2 * Mpeg Layer-3 audio decoder
3 * --------------------------
4 * copyright (c) 1995,1996,1997 by Michael Hipp.
5 * All rights reserved. See also 'README'
6 * This file has been copied from mpglib.
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
25 #include "wine/debug.h"
31 WINE_DEFAULT_DEBUG_CHANNEL(mpeg3
);
33 static real ispow
[8207];
34 static real aa_ca
[8],aa_cs
[8];
35 static real COS1
[12][6];
36 static real win
[4][36];
37 static real win1
[4][36];
38 static real gainpow2
[256+118+4];
40 static real COS6_1
,COS6_2
;
41 static real tfcos36
[9];
42 static real tfcos12
[3];
44 struct bandInfoStruct
{
51 static int longLimit
[9][23];
52 static int shortLimit
[9][14];
54 static const struct bandInfoStruct bandInfo
[9] = {
57 { {0,4,8,12,16,20,24,30,36,44,52,62,74, 90,110,134,162,196,238,288,342,418,576},
58 {4,4,4,4,4,4,6,6,8, 8,10,12,16,20,24,28,34,42,50,54, 76,158},
59 {0,4*3,8*3,12*3,16*3,22*3,30*3,40*3,52*3,66*3, 84*3,106*3,136*3,192*3},
60 {4,4,4,4,6,8,10,12,14,18,22,30,56} } ,
62 { {0,4,8,12,16,20,24,30,36,42,50,60,72, 88,106,128,156,190,230,276,330,384,576},
63 {4,4,4,4,4,4,6,6,6, 8,10,12,16,18,22,28,34,40,46,54, 54,192},
64 {0,4*3,8*3,12*3,16*3,22*3,28*3,38*3,50*3,64*3, 80*3,100*3,126*3,192*3},
65 {4,4,4,4,6,6,10,12,14,16,20,26,66} } ,
67 { {0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576} ,
68 {4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102, 26} ,
69 {0,4*3,8*3,12*3,16*3,22*3,30*3,42*3,58*3,78*3,104*3,138*3,180*3,192*3} ,
70 {4,4,4,4,6,8,12,16,20,26,34,42,12} } ,
73 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
74 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } ,
75 {0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} ,
76 {4,4,4,6,6,8,10,14,18,26,32,42,18 } } ,
78 { {0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278,330,394,464,540,576},
79 {6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,52,64,70,76,36 } ,
80 {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,136*3,180*3,192*3} ,
81 {4,4,4,6,8,10,12,14,18,24,32,44,12 } } ,
83 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
84 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 },
85 {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,134*3,174*3,192*3},
86 {4,4,4,6,8,10,12,14,18,24,30,40,18 } } ,
88 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
89 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
90 {0,12,24,36,54,78,108,144,186,240,312,402,522,576},
91 {4,4,4,6,8,10,12,14,18,24,30,40,18} },
92 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
93 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
94 {0,12,24,36,54,78,108,144,186,240,312,402,522,576},
95 {4,4,4,6,8,10,12,14,18,24,30,40,18} },
96 { {0,12,24,36,48,60,72,88,108,132,160,192,232,280,336,400,476,566,568,570,572,574,576},
97 {12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2},
98 {0, 24, 48, 72,108,156,216,288,372,480,486,492,498,576},
99 {8,8,8,12,16,20,24,28,36,2,2,2,26} } ,
102 static int mapbuf0
[9][152];
103 static int mapbuf1
[9][156];
104 static int mapbuf2
[9][44];
105 static int *map
[9][3];
106 static int *mapend
[9][3];
108 static unsigned int n_slen2
[512]; /* MPEG 2.0 slen for 'normal' mode */
109 static unsigned int i_slen2
[256]; /* MPEG 2.0 slen for intensity stereo */
111 static real tan1_1
[16],tan2_1
[16],tan1_2
[16],tan2_2
[16];
112 static real pow1_1
[2][16],pow2_1
[2][16],pow1_2
[2][16],pow2_2
[2][16];
115 * init tables for layer-3
117 void init_layer3(int down_sample_sblimit
)
121 for(i
=-256;i
<118+4;i
++)
122 gainpow2
[i
+256] = pow((double)2.0,-0.25 * (double) (i
+210) );
125 ispow
[i
] = pow((double)i
,(double)4.0/3.0);
129 static const double Ci
[8]={-0.6,-0.535,-0.33,-0.185,-0.095,-0.041,-0.0142,-0.0037};
130 double sq
=sqrt(1.0+Ci
[i
]*Ci
[i
]);
137 win
[0][i
] = win
[1][i
] = 0.5 * sin( M_PI
/ 72.0 * (double) (2*(i
+0) +1) ) / cos ( M_PI
* (double) (2*(i
+0) +19) / 72.0 );
138 win
[0][i
+18] = win
[3][i
+18] = 0.5 * sin( M_PI
/ 72.0 * (double) (2*(i
+18)+1) ) / cos ( M_PI
* (double) (2*(i
+18)+19) / 72.0 );
142 win
[1][i
+18] = 0.5 / cos ( M_PI
* (double) (2*(i
+18)+19) / 72.0 );
143 win
[3][i
+12] = 0.5 / cos ( M_PI
* (double) (2*(i
+12)+19) / 72.0 );
144 win
[1][i
+24] = 0.5 * sin( M_PI
/ 24.0 * (double) (2*i
+13) ) / cos ( M_PI
* (double) (2*(i
+24)+19) / 72.0 );
145 win
[1][i
+30] = win
[3][i
] = 0.0;
146 win
[3][i
+6 ] = 0.5 * sin( M_PI
/ 24.0 * (double) (2*i
+1) ) / cos ( M_PI
* (double) (2*(i
+6 )+19) / 72.0 );
150 COS9
[i
] = cos( M_PI
/ 18.0 * (double) i
);
153 tfcos36
[i
] = 0.5 / cos ( M_PI
* (double) (i
*2+1) / 36.0 );
155 tfcos12
[i
] = 0.5 / cos ( M_PI
* (double) (i
*2+1) / 12.0 );
157 COS6_1
= cos( M_PI
/ 6.0 * (double) 1);
158 COS6_2
= cos( M_PI
/ 6.0 * (double) 2);
162 win
[2][i
] = 0.5 * sin( M_PI
/ 24.0 * (double) (2*i
+1) ) / cos ( M_PI
* (double) (2*i
+7) / 24.0 );
164 COS1
[i
][j
] = cos( M_PI
/ 24.0 * (double) ((2*i
+7)*(2*j
+1)) );
168 static const int len
[4] = { 36,36,12,36 };
169 for(i
=0;i
<len
[j
];i
+=2)
170 win1
[j
][i
] = + win
[j
][i
];
171 for(i
=1;i
<len
[j
];i
+=2)
172 win1
[j
][i
] = - win
[j
][i
];
177 double t
= tan( (double) i
* M_PI
/ 12.0 );
178 tan1_1
[i
] = t
/ (1.0+t
);
179 tan2_1
[i
] = 1.0 / (1.0 + t
);
180 tan1_2
[i
] = M_SQRT2
* t
/ (1.0+t
);
181 tan2_2
[i
] = M_SQRT2
/ (1.0 + t
);
184 double base
= pow(2.0,-0.25*(j
+1.0));
185 double p1
=1.0,p2
=1.0;
188 p1
= pow(base
,(i
+1.0)*0.5);
190 p2
= pow(base
,i
*0.5);
194 pow1_2
[j
][i
] = M_SQRT2
* p1
;
195 pow2_2
[j
][i
] = M_SQRT2
* p2
;
201 const struct bandInfoStruct
*bi
= &bandInfo
[j
];
206 mp
= map
[j
][0] = mapbuf0
[j
];
208 for(i
=0,cb
= 0; cb
< 8 ; cb
++,i
+=*bdf
++) {
214 bdf
= bi
->shortDiff
+3;
215 for(cb
=3;cb
<13;cb
++) {
216 int l
= (*bdf
++) >> 1;
217 for(lwin
=0;lwin
<3;lwin
++) {
227 mp
= map
[j
][1] = mapbuf1
[j
];
228 bdf
= bi
->shortDiff
+0;
229 for(i
=0,cb
=0;cb
<13;cb
++) {
230 int l
= (*bdf
++) >> 1;
231 for(lwin
=0;lwin
<3;lwin
++) {
241 mp
= map
[j
][2] = mapbuf2
[j
];
243 for(cb
= 0; cb
< 22 ; cb
++) {
244 *mp
++ = (*bdf
++) >> 1;
253 longLimit
[j
][i
] = (bandInfo
[j
].longIdx
[i
] - 1 + 8) / 18 + 1;
254 if(longLimit
[j
][i
] > (down_sample_sblimit
) )
255 longLimit
[j
][i
] = down_sample_sblimit
;
258 shortLimit
[j
][i
] = (bandInfo
[j
].shortIdx
[i
] - 1) / 18 + 1;
259 if(shortLimit
[j
][i
] > (down_sample_sblimit
) )
260 shortLimit
[j
][i
] = down_sample_sblimit
;
267 int n
= k
+ j
* 6 + i
* 36;
268 i_slen2
[n
] = i
|(j
<<3)|(k
<<6)|(3<<12);
275 int n
= k
+ j
* 4 + i
* 16;
276 i_slen2
[n
+180] = i
|(j
<<3)|(k
<<6)|(4<<12);
283 i_slen2
[n
+244] = i
|(j
<<3) | (5<<12);
284 n_slen2
[n
+500] = i
|(j
<<3) | (2<<12) | (1<<15);
292 int n
= l
+ k
* 4 + j
* 16 + i
* 80;
293 n_slen2
[n
] = i
|(j
<<3)|(k
<<6)|(l
<<9)|(0<<12);
301 int n
= k
+ j
* 4 + i
* 20;
302 n_slen2
[n
+400] = i
|(j
<<3)|(k
<<6)|(1<<12);
309 * read additional side information
312 static int III_get_side_info_1(struct III_sideinfo
*si
,int stereo
,
313 int ms_stereo
,long sfreq
,int single
)
316 int powdiff
= (single
== 3) ? 4 : 0;
318 si
->main_data_begin
= getbits(9);
320 si
->private_bits
= getbits_fast(5);
322 si
->private_bits
= getbits_fast(3);
324 for (ch
=0; ch
<stereo
; ch
++) {
325 si
->ch
[ch
].gr
[0].scfsi
= -1;
326 si
->ch
[ch
].gr
[1].scfsi
= getbits_fast(4);
329 for (gr
=0; gr
<2; gr
++)
331 for (ch
=0; ch
<stereo
; ch
++)
333 register struct gr_info_s
*gr_info
= &(si
->ch
[ch
].gr
[gr
]);
335 gr_info
->part2_3_length
= getbits(12);
336 gr_info
->big_values
= getbits_fast(9);
337 if(gr_info
->big_values
> 288) {
338 FIXME("big_values (%d) too large!\n", gr_info
->big_values
);
339 gr_info
->big_values
= 288;
341 gr_info
->pow2gain
= gainpow2
+256 - getbits_fast(8) + powdiff
;
343 gr_info
->pow2gain
+= 2;
344 gr_info
->scalefac_compress
= getbits_fast(4);
345 /* window-switching flag == 1 for block_Type != 0 .. and block-type == 0 -> win-sw-flag = 0 */
349 gr_info
->block_type
= getbits_fast(2);
350 gr_info
->mixed_block_flag
= get1bit();
351 gr_info
->table_select
[0] = getbits_fast(5);
352 gr_info
->table_select
[1] = getbits_fast(5);
354 * table_select[2] not needed, because there is no region2,
355 * but to satisfy some verifications tools we set it either.
357 gr_info
->table_select
[2] = 0;
359 gr_info
->full_gain
[i
] = gr_info
->pow2gain
+ (getbits_fast(3)<<3);
361 if(gr_info
->block_type
== 0) {
362 FIXME("Blocktype == 0 and window-switching == 1 not allowed.\n");
365 /* region_count/start parameters are implicit in this case. */
366 gr_info
->region1start
= 36>>1;
367 gr_info
->region2start
= 576>>1;
373 gr_info
->table_select
[i
] = getbits_fast(5);
374 r0c
= getbits_fast(4);
375 r1c
= getbits_fast(3);
376 gr_info
->region1start
= bandInfo
[sfreq
].longIdx
[r0c
+1] >> 1 ;
377 gr_info
->region2start
= bandInfo
[sfreq
].longIdx
[r0c
+1+r1c
+1] >> 1;
378 gr_info
->block_type
= 0;
379 gr_info
->mixed_block_flag
= 0;
381 gr_info
->preflag
= get1bit();
382 gr_info
->scalefac_scale
= get1bit();
383 gr_info
->count1table_select
= get1bit();
391 * Side Info for MPEG 2.0 / LSF
393 static int III_get_side_info_2(struct III_sideinfo
*si
,int stereo
,
394 int ms_stereo
,long sfreq
,int single
)
397 int powdiff
= (single
== 3) ? 4 : 0;
399 si
->main_data_begin
= getbits(8);
401 si
->private_bits
= get1bit();
403 si
->private_bits
= getbits_fast(2);
405 for (ch
=0; ch
<stereo
; ch
++)
407 register struct gr_info_s
*gr_info
= &(si
->ch
[ch
].gr
[0]);
409 gr_info
->part2_3_length
= getbits(12);
410 gr_info
->big_values
= getbits_fast(9);
411 if(gr_info
->big_values
> 288) {
412 FIXME("big_values(%d) too large!\n", gr_info
->big_values
);
413 gr_info
->big_values
= 288;
415 gr_info
->pow2gain
= gainpow2
+256 - getbits_fast(8) + powdiff
;
417 gr_info
->pow2gain
+= 2;
418 gr_info
->scalefac_compress
= getbits(9);
419 /* window-switching flag == 1 for block_Type != 0 .. and block-type == 0 -> win-sw-flag = 0 */
423 gr_info
->block_type
= getbits_fast(2);
424 gr_info
->mixed_block_flag
= get1bit();
425 gr_info
->table_select
[0] = getbits_fast(5);
426 gr_info
->table_select
[1] = getbits_fast(5);
428 * table_select[2] not needed, because there is no region2,
429 * but to satisfy some verifications tools we set it either.
431 gr_info
->table_select
[2] = 0;
433 gr_info
->full_gain
[i
] = gr_info
->pow2gain
+ (getbits_fast(3)<<3);
435 if(gr_info
->block_type
== 0) {
436 FIXME("Blocktype == 0 and window-switching == 1 not allowed.\n");
439 /* region_count/start parameters are implicit in this case. */
440 /* check this again! */
441 if(gr_info
->block_type
== 2)
442 gr_info
->region1start
= 36>>1;
444 /* check this for 2.5 and sfreq=8 */
445 gr_info
->region1start
= 108>>1;
447 gr_info
->region1start
= 54>>1;
448 gr_info
->region2start
= 576>>1;
454 gr_info
->table_select
[i
] = getbits_fast(5);
455 r0c
= getbits_fast(4);
456 r1c
= getbits_fast(3);
457 gr_info
->region1start
= bandInfo
[sfreq
].longIdx
[r0c
+1] >> 1 ;
458 gr_info
->region2start
= bandInfo
[sfreq
].longIdx
[r0c
+1+r1c
+1] >> 1;
459 gr_info
->block_type
= 0;
460 gr_info
->mixed_block_flag
= 0;
462 gr_info
->scalefac_scale
= get1bit();
463 gr_info
->count1table_select
= get1bit();
472 static int III_get_scale_factors_1(int *scf
,struct gr_info_s
*gr_info
)
474 static const unsigned char slen
[2][16] = {
475 {0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4},
476 {0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3}
479 int num0
= slen
[0][gr_info
->scalefac_compress
];
480 int num1
= slen
[1][gr_info
->scalefac_compress
];
482 if (gr_info
->block_type
== 2) {
484 numbits
= (num0
+ num1
) * 18;
486 if (gr_info
->mixed_block_flag
) {
488 *scf
++ = getbits_fast(num0
);
490 numbits
-= num0
; /* num0 * 17 + num1 * 18 */
494 *scf
++ = getbits_fast(num0
);
496 *scf
++ = getbits_fast(num1
);
497 *scf
++ = 0; *scf
++ = 0; *scf
++ = 0; /* short[13][0..2] = 0 */
501 int scfsi
= gr_info
->scfsi
;
503 if(scfsi
< 0) { /* scfsi < 0 => granule == 0 */
505 *scf
++ = getbits_fast(num0
);
507 *scf
++ = getbits_fast(num1
);
508 numbits
= (num0
+ num1
) * 10 + num0
;
515 *scf
++ = getbits_fast(num0
);
524 *scf
++ = getbits_fast(num0
);
533 *scf
++ = getbits_fast(num1
);
542 *scf
++ = getbits_fast(num1
);
548 *scf
++ = 0; /* no l[21] in original sources */
556 static int III_get_scale_factors_2(int *scf
,struct gr_info_s
*gr_info
,int i_stereo
)
558 const unsigned char *pnt
;
564 static const unsigned char stab
[3][6][4] = {
565 { { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} ,
566 { 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } ,
567 { { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} ,
568 {12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } ,
569 { { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} ,
570 { 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} } };
572 if(i_stereo
) /* i_stereo AND second channel -> do_layer3() checks this */
573 slen
= i_slen2
[gr_info
->scalefac_compress
>>1];
575 slen
= n_slen2
[gr_info
->scalefac_compress
];
577 gr_info
->preflag
= (slen
>>15) & 0x1;
580 if( gr_info
->block_type
== 2 ) {
582 if(gr_info
->mixed_block_flag
)
586 pnt
= stab
[n
][(slen
>>12)&0x7];
589 int num
= slen
& 0x7;
592 for(j
=0;j
<(int)(pnt
[i
]);j
++)
593 *scf
++ = getbits_fast(num
);
594 numbits
+= pnt
[i
] * num
;
597 for(j
=0;j
<(int)(pnt
[i
]);j
++)
609 static const int pretab1
[22] = {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0};
610 static const int pretab2
[22] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
613 * don't forget to apply the same changes to III_dequantize_sample_ms() !!!
615 static int III_dequantize_sample(real xr
[SBLIMIT
][SSLIMIT
],int *scf
,
616 struct gr_info_s
*gr_info
,int sfreq
,int part2bits
)
618 int shift
= 1 + gr_info
->scalefac_scale
;
619 real
*xrpnt
= (real
*) xr
;
621 int part2remain
= gr_info
->part2_3_length
- part2bits
;
625 int bv
= gr_info
->big_values
;
626 int region1
= gr_info
->region1start
;
627 int region2
= gr_info
->region2start
;
629 l3
= ((576>>1)-bv
)>>1;
631 * we may lose the 'odd' bit here !!
632 * check this later again
635 l
[0] = bv
; l
[1] = 0; l
[2] = 0;
640 l
[1] = bv
- l
[0]; l
[2] = 0;
643 l
[1] = region2
- l
[0]; l
[2] = bv
- region2
;
648 if(gr_info
->block_type
== 2) {
650 * decoding with short or mixed mode BandIndex table
653 int step
=0,lwin
=0,cb
=0;
654 register real v
= 0.0;
657 if(gr_info
->mixed_block_flag
) {
659 max
[0] = max
[1] = max
[2] = 2;
661 me
= mapend
[sfreq
][0];
664 max
[0] = max
[1] = max
[2] = max
[3] = -1;
665 /* max[3] not really needed in this case */
667 me
= mapend
[sfreq
][1];
673 const struct newhuff
*h
= ht
+gr_info
->table_select
[i
];
678 xrpnt
= ((real
*) xr
) + (*m
++);
682 v
= gr_info
->pow2gain
[(*scf
++) << shift
];
686 v
= gr_info
->full_gain
[lwin
][(*scf
++) << shift
];
691 register const short *val
= h
->table
;
692 while((y
=*val
++)<0) {
702 part2remain
-= h
->linbits
+1;
703 x
+= getbits(h
->linbits
);
705 *xrpnt
= -ispow
[x
] * v
;
707 *xrpnt
= ispow
[x
] * v
;
712 *xrpnt
= -ispow
[x
] * v
;
714 *xrpnt
= ispow
[x
] * v
;
722 part2remain
-= h
->linbits
+1;
723 y
+= getbits(h
->linbits
);
725 *xrpnt
= -ispow
[y
] * v
;
727 *xrpnt
= ispow
[y
] * v
;
732 *xrpnt
= -ispow
[y
] * v
;
734 *xrpnt
= ispow
[y
] * v
;
742 for(;l3
&& (part2remain
> 0);l3
--) {
743 const struct newhuff
*h
= htc
+gr_info
->count1table_select
;
744 const short *val
= h
->table
;
747 while((a
=*val
++)<0) {
749 if(part2remain
< 0) {
762 xrpnt
= ((real
*) xr
) + (*m
++);
766 v
= gr_info
->pow2gain
[(*scf
++) << shift
];
770 v
= gr_info
->full_gain
[lwin
][(*scf
++) << shift
];
776 if( (a
& (0x8>>i
)) ) {
779 if(part2remain
< 0) {
797 xrpnt
= ((real
*) xr
) + *m
++;
809 /* we could add a little opt. here:
810 * if we finished a band for window 3 or a long band
811 * further bands could copied in a simple loop without a
812 * special 'map' decoding
816 gr_info
->maxband
[0] = max
[0]+1;
817 gr_info
->maxband
[1] = max
[1]+1;
818 gr_info
->maxband
[2] = max
[2]+1;
819 gr_info
->maxbandl
= max
[3]+1;
822 int rmax
= max
[0] > max
[1] ? max
[0] : max
[1];
823 rmax
= (rmax
> max
[2] ? rmax
: max
[2]) + 1;
824 gr_info
->maxb
= rmax
? shortLimit
[sfreq
][rmax
] : longLimit
[sfreq
][max
[3]+1];
830 * decoding with 'long' BandIndex table (block_type != 2)
832 const int *pretab
= gr_info
->preflag
? pretab1
: pretab2
;
835 register int *m
= map
[sfreq
][2];
836 register real v
= 0.0;
839 me
= mapend
[sfreq
][2];
843 * long hash table values
847 const struct newhuff
*h
= ht
+gr_info
->table_select
[i
];
854 v
= gr_info
->pow2gain
[((*scf
++) + (*pretab
++)) << shift
];
858 register const short *val
= h
->table
;
859 while((y
=*val
++)<0) {
869 part2remain
-= h
->linbits
+1;
870 x
+= getbits(h
->linbits
);
872 *xrpnt
++ = -ispow
[x
] * v
;
874 *xrpnt
++ = ispow
[x
] * v
;
879 *xrpnt
++ = -ispow
[x
] * v
;
881 *xrpnt
++ = ispow
[x
] * v
;
889 part2remain
-= h
->linbits
+1;
890 y
+= getbits(h
->linbits
);
892 *xrpnt
++ = -ispow
[y
] * v
;
894 *xrpnt
++ = ispow
[y
] * v
;
899 *xrpnt
++ = -ispow
[y
] * v
;
901 *xrpnt
++ = ispow
[y
] * v
;
910 * short (count1table) values
912 for(;l3
&& (part2remain
> 0);l3
--) {
913 const struct newhuff
*h
= htc
+gr_info
->count1table_select
;
914 const short *val
= h
->table
;
917 while((a
=*val
++)<0) {
919 if(part2remain
< 0) {
933 v
= gr_info
->pow2gain
[((*scf
++) + (*pretab
++)) << shift
];
937 if ( (a
& (0x8>>i
)) ) {
940 if(part2remain
< 0) {
957 for(i
=(&xr
[SBLIMIT
][0]-xrpnt
)>>1;i
;i
--) {
962 gr_info
->maxbandl
= max
+1;
963 gr_info
->maxb
= longLimit
[sfreq
][gr_info
->maxbandl
];
966 while( part2remain
> 16 ) {
967 getbits(16); /* Dismiss stuffing Bits */
971 getbits(part2remain
);
972 else if(part2remain
< 0) {
973 FIXME("mpg123: Can't rewind stream by %d bits!\n",-part2remain
);
974 return 1; /* -> error */
980 static int III_dequantize_sample_ms(real xr
[2][SBLIMIT
][SSLIMIT
],int *scf
,
981 struct gr_info_s
*gr_info
,int sfreq
,int part2bits
)
983 int shift
= 1 + gr_info
->scalefac_scale
;
984 real
*xrpnt
= (real
*) xr
[1];
985 real
*xr0pnt
= (real
*) xr
[0];
987 int part2remain
= gr_info
->part2_3_length
- part2bits
;
991 int bv
= gr_info
->big_values
;
992 int region1
= gr_info
->region1start
;
993 int region2
= gr_info
->region2start
;
995 l3
= ((576>>1)-bv
)>>1;
997 * we may lose the 'odd' bit here !!
998 * check this later gain
1001 l
[0] = bv
; l
[1] = 0; l
[2] = 0;
1006 l
[1] = bv
- l
[0]; l
[2] = 0;
1009 l
[1] = region2
- l
[0]; l
[2] = bv
- region2
;
1014 if(gr_info
->block_type
== 2) {
1016 int step
=0,lwin
=0,cb
=0;
1017 register real v
= 0.0;
1018 register int *m
,mc
= 0;
1020 if(gr_info
->mixed_block_flag
) {
1022 max
[0] = max
[1] = max
[2] = 2;
1024 me
= mapend
[sfreq
][0];
1027 max
[0] = max
[1] = max
[2] = max
[3] = -1;
1028 /* max[3] not really needed in this case */
1030 me
= mapend
[sfreq
][1];
1035 struct newhuff
*h
= ht
+gr_info
->table_select
[i
];
1036 for(;lp
;lp
--,mc
--) {
1041 xrpnt
= ((real
*) xr
[1]) + *m
;
1042 xr0pnt
= ((real
*) xr
[0]) + *m
++;
1046 v
= gr_info
->pow2gain
[(*scf
++) << shift
];
1050 v
= gr_info
->full_gain
[lwin
][(*scf
++) << shift
];
1055 register short *val
= h
->table
;
1056 while((y
=*val
++)<0) {
1066 part2remain
-= h
->linbits
+1;
1067 x
+= getbits(h
->linbits
);
1069 real a
= ispow
[x
] * v
;
1070 *xrpnt
= *xr0pnt
+ a
;
1074 real a
= ispow
[x
] * v
;
1075 *xrpnt
= *xr0pnt
- a
;
1082 real a
= ispow
[x
] * v
;
1083 *xrpnt
= *xr0pnt
+ a
;
1087 real a
= ispow
[x
] * v
;
1088 *xrpnt
= *xr0pnt
- a
;
1100 part2remain
-= h
->linbits
+1;
1101 y
+= getbits(h
->linbits
);
1103 real a
= ispow
[y
] * v
;
1104 *xrpnt
= *xr0pnt
+ a
;
1108 real a
= ispow
[y
] * v
;
1109 *xrpnt
= *xr0pnt
- a
;
1116 real a
= ispow
[y
] * v
;
1117 *xrpnt
= *xr0pnt
+ a
;
1121 real a
= ispow
[y
] * v
;
1122 *xrpnt
= *xr0pnt
- a
;
1134 for(;l3
&& (part2remain
> 0);l3
--) {
1135 struct newhuff
*h
= htc
+gr_info
->count1table_select
;
1136 register short *val
= h
->table
,a
;
1138 while((a
=*val
++)<0) {
1140 if(part2remain
< 0) {
1153 xrpnt
= ((real
*) xr
[1]) + *m
;
1154 xr0pnt
= ((real
*) xr
[0]) + *m
++;
1158 v
= gr_info
->pow2gain
[(*scf
++) << shift
];
1162 v
= gr_info
->full_gain
[lwin
][(*scf
++) << shift
];
1168 if( (a
& (0x8>>i
)) ) {
1171 if(part2remain
< 0) {
1176 *xrpnt
= *xr0pnt
+ v
;
1180 *xrpnt
= *xr0pnt
- v
;
1194 xrpnt
= ((real
*) xr
[1]) + *m
;
1195 xr0pnt
= ((real
*) xr
[0]) + *m
++;
1209 /* we could add a little opt. here:
1210 * if we finished a band for window 3 or a long band
1211 * further bands could copied in a simple loop without a
1212 * special 'map' decoding
1216 gr_info
->maxband
[0] = max
[0]+1;
1217 gr_info
->maxband
[1] = max
[1]+1;
1218 gr_info
->maxband
[2] = max
[2]+1;
1219 gr_info
->maxbandl
= max
[3]+1;
1222 int rmax
= max
[0] > max
[1] ? max
[0] : max
[1];
1223 rmax
= (rmax
> max
[2] ? rmax
: max
[2]) + 1;
1224 gr_info
->maxb
= rmax
? shortLimit
[sfreq
][rmax
] : longLimit
[sfreq
][max
[3]+1];
1228 int *pretab
= gr_info
->preflag
? pretab1
: pretab2
;
1231 register int mc
=0,*m
= map
[sfreq
][2];
1232 register real v
= 0.0;
1234 me
= mapend
[sfreq
][2];
1239 struct newhuff
*h
= ht
+gr_info
->table_select
[i
];
1241 for(;lp
;lp
--,mc
--) {
1246 v
= gr_info
->pow2gain
[((*scf
++) + (*pretab
++)) << shift
];
1249 register short *val
= h
->table
;
1250 while((y
=*val
++)<0) {
1260 part2remain
-= h
->linbits
+1;
1261 x
+= getbits(h
->linbits
);
1263 real a
= ispow
[x
] * v
;
1264 *xrpnt
++ = *xr0pnt
+ a
;
1268 real a
= ispow
[x
] * v
;
1269 *xrpnt
++ = *xr0pnt
- a
;
1276 real a
= ispow
[x
] * v
;
1277 *xrpnt
++ = *xr0pnt
+ a
;
1281 real a
= ispow
[x
] * v
;
1282 *xrpnt
++ = *xr0pnt
- a
;
1288 *xrpnt
++ = *xr0pnt
++;
1292 part2remain
-= h
->linbits
+1;
1293 y
+= getbits(h
->linbits
);
1295 real a
= ispow
[y
] * v
;
1296 *xrpnt
++ = *xr0pnt
+ a
;
1300 real a
= ispow
[y
] * v
;
1301 *xrpnt
++ = *xr0pnt
- a
;
1308 real a
= ispow
[y
] * v
;
1309 *xrpnt
++ = *xr0pnt
+ a
;
1313 real a
= ispow
[y
] * v
;
1314 *xrpnt
++ = *xr0pnt
- a
;
1320 *xrpnt
++ = *xr0pnt
++;
1324 for(;l3
&& (part2remain
> 0);l3
--) {
1325 struct newhuff
*h
= htc
+gr_info
->count1table_select
;
1326 register short *val
= h
->table
,a
;
1328 while((a
=*val
++)<0) {
1330 if(part2remain
< 0) {
1344 v
= gr_info
->pow2gain
[((*scf
++) + (*pretab
++)) << shift
];
1348 if ( (a
& (0x8>>i
)) ) {
1351 if(part2remain
<= 0) {
1356 *xrpnt
++ = *xr0pnt
+ v
;
1360 *xrpnt
++ = *xr0pnt
- v
;
1365 *xrpnt
++ = *xr0pnt
++;
1368 for(i
=(&xr
[1][SBLIMIT
][0]-xrpnt
)>>1;i
;i
--) {
1369 *xrpnt
++ = *xr0pnt
++;
1370 *xrpnt
++ = *xr0pnt
++;
1373 gr_info
->maxbandl
= max
+1;
1374 gr_info
->maxb
= longLimit
[sfreq
][gr_info
->maxbandl
];
1377 while ( part2remain
> 16 ) {
1378 getbits(16); /* Dismiss stuffing Bits */
1381 if(part2remain
> 0 )
1382 getbits(part2remain
);
1383 else if(part2remain
< 0) {
1384 FIXME("mpg123_ms: Can't rewind stream by %d bits!\n",-part2remain
);
1385 return 1; /* -> error */
1392 * III_stereo: calculate real channel values for Joint-I-Stereo-mode
1394 static void III_i_stereo(real xr_buf
[2][SBLIMIT
][SSLIMIT
],int *scalefac
,
1395 struct gr_info_s
*gr_info
,int sfreq
,int ms_stereo
,int lsf
)
1397 real (*xr
)[SBLIMIT
*SSLIMIT
] = (real (*)[SBLIMIT
*SSLIMIT
] ) xr_buf
;
1398 const struct bandInfoStruct
*bi
= &bandInfo
[sfreq
];
1402 int p
= gr_info
->scalefac_compress
& 0x1;
1404 tab1
= pow1_2
[p
]; tab2
= pow2_2
[p
];
1407 tab1
= pow1_1
[p
]; tab2
= pow2_1
[p
];
1412 tab1
= tan1_2
; tab2
= tan2_2
;
1415 tab1
= tan1_1
; tab2
= tan2_1
;
1419 if (gr_info
->block_type
== 2)
1422 if( gr_info
->mixed_block_flag
)
1425 for (lwin
=0;lwin
<3;lwin
++) /* process each window */
1427 /* get first band with zero values */
1428 int is_p
,sb
,idx
,sfb
= gr_info
->maxband
[lwin
]; /* sfb is minimal 3 for mixed mode */
1434 is_p
= scalefac
[sfb
*3+lwin
-gr_info
->mixed_block_flag
]; /* scale: 0-15 */
1437 sb
= bi
->shortDiff
[sfb
];
1438 idx
= bi
->shortIdx
[sfb
] + lwin
;
1439 t1
= tab1
[is_p
]; t2
= tab2
[is_p
];
1440 for (; sb
> 0; sb
--,idx
+=3)
1442 real v
= xr
[0][idx
];
1443 xr
[0][idx
] = v
* t1
;
1444 xr
[1][idx
] = v
* t2
;
1450 /* in the original: copy 10 to 11 , here: copy 11 to 12
1451 maybe still wrong??? (copy 12 to 13?) */
1452 is_p
= scalefac
[11*3+lwin
-gr_info
->mixed_block_flag
]; /* scale: 0-15 */
1453 sb
= bi
->shortDiff
[12];
1454 idx
= bi
->shortIdx
[12] + lwin
;
1456 is_p
= scalefac
[10*3+lwin
-gr_info
->mixed_block_flag
]; /* scale: 0-15 */
1457 sb
= bi
->shortDiff
[11];
1458 idx
= bi
->shortIdx
[11] + lwin
;
1463 t1
= tab1
[is_p
]; t2
= tab2
[is_p
];
1464 for ( ; sb
> 0; sb
--,idx
+=3 )
1466 real v
= xr
[0][idx
];
1467 xr
[0][idx
] = v
* t1
;
1468 xr
[1][idx
] = v
* t2
;
1471 } /* end for(lwin; .. ; . ) */
1475 /* also check l-part, if ALL bands in the three windows are 'empty'
1476 * and mode = mixed_mode
1478 int sfb
= gr_info
->maxbandl
;
1479 int idx
= bi
->longIdx
[sfb
];
1481 for ( ; sfb
<8; sfb
++ )
1483 int sb
= bi
->longDiff
[sfb
];
1484 int is_p
= scalefac
[sfb
]; /* scale: 0-15 */
1487 t1
= tab1
[is_p
]; t2
= tab2
[is_p
];
1488 for ( ; sb
> 0; sb
--,idx
++)
1490 real v
= xr
[0][idx
];
1491 xr
[0][idx
] = v
* t1
;
1492 xr
[1][idx
] = v
* t2
;
1500 else /* ((gr_info->block_type != 2)) */
1502 int sfb
= gr_info
->maxbandl
;
1503 int is_p
,idx
= bi
->longIdx
[sfb
];
1504 for ( ; sfb
<21; sfb
++)
1506 int sb
= bi
->longDiff
[sfb
];
1507 is_p
= scalefac
[sfb
]; /* scale: 0-15 */
1510 t1
= tab1
[is_p
]; t2
= tab2
[is_p
];
1511 for ( ; sb
> 0; sb
--,idx
++)
1513 real v
= xr
[0][idx
];
1514 xr
[0][idx
] = v
* t1
;
1515 xr
[1][idx
] = v
* t2
;
1522 is_p
= scalefac
[20]; /* copy l-band 20 to l-band 21 */
1526 real t1
= tab1
[is_p
],t2
= tab2
[is_p
];
1528 for ( sb
= bi
->longDiff
[21]; sb
> 0; sb
--,idx
++ )
1530 real v
= xr
[0][idx
];
1531 xr
[0][idx
] = v
* t1
;
1532 xr
[1][idx
] = v
* t2
;
1538 static void III_antialias(real xr
[SBLIMIT
][SSLIMIT
],struct gr_info_s
*gr_info
)
1542 if(gr_info
->block_type
== 2)
1544 if(!gr_info
->mixed_block_flag
)
1549 sblim
= gr_info
->maxb
-1;
1552 /* 31 alias-reduction operations between each pair of sub-bands */
1553 /* with 8 butterflies between each pair */
1557 real
*xr1
=(real
*) xr
[1];
1559 for(sb
=sblim
;sb
;sb
--,xr1
+=10)
1562 real
*cs
=aa_cs
,*ca
=aa_ca
;
1565 for(ss
=7;ss
>=0;ss
--)
1566 { /* upper and lower butterfly inputs */
1567 register real bu
= *--xr2
,bd
= *xr1
;
1568 *xr2
= (bu
* (*cs
) ) - (bd
* (*ca
) );
1569 *xr1
++ = (bd
* (*cs
++) ) + (bu
* (*ca
++) );
1576 DCT inspired by Jeff Tsay's DCT from the maplay package
1577 this is an optimized version with manual unroll.
1580 [1] S. Winograd: "On Computing the Discrete Fourier Transform",
1581 Mathematics of Computation, Volume 32, Number 141, January 1978,
1585 static void dct36(real
*inbuf
,real
*o1
,real
*o2
,real
*wintab
,real
*tsbuf
)
1588 register real
*in
= inbuf
;
1590 in
[17]+=in
[16]; in
[16]+=in
[15]; in
[15]+=in
[14];
1591 in
[14]+=in
[13]; in
[13]+=in
[12]; in
[12]+=in
[11];
1592 in
[11]+=in
[10]; in
[10]+=in
[9]; in
[9] +=in
[8];
1593 in
[8] +=in
[7]; in
[7] +=in
[6]; in
[6] +=in
[5];
1594 in
[5] +=in
[4]; in
[4] +=in
[3]; in
[3] +=in
[2];
1595 in
[2] +=in
[1]; in
[1] +=in
[0];
1597 in
[17]+=in
[15]; in
[15]+=in
[13]; in
[13]+=in
[11]; in
[11]+=in
[9];
1598 in
[9] +=in
[7]; in
[7] +=in
[5]; in
[5] +=in
[3]; in
[3] +=in
[1];
1603 #define MACRO0(v) { \
1605 out2[9+(v)] = (tmp = sum0 + sum1) * w[27+(v)]; \
1606 out2[8-(v)] = tmp * w[26-(v)]; } \
1608 ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \
1609 ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)];
1610 #define MACRO1(v) { \
1612 sum0 = tmp1a + tmp2a; \
1613 sum1 = (tmp1b + tmp2b) * tfcos36[(v)]; \
1615 #define MACRO2(v) { \
1617 sum0 = tmp2a - tmp1a; \
1618 sum1 = (tmp2b - tmp1b) * tfcos36[(v)]; \
1621 register const real
*c
= COS9
;
1622 register real
*out2
= o2
;
1623 register real
*w
= wintab
;
1624 register real
*out1
= o1
;
1625 register real
*ts
= tsbuf
;
1627 real ta33
,ta66
,tb33
,tb66
;
1629 ta33
= in
[2*3+0] * c
[3];
1630 ta66
= in
[2*6+0] * c
[6];
1631 tb33
= in
[2*3+1] * c
[3];
1632 tb66
= in
[2*6+1] * c
[6];
1635 real tmp1a
,tmp2a
,tmp1b
,tmp2b
;
1636 tmp1a
= in
[2*1+0] * c
[1] + ta33
+ in
[2*5+0] * c
[5] + in
[2*7+0] * c
[7];
1637 tmp1b
= in
[2*1+1] * c
[1] + tb33
+ in
[2*5+1] * c
[5] + in
[2*7+1] * c
[7];
1638 tmp2a
= in
[2*0+0] + in
[2*2+0] * c
[2] + in
[2*4+0] * c
[4] + ta66
+ in
[2*8+0] * c
[8];
1639 tmp2b
= in
[2*0+1] + in
[2*2+1] * c
[2] + in
[2*4+1] * c
[4] + tb66
+ in
[2*8+1] * c
[8];
1646 real tmp1a
,tmp2a
,tmp1b
,tmp2b
;
1647 tmp1a
= ( in
[2*1+0] - in
[2*5+0] - in
[2*7+0] ) * c
[3];
1648 tmp1b
= ( in
[2*1+1] - in
[2*5+1] - in
[2*7+1] ) * c
[3];
1649 tmp2a
= ( in
[2*2+0] - in
[2*4+0] - in
[2*8+0] ) * c
[6] - in
[2*6+0] + in
[2*0+0];
1650 tmp2b
= ( in
[2*2+1] - in
[2*4+1] - in
[2*8+1] ) * c
[6] - in
[2*6+1] + in
[2*0+1];
1657 real tmp1a
,tmp2a
,tmp1b
,tmp2b
;
1658 tmp1a
= in
[2*1+0] * c
[5] - ta33
- in
[2*5+0] * c
[7] + in
[2*7+0] * c
[1];
1659 tmp1b
= in
[2*1+1] * c
[5] - tb33
- in
[2*5+1] * c
[7] + in
[2*7+1] * c
[1];
1660 tmp2a
= in
[2*0+0] - in
[2*2+0] * c
[8] - in
[2*4+0] * c
[2] + ta66
+ in
[2*8+0] * c
[4];
1661 tmp2b
= in
[2*0+1] - in
[2*2+1] * c
[8] - in
[2*4+1] * c
[2] + tb66
+ in
[2*8+1] * c
[4];
1668 real tmp1a
,tmp2a
,tmp1b
,tmp2b
;
1669 tmp1a
= in
[2*1+0] * c
[7] - ta33
+ in
[2*5+0] * c
[1] - in
[2*7+0] * c
[5];
1670 tmp1b
= in
[2*1+1] * c
[7] - tb33
+ in
[2*5+1] * c
[1] - in
[2*7+1] * c
[5];
1671 tmp2a
= in
[2*0+0] - in
[2*2+0] * c
[4] + in
[2*4+0] * c
[8] + ta66
- in
[2*8+0] * c
[2];
1672 tmp2b
= in
[2*0+1] - in
[2*2+1] * c
[4] + in
[2*4+1] * c
[8] + tb66
- in
[2*8+1] * c
[2];
1680 sum0
= in
[2*0+0] - in
[2*2+0] + in
[2*4+0] - in
[2*6+0] + in
[2*8+0];
1681 sum1
= (in
[2*0+1] - in
[2*2+1] + in
[2*4+1] - in
[2*6+1] + in
[2*8+1] ) * tfcos36
[4];
1692 static void dct12(real
*in
,real
*rawout1
,real
*rawout2
,register real
*wi
,register real
*ts
)
1694 #define DCT12_PART1 \
1696 in5 += (in4 = in[4*3]); \
1697 in4 += (in3 = in[3*3]); \
1698 in3 += (in2 = in[2*3]); \
1699 in2 += (in1 = in[1*3]); \
1700 in1 += (in0 = in[0*3]); \
1702 in5 += in3; in3 += in1; \
1707 #define DCT12_PART2 \
1708 in0 += in4 * COS6_2; \
1713 in1 += in5 * COS6_2; \
1715 in5 = (in1 + in3) * tfcos12[0]; \
1716 in1 = (in1 - in3) * tfcos12[2]; \
1726 real in0
,in1
,in2
,in3
,in4
,in5
;
1727 register real
*out1
= rawout1
;
1728 ts
[SBLIMIT
*0] = out1
[0]; ts
[SBLIMIT
*1] = out1
[1]; ts
[SBLIMIT
*2] = out1
[2];
1729 ts
[SBLIMIT
*3] = out1
[3]; ts
[SBLIMIT
*4] = out1
[4]; ts
[SBLIMIT
*5] = out1
[5];
1734 real tmp0
,tmp1
= (in0
- in4
);
1736 real tmp2
= (in1
- in5
) * tfcos12
[1];
1740 ts
[(17-1)*SBLIMIT
] = out1
[17-1] + tmp0
* wi
[11-1];
1741 ts
[(12+1)*SBLIMIT
] = out1
[12+1] + tmp0
* wi
[6+1];
1742 ts
[(6 +1)*SBLIMIT
] = out1
[6 +1] + tmp1
* wi
[1];
1743 ts
[(11-1)*SBLIMIT
] = out1
[11-1] + tmp1
* wi
[5-1];
1748 ts
[(17-0)*SBLIMIT
] = out1
[17-0] + in2
* wi
[11-0];
1749 ts
[(12+0)*SBLIMIT
] = out1
[12+0] + in2
* wi
[6+0];
1750 ts
[(12+2)*SBLIMIT
] = out1
[12+2] + in3
* wi
[6+2];
1751 ts
[(17-2)*SBLIMIT
] = out1
[17-2] + in3
* wi
[11-2];
1753 ts
[(6+0)*SBLIMIT
] = out1
[6+0] + in0
* wi
[0];
1754 ts
[(11-0)*SBLIMIT
] = out1
[11-0] + in0
* wi
[5-0];
1755 ts
[(6+2)*SBLIMIT
] = out1
[6+2] + in4
* wi
[2];
1756 ts
[(11-2)*SBLIMIT
] = out1
[11-2] + in4
* wi
[5-2];
1762 real in0
,in1
,in2
,in3
,in4
,in5
;
1763 register real
*out2
= rawout2
;
1768 real tmp0
,tmp1
= (in0
- in4
);
1770 real tmp2
= (in1
- in5
) * tfcos12
[1];
1774 out2
[5-1] = tmp0
* wi
[11-1];
1775 out2
[0+1] = tmp0
* wi
[6+1];
1776 ts
[(12+1)*SBLIMIT
] += tmp1
* wi
[1];
1777 ts
[(17-1)*SBLIMIT
] += tmp1
* wi
[5-1];
1782 out2
[5-0] = in2
* wi
[11-0];
1783 out2
[0+0] = in2
* wi
[6+0];
1784 out2
[0+2] = in3
* wi
[6+2];
1785 out2
[5-2] = in3
* wi
[11-2];
1787 ts
[(12+0)*SBLIMIT
] += in0
* wi
[0];
1788 ts
[(17-0)*SBLIMIT
] += in0
* wi
[5-0];
1789 ts
[(12+2)*SBLIMIT
] += in4
* wi
[2];
1790 ts
[(17-2)*SBLIMIT
] += in4
* wi
[5-2];
1796 real in0
,in1
,in2
,in3
,in4
,in5
;
1797 register real
*out2
= rawout2
;
1798 out2
[12]=out2
[13]=out2
[14]=out2
[15]=out2
[16]=out2
[17]=0.0;
1803 real tmp0
,tmp1
= (in0
- in4
);
1805 real tmp2
= (in1
- in5
) * tfcos12
[1];
1809 out2
[11-1] = tmp0
* wi
[11-1];
1810 out2
[6 +1] = tmp0
* wi
[6+1];
1811 out2
[0+1] += tmp1
* wi
[1];
1812 out2
[5-1] += tmp1
* wi
[5-1];
1817 out2
[11-0] = in2
* wi
[11-0];
1818 out2
[6 +0] = in2
* wi
[6+0];
1819 out2
[6 +2] = in3
* wi
[6+2];
1820 out2
[11-2] = in3
* wi
[11-2];
1822 out2
[0+0] += in0
* wi
[0];
1823 out2
[5-0] += in0
* wi
[5-0];
1824 out2
[0+2] += in4
* wi
[2];
1825 out2
[5-2] += in4
* wi
[5-2];
1832 static void III_hybrid(real fsIn
[SBLIMIT
][SSLIMIT
],real tsOut
[SSLIMIT
][SBLIMIT
],
1833 int ch
,struct gr_info_s
*gr_info
,struct mpstr
*mp
)
1835 real
*tspnt
= (real
*) tsOut
;
1836 real (*block
)[2][SBLIMIT
*SSLIMIT
] = mp
->hybrid_block
;
1837 int *blc
= mp
->hybrid_blc
;
1838 real
*rawout1
,*rawout2
;
1844 rawout1
=block
[b
][ch
];
1846 rawout2
=block
[b
][ch
];
1851 if(gr_info
->mixed_block_flag
) {
1853 dct36(fsIn
[0],rawout1
,rawout2
,win
[0],tspnt
);
1854 dct36(fsIn
[1],rawout1
+18,rawout2
+18,win1
[0],tspnt
+1);
1855 rawout1
+= 36; rawout2
+= 36; tspnt
+= 2;
1858 bt
= gr_info
->block_type
;
1860 for (; sb
<gr_info
->maxb
; sb
+=2,tspnt
+=2,rawout1
+=36,rawout2
+=36) {
1861 dct12(fsIn
[sb
],rawout1
,rawout2
,win
[2],tspnt
);
1862 dct12(fsIn
[sb
+1],rawout1
+18,rawout2
+18,win1
[2],tspnt
+1);
1866 for (; sb
<gr_info
->maxb
; sb
+=2,tspnt
+=2,rawout1
+=36,rawout2
+=36) {
1867 dct36(fsIn
[sb
],rawout1
,rawout2
,win
[bt
],tspnt
);
1868 dct36(fsIn
[sb
+1],rawout1
+18,rawout2
+18,win1
[bt
],tspnt
+1);
1872 for(;sb
<SBLIMIT
;sb
++,tspnt
++) {
1874 for(i
=0;i
<SSLIMIT
;i
++) {
1875 tspnt
[i
*SBLIMIT
] = *rawout1
++;
1882 * main layer3 handler
1884 int do_layer3(struct frame
*fr
,unsigned char *pcm_sample
,int *pcm_point
)
1886 int gr
, ch
, ss
,clip
=0;
1887 int scalefacs
[2][39]; /* max 39 for short[13][3] mode, mixed: 38, long: 22 */
1888 struct III_sideinfo sideinfo
;
1889 int stereo
= fr
->stereo
;
1890 int single
= fr
->single
;
1891 int ms_stereo
,i_stereo
;
1892 int sfreq
= fr
->sampling_frequency
;
1893 int stereo1
,granules
;
1895 if(stereo
== 1) { /* stream is mono */
1899 else if(single
>= 0) /* stream is stereo, but force to mono */
1904 if(fr
->mode
== MPG_MD_JOINT_STEREO
) {
1905 ms_stereo
= fr
->mode_ext
& 0x2;
1906 i_stereo
= fr
->mode_ext
& 0x1;
1909 ms_stereo
= i_stereo
= 0;
1913 if(!III_get_side_info_2(&sideinfo
,stereo
,ms_stereo
,sfreq
,single
))
1919 if(!III_get_side_info_1(&sideinfo
,stereo
,ms_stereo
,sfreq
,single
))
1922 FIXME("Not supported\n");
1926 if(set_pointer(fr
->mp
,sideinfo
.main_data_begin
) == MP3_ERR
)
1929 for (gr
=0;gr
<granules
;gr
++)
1931 real hybridIn
[2][SBLIMIT
][SSLIMIT
];
1932 real hybridOut
[2][SSLIMIT
][SBLIMIT
];
1935 struct gr_info_s
*gr_info
= &(sideinfo
.ch
[0].gr
[gr
]);
1938 part2bits
= III_get_scale_factors_2(scalefacs
[0],gr_info
,0);
1941 part2bits
= III_get_scale_factors_1(scalefacs
[0],gr_info
);
1943 FIXME("Not supported\n");
1946 if(III_dequantize_sample(hybridIn
[0], scalefacs
[0],gr_info
,sfreq
,part2bits
))
1950 struct gr_info_s
*gr_info
= &(sideinfo
.ch
[1].gr
[gr
]);
1953 part2bits
= III_get_scale_factors_2(scalefacs
[1],gr_info
,i_stereo
);
1956 part2bits
= III_get_scale_factors_1(scalefacs
[1],gr_info
);
1958 FIXME("Not supported\n");
1962 if(III_dequantize_sample(hybridIn
[1],scalefacs
[1],gr_info
,sfreq
,part2bits
))
1967 for(i
=0;i
<SBLIMIT
*SSLIMIT
;i
++) {
1969 tmp0
= ((real
*) hybridIn
[0])[i
];
1970 tmp1
= ((real
*) hybridIn
[1])[i
];
1971 ((real
*) hybridIn
[0])[i
] = tmp0
+ tmp1
;
1972 ((real
*) hybridIn
[1])[i
] = tmp0
- tmp1
;
1977 III_i_stereo(hybridIn
,scalefacs
[1],gr_info
,sfreq
,ms_stereo
,fr
->lsf
);
1979 if(ms_stereo
|| i_stereo
|| (single
== 3) ) {
1980 if(gr_info
->maxb
> sideinfo
.ch
[0].gr
[gr
].maxb
)
1981 sideinfo
.ch
[0].gr
[gr
].maxb
= gr_info
->maxb
;
1983 gr_info
->maxb
= sideinfo
.ch
[0].gr
[gr
].maxb
;
1990 register real
*in0
= (real
*) hybridIn
[0],*in1
= (real
*) hybridIn
[1];
1991 for(i
=0;i
<SSLIMIT
*gr_info
->maxb
;i
++,in0
++)
1992 *in0
= (*in0
+ *in1
++); /* *0.5 done by pow-scale */
1998 register real
*in0
= (real
*) hybridIn
[0],*in1
= (real
*) hybridIn
[1];
1999 for(i
=0;i
<SSLIMIT
*gr_info
->maxb
;i
++)
2006 for(ch
=0;ch
<stereo1
;ch
++) {
2007 struct gr_info_s
*gr_info
= &(sideinfo
.ch
[ch
].gr
[gr
]);
2008 III_antialias(hybridIn
[ch
],gr_info
);
2009 III_hybrid(hybridIn
[ch
], hybridOut
[ch
], ch
,gr_info
, fr
->mp
);
2012 for(ss
=0;ss
<SSLIMIT
;ss
++) {
2014 clip
+= synth_1to1_mono(fr
->mp
,hybridOut
[0][ss
],pcm_sample
,pcm_point
);
2017 int p1
= *pcm_point
;
2018 clip
+= synth_1to1(fr
->mp
,hybridOut
[0][ss
],0,pcm_sample
,&p1
);
2019 clip
+= synth_1to1(fr
->mp
,hybridOut
[1][ss
],1,pcm_sample
,pcm_point
);