Added Canadian French keyboard layout.
[wine/hacks.git] / win32 / kernel32.c
blob919f3c67788cfbbc02ef81fe06fd946bae69fecc
1 /*
2 * KERNEL32 thunks and other undocumented stuff
4 * Copyright 1997-1998 Marcus Meissner
5 * Copyright 1998 Ulrich Weigand
7 */
9 #include <string.h>
11 #include "windef.h"
12 #include "winbase.h"
13 #include "wine/winbase16.h"
14 #include "callback.h"
15 #include "task.h"
16 #include "user.h"
17 #include "heap.h"
18 #include "module.h"
19 #include "neexe.h"
20 #include "process.h"
21 #include "stackframe.h"
22 #include "heap.h"
23 #include "selectors.h"
24 #include "task.h"
25 #include "file.h"
26 #include "debug.h"
27 #include "flatthunk.h"
28 #include "syslevel.h"
29 #include "winerror.h"
32 /***********************************************************************
33 * *
34 * Win95 internal thunks *
35 * *
36 ***********************************************************************/
38 /***********************************************************************
39 * Generates a FT_Prolog call.
41 * 0FB6D1 movzbl edx,cl
42 * 8B1495xxxxxxxx mov edx,[4*edx + targetTable]
43 * 68xxxxxxxx push FT_Prolog
44 * C3 lret
46 static void _write_ftprolog(LPBYTE relayCode ,DWORD *targetTable) {
47 LPBYTE x;
49 x = relayCode;
50 *x++ = 0x0f;*x++=0xb6;*x++=0xd1; /* movzbl edx,cl */
51 *x++ = 0x8B;*x++=0x14;*x++=0x95;*(DWORD**)x= targetTable;
52 x+=4; /* mov edx, [4*edx + targetTable] */
53 *x++ = 0x68; *(DWORD*)x = (DWORD)GetProcAddress(GetModuleHandleA("KERNEL32"),"FT_Prolog");
54 x+=4; /* push FT_Prolog */
55 *x++ = 0xC3; /* lret */
56 /* fill rest with 0xCC / int 3 */
59 /***********************************************************************
60 * _write_qtthunk (internal)
61 * Generates a QT_Thunk style call.
63 * 33C9 xor ecx, ecx
64 * 8A4DFC mov cl , [ebp-04]
65 * 8B148Dxxxxxxxx mov edx, [4*ecx + targetTable]
66 * B8yyyyyyyy mov eax, QT_Thunk
67 * FFE0 jmp eax
69 static void _write_qtthunk(
70 LPBYTE relayCode, /* [in] start of QT_Thunk stub */
71 DWORD *targetTable /* [in] start of thunk (for index lookup) */
72 ) {
73 LPBYTE x;
75 x = relayCode;
76 *x++ = 0x33;*x++=0xC9; /* xor ecx,ecx */
77 *x++ = 0x8A;*x++=0x4D;*x++=0xFC; /* movb cl,[ebp-04] */
78 *x++ = 0x8B;*x++=0x14;*x++=0x8D;*(DWORD**)x= targetTable;
79 x+=4; /* mov edx, [4*ecx + targetTable */
80 *x++ = 0xB8; *(DWORD*)x = (DWORD)GetProcAddress(GetModuleHandleA("KERNEL32"),"QT_Thunk");
81 x+=4; /* mov eax , QT_Thunk */
82 *x++ = 0xFF; *x++ = 0xE0; /* jmp eax */
83 /* should fill the rest of the 32 bytes with 0xCC */
86 /***********************************************************************
87 * _loadthunk
89 static LPVOID _loadthunk(LPCSTR module, LPCSTR func, LPCSTR module32,
90 struct ThunkDataCommon *TD32, DWORD checksum)
92 struct ThunkDataCommon *TD16;
93 HMODULE hmod;
94 int ordinal;
96 if ((hmod = LoadLibrary16(module)) <= 32)
98 ERR(thunk, "(%s, %s, %s): Unable to load '%s', error %d\n",
99 module, func, module32, module, hmod);
100 return 0;
103 if ( !(ordinal = NE_GetOrdinal(hmod, func))
104 || !(TD16 = PTR_SEG_TO_LIN(NE_GetEntryPointEx(hmod, ordinal, FALSE))))
106 ERR(thunk, "(%s, %s, %s): Unable to find '%s'\n",
107 module, func, module32, func);
108 return 0;
111 if (TD32 && memcmp(TD16->magic, TD32->magic, 4))
113 ERR(thunk, "(%s, %s, %s): Bad magic %c%c%c%c (should be %c%c%c%c)\n",
114 module, func, module32,
115 TD16->magic[0], TD16->magic[1], TD16->magic[2], TD16->magic[3],
116 TD32->magic[0], TD32->magic[1], TD32->magic[2], TD32->magic[3]);
117 return 0;
120 if (TD32 && TD16->checksum != TD32->checksum)
122 ERR(thunk, "(%s, %s, %s): Wrong checksum %08lx (should be %08lx)\n",
123 module, func, module32, TD16->checksum, TD32->checksum);
124 return 0;
127 if (!TD32 && checksum && checksum != *(LPDWORD)TD16)
129 ERR(thunk, "(%s, %s, %s): Wrong checksum %08lx (should be %08lx)\n",
130 module, func, module32, *(LPDWORD)TD16, checksum);
131 return 0;
134 return TD16;
137 /***********************************************************************
138 * GetThunkStuff (KERNEL32.53)
140 LPVOID WINAPI GetThunkStuff(LPSTR module, LPSTR func)
142 return _loadthunk(module, func, "<kernel>", NULL, 0L);
145 /***********************************************************************
146 * GetThunkBuff (KERNEL32.52)
147 * Returns a pointer to ThkBuf in the 16bit library SYSTHUNK.DLL.
149 LPVOID WINAPI GetThunkBuff(void)
151 return GetThunkStuff("SYSTHUNK.DLL", "ThkBuf");
154 /***********************************************************************
155 * ThunkConnect32 (KERNEL32)
156 * Connects a 32bit and a 16bit thunkbuffer.
158 UINT WINAPI ThunkConnect32(
159 struct ThunkDataCommon *TD, /* [in/out] thunkbuffer */
160 LPSTR thunkfun16, /* [in] win16 thunkfunction */
161 LPSTR module16, /* [in] name of win16 dll */
162 LPSTR module32, /* [in] name of win32 dll */
163 HMODULE hmod32, /* [in] hmodule of win32 dll */
164 DWORD dwReason /* [in] initialisation argument */
166 BOOL directionSL;
168 if (!lstrncmpA(TD->magic, "SL01", 4))
170 directionSL = TRUE;
172 TRACE(thunk, "SL01 thunk %s (%lx) <- %s (%s), Reason: %ld\n",
173 module32, (DWORD)TD, module16, thunkfun16, dwReason);
175 else if (!lstrncmpA(TD->magic, "LS01", 4))
177 directionSL = FALSE;
179 TRACE(thunk, "LS01 thunk %s (%lx) -> %s (%s), Reason: %ld\n",
180 module32, (DWORD)TD, module16, thunkfun16, dwReason);
182 else
184 ERR(thunk, "Invalid magic %c%c%c%c\n",
185 TD->magic[0], TD->magic[1], TD->magic[2], TD->magic[3]);
186 return 0;
189 switch (dwReason)
191 case DLL_PROCESS_ATTACH:
193 struct ThunkDataCommon *TD16;
194 if (!(TD16 = _loadthunk(module16, thunkfun16, module32, TD, 0L)))
195 return 0;
197 if (directionSL)
199 struct ThunkDataSL32 *SL32 = (struct ThunkDataSL32 *)TD;
200 struct ThunkDataSL16 *SL16 = (struct ThunkDataSL16 *)TD16;
201 struct SLTargetDB *tdb;
203 if (SL16->fpData == NULL)
205 ERR(thunk, "ThunkConnect16 was not called!\n");
206 return 0;
209 SL32->data = SL16->fpData;
211 tdb = HeapAlloc(GetProcessHeap(), 0, sizeof(*tdb));
212 tdb->process = PROCESS_Current();
213 tdb->targetTable = (DWORD *)(thunkfun16 + SL32->offsetTargetTable);
215 tdb->next = SL32->data->targetDB; /* FIXME: not thread-safe! */
216 SL32->data->targetDB = tdb;
218 TRACE(thunk, "Process %08lx allocated TargetDB entry for ThunkDataSL %08lx\n",
219 (DWORD)PROCESS_Current(), (DWORD)SL32->data);
221 else
223 struct ThunkDataLS32 *LS32 = (struct ThunkDataLS32 *)TD;
224 struct ThunkDataLS16 *LS16 = (struct ThunkDataLS16 *)TD16;
226 LS32->targetTable = PTR_SEG_TO_LIN(LS16->targetTable);
228 /* write QT_Thunk and FT_Prolog stubs */
229 _write_qtthunk ((LPBYTE)TD + LS32->offsetQTThunk, LS32->targetTable);
230 _write_ftprolog((LPBYTE)TD + LS32->offsetFTProlog, LS32->targetTable);
232 break;
235 case DLL_PROCESS_DETACH:
236 /* FIXME: cleanup */
237 break;
240 return 1;
243 /**********************************************************************
244 * QT_Thunk (KERNEL32)
246 * The target address is in EDX.
247 * The 16 bit arguments start at ESP+4.
248 * The number of 16bit argumentbytes is EBP-ESP-0x44 (68 Byte thunksetup).
249 * [ok]
251 REGS_ENTRYPOINT(QT_Thunk)
253 CONTEXT context16;
254 DWORD argsize;
255 THDB *thdb = THREAD_Current();
257 memcpy(&context16,context,sizeof(context16));
259 CS_reg(&context16) = HIWORD(EDX_reg(context));
260 IP_reg(&context16) = LOWORD(EDX_reg(context));
261 EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
262 + (WORD)&((STACK16FRAME*)0)->bp;
264 argsize = EBP_reg(context)-ESP_reg(context)-0x44;
266 memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
267 (LPBYTE)ESP_reg(context)+4, argsize );
269 EAX_reg(context) = Callbacks->CallRegisterShortProc( &context16, argsize );
270 EDX_reg(context) = HIWORD(EAX_reg(context));
271 EAX_reg(context) = LOWORD(EAX_reg(context));
275 /**********************************************************************
276 * FT_Prolog (KERNEL32.233)
278 * The set of FT_... thunk routines is used instead of QT_Thunk,
279 * if structures have to be converted from 32-bit to 16-bit
280 * (change of member alignment, conversion of members).
282 * The thunk function (as created by the thunk compiler) calls
283 * FT_Prolog at the beginning, to set up a stack frame and
284 * allocate a 64 byte buffer on the stack.
285 * The input parameters (target address and some flags) are
286 * saved for later use by FT_Thunk.
288 * Input: EDX 16-bit target address (SEGPTR)
289 * CX bits 0..7 target number (in target table)
290 * bits 8..9 some flags (unclear???)
291 * bits 10..15 number of DWORD arguments
293 * Output: A new stackframe is created, and a 64 byte buffer
294 * allocated on the stack. The layout of the stack
295 * on return is as follows:
297 * (ebp+4) return address to caller of thunk function
298 * (ebp) old EBP
299 * (ebp-4) saved EBX register of caller
300 * (ebp-8) saved ESI register of caller
301 * (ebp-12) saved EDI register of caller
302 * (ebp-16) saved ECX register, containing flags
303 * (ebp-20) bitmap containing parameters that are to be converted
304 * by FT_Thunk; it is initialized to 0 by FT_Prolog and
305 * filled in by the thunk code before calling FT_Thunk
306 * (ebp-24)
307 * ... (unclear)
308 * (ebp-44)
309 * (ebp-48) saved EAX register of caller (unclear, never restored???)
310 * (ebp-52) saved EDX register, containing 16-bit thunk target
311 * (ebp-56)
312 * ... (unclear)
313 * (ebp-64)
315 * ESP is EBP-68 on return.
319 REGS_ENTRYPOINT(FT_Prolog)
321 /* Pop return address to thunk code */
322 EIP_reg(context) = STACK32_POP(context);
324 /* Build stack frame */
325 STACK32_PUSH(context, EBP_reg(context));
326 EBP_reg(context) = ESP_reg(context);
328 /* Allocate 64-byte Thunk Buffer */
329 ESP_reg(context) -= 64;
330 memset((char *)ESP_reg(context), '\0', 64);
332 /* Store Flags (ECX) and Target Address (EDX) */
333 /* Save other registers to be restored later */
334 *(DWORD *)(EBP_reg(context) - 4) = EBX_reg(context);
335 *(DWORD *)(EBP_reg(context) - 8) = ESI_reg(context);
336 *(DWORD *)(EBP_reg(context) - 12) = EDI_reg(context);
337 *(DWORD *)(EBP_reg(context) - 16) = ECX_reg(context);
339 *(DWORD *)(EBP_reg(context) - 48) = EAX_reg(context);
340 *(DWORD *)(EBP_reg(context) - 52) = EDX_reg(context);
342 /* Push return address back onto stack */
343 STACK32_PUSH(context, EIP_reg(context));
346 /**********************************************************************
347 * FT_Thunk (KERNEL32.234)
349 * This routine performs the actual call to 16-bit code,
350 * similar to QT_Thunk. The differences are:
351 * - The call target is taken from the buffer created by FT_Prolog
352 * - Those arguments requested by the thunk code (by setting the
353 * corresponding bit in the bitmap at EBP-20) are converted
354 * from 32-bit pointers to segmented pointers (those pointers
355 * are guaranteed to point to structures copied to the stack
356 * by the thunk code, so we always use the 16-bit stack selector
357 * for those addresses).
359 * The bit #i of EBP-20 corresponds here to the DWORD starting at
360 * ESP+4 + 2*i.
362 * FIXME: It is unclear what happens if there are more than 32 WORDs
363 * of arguments, so that the single DWORD bitmap is no longer
364 * sufficient ...
367 REGS_ENTRYPOINT(FT_Thunk)
369 DWORD mapESPrelative = *(DWORD *)(EBP_reg(context) - 20);
370 DWORD callTarget = *(DWORD *)(EBP_reg(context) - 52);
372 CONTEXT context16;
373 DWORD i, argsize;
374 LPBYTE newstack, oldstack;
375 THDB *thdb = THREAD_Current();
377 memcpy(&context16,context,sizeof(context16));
379 CS_reg(&context16) = HIWORD(callTarget);
380 IP_reg(&context16) = LOWORD(callTarget);
381 EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
382 + (WORD)&((STACK16FRAME*)0)->bp;
384 argsize = EBP_reg(context)-ESP_reg(context)-0x44;
385 newstack = ((LPBYTE)THREAD_STACK16(thdb))-argsize;
386 oldstack = (LPBYTE)ESP_reg(context)+4;
388 memcpy( newstack, oldstack, argsize );
390 for (i = 0; i < 32; i++) /* NOTE: What about > 32 arguments? */
391 if (mapESPrelative & (1 << i))
393 SEGPTR *arg = (SEGPTR *)(newstack + 2*i);
394 *arg = PTR_SEG_OFF_TO_SEGPTR(SELECTOROF(thdb->cur_stack),
395 OFFSETOF(thdb->cur_stack) - argsize
396 + (*(LPBYTE *)arg - oldstack));
399 EAX_reg(context) = Callbacks->CallRegisterShortProc( &context16, argsize );
400 EDX_reg(context) = HIWORD(EAX_reg(context));
401 EAX_reg(context) = LOWORD(EAX_reg(context));
404 /**********************************************************************
405 * FT_ExitNN (KERNEL32.218 - 232)
407 * One of the FT_ExitNN functions is called at the end of the thunk code.
408 * It removes the stack frame created by FT_Prolog, moves the function
409 * return from EBX to EAX (yes, FT_Thunk did use EAX for the return
410 * value, but the thunk code has moved it from EAX to EBX in the
411 * meantime ... :-), restores the caller's EBX, ESI, and EDI registers,
412 * and perform a return to the CALLER of the thunk code (while removing
413 * the given number of arguments from the caller's stack).
416 static void FT_Exit(CONTEXT *context, int nPopArgs)
418 /* Return value is in EBX */
419 EAX_reg(context) = EBX_reg(context);
421 /* Restore EBX, ESI, and EDI registers */
422 EBX_reg(context) = *(DWORD *)(EBP_reg(context) - 4);
423 ESI_reg(context) = *(DWORD *)(EBP_reg(context) - 8);
424 EDI_reg(context) = *(DWORD *)(EBP_reg(context) - 12);
426 /* Clean up stack frame */
427 ESP_reg(context) = EBP_reg(context);
428 EBP_reg(context) = STACK32_POP(context);
430 /* Pop return address to CALLER of thunk code */
431 EIP_reg(context) = STACK32_POP(context);
432 /* Remove arguments */
433 ESP_reg(context) += nPopArgs;
434 /* Push return address back onto stack */
435 STACK32_PUSH(context, EIP_reg(context));
438 REGS_ENTRYPOINT(FT_Exit0) { FT_Exit(context, 0); }
439 REGS_ENTRYPOINT(FT_Exit4) { FT_Exit(context, 4); }
440 REGS_ENTRYPOINT(FT_Exit8) { FT_Exit(context, 8); }
441 REGS_ENTRYPOINT(FT_Exit12) { FT_Exit(context, 12); }
442 REGS_ENTRYPOINT(FT_Exit16) { FT_Exit(context, 16); }
443 REGS_ENTRYPOINT(FT_Exit20) { FT_Exit(context, 20); }
444 REGS_ENTRYPOINT(FT_Exit24) { FT_Exit(context, 24); }
445 REGS_ENTRYPOINT(FT_Exit28) { FT_Exit(context, 28); }
446 REGS_ENTRYPOINT(FT_Exit32) { FT_Exit(context, 32); }
447 REGS_ENTRYPOINT(FT_Exit36) { FT_Exit(context, 36); }
448 REGS_ENTRYPOINT(FT_Exit40) { FT_Exit(context, 40); }
449 REGS_ENTRYPOINT(FT_Exit44) { FT_Exit(context, 44); }
450 REGS_ENTRYPOINT(FT_Exit48) { FT_Exit(context, 48); }
451 REGS_ENTRYPOINT(FT_Exit52) { FT_Exit(context, 52); }
452 REGS_ENTRYPOINT(FT_Exit56) { FT_Exit(context, 56); }
455 /**********************************************************************
456 * WOWCallback16 (KERNEL32.62)(WOW32.2)
457 * Calls a win16 function with a single DWORD argument.
458 * RETURNS
459 * the return value
461 DWORD WINAPI WOWCallback16(
462 FARPROC16 fproc, /* [in] win16 function to call */
463 DWORD arg /* [in] single DWORD argument to function */
465 DWORD ret;
466 TRACE(thunk,"(%p,0x%08lx)...\n",fproc,arg);
467 ret = Callbacks->CallWOWCallbackProc(fproc,arg);
468 TRACE(thunk,"... returns %ld\n",ret);
469 return ret;
472 /**********************************************************************
473 * WOWCallback16Ex (KERNEL32.55)(WOW32.3)
474 * Calls a function in 16bit code.
475 * RETURNS
476 * TRUE for success
478 BOOL WINAPI WOWCallback16Ex(
479 FARPROC16 vpfn16, /* [in] win16 function to call */
480 DWORD dwFlags, /* [in] flags */
481 DWORD cbArgs, /* [in] nr of arguments */
482 LPVOID pArgs, /* [in] pointer to arguments (LPDWORD) */
483 LPDWORD pdwRetCode /* [out] return value of win16 function */
485 return Callbacks->CallWOWCallback16Ex(vpfn16,dwFlags,cbArgs,pArgs,pdwRetCode);
488 /***********************************************************************
489 * ThunkInitLS (KERNEL32.43)
490 * A thunkbuffer link routine
491 * The thunkbuf looks like:
493 * 00: DWORD length ? don't know exactly
494 * 04: SEGPTR ptr ? where does it point to?
495 * The pointer ptr is written into the first DWORD of 'thunk'.
496 * (probably correct implemented)
497 * [ok probably]
498 * RETURNS
499 * segmented pointer to thunk?
501 DWORD WINAPI ThunkInitLS(
502 LPDWORD thunk, /* [in] win32 thunk */
503 LPCSTR thkbuf, /* [in] thkbuffer name in win16 dll */
504 DWORD len, /* [in] thkbuffer length */
505 LPCSTR dll16, /* [in] name of win16 dll */
506 LPCSTR dll32 /* [in] name of win32 dll (FIXME: not used?) */
508 LPDWORD addr;
510 if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
511 return 0;
513 if (!addr[1])
514 return 0;
515 *(DWORD*)thunk = addr[1];
517 return addr[1];
520 /***********************************************************************
521 * Common32ThkLS (KERNEL32.45)
523 * This is another 32->16 thunk, independent of the QT_Thunk/FT_Thunk
524 * style thunks. The basic difference is that the parameter conversion
525 * is done completely on the *16-bit* side here. Thus we do not call
526 * the 16-bit target directly, but call a common entry point instead.
527 * This entry function then calls the target according to the target
528 * number passed in the DI register.
530 * Input: EAX SEGPTR to the common 16-bit entry point
531 * CX offset in thunk table (target number * 4)
532 * DX error return value if execution fails (unclear???)
533 * EDX.HI number of DWORD parameters
535 * (Note that we need to move the thunk table offset from CX to DI !)
537 * The called 16-bit stub expects its stack to look like this:
538 * ...
539 * (esp+40) 32-bit arguments
540 * ...
541 * (esp+8) 32 byte of stack space available as buffer
542 * (esp) 8 byte return address for use with 0x66 lret
544 * The called 16-bit stub uses a 0x66 lret to return to 32-bit code,
545 * and uses the EAX register to return a DWORD return value.
546 * Thus we need to use a special assembly glue routine
547 * (CallRegisterLongProc instead of CallRegisterShortProc).
549 * Finally, we return to the caller, popping the arguments off
550 * the stack.
552 * FIXME: The called function uses EBX to return the number of
553 * arguments that are to be popped off the caller's stack.
554 * This is clobbered by the assembly glue, so we simply use
555 * the original EDX.HI to get the number of arguments.
556 * (Those two values should be equal anyway ...?)
559 REGS_ENTRYPOINT(Common32ThkLS)
561 CONTEXT context16;
562 DWORD argsize;
563 THDB *thdb = THREAD_Current();
565 memcpy(&context16,context,sizeof(context16));
567 DI_reg(&context16) = CX_reg(context);
568 CS_reg(&context16) = HIWORD(EAX_reg(context));
569 IP_reg(&context16) = LOWORD(EAX_reg(context));
570 EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
571 + (WORD)&((STACK16FRAME*)0)->bp;
573 argsize = HIWORD(EDX_reg(context)) * 4;
575 /* FIXME: hack for stupid USER32 CallbackGlueLS routine */
576 if (EDX_reg(context) == EIP_reg(context))
577 argsize = 6 * 4;
579 memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
580 (LPBYTE)ESP_reg(context)+4, argsize );
582 EAX_reg(context) = Callbacks->CallRegisterLongProc(&context16, argsize + 32);
584 /* Clean up caller's stack frame */
586 EIP_reg(context) = STACK32_POP(context);
587 ESP_reg(context) += argsize;
588 STACK32_PUSH(context, EIP_reg(context));
591 /***********************************************************************
592 * OT_32ThkLSF (KERNEL32.40)
594 * YET Another 32->16 thunk. The difference to Common32ThkLS is that
595 * argument processing is done on both the 32-bit and the 16-bit side:
596 * The 32-bit side prepares arguments, copying them onto the stack.
598 * When this routine is called, the first word on the stack is the
599 * number of argument bytes prepared by the 32-bit code, and EDX
600 * contains the 16-bit target address.
602 * The called 16-bit routine is another relaycode, doing further
603 * argument processing and then calling the real 16-bit target
604 * whose address is stored at [bp-04].
606 * The call proceeds using a normal CallRegisterShortProc.
607 * After return from the 16-bit relaycode, the arguments need
608 * to be copied *back* to the 32-bit stack, since the 32-bit
609 * relaycode processes output parameters.
611 * Note that we copy twice the number of arguments, since some of the
612 * 16-bit relaycodes in SYSTHUNK.DLL directly access the original
613 * arguments of the caller!
615 * (Note that this function seems only to be used for
616 * OLECLI32 -> OLECLI and OLESVR32 -> OLESVR thunking.)
618 REGS_ENTRYPOINT(OT_32ThkLSF)
620 CONTEXT context16;
621 DWORD argsize;
622 THDB *thdb = THREAD_Current();
624 memcpy(&context16,context,sizeof(context16));
626 CS_reg(&context16) = HIWORD(EDX_reg(context));
627 IP_reg(&context16) = LOWORD(EDX_reg(context));
628 EBP_reg(&context16) = OFFSETOF( thdb->cur_stack )
629 + (WORD)&((STACK16FRAME*)0)->bp;
631 argsize = 2 * *(WORD *)(ESP_reg(context) + 4) + 2;
633 memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize,
634 (LPBYTE)ESP_reg(context)+4, argsize );
636 EAX_reg(context) = Callbacks->CallRegisterShortProc(&context16, argsize);
638 memcpy( (LPBYTE)ESP_reg(context)+4,
639 ((LPBYTE)THREAD_STACK16(thdb))-argsize, argsize );
642 /***********************************************************************
643 * ThunkInitLSF (KERNEL32.41)
644 * A thunk setup routine.
645 * Expects a pointer to a preinitialized thunkbuffer in the first argument
646 * looking like:
647 * 00..03: unknown (pointer, check _41, _43, _46)
648 * 04: EB1E jmp +0x20
650 * 06..23: unknown (space for replacement code, check .90)
652 * 24:>E800000000 call offset 29
653 * 29:>58 pop eax ( target of call )
654 * 2A: 2D25000000 sub eax,0x00000025 ( now points to offset 4 )
655 * 2F: BAxxxxxxxx mov edx,xxxxxxxx
656 * 34: 68yyyyyyyy push KERNEL32.90
657 * 39: C3 ret
659 * 3A: EB1E jmp +0x20
660 * 3E ... 59: unknown (space for replacement code?)
661 * 5A: E8xxxxxxxx call <32bitoffset xxxxxxxx>
662 * 5F: 5A pop edx
663 * 60: 81EA25xxxxxx sub edx, 0x25xxxxxx
664 * 66: 52 push edx
665 * 67: 68xxxxxxxx push xxxxxxxx
666 * 6C: 68yyyyyyyy push KERNEL32.89
667 * 71: C3 ret
668 * 72: end?
669 * This function checks if the code is there, and replaces the yyyyyyyy entries
670 * by the functionpointers.
671 * The thunkbuf looks like:
673 * 00: DWORD length ? don't know exactly
674 * 04: SEGPTR ptr ? where does it point to?
675 * The segpointer ptr is written into the first DWORD of 'thunk'.
676 * [ok probably]
677 * RETURNS
678 * unclear, pointer to win16 thkbuffer?
680 LPVOID WINAPI ThunkInitLSF(
681 LPBYTE thunk, /* [in] win32 thunk */
682 LPCSTR thkbuf, /* [in] thkbuffer name in win16 dll */
683 DWORD len, /* [in] length of thkbuffer */
684 LPCSTR dll16, /* [in] name of win16 dll */
685 LPCSTR dll32 /* [in] name of win32 dll */
687 HMODULE hkrnl32 = GetModuleHandleA("KERNEL32");
688 LPDWORD addr,addr2;
690 /* FIXME: add checks for valid code ... */
691 /* write pointers to kernel32.89 and kernel32.90 (+ordinal base of 1) */
692 *(DWORD*)(thunk+0x35) = (DWORD)GetProcAddress(hkrnl32,(LPSTR)90);
693 *(DWORD*)(thunk+0x6D) = (DWORD)GetProcAddress(hkrnl32,(LPSTR)89);
696 if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
697 return 0;
699 addr2 = PTR_SEG_TO_LIN(addr[1]);
700 if (HIWORD(addr2))
701 *(DWORD*)thunk = (DWORD)addr2;
703 return addr2;
706 /***********************************************************************
707 * FT_PrologPrime (KERNEL32.89)
709 * This function is called from the relay code installed by
710 * ThunkInitLSF. It replaces the location from where it was
711 * called by a standard FT_Prolog call stub (which is 'primed'
712 * by inserting the correct target table pointer).
713 * Finally, it calls that stub.
715 * Input: ECX target number + flags (passed through to FT_Prolog)
716 * (ESP) offset of location where target table pointer
717 * is stored, relative to the start of the relay code
718 * (ESP+4) pointer to start of relay code
719 * (this is where the FT_Prolog call stub gets written to)
721 * Note: The two DWORD arguments get popped from the stack.
724 REGS_ENTRYPOINT(FT_PrologPrime)
726 DWORD targetTableOffset = STACK32_POP(context);
727 LPBYTE relayCode = (LPBYTE)STACK32_POP(context);
728 DWORD *targetTable = *(DWORD **)(relayCode+targetTableOffset);
729 DWORD targetNr = LOBYTE(ECX_reg(context));
731 _write_ftprolog(relayCode, targetTable);
733 /* We should actually call the relay code now, */
734 /* but we skip it and go directly to FT_Prolog */
735 EDX_reg(context) = targetTable[targetNr];
736 __regs_FT_Prolog(context);
739 /***********************************************************************
740 * QT_ThunkPrime (KERNEL32.90)
742 * This function corresponds to FT_PrologPrime, but installs a
743 * call stub for QT_Thunk instead.
745 * Input: (EBP-4) target number (passed through to QT_Thunk)
746 * EDX target table pointer location offset
747 * EAX start of relay code
750 REGS_ENTRYPOINT(QT_ThunkPrime)
752 DWORD targetTableOffset = EDX_reg(context);
753 LPBYTE relayCode = (LPBYTE)EAX_reg(context);
754 DWORD *targetTable = *(DWORD **)(relayCode+targetTableOffset);
755 DWORD targetNr = LOBYTE(*(DWORD *)(EBP_reg(context) - 4));
757 _write_qtthunk(relayCode, targetTable);
759 /* We should actually call the relay code now, */
760 /* but we skip it and go directly to QT_Thunk */
761 EDX_reg(context) = targetTable[targetNr];
762 __regs_QT_Thunk(context);
765 /***********************************************************************
766 * (KERNEL32.46)
767 * Another thunkbuf link routine.
768 * The start of the thunkbuf looks like this:
769 * 00: DWORD length
770 * 04: SEGPTR address for thunkbuffer pointer
771 * [ok probably]
773 VOID WINAPI ThunkInitSL(
774 LPBYTE thunk, /* [in] start of thunkbuffer */
775 LPCSTR thkbuf, /* [in] name/ordinal of thunkbuffer in win16 dll */
776 DWORD len, /* [in] length of thunkbuffer */
777 LPCSTR dll16, /* [in] name of win16 dll containing the thkbuf */
778 LPCSTR dll32 /* [in] win32 dll. FIXME: strange, unused */
780 LPDWORD addr;
782 if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len )))
783 return;
785 *(DWORD*)PTR_SEG_TO_LIN(addr[1]) = (DWORD)thunk;
788 /**********************************************************************
789 * SSInit KERNEL.700
790 * RETURNS
791 * TRUE for success.
793 BOOL WINAPI SSInit16()
795 return TRUE;
798 /**********************************************************************
799 * SSOnBigStack KERNEL32.87
800 * Check if thunking is initialized (ss selector set up etc.)
801 * We do that differently, so just return TRUE.
802 * [ok]
803 * RETURNS
804 * TRUE for success.
806 BOOL WINAPI SSOnBigStack()
808 TRACE(thunk, "Yes, thunking is initialized\n");
809 return TRUE;
812 /**********************************************************************
813 * SSCall
814 * One of the real thunking functions. This one seems to be for 32<->32
815 * thunks. It should probably be capable of crossing processboundaries.
817 * And YES, I've seen nr=48 (somewhere in the Win95 32<->16 OLE coupling)
818 * [ok]
820 DWORD WINAPIV SSCall(
821 DWORD nr, /* [in] number of argument bytes */
822 DWORD flags, /* [in] FIXME: flags ? */
823 FARPROC fun, /* [in] function to call */
824 ... /* [in/out] arguments */
826 DWORD i,ret;
827 DWORD *args = ((DWORD *)&fun) + 1;
829 if(TRACE_ON(thunk)){
830 dbg_decl_str(thunk, 256);
831 for (i=0;i<nr/4;i++)
832 dsprintf(thunk,"0x%08lx,",args[i]);
833 TRACE(thunk,"(%ld,0x%08lx,%p,[%s])\n",
834 nr,flags,fun,dbg_str(thunk));
836 switch (nr) {
837 case 0: ret = fun();
838 break;
839 case 4: ret = fun(args[0]);
840 break;
841 case 8: ret = fun(args[0],args[1]);
842 break;
843 case 12: ret = fun(args[0],args[1],args[2]);
844 break;
845 case 16: ret = fun(args[0],args[1],args[2],args[3]);
846 break;
847 case 20: ret = fun(args[0],args[1],args[2],args[3],args[4]);
848 break;
849 case 24: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5]);
850 break;
851 case 28: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6]);
852 break;
853 case 32: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7]);
854 break;
855 case 36: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8]);
856 break;
857 case 40: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9]);
858 break;
859 case 44: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9],args[10]);
860 break;
861 case 48: ret = fun(args[0],args[1],args[2],args[3],args[4],args[5],args[6],args[7],args[8],args[9],args[10],args[11]);
862 break;
863 default:
864 WARN(thunk,"Unsupported nr of arguments, %ld\n",nr);
865 ret = 0;
866 break;
869 TRACE(thunk," returning %ld ...\n",ret);
870 return ret;
873 /**********************************************************************
874 * W32S_BackTo32 (KERNEL32.51)
876 REGS_ENTRYPOINT(W32S_BackTo32)
878 LPDWORD stack = (LPDWORD)ESP_reg( context );
879 FARPROC proc = (FARPROC) stack[0];
881 EAX_reg( context ) = proc( stack[2], stack[3], stack[4], stack[5], stack[6],
882 stack[7], stack[8], stack[9], stack[10], stack[11] );
884 EIP_reg( context ) = stack[1];
887 /**********************************************************************
888 * AllocSLCallback (KERNEL32)
890 * Win95 uses some structchains for callbacks. It allocates them
891 * in blocks of 100 entries, size 32 bytes each, layout:
892 * blockstart:
893 * 0: PTR nextblockstart
894 * 4: entry *first;
895 * 8: WORD sel ( start points to blockstart)
896 * A: WORD unknown
897 * 100xentry:
898 * 00..17: Code
899 * 18: PDB *owning_process;
900 * 1C: PTR blockstart
902 * We ignore this for now. (Just a note for further developers)
903 * FIXME: use this method, so we don't waste selectors...
905 * Following code is then generated by AllocSLCallback. The code is 16 bit, so
906 * the 0x66 prefix switches from word->long registers.
908 * 665A pop edx
909 * 6668x arg2 x pushl <arg2>
910 * 6652 push edx
911 * EAx arg1 x jmpf <arg1>
913 * returns the startaddress of this thunk.
915 * Note, that they look very similair to the ones allocates by THUNK_Alloc.
916 * RETURNS
917 * segmented pointer to the start of the thunk
919 DWORD WINAPI
920 AllocSLCallback(
921 DWORD finalizer, /* [in] finalizer function */
922 DWORD callback /* [in] callback function */
924 LPBYTE x,thunk = HeapAlloc( GetProcessHeap(), 0, 32 );
925 WORD sel;
927 x=thunk;
928 *x++=0x66;*x++=0x5a; /* popl edx */
929 *x++=0x66;*x++=0x68;*(DWORD*)x=finalizer;x+=4; /* pushl finalizer */
930 *x++=0x66;*x++=0x52; /* pushl edx */
931 *x++=0xea;*(DWORD*)x=callback;x+=4; /* jmpf callback */
933 *(PDB**)(thunk+18) = PROCESS_Current();
935 sel = SELECTOR_AllocBlock( thunk , 32, SEGMENT_CODE, FALSE, FALSE );
936 return (sel<<16)|0;
939 /**********************************************************************
940 * FreeSLCallback (KERNEL32.274)
941 * Frees the specified 16->32 callback
943 void WINAPI
944 FreeSLCallback(
945 DWORD x /* [in] 16 bit callback (segmented pointer?) */
947 FIXME(win32,"(0x%08lx): stub\n",x);
951 /**********************************************************************
952 * GetTEBSelectorFS (KERNEL.475)
953 * Set the 16-bit %fs to the 32-bit %fs (current TEB selector)
955 VOID WINAPI GetTEBSelectorFS16( CONTEXT *context )
957 GET_FS( FS_reg(context) );
960 /**********************************************************************
961 * KERNEL_431 (KERNEL.431)
962 * IsPeFormat (W32SYS.2)
963 * Checks the passed filename if it is a PE format executeable
964 * RETURNS
965 * TRUE, if it is.
966 * FALSE if not.
968 BOOL16 WINAPI IsPeFormat16(
969 LPSTR fn, /* [in] filename to executeable */
970 HFILE16 hf16 /* [in] open file, if filename is NULL */
972 IMAGE_DOS_HEADER mzh;
973 HFILE hf=FILE_GetHandle(hf16);
974 OFSTRUCT ofs;
975 DWORD xmagic;
977 if (fn) {
978 hf = OpenFile(fn,&ofs,OF_READ);
979 if (hf==HFILE_ERROR)
980 return FALSE;
982 _llseek(hf,0,SEEK_SET);
983 if (sizeof(mzh)!=_lread(hf,&mzh,sizeof(mzh))) {
984 _lclose(hf);
985 return FALSE;
987 if (mzh.e_magic!=IMAGE_DOS_SIGNATURE) {
988 WARN(dosmem,"File has not got dos signature!\n");
989 _lclose(hf);
990 return FALSE;
992 _llseek(hf,mzh.e_lfanew,SEEK_SET);
993 if (sizeof(DWORD)!=_lread(hf,&xmagic,sizeof(DWORD))) {
994 _lclose(hf);
995 return FALSE;
997 _lclose(hf);
998 return (xmagic == IMAGE_NT_SIGNATURE);
1001 /***********************************************************************
1002 * WOWHandle32 (KERNEL32.57)(WOW32.16)
1003 * Converts a win16 handle of type into the respective win32 handle.
1004 * We currently just return this handle, since most handles are the same
1005 * for win16 and win32.
1006 * RETURNS
1007 * The new handle
1009 HANDLE WINAPI WOWHandle32(
1010 WORD handle, /* [in] win16 handle */
1011 WOW_HANDLE_TYPE type /* [in] handle type */
1013 TRACE(win32,"(0x%04x,%d)\n",handle,type);
1014 return (HANDLE)handle;
1017 /***********************************************************************
1018 * K32Thk1632Prolog (KERNEL32.492)
1020 REGS_ENTRYPOINT(K32Thk1632Prolog)
1022 LPBYTE code = (LPBYTE)EIP_reg(context) - 5;
1024 /* Arrrgh! SYSTHUNK.DLL just has to re-implement another method
1025 of 16->32 thunks instead of using one of the standard methods!
1026 This means that SYSTHUNK.DLL itself switches to a 32-bit stack,
1027 and does a far call to the 32-bit code segment of OLECLI32/OLESVR32.
1028 Unfortunately, our CallTo/CallFrom mechanism is therefore completely
1029 bypassed, which means it will crash the next time the 32-bit OLE
1030 code thunks down again to 16-bit (this *will* happen!).
1032 The following hack tries to recognize this situation.
1033 This is possible since the called stubs in OLECLI32/OLESVR32 all
1034 look exactly the same:
1035 00 E8xxxxxxxx call K32Thk1632Prolog
1036 05 FF55FC call [ebp-04]
1037 08 E8xxxxxxxx call K32Thk1632Epilog
1038 0D 66CB retf
1040 If we recognize this situation, we try to simulate the actions
1041 of our CallTo/CallFrom mechanism by copying the 16-bit stack
1042 to our 32-bit stack, creating a proper STACK16FRAME and
1043 updating thdb->cur_stack. */
1045 if ( code[5] == 0xFF && code[6] == 0x55 && code[7] == 0xFC
1046 && code[13] == 0x66 && code[14] == 0xCB)
1048 WORD stackSel = NtCurrentTeb()->stack_sel;
1049 DWORD stackBase = GetSelectorBase(stackSel);
1051 THDB *thdb = THREAD_Current();
1052 DWORD argSize = EBP_reg(context) - ESP_reg(context);
1053 char *stack16 = (char *)ESP_reg(context);
1054 char *stack32 = (char *)thdb->cur_stack - argSize;
1055 STACK16FRAME *frame16 = (STACK16FRAME *)stack16 - 1;
1057 TRACE(thunk, "before SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
1058 EBP_reg(context), ESP_reg(context), thdb->cur_stack);
1060 memset(frame16, '\0', sizeof(STACK16FRAME));
1061 frame16->frame32 = (STACK32FRAME *)thdb->cur_stack;
1062 frame16->ebp = EBP_reg(context);
1064 memcpy(stack32, stack16, argSize);
1065 thdb->cur_stack = PTR_SEG_OFF_TO_SEGPTR(stackSel, (DWORD)frame16 - stackBase);
1067 ESP_reg(context) = (DWORD)stack32;
1068 EBP_reg(context) = ESP_reg(context) + argSize;
1070 TRACE(thunk, "after SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
1071 EBP_reg(context), ESP_reg(context), thdb->cur_stack);
1074 SYSLEVEL_ReleaseWin16Lock();
1077 /***********************************************************************
1078 * K32Thk1632Epilog (KERNEL32.491)
1080 REGS_ENTRYPOINT(K32Thk1632Epilog)
1082 LPBYTE code = (LPBYTE)EIP_reg(context) - 13;
1084 SYSLEVEL_RestoreWin16Lock();
1086 /* We undo the SYSTHUNK hack if necessary. See K32Thk1632Prolog. */
1088 if ( code[5] == 0xFF && code[6] == 0x55 && code[7] == 0xFC
1089 && code[13] == 0x66 && code[14] == 0xCB)
1091 THDB *thdb = THREAD_Current();
1092 STACK16FRAME *frame16 = (STACK16FRAME *)PTR_SEG_TO_LIN(thdb->cur_stack);
1093 char *stack16 = (char *)(frame16 + 1);
1094 DWORD argSize = frame16->ebp - (DWORD)stack16;
1095 char *stack32 = (char *)frame16->frame32 - argSize;
1097 DWORD nArgsPopped = ESP_reg(context) - (DWORD)stack32;
1099 TRACE(thunk, "before SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
1100 EBP_reg(context), ESP_reg(context), thdb->cur_stack);
1102 thdb->cur_stack = (DWORD)frame16->frame32;
1104 ESP_reg(context) = (DWORD)stack16 + nArgsPopped;
1105 EBP_reg(context) = frame16->ebp;
1107 TRACE(thunk, "after SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n",
1108 EBP_reg(context), ESP_reg(context), thdb->cur_stack);
1112 /***********************************************************************
1113 * UpdateResource32A (KERNEL32.707)
1115 BOOL WINAPI UpdateResourceA(
1116 HANDLE hUpdate,
1117 LPCSTR lpType,
1118 LPCSTR lpName,
1119 WORD wLanguage,
1120 LPVOID lpData,
1121 DWORD cbData) {
1123 FIXME(win32, ": stub\n");
1124 SetLastError(ERROR_CALL_NOT_IMPLEMENTED);
1125 return FALSE;
1128 /***********************************************************************
1129 * UpdateResource32W (KERNEL32.708)
1131 BOOL WINAPI UpdateResourceW(
1132 HANDLE hUpdate,
1133 LPCWSTR lpType,
1134 LPCWSTR lpName,
1135 WORD wLanguage,
1136 LPVOID lpData,
1137 DWORD cbData) {
1139 FIXME(win32, ": stub\n");
1140 SetLastError(ERROR_CALL_NOT_IMPLEMENTED);
1141 return FALSE;
1145 /***********************************************************************
1146 * WaitNamedPipe32A [KERNEL32.725]
1148 BOOL WINAPI WaitNamedPipeA (LPCSTR lpNamedPipeName, DWORD nTimeOut)
1149 { FIXME (win32,"%s 0x%08lx\n",lpNamedPipeName,nTimeOut);
1150 SetLastError(ERROR_PIPE_NOT_CONNECTED);
1151 return FALSE;
1153 /***********************************************************************
1154 * WaitNamedPipe32W [KERNEL32.726]
1156 BOOL WINAPI WaitNamedPipeW (LPCWSTR lpNamedPipeName, DWORD nTimeOut)
1157 { FIXME (win32,"%s 0x%08lx\n",debugstr_w(lpNamedPipeName),nTimeOut);
1158 SetLastError(ERROR_PIPE_NOT_CONNECTED);
1159 return FALSE;
1162 /*********************************************************************
1163 * PK16FNF [KERNEL32.91]
1165 * This routine fills in the supplied 13-byte (8.3 plus terminator)
1166 * string buffer with the 8.3 filename of a recently loaded 16-bit
1167 * module. It is unknown exactly what modules trigger this
1168 * mechanism or what purpose this serves. Win98 Explorer (and
1169 * probably also Win95 with IE 4 shell integration) calls this
1170 * several times during initialization.
1172 * FIXME: find out what this really does and make it work.
1174 void WINAPI PK16FNF(LPSTR strPtr)
1176 FIXME(win32, "(%p): stub\n", strPtr);
1178 /* fill in a fake filename that'll be easy to recognize */
1179 lstrcpyA(strPtr, "WINESTUB.FIX");