2 * Copyright 2008 Jacek Caban for CodeWeavers
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20 * Code in this file is based on files:
23 * from Mozilla project, released under LGPL 2.1 or later.
25 * The Original Code is Mozilla Communicator client code, released
28 * The Initial Developer of the Original Code is
29 * Netscape Communications Corporation.
30 * Portions created by the Initial Developer are Copyright (C) 1998
31 * the Initial Developer. All Rights Reserved.
38 #include "wine/debug.h"
40 WINE_DEFAULT_DEBUG_CHANNEL(jscript
);
42 #define JSREG_FOLD 0x01 /* fold uppercase to lowercase */
43 #define JSREG_GLOB 0x02 /* global exec, creates array of matches */
44 #define JSREG_MULTILINE 0x04 /* treat ^ and $ as begin and end of line */
45 #define JSREG_STICKY 0x08 /* only match starting at lastIndex */
47 typedef BYTE JSPackedBool
;
48 typedef BYTE jsbytecode
;
51 * This struct holds a bitmap representation of a class from a regexp.
52 * There's a list of these referenced by the classList field in the JSRegExp
53 * struct below. The initial state has startIndex set to the offset in the
54 * original regexp source of the beginning of the class contents. The first
55 * use of the class converts the source representation into a bitmap.
58 typedef struct RECharSet
{
59 JSPackedBool converted
;
72 WORD flags
; /* flags, see jsapi.h's JSREG_* defines */
73 size_t parenCount
; /* number of parenthesized submatches */
74 size_t classCount
; /* count [...] bitmaps */
75 RECharSet
*classList
; /* list of [...] bitmaps */
76 BSTR source
; /* locked source string, sans // */
77 jsbytecode program
[1]; /* regular expression bytecode */
87 static const WCHAR sourceW
[] = {'s','o','u','r','c','e',0};
88 static const WCHAR globalW
[] = {'g','l','o','b','a','l',0};
89 static const WCHAR ignoreCaseW
[] = {'i','g','n','o','r','e','C','a','s','e',0};
90 static const WCHAR multilineW
[] = {'m','u','l','t','i','l','i','n','e',0};
91 static const WCHAR lastIndexW
[] = {'l','a','s','t','I','n','d','e','x',0};
92 static const WCHAR toStringW
[] = {'t','o','S','t','r','i','n','g',0};
93 static const WCHAR execW
[] = {'e','x','e','c',0};
94 static const WCHAR testW
[] = {'t','e','s','t',0};
96 static const WCHAR emptyW
[] = {0};
98 /* FIXME: Better error handling */
99 #define ReportRegExpError(a,b,c)
100 #define ReportRegExpErrorHelper(a,b,c,d)
101 #define JS_ReportErrorNumber(a,b,c,d)
102 #define JS_ReportErrorFlagsAndNumber(a,b,c,d,e,f)
103 #define js_ReportOutOfScriptQuota(a)
104 #define JS_ReportOutOfMemory(a)
105 #define JS_COUNT_OPERATION(a,b)
107 #define JSMSG_MIN_TOO_BIG 47
108 #define JSMSG_MAX_TOO_BIG 48
109 #define JSMSG_OUT_OF_ORDER 49
110 #define JSMSG_OUT_OF_MEMORY 137
112 #define LINE_SEPARATOR 0x2028
113 #define PARA_SEPARATOR 0x2029
115 #define RE_IS_LETTER(c) (((c >= 'A') && (c <= 'Z')) || \
116 ((c >= 'a') && (c <= 'z')) )
117 #define RE_IS_LINE_TERM(c) ((c == '\n') || (c == '\r') || \
118 (c == LINE_SEPARATOR) || (c == PARA_SEPARATOR))
120 #define JS_ISWORD(c) ((c) < 128 && (isalnum(c) || (c) == '_'))
122 #define JS7_ISDEC(c) ((((unsigned)(c)) - '0') <= 9)
123 #define JS7_UNDEC(c) ((c) - '0')
175 REOP_LIMIT
/* META: no operator >= to this */
178 #define REOP_IS_SIMPLE(op) ((op) <= REOP_NCLASS)
180 static const char *reop_names
[] = {
233 typedef struct RECapture
{
234 ptrdiff_t index
; /* start of contents, -1 for empty */
235 size_t length
; /* length of capture */
238 typedef struct REMatchState
{
240 RECapture parens
[1]; /* first of 're->parenCount' captures,
241 allocated at end of this struct */
244 typedef struct REProgState
{
245 jsbytecode
*continue_pc
; /* current continuation data */
246 jsbytecode continue_op
;
247 ptrdiff_t index
; /* progress in text */
248 size_t parenSoFar
; /* highest indexed paren started */
251 UINT min
; /* current quantifier limits */
255 size_t top
; /* backtrack stack state */
261 typedef struct REBackTrackData
{
262 size_t sz
; /* size of previous stack entry */
263 jsbytecode
*backtrack_pc
; /* where to backtrack to */
264 jsbytecode backtrack_op
;
265 const WCHAR
*cp
; /* index in text of match at backtrack */
266 size_t parenIndex
; /* start index of saved paren contents */
267 size_t parenCount
; /* # of saved paren contents */
268 size_t saveStateStackTop
; /* number of parent states */
269 /* saved parent states follow */
270 /* saved paren contents follow */
273 #define INITIAL_STATESTACK 100
274 #define INITIAL_BACKTRACK 8000
276 typedef struct REGlobalData
{
278 JSRegExp
*regexp
; /* the RE in execution */
279 BOOL ok
; /* runtime error (out_of_memory only?) */
280 size_t start
; /* offset to start at */
281 ptrdiff_t skipped
; /* chars skipped anchoring this r.e. */
282 const WCHAR
*cpbegin
; /* text base address */
283 const WCHAR
*cpend
; /* text limit address */
285 REProgState
*stateStack
; /* stack of state of current parents */
286 size_t stateStackTop
;
287 size_t stateStackLimit
;
289 REBackTrackData
*backTrackStack
;/* stack of matched-so-far positions */
290 REBackTrackData
*backTrackSP
;
291 size_t backTrackStackSize
;
292 size_t cursz
; /* size of current stack entry */
293 size_t backTrackCount
; /* how many times we've backtracked */
294 size_t backTrackLimit
; /* upper limit on backtrack states */
296 jsheap_t
*pool
; /* It's faster to use one malloc'd pool
297 than to malloc/free the three items
298 that are allocated from this pool */
301 typedef struct RENode RENode
;
303 REOp op
; /* r.e. op bytecode */
304 RENode
*next
; /* next in concatenation order */
305 void *kid
; /* first operand */
307 void *kid2
; /* second operand */
308 INT num
; /* could be a number */
309 size_t parenIndex
; /* or a parenthesis index */
310 struct { /* or a quantifier range */
315 struct { /* or a character class */
317 size_t kidlen
; /* length of string at kid, in jschars */
318 size_t index
; /* index into class list */
319 WORD bmsize
; /* bitmap size, based on max char code */
322 struct { /* or a literal sequence */
323 WCHAR chr
; /* of one character */
324 size_t length
; /* or many (via the kid) */
327 RENode
*kid2
; /* second operand from ALT */
328 WCHAR ch1
; /* match char for ALTPREREQ */
329 WCHAR ch2
; /* ditto, or class index for ALTPREREQ2 */
334 #define CLASS_CACHE_SIZE 4
336 typedef struct CompilerState
{
337 script_ctx_t
*context
;
338 const WCHAR
*cpbegin
;
342 size_t classCount
; /* number of [] encountered */
343 size_t treeDepth
; /* maximum depth of parse tree */
344 size_t progLength
; /* estimated bytecode length */
346 size_t classBitmapsMem
; /* memory to hold all class bitmaps */
348 const WCHAR
*start
; /* small cache of class strings */
349 size_t length
; /* since they're often the same */
351 } classCache
[CLASS_CACHE_SIZE
];
355 typedef struct EmitStateStackEntry
{
356 jsbytecode
*altHead
; /* start of REOP_ALT* opcode */
357 jsbytecode
*nextAltFixup
; /* fixup pointer to next-alt offset */
358 jsbytecode
*nextTermFixup
; /* fixup ptr. to REOP_JUMP offset */
359 jsbytecode
*endTermFixup
; /* fixup ptr. to REOPT_ALTPREREQ* offset */
360 RENode
*continueNode
; /* original REOP_ALT* node being stacked */
361 jsbytecode continueOp
; /* REOP_JUMP or REOP_ENDALT continuation */
362 JSPackedBool jumpToJumpFlag
; /* true if we've patched jump-to-jump to
363 avoid 16-bit unsigned offset overflow */
364 } EmitStateStackEntry
;
367 * Immediate operand sizes and getter/setters. Unlike the ones in jsopcode.h,
368 * the getters and setters take the pc of the offset, not of the opcode before
372 #define GET_ARG(pc) ((WORD)(((pc)[0] << 8) | (pc)[1]))
373 #define SET_ARG(pc, arg) ((pc)[0] = (jsbytecode) ((arg) >> 8), \
374 (pc)[1] = (jsbytecode) (arg))
376 #define OFFSET_LEN ARG_LEN
377 #define OFFSET_MAX ((1 << (ARG_LEN * 8)) - 1)
378 #define GET_OFFSET(pc) GET_ARG(pc)
380 static BOOL
ParseRegExp(CompilerState
*);
383 * Maximum supported tree depth is maximum size of EmitStateStackEntry stack.
384 * For sanity, we limit it to 2^24 bytes.
386 #define TREE_DEPTH_MAX ((1 << 24) / sizeof(EmitStateStackEntry))
389 * The maximum memory that can be allocated for class bitmaps.
390 * For sanity, we limit it to 2^24 bytes.
392 #define CLASS_BITMAPS_MEM_LIMIT (1 << 24)
395 * Functions to get size and write/read bytecode that represent small indexes
397 * Each byte in the code represent 7-bit chunk of the index. 8th bit when set
398 * indicates that the following byte brings more bits to the index. Otherwise
399 * this is the last byte in the index bytecode representing highest index bits.
402 GetCompactIndexWidth(size_t index
)
406 for (width
= 1; (index
>>= 7) != 0; ++width
) { }
410 static inline jsbytecode
*
411 WriteCompactIndex(jsbytecode
*pc
, size_t index
)
415 while ((next
= index
>> 7) != 0) {
416 *pc
++ = (jsbytecode
)(index
| 0x80);
419 *pc
++ = (jsbytecode
)index
;
423 static inline jsbytecode
*
424 ReadCompactIndex(jsbytecode
*pc
, size_t *result
)
429 if ((nextByte
& 0x80) == 0) {
431 * Short-circuit the most common case when compact index <= 127.
436 *result
= 0x7F & nextByte
;
439 *result
|= (nextByte
& 0x7F) << shift
;
441 } while ((nextByte
& 0x80) != 0);
446 /* Construct and initialize an RENode, returning NULL for out-of-memory */
448 NewRENode(CompilerState
*state
, REOp op
)
452 ren
= jsheap_alloc(&state
->context
->tmp_heap
, sizeof(*ren
));
454 /* js_ReportOutOfScriptQuota(cx); */
464 * Validates and converts hex ascii value.
467 isASCIIHexDigit(WCHAR c
, UINT
*digit
)
478 if (cv
>= 'a' && cv
<= 'f') {
479 *digit
= cv
- 'a' + 10;
491 #define JUMP_OFFSET_HI(off) ((jsbytecode)((off) >> 8))
492 #define JUMP_OFFSET_LO(off) ((jsbytecode)(off))
495 SetForwardJumpOffset(jsbytecode
*jump
, jsbytecode
*target
)
497 ptrdiff_t offset
= target
- jump
;
499 /* Check that target really points forward. */
501 if ((size_t)offset
> OFFSET_MAX
)
504 jump
[0] = JUMP_OFFSET_HI(offset
);
505 jump
[1] = JUMP_OFFSET_LO(offset
);
510 * Generate bytecode for the tree rooted at t using an explicit stack instead
514 EmitREBytecode(CompilerState
*state
, JSRegExp
*re
, size_t treeDepth
,
515 jsbytecode
*pc
, RENode
*t
)
517 EmitStateStackEntry
*emitStateSP
, *emitStateStack
;
521 if (treeDepth
== 0) {
522 emitStateStack
= NULL
;
524 emitStateStack
= heap_alloc(sizeof(EmitStateStackEntry
) * treeDepth
);
528 emitStateSP
= emitStateStack
;
530 assert(op
< REOP_LIMIT
);
539 case REOP_ALTPREREQ2
:
542 emitStateSP
->altHead
= pc
- 1;
543 emitStateSP
->endTermFixup
= pc
;
545 SET_ARG(pc
, t
->u
.altprereq
.ch1
);
547 SET_ARG(pc
, t
->u
.altprereq
.ch2
);
550 emitStateSP
->nextAltFixup
= pc
; /* offset to next alternate */
553 emitStateSP
->continueNode
= t
;
554 emitStateSP
->continueOp
= REOP_JUMP
;
555 emitStateSP
->jumpToJumpFlag
= FALSE
;
557 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
560 assert(op
< REOP_LIMIT
);
564 emitStateSP
->nextTermFixup
= pc
; /* offset to following term */
566 if (!SetForwardJumpOffset(emitStateSP
->nextAltFixup
, pc
))
568 emitStateSP
->continueOp
= REOP_ENDALT
;
570 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
573 assert(op
< REOP_LIMIT
);
578 * If we already patched emitStateSP->nextTermFixup to jump to
579 * a nearer jump, to avoid 16-bit immediate offset overflow, we
582 if (emitStateSP
->jumpToJumpFlag
)
586 * Fix up the REOP_JUMP offset to go to the op after REOP_ENDALT.
587 * REOP_ENDALT is executed only on successful match of the last
588 * alternate in a group.
590 if (!SetForwardJumpOffset(emitStateSP
->nextTermFixup
, pc
))
592 if (t
->op
!= REOP_ALT
) {
593 if (!SetForwardJumpOffset(emitStateSP
->endTermFixup
, pc
))
598 * If the program is bigger than the REOP_JUMP offset range, then
599 * we must check for alternates before this one that are part of
600 * the same group, and fix up their jump offsets to target jumps
601 * close enough to fit in a 16-bit unsigned offset immediate.
603 if ((size_t)(pc
- re
->program
) > OFFSET_MAX
&&
604 emitStateSP
> emitStateStack
) {
605 EmitStateStackEntry
*esp
, *esp2
;
606 jsbytecode
*alt
, *jump
;
607 ptrdiff_t span
, header
;
611 for (esp
= esp2
- 1; esp
>= emitStateStack
; --esp
) {
612 if (esp
->continueOp
== REOP_ENDALT
&&
613 !esp
->jumpToJumpFlag
&&
614 esp
->nextTermFixup
+ OFFSET_LEN
== alt
&&
615 (size_t)(pc
- ((esp
->continueNode
->op
!= REOP_ALT
)
617 : esp
->nextTermFixup
)) > OFFSET_MAX
) {
619 jump
= esp
->nextTermFixup
;
622 * The span must be 1 less than the distance from
623 * jump offset to jump offset, so we actually jump
624 * to a REOP_JUMP bytecode, not to its offset!
627 assert(jump
< esp2
->nextTermFixup
);
628 span
= esp2
->nextTermFixup
- jump
- 1;
629 if ((size_t)span
<= OFFSET_MAX
)
634 } while (esp2
->continueOp
!= REOP_ENDALT
);
637 jump
[0] = JUMP_OFFSET_HI(span
);
638 jump
[1] = JUMP_OFFSET_LO(span
);
640 if (esp
->continueNode
->op
!= REOP_ALT
) {
642 * We must patch the offset at esp->endTermFixup
643 * as well, for the REOP_ALTPREREQ{,2} opcodes.
644 * If we're unlucky and endTermFixup is more than
645 * OFFSET_MAX bytes from its target, we cheat by
646 * jumping 6 bytes to the jump whose offset is at
647 * esp->nextTermFixup, which has the same target.
649 jump
= esp
->endTermFixup
;
650 header
= esp
->nextTermFixup
- jump
;
652 if ((size_t)span
> OFFSET_MAX
)
655 jump
[0] = JUMP_OFFSET_HI(span
);
656 jump
[1] = JUMP_OFFSET_LO(span
);
659 esp
->jumpToJumpFlag
= TRUE
;
667 emitStateSP
->altHead
= pc
- 1;
668 emitStateSP
->nextAltFixup
= pc
; /* offset to next alternate */
670 emitStateSP
->continueNode
= t
;
671 emitStateSP
->continueOp
= REOP_JUMP
;
672 emitStateSP
->jumpToJumpFlag
= FALSE
;
674 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
677 assert(op
< REOP_LIMIT
);
682 * Coalesce FLATs if possible and if it would not increase bytecode
683 * beyond preallocated limit. The latter happens only when bytecode
684 * size for coalesced string with offset p and length 2 exceeds 6
685 * bytes preallocated for 2 single char nodes, i.e. when
686 * 1 + GetCompactIndexWidth(p) + GetCompactIndexWidth(2) > 6 or
687 * GetCompactIndexWidth(p) > 4.
688 * Since when GetCompactIndexWidth(p) <= 4 coalescing of 3 or more
689 * nodes strictly decreases bytecode size, the check has to be
690 * done only for the first coalescing.
693 GetCompactIndexWidth((WCHAR
*)t
->kid
- state
->cpbegin
) <= 4)
696 t
->next
->op
== REOP_FLAT
&&
697 (WCHAR
*)t
->kid
+ t
->u
.flat
.length
==
699 t
->u
.flat
.length
+= t
->next
->u
.flat
.length
;
700 t
->next
= t
->next
->next
;
703 if (t
->kid
&& t
->u
.flat
.length
> 1) {
704 pc
[-1] = (state
->flags
& JSREG_FOLD
) ? REOP_FLATi
: REOP_FLAT
;
705 pc
= WriteCompactIndex(pc
, (WCHAR
*)t
->kid
- state
->cpbegin
);
706 pc
= WriteCompactIndex(pc
, t
->u
.flat
.length
);
707 } else if (t
->u
.flat
.chr
< 256) {
708 pc
[-1] = (state
->flags
& JSREG_FOLD
) ? REOP_FLAT1i
: REOP_FLAT1
;
709 *pc
++ = (jsbytecode
) t
->u
.flat
.chr
;
711 pc
[-1] = (state
->flags
& JSREG_FOLD
)
714 SET_ARG(pc
, t
->u
.flat
.chr
);
721 pc
= WriteCompactIndex(pc
, t
->u
.parenIndex
);
722 emitStateSP
->continueNode
= t
;
723 emitStateSP
->continueOp
= REOP_RPAREN
;
725 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
731 pc
= WriteCompactIndex(pc
, t
->u
.parenIndex
);
735 pc
= WriteCompactIndex(pc
, t
->u
.parenIndex
);
740 emitStateSP
->nextTermFixup
= pc
;
742 emitStateSP
->continueNode
= t
;
743 emitStateSP
->continueOp
= REOP_ASSERTTEST
;
745 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
750 case REOP_ASSERTTEST
:
751 case REOP_ASSERTNOTTEST
:
752 if (!SetForwardJumpOffset(emitStateSP
->nextTermFixup
, pc
))
756 case REOP_ASSERT_NOT
:
758 emitStateSP
->nextTermFixup
= pc
;
760 emitStateSP
->continueNode
= t
;
761 emitStateSP
->continueOp
= REOP_ASSERTNOTTEST
;
763 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
770 if (t
->u
.range
.min
== 0 && t
->u
.range
.max
== (UINT
)-1) {
771 pc
[-1] = (t
->u
.range
.greedy
) ? REOP_STAR
: REOP_MINIMALSTAR
;
772 } else if (t
->u
.range
.min
== 0 && t
->u
.range
.max
== 1) {
773 pc
[-1] = (t
->u
.range
.greedy
) ? REOP_OPT
: REOP_MINIMALOPT
;
774 } else if (t
->u
.range
.min
== 1 && t
->u
.range
.max
== (UINT
) -1) {
775 pc
[-1] = (t
->u
.range
.greedy
) ? REOP_PLUS
: REOP_MINIMALPLUS
;
777 if (!t
->u
.range
.greedy
)
778 pc
[-1] = REOP_MINIMALQUANT
;
779 pc
= WriteCompactIndex(pc
, t
->u
.range
.min
);
781 * Write max + 1 to avoid using size_t(max) + 1 bytes
782 * for (UINT)-1 sentinel.
784 pc
= WriteCompactIndex(pc
, t
->u
.range
.max
+ 1);
786 emitStateSP
->nextTermFixup
= pc
;
788 emitStateSP
->continueNode
= t
;
789 emitStateSP
->continueOp
= REOP_ENDCHILD
;
791 assert((size_t)(emitStateSP
- emitStateStack
) <= treeDepth
);
797 if (!SetForwardJumpOffset(emitStateSP
->nextTermFixup
, pc
))
802 if (!t
->u
.ucclass
.sense
)
803 pc
[-1] = REOP_NCLASS
;
804 pc
= WriteCompactIndex(pc
, t
->u
.ucclass
.index
);
805 charSet
= &re
->classList
[t
->u
.ucclass
.index
];
806 charSet
->converted
= FALSE
;
807 charSet
->length
= t
->u
.ucclass
.bmsize
;
808 charSet
->u
.src
.startIndex
= t
->u
.ucclass
.startIndex
;
809 charSet
->u
.src
.length
= t
->u
.ucclass
.kidlen
;
810 charSet
->sense
= t
->u
.ucclass
.sense
;
821 if (emitStateSP
== emitStateStack
)
824 t
= emitStateSP
->continueNode
;
825 op
= (REOp
) emitStateSP
->continueOp
;
830 heap_free(emitStateStack
);
834 ReportRegExpError(state
, JSREPORT_ERROR
, JSMSG_REGEXP_TOO_COMPLEX
);
840 * Process the op against the two top operands, reducing them to a single
841 * operand in the penultimate slot. Update progLength and treeDepth.
844 ProcessOp(CompilerState
*state
, REOpData
*opData
, RENode
**operandStack
,
849 switch (opData
->op
) {
851 result
= NewRENode(state
, REOP_ALT
);
854 result
->kid
= operandStack
[operandSP
- 2];
855 result
->u
.kid2
= operandStack
[operandSP
- 1];
856 operandStack
[operandSP
- 2] = result
;
858 if (state
->treeDepth
== TREE_DEPTH_MAX
) {
859 ReportRegExpError(state
, JSREPORT_ERROR
, JSMSG_REGEXP_TOO_COMPLEX
);
865 * Look at both alternates to see if there's a FLAT or a CLASS at
866 * the start of each. If so, use a prerequisite match.
868 if (((RENode
*) result
->kid
)->op
== REOP_FLAT
&&
869 ((RENode
*) result
->u
.kid2
)->op
== REOP_FLAT
&&
870 (state
->flags
& JSREG_FOLD
) == 0) {
871 result
->op
= REOP_ALTPREREQ
;
872 result
->u
.altprereq
.ch1
= ((RENode
*) result
->kid
)->u
.flat
.chr
;
873 result
->u
.altprereq
.ch2
= ((RENode
*) result
->u
.kid2
)->u
.flat
.chr
;
874 /* ALTPREREQ, <end>, uch1, uch2, <next>, ...,
875 JUMP, <end> ... ENDALT */
876 state
->progLength
+= 13;
879 if (((RENode
*) result
->kid
)->op
== REOP_CLASS
&&
880 ((RENode
*) result
->kid
)->u
.ucclass
.index
< 256 &&
881 ((RENode
*) result
->u
.kid2
)->op
== REOP_FLAT
&&
882 (state
->flags
& JSREG_FOLD
) == 0) {
883 result
->op
= REOP_ALTPREREQ2
;
884 result
->u
.altprereq
.ch1
= ((RENode
*) result
->u
.kid2
)->u
.flat
.chr
;
885 result
->u
.altprereq
.ch2
= ((RENode
*) result
->kid
)->u
.ucclass
.index
;
886 /* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
887 JUMP, <end> ... ENDALT */
888 state
->progLength
+= 13;
891 if (((RENode
*) result
->kid
)->op
== REOP_FLAT
&&
892 ((RENode
*) result
->u
.kid2
)->op
== REOP_CLASS
&&
893 ((RENode
*) result
->u
.kid2
)->u
.ucclass
.index
< 256 &&
894 (state
->flags
& JSREG_FOLD
) == 0) {
895 result
->op
= REOP_ALTPREREQ2
;
896 result
->u
.altprereq
.ch1
= ((RENode
*) result
->kid
)->u
.flat
.chr
;
897 result
->u
.altprereq
.ch2
=
898 ((RENode
*) result
->u
.kid2
)->u
.ucclass
.index
;
899 /* ALTPREREQ2, <end>, uch1, uch2, <next>, ...,
900 JUMP, <end> ... ENDALT */
901 state
->progLength
+= 13;
904 /* ALT, <next>, ..., JUMP, <end> ... ENDALT */
905 state
->progLength
+= 7;
910 result
= operandStack
[operandSP
- 2];
912 result
= result
->next
;
913 result
->next
= operandStack
[operandSP
- 1];
917 case REOP_ASSERT_NOT
:
920 /* These should have been processed by a close paren. */
921 ReportRegExpErrorHelper(state
, JSREPORT_ERROR
, JSMSG_MISSING_PAREN
,
931 * Hack two bits in CompilerState.flags, for use within FindParenCount to flag
932 * its being on the stack, and to propagate errors to its callers.
934 #define JSREG_FIND_PAREN_COUNT 0x8000
935 #define JSREG_FIND_PAREN_ERROR 0x4000
938 * Magic return value from FindParenCount and GetDecimalValue, to indicate
939 * overflow beyond GetDecimalValue's max parameter, or a computed maximum if
940 * its findMax parameter is non-null.
942 #define OVERFLOW_VALUE ((UINT)-1)
945 FindParenCount(CompilerState
*state
)
950 if (state
->flags
& JSREG_FIND_PAREN_COUNT
)
951 return OVERFLOW_VALUE
;
954 * Copy state into temp, flag it so we never report an invalid backref,
955 * and reset its members to parse the entire regexp. This is obviously
956 * suboptimal, but GetDecimalValue calls us only if a backref appears to
957 * refer to a forward parenthetical, which is rare.
960 temp
.flags
|= JSREG_FIND_PAREN_COUNT
;
961 temp
.cp
= temp
.cpbegin
;
966 temp
.classBitmapsMem
= 0;
967 for (i
= 0; i
< CLASS_CACHE_SIZE
; i
++)
968 temp
.classCache
[i
].start
= NULL
;
970 if (!ParseRegExp(&temp
)) {
971 state
->flags
|= JSREG_FIND_PAREN_ERROR
;
972 return OVERFLOW_VALUE
;
974 return temp
.parenCount
;
978 * Extract and return a decimal value at state->cp. The initial character c
979 * has already been read. Return OVERFLOW_VALUE if the result exceeds max.
980 * Callers who pass a non-null findMax should test JSREG_FIND_PAREN_ERROR in
981 * state->flags to discover whether an error occurred under findMax.
984 GetDecimalValue(WCHAR c
, UINT max
, UINT (*findMax
)(CompilerState
*state
),
985 CompilerState
*state
)
987 UINT value
= JS7_UNDEC(c
);
988 BOOL overflow
= (value
> max
&& (!findMax
|| value
> findMax(state
)));
990 /* The following restriction allows simpler overflow checks. */
991 assert(max
<= ((UINT
)-1 - 9) / 10);
992 while (state
->cp
< state
->cpend
) {
996 value
= 10 * value
+ JS7_UNDEC(c
);
997 if (!overflow
&& value
> max
&& (!findMax
|| value
> findMax(state
)))
1001 return overflow
? OVERFLOW_VALUE
: value
;
1005 * Calculate the total size of the bitmap required for a class expression.
1008 CalculateBitmapSize(CompilerState
*state
, RENode
*target
, const WCHAR
*src
,
1012 BOOL inRange
= FALSE
;
1013 WCHAR c
, rangeStart
= 0;
1014 UINT n
, digit
, nDigits
, i
;
1016 target
->u
.ucclass
.bmsize
= 0;
1017 target
->u
.ucclass
.sense
= TRUE
;
1024 target
->u
.ucclass
.sense
= FALSE
;
1027 while (src
!= end
) {
1028 BOOL canStartRange
= TRUE
;
1055 if (src
< end
&& RE_IS_LETTER(*src
)) {
1056 localMax
= (UINT
) (*src
++) & 0x1F;
1069 for (i
= 0; (i
< nDigits
) && (src
< end
); i
++) {
1071 if (!isASCIIHexDigit(c
, &digit
)) {
1073 * Back off to accepting the original
1080 n
= (n
<< 4) | digit
;
1085 canStartRange
= FALSE
;
1087 JS_ReportErrorNumber(state
->context
,
1088 js_GetErrorMessage
, NULL
,
1089 JSMSG_BAD_CLASS_RANGE
);
1099 canStartRange
= FALSE
;
1101 JS_ReportErrorNumber(state
->context
,
1102 js_GetErrorMessage
, NULL
,
1103 JSMSG_BAD_CLASS_RANGE
);
1109 * If this is the start of a range, ensure that it's less than
1123 * This is a non-ECMA extension - decimal escapes (in this
1124 * case, octal!) are supposed to be an error inside class
1125 * ranges, but supported here for backwards compatibility.
1130 if ('0' <= c
&& c
<= '7') {
1132 n
= 8 * n
+ JS7_UNDEC(c
);
1134 if ('0' <= c
&& c
<= '7') {
1136 i
= 8 * n
+ JS7_UNDEC(c
);
1157 /* Throw a SyntaxError here, per ECMA-262, 15.10.2.15. */
1158 if (rangeStart
> localMax
) {
1159 JS_ReportErrorNumber(state
->context
,
1160 js_GetErrorMessage
, NULL
,
1161 JSMSG_BAD_CLASS_RANGE
);
1166 if (canStartRange
&& src
< end
- 1) {
1170 rangeStart
= (WCHAR
)localMax
;
1174 if (state
->flags
& JSREG_FOLD
)
1175 rangeStart
= localMax
; /* one run of the uc/dc loop below */
1178 if (state
->flags
& JSREG_FOLD
) {
1179 WCHAR maxch
= localMax
;
1181 for (i
= rangeStart
; i
<= localMax
; i
++) {
1197 target
->u
.ucclass
.bmsize
= max
;
1202 ParseMinMaxQuantifier(CompilerState
*state
, BOOL ignoreValues
)
1206 const WCHAR
*errp
= state
->cp
++;
1211 min
= GetDecimalValue(c
, 0xFFFF, NULL
, state
);
1214 if (!ignoreValues
&& min
== OVERFLOW_VALUE
)
1215 return JSMSG_MIN_TOO_BIG
;
1221 max
= GetDecimalValue(c
, 0xFFFF, NULL
, state
);
1223 if (!ignoreValues
&& max
== OVERFLOW_VALUE
)
1224 return JSMSG_MAX_TOO_BIG
;
1225 if (!ignoreValues
&& min
> max
)
1226 return JSMSG_OUT_OF_ORDER
;
1234 state
->result
= NewRENode(state
, REOP_QUANT
);
1236 return JSMSG_OUT_OF_MEMORY
;
1237 state
->result
->u
.range
.min
= min
;
1238 state
->result
->u
.range
.max
= max
;
1240 * QUANT, <min>, <max>, <next> ... <ENDCHILD>
1241 * where <max> is written as compact(max+1) to make
1242 * (UINT)-1 sentinel to occupy 1 byte, not width_of(max)+1.
1244 state
->progLength
+= (1 + GetCompactIndexWidth(min
)
1245 + GetCompactIndexWidth(max
+ 1)
1256 ParseQuantifier(CompilerState
*state
)
1259 term
= state
->result
;
1260 if (state
->cp
< state
->cpend
) {
1261 switch (*state
->cp
) {
1263 state
->result
= NewRENode(state
, REOP_QUANT
);
1266 state
->result
->u
.range
.min
= 1;
1267 state
->result
->u
.range
.max
= (UINT
)-1;
1268 /* <PLUS>, <next> ... <ENDCHILD> */
1269 state
->progLength
+= 4;
1272 state
->result
= NewRENode(state
, REOP_QUANT
);
1275 state
->result
->u
.range
.min
= 0;
1276 state
->result
->u
.range
.max
= (UINT
)-1;
1277 /* <STAR>, <next> ... <ENDCHILD> */
1278 state
->progLength
+= 4;
1281 state
->result
= NewRENode(state
, REOP_QUANT
);
1284 state
->result
->u
.range
.min
= 0;
1285 state
->result
->u
.range
.max
= 1;
1286 /* <OPT>, <next> ... <ENDCHILD> */
1287 state
->progLength
+= 4;
1289 case '{': /* balance '}' */
1293 err
= ParseMinMaxQuantifier(state
, FALSE
);
1299 ReportRegExpErrorHelper(state
, JSREPORT_ERROR
, err
, errp
);
1308 if (state
->treeDepth
== TREE_DEPTH_MAX
) {
1309 ReportRegExpError(state
, JSREPORT_ERROR
, JSMSG_REGEXP_TOO_COMPLEX
);
1315 state
->result
->kid
= term
;
1316 if (state
->cp
< state
->cpend
&& *state
->cp
== '?') {
1318 state
->result
->u
.range
.greedy
= FALSE
;
1320 state
->result
->u
.range
.greedy
= TRUE
;
1326 * item: assertion An item is either an assertion or
1327 * quantatom a quantified atom.
1329 * assertion: '^' Assertions match beginning of string
1330 * (or line if the class static property
1331 * RegExp.multiline is true).
1332 * '$' End of string (or line if the class
1333 * static property RegExp.multiline is
1335 * '\b' Word boundary (between \w and \W).
1336 * '\B' Word non-boundary.
1338 * quantatom: atom An unquantified atom.
1339 * quantatom '{' n ',' m '}'
1340 * Atom must occur between n and m times.
1341 * quantatom '{' n ',' '}' Atom must occur at least n times.
1342 * quantatom '{' n '}' Atom must occur exactly n times.
1343 * quantatom '*' Zero or more times (same as {0,}).
1344 * quantatom '+' One or more times (same as {1,}).
1345 * quantatom '?' Zero or one time (same as {0,1}).
1347 * any of which can be optionally followed by '?' for ungreedy
1349 * atom: '(' regexp ')' A parenthesized regexp (what matched
1350 * can be addressed using a backreference,
1352 * '.' Matches any char except '\n'.
1353 * '[' classlist ']' A character class.
1354 * '[' '^' classlist ']' A negated character class.
1356 * '\n' Newline (Line Feed).
1357 * '\r' Carriage Return.
1358 * '\t' Horizontal Tab.
1359 * '\v' Vertical Tab.
1360 * '\d' A digit (same as [0-9]).
1362 * '\w' A word character, [0-9a-z_A-Z].
1363 * '\W' A non-word character.
1364 * '\s' A whitespace character, [ \b\f\n\r\t\v].
1365 * '\S' A non-whitespace character.
1366 * '\' n A backreference to the nth (n decimal
1367 * and positive) parenthesized expression.
1368 * '\' octal An octal escape sequence (octal must be
1369 * two or three digits long, unless it is
1370 * 0 for the null character).
1371 * '\x' hex A hex escape (hex must be two digits).
1372 * '\u' unicode A unicode escape (must be four digits).
1373 * '\c' ctrl A control character, ctrl is a letter.
1374 * '\' literalatomchar Any character except one of the above
1375 * that follow '\' in an atom.
1376 * otheratomchar Any character not first among the other
1377 * atom right-hand sides.
1380 ParseTerm(CompilerState
*state
)
1382 WCHAR c
= *state
->cp
++;
1384 UINT num
, tmp
, n
, i
;
1385 const WCHAR
*termStart
;
1388 /* assertions and atoms */
1390 state
->result
= NewRENode(state
, REOP_BOL
);
1393 state
->progLength
++;
1396 state
->result
= NewRENode(state
, REOP_EOL
);
1399 state
->progLength
++;
1402 if (state
->cp
>= state
->cpend
) {
1403 /* a trailing '\' is an error */
1404 ReportRegExpError(state
, JSREPORT_ERROR
, JSMSG_TRAILING_SLASH
);
1409 /* assertion escapes */
1411 state
->result
= NewRENode(state
, REOP_WBDRY
);
1414 state
->progLength
++;
1417 state
->result
= NewRENode(state
, REOP_WNONBDRY
);
1420 state
->progLength
++;
1422 /* Decimal escape */
1424 /* Give a strict warning. See also the note below. */
1425 WARN("non-octal digit in an escape sequence that doesn't match a back-reference\n");
1428 while (state
->cp
< state
->cpend
) {
1430 if (c
< '0' || '7' < c
)
1433 tmp
= 8 * num
+ (UINT
)JS7_UNDEC(c
);
1440 state
->result
= NewRENode(state
, REOP_FLAT
);
1443 state
->result
->u
.flat
.chr
= c
;
1444 state
->result
->u
.flat
.length
= 1;
1445 state
->progLength
+= 3;
1456 termStart
= state
->cp
- 1;
1457 num
= GetDecimalValue(c
, state
->parenCount
, FindParenCount
, state
);
1458 if (state
->flags
& JSREG_FIND_PAREN_ERROR
)
1460 if (num
== OVERFLOW_VALUE
) {
1461 /* Give a strict mode warning. */
1462 WARN("back-reference exceeds number of capturing parentheses\n");
1465 * Note: ECMA 262, 15.10.2.9 says that we should throw a syntax
1466 * error here. However, for compatibility with IE, we treat the
1467 * whole backref as flat if the first character in it is not a
1468 * valid octal character, and as an octal escape otherwise.
1470 state
->cp
= termStart
;
1472 /* Treat this as flat. termStart - 1 is the \. */
1477 /* Treat this as an octal escape. */
1480 assert(1 <= num
&& num
<= 0x10000);
1481 state
->result
= NewRENode(state
, REOP_BACKREF
);
1484 state
->result
->u
.parenIndex
= num
- 1;
1486 += 1 + GetCompactIndexWidth(state
->result
->u
.parenIndex
);
1488 /* Control escape */
1504 /* Control letter */
1506 if (state
->cp
< state
->cpend
&& RE_IS_LETTER(*state
->cp
)) {
1507 c
= (WCHAR
) (*state
->cp
++ & 0x1F);
1509 /* back off to accepting the original '\' as a literal */
1514 /* HexEscapeSequence */
1518 /* UnicodeEscapeSequence */
1523 for (i
= 0; i
< nDigits
&& state
->cp
< state
->cpend
; i
++) {
1526 if (!isASCIIHexDigit(c
, &digit
)) {
1528 * Back off to accepting the original 'u' or 'x' as a
1535 n
= (n
<< 4) | digit
;
1539 /* Character class escapes */
1541 state
->result
= NewRENode(state
, REOP_DIGIT
);
1545 state
->progLength
++;
1548 state
->result
= NewRENode(state
, REOP_NONDIGIT
);
1551 state
->result
= NewRENode(state
, REOP_SPACE
);
1554 state
->result
= NewRENode(state
, REOP_NONSPACE
);
1557 state
->result
= NewRENode(state
, REOP_ALNUM
);
1560 state
->result
= NewRENode(state
, REOP_NONALNUM
);
1562 /* IdentityEscape */
1564 state
->result
= NewRENode(state
, REOP_FLAT
);
1567 state
->result
->u
.flat
.chr
= c
;
1568 state
->result
->u
.flat
.length
= 1;
1569 state
->result
->kid
= (void *) (state
->cp
- 1);
1570 state
->progLength
+= 3;
1575 state
->result
= NewRENode(state
, REOP_CLASS
);
1578 termStart
= state
->cp
;
1579 state
->result
->u
.ucclass
.startIndex
= termStart
- state
->cpbegin
;
1581 if (state
->cp
== state
->cpend
) {
1582 ReportRegExpErrorHelper(state
, JSREPORT_ERROR
,
1583 JSMSG_UNTERM_CLASS
, termStart
);
1587 if (*state
->cp
== '\\') {
1589 if (state
->cp
!= state
->cpend
)
1593 if (*state
->cp
== ']') {
1594 state
->result
->u
.ucclass
.kidlen
= state
->cp
- termStart
;
1599 for (i
= 0; i
< CLASS_CACHE_SIZE
; i
++) {
1600 if (!state
->classCache
[i
].start
) {
1601 state
->classCache
[i
].start
= termStart
;
1602 state
->classCache
[i
].length
= state
->result
->u
.ucclass
.kidlen
;
1603 state
->classCache
[i
].index
= state
->classCount
;
1606 if (state
->classCache
[i
].length
==
1607 state
->result
->u
.ucclass
.kidlen
) {
1608 for (n
= 0; ; n
++) {
1609 if (n
== state
->classCache
[i
].length
) {
1610 state
->result
->u
.ucclass
.index
1611 = state
->classCache
[i
].index
;
1614 if (state
->classCache
[i
].start
[n
] != termStart
[n
])
1619 state
->result
->u
.ucclass
.index
= state
->classCount
++;
1623 * Call CalculateBitmapSize now as we want any errors it finds
1624 * to be reported during the parse phase, not at execution.
1626 if (!CalculateBitmapSize(state
, state
->result
, termStart
, state
->cp
++))
1629 * Update classBitmapsMem with number of bytes to hold bmsize bits,
1630 * which is (bitsCount + 7) / 8 or (highest_bit + 1 + 7) / 8
1631 * or highest_bit / 8 + 1 where highest_bit is u.ucclass.bmsize.
1633 n
= (state
->result
->u
.ucclass
.bmsize
>> 3) + 1;
1634 if (n
> CLASS_BITMAPS_MEM_LIMIT
- state
->classBitmapsMem
) {
1635 ReportRegExpError(state
, JSREPORT_ERROR
, JSMSG_REGEXP_TOO_COMPLEX
);
1638 state
->classBitmapsMem
+= n
;
1639 /* CLASS, <index> */
1641 += 1 + GetCompactIndexWidth(state
->result
->u
.ucclass
.index
);
1645 state
->result
= NewRENode(state
, REOP_DOT
);
1650 const WCHAR
*errp
= state
->cp
--;
1653 err
= ParseMinMaxQuantifier(state
, TRUE
);
1664 ReportRegExpErrorHelper(state
, JSREPORT_ERROR
,
1665 JSMSG_BAD_QUANTIFIER
, state
->cp
- 1);
1669 state
->result
= NewRENode(state
, REOP_FLAT
);
1672 state
->result
->u
.flat
.chr
= c
;
1673 state
->result
->u
.flat
.length
= 1;
1674 state
->result
->kid
= (void *) (state
->cp
- 1);
1675 state
->progLength
+= 3;
1678 return ParseQuantifier(state
);
1682 * Top-down regular expression grammar, based closely on Perl4.
1684 * regexp: altern A regular expression is one or more
1685 * altern '|' regexp alternatives separated by vertical bar.
1687 #define INITIAL_STACK_SIZE 128
1690 ParseRegExp(CompilerState
*state
)
1694 REOpData
*operatorStack
;
1695 RENode
**operandStack
;
1698 BOOL result
= FALSE
;
1700 INT operatorSP
= 0, operatorStackSize
= INITIAL_STACK_SIZE
;
1701 INT operandSP
= 0, operandStackSize
= INITIAL_STACK_SIZE
;
1703 /* Watch out for empty regexp */
1704 if (state
->cp
== state
->cpend
) {
1705 state
->result
= NewRENode(state
, REOP_EMPTY
);
1706 return (state
->result
!= NULL
);
1709 operatorStack
= heap_alloc(sizeof(REOpData
) * operatorStackSize
);
1713 operandStack
= heap_alloc(sizeof(RENode
*) * operandStackSize
);
1718 parenIndex
= state
->parenCount
;
1719 if (state
->cp
== state
->cpend
) {
1721 * If we are at the end of the regexp and we're short one or more
1722 * operands, the regexp must have the form /x|/ or some such, with
1723 * left parentheses making us short more than one operand.
1725 if (operatorSP
>= operandSP
) {
1726 operand
= NewRENode(state
, REOP_EMPTY
);
1732 switch (*state
->cp
) {
1735 if (state
->cp
+ 1 < state
->cpend
&&
1736 *state
->cp
== '?' &&
1737 (state
->cp
[1] == '=' ||
1738 state
->cp
[1] == '!' ||
1739 state
->cp
[1] == ':')) {
1740 switch (state
->cp
[1]) {
1743 /* ASSERT, <next>, ... ASSERTTEST */
1744 state
->progLength
+= 4;
1747 op
= REOP_ASSERT_NOT
;
1748 /* ASSERTNOT, <next>, ... ASSERTNOTTEST */
1749 state
->progLength
+= 4;
1752 op
= REOP_LPARENNON
;
1758 /* LPAREN, <index>, ... RPAREN, <index> */
1760 += 2 * (1 + GetCompactIndexWidth(parenIndex
));
1761 state
->parenCount
++;
1762 if (state
->parenCount
== 65535) {
1763 ReportRegExpError(state
, JSREPORT_ERROR
,
1764 JSMSG_TOO_MANY_PARENS
);
1772 * If there's no stacked open parenthesis, throw syntax error.
1774 for (i
= operatorSP
- 1; ; i
--) {
1776 ReportRegExpError(state
, JSREPORT_ERROR
,
1777 JSMSG_UNMATCHED_RIGHT_PAREN
);
1780 if (operatorStack
[i
].op
== REOP_ASSERT
||
1781 operatorStack
[i
].op
== REOP_ASSERT_NOT
||
1782 operatorStack
[i
].op
== REOP_LPARENNON
||
1783 operatorStack
[i
].op
== REOP_LPAREN
) {
1790 /* Expected an operand before these, so make an empty one */
1791 operand
= NewRENode(state
, REOP_EMPTY
);
1797 if (!ParseTerm(state
))
1799 operand
= state
->result
;
1801 if (operandSP
== operandStackSize
) {
1803 operandStackSize
+= operandStackSize
;
1804 tmp
= heap_realloc(operandStack
, sizeof(RENode
*) * operandStackSize
);
1809 operandStack
[operandSP
++] = operand
;
1814 /* At the end; process remaining operators. */
1816 if (state
->cp
== state
->cpend
) {
1817 while (operatorSP
) {
1819 if (!ProcessOp(state
, &operatorStack
[operatorSP
],
1820 operandStack
, operandSP
))
1824 assert(operandSP
== 1);
1825 state
->result
= operandStack
[0];
1830 switch (*state
->cp
) {
1832 /* Process any stacked 'concat' operators */
1834 while (operatorSP
&&
1835 operatorStack
[operatorSP
- 1].op
== REOP_CONCAT
) {
1837 if (!ProcessOp(state
, &operatorStack
[operatorSP
],
1838 operandStack
, operandSP
)) {
1848 * If there's no stacked open parenthesis, throw syntax error.
1850 for (i
= operatorSP
- 1; ; i
--) {
1852 ReportRegExpError(state
, JSREPORT_ERROR
,
1853 JSMSG_UNMATCHED_RIGHT_PAREN
);
1856 if (operatorStack
[i
].op
== REOP_ASSERT
||
1857 operatorStack
[i
].op
== REOP_ASSERT_NOT
||
1858 operatorStack
[i
].op
== REOP_LPARENNON
||
1859 operatorStack
[i
].op
== REOP_LPAREN
) {
1865 /* Process everything on the stack until the open parenthesis. */
1869 switch (operatorStack
[operatorSP
].op
) {
1871 case REOP_ASSERT_NOT
:
1873 operand
= NewRENode(state
, operatorStack
[operatorSP
].op
);
1876 operand
->u
.parenIndex
=
1877 operatorStack
[operatorSP
].parenIndex
;
1879 operand
->kid
= operandStack
[operandSP
- 1];
1880 operandStack
[operandSP
- 1] = operand
;
1881 if (state
->treeDepth
== TREE_DEPTH_MAX
) {
1882 ReportRegExpError(state
, JSREPORT_ERROR
,
1883 JSMSG_REGEXP_TOO_COMPLEX
);
1889 case REOP_LPARENNON
:
1890 state
->result
= operandStack
[operandSP
- 1];
1891 if (!ParseQuantifier(state
))
1893 operandStack
[operandSP
- 1] = state
->result
;
1894 goto restartOperator
;
1896 if (!ProcessOp(state
, &operatorStack
[operatorSP
],
1897 operandStack
, operandSP
))
1907 const WCHAR
*errp
= state
->cp
;
1909 if (ParseMinMaxQuantifier(state
, TRUE
) < 0) {
1911 * This didn't even scan correctly as a quantifier, so we should
1925 ReportRegExpErrorHelper(state
, JSREPORT_ERROR
, JSMSG_BAD_QUANTIFIER
,
1931 /* Anything else is the start of the next term. */
1934 if (operatorSP
== operatorStackSize
) {
1936 operatorStackSize
+= operatorStackSize
;
1937 tmp
= heap_realloc(operatorStack
, sizeof(REOpData
) * operatorStackSize
);
1940 operatorStack
= tmp
;
1942 operatorStack
[operatorSP
].op
= op
;
1943 operatorStack
[operatorSP
].errPos
= state
->cp
;
1944 operatorStack
[operatorSP
++].parenIndex
= parenIndex
;
1949 heap_free(operatorStack
);
1950 heap_free(operandStack
);
1955 * Save the current state of the match - the position in the input
1956 * text as well as the position in the bytecode. The state of any
1957 * parent expressions is also saved (preceding state).
1958 * Contents of parenCount parentheses from parenIndex are also saved.
1960 static REBackTrackData
*
1961 PushBackTrackState(REGlobalData
*gData
, REOp op
,
1962 jsbytecode
*target
, REMatchState
*x
, const WCHAR
*cp
,
1963 size_t parenIndex
, size_t parenCount
)
1966 REBackTrackData
*result
=
1967 (REBackTrackData
*) ((char *)gData
->backTrackSP
+ gData
->cursz
);
1969 size_t sz
= sizeof(REBackTrackData
) +
1970 gData
->stateStackTop
* sizeof(REProgState
) +
1971 parenCount
* sizeof(RECapture
);
1973 ptrdiff_t btsize
= gData
->backTrackStackSize
;
1974 ptrdiff_t btincr
= ((char *)result
+ sz
) -
1975 ((char *)gData
->backTrackStack
+ btsize
);
1977 TRACE("\tBT_Push: %lu,%lu\n", (unsigned long) parenIndex
, (unsigned long) parenCount
);
1979 JS_COUNT_OPERATION(gData
->cx
, JSOW_JUMP
* (1 + parenCount
));
1981 ptrdiff_t offset
= (char *)result
- (char *)gData
->backTrackStack
;
1983 JS_COUNT_OPERATION(gData
->cx
, JSOW_ALLOCATION
);
1984 btincr
= ((btincr
+btsize
-1)/btsize
)*btsize
;
1985 gData
->backTrackStack
= jsheap_grow(gData
->pool
, gData
->backTrackStack
, btsize
, btincr
);
1986 if (!gData
->backTrackStack
) {
1987 js_ReportOutOfScriptQuota(gData
->cx
);
1991 gData
->backTrackStackSize
= btsize
+ btincr
;
1992 result
= (REBackTrackData
*) ((char *)gData
->backTrackStack
+ offset
);
1994 gData
->backTrackSP
= result
;
1995 result
->sz
= gData
->cursz
;
1998 result
->backtrack_op
= op
;
1999 result
->backtrack_pc
= target
;
2001 result
->parenCount
= parenCount
;
2002 result
->parenIndex
= parenIndex
;
2004 result
->saveStateStackTop
= gData
->stateStackTop
;
2005 assert(gData
->stateStackTop
);
2006 memcpy(result
+ 1, gData
->stateStack
,
2007 sizeof(REProgState
) * result
->saveStateStackTop
);
2009 if (parenCount
!= 0) {
2010 memcpy((char *)(result
+ 1) +
2011 sizeof(REProgState
) * result
->saveStateStackTop
,
2012 &x
->parens
[parenIndex
],
2013 sizeof(RECapture
) * parenCount
);
2014 for (i
= 0; i
!= parenCount
; i
++)
2015 x
->parens
[parenIndex
+ i
].index
= -1;
2021 static inline REMatchState
*
2022 FlatNIMatcher(REGlobalData
*gData
, REMatchState
*x
, WCHAR
*matchChars
,
2026 assert(gData
->cpend
>= x
->cp
);
2027 if (length
> (size_t)(gData
->cpend
- x
->cp
))
2029 for (i
= 0; i
!= length
; i
++) {
2030 if (toupperW(matchChars
[i
]) != toupperW(x
->cp
[i
]))
2038 * 1. Evaluate DecimalEscape to obtain an EscapeValue E.
2039 * 2. If E is not a character then go to step 6.
2040 * 3. Let ch be E's character.
2041 * 4. Let A be a one-element RECharSet containing the character ch.
2042 * 5. Call CharacterSetMatcher(A, false) and return its Matcher result.
2043 * 6. E must be an integer. Let n be that integer.
2044 * 7. If n=0 or n>NCapturingParens then throw a SyntaxError exception.
2045 * 8. Return an internal Matcher closure that takes two arguments, a State x
2046 * and a Continuation c, and performs the following:
2047 * 1. Let cap be x's captures internal array.
2048 * 2. Let s be cap[n].
2049 * 3. If s is undefined, then call c(x) and return its result.
2050 * 4. Let e be x's endIndex.
2051 * 5. Let len be s's length.
2052 * 6. Let f be e+len.
2053 * 7. If f>InputLength, return failure.
2054 * 8. If there exists an integer i between 0 (inclusive) and len (exclusive)
2055 * such that Canonicalize(s[i]) is not the same character as
2056 * Canonicalize(Input [e+i]), then return failure.
2057 * 9. Let y be the State (f, cap).
2058 * 10. Call c(y) and return its result.
2060 static REMatchState
*
2061 BackrefMatcher(REGlobalData
*gData
, REMatchState
*x
, size_t parenIndex
)
2064 const WCHAR
*parenContent
;
2065 RECapture
*cap
= &x
->parens
[parenIndex
];
2067 if (cap
->index
== -1)
2071 if (x
->cp
+ len
> gData
->cpend
)
2074 parenContent
= &gData
->cpbegin
[cap
->index
];
2075 if (gData
->regexp
->flags
& JSREG_FOLD
) {
2076 for (i
= 0; i
< len
; i
++) {
2077 if (toupperW(parenContent
[i
]) != toupperW(x
->cp
[i
]))
2081 for (i
= 0; i
< len
; i
++) {
2082 if (parenContent
[i
] != x
->cp
[i
])
2090 /* Add a single character to the RECharSet */
2092 AddCharacterToCharSet(RECharSet
*cs
, WCHAR c
)
2094 UINT byteIndex
= (UINT
)(c
>> 3);
2095 assert(c
<= cs
->length
);
2096 cs
->u
.bits
[byteIndex
] |= 1 << (c
& 0x7);
2100 /* Add a character range, c1 to c2 (inclusive) to the RECharSet */
2102 AddCharacterRangeToCharSet(RECharSet
*cs
, UINT c1
, UINT c2
)
2106 UINT byteIndex1
= c1
>> 3;
2107 UINT byteIndex2
= c2
>> 3;
2109 assert(c2
<= cs
->length
&& c1
<= c2
);
2114 if (byteIndex1
== byteIndex2
) {
2115 cs
->u
.bits
[byteIndex1
] |= ((BYTE
)0xFF >> (7 - (c2
- c1
))) << c1
;
2117 cs
->u
.bits
[byteIndex1
] |= 0xFF << c1
;
2118 for (i
= byteIndex1
+ 1; i
< byteIndex2
; i
++)
2119 cs
->u
.bits
[i
] = 0xFF;
2120 cs
->u
.bits
[byteIndex2
] |= (BYTE
)0xFF >> (7 - c2
);
2124 /* Compile the source of the class into a RECharSet */
2126 ProcessCharSet(REGlobalData
*gData
, RECharSet
*charSet
)
2128 const WCHAR
*src
, *end
;
2129 BOOL inRange
= FALSE
;
2130 WCHAR rangeStart
= 0;
2135 assert(!charSet
->converted
);
2137 * Assert that startIndex and length points to chars inside [] inside
2140 assert(1 <= charSet
->u
.src
.startIndex
);
2141 assert(charSet
->u
.src
.startIndex
2142 < SysStringLen(gData
->regexp
->source
));
2143 assert(charSet
->u
.src
.length
<= SysStringLen(gData
->regexp
->source
)
2144 - 1 - charSet
->u
.src
.startIndex
);
2146 charSet
->converted
= TRUE
;
2147 src
= gData
->regexp
->source
+ charSet
->u
.src
.startIndex
;
2149 end
= src
+ charSet
->u
.src
.length
;
2151 assert(src
[-1] == '[' && end
[0] == ']');
2153 byteLength
= (charSet
->length
>> 3) + 1;
2154 charSet
->u
.bits
= heap_alloc(byteLength
);
2155 if (!charSet
->u
.bits
) {
2156 JS_ReportOutOfMemory(gData
->cx
);
2160 memset(charSet
->u
.bits
, 0, byteLength
);
2166 assert(charSet
->sense
== FALSE
);
2169 assert(charSet
->sense
== TRUE
);
2172 while (src
!= end
) {
2197 if (src
< end
&& JS_ISWORD(*src
)) {
2198 thisCh
= (WCHAR
)(*src
++ & 0x1F);
2211 for (i
= 0; (i
< nDigits
) && (src
< end
); i
++) {
2214 if (!isASCIIHexDigit(c
, &digit
)) {
2216 * Back off to accepting the original '\'
2223 n
= (n
<< 4) | digit
;
2236 * This is a non-ECMA extension - decimal escapes (in this
2237 * case, octal!) are supposed to be an error inside class
2238 * ranges, but supported here for backwards compatibility.
2242 if ('0' <= c
&& c
<= '7') {
2244 n
= 8 * n
+ JS7_UNDEC(c
);
2246 if ('0' <= c
&& c
<= '7') {
2248 i
= 8 * n
+ JS7_UNDEC(c
);
2259 AddCharacterRangeToCharSet(charSet
, '0', '9');
2260 continue; /* don't need range processing */
2262 AddCharacterRangeToCharSet(charSet
, 0, '0' - 1);
2263 AddCharacterRangeToCharSet(charSet
,
2265 (WCHAR
)charSet
->length
);
2268 for (i
= (INT
)charSet
->length
; i
>= 0; i
--)
2270 AddCharacterToCharSet(charSet
, (WCHAR
)i
);
2273 for (i
= (INT
)charSet
->length
; i
>= 0; i
--)
2275 AddCharacterToCharSet(charSet
, (WCHAR
)i
);
2278 for (i
= (INT
)charSet
->length
; i
>= 0; i
--)
2280 AddCharacterToCharSet(charSet
, (WCHAR
)i
);
2283 for (i
= (INT
)charSet
->length
; i
>= 0; i
--)
2285 AddCharacterToCharSet(charSet
, (WCHAR
)i
);
2300 if (gData
->regexp
->flags
& JSREG_FOLD
) {
2303 assert(rangeStart
<= thisCh
);
2304 for (i
= rangeStart
; i
<= thisCh
; i
++) {
2307 AddCharacterToCharSet(charSet
, i
);
2311 AddCharacterToCharSet(charSet
, uch
);
2313 AddCharacterToCharSet(charSet
, dch
);
2316 AddCharacterRangeToCharSet(charSet
, rangeStart
, thisCh
);
2320 if (gData
->regexp
->flags
& JSREG_FOLD
) {
2321 AddCharacterToCharSet(charSet
, toupperW(thisCh
));
2322 AddCharacterToCharSet(charSet
, tolowerW(thisCh
));
2324 AddCharacterToCharSet(charSet
, thisCh
);
2326 if (src
< end
- 1) {
2330 rangeStart
= thisCh
;
2339 ReallocStateStack(REGlobalData
*gData
)
2341 size_t limit
= gData
->stateStackLimit
;
2342 size_t sz
= sizeof(REProgState
) * limit
;
2344 gData
->stateStack
= jsheap_grow(gData
->pool
, gData
->stateStack
, sz
, sz
);
2345 if (!gData
->stateStack
) {
2346 js_ReportOutOfScriptQuota(gData
->cx
);
2350 gData
->stateStackLimit
= limit
+ limit
;
2354 #define PUSH_STATE_STACK(data) \
2356 ++(data)->stateStackTop; \
2357 if ((data)->stateStackTop == (data)->stateStackLimit && \
2358 !ReallocStateStack((data))) { \
2364 * Apply the current op against the given input to see if it's going to match
2365 * or fail. Return false if we don't get a match, true if we do. If updatecp is
2366 * true, then update the current state's cp. Always update startpc to the next
2369 static inline REMatchState
*
2370 SimpleMatch(REGlobalData
*gData
, REMatchState
*x
, REOp op
,
2371 jsbytecode
**startpc
, BOOL updatecp
)
2373 REMatchState
*result
= NULL
;
2376 size_t offset
, length
, index
;
2377 jsbytecode
*pc
= *startpc
; /* pc has already been incremented past op */
2379 const WCHAR
*startcp
= x
->cp
;
2383 const char *opname
= reop_names
[op
];
2384 TRACE("\n%06d: %*s%s\n", pc
- gData
->regexp
->program
,
2385 (int)gData
->stateStackTop
* 2, "", opname
);
2392 if (x
->cp
!= gData
->cpbegin
) {
2393 if (/*!gData->cx->regExpStatics.multiline && FIXME !!! */
2394 !(gData
->regexp
->flags
& JSREG_MULTILINE
)) {
2397 if (!RE_IS_LINE_TERM(x
->cp
[-1]))
2403 if (x
->cp
!= gData
->cpend
) {
2404 if (/*!gData->cx->regExpStatics.multiline &&*/
2405 !(gData
->regexp
->flags
& JSREG_MULTILINE
)) {
2408 if (!RE_IS_LINE_TERM(*x
->cp
))
2414 if ((x
->cp
== gData
->cpbegin
|| !JS_ISWORD(x
->cp
[-1])) ^
2415 !(x
->cp
!= gData
->cpend
&& JS_ISWORD(*x
->cp
))) {
2420 if ((x
->cp
== gData
->cpbegin
|| !JS_ISWORD(x
->cp
[-1])) ^
2421 (x
->cp
!= gData
->cpend
&& JS_ISWORD(*x
->cp
))) {
2426 if (x
->cp
!= gData
->cpend
&& !RE_IS_LINE_TERM(*x
->cp
)) {
2432 if (x
->cp
!= gData
->cpend
&& JS7_ISDEC(*x
->cp
)) {
2438 if (x
->cp
!= gData
->cpend
&& !JS7_ISDEC(*x
->cp
)) {
2444 if (x
->cp
!= gData
->cpend
&& JS_ISWORD(*x
->cp
)) {
2450 if (x
->cp
!= gData
->cpend
&& !JS_ISWORD(*x
->cp
)) {
2456 if (x
->cp
!= gData
->cpend
&& isspaceW(*x
->cp
)) {
2462 if (x
->cp
!= gData
->cpend
&& !isspaceW(*x
->cp
)) {
2468 pc
= ReadCompactIndex(pc
, &parenIndex
);
2469 assert(parenIndex
< gData
->regexp
->parenCount
);
2470 result
= BackrefMatcher(gData
, x
, parenIndex
);
2473 pc
= ReadCompactIndex(pc
, &offset
);
2474 assert(offset
< SysStringLen(gData
->regexp
->source
));
2475 pc
= ReadCompactIndex(pc
, &length
);
2476 assert(1 <= length
);
2477 assert(length
<= SysStringLen(gData
->regexp
->source
) - offset
);
2478 if (length
<= (size_t)(gData
->cpend
- x
->cp
)) {
2479 source
= gData
->regexp
->source
+ offset
;
2480 TRACE("%s\n", debugstr_wn(source
, length
));
2481 for (index
= 0; index
!= length
; index
++) {
2482 if (source
[index
] != x
->cp
[index
])
2491 TRACE(" '%c' == '%c'\n", (char)matchCh
, (char)*x
->cp
);
2492 if (x
->cp
!= gData
->cpend
&& *x
->cp
== matchCh
) {
2498 pc
= ReadCompactIndex(pc
, &offset
);
2499 assert(offset
< SysStringLen(gData
->regexp
->source
));
2500 pc
= ReadCompactIndex(pc
, &length
);
2501 assert(1 <= length
);
2502 assert(length
<= SysStringLen(gData
->regexp
->source
) - offset
);
2503 source
= gData
->regexp
->source
;
2504 result
= FlatNIMatcher(gData
, x
, source
+ offset
, length
);
2508 if (x
->cp
!= gData
->cpend
&& toupperW(*x
->cp
) == toupperW(matchCh
)) {
2514 matchCh
= GET_ARG(pc
);
2515 TRACE(" '%c' == '%c'\n", (char)matchCh
, (char)*x
->cp
);
2517 if (x
->cp
!= gData
->cpend
&& *x
->cp
== matchCh
) {
2523 matchCh
= GET_ARG(pc
);
2525 if (x
->cp
!= gData
->cpend
&& toupperW(*x
->cp
) == toupperW(matchCh
)) {
2531 pc
= ReadCompactIndex(pc
, &index
);
2532 assert(index
< gData
->regexp
->classCount
);
2533 if (x
->cp
!= gData
->cpend
) {
2534 charSet
= &gData
->regexp
->classList
[index
];
2535 assert(charSet
->converted
);
2538 if (charSet
->length
!= 0 &&
2539 ch
<= charSet
->length
&&
2540 (charSet
->u
.bits
[index
] & (1 << (ch
& 0x7)))) {
2547 pc
= ReadCompactIndex(pc
, &index
);
2548 assert(index
< gData
->regexp
->classCount
);
2549 if (x
->cp
!= gData
->cpend
) {
2550 charSet
= &gData
->regexp
->classList
[index
];
2551 assert(charSet
->converted
);
2554 if (charSet
->length
== 0 ||
2555 ch
> charSet
->length
||
2556 !(charSet
->u
.bits
[index
] & (1 << (ch
& 0x7)))) {
2577 static inline REMatchState
*
2578 ExecuteREBytecode(REGlobalData
*gData
, REMatchState
*x
)
2580 REMatchState
*result
= NULL
;
2581 REBackTrackData
*backTrackData
;
2582 jsbytecode
*nextpc
, *testpc
;
2585 REProgState
*curState
;
2586 const WCHAR
*startcp
;
2587 size_t parenIndex
, k
;
2588 size_t parenSoFar
= 0;
2590 WCHAR matchCh1
, matchCh2
;
2594 jsbytecode
*pc
= gData
->regexp
->program
;
2595 REOp op
= (REOp
) *pc
++;
2598 * If the first node is a simple match, step the index into the string
2599 * until that match is made, or fail if it can't be found at all.
2601 if (REOP_IS_SIMPLE(op
) && !(gData
->regexp
->flags
& JSREG_STICKY
)) {
2603 while (x
->cp
<= gData
->cpend
) {
2604 nextpc
= pc
; /* reset back to start each time */
2605 result
= SimpleMatch(gData
, x
, op
, &nextpc
, TRUE
);
2609 pc
= nextpc
; /* accept skip to next opcode */
2611 assert(op
< REOP_LIMIT
);
2622 const char *opname
= reop_names
[op
];
2623 TRACE("\n%06d: %*s%s\n", pc
- gData
->regexp
->program
,
2624 (int)gData
->stateStackTop
* 2, "", opname
);
2626 if (REOP_IS_SIMPLE(op
)) {
2627 result
= SimpleMatch(gData
, x
, op
, &pc
, TRUE
);
2629 curState
= &gData
->stateStack
[gData
->stateStackTop
];
2633 case REOP_ALTPREREQ2
:
2634 nextpc
= pc
+ GET_OFFSET(pc
); /* start of next op */
2636 matchCh2
= GET_ARG(pc
);
2641 if (x
->cp
!= gData
->cpend
) {
2642 if (*x
->cp
== matchCh2
)
2645 charSet
= &gData
->regexp
->classList
[k
];
2646 if (!charSet
->converted
&& !ProcessCharSet(gData
, charSet
))
2650 if ((charSet
->length
== 0 ||
2651 matchCh1
> charSet
->length
||
2652 !(charSet
->u
.bits
[k
] & (1 << (matchCh1
& 0x7)))) ^
2660 case REOP_ALTPREREQ
:
2661 nextpc
= pc
+ GET_OFFSET(pc
); /* start of next op */
2663 matchCh1
= GET_ARG(pc
);
2665 matchCh2
= GET_ARG(pc
);
2667 if (x
->cp
== gData
->cpend
||
2668 (*x
->cp
!= matchCh1
&& *x
->cp
!= matchCh2
)) {
2672 /* else false thru... */
2676 nextpc
= pc
+ GET_OFFSET(pc
); /* start of next alternate */
2677 pc
+= ARG_LEN
; /* start of this alternate */
2678 curState
->parenSoFar
= parenSoFar
;
2679 PUSH_STATE_STACK(gData
);
2682 if (REOP_IS_SIMPLE(op
)) {
2683 if (!SimpleMatch(gData
, x
, op
, &pc
, TRUE
)) {
2684 op
= (REOp
) *nextpc
++;
2691 nextop
= (REOp
) *nextpc
++;
2692 if (!PushBackTrackState(gData
, nextop
, nextpc
, x
, startcp
, 0, 0))
2697 * Occurs at (successful) end of REOP_ALT,
2701 * If we have not gotten a result here, it is because of an
2702 * empty match. Do the same thing REOP_EMPTY would do.
2707 --gData
->stateStackTop
;
2708 pc
+= GET_OFFSET(pc
);
2713 * Occurs at last (successful) end of REOP_ALT,
2717 * If we have not gotten a result here, it is because of an
2718 * empty match. Do the same thing REOP_EMPTY would do.
2723 --gData
->stateStackTop
;
2728 pc
= ReadCompactIndex(pc
, &parenIndex
);
2729 TRACE("[ %lu ]\n", (unsigned long) parenIndex
);
2730 assert(parenIndex
< gData
->regexp
->parenCount
);
2731 if (parenIndex
+ 1 > parenSoFar
)
2732 parenSoFar
= parenIndex
+ 1;
2733 x
->parens
[parenIndex
].index
= x
->cp
- gData
->cpbegin
;
2734 x
->parens
[parenIndex
].length
= 0;
2742 pc
= ReadCompactIndex(pc
, &parenIndex
);
2743 assert(parenIndex
< gData
->regexp
->parenCount
);
2744 cap
= &x
->parens
[parenIndex
];
2745 delta
= x
->cp
- (gData
->cpbegin
+ cap
->index
);
2746 cap
->length
= (delta
< 0) ? 0 : (size_t) delta
;
2754 nextpc
= pc
+ GET_OFFSET(pc
); /* start of term after ASSERT */
2755 pc
+= ARG_LEN
; /* start of ASSERT child */
2758 if (REOP_IS_SIMPLE(op
) &&
2759 !SimpleMatch(gData
, x
, op
, &testpc
, FALSE
)) {
2763 curState
->u
.assertion
.top
=
2764 (char *)gData
->backTrackSP
- (char *)gData
->backTrackStack
;
2765 curState
->u
.assertion
.sz
= gData
->cursz
;
2766 curState
->index
= x
->cp
- gData
->cpbegin
;
2767 curState
->parenSoFar
= parenSoFar
;
2768 PUSH_STATE_STACK(gData
);
2769 if (!PushBackTrackState(gData
, REOP_ASSERTTEST
,
2770 nextpc
, x
, x
->cp
, 0, 0)) {
2775 case REOP_ASSERT_NOT
:
2776 nextpc
= pc
+ GET_OFFSET(pc
);
2780 if (REOP_IS_SIMPLE(op
) /* Note - fail to fail! */ &&
2781 SimpleMatch(gData
, x
, op
, &testpc
, FALSE
) &&
2782 *testpc
== REOP_ASSERTNOTTEST
) {
2786 curState
->u
.assertion
.top
2787 = (char *)gData
->backTrackSP
-
2788 (char *)gData
->backTrackStack
;
2789 curState
->u
.assertion
.sz
= gData
->cursz
;
2790 curState
->index
= x
->cp
- gData
->cpbegin
;
2791 curState
->parenSoFar
= parenSoFar
;
2792 PUSH_STATE_STACK(gData
);
2793 if (!PushBackTrackState(gData
, REOP_ASSERTNOTTEST
,
2794 nextpc
, x
, x
->cp
, 0, 0)) {
2799 case REOP_ASSERTTEST
:
2800 --gData
->stateStackTop
;
2802 x
->cp
= gData
->cpbegin
+ curState
->index
;
2803 gData
->backTrackSP
=
2804 (REBackTrackData
*) ((char *)gData
->backTrackStack
+
2805 curState
->u
.assertion
.top
);
2806 gData
->cursz
= curState
->u
.assertion
.sz
;
2811 case REOP_ASSERTNOTTEST
:
2812 --gData
->stateStackTop
;
2814 x
->cp
= gData
->cpbegin
+ curState
->index
;
2815 gData
->backTrackSP
=
2816 (REBackTrackData
*) ((char *)gData
->backTrackStack
+
2817 curState
->u
.assertion
.top
);
2818 gData
->cursz
= curState
->u
.assertion
.sz
;
2819 result
= (!result
) ? x
: NULL
;
2822 curState
->u
.quantifier
.min
= 0;
2823 curState
->u
.quantifier
.max
= (UINT
)-1;
2826 curState
->u
.quantifier
.min
= 1;
2827 curState
->u
.quantifier
.max
= (UINT
)-1;
2830 curState
->u
.quantifier
.min
= 0;
2831 curState
->u
.quantifier
.max
= 1;
2834 pc
= ReadCompactIndex(pc
, &k
);
2835 curState
->u
.quantifier
.min
= k
;
2836 pc
= ReadCompactIndex(pc
, &k
);
2837 /* max is k - 1 to use one byte for (UINT)-1 sentinel. */
2838 curState
->u
.quantifier
.max
= k
- 1;
2839 assert(curState
->u
.quantifier
.min
<= curState
->u
.quantifier
.max
);
2841 if (curState
->u
.quantifier
.max
== 0) {
2842 pc
= pc
+ GET_OFFSET(pc
);
2847 /* Step over <next> */
2848 nextpc
= pc
+ ARG_LEN
;
2849 op
= (REOp
) *nextpc
++;
2851 if (REOP_IS_SIMPLE(op
)) {
2852 if (!SimpleMatch(gData
, x
, op
, &nextpc
, TRUE
)) {
2853 if (curState
->u
.quantifier
.min
== 0)
2857 pc
= pc
+ GET_OFFSET(pc
);
2860 op
= (REOp
) *nextpc
++;
2863 curState
->index
= startcp
- gData
->cpbegin
;
2864 curState
->continue_op
= REOP_REPEAT
;
2865 curState
->continue_pc
= pc
;
2866 curState
->parenSoFar
= parenSoFar
;
2867 PUSH_STATE_STACK(gData
);
2868 if (curState
->u
.quantifier
.min
== 0 &&
2869 !PushBackTrackState(gData
, REOP_REPEAT
, pc
, x
, startcp
,
2876 case REOP_ENDCHILD
: /* marks the end of a quantifier child */
2877 pc
= curState
[-1].continue_pc
;
2878 op
= (REOp
) curState
[-1].continue_op
;
2887 --gData
->stateStackTop
;
2889 /* Failed, see if we have enough children. */
2890 if (curState
->u
.quantifier
.min
== 0)
2894 if (curState
->u
.quantifier
.min
== 0 &&
2895 x
->cp
== gData
->cpbegin
+ curState
->index
) {
2896 /* matched an empty string, that'll get us nowhere */
2900 if (curState
->u
.quantifier
.min
!= 0)
2901 curState
->u
.quantifier
.min
--;
2902 if (curState
->u
.quantifier
.max
!= (UINT
) -1)
2903 curState
->u
.quantifier
.max
--;
2904 if (curState
->u
.quantifier
.max
== 0)
2906 nextpc
= pc
+ ARG_LEN
;
2907 nextop
= (REOp
) *nextpc
;
2909 if (REOP_IS_SIMPLE(nextop
)) {
2911 if (!SimpleMatch(gData
, x
, nextop
, &nextpc
, TRUE
)) {
2912 if (curState
->u
.quantifier
.min
== 0)
2919 curState
->index
= startcp
- gData
->cpbegin
;
2920 PUSH_STATE_STACK(gData
);
2921 if (curState
->u
.quantifier
.min
== 0 &&
2922 !PushBackTrackState(gData
, REOP_REPEAT
,
2924 curState
->parenSoFar
,
2926 curState
->parenSoFar
)) {
2929 } while (*nextpc
== REOP_ENDCHILD
);
2932 parenSoFar
= curState
->parenSoFar
;
2937 pc
+= GET_OFFSET(pc
);
2940 case REOP_MINIMALSTAR
:
2941 curState
->u
.quantifier
.min
= 0;
2942 curState
->u
.quantifier
.max
= (UINT
)-1;
2943 goto minimalquantcommon
;
2944 case REOP_MINIMALPLUS
:
2945 curState
->u
.quantifier
.min
= 1;
2946 curState
->u
.quantifier
.max
= (UINT
)-1;
2947 goto minimalquantcommon
;
2948 case REOP_MINIMALOPT
:
2949 curState
->u
.quantifier
.min
= 0;
2950 curState
->u
.quantifier
.max
= 1;
2951 goto minimalquantcommon
;
2952 case REOP_MINIMALQUANT
:
2953 pc
= ReadCompactIndex(pc
, &k
);
2954 curState
->u
.quantifier
.min
= k
;
2955 pc
= ReadCompactIndex(pc
, &k
);
2956 /* See REOP_QUANT comments about k - 1. */
2957 curState
->u
.quantifier
.max
= k
- 1;
2958 assert(curState
->u
.quantifier
.min
2959 <= curState
->u
.quantifier
.max
);
2961 curState
->index
= x
->cp
- gData
->cpbegin
;
2962 curState
->parenSoFar
= parenSoFar
;
2963 PUSH_STATE_STACK(gData
);
2964 if (curState
->u
.quantifier
.min
!= 0) {
2965 curState
->continue_op
= REOP_MINIMALREPEAT
;
2966 curState
->continue_pc
= pc
;
2967 /* step over <next> */
2971 if (!PushBackTrackState(gData
, REOP_MINIMALREPEAT
,
2972 pc
, x
, x
->cp
, 0, 0)) {
2975 --gData
->stateStackTop
;
2976 pc
= pc
+ GET_OFFSET(pc
);
2981 case REOP_MINIMALREPEAT
:
2982 --gData
->stateStackTop
;
2985 TRACE("{%d,%d}\n", curState
->u
.quantifier
.min
, curState
->u
.quantifier
.max
);
2986 #define PREPARE_REPEAT() \
2988 curState->index = x->cp - gData->cpbegin; \
2989 curState->continue_op = REOP_MINIMALREPEAT; \
2990 curState->continue_pc = pc; \
2992 for (k = curState->parenSoFar; k < parenSoFar; k++) \
2993 x->parens[k].index = -1; \
2994 PUSH_STATE_STACK(gData); \
2995 op = (REOp) *pc++; \
2996 assert(op < REOP_LIMIT); \
3002 * Non-greedy failure - try to consume another child.
3004 if (curState
->u
.quantifier
.max
== (UINT
) -1 ||
3005 curState
->u
.quantifier
.max
> 0) {
3009 /* Don't need to adjust pc since we're going to pop. */
3012 if (curState
->u
.quantifier
.min
== 0 &&
3013 x
->cp
== gData
->cpbegin
+ curState
->index
) {
3014 /* Matched an empty string, that'll get us nowhere. */
3018 if (curState
->u
.quantifier
.min
!= 0)
3019 curState
->u
.quantifier
.min
--;
3020 if (curState
->u
.quantifier
.max
!= (UINT
) -1)
3021 curState
->u
.quantifier
.max
--;
3022 if (curState
->u
.quantifier
.min
!= 0) {
3026 curState
->index
= x
->cp
- gData
->cpbegin
;
3027 curState
->parenSoFar
= parenSoFar
;
3028 PUSH_STATE_STACK(gData
);
3029 if (!PushBackTrackState(gData
, REOP_MINIMALREPEAT
,
3031 curState
->parenSoFar
,
3032 parenSoFar
- curState
->parenSoFar
)) {
3035 --gData
->stateStackTop
;
3036 pc
= pc
+ GET_OFFSET(pc
);
3038 assert(op
< REOP_LIMIT
);
3048 * If the match failed and there's a backtrack option, take it.
3049 * Otherwise this is a complete and utter failure.
3052 if (gData
->cursz
== 0)
3055 /* Potentially detect explosive regex here. */
3056 gData
->backTrackCount
++;
3057 if (gData
->backTrackLimit
&&
3058 gData
->backTrackCount
>= gData
->backTrackLimit
) {
3059 JS_ReportErrorNumber(gData
->cx
, js_GetErrorMessage
, NULL
,
3060 JSMSG_REGEXP_TOO_COMPLEX
);
3065 backTrackData
= gData
->backTrackSP
;
3066 gData
->cursz
= backTrackData
->sz
;
3067 gData
->backTrackSP
=
3068 (REBackTrackData
*) ((char *)backTrackData
- backTrackData
->sz
);
3069 x
->cp
= backTrackData
->cp
;
3070 pc
= backTrackData
->backtrack_pc
;
3071 op
= (REOp
) backTrackData
->backtrack_op
;
3072 assert(op
< REOP_LIMIT
);
3073 gData
->stateStackTop
= backTrackData
->saveStateStackTop
;
3074 assert(gData
->stateStackTop
);
3076 memcpy(gData
->stateStack
, backTrackData
+ 1,
3077 sizeof(REProgState
) * backTrackData
->saveStateStackTop
);
3078 curState
= &gData
->stateStack
[gData
->stateStackTop
- 1];
3080 if (backTrackData
->parenCount
) {
3081 memcpy(&x
->parens
[backTrackData
->parenIndex
],
3082 (char *)(backTrackData
+ 1) +
3083 sizeof(REProgState
) * backTrackData
->saveStateStackTop
,
3084 sizeof(RECapture
) * backTrackData
->parenCount
);
3085 parenSoFar
= backTrackData
->parenIndex
+ backTrackData
->parenCount
;
3087 for (k
= curState
->parenSoFar
; k
< parenSoFar
; k
++)
3088 x
->parens
[k
].index
= -1;
3089 parenSoFar
= curState
->parenSoFar
;
3092 TRACE("\tBT_Pop: %ld,%ld\n",
3093 (unsigned long) backTrackData
->parenIndex
,
3094 (unsigned long) backTrackData
->parenCount
);
3100 * Continue with the expression.
3103 assert(op
< REOP_LIMIT
);
3115 static REMatchState
*MatchRegExp(REGlobalData
*gData
, REMatchState
*x
)
3117 REMatchState
*result
;
3118 const WCHAR
*cp
= x
->cp
;
3123 * Have to include the position beyond the last character
3124 * in order to detect end-of-input/line condition.
3126 for (cp2
= cp
; cp2
<= gData
->cpend
; cp2
++) {
3127 gData
->skipped
= cp2
- cp
;
3129 for (j
= 0; j
< gData
->regexp
->parenCount
; j
++)
3130 x
->parens
[j
].index
= -1;
3131 result
= ExecuteREBytecode(gData
, x
);
3132 if (!gData
->ok
|| result
|| (gData
->regexp
->flags
& JSREG_STICKY
))
3134 gData
->backTrackSP
= gData
->backTrackStack
;
3136 gData
->stateStackTop
= 0;
3137 cp2
= cp
+ gData
->skipped
;
3142 #define MIN_BACKTRACK_LIMIT 400000
3144 static REMatchState
*InitMatch(script_ctx_t
*cx
, REGlobalData
*gData
, JSRegExp
*re
, size_t length
)
3146 REMatchState
*result
;
3149 gData
->backTrackStackSize
= INITIAL_BACKTRACK
;
3150 gData
->backTrackStack
= jsheap_alloc(gData
->pool
, INITIAL_BACKTRACK
);
3151 if (!gData
->backTrackStack
)
3154 gData
->backTrackSP
= gData
->backTrackStack
;
3156 gData
->backTrackCount
= 0;
3157 gData
->backTrackLimit
= 0;
3159 gData
->stateStackLimit
= INITIAL_STATESTACK
;
3160 gData
->stateStack
= jsheap_alloc(gData
->pool
, sizeof(REProgState
) * INITIAL_STATESTACK
);
3161 if (!gData
->stateStack
)
3164 gData
->stateStackTop
= 0;
3169 result
= jsheap_alloc(gData
->pool
, offsetof(REMatchState
, parens
) + re
->parenCount
* sizeof(RECapture
));
3173 for (i
= 0; i
< re
->classCount
; i
++) {
3174 if (!re
->classList
[i
].converted
&&
3175 !ProcessCharSet(gData
, &re
->classList
[i
])) {
3183 js_ReportOutOfScriptQuota(cx
);
3189 js_DestroyRegExp(JSRegExp
*re
)
3191 if (re
->classList
) {
3193 for (i
= 0; i
< re
->classCount
; i
++) {
3194 if (re
->classList
[i
].converted
)
3195 heap_free(re
->classList
[i
].u
.bits
);
3196 re
->classList
[i
].u
.bits
= NULL
;
3198 heap_free(re
->classList
);
3204 js_NewRegExp(script_ctx_t
*cx
, BSTR str
, UINT flags
, BOOL flat
)
3208 CompilerState state
;
3215 mark
= jsheap_mark(&cx
->tmp_heap
);
3216 len
= SysStringLen(str
);
3222 state
.cpbegin
= state
.cp
;
3223 state
.cpend
= state
.cp
+ len
;
3224 state
.flags
= flags
;
3225 state
.parenCount
= 0;
3226 state
.classCount
= 0;
3227 state
.progLength
= 0;
3228 state
.treeDepth
= 0;
3229 state
.classBitmapsMem
= 0;
3230 for (i
= 0; i
< CLASS_CACHE_SIZE
; i
++)
3231 state
.classCache
[i
].start
= NULL
;
3233 if (len
!= 0 && flat
) {
3234 state
.result
= NewRENode(&state
, REOP_FLAT
);
3237 state
.result
->u
.flat
.chr
= *state
.cpbegin
;
3238 state
.result
->u
.flat
.length
= len
;
3239 state
.result
->kid
= (void *) state
.cpbegin
;
3240 /* Flat bytecode: REOP_FLAT compact(string_offset) compact(len). */
3241 state
.progLength
+= 1 + GetCompactIndexWidth(0)
3242 + GetCompactIndexWidth(len
);
3244 if (!ParseRegExp(&state
))
3247 resize
= offsetof(JSRegExp
, program
) + state
.progLength
+ 1;
3248 re
= heap_alloc(resize
);
3252 assert(state
.classBitmapsMem
<= CLASS_BITMAPS_MEM_LIMIT
);
3253 re
->classCount
= state
.classCount
;
3254 if (re
->classCount
) {
3255 re
->classList
= heap_alloc(re
->classCount
* sizeof(RECharSet
));
3256 if (!re
->classList
) {
3257 js_DestroyRegExp(re
);
3261 for (i
= 0; i
< re
->classCount
; i
++)
3262 re
->classList
[i
].converted
= FALSE
;
3264 re
->classList
= NULL
;
3266 endPC
= EmitREBytecode(&state
, re
, state
.treeDepth
, re
->program
, state
.result
);
3268 js_DestroyRegExp(re
);
3272 *endPC
++ = REOP_END
;
3274 * Check whether size was overestimated and shrink using realloc.
3275 * This is safe since no pointers to newly parsed regexp or its parts
3276 * besides re exist here.
3278 if ((size_t)(endPC
- re
->program
) != state
.progLength
+ 1) {
3280 assert((size_t)(endPC
- re
->program
) < state
.progLength
+ 1);
3281 resize
= offsetof(JSRegExp
, program
) + (endPC
- re
->program
);
3282 tmp
= heap_realloc(re
, resize
);
3288 re
->parenCount
= state
.parenCount
;
3296 static HRESULT
do_regexp_match_next(RegExpInstance
*regexp
, const WCHAR
*str
, DWORD len
,
3297 const WCHAR
**cp
, match_result_t
**parens
, DWORD
*parens_size
, DWORD
*parens_cnt
, match_result_t
*ret
)
3299 REMatchState
*x
, *result
;
3303 gData
.cpbegin
= *cp
;
3304 gData
.cpend
= str
+ len
;
3305 gData
.start
= *cp
-str
;
3307 gData
.pool
= ®exp
->dispex
.ctx
->tmp_heap
;
3309 x
= InitMatch(NULL
, &gData
, regexp
->jsregexp
, gData
.cpend
- gData
.cpbegin
);
3311 WARN("InitMatch failed\n");
3316 result
= MatchRegExp(&gData
, x
);
3318 WARN("MatchRegExp failed\n");
3328 if(regexp
->jsregexp
->parenCount
> *parens_size
) {
3329 match_result_t
*new_parens
;
3332 new_parens
= heap_realloc(*parens
, sizeof(match_result_t
)*regexp
->jsregexp
->parenCount
);
3334 new_parens
= heap_alloc(sizeof(match_result_t
)*regexp
->jsregexp
->parenCount
);
3336 return E_OUTOFMEMORY
;
3338 *parens
= new_parens
;
3341 *parens_cnt
= regexp
->jsregexp
->parenCount
;
3343 for(i
=0; i
< regexp
->jsregexp
->parenCount
; i
++) {
3344 (*parens
)[i
].str
= *cp
+ result
->parens
[i
].index
;
3345 (*parens
)[i
].len
= result
->parens
[i
].length
;
3349 matchlen
= (result
->cp
-*cp
) - gData
.skipped
;
3351 ret
->str
= result
->cp
-matchlen
;
3352 ret
->len
= matchlen
;
3357 HRESULT
regexp_match_next(DispatchEx
*dispex
, BOOL gcheck
, const WCHAR
*str
, DWORD len
,
3358 const WCHAR
**cp
, match_result_t
**parens
, DWORD
*parens_size
, DWORD
*parens_cnt
, match_result_t
*ret
)
3360 RegExpInstance
*regexp
= (RegExpInstance
*)dispex
;
3364 if(gcheck
&& !(regexp
->jsregexp
->flags
& JSREG_GLOB
))
3367 mark
= jsheap_mark(®exp
->dispex
.ctx
->tmp_heap
);
3369 hres
= do_regexp_match_next(regexp
, str
, len
, cp
, parens
, parens_size
, parens_cnt
, ret
);
3375 HRESULT
regexp_match(DispatchEx
*dispex
, const WCHAR
*str
, DWORD len
, BOOL gflag
, match_result_t
**match_result
,
3378 RegExpInstance
*This
= (RegExpInstance
*)dispex
;
3379 match_result_t
*ret
= NULL
, cres
;
3380 const WCHAR
*cp
= str
;
3381 DWORD i
=0, ret_size
= 0;
3385 mark
= jsheap_mark(&This
->dispex
.ctx
->tmp_heap
);
3388 hres
= do_regexp_match_next(This
, str
, len
, &cp
, NULL
, NULL
, NULL
, &cres
);
3389 if(hres
== S_FALSE
) {
3399 ret
= heap_realloc(ret
, (ret_size
<<= 1) * sizeof(match_result_t
));
3401 ret
= heap_alloc((ret_size
=4) * sizeof(match_result_t
));
3403 hres
= E_OUTOFMEMORY
;
3410 if(!gflag
&& !(This
->jsregexp
->flags
& JSREG_GLOB
)) {
3422 *match_result
= ret
;
3427 static HRESULT
RegExp_source(DispatchEx
*dispex
, LCID lcid
, WORD flags
, DISPPARAMS
*dp
,
3428 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3433 case DISPATCH_PROPERTYGET
: {
3434 RegExpInstance
*This
= (RegExpInstance
*)dispex
;
3436 V_VT(retv
) = VT_BSTR
;
3437 V_BSTR(retv
) = SysAllocString(This
->str
);
3439 return E_OUTOFMEMORY
;
3443 FIXME("Unimplemnted flags %x\n", flags
);
3450 static HRESULT
RegExp_global(DispatchEx
*dispex
, LCID lcid
, WORD flags
, DISPPARAMS
*dp
,
3451 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3457 static HRESULT
RegExp_ignoreCase(DispatchEx
*dispex
, LCID lcid
, WORD flags
, DISPPARAMS
*dp
,
3458 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3464 static HRESULT
RegExp_multiline(DispatchEx
*dispex
, LCID lcid
, WORD flags
, DISPPARAMS
*dp
,
3465 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3471 static HRESULT
RegExp_lastIndex(DispatchEx
*dispex
, LCID lcid
, WORD flags
, DISPPARAMS
*dp
,
3472 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3478 static HRESULT
RegExp_toString(DispatchEx
*dispex
, LCID lcid
, WORD flags
, DISPPARAMS
*dp
,
3479 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3485 static HRESULT
RegExp_exec(DispatchEx
*dispex
, LCID lcid
, WORD flags
, DISPPARAMS
*dp
,
3486 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3492 static HRESULT
RegExp_test(DispatchEx
*dispex
, LCID lcid
, WORD flags
, DISPPARAMS
*dp
,
3493 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3499 static HRESULT
RegExp_value(DispatchEx
*dispex
, LCID lcid
, WORD flags
, DISPPARAMS
*dp
,
3500 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3506 return throw_type_error(dispex
->ctx
, ei
, IDS_NOT_FUNC
, NULL
);
3508 FIXME("unimplemented flags %x\n", flags
);
3515 static void RegExp_destructor(DispatchEx
*dispex
)
3517 RegExpInstance
*This
= (RegExpInstance
*)dispex
;
3520 js_DestroyRegExp(This
->jsregexp
);
3521 SysFreeString(This
->str
);
3525 static const builtin_prop_t RegExp_props
[] = {
3526 {execW
, RegExp_exec
, PROPF_METHOD
},
3527 {globalW
, RegExp_global
, 0},
3528 {ignoreCaseW
, RegExp_ignoreCase
, 0},
3529 {lastIndexW
, RegExp_lastIndex
, 0},
3530 {multilineW
, RegExp_multiline
, 0},
3531 {sourceW
, RegExp_source
, 0},
3532 {testW
, RegExp_test
, PROPF_METHOD
},
3533 {toStringW
, RegExp_toString
, PROPF_METHOD
}
3536 static const builtin_info_t RegExp_info
= {
3538 {NULL
, RegExp_value
, 0},
3539 sizeof(RegExp_props
)/sizeof(*RegExp_props
),
3545 static HRESULT
alloc_regexp(script_ctx_t
*ctx
, DispatchEx
*object_prototype
, RegExpInstance
**ret
)
3547 RegExpInstance
*regexp
;
3550 regexp
= heap_alloc_zero(sizeof(RegExpInstance
));
3552 return E_OUTOFMEMORY
;
3554 if(object_prototype
)
3555 hres
= init_dispex(®exp
->dispex
, ctx
, &RegExp_info
, object_prototype
);
3557 hres
= init_dispex_from_constr(®exp
->dispex
, ctx
, &RegExp_info
, ctx
->regexp_constr
);
3568 static HRESULT
create_regexp(script_ctx_t
*ctx
, const WCHAR
*exp
, int len
, DWORD flags
, DispatchEx
**ret
)
3570 RegExpInstance
*regexp
;
3573 TRACE("%s %x\n", debugstr_w(exp
), flags
);
3575 hres
= alloc_regexp(ctx
, NULL
, ®exp
);
3580 regexp
->str
= SysAllocString(exp
);
3582 regexp
->str
= SysAllocStringLen(exp
, len
);
3584 jsdisp_release(®exp
->dispex
);
3585 return E_OUTOFMEMORY
;
3588 regexp
->jsregexp
= js_NewRegExp(ctx
, regexp
->str
, flags
, FALSE
);
3589 if(!regexp
->jsregexp
) {
3590 WARN("js_NewRegExp failed\n");
3591 jsdisp_release(®exp
->dispex
);
3595 *ret
= ®exp
->dispex
;
3599 static HRESULT
regexp_constructor(script_ctx_t
*ctx
, DISPPARAMS
*dp
, VARIANT
*retv
)
3601 const WCHAR
*opt
= emptyW
, *src
;
3611 arg
= get_arg(dp
,0);
3612 if(V_VT(arg
) == VT_DISPATCH
) {
3615 obj
= iface_to_jsdisp((IUnknown
*)V_DISPATCH(arg
));
3617 if(is_class(obj
, JSCLASS_REGEXP
)) {
3618 RegExpInstance
*regexp
= (RegExpInstance
*)obj
;
3620 hres
= create_regexp(ctx
, regexp
->str
, -1, regexp
->jsregexp
->flags
, &ret
);
3621 jsdisp_release(obj
);
3625 V_VT(retv
) = VT_DISPATCH
;
3626 V_DISPATCH(retv
) = (IDispatch
*)_IDispatchEx_(ret
);
3630 jsdisp_release(obj
);
3634 if(V_VT(arg
) != VT_BSTR
) {
3635 FIXME("vt arg0 = %d\n", V_VT(arg
));
3641 if(arg_cnt(dp
) >= 2) {
3642 arg
= get_arg(dp
,1);
3643 if(V_VT(arg
) != VT_BSTR
) {
3644 FIXME("unimplemented for vt %d\n", V_VT(arg
));
3651 hres
= create_regexp_str(ctx
, src
, -1, opt
, strlenW(opt
), &ret
);
3655 V_VT(retv
) = VT_DISPATCH
;
3656 V_DISPATCH(retv
) = (IDispatch
*)_IDispatchEx_(ret
);
3660 static HRESULT
RegExpConstr_value(DispatchEx
*dispex
, LCID lcid
, WORD flags
, DISPPARAMS
*dp
,
3661 VARIANT
*retv
, jsexcept_t
*ei
, IServiceProvider
*sp
)
3666 case DISPATCH_CONSTRUCT
:
3667 return regexp_constructor(dispex
->ctx
, dp
, retv
);
3669 FIXME("unimplemented flags: %x\n", flags
);
3676 HRESULT
create_regexp_constr(script_ctx_t
*ctx
, DispatchEx
*object_prototype
, DispatchEx
**ret
)
3678 RegExpInstance
*regexp
;
3681 hres
= alloc_regexp(ctx
, object_prototype
, ®exp
);
3685 hres
= create_builtin_function(ctx
, RegExpConstr_value
, NULL
, PROPF_CONSTR
, ®exp
->dispex
, ret
);
3687 jsdisp_release(®exp
->dispex
);
3691 HRESULT
create_regexp_str(script_ctx_t
*ctx
, const WCHAR
*exp
, DWORD exp_len
, const WCHAR
*opt
,
3692 DWORD opt_len
, DispatchEx
**ret
)
3698 for (p
= opt
; p
< opt
+opt_len
; p
++) {
3701 flags
|= JSREG_GLOB
;
3704 flags
|= JSREG_FOLD
;
3707 flags
|= JSREG_MULTILINE
;
3710 flags
|= JSREG_STICKY
;
3713 WARN("wrong flag %c\n", *p
);
3719 return create_regexp(ctx
, exp
, exp_len
, flags
, ret
);