexpected result variant type %x\n", resT);
2863 V_UNION(result,lVal) = res;
2865 rc = S_OK;
2867 } else {
2868 FIXME("unimplemented part (0x%x + 0x%x)\n",V_VT(left), V_VT(right));
2872 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
2873 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
2874 return rc;
2877 /**********************************************************************
2878 * VarMul [OLEAUT32.156]
2881 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2883 HRESULT rc = E_FAIL;
2884 VARTYPE lvt,rvt,resvt;
2885 VARIANT lv,rv;
2886 BOOL found;
2888 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2889 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2891 VariantInit(&lv);VariantInit(&rv);
2892 lvt = V_VT(left)&VT_TYPEMASK;
2893 rvt = V_VT(right)&VT_TYPEMASK;
2894 found = FALSE;resvt=VT_VOID;
2895 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_R4)|(1<<VT_R8))) {
2896 found = TRUE;
2897 resvt = VT_R8;
2899 if (!found && (((1<<lvt) | (1<<rvt)) & ((1<<VT_I1)|(1<<VT_I2)|(1<<VT_UI1)|(1<<VT_UI2)|(1<<VT_I4)|(1<<VT_UI4)|(1<<VT_INT)|(1<<VT_UINT)))) {
2900 found = TRUE;
2901 resvt = VT_I4;
2903 if (!found) {
2904 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
2905 return E_FAIL;
2907 rc = VariantChangeType(&lv, left, 0, resvt);
2908 if (FAILED(rc)) {
2909 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
2910 return rc;
2912 rc = VariantChangeType(&rv, right, 0, resvt);
2913 if (FAILED(rc)) {
2914 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
2915 return rc;
2917 switch (resvt) {
2918 case VT_R8:
2919 V_VT(result) = resvt;
2920 V_R8(result) = V_R8(&lv) * V_R8(&rv);
2921 rc = S_OK;
2922 break;
2923 case VT_I4:
2924 V_VT(result) = resvt;
2925 V_I4(result) = V_I4(&lv) * V_I4(&rv);
2926 rc = S_OK;
2927 break;
2929 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
2930 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
2931 return rc;
2934 /**********************************************************************
2935 * VarDiv [OLEAUT32.143]
2938 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2940 HRESULT rc = E_FAIL;
2941 VARTYPE lvt,rvt,resvt;
2942 VARIANT lv,rv;
2943 BOOL found;
2945 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
2946 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
2948 VariantInit(&lv);VariantInit(&rv);
2949 lvt = V_VT(left)&VT_TYPEMASK;
2950 rvt = V_VT(right)&VT_TYPEMASK;
2951 found = FALSE;resvt = VT_VOID;
2952 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_R4)|(1<<VT_R8))) {
2953 found = TRUE;
2954 resvt = VT_R8;
2956 if (!found && (((1<<lvt) | (1<<rvt)) & ((1<<VT_I1)|(1<<VT_I2)|(1<<VT_UI1)|(1<<VT_UI2)|(1<<VT_I4)|(1<<VT_UI4)|(1<<VT_INT)|(1<<VT_UINT)))) {
2957 found = TRUE;
2958 resvt = VT_I4;
2960 if (!found) {
2961 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
2962 return E_FAIL;
2964 rc = VariantChangeType(&lv, left, 0, resvt);
2965 if (FAILED(rc)) {
2966 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
2967 return rc;
2969 rc = VariantChangeType(&rv, right, 0, resvt);
2970 if (FAILED(rc)) {
2971 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
2972 return rc;
2974 switch (resvt) {
2975 case VT_R8:
2976 V_VT(result) = resvt;
2977 V_R8(result) = V_R8(&lv) / V_R8(&rv);
2978 rc = S_OK;
2979 break;
2980 case VT_I4:
2981 V_VT(result) = resvt;
2982 V_I4(result) = V_I4(&lv) / V_I4(&rv);
2983 rc = S_OK;
2984 break;
2986 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
2987 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
2988 return rc;
2991 /**********************************************************************
2992 * VarSub [OLEAUT32.159]
2995 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2997 HRESULT rc = E_FAIL;
2998 VARTYPE lvt,rvt,resvt;
2999 VARIANT lv,rv;
3000 BOOL found;
3002 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3003 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3005 VariantInit(&lv);VariantInit(&rv);
3006 lvt = V_VT(left)&VT_TYPEMASK;
3007 rvt = V_VT(right)&VT_TYPEMASK;
3008 found = FALSE;resvt = VT_VOID;
3009 if (((1<<lvt) | (1<<rvt)) & ((1<<VT_DATE)|(1<<VT_R4)|(1<<VT_R8))) {
3010 found = TRUE;
3011 resvt = VT_R8;
3013 if (!found && (((1<<lvt) | (1<<rvt)) & ((1<<VT_I1)|(1<<VT_I2)|(1<<VT_UI1)|(1<<VT_UI2)|(1<<VT_I4)|(1<<VT_UI4)|(1<<VT_INT)|(1<<VT_UINT)))) {
3014 found = TRUE;
3015 resvt = VT_I4;
3017 if (!found) {
3018 FIXME("can't expand vt %d vs %d to a target type.\n",lvt,rvt);
3019 return E_FAIL;
3021 rc = VariantChangeType(&lv, left, 0, resvt);
3022 if (FAILED(rc)) {
3023 FIXME("Could not convert 0x%x to %d?\n",V_VT(left),resvt);
3024 return rc;
3026 rc = VariantChangeType(&rv, right, 0, resvt);
3027 if (FAILED(rc)) {
3028 FIXME("Could not convert 0x%x to %d?\n",V_VT(right),resvt);
3029 return rc;
3031 switch (resvt) {
3032 case VT_R8:
3033 V_VT(result) = resvt;
3034 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3035 rc = S_OK;
3036 break;
3037 case VT_I4:
3038 V_VT(result) = resvt;
3039 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3040 rc = S_OK;
3041 break;
3043 TRACE("returning 0x%8lx (%s%s),%g\n", rc, debugstr_VT(result),
3044 debugstr_VF(result), V_VT(result) == VT_R8 ? V_R8(result) : (double)V_I4(result));
3045 return rc;
3048 /**********************************************************************
3049 * VarOr [OLEAUT32.157]
3052 HRESULT WINAPI VarOr(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3054 HRESULT rc = E_FAIL;
3056 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3057 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3059 if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL &&
3060 (V_VT(right)&VT_TYPEMASK) == VT_BOOL) {
3062 V_VT(result) = VT_BOOL;
3063 if (V_BOOL(left) || V_BOOL(right)) {
3064 V_BOOL(result) = VARIANT_TRUE;
3065 } else {
3066 V_BOOL(result) = VARIANT_FALSE;
3068 rc = S_OK;
3070 } else {
3071 /* Integers */
3072 BOOL lOk = TRUE;
3073 BOOL rOk = TRUE;
3074 LONGLONG lVal = -1;
3075 LONGLONG rVal = -1;
3076 LONGLONG res = -1;
3077 int resT = 0; /* Testing has shown I2 & I2 == I2, all else
3078 becomes I4, even unsigned ints (incl. UI2) */
3080 lOk = TRUE;
3081 switch (V_VT(left)&VT_TYPEMASK) {
3082 case VT_I1 : lVal = V_UNION(left,cVal); resT=VT_I4; break;
3083 case VT_I2 : lVal = V_UNION(left,iVal); resT=VT_I2; break;
3084 case VT_I4 : lVal = V_UNION(left,lVal); resT=VT_I4; break;
3085 case VT_INT : lVal = V_UNION(left,lVal); resT=VT_I4; break;
3086 case VT_UI1 : lVal = V_UNION(left,bVal); resT=VT_I4; break;
3087 case VT_UI2 : lVal = V_UNION(left,uiVal); resT=VT_I4; break;
3088 case VT_UI4 : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
3089 case VT_UINT : lVal = V_UNION(left,ulVal); resT=VT_I4; break;
3090 case VT_BOOL : lVal = V_UNION(left,boolVal); resT=VT_I4; break;
3091 default: lOk = FALSE;
3094 rOk = TRUE;
3095 switch (V_VT(right)&VT_TYPEMASK) {
3096 case VT_I1 : rVal = V_UNION(right,cVal); resT=VT_I4; break;
3097 case VT_I2 : rVal = V_UNION(right,iVal); resT=max(VT_I2, resT); break;
3098 case VT_I4 : rVal = V_UNION(right,lVal); resT=VT_I4; break;
3099 case VT_INT : rVal = V_UNION(right,lVal); resT=VT_I4; break;
3100 case VT_UI1 : rVal = V_UNION(right,bVal); resT=VT_I4; break;
3101 case VT_UI2 : rVal = V_UNION(right,uiVal); resT=VT_I4; break;
3102 case VT_UI4 : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
3103 case VT_UINT : rVal = V_UNION(right,ulVal); resT=VT_I4; break;
3104 case VT_BOOL : rVal = V_UNION(right,boolVal); resT=VT_I4; break;
3105 default: rOk = FALSE;
3108 if (lOk && rOk) {
3109 res = (lVal | rVal);
3110 V_VT(result) = resT;
3111 switch (resT) {
3112 case VT_I2 : V_UNION(result,iVal) = res; break;
3113 case VT_I4 : V_UNION(result,lVal) = res; break;
3114 default:
3115 FIXME("Unexpected result variant type %x\n", resT);
3116 V_UNION(result,lVal) = res;
3118 rc = S_OK;
3120 } else {
3121 FIXME("unimplemented part, V_VT(left) == 0x%X, V_VT(right) == 0x%X\n",
3122 V_VT(left) & VT_TYPEMASK, V_VT(right) & VT_TYPEMASK);
3126 TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result),
3127 debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result));
3128 return rc;
3131 /**********************************************************************
3132 * VarAbs [OLEAUT32.168]
3134 * Convert a variant to its absolute value.
3136 * PARAMS
3137 * pVarIn [I] Source variant
3138 * pVarOut [O] Destination for converted value
3140 * RETURNS
3141 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
3142 * Failure: An HRESULT error code indicating the error.
3144 * NOTES
3145 * - This function does not process by-reference variants.
3146 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3147 * according to the following table:
3148 *| Input Type Output Type
3149 *| ---------- -----------
3150 *| VT_BOOL VT_I2
3151 *| VT_BSTR VT_R8
3152 *| (All others) Unchanged
3154 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
3156 VARIANT varIn;
3157 HRESULT hRet = S_OK;
3159 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3160 debugstr_VF(pVarIn), pVarOut);
3162 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
3163 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
3164 V_VT(pVarIn) == VT_ERROR)
3165 return DISP_E_TYPEMISMATCH;
3167 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
3169 #define ABS_CASE(typ,min) \
3170 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
3171 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
3172 break
3174 switch (V_VT(pVarIn))
3176 ABS_CASE(I1,I1_MIN);
3177 case VT_BOOL:
3178 V_VT(pVarOut) = VT_I2;
3179 /* BOOL->I2, Fall through ... */
3180 ABS_CASE(I2,I2_MIN);
3181 case VT_INT:
3182 ABS_CASE(I4,I4_MIN);
3183 ABS_CASE(I8,I8_MIN);
3184 ABS_CASE(R4,R4_MIN);
3185 case VT_BSTR:
3186 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3187 if (FAILED(hRet))
3188 break;
3189 V_VT(pVarOut) = VT_R8;
3190 pVarIn = &varIn;
3191 /* Fall through ... */
3192 case VT_DATE:
3193 ABS_CASE(R8,R8_MIN);
3194 case VT_CY:
3195 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
3196 break;
3197 case VT_DECIMAL:
3198 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
3199 break;
3200 case VT_UI1:
3201 case VT_UI2:
3202 case VT_UINT:
3203 case VT_UI4:
3204 case VT_UI8:
3205 case VT_EMPTY:
3206 case VT_NULL:
3207 /* No-Op */
3208 break;
3209 default:
3210 hRet = DISP_E_BADVARTYPE;
3213 return hRet;
3216 /**********************************************************************
3217 * VarFix [OLEAUT32.169]
3219 * Truncate a variants value to a whole number.
3221 * PARAMS
3222 * pVarIn [I] Source variant
3223 * pVarOut [O] Destination for converted value
3225 * RETURNS
3226 * Success: S_OK. pVarOut contains the converted value.
3227 * Failure: An HRESULT error code indicating the error.
3229 * NOTES
3230 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3231 * according to the following table:
3232 *| Input Type Output Type
3233 *| ---------- -----------
3234 *| VT_BOOL VT_I2
3235 *| VT_EMPTY VT_I2
3236 *| VT_BSTR VT_R8
3237 *| All Others Unchanged
3238 * - The difference between this function and VarInt() is that VarInt() rounds
3239 * negative numbers away from 0, while this function rounds them towards zero.
3241 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
3243 HRESULT hRet = S_OK;
3245 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3246 debugstr_VF(pVarIn), pVarOut);
3248 V_VT(pVarOut) = V_VT(pVarIn);
3250 switch (V_VT(pVarIn))
3252 case VT_UI1:
3253 V_UI1(pVarOut) = V_UI1(pVarIn);
3254 break;
3255 case VT_BOOL:
3256 V_VT(pVarOut) = VT_I2;
3257 /* Fall through */
3258 case VT_I2:
3259 V_I2(pVarOut) = V_I2(pVarIn);
3260 break;
3261 case VT_I4:
3262 V_I4(pVarOut) = V_I4(pVarIn);
3263 break;
3264 case VT_I8:
3265 V_I8(pVarOut) = V_I8(pVarIn);
3266 break;
3267 case VT_R4:
3268 if (V_R4(pVarIn) < 0.0f)
3269 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
3270 else
3271 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3272 break;
3273 case VT_BSTR:
3274 V_VT(pVarOut) = VT_R8;
3275 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3276 pVarIn = pVarOut;
3277 /* Fall through */
3278 case VT_DATE:
3279 case VT_R8:
3280 if (V_R8(pVarIn) < 0.0)
3281 V_R8(pVarOut) = ceil(V_R8(pVarIn));
3282 else
3283 V_R8(pVarOut) = floor(V_R8(pVarIn));
3284 break;
3285 case VT_CY:
3286 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
3287 break;
3288 case VT_DECIMAL:
3289 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3290 break;
3291 case VT_EMPTY:
3292 V_VT(pVarOut) = VT_I2;
3293 V_I2(pVarOut) = 0;
3294 break;
3295 case VT_NULL:
3296 /* No-Op */
3297 break;
3298 default:
3299 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3300 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3301 hRet = DISP_E_BADVARTYPE;
3302 else
3303 hRet = DISP_E_TYPEMISMATCH;
3305 if (FAILED(hRet))
3306 V_VT(pVarOut) = VT_EMPTY;
3308 return hRet;
3311 /**********************************************************************
3312 * VarInt [OLEAUT32.172]
3314 * Truncate a variants value to a whole number.
3316 * PARAMS
3317 * pVarIn [I] Source variant
3318 * pVarOut [O] Destination for converted value
3320 * RETURNS
3321 * Success: S_OK. pVarOut contains the converted value.
3322 * Failure: An HRESULT error code indicating the error.
3324 * NOTES
3325 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3326 * according to the following table:
3327 *| Input Type Output Type
3328 *| ---------- -----------
3329 *| VT_BOOL VT_I2
3330 *| VT_EMPTY VT_I2
3331 *| VT_BSTR VT_R8
3332 *| All Others Unchanged
3333 * - The difference between this function and VarFix() is that VarFix() rounds
3334 * negative numbers towards 0, while this function rounds them away from zero.
3336 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
3338 HRESULT hRet = S_OK;
3340 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3341 debugstr_VF(pVarIn), pVarOut);
3343 V_VT(pVarOut) = V_VT(pVarIn);
3345 switch (V_VT(pVarIn))
3347 case VT_R4:
3348 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
3349 break;
3350 case VT_BSTR:
3351 V_VT(pVarOut) = VT_R8;
3352 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3353 pVarIn = pVarOut;
3354 /* Fall through */
3355 case VT_DATE:
3356 case VT_R8:
3357 V_R8(pVarOut) = floor(V_R8(pVarIn));
3358 break;
3359 case VT_CY:
3360 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
3361 break;
3362 case VT_DECIMAL:
3363 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3364 break;
3365 default:
3366 return VarFix(pVarIn, pVarOut);
3369 return hRet;
3372 /**********************************************************************
3373 * VarXor [OLEAUT32.167]
3375 * Perform a logical exclusive-or (XOR) operation on two variants.
3377 * PARAMS
3378 * pVarLeft [I] First variant
3379 * pVarRight [I] Variant to XOR with pVarLeft
3380 * pVarOut [O] Destination for XOR result
3382 * RETURNS
3383 * Success: S_OK. pVarOut contains the result of the operation with its type
3384 * taken from the table below).
3385 * Failure: An HRESULT error code indicating the error.
3387 * NOTES
3388 * - The result stored in pVarOut depends on the types of pVarLeft/pVarRight
3389 * according to the following table:
3390 *| Type 1 Type 2 Result Type
3391 *| ------ ------ -----------
3392 *| VT_NULL All Others VT_NULL
3393 *| VT_BOOL VT_BOOL VT_BOOL
3394 *| VT_EMPTY VT_I2
3395 *| VT_UI1 VT_I2
3396 *| VT_I2 VT_I2
3397 *| VT_EMPTY VT_EMPTY VT_I2
3398 *| VT_UI1 VT_I2
3399 *| VT_BOOL VT_I2
3400 *| VT_I2 VT_I2
3401 *| VT_UI1 VT_UI1 VT_UI1
3402 *| VT_EMPTY VT_I2
3403 *| VT_BOOL VT_I2
3404 *| VT_I2 VT_I2
3405 *| VT_I2 VT_I2 VT_I2
3406 *| VT_EMPTY VT_I2
3407 *| VT_BOOL VT_I2
3408 *| All Other Combinations VT_UI4
3410 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3412 VARTYPE vt = VT_I4;
3413 VARIANT varLeft, varRight;
3414 HRESULT hRet;
3416 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3417 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3418 debugstr_VF(pVarRight), pVarOut);
3420 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3421 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3422 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
3423 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
3424 return DISP_E_BADVARTYPE;
3426 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3428 if (V_VT(pVarLeft) == VT_NULL)
3429 pVarLeft = pVarRight; /* point to the non-NULL var */
3431 switch (V_VT(pVarLeft))
3433 case VT_BSTR:
3434 if (!V_BSTR(pVarLeft))
3435 return DISP_E_BADVARTYPE;
3436 /* Fall Through ... */
3437 case VT_NULL: case VT_EMPTY: case VT_DATE: case VT_CY:
3438 case VT_DECIMAL: case VT_R4: case VT_R8: case VT_BOOL:
3439 case VT_I1: case VT_UI1: case VT_I2: case VT_UI2:
3440 case VT_I4: case VT_UI4: case VT_I8: case VT_UI8:
3441 case VT_INT: case VT_UINT:
3442 V_VT(pVarOut) = VT_NULL;
3443 return S_OK;
3444 default:
3445 return DISP_E_BADVARTYPE;
3449 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
3451 if (V_VT(pVarLeft) == VT_EMPTY)
3452 pVarLeft = pVarRight; /* point to the non-EMPTY var */
3454 switch (V_VT(pVarLeft))
3456 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
3457 V_VT(pVarOut) = VT_I2;
3458 V_I2(pVarOut) = VARIANT_FALSE;
3459 return S_OK;
3461 case VT_BSTR:
3462 if (!V_BSTR(pVarLeft))
3463 return DISP_E_BADVARTYPE;
3464 /* Fall Through ... */
3465 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
3466 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
3467 case VT_INT: case VT_UINT: case VT_UI8:
3468 V_VT(pVarOut) = VT_I4;
3469 V_I4(pVarOut) = VARIANT_FALSE;
3470 return S_OK;
3471 case VT_I8:
3472 V_VT(pVarOut) = VT_I8;
3473 V_I4(pVarOut) = VARIANT_FALSE;
3474 return S_OK;
3475 default:
3476 return DISP_E_BADVARTYPE;
3480 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
3482 V_VT(pVarOut) = VT_BOOL;
3483 V_BOOL(pVarOut) = V_BOOL(pVarLeft) ^ V_BOOL(pVarRight);
3484 return S_OK;
3487 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
3489 V_VT(pVarOut) = VT_UI1;
3490 V_UI1(pVarOut) = V_UI1(pVarLeft) ^ V_UI1(pVarRight);
3491 return S_OK;
3494 if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
3495 V_VT(pVarLeft) == VT_I2) &&
3496 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
3497 V_VT(pVarRight) == VT_I2))
3498 vt = VT_I2;
3499 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
3501 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
3502 return DISP_E_TYPEMISMATCH;
3503 vt = VT_I8;
3506 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
3507 hRet = VariantCopy(&varLeft, pVarLeft);
3508 if (FAILED(hRet))
3509 goto VarXor_Exit;
3511 hRet = VariantCopy(&varRight, pVarRight);
3512 if (FAILED(hRet))
3513 goto VarXor_Exit;
3515 hRet = VariantChangeTypeEx(&varLeft, pVarLeft, LOCALE_USER_DEFAULT, 0, vt);
3516 if (FAILED(hRet))
3517 goto VarXor_Exit;
3519 hRet = VariantChangeTypeEx(&varRight, pVarRight, LOCALE_USER_DEFAULT, 0, vt);
3520 if (FAILED(hRet))
3521 goto VarXor_Exit;
3523 V_VT(pVarOut) = vt;
3524 if (vt == VT_I8)
3526 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
3528 else if (vt == VT_UI4)
3530 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
3532 else
3534 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
3537 VarXor_Exit:
3538 VariantClear(&varLeft);
3539 VariantClear(&varRight);
3540 return hRet;
3543 /**********************************************************************
3544 * VarEqv [OLEAUT32.172]
3546 * Determine if two variants contain the same value.
3548 * PARAMS
3549 * pVarLeft [I] First variant to compare
3550 * pVarRight [I] Variant to compare to pVarLeft
3551 * pVarOut [O] Destination for comparison result
3553 * RETURNS
3554 * Success: S_OK. pVarOut contains the result of the comparason (VARIANT_TRUE
3555 * if equivalent or non-zero otherwise.
3556 * Failure: An HRESULT error code indicating the error.
3558 * NOTES
3559 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
3560 * the result.
3562 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3564 HRESULT hRet;
3566 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft),
3567 debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight),
3568 debugstr_VF(pVarRight), pVarOut);
3570 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
3571 if (SUCCEEDED(hRet))
3573 if (V_VT(pVarOut) == VT_I8)
3574 V_I8(pVarOut) = ~V_I8(pVarOut);
3575 else
3576 V_UI4(pVarOut) = ~V_UI4(pVarOut);
3578 return hRet;
3581 /**********************************************************************
3582 * VarNeg [OLEAUT32.173]
3584 * Negate the value of a variant.
3586 * PARAMS
3587 * pVarIn [I] Source variant
3588 * pVarOut [O] Destination for converted value
3590 * RETURNS
3591 * Success: S_OK. pVarOut contains the converted value.
3592 * Failure: An HRESULT error code indicating the error.
3594 * NOTES
3595 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3596 * according to the following table:
3597 *| Input Type Output Type
3598 *| ---------- -----------
3599 *| VT_EMPTY VT_I2
3600 *| VT_UI1 VT_I2
3601 *| VT_BOOL VT_I2
3602 *| VT_BSTR VT_R8
3603 *| All Others Unchanged (unless promoted)
3604 * - Where the negated value of a variant does not fit in its base type, the type
3605 * is promoted according to the following table:
3606 *| Input Type Promoted To
3607 *| ---------- -----------
3608 *| VT_I2 VT_I4
3609 *| VT_I4 VT_R8
3610 *| VT_I8 VT_R8
3611 * - The native version of this function returns DISP_E_BADVARTYPE for valid
3612 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
3613 * for types which are not valid. Since this is in contravention of the
3614 * meaning of those error codes and unlikely to be relied on by applications,
3615 * this implementation returns errors consistent with the other high level
3616 * variant math functions.
3618 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
3620 HRESULT hRet = S_OK;
3622 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3623 debugstr_VF(pVarIn), pVarOut);
3625 V_VT(pVarOut) = V_VT(pVarIn);
3627 switch (V_VT(pVarIn))
3629 case VT_UI1:
3630 V_VT(pVarOut) = VT_I2;
3631 V_I2(pVarOut) = -V_UI1(pVarIn);
3632 break;
3633 case VT_BOOL:
3634 V_VT(pVarOut) = VT_I2;
3635 /* Fall through */
3636 case VT_I2:
3637 if (V_I2(pVarIn) == I2_MIN)
3639 V_VT(pVarOut) = VT_I4;
3640 V_I4(pVarOut) = -(int)V_I2(pVarIn);
3642 else
3643 V_I2(pVarOut) = -V_I2(pVarIn);
3644 break;
3645 case VT_I4:
3646 if (V_I4(pVarIn) == I4_MIN)
3648 V_VT(pVarOut) = VT_R8;
3649 V_R8(pVarOut) = -(double)V_I4(pVarIn);
3651 else
3652 V_I4(pVarOut) = -V_I4(pVarIn);
3653 break;
3654 case VT_I8:
3655 if (V_I8(pVarIn) == I8_MIN)
3657 V_VT(pVarOut) = VT_R8;
3658 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
3659 V_R8(pVarOut) *= -1.0;
3661 else
3662 V_I8(pVarOut) = -V_I8(pVarIn);
3663 break;
3664 case VT_R4:
3665 V_R4(pVarOut) = -V_R4(pVarIn);
3666 break;
3667 case VT_DATE:
3668 case VT_R8:
3669 V_R8(pVarOut) = -V_R8(pVarIn);
3670 break;
3671 case VT_CY:
3672 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
3673 break;
3674 case VT_DECIMAL:
3675 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
3676 break;
3677 case VT_BSTR:
3678 V_VT(pVarOut) = VT_R8;
3679 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
3680 V_R8(pVarOut) = -V_R8(pVarOut);
3681 break;
3682 case VT_EMPTY:
3683 V_VT(pVarOut) = VT_I2;
3684 V_I2(pVarOut) = 0;
3685 break;
3686 case VT_NULL:
3687 /* No-Op */
3688 break;
3689 default:
3690 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3691 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3692 hRet = DISP_E_BADVARTYPE;
3693 else
3694 hRet = DISP_E_TYPEMISMATCH;
3696 if (FAILED(hRet))
3697 V_VT(pVarOut) = VT_EMPTY;
3699 return hRet;
3702 /**********************************************************************
3703 * VarNot [OLEAUT32.174]
3705 * Perform a not operation on a variant.
3707 * PARAMS
3708 * pVarIn [I] Source variant
3709 * pVarOut [O] Destination for converted value
3711 * RETURNS
3712 * Success: S_OK. pVarOut contains the converted value.
3713 * Failure: An HRESULT error code indicating the error.
3715 * NOTES
3716 * - Strictly speaking, this function performs a bitwise ones compliment
3717 * on the variants value (after possibly converting to VT_I4, see below).
3718 * This only behaves like a boolean not operation if the value in
3719 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
3720 * - To perform a genuine not operation, convert the variant to a VT_BOOL
3721 * before calling this function.
3722 * - This function does not process by-reference variants.
3723 * - The type of the value stored in pVarOut depends on the type of pVarIn,
3724 * according to the following table:
3725 *| Input Type Output Type
3726 *| ---------- -----------
3727 *| VT_R4 VT_I4
3728 *| VT_R8 VT_I4
3729 *| VT_BSTR VT_I4
3730 *| VT_DECIMAL VT_I4
3731 *| VT_CY VT_I4
3732 *| (All others) Unchanged
3734 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
3736 VARIANT varIn;
3737 HRESULT hRet = S_OK;
3739 TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn),
3740 debugstr_VF(pVarIn), pVarOut);
3742 V_VT(pVarOut) = V_VT(pVarIn);
3744 switch (V_VT(pVarIn))
3746 case VT_I1: V_I1(pVarOut) = ~V_I1(pVarIn); break;
3747 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
3748 case VT_BOOL:
3749 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
3750 case VT_UI2: V_UI2(pVarOut) = ~V_UI2(pVarIn); break;
3751 case VT_DECIMAL:
3752 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
3753 if (FAILED(hRet))
3754 break;
3755 pVarIn = &varIn;
3756 V_VT(pVarOut) = VT_I4;
3757 /* Fall through ... */
3758 case VT_INT:
3759 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
3760 case VT_UINT:
3761 case VT_UI4: V_UI4(pVarOut) = ~V_UI4(pVarIn); break;
3762 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
3763 case VT_UI8: V_UI8(pVarOut) = ~V_UI8(pVarIn); break;
3764 case VT_R4:
3765 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
3766 V_I4(pVarOut) = ~V_I4(pVarOut);
3767 V_VT(pVarOut) = VT_I4;
3768 break;
3769 case VT_BSTR:
3770 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3771 if (FAILED(hRet))
3772 break;
3773 pVarIn = &varIn;
3774 /* Fall through ... */
3775 case VT_DATE:
3776 case VT_R8:
3777 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
3778 V_I4(pVarOut) = ~V_I4(pVarOut);
3779 V_VT(pVarOut) = VT_I4;
3780 break;
3781 case VT_CY:
3782 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
3783 V_I4(pVarOut) = ~V_I4(pVarOut);
3784 V_VT(pVarOut) = VT_I4;
3785 break;
3786 case VT_EMPTY:
3787 case VT_NULL:
3788 /* No-Op */
3789 break;
3790 default:
3791 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
3792 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
3793 hRet = DISP_E_BADVARTYPE;
3794 else
3795 hRet = DISP_E_TYPEMISMATCH;
3797 if (FAILED(hRet))
3798 V_VT(pVarOut) = VT_EMPTY;
3800 return hRet;
3803 /**********************************************************************
3804 * VarRound [OLEAUT32.175]
3806 * Perform a round operation on a variant.
3808 * PARAMS
3809 * pVarIn [I] Source variant
3810 * deci [I] Number of decimals to round to
3811 * pVarOut [O] Destination for converted value
3813 * RETURNS
3814 * Success: S_OK. pVarOut contains the converted value.
3815 * Failure: An HRESULT error code indicating the error.
3817 * NOTES
3818 * - Floating point values are rounded to the desired number of decimals.
3819 * - Some integer types are just copied to the return variable.
3820 * - Some other integer types are not handled and fail.
3822 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
3824 VARIANT varIn;
3825 HRESULT hRet = S_OK;
3826 float factor;
3828 TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci);
3830 switch (V_VT(pVarIn))
3832 /* cases that fail on windows */
3833 case VT_I1:
3834 case VT_I8:
3835 case VT_UI2:
3836 case VT_UI4:
3837 hRet = DISP_E_BADVARTYPE;
3838 break;
3840 /* cases just copying in to out */
3841 case VT_UI1:
3842 V_VT(pVarOut) = V_VT(pVarIn);
3843 V_UI1(pVarOut) = V_UI1(pVarIn);
3844 break;
3845 case VT_I2:
3846 V_VT(pVarOut) = V_VT(pVarIn);
3847 V_I2(pVarOut) = V_I2(pVarIn);
3848 break;
3849 case VT_I4:
3850 V_VT(pVarOut) = V_VT(pVarIn);
3851 V_I4(pVarOut) = V_I4(pVarIn);
3852 break;
3853 case VT_NULL:
3854 V_VT(pVarOut) = V_VT(pVarIn);
3855 /* value unchanged */
3856 break;
3858 /* cases that change type */
3859 case VT_EMPTY:
3860 V_VT(pVarOut) = VT_I2;
3861 V_I2(pVarOut) = 0;
3862 break;
3863 case VT_BOOL:
3864 V_VT(pVarOut) = VT_I2;
3865 V_I2(pVarOut) = V_BOOL(pVarIn);
3866 break;
3867 case VT_BSTR:
3868 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
3869 if (FAILED(hRet))
3870 break;
3871 V_VT(&varIn)=VT_R8;
3872 pVarIn = &varIn;
3873 /* Fall through ... */
3875 /* cases we need to do math */
3876 case VT_R8:
3877 if (V_R8(pVarIn)>0) {
3878 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
3879 } else {
3880 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
3882 V_VT(pVarOut) = V_VT(pVarIn);
3883 break;
3884 case VT_R4:
3885 if (V_R4(pVarIn)>0) {
3886 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
3887 } else {
3888 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
3890 V_VT(pVarOut) = V_VT(pVarIn);
3891 break;
3892 case VT_DATE:
3893 if (V_DATE(pVarIn)>0) {
3894 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
3895 } else {
3896 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
3898 V_VT(pVarOut) = V_VT(pVarIn);
3899 break;
3900 case VT_CY:
3901 if (deci>3)
3902 factor=1;
3903 else
3904 factor=pow(10, 4-deci);
3906 if (V_CY(pVarIn).int64>0) {
3907 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
3908 } else {
3909 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
3911 V_VT(pVarOut) = V_VT(pVarIn);
3912 break;
3914 /* cases we don't know yet */
3915 default:
3916 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
3917 V_VT(pVarIn) & VT_TYPEMASK, deci);
3918 hRet = DISP_E_BADVARTYPE;
3921 if (FAILED(hRet))
3922 V_VT(pVarOut) = VT_EMPTY;
3924 TRACE("returning 0x%08lx (%s%s),%f\n", hRet, debugstr_VT(pVarOut),
3925 debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) :
3926 (V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0);
3928 return hRet;
3932 /**********************************************************************
3933 * VarMod [OLEAUT32.154]
3935 * Perform the modulus operation of the right hand variant on the left
3937 * PARAMS
3938 * left [I] Left hand variant
3939 * right [I] Right hand variant
3940 * result [O] Destination for converted value
3942 * RETURNS
3943 * Success: S_OK. result contains the remainder.
3944 * Failure: An HRESULT error code indicating the error.
3946 * NOTE:
3947 * If an error occurs the type of result will be modified but the value will not be.
3948 * Doesn't support arrays or any special flags yet.
3950 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3952 BOOL lOk = TRUE;
3953 BOOL rOk = TRUE;
3954 HRESULT rc = E_FAIL;
3955 int resT = 0;
3956 VARIANT lv,rv;
3958 VariantInit(&lv);
3959 VariantInit(&rv);
3961 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left),
3962 debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result);
3964 /* check for invalid inputs */
3965 lOk = TRUE;
3966 switch (V_VT(left) & VT_TYPEMASK) {
3967 case VT_BOOL :
3968 case VT_I1 :
3969 case VT_I2 :
3970 case VT_I4 :
3971 case VT_I8 :
3972 case VT_INT :
3973 case VT_UI1 :
3974 case VT_UI2 :
3975 case VT_UI4 :
3976 case VT_UI8 :
3977 case VT_UINT :
3978 case VT_R4 :
3979 case VT_R8 :
3980 case VT_CY :
3981 case VT_EMPTY:
3982 case VT_DATE :
3983 case VT_BSTR :
3984 break;
3985 case VT_VARIANT:
3986 case VT_UNKNOWN:
3987 V_VT(result) = VT_EMPTY;
3988 return DISP_E_TYPEMISMATCH;
3989 case VT_DECIMAL:
3990 V_VT(result) = VT_EMPTY;
3991 return E_INVALIDARG;
3992 case VT_ERROR:
3993 return DISP_E_TYPEMISMATCH;
3994 case VT_RECORD:
3995 V_VT(result) = VT_EMPTY;
3996 return DISP_E_TYPEMISMATCH;
3997 case VT_NULL:
3998 break;
3999 default:
4000 V_VT(result) = VT_EMPTY;
4001 return DISP_E_BADVARTYPE;
4005 rOk = TRUE;
4006 switch (V_VT(right) & VT_TYPEMASK) {
4007 case VT_BOOL :
4008 case VT_I1 :
4009 case VT_I2 :
4010 case VT_I4 :
4011 case VT_I8 :
4012 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
4014 V_VT(result) = VT_EMPTY;
4015 return DISP_E_TYPEMISMATCH;
4017 case VT_INT :
4018 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
4020 V_VT(result) = VT_EMPTY;
4021 return DISP_E_TYPEMISMATCH;
4023 case VT_UI1 :
4024 case VT_UI2 :
4025 case VT_UI4 :
4026 case VT_UI8 :
4027 case VT_UINT :
4028 case VT_R4 :
4029 case VT_R8 :
4030 case VT_CY :
4031 if(V_VT(left) == VT_EMPTY)
4033 V_VT(result) = VT_I4;
4034 return S_OK;
4036 case VT_EMPTY:
4037 case VT_DATE :
4038 case VT_BSTR:
4039 if(V_VT(left) == VT_NULL)
4041 V_VT(result) = VT_NULL;
4042 return S_OK;
4044 break;
4046 case VT_VOID:
4047 V_VT(result) = VT_EMPTY;
4048 return DISP_E_BADVARTYPE;
4049 case VT_NULL:
4050 if(V_VT(left) == VT_VOID)
4052 V_VT(result) = VT_EMPTY;
4053 return DISP_E_BADVARTYPE;
4054 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
4055 lOk)
4057 V_VT(result) = VT_NULL;
4058 return S_OK;
4059 } else
4061 V_VT(result) = VT_NULL;
4062 return DISP_E_BADVARTYPE;
4064 case VT_VARIANT:
4065 case VT_UNKNOWN:
4066 V_VT(result) = VT_EMPTY;
4067 return DISP_E_TYPEMISMATCH;
4068 case VT_DECIMAL:
4069 if(V_VT(left) == VT_ERROR)
4071 V_VT(result) = VT_EMPTY;
4072 return DISP_E_TYPEMISMATCH;
4073 } else
4075 V_VT(result) = VT_EMPTY;
4076 return E_INVALIDARG;
4078 case VT_ERROR:
4079 return DISP_E_TYPEMISMATCH;
4080 case VT_RECORD:
4081 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
4083 V_VT(result) = VT_EMPTY;
4084 return DISP_E_BADVARTYPE;
4085 } else
4087 V_VT(result) = VT_EMPTY;
4088 return DISP_E_TYPEMISMATCH;
4090 default:
4091 V_VT(result) = VT_EMPTY;
4092 return DISP_E_BADVARTYPE;
4095 /* determine the result type */
4096 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
4097 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4098 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
4099 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
4100 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4101 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4102 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
4103 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
4104 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
4105 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
4106 else resT = VT_I4; /* most outputs are I4 */
4108 /* convert to I8 for the modulo */
4109 rc = VariantChangeType(&lv, left, 0, VT_I8);
4110 if(FAILED(rc))
4112 FIXME("Could not convert left type %d to %d? rc == 0x%lX\n", V_VT(left), VT_I8, rc);
4113 return rc;
4116 rc = VariantChangeType(&rv, right, 0, VT_I8);
4117 if(FAILED(rc))
4119 FIXME("Could not convert right type %d to %d? rc == 0x%lX\n", V_VT(right), VT_I8, rc);
4120 return rc;
4123 /* if right is zero set VT_EMPTY and return divide by zero */
4124 if(V_I8(&rv) == 0)
4126 V_VT(result) = VT_EMPTY;
4127 return DISP_E_DIVBYZERO;
4130 /* perform the modulo operation */
4131 V_VT(result) = VT_I8;
4132 V_I8(result) = V_I8(&lv) % V_I8(&rv);
4134 TRACE("V_I8(left) == %ld, V_I8(right) == %ld, V_I8(result) == %ld\n", (long)V_I8(&lv), (long)V_I8(&rv), (long)V_I8(result));
4136 /* convert left and right to the destination type */
4137 rc = VariantChangeType(result, result, 0, resT);
4138 if(FAILED(rc))
4140 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
4141 return rc;
4144 return S_OK;
4147 /**********************************************************************
4148 * VarPow [OLEAUT32.158]
4151 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
4153 HRESULT hr;
4154 VARIANT dl,dr;
4156 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left),
4157 right, debugstr_VT(right), debugstr_VF(right), result);
4159 hr = VariantChangeType(&dl,left,0,VT_R8);
4160 if (!SUCCEEDED(hr)) {
4161 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
4162 return E_FAIL;
4164 hr = VariantChangeType(&dr,right,0,VT_R8);
4165 if (!SUCCEEDED(hr)) {
4166 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
4167 return E_FAIL;
4169 V_VT(result) = VT_R8;
4170 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
4171 return S_OK;