4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
40 #include "wine/unicode.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant
);
48 const char * const wine_vtypes
[VT_CLSID
+1] =
50 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
51 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
52 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
53 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
54 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
55 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
56 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
57 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
58 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID"
61 const char * const wine_vflags
[16] =
66 "|VT_VECTOR|VT_ARRAY",
68 "|VT_VECTOR|VT_ARRAY",
70 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
72 "|VT_VECTOR|VT_HARDTYPE",
73 "|VT_ARRAY|VT_HARDTYPE",
74 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
75 "|VT_BYREF|VT_HARDTYPE",
76 "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE",
77 "|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
78 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE",
81 /* Convert a variant from one type to another */
82 static inline HRESULT
VARIANT_Coerce(VARIANTARG
* pd
, LCID lcid
, USHORT wFlags
,
83 VARIANTARG
* ps
, VARTYPE vt
)
85 HRESULT res
= DISP_E_TYPEMISMATCH
;
86 VARTYPE vtFrom
= V_TYPE(ps
);
89 TRACE("(%p->(%s%s),0x%08x,0x%04x,%p->(%s%s),%s%s)\n", pd
, debugstr_VT(pd
),
90 debugstr_VF(pd
), lcid
, wFlags
, ps
, debugstr_VT(ps
), debugstr_VF(ps
),
91 debugstr_vt(vt
), debugstr_vf(vt
));
93 if (vt
== VT_BSTR
|| vtFrom
== VT_BSTR
)
95 /* All flags passed to low level function are only used for
96 * changing to or from strings. Map these here.
98 if (wFlags
& VARIANT_LOCALBOOL
)
99 dwFlags
|= VAR_LOCALBOOL
;
100 if (wFlags
& VARIANT_CALENDAR_HIJRI
)
101 dwFlags
|= VAR_CALENDAR_HIJRI
;
102 if (wFlags
& VARIANT_CALENDAR_THAI
)
103 dwFlags
|= VAR_CALENDAR_THAI
;
104 if (wFlags
& VARIANT_CALENDAR_GREGORIAN
)
105 dwFlags
|= VAR_CALENDAR_GREGORIAN
;
106 if (wFlags
& VARIANT_NOUSEROVERRIDE
)
107 dwFlags
|= LOCALE_NOUSEROVERRIDE
;
108 if (wFlags
& VARIANT_USE_NLS
)
109 dwFlags
|= LOCALE_USE_NLS
;
112 /* Map int/uint to i4/ui4 */
115 else if (vt
== VT_UINT
)
118 if (vtFrom
== VT_INT
)
120 else if (vtFrom
== VT_UINT
)
124 return VariantCopy(pd
, ps
);
126 if (wFlags
& VARIANT_NOVALUEPROP
&& vtFrom
== VT_DISPATCH
&& vt
!= VT_UNKNOWN
)
128 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
129 * accessing the default object property.
131 return DISP_E_TYPEMISMATCH
;
137 if (vtFrom
== VT_NULL
)
138 return DISP_E_TYPEMISMATCH
;
139 /* ... Fall through */
141 if (vtFrom
<= VT_UINT
&& vtFrom
!= (VARTYPE
)15 && vtFrom
!= VT_ERROR
)
143 res
= VariantClear( pd
);
144 if (vt
== VT_NULL
&& SUCCEEDED(res
))
152 case VT_EMPTY
: V_I1(pd
) = 0; return S_OK
;
153 case VT_I2
: return VarI1FromI2(V_I2(ps
), &V_I1(pd
));
154 case VT_I4
: return VarI1FromI4(V_I4(ps
), &V_I1(pd
));
155 case VT_UI1
: V_I1(pd
) = V_UI1(ps
); return S_OK
;
156 case VT_UI2
: return VarI1FromUI2(V_UI2(ps
), &V_I1(pd
));
157 case VT_UI4
: return VarI1FromUI4(V_UI4(ps
), &V_I1(pd
));
158 case VT_I8
: return VarI1FromI8(V_I8(ps
), &V_I1(pd
));
159 case VT_UI8
: return VarI1FromUI8(V_UI8(ps
), &V_I1(pd
));
160 case VT_R4
: return VarI1FromR4(V_R4(ps
), &V_I1(pd
));
161 case VT_R8
: return VarI1FromR8(V_R8(ps
), &V_I1(pd
));
162 case VT_DATE
: return VarI1FromDate(V_DATE(ps
), &V_I1(pd
));
163 case VT_BOOL
: return VarI1FromBool(V_BOOL(ps
), &V_I1(pd
));
164 case VT_CY
: return VarI1FromCy(V_CY(ps
), &V_I1(pd
));
165 case VT_DECIMAL
: return VarI1FromDec(&V_DECIMAL(ps
), &V_I1(pd
) );
166 case VT_DISPATCH
: return VarI1FromDisp(V_DISPATCH(ps
), lcid
, &V_I1(pd
) );
167 case VT_BSTR
: return VarI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I1(pd
) );
174 case VT_EMPTY
: V_I2(pd
) = 0; return S_OK
;
175 case VT_I1
: return VarI2FromI1(V_I1(ps
), &V_I2(pd
));
176 case VT_I4
: return VarI2FromI4(V_I4(ps
), &V_I2(pd
));
177 case VT_UI1
: return VarI2FromUI1(V_UI1(ps
), &V_I2(pd
));
178 case VT_UI2
: V_I2(pd
) = V_UI2(ps
); return S_OK
;
179 case VT_UI4
: return VarI2FromUI4(V_UI4(ps
), &V_I2(pd
));
180 case VT_I8
: return VarI2FromI8(V_I8(ps
), &V_I2(pd
));
181 case VT_UI8
: return VarI2FromUI8(V_UI8(ps
), &V_I2(pd
));
182 case VT_R4
: return VarI2FromR4(V_R4(ps
), &V_I2(pd
));
183 case VT_R8
: return VarI2FromR8(V_R8(ps
), &V_I2(pd
));
184 case VT_DATE
: return VarI2FromDate(V_DATE(ps
), &V_I2(pd
));
185 case VT_BOOL
: return VarI2FromBool(V_BOOL(ps
), &V_I2(pd
));
186 case VT_CY
: return VarI2FromCy(V_CY(ps
), &V_I2(pd
));
187 case VT_DECIMAL
: return VarI2FromDec(&V_DECIMAL(ps
), &V_I2(pd
));
188 case VT_DISPATCH
: return VarI2FromDisp(V_DISPATCH(ps
), lcid
, &V_I2(pd
));
189 case VT_BSTR
: return VarI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I2(pd
));
196 case VT_EMPTY
: V_I4(pd
) = 0; return S_OK
;
197 case VT_I1
: return VarI4FromI1(V_I1(ps
), &V_I4(pd
));
198 case VT_I2
: return VarI4FromI2(V_I2(ps
), &V_I4(pd
));
199 case VT_UI1
: return VarI4FromUI1(V_UI1(ps
), &V_I4(pd
));
200 case VT_UI2
: return VarI4FromUI2(V_UI2(ps
), &V_I4(pd
));
201 case VT_UI4
: V_I4(pd
) = V_UI4(ps
); return S_OK
;
202 case VT_I8
: return VarI4FromI8(V_I8(ps
), &V_I4(pd
));
203 case VT_UI8
: return VarI4FromUI8(V_UI8(ps
), &V_I4(pd
));
204 case VT_R4
: return VarI4FromR4(V_R4(ps
), &V_I4(pd
));
205 case VT_R8
: return VarI4FromR8(V_R8(ps
), &V_I4(pd
));
206 case VT_DATE
: return VarI4FromDate(V_DATE(ps
), &V_I4(pd
));
207 case VT_BOOL
: return VarI4FromBool(V_BOOL(ps
), &V_I4(pd
));
208 case VT_CY
: return VarI4FromCy(V_CY(ps
), &V_I4(pd
));
209 case VT_DECIMAL
: return VarI4FromDec(&V_DECIMAL(ps
), &V_I4(pd
));
210 case VT_DISPATCH
: return VarI4FromDisp(V_DISPATCH(ps
), lcid
, &V_I4(pd
));
211 case VT_BSTR
: return VarI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I4(pd
));
218 case VT_EMPTY
: V_UI1(pd
) = 0; return S_OK
;
219 case VT_I1
: V_UI1(pd
) = V_I1(ps
); return S_OK
;
220 case VT_I2
: return VarUI1FromI2(V_I2(ps
), &V_UI1(pd
));
221 case VT_I4
: return VarUI1FromI4(V_I4(ps
), &V_UI1(pd
));
222 case VT_UI2
: return VarUI1FromUI2(V_UI2(ps
), &V_UI1(pd
));
223 case VT_UI4
: return VarUI1FromUI4(V_UI4(ps
), &V_UI1(pd
));
224 case VT_I8
: return VarUI1FromI8(V_I8(ps
), &V_UI1(pd
));
225 case VT_UI8
: return VarUI1FromUI8(V_UI8(ps
), &V_UI1(pd
));
226 case VT_R4
: return VarUI1FromR4(V_R4(ps
), &V_UI1(pd
));
227 case VT_R8
: return VarUI1FromR8(V_R8(ps
), &V_UI1(pd
));
228 case VT_DATE
: return VarUI1FromDate(V_DATE(ps
), &V_UI1(pd
));
229 case VT_BOOL
: return VarUI1FromBool(V_BOOL(ps
), &V_UI1(pd
));
230 case VT_CY
: return VarUI1FromCy(V_CY(ps
), &V_UI1(pd
));
231 case VT_DECIMAL
: return VarUI1FromDec(&V_DECIMAL(ps
), &V_UI1(pd
));
232 case VT_DISPATCH
: return VarUI1FromDisp(V_DISPATCH(ps
), lcid
, &V_UI1(pd
));
233 case VT_BSTR
: return VarUI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI1(pd
));
240 case VT_EMPTY
: V_UI2(pd
) = 0; return S_OK
;
241 case VT_I1
: return VarUI2FromI1(V_I1(ps
), &V_UI2(pd
));
242 case VT_I2
: V_UI2(pd
) = V_I2(ps
); return S_OK
;
243 case VT_I4
: return VarUI2FromI4(V_I4(ps
), &V_UI2(pd
));
244 case VT_UI1
: return VarUI2FromUI1(V_UI1(ps
), &V_UI2(pd
));
245 case VT_UI4
: return VarUI2FromUI4(V_UI4(ps
), &V_UI2(pd
));
246 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
247 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
248 case VT_R4
: return VarUI2FromR4(V_R4(ps
), &V_UI2(pd
));
249 case VT_R8
: return VarUI2FromR8(V_R8(ps
), &V_UI2(pd
));
250 case VT_DATE
: return VarUI2FromDate(V_DATE(ps
), &V_UI2(pd
));
251 case VT_BOOL
: return VarUI2FromBool(V_BOOL(ps
), &V_UI2(pd
));
252 case VT_CY
: return VarUI2FromCy(V_CY(ps
), &V_UI2(pd
));
253 case VT_DECIMAL
: return VarUI2FromDec(&V_DECIMAL(ps
), &V_UI2(pd
));
254 case VT_DISPATCH
: return VarUI2FromDisp(V_DISPATCH(ps
), lcid
, &V_UI2(pd
));
255 case VT_BSTR
: return VarUI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI2(pd
));
262 case VT_EMPTY
: V_UI4(pd
) = 0; return S_OK
;
263 case VT_I1
: return VarUI4FromI1(V_I1(ps
), &V_UI4(pd
));
264 case VT_I2
: return VarUI4FromI2(V_I2(ps
), &V_UI4(pd
));
265 case VT_I4
: V_UI4(pd
) = V_I4(ps
); return S_OK
;
266 case VT_UI1
: return VarUI4FromUI1(V_UI1(ps
), &V_UI4(pd
));
267 case VT_UI2
: return VarUI4FromUI2(V_UI2(ps
), &V_UI4(pd
));
268 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
269 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
270 case VT_R4
: return VarUI4FromR4(V_R4(ps
), &V_UI4(pd
));
271 case VT_R8
: return VarUI4FromR8(V_R8(ps
), &V_UI4(pd
));
272 case VT_DATE
: return VarUI4FromDate(V_DATE(ps
), &V_UI4(pd
));
273 case VT_BOOL
: return VarUI4FromBool(V_BOOL(ps
), &V_UI4(pd
));
274 case VT_CY
: return VarUI4FromCy(V_CY(ps
), &V_UI4(pd
));
275 case VT_DECIMAL
: return VarUI4FromDec(&V_DECIMAL(ps
), &V_UI4(pd
));
276 case VT_DISPATCH
: return VarUI4FromDisp(V_DISPATCH(ps
), lcid
, &V_UI4(pd
));
277 case VT_BSTR
: return VarUI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI4(pd
));
284 case VT_EMPTY
: V_UI8(pd
) = 0; return S_OK
;
285 case VT_I4
: if (V_I4(ps
) < 0) return DISP_E_OVERFLOW
; V_UI8(pd
) = V_I4(ps
); return S_OK
;
286 case VT_I1
: return VarUI8FromI1(V_I1(ps
), &V_UI8(pd
));
287 case VT_I2
: return VarUI8FromI2(V_I2(ps
), &V_UI8(pd
));
288 case VT_UI1
: return VarUI8FromUI1(V_UI1(ps
), &V_UI8(pd
));
289 case VT_UI2
: return VarUI8FromUI2(V_UI2(ps
), &V_UI8(pd
));
290 case VT_UI4
: return VarUI8FromUI4(V_UI4(ps
), &V_UI8(pd
));
291 case VT_I8
: V_UI8(pd
) = V_I8(ps
); return S_OK
;
292 case VT_R4
: return VarUI8FromR4(V_R4(ps
), &V_UI8(pd
));
293 case VT_R8
: return VarUI8FromR8(V_R8(ps
), &V_UI8(pd
));
294 case VT_DATE
: return VarUI8FromDate(V_DATE(ps
), &V_UI8(pd
));
295 case VT_BOOL
: return VarUI8FromBool(V_BOOL(ps
), &V_UI8(pd
));
296 case VT_CY
: return VarUI8FromCy(V_CY(ps
), &V_UI8(pd
));
297 case VT_DECIMAL
: return VarUI8FromDec(&V_DECIMAL(ps
), &V_UI8(pd
));
298 case VT_DISPATCH
: return VarUI8FromDisp(V_DISPATCH(ps
), lcid
, &V_UI8(pd
));
299 case VT_BSTR
: return VarUI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI8(pd
));
306 case VT_EMPTY
: V_I8(pd
) = 0; return S_OK
;
307 case VT_I4
: V_I8(pd
) = V_I4(ps
); return S_OK
;
308 case VT_I1
: return VarI8FromI1(V_I1(ps
), &V_I8(pd
));
309 case VT_I2
: return VarI8FromI2(V_I2(ps
), &V_I8(pd
));
310 case VT_UI1
: return VarI8FromUI1(V_UI1(ps
), &V_I8(pd
));
311 case VT_UI2
: return VarI8FromUI2(V_UI2(ps
), &V_I8(pd
));
312 case VT_UI4
: return VarI8FromUI4(V_UI4(ps
), &V_I8(pd
));
313 case VT_UI8
: V_I8(pd
) = V_UI8(ps
); return S_OK
;
314 case VT_R4
: return VarI8FromR4(V_R4(ps
), &V_I8(pd
));
315 case VT_R8
: return VarI8FromR8(V_R8(ps
), &V_I8(pd
));
316 case VT_DATE
: return VarI8FromDate(V_DATE(ps
), &V_I8(pd
));
317 case VT_BOOL
: return VarI8FromBool(V_BOOL(ps
), &V_I8(pd
));
318 case VT_CY
: return VarI8FromCy(V_CY(ps
), &V_I8(pd
));
319 case VT_DECIMAL
: return VarI8FromDec(&V_DECIMAL(ps
), &V_I8(pd
));
320 case VT_DISPATCH
: return VarI8FromDisp(V_DISPATCH(ps
), lcid
, &V_I8(pd
));
321 case VT_BSTR
: return VarI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I8(pd
));
328 case VT_EMPTY
: V_R4(pd
) = 0.0f
; return S_OK
;
329 case VT_I1
: return VarR4FromI1(V_I1(ps
), &V_R4(pd
));
330 case VT_I2
: return VarR4FromI2(V_I2(ps
), &V_R4(pd
));
331 case VT_I4
: return VarR4FromI4(V_I4(ps
), &V_R4(pd
));
332 case VT_UI1
: return VarR4FromUI1(V_UI1(ps
), &V_R4(pd
));
333 case VT_UI2
: return VarR4FromUI2(V_UI2(ps
), &V_R4(pd
));
334 case VT_UI4
: return VarR4FromUI4(V_UI4(ps
), &V_R4(pd
));
335 case VT_I8
: return VarR4FromI8(V_I8(ps
), &V_R4(pd
));
336 case VT_UI8
: return VarR4FromUI8(V_UI8(ps
), &V_R4(pd
));
337 case VT_R8
: return VarR4FromR8(V_R8(ps
), &V_R4(pd
));
338 case VT_DATE
: return VarR4FromDate(V_DATE(ps
), &V_R4(pd
));
339 case VT_BOOL
: return VarR4FromBool(V_BOOL(ps
), &V_R4(pd
));
340 case VT_CY
: return VarR4FromCy(V_CY(ps
), &V_R4(pd
));
341 case VT_DECIMAL
: return VarR4FromDec(&V_DECIMAL(ps
), &V_R4(pd
));
342 case VT_DISPATCH
: return VarR4FromDisp(V_DISPATCH(ps
), lcid
, &V_R4(pd
));
343 case VT_BSTR
: return VarR4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R4(pd
));
350 case VT_EMPTY
: V_R8(pd
) = 0.0; return S_OK
;
351 case VT_I1
: return VarR8FromI1(V_I1(ps
), &V_R8(pd
));
352 case VT_I2
: return VarR8FromI2(V_I2(ps
), &V_R8(pd
));
353 case VT_I4
: return VarR8FromI4(V_I4(ps
), &V_R8(pd
));
354 case VT_UI1
: return VarR8FromUI1(V_UI1(ps
), &V_R8(pd
));
355 case VT_UI2
: return VarR8FromUI2(V_UI2(ps
), &V_R8(pd
));
356 case VT_UI4
: return VarR8FromUI4(V_UI4(ps
), &V_R8(pd
));
357 case VT_I8
: return VarR8FromI8(V_I8(ps
), &V_R8(pd
));
358 case VT_UI8
: return VarR8FromUI8(V_UI8(ps
), &V_R8(pd
));
359 case VT_R4
: return VarR8FromR4(V_R4(ps
), &V_R8(pd
));
360 case VT_DATE
: return VarR8FromDate(V_DATE(ps
), &V_R8(pd
));
361 case VT_BOOL
: return VarR8FromBool(V_BOOL(ps
), &V_R8(pd
));
362 case VT_CY
: return VarR8FromCy(V_CY(ps
), &V_R8(pd
));
363 case VT_DECIMAL
: return VarR8FromDec(&V_DECIMAL(ps
), &V_R8(pd
));
364 case VT_DISPATCH
: return VarR8FromDisp(V_DISPATCH(ps
), lcid
, &V_R8(pd
));
365 case VT_BSTR
: return VarR8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R8(pd
));
372 case VT_EMPTY
: V_DATE(pd
) = 0.0; return S_OK
;
373 case VT_I1
: return VarDateFromI1(V_I1(ps
), &V_DATE(pd
));
374 case VT_I2
: return VarDateFromI2(V_I2(ps
), &V_DATE(pd
));
375 case VT_I4
: return VarDateFromI4(V_I4(ps
), &V_DATE(pd
));
376 case VT_UI1
: return VarDateFromUI1(V_UI1(ps
), &V_DATE(pd
));
377 case VT_UI2
: return VarDateFromUI2(V_UI2(ps
), &V_DATE(pd
));
378 case VT_UI4
: return VarDateFromUI4(V_UI4(ps
), &V_DATE(pd
));
379 case VT_I8
: return VarDateFromI8(V_I8(ps
), &V_DATE(pd
));
380 case VT_UI8
: return VarDateFromUI8(V_UI8(ps
), &V_DATE(pd
));
381 case VT_R4
: return VarDateFromR4(V_R4(ps
), &V_DATE(pd
));
382 case VT_R8
: return VarDateFromR8(V_R8(ps
), &V_DATE(pd
));
383 case VT_BOOL
: return VarDateFromBool(V_BOOL(ps
), &V_DATE(pd
));
384 case VT_CY
: return VarDateFromCy(V_CY(ps
), &V_DATE(pd
));
385 case VT_DECIMAL
: return VarDateFromDec(&V_DECIMAL(ps
), &V_DATE(pd
));
386 case VT_DISPATCH
: return VarDateFromDisp(V_DISPATCH(ps
), lcid
, &V_DATE(pd
));
387 case VT_BSTR
: return VarDateFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DATE(pd
));
394 case VT_EMPTY
: V_BOOL(pd
) = 0; return S_OK
;
395 case VT_I1
: return VarBoolFromI1(V_I1(ps
), &V_BOOL(pd
));
396 case VT_I2
: return VarBoolFromI2(V_I2(ps
), &V_BOOL(pd
));
397 case VT_I4
: return VarBoolFromI4(V_I4(ps
), &V_BOOL(pd
));
398 case VT_UI1
: return VarBoolFromUI1(V_UI1(ps
), &V_BOOL(pd
));
399 case VT_UI2
: return VarBoolFromUI2(V_UI2(ps
), &V_BOOL(pd
));
400 case VT_UI4
: return VarBoolFromUI4(V_UI4(ps
), &V_BOOL(pd
));
401 case VT_I8
: return VarBoolFromI8(V_I8(ps
), &V_BOOL(pd
));
402 case VT_UI8
: return VarBoolFromUI8(V_UI8(ps
), &V_BOOL(pd
));
403 case VT_R4
: return VarBoolFromR4(V_R4(ps
), &V_BOOL(pd
));
404 case VT_R8
: return VarBoolFromR8(V_R8(ps
), &V_BOOL(pd
));
405 case VT_DATE
: return VarBoolFromDate(V_DATE(ps
), &V_BOOL(pd
));
406 case VT_CY
: return VarBoolFromCy(V_CY(ps
), &V_BOOL(pd
));
407 case VT_DECIMAL
: return VarBoolFromDec(&V_DECIMAL(ps
), &V_BOOL(pd
));
408 case VT_DISPATCH
: return VarBoolFromDisp(V_DISPATCH(ps
), lcid
, &V_BOOL(pd
));
409 case VT_BSTR
: return VarBoolFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_BOOL(pd
));
417 V_BSTR(pd
) = SysAllocStringLen(NULL
, 0);
418 return V_BSTR(pd
) ? S_OK
: E_OUTOFMEMORY
;
420 if (wFlags
& (VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
))
421 return VarBstrFromBool(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
422 return VarBstrFromI2(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
423 case VT_I1
: return VarBstrFromI1(V_I1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
424 case VT_I2
: return VarBstrFromI2(V_I2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
425 case VT_I4
: return VarBstrFromI4(V_I4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
426 case VT_UI1
: return VarBstrFromUI1(V_UI1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
427 case VT_UI2
: return VarBstrFromUI2(V_UI2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
428 case VT_UI4
: return VarBstrFromUI4(V_UI4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
429 case VT_I8
: return VarBstrFromI8(V_I8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
430 case VT_UI8
: return VarBstrFromUI8(V_UI8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
431 case VT_R4
: return VarBstrFromR4(V_R4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
432 case VT_R8
: return VarBstrFromR8(V_R8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
433 case VT_DATE
: return VarBstrFromDate(V_DATE(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
434 case VT_CY
: return VarBstrFromCy(V_CY(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
435 case VT_DECIMAL
: return VarBstrFromDec(&V_DECIMAL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
436 case VT_DISPATCH
: return VarBstrFromDisp(V_DISPATCH(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
443 case VT_EMPTY
: V_CY(pd
).int64
= 0; return S_OK
;
444 case VT_I1
: return VarCyFromI1(V_I1(ps
), &V_CY(pd
));
445 case VT_I2
: return VarCyFromI2(V_I2(ps
), &V_CY(pd
));
446 case VT_I4
: return VarCyFromI4(V_I4(ps
), &V_CY(pd
));
447 case VT_UI1
: return VarCyFromUI1(V_UI1(ps
), &V_CY(pd
));
448 case VT_UI2
: return VarCyFromUI2(V_UI2(ps
), &V_CY(pd
));
449 case VT_UI4
: return VarCyFromUI4(V_UI4(ps
), &V_CY(pd
));
450 case VT_I8
: return VarCyFromI8(V_I8(ps
), &V_CY(pd
));
451 case VT_UI8
: return VarCyFromUI8(V_UI8(ps
), &V_CY(pd
));
452 case VT_R4
: return VarCyFromR4(V_R4(ps
), &V_CY(pd
));
453 case VT_R8
: return VarCyFromR8(V_R8(ps
), &V_CY(pd
));
454 case VT_DATE
: return VarCyFromDate(V_DATE(ps
), &V_CY(pd
));
455 case VT_BOOL
: return VarCyFromBool(V_BOOL(ps
), &V_CY(pd
));
456 case VT_DECIMAL
: return VarCyFromDec(&V_DECIMAL(ps
), &V_CY(pd
));
457 case VT_DISPATCH
: return VarCyFromDisp(V_DISPATCH(ps
), lcid
, &V_CY(pd
));
458 case VT_BSTR
: return VarCyFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_CY(pd
));
467 DEC_SIGNSCALE(&V_DECIMAL(pd
)) = SIGNSCALE(DECIMAL_POS
,0);
468 DEC_HI32(&V_DECIMAL(pd
)) = 0;
469 DEC_MID32(&V_DECIMAL(pd
)) = 0;
470 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
471 * VT_NULL and VT_EMPTY always give a 0 value.
473 DEC_LO32(&V_DECIMAL(pd
)) = vtFrom
== VT_BOOL
&& V_BOOL(ps
) ? 1 : 0;
475 case VT_I1
: return VarDecFromI1(V_I1(ps
), &V_DECIMAL(pd
));
476 case VT_I2
: return VarDecFromI2(V_I2(ps
), &V_DECIMAL(pd
));
477 case VT_I4
: return VarDecFromI4(V_I4(ps
), &V_DECIMAL(pd
));
478 case VT_UI1
: return VarDecFromUI1(V_UI1(ps
), &V_DECIMAL(pd
));
479 case VT_UI2
: return VarDecFromUI2(V_UI2(ps
), &V_DECIMAL(pd
));
480 case VT_UI4
: return VarDecFromUI4(V_UI4(ps
), &V_DECIMAL(pd
));
481 case VT_I8
: return VarDecFromI8(V_I8(ps
), &V_DECIMAL(pd
));
482 case VT_UI8
: return VarDecFromUI8(V_UI8(ps
), &V_DECIMAL(pd
));
483 case VT_R4
: return VarDecFromR4(V_R4(ps
), &V_DECIMAL(pd
));
484 case VT_R8
: return VarDecFromR8(V_R8(ps
), &V_DECIMAL(pd
));
485 case VT_DATE
: return VarDecFromDate(V_DATE(ps
), &V_DECIMAL(pd
));
486 case VT_CY
: return VarDecFromCy(V_CY(ps
), &V_DECIMAL(pd
));
487 case VT_DISPATCH
: return VarDecFromDisp(V_DISPATCH(ps
), lcid
, &V_DECIMAL(pd
));
488 case VT_BSTR
: return VarDecFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DECIMAL(pd
));
496 if (V_DISPATCH(ps
) == NULL
)
497 V_UNKNOWN(pd
) = NULL
;
499 res
= IDispatch_QueryInterface(V_DISPATCH(ps
), &IID_IUnknown
, (LPVOID
*)&V_UNKNOWN(pd
));
508 if (V_UNKNOWN(ps
) == NULL
)
509 V_DISPATCH(pd
) = NULL
;
511 res
= IUnknown_QueryInterface(V_UNKNOWN(ps
), &IID_IDispatch
, (LPVOID
*)&V_DISPATCH(pd
));
522 /* Coerce to/from an array */
523 static inline HRESULT
VARIANT_CoerceArray(VARIANTARG
* pd
, VARIANTARG
* ps
, VARTYPE vt
)
525 if (vt
== VT_BSTR
&& V_VT(ps
) == (VT_ARRAY
|VT_UI1
))
526 return BstrFromVector(V_ARRAY(ps
), &V_BSTR(pd
));
528 if (V_VT(ps
) == VT_BSTR
&& vt
== (VT_ARRAY
|VT_UI1
))
529 return VectorFromBstr(V_BSTR(ps
), &V_ARRAY(ps
));
532 return SafeArrayCopy(V_ARRAY(ps
), &V_ARRAY(pd
));
534 return DISP_E_TYPEMISMATCH
;
537 /******************************************************************************
538 * Check if a variants type is valid.
540 static inline HRESULT
VARIANT_ValidateType(VARTYPE vt
)
542 VARTYPE vtExtra
= vt
& VT_EXTRA_TYPE
;
546 if (!(vtExtra
& (VT_VECTOR
|VT_RESERVED
)))
548 if (vt
< VT_VOID
|| vt
== VT_RECORD
|| vt
== VT_CLSID
)
550 if ((vtExtra
& (VT_BYREF
|VT_ARRAY
)) && vt
<= VT_NULL
)
551 return DISP_E_BADVARTYPE
;
552 if (vt
!= (VARTYPE
)15)
556 return DISP_E_BADVARTYPE
;
559 /******************************************************************************
560 * VariantInit [OLEAUT32.8]
562 * Initialise a variant.
565 * pVarg [O] Variant to initialise
571 * This function simply sets the type of the variant to VT_EMPTY. It does not
572 * free any existing value, use VariantClear() for that.
574 void WINAPI
VariantInit(VARIANTARG
* pVarg
)
576 TRACE("(%p)\n", pVarg
);
578 V_VT(pVarg
) = VT_EMPTY
; /* Native doesn't set any other fields */
581 /******************************************************************************
582 * VariantClear [OLEAUT32.9]
587 * pVarg [I/O] Variant to clear
590 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
591 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
593 HRESULT WINAPI
VariantClear(VARIANTARG
* pVarg
)
597 TRACE("(%p->(%s%s))\n", pVarg
, debugstr_VT(pVarg
), debugstr_VF(pVarg
));
599 hres
= VARIANT_ValidateType(V_VT(pVarg
));
603 if (!V_ISBYREF(pVarg
))
605 if (V_ISARRAY(pVarg
) || V_VT(pVarg
) == VT_SAFEARRAY
)
608 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
610 else if (V_VT(pVarg
) == VT_BSTR
)
612 SysFreeString(V_BSTR(pVarg
));
614 else if (V_VT(pVarg
) == VT_RECORD
)
616 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
619 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
620 IRecordInfo_Release(pBr
->pRecInfo
);
623 else if (V_VT(pVarg
) == VT_DISPATCH
||
624 V_VT(pVarg
) == VT_UNKNOWN
)
626 if (V_UNKNOWN(pVarg
))
627 IUnknown_Release(V_UNKNOWN(pVarg
));
630 V_VT(pVarg
) = VT_EMPTY
;
635 /******************************************************************************
636 * Copy an IRecordInfo object contained in a variant.
638 static HRESULT
VARIANT_CopyIRecordInfo(struct __tagBRECORD
* pBr
)
646 hres
= IRecordInfo_GetSize(pBr
->pRecInfo
, &ulSize
);
649 PVOID pvRecord
= HeapAlloc(GetProcessHeap(), 0, ulSize
);
651 hres
= E_OUTOFMEMORY
;
654 memcpy(pvRecord
, pBr
->pvRecord
, ulSize
);
655 pBr
->pvRecord
= pvRecord
;
657 hres
= IRecordInfo_RecordCopy(pBr
->pRecInfo
, pvRecord
, pvRecord
);
659 IRecordInfo_AddRef(pBr
->pRecInfo
);
663 else if (pBr
->pvRecord
)
668 /******************************************************************************
669 * VariantCopy [OLEAUT32.10]
674 * pvargDest [O] Destination for copy
675 * pvargSrc [I] Source variant to copy
678 * Success: S_OK. pvargDest contains a copy of pvargSrc.
679 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
680 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
681 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
682 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
685 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
686 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
687 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
688 * fails, so does this function.
689 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
690 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
691 * is copied rather than just any pointers to it.
692 * - For by-value object types the object pointer is copied and the objects
693 * reference count increased using IUnknown_AddRef().
694 * - For all by-reference types, only the referencing pointer is copied.
696 HRESULT WINAPI
VariantCopy(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
)
700 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest
, debugstr_VT(pvargDest
),
701 debugstr_VF(pvargDest
), pvargSrc
, debugstr_VT(pvargSrc
),
702 debugstr_VF(pvargSrc
));
704 if (V_TYPE(pvargSrc
) == VT_CLSID
|| /* VT_CLSID is a special case */
705 FAILED(VARIANT_ValidateType(V_VT(pvargSrc
))))
706 return DISP_E_BADVARTYPE
;
708 if (pvargSrc
!= pvargDest
&&
709 SUCCEEDED(hres
= VariantClear(pvargDest
)))
711 *pvargDest
= *pvargSrc
; /* Shallow copy the value */
713 if (!V_ISBYREF(pvargSrc
))
715 if (V_ISARRAY(pvargSrc
))
717 if (V_ARRAY(pvargSrc
))
718 hres
= SafeArrayCopy(V_ARRAY(pvargSrc
), &V_ARRAY(pvargDest
));
720 else if (V_VT(pvargSrc
) == VT_BSTR
)
722 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc
), SysStringByteLen(V_BSTR(pvargSrc
)));
723 if (!V_BSTR(pvargDest
))
725 TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc
)));
726 hres
= E_OUTOFMEMORY
;
729 else if (V_VT(pvargSrc
) == VT_RECORD
)
731 hres
= VARIANT_CopyIRecordInfo(&V_UNION(pvargDest
,brecVal
));
733 else if (V_VT(pvargSrc
) == VT_DISPATCH
||
734 V_VT(pvargSrc
) == VT_UNKNOWN
)
736 if (V_UNKNOWN(pvargSrc
))
737 IUnknown_AddRef(V_UNKNOWN(pvargSrc
));
744 /* Return the byte size of a variants data */
745 static inline size_t VARIANT_DataSize(const VARIANT
* pv
)
750 case VT_UI1
: return sizeof(BYTE
);
752 case VT_UI2
: return sizeof(SHORT
);
756 case VT_UI4
: return sizeof(LONG
);
758 case VT_UI8
: return sizeof(LONGLONG
);
759 case VT_R4
: return sizeof(float);
760 case VT_R8
: return sizeof(double);
761 case VT_DATE
: return sizeof(DATE
);
762 case VT_BOOL
: return sizeof(VARIANT_BOOL
);
765 case VT_BSTR
: return sizeof(void*);
766 case VT_CY
: return sizeof(CY
);
767 case VT_ERROR
: return sizeof(SCODE
);
769 TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv
), debugstr_VF(pv
));
773 /******************************************************************************
774 * VariantCopyInd [OLEAUT32.11]
776 * Copy a variant, dereferencing it if it is by-reference.
779 * pvargDest [O] Destination for copy
780 * pvargSrc [I] Source variant to copy
783 * Success: S_OK. pvargDest contains a copy of pvargSrc.
784 * Failure: An HRESULT error code indicating the error.
787 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
788 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
789 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
790 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
791 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
794 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
795 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
797 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
798 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
799 * to it. If clearing pvargDest fails, so does this function.
801 HRESULT WINAPI
VariantCopyInd(VARIANT
* pvargDest
, VARIANTARG
* pvargSrc
)
803 VARIANTARG vTmp
, *pSrc
= pvargSrc
;
807 TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest
, debugstr_VT(pvargDest
),
808 debugstr_VF(pvargDest
), pvargSrc
, debugstr_VT(pvargSrc
),
809 debugstr_VF(pvargSrc
));
811 if (!V_ISBYREF(pvargSrc
))
812 return VariantCopy(pvargDest
, pvargSrc
);
814 /* Argument checking is more lax than VariantCopy()... */
815 vt
= V_TYPE(pvargSrc
);
816 if (V_ISARRAY(pvargSrc
) ||
817 (vt
> VT_NULL
&& vt
!= (VARTYPE
)15 && vt
< VT_VOID
&&
818 !(V_VT(pvargSrc
) & (VT_VECTOR
|VT_RESERVED
))))
823 return E_INVALIDARG
; /* ...And the return value for invalid types differs too */
825 if (pvargSrc
== pvargDest
)
827 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
828 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
832 V_VT(pvargDest
) = VT_EMPTY
;
836 /* Copy into another variant. Free the variant in pvargDest */
837 if (FAILED(hres
= VariantClear(pvargDest
)))
839 TRACE("VariantClear() of destination failed\n");
846 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
847 hres
= SafeArrayCopy(*V_ARRAYREF(pSrc
), &V_ARRAY(pvargDest
));
849 else if (V_VT(pSrc
) == (VT_BSTR
|VT_BYREF
))
851 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
852 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc
), SysStringByteLen(*V_BSTRREF(pSrc
)));
854 else if (V_VT(pSrc
) == (VT_RECORD
|VT_BYREF
))
856 V_UNION(pvargDest
,brecVal
) = V_UNION(pvargSrc
,brecVal
);
857 hres
= VARIANT_CopyIRecordInfo(&V_UNION(pvargDest
,brecVal
));
859 else if (V_VT(pSrc
) == (VT_DISPATCH
|VT_BYREF
) ||
860 V_VT(pSrc
) == (VT_UNKNOWN
|VT_BYREF
))
862 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
863 V_UNKNOWN(pvargDest
) = *V_UNKNOWNREF(pSrc
);
864 if (*V_UNKNOWNREF(pSrc
))
865 IUnknown_AddRef(*V_UNKNOWNREF(pSrc
));
867 else if (V_VT(pSrc
) == (VT_VARIANT
|VT_BYREF
))
869 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
870 if (V_VT(V_VARIANTREF(pSrc
)) == (VT_VARIANT
|VT_BYREF
))
871 hres
= E_INVALIDARG
; /* Don't dereference more than one level */
873 hres
= VariantCopyInd(pvargDest
, V_VARIANTREF(pSrc
));
875 /* Use the dereferenced variants type value, not VT_VARIANT */
876 goto VariantCopyInd_Return
;
878 else if (V_VT(pSrc
) == (VT_DECIMAL
|VT_BYREF
))
880 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest
)), &DEC_SCALE(V_DECIMALREF(pSrc
)),
881 sizeof(DECIMAL
) - sizeof(USHORT
));
885 /* Copy the pointed to data into this variant */
886 memcpy(&V_BYREF(pvargDest
), V_BYREF(pSrc
), VARIANT_DataSize(pSrc
));
889 V_VT(pvargDest
) = V_VT(pSrc
) & ~VT_BYREF
;
891 VariantCopyInd_Return
:
893 if (pSrc
!= pvargSrc
)
896 TRACE("returning 0x%08x, %p->(%s%s)\n", hres
, pvargDest
,
897 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
));
901 /******************************************************************************
902 * VariantChangeType [OLEAUT32.12]
904 * Change the type of a variant.
907 * pvargDest [O] Destination for the converted variant
908 * pvargSrc [O] Source variant to change the type of
909 * wFlags [I] VARIANT_ flags from "oleauto.h"
910 * vt [I] Variant type to change pvargSrc into
913 * Success: S_OK. pvargDest contains the converted value.
914 * Failure: An HRESULT error code describing the failure.
917 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
918 * See VariantChangeTypeEx.
920 HRESULT WINAPI
VariantChangeType(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
921 USHORT wFlags
, VARTYPE vt
)
923 return VariantChangeTypeEx( pvargDest
, pvargSrc
, LOCALE_USER_DEFAULT
, wFlags
, vt
);
926 /******************************************************************************
927 * VariantChangeTypeEx [OLEAUT32.147]
929 * Change the type of a variant.
932 * pvargDest [O] Destination for the converted variant
933 * pvargSrc [O] Source variant to change the type of
934 * lcid [I] LCID for the conversion
935 * wFlags [I] VARIANT_ flags from "oleauto.h"
936 * vt [I] Variant type to change pvargSrc into
939 * Success: S_OK. pvargDest contains the converted value.
940 * Failure: An HRESULT error code describing the failure.
943 * pvargDest and pvargSrc can point to the same variant to perform an in-place
944 * conversion. If the conversion is successful, pvargSrc will be freed.
946 HRESULT WINAPI
VariantChangeTypeEx(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
947 LCID lcid
, USHORT wFlags
, VARTYPE vt
)
951 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%04x,%s%s)\n", pvargDest
,
952 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
), pvargSrc
,
953 debugstr_VT(pvargSrc
), debugstr_VF(pvargSrc
), lcid
, wFlags
,
954 debugstr_vt(vt
), debugstr_vf(vt
));
957 res
= DISP_E_BADVARTYPE
;
960 res
= VARIANT_ValidateType(V_VT(pvargSrc
));
964 res
= VARIANT_ValidateType(vt
);
968 VARIANTARG vTmp
, vSrcDeref
;
970 if(V_ISBYREF(pvargSrc
) && !V_BYREF(pvargSrc
))
971 res
= DISP_E_TYPEMISMATCH
;
974 V_VT(&vTmp
) = VT_EMPTY
;
975 V_VT(&vSrcDeref
) = VT_EMPTY
;
977 VariantClear(&vSrcDeref
);
982 res
= VariantCopyInd(&vSrcDeref
, pvargSrc
);
985 if (V_ISARRAY(&vSrcDeref
) || (vt
& VT_ARRAY
))
986 res
= VARIANT_CoerceArray(&vTmp
, &vSrcDeref
, vt
);
988 res
= VARIANT_Coerce(&vTmp
, lcid
, wFlags
, &vSrcDeref
, vt
);
990 if (SUCCEEDED(res
)) {
992 VariantCopy(pvargDest
, &vTmp
);
995 VariantClear(&vSrcDeref
);
1002 TRACE("returning 0x%08x, %p->(%s%s)\n", res
, pvargDest
,
1003 debugstr_VT(pvargDest
), debugstr_VF(pvargDest
));
1007 /* Date Conversions */
1009 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1011 /* Convert a VT_DATE value to a Julian Date */
1012 static inline int VARIANT_JulianFromDate(int dateIn
)
1014 int julianDays
= dateIn
;
1016 julianDays
-= DATE_MIN
; /* Convert to + days from 1 Jan 100 AD */
1017 julianDays
+= 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1021 /* Convert a Julian Date to a VT_DATE value */
1022 static inline int VARIANT_DateFromJulian(int dateIn
)
1024 int julianDays
= dateIn
;
1026 julianDays
-= 1757585; /* Convert to + days from 1 Jan 100 AD */
1027 julianDays
+= DATE_MIN
; /* Convert to +/- days from 1 Jan 1899 AD */
1031 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1032 static inline void VARIANT_DMYFromJulian(int jd
, USHORT
*year
, USHORT
*month
, USHORT
*day
)
1038 l
-= (n
* 146097 + 3) / 4;
1039 i
= (4000 * (l
+ 1)) / 1461001;
1040 l
+= 31 - (i
* 1461) / 4;
1041 j
= (l
* 80) / 2447;
1042 *day
= l
- (j
* 2447) / 80;
1044 *month
= (j
+ 2) - (12 * l
);
1045 *year
= 100 * (n
- 49) + i
+ l
;
1048 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1049 static inline double VARIANT_JulianFromDMY(USHORT year
, USHORT month
, USHORT day
)
1051 int m12
= (month
- 14) / 12;
1053 return ((1461 * (year
+ 4800 + m12
)) / 4 + (367 * (month
- 2 - 12 * m12
)) / 12 -
1054 (3 * ((year
+ 4900 + m12
) / 100)) / 4 + day
- 32075);
1057 /* Macros for accessing DOS format date/time fields */
1058 #define DOS_YEAR(x) (1980 + (x >> 9))
1059 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1060 #define DOS_DAY(x) (x & 0x1f)
1061 #define DOS_HOUR(x) (x >> 11)
1062 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1063 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1064 /* Create a DOS format date/time */
1065 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1066 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1068 /* Roll a date forwards or backwards to correct it */
1069 static HRESULT
VARIANT_RollUdate(UDATE
*lpUd
)
1071 static const BYTE days
[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1073 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd
->st
.wDay
, lpUd
->st
.wMonth
,
1074 lpUd
->st
.wYear
, lpUd
->st
.wHour
, lpUd
->st
.wMinute
, lpUd
->st
.wSecond
);
1076 /* Years < 100 are treated as 1900 + year */
1077 if (lpUd
->st
.wYear
< 100)
1078 lpUd
->st
.wYear
+= 1900;
1080 if (!lpUd
->st
.wMonth
)
1082 /* Roll back to December of the previous year */
1083 lpUd
->st
.wMonth
= 12;
1086 else while (lpUd
->st
.wMonth
> 12)
1088 /* Roll forward the correct number of months */
1090 lpUd
->st
.wMonth
-= 12;
1093 if (lpUd
->st
.wYear
> 9999 || lpUd
->st
.wHour
> 23 ||
1094 lpUd
->st
.wMinute
> 59 || lpUd
->st
.wSecond
> 59)
1095 return E_INVALIDARG
; /* Invalid values */
1099 /* Roll back the date one day */
1100 if (lpUd
->st
.wMonth
== 1)
1102 /* Roll back to December 31 of the previous year */
1104 lpUd
->st
.wMonth
= 12;
1109 lpUd
->st
.wMonth
--; /* Previous month */
1110 if (lpUd
->st
.wMonth
== 2 && IsLeapYear(lpUd
->st
.wYear
))
1111 lpUd
->st
.wDay
= 29; /* February has 29 days on leap years */
1113 lpUd
->st
.wDay
= days
[lpUd
->st
.wMonth
]; /* Last day of the month */
1116 else if (lpUd
->st
.wDay
> 28)
1118 int rollForward
= 0;
1120 /* Possibly need to roll the date forward */
1121 if (lpUd
->st
.wMonth
== 2 && IsLeapYear(lpUd
->st
.wYear
))
1122 rollForward
= lpUd
->st
.wDay
- 29; /* February has 29 days on leap years */
1124 rollForward
= lpUd
->st
.wDay
- days
[lpUd
->st
.wMonth
];
1126 if (rollForward
> 0)
1128 lpUd
->st
.wDay
= rollForward
;
1130 if (lpUd
->st
.wMonth
> 12)
1132 lpUd
->st
.wMonth
= 1; /* Roll forward into January of the next year */
1137 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd
->st
.wDay
, lpUd
->st
.wMonth
,
1138 lpUd
->st
.wYear
, lpUd
->st
.wHour
, lpUd
->st
.wMinute
, lpUd
->st
.wSecond
);
1142 /**********************************************************************
1143 * DosDateTimeToVariantTime [OLEAUT32.14]
1145 * Convert a Dos format date and time into variant VT_DATE format.
1148 * wDosDate [I] Dos format date
1149 * wDosTime [I] Dos format time
1150 * pDateOut [O] Destination for VT_DATE format
1153 * Success: TRUE. pDateOut contains the converted time.
1154 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1157 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1158 * - Dos format times are accurate to only 2 second precision.
1159 * - The format of a Dos Date is:
1160 *| Bits Values Meaning
1161 *| ---- ------ -------
1162 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1163 *| the days in the month rolls forward the extra days.
1164 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1165 *| year. 13-15 are invalid.
1166 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1167 * - The format of a Dos Time is:
1168 *| Bits Values Meaning
1169 *| ---- ------ -------
1170 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1171 *| 5-10 0-59 Minutes. 60-63 are invalid.
1172 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1174 INT WINAPI
DosDateTimeToVariantTime(USHORT wDosDate
, USHORT wDosTime
,
1179 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1180 wDosDate
, DOS_YEAR(wDosDate
), DOS_MONTH(wDosDate
), DOS_DAY(wDosDate
),
1181 wDosTime
, DOS_HOUR(wDosTime
), DOS_MINUTE(wDosTime
), DOS_SECOND(wDosTime
),
1184 ud
.st
.wYear
= DOS_YEAR(wDosDate
);
1185 ud
.st
.wMonth
= DOS_MONTH(wDosDate
);
1186 if (ud
.st
.wYear
> 2099 || ud
.st
.wMonth
> 12)
1188 ud
.st
.wDay
= DOS_DAY(wDosDate
);
1189 ud
.st
.wHour
= DOS_HOUR(wDosTime
);
1190 ud
.st
.wMinute
= DOS_MINUTE(wDosTime
);
1191 ud
.st
.wSecond
= DOS_SECOND(wDosTime
);
1192 ud
.st
.wDayOfWeek
= ud
.st
.wMilliseconds
= 0;
1194 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1197 /**********************************************************************
1198 * VariantTimeToDosDateTime [OLEAUT32.13]
1200 * Convert a variant format date into a Dos format date and time.
1202 * dateIn [I] VT_DATE time format
1203 * pwDosDate [O] Destination for Dos format date
1204 * pwDosTime [O] Destination for Dos format time
1207 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1208 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1211 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1213 INT WINAPI
VariantTimeToDosDateTime(double dateIn
, USHORT
*pwDosDate
, USHORT
*pwDosTime
)
1217 TRACE("(%g,%p,%p)\n", dateIn
, pwDosDate
, pwDosTime
);
1219 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1222 if (ud
.st
.wYear
< 1980 || ud
.st
.wYear
> 2099)
1225 *pwDosDate
= DOS_DATE(ud
.st
.wDay
, ud
.st
.wMonth
, ud
.st
.wYear
);
1226 *pwDosTime
= DOS_TIME(ud
.st
.wHour
, ud
.st
.wMinute
, ud
.st
.wSecond
);
1228 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1229 *pwDosDate
, DOS_YEAR(*pwDosDate
), DOS_MONTH(*pwDosDate
), DOS_DAY(*pwDosDate
),
1230 *pwDosTime
, DOS_HOUR(*pwDosTime
), DOS_MINUTE(*pwDosTime
), DOS_SECOND(*pwDosTime
));
1234 /***********************************************************************
1235 * SystemTimeToVariantTime [OLEAUT32.184]
1237 * Convert a System format date and time into variant VT_DATE format.
1240 * lpSt [I] System format date and time
1241 * pDateOut [O] Destination for VT_DATE format date
1244 * Success: TRUE. *pDateOut contains the converted value.
1245 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1247 INT WINAPI
SystemTimeToVariantTime(LPSYSTEMTIME lpSt
, double *pDateOut
)
1251 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt
, lpSt
->wDay
, lpSt
->wMonth
,
1252 lpSt
->wYear
, lpSt
->wHour
, lpSt
->wMinute
, lpSt
->wSecond
, pDateOut
);
1254 if (lpSt
->wMonth
> 12)
1258 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1261 /***********************************************************************
1262 * VariantTimeToSystemTime [OLEAUT32.185]
1264 * Convert a variant VT_DATE into a System format date and time.
1267 * datein [I] Variant VT_DATE format date
1268 * lpSt [O] Destination for System format date and time
1271 * Success: TRUE. *lpSt contains the converted value.
1272 * Failure: FALSE, if dateIn is too large or small.
1274 INT WINAPI
VariantTimeToSystemTime(double dateIn
, LPSYSTEMTIME lpSt
)
1278 TRACE("(%g,%p)\n", dateIn
, lpSt
);
1280 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1287 /***********************************************************************
1288 * VarDateFromUdateEx [OLEAUT32.319]
1290 * Convert an unpacked format date and time to a variant VT_DATE.
1293 * pUdateIn [I] Unpacked format date and time to convert
1294 * lcid [I] Locale identifier for the conversion
1295 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1296 * pDateOut [O] Destination for variant VT_DATE.
1299 * Success: S_OK. *pDateOut contains the converted value.
1300 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1302 HRESULT WINAPI
VarDateFromUdateEx(UDATE
*pUdateIn
, LCID lcid
, ULONG dwFlags
, DATE
*pDateOut
)
1307 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn
,
1308 pUdateIn
->st
.wMonth
, pUdateIn
->st
.wDay
, pUdateIn
->st
.wYear
,
1309 pUdateIn
->st
.wHour
, pUdateIn
->st
.wMinute
, pUdateIn
->st
.wSecond
,
1310 pUdateIn
->st
.wMilliseconds
, pUdateIn
->st
.wDayOfWeek
,
1311 pUdateIn
->wDayOfYear
, lcid
, dwFlags
, pDateOut
);
1313 if (lcid
!= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
))
1314 FIXME("lcid possibly not handled, treating as en-us\n");
1318 if (dwFlags
& VAR_VALIDDATE
)
1319 WARN("Ignoring VAR_VALIDDATE\n");
1321 if (FAILED(VARIANT_RollUdate(&ud
)))
1322 return E_INVALIDARG
;
1325 dateVal
= VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud
.st
.wYear
, ud
.st
.wMonth
, ud
.st
.wDay
));
1328 dateVal
+= ud
.st
.wHour
/ 24.0;
1329 dateVal
+= ud
.st
.wMinute
/ 1440.0;
1330 dateVal
+= ud
.st
.wSecond
/ 86400.0;
1331 dateVal
+= ud
.st
.wMilliseconds
/ 86400000.0;
1333 TRACE("Returning %g\n", dateVal
);
1334 *pDateOut
= dateVal
;
1338 /***********************************************************************
1339 * VarDateFromUdate [OLEAUT32.330]
1341 * Convert an unpacked format date and time to a variant VT_DATE.
1344 * pUdateIn [I] Unpacked format date and time to convert
1345 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1346 * pDateOut [O] Destination for variant VT_DATE.
1349 * Success: S_OK. *pDateOut contains the converted value.
1350 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1353 * This function uses the United States English locale for the conversion. Use
1354 * VarDateFromUdateEx() for alternate locales.
1356 HRESULT WINAPI
VarDateFromUdate(UDATE
*pUdateIn
, ULONG dwFlags
, DATE
*pDateOut
)
1358 LCID lcid
= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
);
1360 return VarDateFromUdateEx(pUdateIn
, lcid
, dwFlags
, pDateOut
);
1363 /***********************************************************************
1364 * VarUdateFromDate [OLEAUT32.331]
1366 * Convert a variant VT_DATE into an unpacked format date and time.
1369 * datein [I] Variant VT_DATE format date
1370 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1371 * lpUdate [O] Destination for unpacked format date and time
1374 * Success: S_OK. *lpUdate contains the converted value.
1375 * Failure: E_INVALIDARG, if dateIn is too large or small.
1377 HRESULT WINAPI
VarUdateFromDate(DATE dateIn
, ULONG dwFlags
, UDATE
*lpUdate
)
1379 /* Cumulative totals of days per month */
1380 static const USHORT cumulativeDays
[] =
1382 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1384 double datePart
, timePart
;
1387 TRACE("(%g,0x%08x,%p)\n", dateIn
, dwFlags
, lpUdate
);
1389 if (dateIn
<= (DATE_MIN
- 1.0) || dateIn
>= (DATE_MAX
+ 1.0))
1390 return E_INVALIDARG
;
1392 datePart
= dateIn
< 0.0 ? ceil(dateIn
) : floor(dateIn
);
1393 /* Compensate for int truncation (always downwards) */
1394 timePart
= dateIn
- datePart
+ 0.00000000001;
1395 if (timePart
>= 1.0)
1396 timePart
-= 0.00000000001;
1399 julianDays
= VARIANT_JulianFromDate(dateIn
);
1400 VARIANT_DMYFromJulian(julianDays
, &lpUdate
->st
.wYear
, &lpUdate
->st
.wMonth
,
1403 datePart
= (datePart
+ 1.5) / 7.0;
1404 lpUdate
->st
.wDayOfWeek
= (datePart
- floor(datePart
)) * 7;
1405 if (lpUdate
->st
.wDayOfWeek
== 0)
1406 lpUdate
->st
.wDayOfWeek
= 5;
1407 else if (lpUdate
->st
.wDayOfWeek
== 1)
1408 lpUdate
->st
.wDayOfWeek
= 6;
1410 lpUdate
->st
.wDayOfWeek
-= 2;
1412 if (lpUdate
->st
.wMonth
> 2 && IsLeapYear(lpUdate
->st
.wYear
))
1413 lpUdate
->wDayOfYear
= 1; /* After February, in a leap year */
1415 lpUdate
->wDayOfYear
= 0;
1417 lpUdate
->wDayOfYear
+= cumulativeDays
[lpUdate
->st
.wMonth
];
1418 lpUdate
->wDayOfYear
+= lpUdate
->st
.wDay
;
1422 lpUdate
->st
.wHour
= timePart
;
1423 timePart
-= lpUdate
->st
.wHour
;
1425 lpUdate
->st
.wMinute
= timePart
;
1426 timePart
-= lpUdate
->st
.wMinute
;
1428 lpUdate
->st
.wSecond
= timePart
;
1429 timePart
-= lpUdate
->st
.wSecond
;
1430 lpUdate
->st
.wMilliseconds
= 0;
1433 /* Round the milliseconds, adjusting the time/date forward if needed */
1434 if (lpUdate
->st
.wSecond
< 59)
1435 lpUdate
->st
.wSecond
++;
1438 lpUdate
->st
.wSecond
= 0;
1439 if (lpUdate
->st
.wMinute
< 59)
1440 lpUdate
->st
.wMinute
++;
1443 lpUdate
->st
.wMinute
= 0;
1444 if (lpUdate
->st
.wHour
< 23)
1445 lpUdate
->st
.wHour
++;
1448 lpUdate
->st
.wHour
= 0;
1449 /* Roll over a whole day */
1450 if (++lpUdate
->st
.wDay
> 28)
1451 VARIANT_RollUdate(lpUdate
);
1459 #define GET_NUMBER_TEXT(fld,name) \
1461 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1462 WARN("buffer too small for " #fld "\n"); \
1464 if (buff[0]) lpChars->name = buff[0]; \
1465 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1467 /* Get the valid number characters for an lcid */
1468 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS
*lpChars
, LCID lcid
, DWORD dwFlags
)
1470 static const VARIANT_NUMBER_CHARS defaultChars
= { '-','+','.',',','$',0,'.',',' };
1471 static CRITICAL_SECTION csLastChars
= { NULL
, -1, 0, 0, 0, 0 };
1472 static VARIANT_NUMBER_CHARS lastChars
;
1473 static LCID lastLcid
= -1;
1474 static DWORD lastFlags
= 0;
1475 LCTYPE lctype
= dwFlags
& LOCALE_NOUSEROVERRIDE
;
1478 /* To make caching thread-safe, a critical section is needed */
1479 EnterCriticalSection(&csLastChars
);
1481 /* Asking for default locale entries is very expensive: It is a registry
1482 server call. So cache one locally, as Microsoft does it too */
1483 if(lcid
== lastLcid
&& dwFlags
== lastFlags
)
1485 memcpy(lpChars
, &lastChars
, sizeof(defaultChars
));
1486 LeaveCriticalSection(&csLastChars
);
1490 memcpy(lpChars
, &defaultChars
, sizeof(defaultChars
));
1491 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN
, cNegativeSymbol
);
1492 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN
, cPositiveSymbol
);
1493 GET_NUMBER_TEXT(LOCALE_SDECIMAL
, cDecimalPoint
);
1494 GET_NUMBER_TEXT(LOCALE_STHOUSAND
, cDigitSeparator
);
1495 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP
, cCurrencyDecimalPoint
);
1496 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP
, cCurrencyDigitSeparator
);
1498 /* Local currency symbols are often 2 characters */
1499 lpChars
->cCurrencyLocal2
= '\0';
1500 switch(GetLocaleInfoW(lcid
, lctype
|LOCALE_SCURRENCY
, buff
, sizeof(buff
)/sizeof(WCHAR
)))
1502 case 3: lpChars
->cCurrencyLocal2
= buff
[1]; /* Fall through */
1503 case 2: lpChars
->cCurrencyLocal
= buff
[0];
1505 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1507 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid
, lpChars
->cCurrencyLocal
,
1508 lpChars
->cCurrencyLocal2
, lpChars
->cCurrencyLocal
, lpChars
->cCurrencyLocal2
);
1510 memcpy(&lastChars
, lpChars
, sizeof(defaultChars
));
1512 lastFlags
= dwFlags
;
1513 LeaveCriticalSection(&csLastChars
);
1516 /* Number Parsing States */
1517 #define B_PROCESSING_EXPONENT 0x1
1518 #define B_NEGATIVE_EXPONENT 0x2
1519 #define B_EXPONENT_START 0x4
1520 #define B_INEXACT_ZEROS 0x8
1521 #define B_LEADING_ZERO 0x10
1522 #define B_PROCESSING_HEX 0x20
1523 #define B_PROCESSING_OCT 0x40
1525 /**********************************************************************
1526 * VarParseNumFromStr [OLEAUT32.46]
1528 * Parse a string containing a number into a NUMPARSE structure.
1531 * lpszStr [I] String to parse number from
1532 * lcid [I] Locale Id for the conversion
1533 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1534 * pNumprs [I/O] Destination for parsed number
1535 * rgbDig [O] Destination for digits read in
1538 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1540 * Failure: E_INVALIDARG, if any parameter is invalid.
1541 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1543 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1546 * pNumprs must have the following fields set:
1547 * cDig: Set to the size of rgbDig.
1548 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1552 * - I am unsure if this function should parse non-arabic (e.g. Thai)
1553 * numerals, so this has not been implemented.
1555 HRESULT WINAPI
VarParseNumFromStr(OLECHAR
*lpszStr
, LCID lcid
, ULONG dwFlags
,
1556 NUMPARSE
*pNumprs
, BYTE
*rgbDig
)
1558 VARIANT_NUMBER_CHARS chars
;
1560 DWORD dwState
= B_EXPONENT_START
|B_INEXACT_ZEROS
;
1561 int iMaxDigits
= sizeof(rgbTmp
) / sizeof(BYTE
);
1564 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr
), lcid
, dwFlags
, pNumprs
, rgbDig
);
1566 if (!pNumprs
|| !rgbDig
)
1567 return E_INVALIDARG
;
1569 if (pNumprs
->cDig
< iMaxDigits
)
1570 iMaxDigits
= pNumprs
->cDig
;
1573 pNumprs
->dwOutFlags
= 0;
1574 pNumprs
->cchUsed
= 0;
1575 pNumprs
->nBaseShift
= 0;
1576 pNumprs
->nPwr10
= 0;
1579 return DISP_E_TYPEMISMATCH
;
1581 VARIANT_GetLocalisedNumberChars(&chars
, lcid
, dwFlags
);
1583 /* First consume all the leading symbols and space from the string */
1586 if (pNumprs
->dwInFlags
& NUMPRS_LEADING_WHITE
&& isspaceW(*lpszStr
))
1588 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_WHITE
;
1593 } while (isspaceW(*lpszStr
));
1595 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_PLUS
&&
1596 *lpszStr
== chars
.cPositiveSymbol
&&
1597 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
))
1599 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_PLUS
;
1603 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_MINUS
&&
1604 *lpszStr
== chars
.cNegativeSymbol
&&
1605 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
))
1607 pNumprs
->dwOutFlags
|= (NUMPRS_LEADING_MINUS
|NUMPRS_NEG
);
1611 else if (pNumprs
->dwInFlags
& NUMPRS_CURRENCY
&&
1612 !(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
) &&
1613 *lpszStr
== chars
.cCurrencyLocal
&&
1614 (!chars
.cCurrencyLocal2
|| lpszStr
[1] == chars
.cCurrencyLocal2
))
1616 pNumprs
->dwOutFlags
|= NUMPRS_CURRENCY
;
1619 /* Only accept currency characters */
1620 chars
.cDecimalPoint
= chars
.cCurrencyDecimalPoint
;
1621 chars
.cDigitSeparator
= chars
.cCurrencyDigitSeparator
;
1623 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== '(' &&
1624 !(pNumprs
->dwOutFlags
& NUMPRS_PARENS
))
1626 pNumprs
->dwOutFlags
|= NUMPRS_PARENS
;
1634 if (!(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
))
1636 /* Only accept non-currency characters */
1637 chars
.cCurrencyDecimalPoint
= chars
.cDecimalPoint
;
1638 chars
.cCurrencyDigitSeparator
= chars
.cDigitSeparator
;
1641 if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'H' || *(lpszStr
+1) == 'h')) &&
1642 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1644 dwState
|= B_PROCESSING_HEX
;
1645 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1649 else if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'O' || *(lpszStr
+1) == 'o')) &&
1650 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1652 dwState
|= B_PROCESSING_OCT
;
1653 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1658 /* Strip Leading zeros */
1659 while (*lpszStr
== '0')
1661 dwState
|= B_LEADING_ZERO
;
1668 if (isdigitW(*lpszStr
))
1670 if (dwState
& B_PROCESSING_EXPONENT
)
1672 int exponentSize
= 0;
1673 if (dwState
& B_EXPONENT_START
)
1675 if (!isdigitW(*lpszStr
))
1676 break; /* No exponent digits - invalid */
1677 while (*lpszStr
== '0')
1679 /* Skip leading zero's in the exponent */
1685 while (isdigitW(*lpszStr
))
1688 exponentSize
+= *lpszStr
- '0';
1692 if (dwState
& B_NEGATIVE_EXPONENT
)
1693 exponentSize
= -exponentSize
;
1694 /* Add the exponent into the powers of 10 */
1695 pNumprs
->nPwr10
+= exponentSize
;
1696 dwState
&= ~(B_PROCESSING_EXPONENT
|B_EXPONENT_START
);
1697 lpszStr
--; /* back up to allow processing of next char */
1701 if ((pNumprs
->cDig
>= iMaxDigits
) && !(dwState
& B_PROCESSING_HEX
)
1702 && !(dwState
& B_PROCESSING_OCT
))
1704 pNumprs
->dwOutFlags
|= NUMPRS_INEXACT
;
1706 if (*lpszStr
!= '0')
1707 dwState
&= ~B_INEXACT_ZEROS
; /* Inexact number with non-trailing zeros */
1709 /* This digit can't be represented, but count it in nPwr10 */
1710 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1717 if ((dwState
& B_PROCESSING_OCT
) && ((*lpszStr
== '8') || (*lpszStr
== '9'))) {
1718 return DISP_E_TYPEMISMATCH
;
1721 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1722 pNumprs
->nPwr10
--; /* Count decimal points in nPwr10 */
1724 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- '0';
1730 else if (*lpszStr
== chars
.cDigitSeparator
&& pNumprs
->dwInFlags
& NUMPRS_THOUSANDS
)
1732 pNumprs
->dwOutFlags
|= NUMPRS_THOUSANDS
;
1735 else if (*lpszStr
== chars
.cDecimalPoint
&&
1736 pNumprs
->dwInFlags
& NUMPRS_DECIMAL
&&
1737 !(pNumprs
->dwOutFlags
& (NUMPRS_DECIMAL
|NUMPRS_EXPONENT
)))
1739 pNumprs
->dwOutFlags
|= NUMPRS_DECIMAL
;
1742 /* If we have no digits so far, skip leading zeros */
1745 while (lpszStr
[1] == '0')
1747 dwState
|= B_LEADING_ZERO
;
1754 else if (((*lpszStr
>= 'a' && *lpszStr
<= 'f') ||
1755 (*lpszStr
>= 'A' && *lpszStr
<= 'F')) &&
1756 dwState
& B_PROCESSING_HEX
)
1758 if (pNumprs
->cDig
>= iMaxDigits
)
1760 return DISP_E_OVERFLOW
;
1764 if (*lpszStr
>= 'a')
1765 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'a' + 10;
1767 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'A' + 10;
1772 else if ((*lpszStr
== 'e' || *lpszStr
== 'E') &&
1773 pNumprs
->dwInFlags
& NUMPRS_EXPONENT
&&
1774 !(pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
))
1776 dwState
|= B_PROCESSING_EXPONENT
;
1777 pNumprs
->dwOutFlags
|= NUMPRS_EXPONENT
;
1780 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cPositiveSymbol
)
1782 cchUsed
++; /* Ignore positive exponent */
1784 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cNegativeSymbol
)
1786 dwState
|= B_NEGATIVE_EXPONENT
;
1790 break; /* Stop at an unrecognised character */
1795 if (!pNumprs
->cDig
&& dwState
& B_LEADING_ZERO
)
1797 /* Ensure a 0 on its own gets stored */
1802 if (pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
&& dwState
& B_PROCESSING_EXPONENT
)
1804 pNumprs
->cchUsed
= cchUsed
;
1805 WARN("didn't completely parse exponent\n");
1806 return DISP_E_TYPEMISMATCH
; /* Failed to completely parse the exponent */
1809 if (pNumprs
->dwOutFlags
& NUMPRS_INEXACT
)
1811 if (dwState
& B_INEXACT_ZEROS
)
1812 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* All zeros doesn't set NUMPRS_INEXACT */
1813 } else if(pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1815 /* copy all of the digits into the output digit buffer */
1816 /* this is exactly what windows does although it also returns */
1817 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1818 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1820 if (dwState
& B_PROCESSING_HEX
) {
1821 /* hex numbers have always the same format */
1823 pNumprs
->nBaseShift
=4;
1825 if (dwState
& B_PROCESSING_OCT
) {
1826 /* oct numbers have always the same format */
1828 pNumprs
->nBaseShift
=3;
1830 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1839 /* Remove trailing zeros from the last (whole number or decimal) part */
1840 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1847 if (pNumprs
->cDig
<= iMaxDigits
)
1848 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* Ignore stripped zeros for NUMPRS_INEXACT */
1850 pNumprs
->cDig
= iMaxDigits
; /* Only return iMaxDigits worth of digits */
1852 /* Copy the digits we processed into rgbDig */
1853 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1855 /* Consume any trailing symbols and space */
1858 if ((pNumprs
->dwInFlags
& NUMPRS_TRAILING_WHITE
) && isspaceW(*lpszStr
))
1860 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_WHITE
;
1865 } while (isspaceW(*lpszStr
));
1867 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_PLUS
&&
1868 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
) &&
1869 *lpszStr
== chars
.cPositiveSymbol
)
1871 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_PLUS
;
1875 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_MINUS
&&
1876 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
) &&
1877 *lpszStr
== chars
.cNegativeSymbol
)
1879 pNumprs
->dwOutFlags
|= (NUMPRS_TRAILING_MINUS
|NUMPRS_NEG
);
1883 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== ')' &&
1884 pNumprs
->dwOutFlags
& NUMPRS_PARENS
)
1888 pNumprs
->dwOutFlags
|= NUMPRS_NEG
;
1894 if (pNumprs
->dwOutFlags
& NUMPRS_PARENS
&& !(pNumprs
->dwOutFlags
& NUMPRS_NEG
))
1896 pNumprs
->cchUsed
= cchUsed
;
1897 return DISP_E_TYPEMISMATCH
; /* Opening parenthesis not matched */
1900 if (pNumprs
->dwInFlags
& NUMPRS_USE_ALL
&& *lpszStr
!= '\0')
1901 return DISP_E_TYPEMISMATCH
; /* Not all chars were consumed */
1904 return DISP_E_TYPEMISMATCH
; /* No Number found */
1906 pNumprs
->cchUsed
= cchUsed
;
1910 /* VTBIT flags indicating an integer value */
1911 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1912 /* VTBIT flags indicating a real number value */
1913 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1915 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1916 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1917 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1918 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1920 /**********************************************************************
1921 * VarNumFromParseNum [OLEAUT32.47]
1923 * Convert a NUMPARSE structure into a numeric Variant type.
1926 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1927 * rgbDig [I] Source for the numbers digits
1928 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1929 * pVarDst [O] Destination for the converted Variant value.
1932 * Success: S_OK. pVarDst contains the converted value.
1933 * Failure: E_INVALIDARG, if any parameter is invalid.
1934 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1937 * - The smallest favoured type present in dwVtBits that can represent the
1938 * number in pNumprs without losing precision is used.
1939 * - Signed types are preferred over unsigned types of the same size.
1940 * - Preferred types in order are: integer, float, double, currency then decimal.
1941 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1942 * for details of the rounding method.
1943 * - pVarDst is not cleared before the result is stored in it.
1944 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1945 * design?): If some other VTBIT's for integers are specified together
1946 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1947 * the number to the smallest requested integer truncating this way the
1948 * number. Wine doesn't implement this "feature" (yet?).
1950 HRESULT WINAPI
VarNumFromParseNum(NUMPARSE
*pNumprs
, BYTE
*rgbDig
,
1951 ULONG dwVtBits
, VARIANT
*pVarDst
)
1953 /* Scale factors and limits for double arithmetic */
1954 static const double dblMultipliers
[11] = {
1955 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1956 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1958 static const double dblMinimums
[11] = {
1959 R8_MIN
, R8_MIN
*10.0, R8_MIN
*100.0, R8_MIN
*1000.0, R8_MIN
*10000.0,
1960 R8_MIN
*100000.0, R8_MIN
*1000000.0, R8_MIN
*10000000.0,
1961 R8_MIN
*100000000.0, R8_MIN
*1000000000.0, R8_MIN
*10000000000.0
1963 static const double dblMaximums
[11] = {
1964 R8_MAX
, R8_MAX
/10.0, R8_MAX
/100.0, R8_MAX
/1000.0, R8_MAX
/10000.0,
1965 R8_MAX
/100000.0, R8_MAX
/1000000.0, R8_MAX
/10000000.0,
1966 R8_MAX
/100000000.0, R8_MAX
/1000000000.0, R8_MAX
/10000000000.0
1969 int wholeNumberDigits
, fractionalDigits
, divisor10
= 0, multiplier10
= 0;
1971 TRACE("(%p,%p,0x%x,%p)\n", pNumprs
, rgbDig
, dwVtBits
, pVarDst
);
1973 if (pNumprs
->nBaseShift
)
1975 /* nBaseShift indicates a hex or octal number */
1980 /* Convert the hex or octal number string into a UI64 */
1981 for (i
= 0; i
< pNumprs
->cDig
; i
++)
1983 if (ul64
> ((UI8_MAX
>>pNumprs
->nBaseShift
) - rgbDig
[i
]))
1985 TRACE("Overflow multiplying digits\n");
1986 return DISP_E_OVERFLOW
;
1988 ul64
= (ul64
<<pNumprs
->nBaseShift
) + rgbDig
[i
];
1991 /* also make a negative representation */
1994 /* Try signed and unsigned types in size order */
1995 if (dwVtBits
& VTBIT_I1
&& FITS_AS_I1(ul64
))
1997 V_VT(pVarDst
) = VT_I1
;
1998 V_I1(pVarDst
) = ul64
;
2001 else if (dwVtBits
& VTBIT_UI1
&& FITS_AS_I1(ul64
))
2003 V_VT(pVarDst
) = VT_UI1
;
2004 V_UI1(pVarDst
) = ul64
;
2007 else if (dwVtBits
& VTBIT_I2
&& FITS_AS_I2(ul64
))
2009 V_VT(pVarDst
) = VT_I2
;
2010 V_I2(pVarDst
) = ul64
;
2013 else if (dwVtBits
& VTBIT_UI2
&& FITS_AS_I2(ul64
))
2015 V_VT(pVarDst
) = VT_UI2
;
2016 V_UI2(pVarDst
) = ul64
;
2019 else if (dwVtBits
& VTBIT_I4
&& FITS_AS_I4(ul64
))
2021 V_VT(pVarDst
) = VT_I4
;
2022 V_I4(pVarDst
) = ul64
;
2025 else if (dwVtBits
& VTBIT_UI4
&& FITS_AS_I4(ul64
))
2027 V_VT(pVarDst
) = VT_UI4
;
2028 V_UI4(pVarDst
) = ul64
;
2031 else if (dwVtBits
& VTBIT_I8
&& ((ul64
<= I8_MAX
)||(l64
>=I8_MIN
)))
2033 V_VT(pVarDst
) = VT_I8
;
2034 V_I8(pVarDst
) = ul64
;
2037 else if (dwVtBits
& VTBIT_UI8
)
2039 V_VT(pVarDst
) = VT_UI8
;
2040 V_UI8(pVarDst
) = ul64
;
2043 else if ((dwVtBits
& VTBIT_DECIMAL
) == VTBIT_DECIMAL
)
2045 V_VT(pVarDst
) = VT_DECIMAL
;
2046 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2047 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2048 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2051 else if (dwVtBits
& VTBIT_R4
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2053 V_VT(pVarDst
) = VT_R4
;
2055 V_R4(pVarDst
) = ul64
;
2057 V_R4(pVarDst
) = l64
;
2060 else if (dwVtBits
& VTBIT_R8
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2062 V_VT(pVarDst
) = VT_R8
;
2064 V_R8(pVarDst
) = ul64
;
2066 V_R8(pVarDst
) = l64
;
2070 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits
, wine_dbgstr_longlong(ul64
));
2071 return DISP_E_OVERFLOW
;
2074 /* Count the number of relevant fractional and whole digits stored,
2075 * And compute the divisor/multiplier to scale the number by.
2077 if (pNumprs
->nPwr10
< 0)
2079 if (-pNumprs
->nPwr10
>= pNumprs
->cDig
)
2081 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2082 wholeNumberDigits
= 0;
2083 fractionalDigits
= pNumprs
->cDig
;
2084 divisor10
= -pNumprs
->nPwr10
;
2088 /* An exactly represented real number e.g. 1.024 */
2089 wholeNumberDigits
= pNumprs
->cDig
+ pNumprs
->nPwr10
;
2090 fractionalDigits
= pNumprs
->cDig
- wholeNumberDigits
;
2091 divisor10
= pNumprs
->cDig
- wholeNumberDigits
;
2094 else if (pNumprs
->nPwr10
== 0)
2096 /* An exactly represented whole number e.g. 1024 */
2097 wholeNumberDigits
= pNumprs
->cDig
;
2098 fractionalDigits
= 0;
2100 else /* pNumprs->nPwr10 > 0 */
2102 /* A whole number followed by nPwr10 0's e.g. 102400 */
2103 wholeNumberDigits
= pNumprs
->cDig
;
2104 fractionalDigits
= 0;
2105 multiplier10
= pNumprs
->nPwr10
;
2108 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2109 pNumprs
->cDig
, pNumprs
->nPwr10
, wholeNumberDigits
, fractionalDigits
,
2110 multiplier10
, divisor10
);
2112 if (dwVtBits
& (INTEGER_VTBITS
|VTBIT_DECIMAL
) &&
2113 (!fractionalDigits
|| !(dwVtBits
& (REAL_VTBITS
|VTBIT_CY
|VTBIT_DECIMAL
))))
2115 /* We have one or more integer output choices, and either:
2116 * 1) An integer input value, or
2117 * 2) A real number input value but no floating output choices.
2118 * Alternately, we have a DECIMAL output available and an integer input.
2120 * So, place the integer value into pVarDst, using the smallest type
2121 * possible and preferring signed over unsigned types.
2123 BOOL bOverflow
= FALSE
, bNegative
;
2127 /* Convert the integer part of the number into a UI8 */
2128 for (i
= 0; i
< wholeNumberDigits
; i
++)
2130 if (ul64
> (UI8_MAX
/ 10 - rgbDig
[i
]))
2132 TRACE("Overflow multiplying digits\n");
2136 ul64
= ul64
* 10 + rgbDig
[i
];
2139 /* Account for the scale of the number */
2140 if (!bOverflow
&& multiplier10
)
2142 for (i
= 0; i
< multiplier10
; i
++)
2144 if (ul64
> (UI8_MAX
/ 10))
2146 TRACE("Overflow scaling number\n");
2154 /* If we have any fractional digits, round the value.
2155 * Note we don't have to do this if divisor10 is < 1,
2156 * because this means the fractional part must be < 0.5
2158 if (!bOverflow
&& fractionalDigits
&& divisor10
> 0)
2160 const BYTE
* fracDig
= rgbDig
+ wholeNumberDigits
;
2161 BOOL bAdjust
= FALSE
;
2163 TRACE("first decimal value is %d\n", *fracDig
);
2166 bAdjust
= TRUE
; /* > 0.5 */
2167 else if (*fracDig
== 5)
2169 for (i
= 1; i
< fractionalDigits
; i
++)
2173 bAdjust
= TRUE
; /* > 0.5 */
2177 /* If exactly 0.5, round only odd values */
2178 if (i
== fractionalDigits
&& (ul64
& 1))
2184 if (ul64
== UI8_MAX
)
2186 TRACE("Overflow after rounding\n");
2193 /* Zero is not a negative number */
2194 bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
&& ul64
? TRUE
: FALSE
;
2196 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64
), bNegative
);
2198 /* For negative integers, try the signed types in size order */
2199 if (!bOverflow
&& bNegative
)
2201 if (dwVtBits
& (VTBIT_I1
|VTBIT_I2
|VTBIT_I4
|VTBIT_I8
))
2203 if (dwVtBits
& VTBIT_I1
&& ul64
<= -I1_MIN
)
2205 V_VT(pVarDst
) = VT_I1
;
2206 V_I1(pVarDst
) = -ul64
;
2209 else if (dwVtBits
& VTBIT_I2
&& ul64
<= -I2_MIN
)
2211 V_VT(pVarDst
) = VT_I2
;
2212 V_I2(pVarDst
) = -ul64
;
2215 else if (dwVtBits
& VTBIT_I4
&& ul64
<= -((LONGLONG
)I4_MIN
))
2217 V_VT(pVarDst
) = VT_I4
;
2218 V_I4(pVarDst
) = -ul64
;
2221 else if (dwVtBits
& VTBIT_I8
&& ul64
<= (ULONGLONG
)I8_MAX
+ 1)
2223 V_VT(pVarDst
) = VT_I8
;
2224 V_I8(pVarDst
) = -ul64
;
2227 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2229 /* Decimal is only output choice left - fast path */
2230 V_VT(pVarDst
) = VT_DECIMAL
;
2231 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_NEG
,0);
2232 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2233 DEC_LO64(&V_DECIMAL(pVarDst
)) = -ul64
;
2238 else if (!bOverflow
)
2240 /* For positive integers, try signed then unsigned types in size order */
2241 if (dwVtBits
& VTBIT_I1
&& ul64
<= I1_MAX
)
2243 V_VT(pVarDst
) = VT_I1
;
2244 V_I1(pVarDst
) = ul64
;
2247 else if (dwVtBits
& VTBIT_UI1
&& ul64
<= UI1_MAX
)
2249 V_VT(pVarDst
) = VT_UI1
;
2250 V_UI1(pVarDst
) = ul64
;
2253 else if (dwVtBits
& VTBIT_I2
&& ul64
<= I2_MAX
)
2255 V_VT(pVarDst
) = VT_I2
;
2256 V_I2(pVarDst
) = ul64
;
2259 else if (dwVtBits
& VTBIT_UI2
&& ul64
<= UI2_MAX
)
2261 V_VT(pVarDst
) = VT_UI2
;
2262 V_UI2(pVarDst
) = ul64
;
2265 else if (dwVtBits
& VTBIT_I4
&& ul64
<= I4_MAX
)
2267 V_VT(pVarDst
) = VT_I4
;
2268 V_I4(pVarDst
) = ul64
;
2271 else if (dwVtBits
& VTBIT_UI4
&& ul64
<= UI4_MAX
)
2273 V_VT(pVarDst
) = VT_UI4
;
2274 V_UI4(pVarDst
) = ul64
;
2277 else if (dwVtBits
& VTBIT_I8
&& ul64
<= I8_MAX
)
2279 V_VT(pVarDst
) = VT_I8
;
2280 V_I8(pVarDst
) = ul64
;
2283 else if (dwVtBits
& VTBIT_UI8
)
2285 V_VT(pVarDst
) = VT_UI8
;
2286 V_UI8(pVarDst
) = ul64
;
2289 else if ((dwVtBits
& REAL_VTBITS
) == VTBIT_DECIMAL
)
2291 /* Decimal is only output choice left - fast path */
2292 V_VT(pVarDst
) = VT_DECIMAL
;
2293 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2294 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2295 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2301 if (dwVtBits
& REAL_VTBITS
)
2303 /* Try to put the number into a float or real */
2304 BOOL bOverflow
= FALSE
, bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
;
2308 /* Convert the number into a double */
2309 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2310 whole
= whole
* 10.0 + rgbDig
[i
];
2312 TRACE("Whole double value is %16.16g\n", whole
);
2314 /* Account for the scale */
2315 while (multiplier10
> 10)
2317 if (whole
> dblMaximums
[10])
2319 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2323 whole
= whole
* dblMultipliers
[10];
2326 if (multiplier10
&& !bOverflow
)
2328 if (whole
> dblMaximums
[multiplier10
])
2330 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2334 whole
= whole
* dblMultipliers
[multiplier10
];
2338 TRACE("Scaled double value is %16.16g\n", whole
);
2340 while (divisor10
> 10 && !bOverflow
)
2342 if (whole
< dblMinimums
[10] && whole
!= 0)
2344 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
); /* Underflow */
2348 whole
= whole
/ dblMultipliers
[10];
2351 if (divisor10
&& !bOverflow
)
2353 if (whole
< dblMinimums
[divisor10
] && whole
!= 0)
2355 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
); /* Underflow */
2359 whole
= whole
/ dblMultipliers
[divisor10
];
2362 TRACE("Final double value is %16.16g\n", whole
);
2364 if (dwVtBits
& VTBIT_R4
&&
2365 ((whole
<= R4_MAX
&& whole
>= R4_MIN
) || whole
== 0.0))
2367 TRACE("Set R4 to final value\n");
2368 V_VT(pVarDst
) = VT_R4
; /* Fits into a float */
2369 V_R4(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2373 if (dwVtBits
& VTBIT_R8
)
2375 TRACE("Set R8 to final value\n");
2376 V_VT(pVarDst
) = VT_R8
; /* Fits into a double */
2377 V_R8(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2381 if (dwVtBits
& VTBIT_CY
)
2383 if (SUCCEEDED(VarCyFromR8(bNegative
? -whole
: whole
, &V_CY(pVarDst
))))
2385 V_VT(pVarDst
) = VT_CY
; /* Fits into a currency */
2386 TRACE("Set CY to final value\n");
2389 TRACE("Value Overflows CY\n");
2393 if (dwVtBits
& VTBIT_DECIMAL
)
2398 DECIMAL
* pDec
= &V_DECIMAL(pVarDst
);
2400 DECIMAL_SETZERO(*pDec
);
2403 if (pNumprs
->dwOutFlags
& NUMPRS_NEG
)
2404 DEC_SIGN(pDec
) = DECIMAL_NEG
;
2406 DEC_SIGN(pDec
) = DECIMAL_POS
;
2408 /* Factor the significant digits */
2409 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2411 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10 + rgbDig
[i
];
2412 carry
= (ULONG
)(tmp
>> 32);
2413 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2414 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2415 carry
= (ULONG
)(tmp
>> 32);
2416 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2417 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2418 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2420 if (tmp
>> 32 & UI4_MAX
)
2422 VarNumFromParseNum_DecOverflow
:
2423 TRACE("Overflow\n");
2424 DEC_LO32(pDec
) = DEC_MID32(pDec
) = DEC_HI32(pDec
) = UI4_MAX
;
2425 return DISP_E_OVERFLOW
;
2429 /* Account for the scale of the number */
2430 while (multiplier10
> 0)
2432 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10;
2433 carry
= (ULONG
)(tmp
>> 32);
2434 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2435 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2436 carry
= (ULONG
)(tmp
>> 32);
2437 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2438 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2439 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2441 if (tmp
>> 32 & UI4_MAX
)
2442 goto VarNumFromParseNum_DecOverflow
;
2445 DEC_SCALE(pDec
) = divisor10
;
2447 V_VT(pVarDst
) = VT_DECIMAL
;
2450 return DISP_E_OVERFLOW
; /* No more output choices */
2453 /**********************************************************************
2454 * VarCat [OLEAUT32.318]
2456 * Concatenates one variant onto another.
2459 * left [I] First variant
2460 * right [I] Second variant
2461 * result [O] Result variant
2465 * Failure: An HRESULT error code indicating the error.
2467 HRESULT WINAPI
VarCat(LPVARIANT left
, LPVARIANT right
, LPVARIANT out
)
2469 VARTYPE leftvt
,rightvt
,resultvt
;
2471 static WCHAR str_true
[32];
2472 static WCHAR str_false
[32];
2473 static const WCHAR sz_empty
[] = {'\0'};
2474 leftvt
= V_VT(left
);
2475 rightvt
= V_VT(right
);
2477 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
2478 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), out
);
2481 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT
, IDS_FALSE
, str_false
);
2482 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT
, IDS_TRUE
, str_true
);
2485 /* when both left and right are NULL the result is NULL */
2486 if (leftvt
== VT_NULL
&& rightvt
== VT_NULL
)
2488 V_VT(out
) = VT_NULL
;
2493 resultvt
= VT_EMPTY
;
2495 /* There are many special case for errors and return types */
2496 if (leftvt
== VT_VARIANT
&& (rightvt
== VT_ERROR
||
2497 rightvt
== VT_DATE
|| rightvt
== VT_DECIMAL
))
2498 hres
= DISP_E_TYPEMISMATCH
;
2499 else if ((leftvt
== VT_I2
|| leftvt
== VT_I4
||
2500 leftvt
== VT_R4
|| leftvt
== VT_R8
||
2501 leftvt
== VT_CY
|| leftvt
== VT_BOOL
||
2502 leftvt
== VT_BSTR
|| leftvt
== VT_I1
||
2503 leftvt
== VT_UI1
|| leftvt
== VT_UI2
||
2504 leftvt
== VT_UI4
|| leftvt
== VT_I8
||
2505 leftvt
== VT_UI8
|| leftvt
== VT_INT
||
2506 leftvt
== VT_UINT
|| leftvt
== VT_EMPTY
||
2507 leftvt
== VT_NULL
|| leftvt
== VT_DATE
||
2508 leftvt
== VT_DECIMAL
|| leftvt
== VT_DISPATCH
)
2510 (rightvt
== VT_I2
|| rightvt
== VT_I4
||
2511 rightvt
== VT_R4
|| rightvt
== VT_R8
||
2512 rightvt
== VT_CY
|| rightvt
== VT_BOOL
||
2513 rightvt
== VT_BSTR
|| rightvt
== VT_I1
||
2514 rightvt
== VT_UI1
|| rightvt
== VT_UI2
||
2515 rightvt
== VT_UI4
|| rightvt
== VT_I8
||
2516 rightvt
== VT_UI8
|| rightvt
== VT_INT
||
2517 rightvt
== VT_UINT
|| rightvt
== VT_EMPTY
||
2518 rightvt
== VT_NULL
|| rightvt
== VT_DATE
||
2519 rightvt
== VT_DECIMAL
|| rightvt
== VT_DISPATCH
))
2521 else if (rightvt
== VT_ERROR
&& leftvt
< VT_VOID
)
2522 hres
= DISP_E_TYPEMISMATCH
;
2523 else if (leftvt
== VT_ERROR
&& (rightvt
== VT_DATE
||
2524 rightvt
== VT_ERROR
|| rightvt
== VT_DECIMAL
))
2525 hres
= DISP_E_TYPEMISMATCH
;
2526 else if (rightvt
== VT_DATE
|| rightvt
== VT_ERROR
||
2527 rightvt
== VT_DECIMAL
)
2528 hres
= DISP_E_BADVARTYPE
;
2529 else if (leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
2530 hres
= DISP_E_TYPEMISMATCH
;
2531 else if (leftvt
== VT_VARIANT
)
2532 hres
= DISP_E_TYPEMISMATCH
;
2533 else if (rightvt
== VT_VARIANT
&& (leftvt
== VT_EMPTY
||
2534 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2535 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2536 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2537 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2538 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2539 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2540 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2541 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2542 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2543 hres
= DISP_E_TYPEMISMATCH
;
2545 hres
= DISP_E_BADVARTYPE
;
2547 /* if result type is not S_OK, then no need to go further */
2550 V_VT(out
) = resultvt
;
2553 /* Else proceed with formatting inputs to strings */
2556 VARIANT bstrvar_left
, bstrvar_right
;
2557 V_VT(out
) = VT_BSTR
;
2559 VariantInit(&bstrvar_left
);
2560 VariantInit(&bstrvar_right
);
2562 /* Convert left side variant to string */
2563 if (leftvt
!= VT_BSTR
)
2565 if (leftvt
== VT_BOOL
)
2567 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2568 V_VT(&bstrvar_left
) = VT_BSTR
;
2569 if (V_BOOL(left
) == TRUE
)
2570 V_BSTR(&bstrvar_left
) = SysAllocString(str_true
);
2572 V_BSTR(&bstrvar_left
) = SysAllocString(str_false
);
2574 /* Fill with empty string for later concat with right side */
2575 else if (leftvt
== VT_NULL
)
2577 V_VT(&bstrvar_left
) = VT_BSTR
;
2578 V_BSTR(&bstrvar_left
) = SysAllocString(sz_empty
);
2582 hres
= VariantChangeTypeEx(&bstrvar_left
,left
,0,0,VT_BSTR
);
2584 VariantClear(&bstrvar_left
);
2585 VariantClear(&bstrvar_right
);
2586 if (leftvt
== VT_NULL
&& (rightvt
== VT_EMPTY
||
2587 rightvt
== VT_NULL
|| rightvt
== VT_I2
||
2588 rightvt
== VT_I4
|| rightvt
== VT_R4
||
2589 rightvt
== VT_R8
|| rightvt
== VT_CY
||
2590 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
2591 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
2592 rightvt
== VT_I1
|| rightvt
== VT_UI1
||
2593 rightvt
== VT_UI2
|| rightvt
== VT_UI4
||
2594 rightvt
== VT_I8
|| rightvt
== VT_UI8
||
2595 rightvt
== VT_INT
|| rightvt
== VT_UINT
))
2596 return DISP_E_BADVARTYPE
;
2602 /* convert right side variant to string */
2603 if (rightvt
!= VT_BSTR
)
2605 if (rightvt
== VT_BOOL
)
2607 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2608 V_VT(&bstrvar_right
) = VT_BSTR
;
2609 if (V_BOOL(right
) == TRUE
)
2610 V_BSTR(&bstrvar_right
) = SysAllocString(str_true
);
2612 V_BSTR(&bstrvar_right
) = SysAllocString(str_false
);
2614 /* Fill with empty string for later concat with right side */
2615 else if (rightvt
== VT_NULL
)
2617 V_VT(&bstrvar_right
) = VT_BSTR
;
2618 V_BSTR(&bstrvar_right
) = SysAllocString(sz_empty
);
2622 hres
= VariantChangeTypeEx(&bstrvar_right
,right
,0,0,VT_BSTR
);
2624 VariantClear(&bstrvar_left
);
2625 VariantClear(&bstrvar_right
);
2626 if (rightvt
== VT_NULL
&& (leftvt
== VT_EMPTY
||
2627 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2628 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2629 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2630 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2631 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2632 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2633 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2634 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2635 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2636 return DISP_E_BADVARTYPE
;
2642 /* Concat the resulting strings together */
2643 if (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
)
2644 VarBstrCat (V_BSTR(left
), V_BSTR(right
), &V_BSTR(out
));
2645 else if (leftvt
!= VT_BSTR
&& rightvt
!= VT_BSTR
)
2646 VarBstrCat (V_BSTR(&bstrvar_left
), V_BSTR(&bstrvar_right
), &V_BSTR(out
));
2647 else if (leftvt
!= VT_BSTR
&& rightvt
== VT_BSTR
)
2648 VarBstrCat (V_BSTR(&bstrvar_left
), V_BSTR(right
), &V_BSTR(out
));
2649 else if (leftvt
== VT_BSTR
&& rightvt
!= VT_BSTR
)
2650 VarBstrCat (V_BSTR(left
), V_BSTR(&bstrvar_right
), &V_BSTR(out
));
2652 VariantClear(&bstrvar_left
);
2653 VariantClear(&bstrvar_right
);
2659 /* Wrapper around VariantChangeTypeEx() which permits changing a
2660 variant with VT_RESERVED flag set. Needed by VarCmp. */
2661 static HRESULT
_VarChangeTypeExWrap (VARIANTARG
* pvargDest
,
2662 VARIANTARG
* pvargSrc
, LCID lcid
, USHORT wFlags
, VARTYPE vt
)
2667 flags
= V_VT(pvargSrc
) & ~VT_TYPEMASK
;
2668 V_VT(pvargSrc
) &= ~VT_RESERVED
;
2669 res
= VariantChangeTypeEx(pvargDest
,pvargSrc
,lcid
,wFlags
,vt
);
2670 V_VT(pvargSrc
) |= flags
;
2675 /**********************************************************************
2676 * VarCmp [OLEAUT32.176]
2678 * Compare two variants.
2681 * left [I] First variant
2682 * right [I] Second variant
2683 * lcid [I] LCID (locale identifier) for the comparison
2684 * flags [I] Flags to be used in the comparison:
2685 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2686 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2689 * VARCMP_LT: left variant is less than right variant.
2690 * VARCMP_EQ: input variants are equal.
2691 * VARCMP_GT: left variant is greater than right variant.
2692 * VARCMP_NULL: either one of the input variants is NULL.
2693 * Failure: An HRESULT error code indicating the error.
2696 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2697 * UI8 and UINT as input variants. INT is accepted only as left variant.
2699 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2700 * an ERROR variant will trigger an error.
2702 * Both input variants can have VT_RESERVED flag set which is ignored
2703 * unless one and only one of the variants is a BSTR and the other one
2704 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2705 * different meaning:
2706 * - BSTR and other: BSTR is always greater than the other variant.
2707 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2708 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2709 * comparison will take place else the BSTR is always greater.
2710 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2711 * variant is ignored and the return value depends only on the sign
2712 * of the BSTR if it is a number else the BSTR is always greater. A
2713 * positive BSTR is greater, a negative one is smaller than the other
2717 * VarBstrCmp for the lcid and flags usage.
2719 HRESULT WINAPI
VarCmp(LPVARIANT left
, LPVARIANT right
, LCID lcid
, DWORD flags
)
2721 VARTYPE lvt
, rvt
, vt
;
2726 TRACE("(%p->(%s%s),%p->(%s%s),0x%08x,0x%08x)\n", left
, debugstr_VT(left
),
2727 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), lcid
, flags
);
2729 lvt
= V_VT(left
) & VT_TYPEMASK
;
2730 rvt
= V_VT(right
) & VT_TYPEMASK
;
2731 xmask
= (1 << lvt
) | (1 << rvt
);
2733 /* If we have any flag set except VT_RESERVED bail out.
2734 Same for the left input variant type > VT_INT and for the
2735 right input variant type > VT_I8. Yes, VT_INT is only supported
2736 as left variant. Go figure */
2737 if (((V_VT(left
) | V_VT(right
)) & ~VT_TYPEMASK
& ~VT_RESERVED
) ||
2738 lvt
> VT_INT
|| rvt
> VT_I8
) {
2739 return DISP_E_BADVARTYPE
;
2742 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2743 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2744 if (rvt
== VT_INT
|| xmask
& (VTBIT_I1
| VTBIT_UI2
| VTBIT_UI4
| VTBIT_UI8
|
2745 VTBIT_DISPATCH
| VTBIT_VARIANT
| VTBIT_UNKNOWN
| VTBIT_15
))
2746 return DISP_E_TYPEMISMATCH
;
2748 /* If both variants are VT_ERROR return VARCMP_EQ */
2749 if (xmask
== VTBIT_ERROR
)
2751 else if (xmask
& VTBIT_ERROR
)
2752 return DISP_E_TYPEMISMATCH
;
2754 if (xmask
& VTBIT_NULL
)
2760 /* Two BSTRs, ignore VT_RESERVED */
2761 if (xmask
== VTBIT_BSTR
)
2762 return VarBstrCmp(V_BSTR(left
), V_BSTR(right
), lcid
, flags
);
2764 /* A BSTR and an other variant; we have to take care of VT_RESERVED */
2765 if (xmask
& VTBIT_BSTR
) {
2766 VARIANT
*bstrv
, *nonbv
;
2770 /* Swap the variants so the BSTR is always on the left */
2771 if (lvt
== VT_BSTR
) {
2782 /* BSTR and EMPTY: ignore VT_RESERVED */
2783 if (nonbvt
== VT_EMPTY
)
2784 rc
= (!V_BSTR(bstrv
) || !*V_BSTR(bstrv
)) ? VARCMP_EQ
: VARCMP_GT
;
2786 VARTYPE breserv
= V_VT(bstrv
) & ~VT_TYPEMASK
;
2787 VARTYPE nreserv
= V_VT(nonbv
) & ~VT_TYPEMASK
;
2789 if (!breserv
&& !nreserv
)
2790 /* No VT_RESERVED set ==> BSTR always greater */
2792 else if (breserv
&& !nreserv
) {
2793 /* BSTR has VT_RESERVED set. Do a string comparison */
2794 rc
= VariantChangeTypeEx(&rv
,nonbv
,lcid
,0,VT_BSTR
);
2797 rc
= VarBstrCmp(V_BSTR(bstrv
), V_BSTR(&rv
), lcid
, flags
);
2798 } else if (V_BSTR(bstrv
) && *V_BSTR(bstrv
)) {
2799 /* Non NULL nor empty BSTR */
2800 /* If the BSTR is not a number the BSTR is greater */
2801 rc
= _VarChangeTypeExWrap(&lv
,bstrv
,lcid
,0,VT_R8
);
2804 else if (breserv
&& nreserv
)
2805 /* FIXME: This is strange: with both VT_RESERVED set it
2806 looks like the result depends only on the sign of
2808 rc
= (V_R8(&lv
) >= 0) ? VARCMP_GT
: VARCMP_LT
;
2810 /* Numeric comparison, will be handled below.
2811 VARCMP_NULL used only to break out. */
2816 /* Empty or NULL BSTR */
2819 /* Fixup the return code if we swapped left and right */
2821 if (rc
== VARCMP_GT
)
2823 else if (rc
== VARCMP_LT
)
2826 if (rc
!= VARCMP_NULL
)
2830 if (xmask
& VTBIT_DECIMAL
)
2832 else if (xmask
& VTBIT_BSTR
)
2834 else if (xmask
& VTBIT_R4
)
2836 else if (xmask
& (VTBIT_R8
| VTBIT_DATE
))
2838 else if (xmask
& VTBIT_CY
)
2844 /* Coerce the variants */
2845 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2846 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2847 /* Overflow, change to R8 */
2849 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2853 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2854 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2855 /* Overflow, change to R8 */
2857 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2860 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2865 #define _VARCMP(a,b) \
2866 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2870 return VarCyCmp(V_CY(&lv
), V_CY(&rv
));
2872 return VarDecCmp(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
));
2874 return _VARCMP(V_I8(&lv
), V_I8(&rv
));
2876 return _VARCMP(V_R4(&lv
), V_R4(&rv
));
2878 return _VARCMP(V_R8(&lv
), V_R8(&rv
));
2880 /* We should never get here */
2886 static HRESULT
VARIANT_FetchDispatchValue(LPVARIANT pvDispatch
, LPVARIANT pValue
)
2889 static DISPPARAMS emptyParams
= { NULL
, NULL
, 0, 0 };
2891 if ((V_VT(pvDispatch
) & VT_TYPEMASK
) == VT_DISPATCH
) {
2892 if (NULL
== V_DISPATCH(pvDispatch
)) return DISP_E_TYPEMISMATCH
;
2893 hres
= IDispatch_Invoke(V_DISPATCH(pvDispatch
), DISPID_VALUE
, &IID_NULL
,
2894 LOCALE_USER_DEFAULT
, DISPATCH_PROPERTYGET
, &emptyParams
, pValue
,
2897 hres
= DISP_E_TYPEMISMATCH
;
2902 /**********************************************************************
2903 * VarAnd [OLEAUT32.142]
2905 * Computes the logical AND of two variants.
2908 * left [I] First variant
2909 * right [I] Second variant
2910 * result [O] Result variant
2914 * Failure: An HRESULT error code indicating the error.
2916 HRESULT WINAPI
VarAnd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
2918 HRESULT hres
= S_OK
;
2919 VARTYPE resvt
= VT_EMPTY
;
2920 VARTYPE leftvt
,rightvt
;
2921 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
2922 VARIANT varLeft
, varRight
;
2923 VARIANT tempLeft
, tempRight
;
2925 VariantInit(&varLeft
);
2926 VariantInit(&varRight
);
2927 VariantInit(&tempLeft
);
2928 VariantInit(&tempRight
);
2930 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
2931 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
2933 /* Handle VT_DISPATCH by storing and taking address of returned value */
2934 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
2936 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
2937 if (FAILED(hres
)) goto VarAnd_Exit
;
2940 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
2942 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
2943 if (FAILED(hres
)) goto VarAnd_Exit
;
2947 leftvt
= V_VT(left
)&VT_TYPEMASK
;
2948 rightvt
= V_VT(right
)&VT_TYPEMASK
;
2949 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
2950 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
2952 if (leftExtraFlags
!= rightExtraFlags
)
2954 hres
= DISP_E_BADVARTYPE
;
2957 ExtraFlags
= leftExtraFlags
;
2959 /* Native VarAnd always returns an error when using extra
2960 * flags or if the variant combination is I8 and INT.
2962 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
2963 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
2966 hres
= DISP_E_BADVARTYPE
;
2970 /* Determine return type */
2971 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
2973 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
2974 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
2975 leftvt
== VT_INT
|| rightvt
== VT_INT
||
2976 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
2977 leftvt
== VT_R4
|| rightvt
== VT_R4
||
2978 leftvt
== VT_R8
|| rightvt
== VT_R8
||
2979 leftvt
== VT_CY
|| rightvt
== VT_CY
||
2980 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
2981 leftvt
== VT_I1
|| rightvt
== VT_I1
||
2982 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
2983 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
2984 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
2985 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
2987 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
||
2988 leftvt
== VT_I2
|| rightvt
== VT_I2
||
2989 leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
)
2990 if ((leftvt
== VT_NULL
&& rightvt
== VT_UI1
) ||
2991 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
2992 (leftvt
== VT_UI1
&& rightvt
== VT_UI1
))
2996 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
2997 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
2999 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
||
3000 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3004 hres
= DISP_E_BADVARTYPE
;
3008 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3011 * Special cases for when left variant is VT_NULL
3012 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3014 if (leftvt
== VT_NULL
)
3019 case VT_I1
: if (V_I1(right
)) resvt
= VT_NULL
; break;
3020 case VT_UI1
: if (V_UI1(right
)) resvt
= VT_NULL
; break;
3021 case VT_I2
: if (V_I2(right
)) resvt
= VT_NULL
; break;
3022 case VT_UI2
: if (V_UI2(right
)) resvt
= VT_NULL
; break;
3023 case VT_I4
: if (V_I4(right
)) resvt
= VT_NULL
; break;
3024 case VT_UI4
: if (V_UI4(right
)) resvt
= VT_NULL
; break;
3025 case VT_I8
: if (V_I8(right
)) resvt
= VT_NULL
; break;
3026 case VT_UI8
: if (V_UI8(right
)) resvt
= VT_NULL
; break;
3027 case VT_INT
: if (V_INT(right
)) resvt
= VT_NULL
; break;
3028 case VT_UINT
: if (V_UINT(right
)) resvt
= VT_NULL
; break;
3029 case VT_BOOL
: if (V_BOOL(right
)) resvt
= VT_NULL
; break;
3030 case VT_R4
: if (V_R4(right
)) resvt
= VT_NULL
; break;
3031 case VT_R8
: if (V_R8(right
)) resvt
= VT_NULL
; break;
3033 if(V_CY(right
).int64
)
3037 if (DEC_HI32(&V_DECIMAL(right
)) ||
3038 DEC_LO64(&V_DECIMAL(right
)))
3042 hres
= VarBoolFromStr(V_BSTR(right
),
3043 LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
3047 V_VT(result
) = VT_NULL
;
3050 V_VT(result
) = VT_BOOL
;
3056 V_VT(result
) = resvt
;
3060 hres
= VariantCopy(&varLeft
, left
);
3061 if (FAILED(hres
)) goto VarAnd_Exit
;
3063 hres
= VariantCopy(&varRight
, right
);
3064 if (FAILED(hres
)) goto VarAnd_Exit
;
3066 if (resvt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
3067 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
3072 if (V_VT(&varLeft
) == VT_BSTR
&&
3073 FAILED(VarR8FromStr(V_BSTR(&varLeft
),
3074 LOCALE_USER_DEFAULT
, 0, &d
)))
3075 hres
= VariantChangeType(&varLeft
,&varLeft
,
3076 VARIANT_LOCALBOOL
, VT_BOOL
);
3077 if (SUCCEEDED(hres
) && V_VT(&varLeft
) != resvt
)
3078 hres
= VariantChangeType(&varLeft
,&varLeft
,0,resvt
);
3079 if (FAILED(hres
)) goto VarAnd_Exit
;
3082 if (resvt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
3083 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
3088 if (V_VT(&varRight
) == VT_BSTR
&&
3089 FAILED(VarR8FromStr(V_BSTR(&varRight
),
3090 LOCALE_USER_DEFAULT
, 0, &d
)))
3091 hres
= VariantChangeType(&varRight
, &varRight
,
3092 VARIANT_LOCALBOOL
, VT_BOOL
);
3093 if (SUCCEEDED(hres
) && V_VT(&varRight
) != resvt
)
3094 hres
= VariantChangeType(&varRight
, &varRight
, 0, resvt
);
3095 if (FAILED(hres
)) goto VarAnd_Exit
;
3098 V_VT(result
) = resvt
;
3102 V_I8(result
) = V_I8(&varLeft
) & V_I8(&varRight
);
3105 V_I4(result
) = V_I4(&varLeft
) & V_I4(&varRight
);
3108 V_I2(result
) = V_I2(&varLeft
) & V_I2(&varRight
);
3111 V_UI1(result
) = V_UI1(&varLeft
) & V_UI1(&varRight
);
3114 V_BOOL(result
) = V_BOOL(&varLeft
) & V_BOOL(&varRight
);
3117 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3122 VariantClear(&varLeft
);
3123 VariantClear(&varRight
);
3124 VariantClear(&tempLeft
);
3125 VariantClear(&tempRight
);
3130 /**********************************************************************
3131 * VarAdd [OLEAUT32.141]
3136 * left [I] First variant
3137 * right [I] Second variant
3138 * result [O] Result variant
3142 * Failure: An HRESULT error code indicating the error.
3145 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3146 * UI8, INT and UINT as input variants.
3148 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3152 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3155 HRESULT WINAPI
VarAdd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3158 VARTYPE lvt
, rvt
, resvt
, tvt
;
3160 VARIANT tempLeft
, tempRight
;
3163 /* Variant priority for coercion. Sorted from lowest to highest.
3164 VT_ERROR shows an invalid input variant type. */
3165 enum coerceprio
{ vt_EMPTY
, vt_UI1
, vt_I2
, vt_I4
, vt_I8
, vt_BSTR
,vt_R4
,
3166 vt_R8
, vt_CY
, vt_DATE
, vt_DECIMAL
, vt_DISPATCH
, vt_NULL
,
3168 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3169 static const VARTYPE prio2vt
[] = { VT_EMPTY
, VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_BSTR
, VT_R4
,
3170 VT_R8
, VT_CY
, VT_DATE
, VT_DECIMAL
, VT_DISPATCH
,
3171 VT_NULL
, VT_ERROR
};
3173 /* Mapping for coercion from input variant to priority of result variant. */
3174 static const VARTYPE coerce
[] = {
3175 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3176 vt_EMPTY
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3177 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3178 vt_R8
, vt_CY
, vt_DATE
, vt_BSTR
, vt_DISPATCH
,
3179 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3180 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3181 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3182 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3185 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3186 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
),
3192 VariantInit(&tempLeft
);
3193 VariantInit(&tempRight
);
3195 /* Handle VT_DISPATCH by storing and taking address of returned value */
3196 if ((V_VT(left
) & VT_TYPEMASK
) != VT_NULL
&& (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3198 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3200 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3201 if (FAILED(hres
)) goto end
;
3204 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3206 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3207 if (FAILED(hres
)) goto end
;
3212 lvt
= V_VT(left
)&VT_TYPEMASK
;
3213 rvt
= V_VT(right
)&VT_TYPEMASK
;
3215 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3216 Same for any input variant type > VT_I8 */
3217 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3218 lvt
> VT_I8
|| rvt
> VT_I8
) {
3219 hres
= DISP_E_BADVARTYPE
;
3223 /* Determine the variant type to coerce to. */
3224 if (coerce
[lvt
] > coerce
[rvt
]) {
3225 resvt
= prio2vt
[coerce
[lvt
]];
3226 tvt
= prio2vt
[coerce
[rvt
]];
3228 resvt
= prio2vt
[coerce
[rvt
]];
3229 tvt
= prio2vt
[coerce
[lvt
]];
3232 /* Special cases where the result variant type is defined by both
3233 input variants and not only that with the highest priority */
3234 if (resvt
== VT_BSTR
) {
3235 if (tvt
== VT_EMPTY
|| tvt
== VT_BSTR
)
3240 if (resvt
== VT_R4
&& (tvt
== VT_BSTR
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3243 /* For overflow detection use the biggest compatible type for the
3247 hres
= DISP_E_BADVARTYPE
;
3251 V_VT(result
) = VT_NULL
;
3254 FIXME("cannot handle variant type VT_DISPATCH\n");
3255 hres
= DISP_E_TYPEMISMATCH
;
3274 /* Now coerce the variants */
3275 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3278 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3284 V_VT(result
) = resvt
;
3287 hres
= VarDecAdd(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3288 &V_DECIMAL(result
));
3291 hres
= VarCyAdd(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3294 /* We do not add those, we concatenate them. */
3295 hres
= VarBstrCat(V_BSTR(&lv
), V_BSTR(&rv
), &V_BSTR(result
));
3298 /* Overflow detection */
3299 r8res
= (double)V_I8(&lv
) + (double)V_I8(&rv
);
3300 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3301 V_VT(result
) = VT_R8
;
3302 V_R8(result
) = r8res
;
3306 V_I8(&tv
) = V_I8(&lv
) + V_I8(&rv
);
3311 /* FIXME: overflow detection */
3312 V_R8(&tv
) = V_R8(&lv
) + V_R8(&rv
);
3315 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3319 if ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3320 /* Overflow! Change to the vartype with the next higher priority.
3321 With one exception: I4 ==> R8 even if it would fit in I8 */
3325 resvt
= prio2vt
[coerce
[resvt
] + 1];
3326 hres
= VariantChangeType(result
, &tv
, 0, resvt
);
3329 hres
= VariantCopy(result
, &tv
);
3333 V_VT(result
) = VT_EMPTY
;
3334 V_I4(result
) = 0; /* No V_EMPTY */
3339 VariantClear(&tempLeft
);
3340 VariantClear(&tempRight
);
3341 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3345 /**********************************************************************
3346 * VarMul [OLEAUT32.156]
3348 * Multiply two variants.
3351 * left [I] First variant
3352 * right [I] Second variant
3353 * result [O] Result variant
3357 * Failure: An HRESULT error code indicating the error.
3360 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3361 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3363 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3367 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3370 HRESULT WINAPI
VarMul(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3373 VARTYPE lvt
, rvt
, resvt
, tvt
;
3375 VARIANT tempLeft
, tempRight
;
3378 /* Variant priority for coercion. Sorted from lowest to highest.
3379 VT_ERROR shows an invalid input variant type. */
3380 enum coerceprio
{ vt_UI1
= 0, vt_I2
, vt_I4
, vt_I8
, vt_CY
, vt_R4
, vt_R8
,
3381 vt_DECIMAL
, vt_NULL
, vt_ERROR
};
3382 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3383 static const VARTYPE prio2vt
[] = { VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_CY
, VT_R4
, VT_R8
,
3384 VT_DECIMAL
, VT_NULL
, VT_ERROR
};
3386 /* Mapping for coercion from input variant to priority of result variant. */
3387 static const VARTYPE coerce
[] = {
3388 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3389 vt_UI1
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3390 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3391 vt_R8
, vt_CY
, vt_R8
, vt_R8
, vt_ERROR
,
3392 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3393 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3394 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3395 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3398 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3399 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
),
3405 VariantInit(&tempLeft
);
3406 VariantInit(&tempRight
);
3408 /* Handle VT_DISPATCH by storing and taking address of returned value */
3409 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3411 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3412 if (FAILED(hres
)) goto end
;
3415 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3417 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3418 if (FAILED(hres
)) goto end
;
3422 lvt
= V_VT(left
)&VT_TYPEMASK
;
3423 rvt
= V_VT(right
)&VT_TYPEMASK
;
3425 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3426 Same for any input variant type > VT_I8 */
3427 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3428 lvt
> VT_I8
|| rvt
> VT_I8
) {
3429 hres
= DISP_E_BADVARTYPE
;
3433 /* Determine the variant type to coerce to. */
3434 if (coerce
[lvt
] > coerce
[rvt
]) {
3435 resvt
= prio2vt
[coerce
[lvt
]];
3436 tvt
= prio2vt
[coerce
[rvt
]];
3438 resvt
= prio2vt
[coerce
[rvt
]];
3439 tvt
= prio2vt
[coerce
[lvt
]];
3442 /* Special cases where the result variant type is defined by both
3443 input variants and not only that with the highest priority */
3444 if (resvt
== VT_R4
&& (tvt
== VT_CY
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3446 if (lvt
== VT_EMPTY
&& rvt
== VT_EMPTY
)
3449 /* For overflow detection use the biggest compatible type for the
3453 hres
= DISP_E_BADVARTYPE
;
3457 V_VT(result
) = VT_NULL
;
3472 /* Now coerce the variants */
3473 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3476 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3483 V_VT(result
) = resvt
;
3486 hres
= VarDecMul(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3487 &V_DECIMAL(result
));
3490 hres
= VarCyMul(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3493 /* Overflow detection */
3494 r8res
= (double)V_I8(&lv
) * (double)V_I8(&rv
);
3495 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3496 V_VT(result
) = VT_R8
;
3497 V_R8(result
) = r8res
;
3500 V_I8(&tv
) = V_I8(&lv
) * V_I8(&rv
);
3503 /* FIXME: overflow detection */
3504 V_R8(&tv
) = V_R8(&lv
) * V_R8(&rv
);
3507 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3511 while ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3512 /* Overflow! Change to the vartype with the next higher priority.
3513 With one exception: I4 ==> R8 even if it would fit in I8 */
3517 resvt
= prio2vt
[coerce
[resvt
] + 1];
3520 hres
= VariantCopy(result
, &tv
);
3524 V_VT(result
) = VT_EMPTY
;
3525 V_I4(result
) = 0; /* No V_EMPTY */
3530 VariantClear(&tempLeft
);
3531 VariantClear(&tempRight
);
3532 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3536 /**********************************************************************
3537 * VarDiv [OLEAUT32.143]
3539 * Divides one variant with another.
3542 * left [I] First variant
3543 * right [I] Second variant
3544 * result [O] Result variant
3548 * Failure: An HRESULT error code indicating the error.
3550 HRESULT WINAPI
VarDiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3552 HRESULT hres
= S_OK
;
3553 VARTYPE resvt
= VT_EMPTY
;
3554 VARTYPE leftvt
,rightvt
;
3555 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3557 VARIANT tempLeft
, tempRight
;
3559 VariantInit(&tempLeft
);
3560 VariantInit(&tempRight
);
3564 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3565 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
3567 /* Handle VT_DISPATCH by storing and taking address of returned value */
3568 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3570 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3571 if (FAILED(hres
)) goto end
;
3574 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3576 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3577 if (FAILED(hres
)) goto end
;
3581 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3582 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3583 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3584 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3586 if (leftExtraFlags
!= rightExtraFlags
)
3588 hres
= DISP_E_BADVARTYPE
;
3591 ExtraFlags
= leftExtraFlags
;
3593 /* Native VarDiv always returns an error when using extra flags */
3594 if (ExtraFlags
!= 0)
3596 hres
= DISP_E_BADVARTYPE
;
3600 /* Determine return type */
3601 if (!(rightvt
== VT_EMPTY
))
3603 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3605 V_VT(result
) = VT_NULL
;
3609 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3611 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
||
3612 leftvt
== VT_CY
|| rightvt
== VT_CY
||
3613 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
3614 leftvt
== VT_I4
|| rightvt
== VT_I4
||
3615 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
3616 leftvt
== VT_I2
|| rightvt
== VT_I2
||
3617 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3618 leftvt
== VT_R8
|| rightvt
== VT_R8
||
3619 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3621 if ((leftvt
== VT_UI1
&& rightvt
== VT_R4
) ||
3622 (leftvt
== VT_R4
&& rightvt
== VT_UI1
))
3624 else if ((leftvt
== VT_R4
&& (rightvt
== VT_BOOL
||
3625 rightvt
== VT_I2
)) || (rightvt
== VT_R4
&&
3626 (leftvt
== VT_BOOL
|| leftvt
== VT_I2
)))
3631 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3634 else if (leftvt
== VT_NULL
&& rightvt
== VT_EMPTY
)
3636 V_VT(result
) = VT_NULL
;
3642 hres
= DISP_E_BADVARTYPE
;
3646 /* coerce to the result type */
3647 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3648 if (hres
!= S_OK
) goto end
;
3650 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3651 if (hres
!= S_OK
) goto end
;
3654 V_VT(result
) = resvt
;
3658 if (V_R4(&lv
) == 0.0 && V_R4(&rv
) == 0.0)
3660 hres
= DISP_E_OVERFLOW
;
3661 V_VT(result
) = VT_EMPTY
;
3663 else if (V_R4(&rv
) == 0.0)
3665 hres
= DISP_E_DIVBYZERO
;
3666 V_VT(result
) = VT_EMPTY
;
3669 V_R4(result
) = V_R4(&lv
) / V_R4(&rv
);
3672 if (V_R8(&lv
) == 0.0 && V_R8(&rv
) == 0.0)
3674 hres
= DISP_E_OVERFLOW
;
3675 V_VT(result
) = VT_EMPTY
;
3677 else if (V_R8(&rv
) == 0.0)
3679 hres
= DISP_E_DIVBYZERO
;
3680 V_VT(result
) = VT_EMPTY
;
3683 V_R8(result
) = V_R8(&lv
) / V_R8(&rv
);
3686 hres
= VarDecDiv(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3693 VariantClear(&tempLeft
);
3694 VariantClear(&tempRight
);
3695 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3699 /**********************************************************************
3700 * VarSub [OLEAUT32.159]
3702 * Subtract two variants.
3705 * left [I] First variant
3706 * right [I] Second variant
3707 * result [O] Result variant
3711 * Failure: An HRESULT error code indicating the error.
3713 HRESULT WINAPI
VarSub(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3715 HRESULT hres
= S_OK
;
3716 VARTYPE resvt
= VT_EMPTY
;
3717 VARTYPE leftvt
,rightvt
;
3718 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3720 VARIANT tempLeft
, tempRight
;
3724 VariantInit(&tempLeft
);
3725 VariantInit(&tempRight
);
3727 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
3728 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
3730 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3731 (V_VT(left
)&(~VT_TYPEMASK
)) == 0 &&
3732 (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3734 if (NULL
== V_DISPATCH(left
)) {
3735 if ((V_VT(right
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3736 hres
= DISP_E_BADVARTYPE
;
3737 else if ((V_VT(right
) & VT_TYPEMASK
) >= VT_UI8
&&
3738 (V_VT(right
) & VT_TYPEMASK
) < VT_RECORD
)
3739 hres
= DISP_E_BADVARTYPE
;
3740 else switch (V_VT(right
) & VT_TYPEMASK
)
3748 hres
= DISP_E_BADVARTYPE
;
3750 if (FAILED(hres
)) goto end
;
3752 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3753 if (FAILED(hres
)) goto end
;
3756 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3757 (V_VT(right
)&(~VT_TYPEMASK
)) == 0 &&
3758 (V_VT(left
) & VT_TYPEMASK
) != VT_NULL
)
3760 if (NULL
== V_DISPATCH(right
))
3762 if ((V_VT(left
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3763 hres
= DISP_E_BADVARTYPE
;
3764 else if ((V_VT(left
) & VT_TYPEMASK
) >= VT_UI8
&&
3765 (V_VT(left
) & VT_TYPEMASK
) < VT_RECORD
)
3766 hres
= DISP_E_BADVARTYPE
;
3767 else switch (V_VT(left
) & VT_TYPEMASK
)
3775 hres
= DISP_E_BADVARTYPE
;
3777 if (FAILED(hres
)) goto end
;
3779 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3780 if (FAILED(hres
)) goto end
;
3784 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3785 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3786 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3787 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3789 if (leftExtraFlags
!= rightExtraFlags
)
3791 hres
= DISP_E_BADVARTYPE
;
3794 ExtraFlags
= leftExtraFlags
;
3796 /* determine return type and return code */
3797 /* All extra flags produce errors */
3798 if (ExtraFlags
== (VT_VECTOR
|VT_BYREF
|VT_RESERVED
) ||
3799 ExtraFlags
== (VT_VECTOR
|VT_RESERVED
) ||
3800 ExtraFlags
== (VT_VECTOR
|VT_BYREF
) ||
3801 ExtraFlags
== (VT_BYREF
|VT_RESERVED
) ||
3802 ExtraFlags
== VT_VECTOR
||
3803 ExtraFlags
== VT_BYREF
||
3804 ExtraFlags
== VT_RESERVED
)
3806 hres
= DISP_E_BADVARTYPE
;
3809 else if (ExtraFlags
>= VT_ARRAY
)
3811 hres
= DISP_E_TYPEMISMATCH
;
3814 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3815 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3816 else if (leftvt
== VT_CLSID
|| rightvt
== VT_CLSID
||
3817 leftvt
== VT_VARIANT
|| rightvt
== VT_VARIANT
||
3818 leftvt
== VT_I1
|| rightvt
== VT_I1
||
3819 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
3820 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
3821 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
3822 leftvt
== VT_INT
|| rightvt
== VT_INT
||
3823 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3824 leftvt
== VT_UNKNOWN
|| rightvt
== VT_UNKNOWN
||
3825 leftvt
== VT_RECORD
|| rightvt
== VT_RECORD
)
3827 if (leftvt
== VT_RECORD
&& rightvt
== VT_I8
)
3828 hres
= DISP_E_TYPEMISMATCH
;
3829 else if (leftvt
< VT_UI1
&& rightvt
== VT_RECORD
)
3830 hres
= DISP_E_TYPEMISMATCH
;
3831 else if (leftvt
>= VT_UI1
&& rightvt
== VT_RECORD
)
3832 hres
= DISP_E_TYPEMISMATCH
;
3833 else if (leftvt
== VT_RECORD
&& rightvt
<= VT_UI1
)
3834 hres
= DISP_E_TYPEMISMATCH
;
3835 else if (leftvt
== VT_RECORD
&& rightvt
> VT_UI1
)
3836 hres
= DISP_E_BADVARTYPE
;
3838 hres
= DISP_E_BADVARTYPE
;
3841 /* The following flags/types are invalid for left variant */
3842 else if (!((leftvt
<= VT_LPWSTR
|| leftvt
== VT_RECORD
||
3843 leftvt
== VT_CLSID
) && leftvt
!= (VARTYPE
)15 /* undefined vt */ &&
3844 (leftvt
< VT_VOID
|| leftvt
> VT_LPWSTR
)))
3846 hres
= DISP_E_BADVARTYPE
;
3849 /* The following flags/types are invalid for right variant */
3850 else if (!((rightvt
<= VT_LPWSTR
|| rightvt
== VT_RECORD
||
3851 rightvt
== VT_CLSID
) && rightvt
!= (VARTYPE
)15 /* undefined vt */ &&
3852 (rightvt
< VT_VOID
|| rightvt
> VT_LPWSTR
)))
3854 hres
= DISP_E_BADVARTYPE
;
3857 else if ((leftvt
== VT_NULL
&& rightvt
== VT_DISPATCH
) ||
3858 (leftvt
== VT_DISPATCH
&& rightvt
== VT_NULL
))
3860 else if (leftvt
== VT_DISPATCH
|| rightvt
== VT_DISPATCH
||
3861 leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
3863 hres
= DISP_E_TYPEMISMATCH
;
3866 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3868 else if ((leftvt
== VT_EMPTY
&& rightvt
== VT_BSTR
) ||
3869 (leftvt
== VT_DATE
&& rightvt
== VT_DATE
) ||
3870 (leftvt
== VT_BSTR
&& rightvt
== VT_EMPTY
) ||
3871 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
3873 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3875 else if (leftvt
== VT_DATE
|| rightvt
== VT_DATE
)
3877 else if (leftvt
== VT_CY
|| rightvt
== VT_CY
)
3879 else if (leftvt
== VT_R8
|| rightvt
== VT_R8
)
3881 else if (leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3883 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3885 if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
3886 leftvt
== VT_I8
|| rightvt
== VT_I8
)
3891 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
3893 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
)
3895 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
3896 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3897 (leftvt
== VT_EMPTY
&& rightvt
== VT_EMPTY
))
3899 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3903 hres
= DISP_E_TYPEMISMATCH
;
3907 /* coerce to the result type */
3908 if (leftvt
== VT_BSTR
&& rightvt
== VT_DATE
)
3909 hres
= VariantChangeType(&lv
, left
, 0, VT_R8
);
3911 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3912 if (hres
!= S_OK
) goto end
;
3913 if (leftvt
== VT_DATE
&& rightvt
== VT_BSTR
)
3914 hres
= VariantChangeType(&rv
, right
, 0, VT_R8
);
3916 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3917 if (hres
!= S_OK
) goto end
;
3920 V_VT(result
) = resvt
;
3926 V_DATE(result
) = V_DATE(&lv
) - V_DATE(&rv
);
3929 hres
= VarCySub(V_CY(&lv
), V_CY(&rv
), &(V_CY(result
)));
3932 V_R4(result
) = V_R4(&lv
) - V_R4(&rv
);
3935 V_I8(result
) = V_I8(&lv
) - V_I8(&rv
);
3938 V_I4(result
) = V_I4(&lv
) - V_I4(&rv
);
3941 V_I2(result
) = V_I2(&lv
) - V_I2(&rv
);
3944 V_I1(result
) = V_I1(&lv
) - V_I1(&rv
);
3947 V_UI1(result
) = V_UI2(&lv
) - V_UI1(&rv
);
3950 V_R8(result
) = V_R8(&lv
) - V_R8(&rv
);
3953 hres
= VarDecSub(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3960 VariantClear(&tempLeft
);
3961 VariantClear(&tempRight
);
3962 TRACE("returning 0x%8x (variant type %s)\n", hres
, debugstr_VT(result
));
3967 /**********************************************************************
3968 * VarOr [OLEAUT32.157]
3970 * Perform a logical or (OR) operation on two variants.
3973 * pVarLeft [I] First variant
3974 * pVarRight [I] Variant to OR with pVarLeft
3975 * pVarOut [O] Destination for OR result
3978 * Success: S_OK. pVarOut contains the result of the operation with its type
3979 * taken from the table listed under VarXor().
3980 * Failure: An HRESULT error code indicating the error.
3983 * See the Notes section of VarXor() for further information.
3985 HRESULT WINAPI
VarOr(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
3988 VARIANT varLeft
, varRight
, varStr
;
3990 VARIANT tempLeft
, tempRight
;
3992 VariantInit(&tempLeft
);
3993 VariantInit(&tempRight
);
3994 VariantInit(&varLeft
);
3995 VariantInit(&varRight
);
3996 VariantInit(&varStr
);
3998 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
3999 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4000 debugstr_VF(pVarRight
), pVarOut
);
4002 /* Handle VT_DISPATCH by storing and taking address of returned value */
4003 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
4005 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
4006 if (FAILED(hRet
)) goto VarOr_Exit
;
4007 pVarLeft
= &tempLeft
;
4009 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
4011 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
4012 if (FAILED(hRet
)) goto VarOr_Exit
;
4013 pVarRight
= &tempRight
;
4016 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4017 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4018 V_VT(pVarLeft
) == VT_DISPATCH
|| V_VT(pVarRight
) == VT_DISPATCH
||
4019 V_VT(pVarLeft
) == VT_RECORD
|| V_VT(pVarRight
) == VT_RECORD
)
4021 hRet
= DISP_E_BADVARTYPE
;
4025 V_VT(&varLeft
) = V_VT(&varRight
) = V_VT(&varStr
) = VT_EMPTY
;
4027 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4029 /* NULL OR Zero is NULL, NULL OR value is value */
4030 if (V_VT(pVarLeft
) == VT_NULL
)
4031 pVarLeft
= pVarRight
; /* point to the non-NULL var */
4033 V_VT(pVarOut
) = VT_NULL
;
4036 switch (V_VT(pVarLeft
))
4038 case VT_DATE
: case VT_R8
:
4044 if (V_BOOL(pVarLeft
))
4045 *pVarOut
= *pVarLeft
;
4048 case VT_I2
: case VT_UI2
:
4059 if (V_UI1(pVarLeft
))
4060 *pVarOut
= *pVarLeft
;
4068 case VT_I4
: case VT_UI4
: case VT_INT
: case VT_UINT
:
4074 if (V_CY(pVarLeft
).int64
)
4078 case VT_I8
: case VT_UI8
:
4084 if (DEC_HI32(&V_DECIMAL(pVarLeft
)) || DEC_LO64(&V_DECIMAL(pVarLeft
)))
4092 if (!V_BSTR(pVarLeft
))
4094 hRet
= DISP_E_BADVARTYPE
;
4098 hRet
= VarBoolFromStr(V_BSTR(pVarLeft
), LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
4099 if (SUCCEEDED(hRet
) && b
)
4101 V_VT(pVarOut
) = VT_BOOL
;
4102 V_BOOL(pVarOut
) = b
;
4106 case VT_NULL
: case VT_EMPTY
:
4107 V_VT(pVarOut
) = VT_NULL
;
4111 hRet
= DISP_E_BADVARTYPE
;
4116 if (V_VT(pVarLeft
) == VT_EMPTY
|| V_VT(pVarRight
) == VT_EMPTY
)
4118 if (V_VT(pVarLeft
) == VT_EMPTY
)
4119 pVarLeft
= pVarRight
; /* point to the non-EMPTY var */
4122 /* Since one argument is empty (0), OR'ing it with the other simply
4123 * gives the others value (as 0|x => x). So just convert the other
4124 * argument to the required result type.
4126 switch (V_VT(pVarLeft
))
4129 if (!V_BSTR(pVarLeft
))
4131 hRet
= DISP_E_BADVARTYPE
;
4135 hRet
= VariantCopy(&varStr
, pVarLeft
);
4139 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4142 /* Fall Through ... */
4143 case VT_EMPTY
: case VT_UI1
: case VT_BOOL
: case VT_I2
:
4144 V_VT(pVarOut
) = VT_I2
;
4146 case VT_DATE
: case VT_CY
: case VT_DECIMAL
: case VT_R4
: case VT_R8
:
4147 case VT_I1
: case VT_UI2
: case VT_I4
: case VT_UI4
:
4148 case VT_INT
: case VT_UINT
: case VT_UI8
:
4149 V_VT(pVarOut
) = VT_I4
;
4152 V_VT(pVarOut
) = VT_I8
;
4155 hRet
= DISP_E_BADVARTYPE
;
4158 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4161 pVarLeft
= &varLeft
;
4162 hRet
= VariantChangeType(pVarOut
, pVarLeft
, 0, V_VT(pVarOut
));
4166 if (V_VT(pVarLeft
) == VT_BOOL
&& V_VT(pVarRight
) == VT_BOOL
)
4168 V_VT(pVarOut
) = VT_BOOL
;
4169 V_BOOL(pVarOut
) = V_BOOL(pVarLeft
) | V_BOOL(pVarRight
);
4174 if (V_VT(pVarLeft
) == VT_UI1
&& V_VT(pVarRight
) == VT_UI1
)
4176 V_VT(pVarOut
) = VT_UI1
;
4177 V_UI1(pVarOut
) = V_UI1(pVarLeft
) | V_UI1(pVarRight
);
4182 if (V_VT(pVarLeft
) == VT_BSTR
)
4184 hRet
= VariantCopy(&varStr
, pVarLeft
);
4188 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4193 if (V_VT(pVarLeft
) == VT_BOOL
&&
4194 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_BSTR
))
4198 else if ((V_VT(pVarLeft
) == VT_BOOL
|| V_VT(pVarLeft
) == VT_UI1
||
4199 V_VT(pVarLeft
) == VT_I2
|| V_VT(pVarLeft
) == VT_BSTR
) &&
4200 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_UI1
||
4201 V_VT(pVarRight
) == VT_I2
|| V_VT(pVarRight
) == VT_BSTR
))
4205 else if (V_VT(pVarLeft
) == VT_I8
|| V_VT(pVarRight
) == VT_I8
)
4207 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4209 hRet
= DISP_E_TYPEMISMATCH
;
4215 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4219 hRet
= VariantCopy(&varRight
, pVarRight
);
4223 if (vt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
4224 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
4229 if (V_VT(&varLeft
) == VT_BSTR
&&
4230 FAILED(VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
)))
4231 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
, VT_BOOL
);
4232 if (SUCCEEDED(hRet
) && V_VT(&varLeft
) != vt
)
4233 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4238 if (vt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
4239 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
4244 if (V_VT(&varRight
) == VT_BSTR
&&
4245 FAILED(VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
)))
4246 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
, VT_BOOL
);
4247 if (SUCCEEDED(hRet
) && V_VT(&varRight
) != vt
)
4248 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4256 V_I8(pVarOut
) = V_I8(&varLeft
) | V_I8(&varRight
);
4258 else if (vt
== VT_I4
)
4260 V_I4(pVarOut
) = V_I4(&varLeft
) | V_I4(&varRight
);
4264 V_I2(pVarOut
) = V_I2(&varLeft
) | V_I2(&varRight
);
4268 VariantClear(&varStr
);
4269 VariantClear(&varLeft
);
4270 VariantClear(&varRight
);
4271 VariantClear(&tempLeft
);
4272 VariantClear(&tempRight
);
4276 /**********************************************************************
4277 * VarAbs [OLEAUT32.168]
4279 * Convert a variant to its absolute value.
4282 * pVarIn [I] Source variant
4283 * pVarOut [O] Destination for converted value
4286 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4287 * Failure: An HRESULT error code indicating the error.
4290 * - This function does not process by-reference variants.
4291 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4292 * according to the following table:
4293 *| Input Type Output Type
4294 *| ---------- -----------
4297 *| (All others) Unchanged
4299 HRESULT WINAPI
VarAbs(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4302 HRESULT hRet
= S_OK
;
4307 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4308 debugstr_VF(pVarIn
), pVarOut
);
4310 /* Handle VT_DISPATCH by storing and taking address of returned value */
4311 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4313 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4314 if (FAILED(hRet
)) goto VarAbs_Exit
;
4318 if (V_ISARRAY(pVarIn
) || V_VT(pVarIn
) == VT_UNKNOWN
||
4319 V_VT(pVarIn
) == VT_DISPATCH
|| V_VT(pVarIn
) == VT_RECORD
||
4320 V_VT(pVarIn
) == VT_ERROR
)
4322 hRet
= DISP_E_TYPEMISMATCH
;
4325 *pVarOut
= *pVarIn
; /* Shallow copy the value, and invert it if needed */
4327 #define ABS_CASE(typ,min) \
4328 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4329 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4332 switch (V_VT(pVarIn
))
4334 ABS_CASE(I1
,I1_MIN
);
4336 V_VT(pVarOut
) = VT_I2
;
4337 /* BOOL->I2, Fall through ... */
4338 ABS_CASE(I2
,I2_MIN
);
4340 ABS_CASE(I4
,I4_MIN
);
4341 ABS_CASE(I8
,I8_MIN
);
4342 ABS_CASE(R4
,R4_MIN
);
4344 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
4347 V_VT(pVarOut
) = VT_R8
;
4349 /* Fall through ... */
4351 ABS_CASE(R8
,R8_MIN
);
4353 hRet
= VarCyAbs(V_CY(pVarIn
), & V_CY(pVarOut
));
4356 DEC_SIGN(&V_DECIMAL(pVarOut
)) &= ~DECIMAL_NEG
;
4366 V_VT(pVarOut
) = VT_I2
;
4371 hRet
= DISP_E_BADVARTYPE
;
4375 VariantClear(&temp
);
4379 /**********************************************************************
4380 * VarFix [OLEAUT32.169]
4382 * Truncate a variants value to a whole number.
4385 * pVarIn [I] Source variant
4386 * pVarOut [O] Destination for converted value
4389 * Success: S_OK. pVarOut contains the converted value.
4390 * Failure: An HRESULT error code indicating the error.
4393 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4394 * according to the following table:
4395 *| Input Type Output Type
4396 *| ---------- -----------
4400 *| All Others Unchanged
4401 * - The difference between this function and VarInt() is that VarInt() rounds
4402 * negative numbers away from 0, while this function rounds them towards zero.
4404 HRESULT WINAPI
VarFix(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4406 HRESULT hRet
= S_OK
;
4411 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4412 debugstr_VF(pVarIn
), pVarOut
);
4414 /* Handle VT_DISPATCH by storing and taking address of returned value */
4415 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4417 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4418 if (FAILED(hRet
)) goto VarFix_Exit
;
4421 V_VT(pVarOut
) = V_VT(pVarIn
);
4423 switch (V_VT(pVarIn
))
4426 V_UI1(pVarOut
) = V_UI1(pVarIn
);
4429 V_VT(pVarOut
) = VT_I2
;
4432 V_I2(pVarOut
) = V_I2(pVarIn
);
4435 V_I4(pVarOut
) = V_I4(pVarIn
);
4438 V_I8(pVarOut
) = V_I8(pVarIn
);
4441 if (V_R4(pVarIn
) < 0.0f
)
4442 V_R4(pVarOut
) = (float)ceil(V_R4(pVarIn
));
4444 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4447 V_VT(pVarOut
) = VT_R8
;
4448 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4453 if (V_R8(pVarIn
) < 0.0)
4454 V_R8(pVarOut
) = ceil(V_R8(pVarIn
));
4456 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4459 hRet
= VarCyFix(V_CY(pVarIn
), &V_CY(pVarOut
));
4462 hRet
= VarDecFix(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4465 V_VT(pVarOut
) = VT_I2
;
4472 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4473 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4474 hRet
= DISP_E_BADVARTYPE
;
4476 hRet
= DISP_E_TYPEMISMATCH
;
4480 V_VT(pVarOut
) = VT_EMPTY
;
4481 VariantClear(&temp
);
4486 /**********************************************************************
4487 * VarInt [OLEAUT32.172]
4489 * Truncate a variants value to a whole number.
4492 * pVarIn [I] Source variant
4493 * pVarOut [O] Destination for converted value
4496 * Success: S_OK. pVarOut contains the converted value.
4497 * Failure: An HRESULT error code indicating the error.
4500 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4501 * according to the following table:
4502 *| Input Type Output Type
4503 *| ---------- -----------
4507 *| All Others Unchanged
4508 * - The difference between this function and VarFix() is that VarFix() rounds
4509 * negative numbers towards 0, while this function rounds them away from zero.
4511 HRESULT WINAPI
VarInt(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4513 HRESULT hRet
= S_OK
;
4518 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4519 debugstr_VF(pVarIn
), pVarOut
);
4521 /* Handle VT_DISPATCH by storing and taking address of returned value */
4522 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4524 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4525 if (FAILED(hRet
)) goto VarInt_Exit
;
4528 V_VT(pVarOut
) = V_VT(pVarIn
);
4530 switch (V_VT(pVarIn
))
4533 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4536 V_VT(pVarOut
) = VT_R8
;
4537 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4542 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4545 hRet
= VarCyInt(V_CY(pVarIn
), &V_CY(pVarOut
));
4548 hRet
= VarDecInt(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4551 hRet
= VarFix(pVarIn
, pVarOut
);
4554 VariantClear(&temp
);
4559 /**********************************************************************
4560 * VarXor [OLEAUT32.167]
4562 * Perform a logical exclusive-or (XOR) operation on two variants.
4565 * pVarLeft [I] First variant
4566 * pVarRight [I] Variant to XOR with pVarLeft
4567 * pVarOut [O] Destination for XOR result
4570 * Success: S_OK. pVarOut contains the result of the operation with its type
4571 * taken from the table below).
4572 * Failure: An HRESULT error code indicating the error.
4575 * - Neither pVarLeft or pVarRight are modified by this function.
4576 * - This function does not process by-reference variants.
4577 * - Input types of VT_BSTR may be numeric strings or boolean text.
4578 * - The type of result stored in pVarOut depends on the types of pVarLeft
4579 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4580 * or VT_NULL if the function succeeds.
4581 * - Type promotion is inconsistent and as a result certain combinations of
4582 * values will return DISP_E_OVERFLOW even when they could be represented.
4583 * This matches the behaviour of native oleaut32.
4585 HRESULT WINAPI
VarXor(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4588 VARIANT varLeft
, varRight
;
4589 VARIANT tempLeft
, tempRight
;
4593 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4594 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4595 debugstr_VF(pVarRight
), pVarOut
);
4597 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4598 V_VT(pVarLeft
) > VT_UINT
|| V_VT(pVarRight
) > VT_UINT
||
4599 V_VT(pVarLeft
) == VT_VARIANT
|| V_VT(pVarRight
) == VT_VARIANT
||
4600 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4601 V_VT(pVarLeft
) == (VARTYPE
)15 || V_VT(pVarRight
) == (VARTYPE
)15 ||
4602 V_VT(pVarLeft
) == VT_ERROR
|| V_VT(pVarRight
) == VT_ERROR
)
4603 return DISP_E_BADVARTYPE
;
4605 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4607 /* NULL XOR anything valid is NULL */
4608 V_VT(pVarOut
) = VT_NULL
;
4612 VariantInit(&tempLeft
);
4613 VariantInit(&tempRight
);
4615 /* Handle VT_DISPATCH by storing and taking address of returned value */
4616 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
4618 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
4619 if (FAILED(hRet
)) goto VarXor_Exit
;
4620 pVarLeft
= &tempLeft
;
4622 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
4624 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
4625 if (FAILED(hRet
)) goto VarXor_Exit
;
4626 pVarRight
= &tempRight
;
4629 /* Copy our inputs so we don't disturb anything */
4630 V_VT(&varLeft
) = V_VT(&varRight
) = VT_EMPTY
;
4632 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4636 hRet
= VariantCopy(&varRight
, pVarRight
);
4640 /* Try any strings first as numbers, then as VT_BOOL */
4641 if (V_VT(&varLeft
) == VT_BSTR
)
4643 hRet
= VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
);
4644 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
,
4645 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4650 if (V_VT(&varRight
) == VT_BSTR
)
4652 hRet
= VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
);
4653 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
,
4654 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4659 /* Determine the result type */
4660 if (V_VT(&varLeft
) == VT_I8
|| V_VT(&varRight
) == VT_I8
)
4662 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4664 hRet
= DISP_E_TYPEMISMATCH
;
4671 switch ((V_VT(&varLeft
) << 16) | V_VT(&varRight
))
4673 case (VT_BOOL
<< 16) | VT_BOOL
:
4676 case (VT_UI1
<< 16) | VT_UI1
:
4679 case (VT_EMPTY
<< 16) | VT_EMPTY
:
4680 case (VT_EMPTY
<< 16) | VT_UI1
:
4681 case (VT_EMPTY
<< 16) | VT_I2
:
4682 case (VT_EMPTY
<< 16) | VT_BOOL
:
4683 case (VT_UI1
<< 16) | VT_EMPTY
:
4684 case (VT_UI1
<< 16) | VT_I2
:
4685 case (VT_UI1
<< 16) | VT_BOOL
:
4686 case (VT_I2
<< 16) | VT_EMPTY
:
4687 case (VT_I2
<< 16) | VT_UI1
:
4688 case (VT_I2
<< 16) | VT_I2
:
4689 case (VT_I2
<< 16) | VT_BOOL
:
4690 case (VT_BOOL
<< 16) | VT_EMPTY
:
4691 case (VT_BOOL
<< 16) | VT_UI1
:
4692 case (VT_BOOL
<< 16) | VT_I2
:
4701 /* VT_UI4 does not overflow */
4704 if (V_VT(&varLeft
) == VT_UI4
)
4705 V_VT(&varLeft
) = VT_I4
;
4706 if (V_VT(&varRight
) == VT_UI4
)
4707 V_VT(&varRight
) = VT_I4
;
4710 /* Convert our input copies to the result type */
4711 if (V_VT(&varLeft
) != vt
)
4712 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4716 if (V_VT(&varRight
) != vt
)
4717 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4723 /* Calculate the result */
4727 V_I8(pVarOut
) = V_I8(&varLeft
) ^ V_I8(&varRight
);
4730 V_I4(pVarOut
) = V_I4(&varLeft
) ^ V_I4(&varRight
);
4734 V_I2(pVarOut
) = V_I2(&varLeft
) ^ V_I2(&varRight
);
4737 V_UI1(pVarOut
) = V_UI1(&varLeft
) ^ V_UI1(&varRight
);
4742 VariantClear(&varLeft
);
4743 VariantClear(&varRight
);
4744 VariantClear(&tempLeft
);
4745 VariantClear(&tempRight
);
4749 /**********************************************************************
4750 * VarEqv [OLEAUT32.172]
4752 * Determine if two variants contain the same value.
4755 * pVarLeft [I] First variant to compare
4756 * pVarRight [I] Variant to compare to pVarLeft
4757 * pVarOut [O] Destination for comparison result
4760 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4761 * if equivalent or non-zero otherwise.
4762 * Failure: An HRESULT error code indicating the error.
4765 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4768 HRESULT WINAPI
VarEqv(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4772 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft
, debugstr_VT(pVarLeft
),
4773 debugstr_VF(pVarLeft
), pVarRight
, debugstr_VT(pVarRight
),
4774 debugstr_VF(pVarRight
), pVarOut
);
4776 hRet
= VarXor(pVarLeft
, pVarRight
, pVarOut
);
4777 if (SUCCEEDED(hRet
))
4779 if (V_VT(pVarOut
) == VT_I8
)
4780 V_I8(pVarOut
) = ~V_I8(pVarOut
);
4782 V_UI4(pVarOut
) = ~V_UI4(pVarOut
);
4787 /**********************************************************************
4788 * VarNeg [OLEAUT32.173]
4790 * Negate the value of a variant.
4793 * pVarIn [I] Source variant
4794 * pVarOut [O] Destination for converted value
4797 * Success: S_OK. pVarOut contains the converted value.
4798 * Failure: An HRESULT error code indicating the error.
4801 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4802 * according to the following table:
4803 *| Input Type Output Type
4804 *| ---------- -----------
4809 *| All Others Unchanged (unless promoted)
4810 * - Where the negated value of a variant does not fit in its base type, the type
4811 * is promoted according to the following table:
4812 *| Input Type Promoted To
4813 *| ---------- -----------
4817 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4818 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4819 * for types which are not valid. Since this is in contravention of the
4820 * meaning of those error codes and unlikely to be relied on by applications,
4821 * this implementation returns errors consistent with the other high level
4822 * variant math functions.
4824 HRESULT WINAPI
VarNeg(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4826 HRESULT hRet
= S_OK
;
4831 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4832 debugstr_VF(pVarIn
), pVarOut
);
4834 /* Handle VT_DISPATCH by storing and taking address of returned value */
4835 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4837 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4838 if (FAILED(hRet
)) goto VarNeg_Exit
;
4841 V_VT(pVarOut
) = V_VT(pVarIn
);
4843 switch (V_VT(pVarIn
))
4846 V_VT(pVarOut
) = VT_I2
;
4847 V_I2(pVarOut
) = -V_UI1(pVarIn
);
4850 V_VT(pVarOut
) = VT_I2
;
4853 if (V_I2(pVarIn
) == I2_MIN
)
4855 V_VT(pVarOut
) = VT_I4
;
4856 V_I4(pVarOut
) = -(int)V_I2(pVarIn
);
4859 V_I2(pVarOut
) = -V_I2(pVarIn
);
4862 if (V_I4(pVarIn
) == I4_MIN
)
4864 V_VT(pVarOut
) = VT_R8
;
4865 V_R8(pVarOut
) = -(double)V_I4(pVarIn
);
4868 V_I4(pVarOut
) = -V_I4(pVarIn
);
4871 if (V_I8(pVarIn
) == I8_MIN
)
4873 V_VT(pVarOut
) = VT_R8
;
4874 hRet
= VarR8FromI8(V_I8(pVarIn
), &V_R8(pVarOut
));
4875 V_R8(pVarOut
) *= -1.0;
4878 V_I8(pVarOut
) = -V_I8(pVarIn
);
4881 V_R4(pVarOut
) = -V_R4(pVarIn
);
4885 V_R8(pVarOut
) = -V_R8(pVarIn
);
4888 hRet
= VarCyNeg(V_CY(pVarIn
), &V_CY(pVarOut
));
4891 hRet
= VarDecNeg(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4894 V_VT(pVarOut
) = VT_R8
;
4895 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4896 V_R8(pVarOut
) = -V_R8(pVarOut
);
4899 V_VT(pVarOut
) = VT_I2
;
4906 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4907 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4908 hRet
= DISP_E_BADVARTYPE
;
4910 hRet
= DISP_E_TYPEMISMATCH
;
4914 V_VT(pVarOut
) = VT_EMPTY
;
4915 VariantClear(&temp
);
4920 /**********************************************************************
4921 * VarNot [OLEAUT32.174]
4923 * Perform a not operation on a variant.
4926 * pVarIn [I] Source variant
4927 * pVarOut [O] Destination for converted value
4930 * Success: S_OK. pVarOut contains the converted value.
4931 * Failure: An HRESULT error code indicating the error.
4934 * - Strictly speaking, this function performs a bitwise ones complement
4935 * on the variants value (after possibly converting to VT_I4, see below).
4936 * This only behaves like a boolean not operation if the value in
4937 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4938 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4939 * before calling this function.
4940 * - This function does not process by-reference variants.
4941 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4942 * according to the following table:
4943 *| Input Type Output Type
4944 *| ---------- -----------
4951 *| (All others) Unchanged
4953 HRESULT WINAPI
VarNot(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4956 HRESULT hRet
= S_OK
;
4961 TRACE("(%p->(%s%s),%p)\n", pVarIn
, debugstr_VT(pVarIn
),
4962 debugstr_VF(pVarIn
), pVarOut
);
4964 /* Handle VT_DISPATCH by storing and taking address of returned value */
4965 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4967 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4968 if (FAILED(hRet
)) goto VarNot_Exit
;
4972 V_VT(pVarOut
) = V_VT(pVarIn
);
4974 switch (V_VT(pVarIn
))
4977 V_I4(pVarOut
) = ~V_I1(pVarIn
);
4978 V_VT(pVarOut
) = VT_I4
;
4980 case VT_UI1
: V_UI1(pVarOut
) = ~V_UI1(pVarIn
); break;
4982 case VT_I2
: V_I2(pVarOut
) = ~V_I2(pVarIn
); break;
4984 V_I4(pVarOut
) = ~V_UI2(pVarIn
);
4985 V_VT(pVarOut
) = VT_I4
;
4988 hRet
= VarI4FromDec(&V_DECIMAL(pVarIn
), &V_I4(&varIn
));
4992 /* Fall through ... */
4994 V_VT(pVarOut
) = VT_I4
;
4995 /* Fall through ... */
4996 case VT_I4
: V_I4(pVarOut
) = ~V_I4(pVarIn
); break;
4999 V_I4(pVarOut
) = ~V_UI4(pVarIn
);
5000 V_VT(pVarOut
) = VT_I4
;
5002 case VT_I8
: V_I8(pVarOut
) = ~V_I8(pVarIn
); break;
5004 V_I4(pVarOut
) = ~V_UI8(pVarIn
);
5005 V_VT(pVarOut
) = VT_I4
;
5008 hRet
= VarI4FromR4(V_R4(pVarIn
), &V_I4(pVarOut
));
5009 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5010 V_VT(pVarOut
) = VT_I4
;
5013 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
5017 /* Fall through ... */
5020 hRet
= VarI4FromR8(V_R8(pVarIn
), &V_I4(pVarOut
));
5021 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5022 V_VT(pVarOut
) = VT_I4
;
5025 hRet
= VarI4FromCy(V_CY(pVarIn
), &V_I4(pVarOut
));
5026 V_I4(pVarOut
) = ~V_I4(pVarOut
);
5027 V_VT(pVarOut
) = VT_I4
;
5031 V_VT(pVarOut
) = VT_I2
;
5037 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
5038 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
5039 hRet
= DISP_E_BADVARTYPE
;
5041 hRet
= DISP_E_TYPEMISMATCH
;
5045 V_VT(pVarOut
) = VT_EMPTY
;
5046 VariantClear(&temp
);
5051 /**********************************************************************
5052 * VarRound [OLEAUT32.175]
5054 * Perform a round operation on a variant.
5057 * pVarIn [I] Source variant
5058 * deci [I] Number of decimals to round to
5059 * pVarOut [O] Destination for converted value
5062 * Success: S_OK. pVarOut contains the converted value.
5063 * Failure: An HRESULT error code indicating the error.
5066 * - Floating point values are rounded to the desired number of decimals.
5067 * - Some integer types are just copied to the return variable.
5068 * - Some other integer types are not handled and fail.
5070 HRESULT WINAPI
VarRound(LPVARIANT pVarIn
, int deci
, LPVARIANT pVarOut
)
5073 HRESULT hRet
= S_OK
;
5079 TRACE("(%p->(%s%s),%d)\n", pVarIn
, debugstr_VT(pVarIn
), debugstr_VF(pVarIn
), deci
);
5081 /* Handle VT_DISPATCH by storing and taking address of returned value */
5082 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
5084 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
5085 if (FAILED(hRet
)) goto VarRound_Exit
;
5089 switch (V_VT(pVarIn
))
5091 /* cases that fail on windows */
5096 hRet
= DISP_E_BADVARTYPE
;
5099 /* cases just copying in to out */
5101 V_VT(pVarOut
) = V_VT(pVarIn
);
5102 V_UI1(pVarOut
) = V_UI1(pVarIn
);
5105 V_VT(pVarOut
) = V_VT(pVarIn
);
5106 V_I2(pVarOut
) = V_I2(pVarIn
);
5109 V_VT(pVarOut
) = V_VT(pVarIn
);
5110 V_I4(pVarOut
) = V_I4(pVarIn
);
5113 V_VT(pVarOut
) = V_VT(pVarIn
);
5114 /* value unchanged */
5117 /* cases that change type */
5119 V_VT(pVarOut
) = VT_I2
;
5123 V_VT(pVarOut
) = VT_I2
;
5124 V_I2(pVarOut
) = V_BOOL(pVarIn
);
5127 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
5132 /* Fall through ... */
5134 /* cases we need to do math */
5136 if (V_R8(pVarIn
)>0) {
5137 V_R8(pVarOut
)=floor(V_R8(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5139 V_R8(pVarOut
)=ceil(V_R8(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5141 V_VT(pVarOut
) = V_VT(pVarIn
);
5144 if (V_R4(pVarIn
)>0) {
5145 V_R4(pVarOut
)=floor(V_R4(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5147 V_R4(pVarOut
)=ceil(V_R4(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5149 V_VT(pVarOut
) = V_VT(pVarIn
);
5152 if (V_DATE(pVarIn
)>0) {
5153 V_DATE(pVarOut
)=floor(V_DATE(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5155 V_DATE(pVarOut
)=ceil(V_DATE(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5157 V_VT(pVarOut
) = V_VT(pVarIn
);
5163 factor
=pow(10, 4-deci
);
5165 if (V_CY(pVarIn
).int64
>0) {
5166 V_CY(pVarOut
).int64
=floor(V_CY(pVarIn
).int64
/factor
)*factor
;
5168 V_CY(pVarOut
).int64
=ceil(V_CY(pVarIn
).int64
/factor
)*factor
;
5170 V_VT(pVarOut
) = V_VT(pVarIn
);
5173 /* cases we don't know yet */
5175 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5176 V_VT(pVarIn
) & VT_TYPEMASK
, deci
);
5177 hRet
= DISP_E_BADVARTYPE
;
5181 V_VT(pVarOut
) = VT_EMPTY
;
5182 VariantClear(&temp
);
5184 TRACE("returning 0x%08x (%s%s),%f\n", hRet
, debugstr_VT(pVarOut
),
5185 debugstr_VF(pVarOut
), (V_VT(pVarOut
) == VT_R4
) ? V_R4(pVarOut
) :
5186 (V_VT(pVarOut
) == VT_R8
) ? V_R8(pVarOut
) : 0);
5191 /**********************************************************************
5192 * VarIdiv [OLEAUT32.153]
5194 * Converts input variants to integers and divides them.
5197 * left [I] Left hand variant
5198 * right [I] Right hand variant
5199 * result [O] Destination for quotient
5202 * Success: S_OK. result contains the quotient.
5203 * Failure: An HRESULT error code indicating the error.
5206 * If either expression is null, null is returned, as per MSDN
5208 HRESULT WINAPI
VarIdiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5210 HRESULT hres
= S_OK
;
5211 VARTYPE resvt
= VT_EMPTY
;
5212 VARTYPE leftvt
,rightvt
;
5213 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5215 VARIANT tempLeft
, tempRight
;
5217 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5218 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5222 VariantInit(&tempLeft
);
5223 VariantInit(&tempRight
);
5225 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5226 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5227 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5228 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5230 if (leftExtraFlags
!= rightExtraFlags
)
5232 hres
= DISP_E_BADVARTYPE
;
5235 ExtraFlags
= leftExtraFlags
;
5237 /* Native VarIdiv always returns an error when using extra
5238 * flags or if the variant combination is I8 and INT.
5240 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5241 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
5242 (rightvt
== VT_EMPTY
&& leftvt
!= VT_NULL
) ||
5245 hres
= DISP_E_BADVARTYPE
;
5249 /* Determine variant type */
5250 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
5252 V_VT(result
) = VT_NULL
;
5256 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5258 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5259 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5260 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5261 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5262 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5263 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5264 leftvt
== VT_I1
|| rightvt
== VT_I1
||
5265 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
5266 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5267 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5268 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5269 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5270 leftvt
== VT_R4
|| rightvt
== VT_R4
)
5272 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
5273 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5276 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5280 hres
= DISP_E_BADVARTYPE
;
5284 /* coerce to the result type */
5285 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
5286 if (hres
!= S_OK
) goto end
;
5287 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
5288 if (hres
!= S_OK
) goto end
;
5291 V_VT(result
) = resvt
;
5295 if (V_UI1(&rv
) == 0)
5297 hres
= DISP_E_DIVBYZERO
;
5298 V_VT(result
) = VT_EMPTY
;
5301 V_UI1(result
) = V_UI1(&lv
) / V_UI1(&rv
);
5306 hres
= DISP_E_DIVBYZERO
;
5307 V_VT(result
) = VT_EMPTY
;
5310 V_I2(result
) = V_I2(&lv
) / V_I2(&rv
);
5315 hres
= DISP_E_DIVBYZERO
;
5316 V_VT(result
) = VT_EMPTY
;
5319 V_I4(result
) = V_I4(&lv
) / V_I4(&rv
);
5324 hres
= DISP_E_DIVBYZERO
;
5325 V_VT(result
) = VT_EMPTY
;
5328 V_I8(result
) = V_I8(&lv
) / V_I8(&rv
);
5331 FIXME("Couldn't integer divide variant types %d,%d\n",
5338 VariantClear(&tempLeft
);
5339 VariantClear(&tempRight
);
5345 /**********************************************************************
5346 * VarMod [OLEAUT32.155]
5348 * Perform the modulus operation of the right hand variant on the left
5351 * left [I] Left hand variant
5352 * right [I] Right hand variant
5353 * result [O] Destination for converted value
5356 * Success: S_OK. result contains the remainder.
5357 * Failure: An HRESULT error code indicating the error.
5360 * If an error occurs the type of result will be modified but the value will not be.
5361 * Doesn't support arrays or any special flags yet.
5363 HRESULT WINAPI
VarMod(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5367 HRESULT rc
= E_FAIL
;
5370 VARIANT tempLeft
, tempRight
;
5372 VariantInit(&tempLeft
);
5373 VariantInit(&tempRight
);
5377 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5378 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5380 /* Handle VT_DISPATCH by storing and taking address of returned value */
5381 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5383 rc
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5384 if (FAILED(rc
)) goto end
;
5387 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5389 rc
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5390 if (FAILED(rc
)) goto end
;
5394 /* check for invalid inputs */
5396 switch (V_VT(left
) & VT_TYPEMASK
) {
5418 V_VT(result
) = VT_EMPTY
;
5419 rc
= DISP_E_TYPEMISMATCH
;
5422 rc
= DISP_E_TYPEMISMATCH
;
5425 V_VT(result
) = VT_EMPTY
;
5426 rc
= DISP_E_TYPEMISMATCH
;
5431 V_VT(result
) = VT_EMPTY
;
5432 rc
= DISP_E_BADVARTYPE
;
5438 switch (V_VT(right
) & VT_TYPEMASK
) {
5444 if((V_VT(left
) == VT_INT
) && (V_VT(right
) == VT_I8
))
5446 V_VT(result
) = VT_EMPTY
;
5447 rc
= DISP_E_TYPEMISMATCH
;
5451 if((V_VT(right
) == VT_INT
) && (V_VT(left
) == VT_I8
))
5453 V_VT(result
) = VT_EMPTY
;
5454 rc
= DISP_E_TYPEMISMATCH
;
5465 if(V_VT(left
) == VT_EMPTY
)
5467 V_VT(result
) = VT_I4
;
5474 if(V_VT(left
) == VT_ERROR
)
5476 V_VT(result
) = VT_EMPTY
;
5477 rc
= DISP_E_TYPEMISMATCH
;
5481 if(V_VT(left
) == VT_NULL
)
5483 V_VT(result
) = VT_NULL
;
5490 V_VT(result
) = VT_EMPTY
;
5491 rc
= DISP_E_BADVARTYPE
;
5494 if(V_VT(left
) == VT_VOID
)
5496 V_VT(result
) = VT_EMPTY
;
5497 rc
= DISP_E_BADVARTYPE
;
5498 } else if((V_VT(left
) == VT_NULL
) || (V_VT(left
) == VT_EMPTY
) || (V_VT(left
) == VT_ERROR
) ||
5501 V_VT(result
) = VT_NULL
;
5505 V_VT(result
) = VT_NULL
;
5506 rc
= DISP_E_BADVARTYPE
;
5511 V_VT(result
) = VT_EMPTY
;
5512 rc
= DISP_E_TYPEMISMATCH
;
5515 rc
= DISP_E_TYPEMISMATCH
;
5518 if((V_VT(left
) == 15) || ((V_VT(left
) >= 24) && (V_VT(left
) <= 35)) || !lOk
)
5520 V_VT(result
) = VT_EMPTY
;
5521 rc
= DISP_E_BADVARTYPE
;
5524 V_VT(result
) = VT_EMPTY
;
5525 rc
= DISP_E_TYPEMISMATCH
;
5529 V_VT(result
) = VT_EMPTY
;
5530 rc
= DISP_E_BADVARTYPE
;
5534 /* determine the result type */
5535 if((V_VT(left
) == VT_I8
) || (V_VT(right
) == VT_I8
)) resT
= VT_I8
;
5536 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5537 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_UI1
)) resT
= VT_UI1
;
5538 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5539 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5540 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5541 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5542 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5543 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5544 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5545 else resT
= VT_I4
; /* most outputs are I4 */
5547 /* convert to I8 for the modulo */
5548 rc
= VariantChangeType(&lv
, left
, 0, VT_I8
);
5551 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left
), VT_I8
, rc
);
5555 rc
= VariantChangeType(&rv
, right
, 0, VT_I8
);
5558 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right
), VT_I8
, rc
);
5562 /* if right is zero set VT_EMPTY and return divide by zero */
5565 V_VT(result
) = VT_EMPTY
;
5566 rc
= DISP_E_DIVBYZERO
;
5570 /* perform the modulo operation */
5571 V_VT(result
) = VT_I8
;
5572 V_I8(result
) = V_I8(&lv
) % V_I8(&rv
);
5574 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5575 wine_dbgstr_longlong(V_I8(&lv
)), wine_dbgstr_longlong(V_I8(&rv
)),
5576 wine_dbgstr_longlong(V_I8(result
)));
5578 /* convert left and right to the destination type */
5579 rc
= VariantChangeType(result
, result
, 0, resT
);
5582 FIXME("Could not convert 0x%x to %d?\n", V_VT(result
), resT
);
5583 /* fall to end of function */
5589 VariantClear(&tempLeft
);
5590 VariantClear(&tempRight
);
5594 /**********************************************************************
5595 * VarPow [OLEAUT32.158]
5597 * Computes the power of one variant to another variant.
5600 * left [I] First variant
5601 * right [I] Second variant
5602 * result [O] Result variant
5606 * Failure: An HRESULT error code indicating the error.
5608 HRESULT WINAPI
VarPow(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5612 VARTYPE resvt
= VT_EMPTY
;
5613 VARTYPE leftvt
,rightvt
;
5614 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5615 VARIANT tempLeft
, tempRight
;
5617 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
), debugstr_VF(left
),
5618 right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5622 VariantInit(&tempLeft
);
5623 VariantInit(&tempRight
);
5625 /* Handle VT_DISPATCH by storing and taking address of returned value */
5626 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5628 hr
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5629 if (FAILED(hr
)) goto end
;
5632 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5634 hr
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5635 if (FAILED(hr
)) goto end
;
5639 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5640 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5641 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5642 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5644 if (leftExtraFlags
!= rightExtraFlags
)
5646 hr
= DISP_E_BADVARTYPE
;
5649 ExtraFlags
= leftExtraFlags
;
5651 /* Native VarPow always returns an error when using extra flags */
5652 if (ExtraFlags
!= 0)
5654 hr
= DISP_E_BADVARTYPE
;
5658 /* Determine return type */
5659 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
) {
5660 V_VT(result
) = VT_NULL
;
5664 else if ((leftvt
== VT_EMPTY
|| leftvt
== VT_I2
||
5665 leftvt
== VT_I4
|| leftvt
== VT_R4
||
5666 leftvt
== VT_R8
|| leftvt
== VT_CY
||
5667 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
5668 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
5669 (leftvt
>= VT_I1
&& leftvt
<= VT_UINT
)) &&
5670 (rightvt
== VT_EMPTY
|| rightvt
== VT_I2
||
5671 rightvt
== VT_I4
|| rightvt
== VT_R4
||
5672 rightvt
== VT_R8
|| rightvt
== VT_CY
||
5673 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
5674 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
5675 (rightvt
>= VT_I1
&& rightvt
<= VT_UINT
)))
5679 hr
= DISP_E_BADVARTYPE
;
5683 hr
= VariantChangeType(&dl
,left
,0,resvt
);
5685 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5690 hr
= VariantChangeType(&dr
,right
,0,resvt
);
5692 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5697 V_VT(result
) = VT_R8
;
5698 V_R8(result
) = pow(V_R8(&dl
),V_R8(&dr
));
5703 VariantClear(&tempLeft
);
5704 VariantClear(&tempRight
);
5709 /**********************************************************************
5710 * VarImp [OLEAUT32.154]
5712 * Bitwise implication of two variants.
5715 * left [I] First variant
5716 * right [I] Second variant
5717 * result [O] Result variant
5721 * Failure: An HRESULT error code indicating the error.
5723 HRESULT WINAPI
VarImp(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5725 HRESULT hres
= S_OK
;
5726 VARTYPE resvt
= VT_EMPTY
;
5727 VARTYPE leftvt
,rightvt
;
5728 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5731 VARIANT tempLeft
, tempRight
;
5735 VariantInit(&tempLeft
);
5736 VariantInit(&tempRight
);
5738 TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left
, debugstr_VT(left
),
5739 debugstr_VF(left
), right
, debugstr_VT(right
), debugstr_VF(right
), result
);
5741 /* Handle VT_DISPATCH by storing and taking address of returned value */
5742 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5744 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5745 if (FAILED(hres
)) goto VarImp_Exit
;
5748 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5750 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5751 if (FAILED(hres
)) goto VarImp_Exit
;
5755 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5756 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5757 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5758 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5760 if (leftExtraFlags
!= rightExtraFlags
)
5762 hres
= DISP_E_BADVARTYPE
;
5765 ExtraFlags
= leftExtraFlags
;
5767 /* Native VarImp always returns an error when using extra
5768 * flags or if the variants are I8 and INT.
5770 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5773 hres
= DISP_E_BADVARTYPE
;
5777 /* Determine result type */
5778 else if ((leftvt
== VT_NULL
&& rightvt
== VT_NULL
) ||
5779 (leftvt
== VT_NULL
&& rightvt
== VT_EMPTY
))
5781 V_VT(result
) = VT_NULL
;
5785 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5787 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5788 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5789 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5790 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5791 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5792 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5793 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5794 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5795 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5796 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5797 leftvt
== VT_R4
|| rightvt
== VT_R4
||
5798 leftvt
== VT_I1
|| rightvt
== VT_I1
)
5800 else if ((leftvt
== VT_UI1
&& rightvt
== VT_UI1
) ||
5801 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
5802 (leftvt
== VT_NULL
&& rightvt
== VT_UI1
))
5804 else if (leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
||
5805 leftvt
== VT_I2
|| rightvt
== VT_I2
||
5806 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5808 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5809 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
5812 /* VT_NULL requires special handling for when the opposite
5813 * variant is equal to something other than -1.
5814 * (NULL Imp 0 = NULL, NULL Imp n = n)
5816 if (leftvt
== VT_NULL
)
5821 case VT_I1
: if (!V_I1(right
)) resvt
= VT_NULL
; break;
5822 case VT_UI1
: if (!V_UI1(right
)) resvt
= VT_NULL
; break;
5823 case VT_I2
: if (!V_I2(right
)) resvt
= VT_NULL
; break;
5824 case VT_UI2
: if (!V_UI2(right
)) resvt
= VT_NULL
; break;
5825 case VT_I4
: if (!V_I4(right
)) resvt
= VT_NULL
; break;
5826 case VT_UI4
: if (!V_UI4(right
)) resvt
= VT_NULL
; break;
5827 case VT_I8
: if (!V_I8(right
)) resvt
= VT_NULL
; break;
5828 case VT_UI8
: if (!V_UI8(right
)) resvt
= VT_NULL
; break;
5829 case VT_INT
: if (!V_INT(right
)) resvt
= VT_NULL
; break;
5830 case VT_UINT
: if (!V_UINT(right
)) resvt
= VT_NULL
; break;
5831 case VT_BOOL
: if (!V_BOOL(right
)) resvt
= VT_NULL
; break;
5832 case VT_R4
: if (!V_R4(right
)) resvt
= VT_NULL
; break;
5833 case VT_R8
: if (!V_R8(right
)) resvt
= VT_NULL
; break;
5834 case VT_DATE
: if (!V_DATE(right
)) resvt
= VT_NULL
; break;
5835 case VT_CY
: if (!V_CY(right
).int64
) resvt
= VT_NULL
; break;
5837 if (!(DEC_HI32(&V_DECIMAL(right
)) || DEC_LO64(&V_DECIMAL(right
))))
5841 hres
= VarBoolFromStr(V_BSTR(right
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5842 if (FAILED(hres
)) goto VarImp_Exit
;
5844 V_VT(result
) = VT_NULL
;
5847 V_VT(result
) = VT_BOOL
;
5852 if (resvt
== VT_NULL
)
5854 V_VT(result
) = resvt
;
5859 hres
= VariantChangeType(result
,right
,0,resvt
);
5864 /* Special handling is required when NULL is the right variant.
5865 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5867 else if (rightvt
== VT_NULL
)
5872 case VT_I1
: if (V_I1(left
) == -1) resvt
= VT_NULL
; break;
5873 case VT_UI1
: if (V_UI1(left
) == 0xff) resvt
= VT_NULL
; break;
5874 case VT_I2
: if (V_I2(left
) == -1) resvt
= VT_NULL
; break;
5875 case VT_UI2
: if (V_UI2(left
) == 0xffff) resvt
= VT_NULL
; break;
5876 case VT_INT
: if (V_INT(left
) == -1) resvt
= VT_NULL
; break;
5877 case VT_UINT
: if (V_UINT(left
) == ~0u) resvt
= VT_NULL
; break;
5878 case VT_I4
: if (V_I4(left
) == -1) resvt
= VT_NULL
; break;
5879 case VT_UI4
: if (V_UI4(left
) == ~0u) resvt
= VT_NULL
; break;
5880 case VT_I8
: if (V_I8(left
) == -1) resvt
= VT_NULL
; break;
5881 case VT_UI8
: if (V_UI8(left
) == ~(ULONGLONG
)0) resvt
= VT_NULL
; break;
5882 case VT_BOOL
: if (V_BOOL(left
) == VARIANT_TRUE
) resvt
= VT_NULL
; break;
5883 case VT_R4
: if (V_R4(left
) == -1.0) resvt
= VT_NULL
; break;
5884 case VT_R8
: if (V_R8(left
) == -1.0) resvt
= VT_NULL
; break;
5885 case VT_CY
: if (V_CY(left
).int64
== -1) resvt
= VT_NULL
; break;
5887 if (DEC_HI32(&V_DECIMAL(left
)) == 0xffffffff)
5891 hres
= VarBoolFromStr(V_BSTR(left
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5892 if (FAILED(hres
)) goto VarImp_Exit
;
5893 else if (b
== VARIANT_TRUE
)
5896 if (resvt
== VT_NULL
)
5898 V_VT(result
) = resvt
;
5903 hres
= VariantCopy(&lv
, left
);
5904 if (FAILED(hres
)) goto VarImp_Exit
;
5906 if (rightvt
== VT_NULL
)
5908 memset( &rv
, 0, sizeof(rv
) );
5913 hres
= VariantCopy(&rv
, right
);
5914 if (FAILED(hres
)) goto VarImp_Exit
;
5917 if (V_VT(&lv
) == VT_BSTR
&&
5918 FAILED(VarR8FromStr(V_BSTR(&lv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5919 hres
= VariantChangeType(&lv
,&lv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5920 if (SUCCEEDED(hres
) && V_VT(&lv
) != resvt
)
5921 hres
= VariantChangeType(&lv
,&lv
,0,resvt
);
5922 if (FAILED(hres
)) goto VarImp_Exit
;
5924 if (V_VT(&rv
) == VT_BSTR
&&
5925 FAILED(VarR8FromStr(V_BSTR(&rv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5926 hres
= VariantChangeType(&rv
, &rv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5927 if (SUCCEEDED(hres
) && V_VT(&rv
) != resvt
)
5928 hres
= VariantChangeType(&rv
, &rv
, 0, resvt
);
5929 if (FAILED(hres
)) goto VarImp_Exit
;
5932 V_VT(result
) = resvt
;
5936 V_I8(result
) = (~V_I8(&lv
)) | V_I8(&rv
);
5939 V_I4(result
) = (~V_I4(&lv
)) | V_I4(&rv
);
5942 V_I2(result
) = (~V_I2(&lv
)) | V_I2(&rv
);
5945 V_UI1(result
) = (~V_UI1(&lv
)) | V_UI1(&rv
);
5948 V_BOOL(result
) = (~V_BOOL(&lv
)) | V_BOOL(&rv
);
5951 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5959 VariantClear(&tempLeft
);
5960 VariantClear(&tempRight
);