msvcirt: Add implementation of streambuf::snextc.
[wine.git] / dlls / ntdll / tests / rtl.c
blobe8eb04af76fd5591a99752adfcd794593ad2ca29
1 /* Unit test suite for Rtl* API functions
3 * Copyright 2003 Thomas Mertes
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
19 * NOTES
20 * We use function pointers here as there is no import library for NTDLL on
21 * windows.
24 #include <stdlib.h>
26 #include "ntdll_test.h"
27 #include "inaddr.h"
29 #ifndef __WINE_WINTERNL_H
31 typedef struct _RTL_HANDLE
33 struct _RTL_HANDLE * Next;
34 } RTL_HANDLE;
36 typedef struct _RTL_HANDLE_TABLE
38 ULONG MaxHandleCount;
39 ULONG HandleSize;
40 ULONG Unused[2];
41 PVOID NextFree;
42 PVOID FirstHandle;
43 PVOID ReservedMemory;
44 PVOID MaxHandle;
45 } RTL_HANDLE_TABLE;
47 #endif
49 /* avoid #include <winsock2.h> */
50 #undef htons
51 #ifdef WORDS_BIGENDIAN
52 #define htons(s) ((USHORT)(s))
53 #else /* WORDS_BIGENDIAN */
54 static inline USHORT __my_ushort_swap(USHORT s)
56 return (s >> 8) | (s << 8);
58 #define htons(s) __my_ushort_swap(s)
59 #endif /* WORDS_BIGENDIAN */
63 /* Function ptrs for ntdll calls */
64 static HMODULE hntdll = 0;
65 static SIZE_T (WINAPI *pRtlCompareMemory)(LPCVOID,LPCVOID,SIZE_T);
66 static SIZE_T (WINAPI *pRtlCompareMemoryUlong)(PULONG, SIZE_T, ULONG);
67 static NTSTATUS (WINAPI *pRtlDeleteTimer)(HANDLE, HANDLE, HANDLE);
68 static VOID (WINAPI *pRtlMoveMemory)(LPVOID,LPCVOID,SIZE_T);
69 static VOID (WINAPI *pRtlFillMemory)(LPVOID,SIZE_T,BYTE);
70 static VOID (WINAPI *pRtlFillMemoryUlong)(LPVOID,SIZE_T,ULONG);
71 static VOID (WINAPI *pRtlZeroMemory)(LPVOID,SIZE_T);
72 static ULONGLONG (WINAPIV *pRtlUlonglongByteSwap)(ULONGLONG source);
73 static ULONG (WINAPI *pRtlUniform)(PULONG);
74 static ULONG (WINAPI *pRtlRandom)(PULONG);
75 static BOOLEAN (WINAPI *pRtlAreAllAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
76 static BOOLEAN (WINAPI *pRtlAreAnyAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
77 static DWORD (WINAPI *pRtlComputeCrc32)(DWORD,const BYTE*,INT);
78 static void (WINAPI * pRtlInitializeHandleTable)(ULONG, ULONG, RTL_HANDLE_TABLE *);
79 static BOOLEAN (WINAPI * pRtlIsValidIndexHandle)(const RTL_HANDLE_TABLE *, ULONG, RTL_HANDLE **);
80 static NTSTATUS (WINAPI * pRtlDestroyHandleTable)(RTL_HANDLE_TABLE *);
81 static RTL_HANDLE * (WINAPI * pRtlAllocateHandle)(RTL_HANDLE_TABLE *, ULONG *);
82 static BOOLEAN (WINAPI * pRtlFreeHandle)(RTL_HANDLE_TABLE *, RTL_HANDLE *);
83 static NTSTATUS (WINAPI *pRtlAllocateAndInitializeSid)(PSID_IDENTIFIER_AUTHORITY,BYTE,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,PSID*);
84 static NTSTATUS (WINAPI *pRtlFreeSid)(PSID);
85 static struct _TEB * (WINAPI *pNtCurrentTeb)(void);
86 static DWORD (WINAPI *pRtlGetThreadErrorMode)(void);
87 static NTSTATUS (WINAPI *pRtlSetThreadErrorMode)(DWORD, LPDWORD);
88 static IMAGE_BASE_RELOCATION *(WINAPI *pLdrProcessRelocationBlock)(void*,UINT,USHORT*,INT_PTR);
89 static CHAR * (WINAPI *pRtlIpv4AddressToStringA)(const IN_ADDR *, LPSTR);
90 static NTSTATUS (WINAPI *pRtlIpv4AddressToStringExA)(const IN_ADDR *, USHORT, LPSTR, PULONG);
91 static NTSTATUS (WINAPI *pRtlIpv4StringToAddressA)(PCSTR, BOOLEAN, PCSTR *, IN_ADDR *);
92 static NTSTATUS (WINAPI *pLdrAddRefDll)(ULONG, HMODULE);
93 static NTSTATUS (WINAPI *pLdrLockLoaderLock)(ULONG, ULONG*, ULONG_PTR*);
94 static NTSTATUS (WINAPI *pLdrUnlockLoaderLock)(ULONG, ULONG_PTR);
96 static HMODULE hkernel32 = 0;
97 static BOOL (WINAPI *pIsWow64Process)(HANDLE, PBOOL);
100 #define LEN 16
101 static const char* src_src = "This is a test!"; /* 16 bytes long, incl NUL */
102 static ULONG src_aligned_block[4];
103 static ULONG dest_aligned_block[32];
104 static const char *src = (const char*)src_aligned_block;
105 static char* dest = (char*)dest_aligned_block;
107 static void InitFunctionPtrs(void)
109 hntdll = LoadLibraryA("ntdll.dll");
110 ok(hntdll != 0, "LoadLibrary failed\n");
111 if (hntdll) {
112 pRtlCompareMemory = (void *)GetProcAddress(hntdll, "RtlCompareMemory");
113 pRtlCompareMemoryUlong = (void *)GetProcAddress(hntdll, "RtlCompareMemoryUlong");
114 pRtlDeleteTimer = (void *)GetProcAddress(hntdll, "RtlDeleteTimer");
115 pRtlMoveMemory = (void *)GetProcAddress(hntdll, "RtlMoveMemory");
116 pRtlFillMemory = (void *)GetProcAddress(hntdll, "RtlFillMemory");
117 pRtlFillMemoryUlong = (void *)GetProcAddress(hntdll, "RtlFillMemoryUlong");
118 pRtlZeroMemory = (void *)GetProcAddress(hntdll, "RtlZeroMemory");
119 pRtlUlonglongByteSwap = (void *)GetProcAddress(hntdll, "RtlUlonglongByteSwap");
120 pRtlUniform = (void *)GetProcAddress(hntdll, "RtlUniform");
121 pRtlRandom = (void *)GetProcAddress(hntdll, "RtlRandom");
122 pRtlAreAllAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAllAccessesGranted");
123 pRtlAreAnyAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAnyAccessesGranted");
124 pRtlComputeCrc32 = (void *)GetProcAddress(hntdll, "RtlComputeCrc32");
125 pRtlInitializeHandleTable = (void *)GetProcAddress(hntdll, "RtlInitializeHandleTable");
126 pRtlIsValidIndexHandle = (void *)GetProcAddress(hntdll, "RtlIsValidIndexHandle");
127 pRtlDestroyHandleTable = (void *)GetProcAddress(hntdll, "RtlDestroyHandleTable");
128 pRtlAllocateHandle = (void *)GetProcAddress(hntdll, "RtlAllocateHandle");
129 pRtlFreeHandle = (void *)GetProcAddress(hntdll, "RtlFreeHandle");
130 pRtlAllocateAndInitializeSid = (void *)GetProcAddress(hntdll, "RtlAllocateAndInitializeSid");
131 pRtlFreeSid = (void *)GetProcAddress(hntdll, "RtlFreeSid");
132 pNtCurrentTeb = (void *)GetProcAddress(hntdll, "NtCurrentTeb");
133 pRtlGetThreadErrorMode = (void *)GetProcAddress(hntdll, "RtlGetThreadErrorMode");
134 pRtlSetThreadErrorMode = (void *)GetProcAddress(hntdll, "RtlSetThreadErrorMode");
135 pLdrProcessRelocationBlock = (void *)GetProcAddress(hntdll, "LdrProcessRelocationBlock");
136 pRtlIpv4AddressToStringA = (void *)GetProcAddress(hntdll, "RtlIpv4AddressToStringA");
137 pRtlIpv4AddressToStringExA = (void *)GetProcAddress(hntdll, "RtlIpv4AddressToStringExA");
138 pRtlIpv4StringToAddressA = (void *)GetProcAddress(hntdll, "RtlIpv4StringToAddressA");
139 pLdrAddRefDll = (void *)GetProcAddress(hntdll, "LdrAddRefDll");
140 pLdrLockLoaderLock = (void *)GetProcAddress(hntdll, "LdrLockLoaderLock");
141 pLdrUnlockLoaderLock = (void *)GetProcAddress(hntdll, "LdrUnlockLoaderLock");
143 hkernel32 = LoadLibraryA("kernel32.dll");
144 ok(hkernel32 != 0, "LoadLibrary failed\n");
145 if (hkernel32) {
146 pIsWow64Process = (void *)GetProcAddress(hkernel32, "IsWow64Process");
148 strcpy((char*)src_aligned_block, src_src);
149 ok(strlen(src) == 15, "Source must be 16 bytes long!\n");
152 #define COMP(str1,str2,cmplen,len) size = pRtlCompareMemory(str1, str2, cmplen); \
153 ok(size == len, "Expected %ld, got %ld\n", size, (SIZE_T)len)
155 static void test_RtlCompareMemory(void)
157 SIZE_T size;
159 if (!pRtlCompareMemory)
161 win_skip("RtlCompareMemory is not available\n");
162 return;
165 strcpy(dest, src);
167 COMP(src,src,0,0);
168 COMP(src,src,LEN,LEN);
169 dest[0] = 'x';
170 COMP(src,dest,LEN,0);
173 static void test_RtlCompareMemoryUlong(void)
175 ULONG a[10];
176 ULONG result;
178 if (!pRtlCompareMemoryUlong)
180 win_skip("RtlCompareMemoryUlong is not available\n");
181 return;
184 a[0]= 0x0123;
185 a[1]= 0x4567;
186 a[2]= 0x89ab;
187 a[3]= 0xcdef;
188 result = pRtlCompareMemoryUlong(a, 0, 0x0123);
189 ok(result == 0, "RtlCompareMemoryUlong(%p, 0, 0x0123) returns %u, expected 0\n", a, result);
190 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
191 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result);
192 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
193 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result);
194 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
195 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result);
196 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
197 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result);
198 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
199 ok(result == 4, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 4\n", a, result);
200 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
201 ok(result == 4, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 4\n", a, result);
202 result = pRtlCompareMemoryUlong(a, 4, 0x0127);
203 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x0127) returns %u, expected 0\n", a, result);
204 result = pRtlCompareMemoryUlong(a, 4, 0x7123);
205 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x7123) returns %u, expected 0\n", a, result);
206 result = pRtlCompareMemoryUlong(a, 16, 0x4567);
207 ok(result == 0, "RtlCompareMemoryUlong(%p, 16, 0x4567) returns %u, expected 0\n", a, result);
209 a[1]= 0x0123;
210 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
211 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result);
212 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
213 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result);
214 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
215 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result);
216 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
217 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result);
218 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
219 ok(result == 8, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 8\n", a, result);
220 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
221 ok(result == 8, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 8\n", a, result);
224 #define COPY(len) memset(dest,0,sizeof(dest_aligned_block)); pRtlMoveMemory(dest, src, len)
225 #define CMP(str) ok(strcmp(dest,str) == 0, "Expected '%s', got '%s'\n", str, dest)
227 static void test_RtlMoveMemory(void)
229 if (!pRtlMoveMemory)
231 win_skip("RtlMoveMemory is not available\n");
232 return;
235 /* Length should be in bytes and not rounded. Use strcmp to ensure we
236 * didn't write past the end (it checks for the final NUL left by memset)
238 COPY(0); CMP("");
239 COPY(1); CMP("T");
240 COPY(2); CMP("Th");
241 COPY(3); CMP("Thi");
242 COPY(4); CMP("This");
243 COPY(5); CMP("This ");
244 COPY(6); CMP("This i");
245 COPY(7); CMP("This is");
246 COPY(8); CMP("This is ");
247 COPY(9); CMP("This is a");
249 /* Overlapping */
250 strcpy(dest, src); pRtlMoveMemory(dest, dest + 1, strlen(src) - 1);
251 CMP("his is a test!!");
252 strcpy(dest, src); pRtlMoveMemory(dest + 1, dest, strlen(src));
253 CMP("TThis is a test!");
256 #define FILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemory(dest,len,'x')
258 static void test_RtlFillMemory(void)
260 if (!pRtlFillMemory)
262 win_skip("RtlFillMemory is not available\n");
263 return;
266 /* Length should be in bytes and not rounded. Use strcmp to ensure we
267 * didn't write past the end (the remainder of the string should match)
269 FILL(0); CMP("This is a test!");
270 FILL(1); CMP("xhis is a test!");
271 FILL(2); CMP("xxis is a test!");
272 FILL(3); CMP("xxxs is a test!");
273 FILL(4); CMP("xxxx is a test!");
274 FILL(5); CMP("xxxxxis a test!");
275 FILL(6); CMP("xxxxxxs a test!");
276 FILL(7); CMP("xxxxxxx a test!");
277 FILL(8); CMP("xxxxxxxxa test!");
278 FILL(9); CMP("xxxxxxxxx test!");
281 #define LFILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemoryUlong(dest,len,val)
283 static void test_RtlFillMemoryUlong(void)
285 ULONG val = ('x' << 24) | ('x' << 16) | ('x' << 8) | 'x';
286 if (!pRtlFillMemoryUlong)
288 win_skip("RtlFillMemoryUlong is not available\n");
289 return;
292 /* Length should be in bytes and not rounded. Use strcmp to ensure we
293 * didn't write past the end (the remainder of the string should match)
295 LFILL(0); CMP("This is a test!");
296 LFILL(1); CMP("This is a test!");
297 LFILL(2); CMP("This is a test!");
298 LFILL(3); CMP("This is a test!");
299 LFILL(4); CMP("xxxx is a test!");
300 LFILL(5); CMP("xxxx is a test!");
301 LFILL(6); CMP("xxxx is a test!");
302 LFILL(7); CMP("xxxx is a test!");
303 LFILL(8); CMP("xxxxxxxxa test!");
304 LFILL(9); CMP("xxxxxxxxa test!");
307 #define ZERO(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlZeroMemory(dest,len)
308 #define MCMP(str) ok(memcmp(dest,str,LEN) == 0, "Memcmp failed\n")
310 static void test_RtlZeroMemory(void)
312 if (!pRtlZeroMemory)
314 win_skip("RtlZeroMemory is not available\n");
315 return;
318 /* Length should be in bytes and not rounded. */
319 ZERO(0); MCMP("This is a test!");
320 ZERO(1); MCMP("\0his is a test!");
321 ZERO(2); MCMP("\0\0is is a test!");
322 ZERO(3); MCMP("\0\0\0s is a test!");
323 ZERO(4); MCMP("\0\0\0\0 is a test!");
324 ZERO(5); MCMP("\0\0\0\0\0is a test!");
325 ZERO(6); MCMP("\0\0\0\0\0\0s a test!");
326 ZERO(7); MCMP("\0\0\0\0\0\0\0 a test!");
327 ZERO(8); MCMP("\0\0\0\0\0\0\0\0a test!");
328 ZERO(9); MCMP("\0\0\0\0\0\0\0\0\0 test!");
331 static void test_RtlUlonglongByteSwap(void)
333 ULONGLONG result;
335 if ( !pRtlUlonglongByteSwap )
337 win_skip("RtlUlonglongByteSwap is not available\n");
338 return;
341 if ( pRtlUlonglongByteSwap( 0 ) != 0 )
343 win_skip("Broken RtlUlonglongByteSwap in win2k\n");
344 return;
347 result = pRtlUlonglongByteSwap( ((ULONGLONG)0x76543210 << 32) | 0x87654321 );
348 ok( (((ULONGLONG)0x21436587 << 32) | 0x10325476) == result,
349 "RtlUlonglongByteSwap(0x7654321087654321) returns 0x%x%08x, expected 0x2143658710325476\n",
350 (DWORD)(result >> 32), (DWORD)result);
354 static void test_RtlUniform(void)
356 ULONGLONG num;
357 ULONG seed;
358 ULONG seed_bak;
359 ULONG expected;
360 ULONG result;
362 if (!pRtlUniform)
364 win_skip("RtlUniform is not available\n");
365 return;
369 * According to the documentation RtlUniform is using D.H. Lehmer's 1948
370 * algorithm. This algorithm is:
372 * seed = (seed * const_1 + const_2) % const_3;
374 * According to the documentation the random number is distributed over
375 * [0..MAXLONG]. Therefore const_3 is MAXLONG + 1:
377 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
379 * Because MAXLONG is 0x7fffffff (and MAXLONG + 1 is 0x80000000) the
380 * algorithm can be expressed without division as:
382 * seed = (seed * const_1 + const_2) & MAXLONG;
384 * To find out const_2 we just call RtlUniform with seed set to 0:
386 seed = 0;
387 expected = 0x7fffffc3;
388 result = pRtlUniform(&seed);
389 ok(result == expected,
390 "RtlUniform(&seed (seed == 0)) returns %x, expected %x\n",
391 result, expected);
393 * The algorithm is now:
395 * seed = (seed * const_1 + 0x7fffffc3) & MAXLONG;
397 * To find out const_1 we can use:
399 * const_1 = RtlUniform(1) - 0x7fffffc3;
401 * If that does not work a search loop can try all possible values of
402 * const_1 and compare to the result to RtlUniform(1).
403 * This way we find out that const_1 is 0xffffffed.
405 * For seed = 1 the const_2 is 0x7fffffc4:
407 seed = 1;
408 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
409 result = pRtlUniform(&seed);
410 ok(result == expected,
411 "RtlUniform(&seed (seed == 1)) returns %x, expected %x\n",
412 result, expected);
414 * For seed = 2 the const_2 is 0x7fffffc3:
416 seed = 2;
417 expected = seed * 0xffffffed + 0x7fffffc3;
418 result = pRtlUniform(&seed);
421 * Windows Vista uses different algorithms, so skip the rest of the tests
422 * until that is figured out. Trace output for the failures is about 10.5 MB!
425 if (result == 0x7fffff9f) {
426 skip("Most likely running on Windows Vista which uses a different algorithm\n");
427 return;
430 ok(result == expected,
431 "RtlUniform(&seed (seed == 2)) returns %x, expected %x\n",
432 result, expected);
435 * More tests show that if seed is odd the result must be incremented by 1:
437 seed = 3;
438 expected = seed * 0xffffffed + 0x7fffffc3 + (seed & 1);
439 result = pRtlUniform(&seed);
440 ok(result == expected,
441 "RtlUniform(&seed (seed == 3)) returns %x, expected %x\n",
442 result, expected);
444 seed = 0x6bca1aa;
445 expected = seed * 0xffffffed + 0x7fffffc3;
446 result = pRtlUniform(&seed);
447 ok(result == expected,
448 "RtlUniform(&seed (seed == 0x6bca1aa)) returns %x, expected %x\n",
449 result, expected);
451 seed = 0x6bca1ab;
452 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
453 result = pRtlUniform(&seed);
454 ok(result == expected,
455 "RtlUniform(&seed (seed == 0x6bca1ab)) returns %x, expected %x\n",
456 result, expected);
458 * When seed is 0x6bca1ac there is an exception:
460 seed = 0x6bca1ac;
461 expected = seed * 0xffffffed + 0x7fffffc3 + 2;
462 result = pRtlUniform(&seed);
463 ok(result == expected,
464 "RtlUniform(&seed (seed == 0x6bca1ac)) returns %x, expected %x\n",
465 result, expected);
467 * Note that up to here const_3 is not used
468 * (the highest bit of the result is not set).
470 * Starting with 0x6bca1ad: If seed is even the result must be incremented by 1:
472 seed = 0x6bca1ad;
473 expected = (seed * 0xffffffed + 0x7fffffc3) & MAXLONG;
474 result = pRtlUniform(&seed);
475 ok(result == expected,
476 "RtlUniform(&seed (seed == 0x6bca1ad)) returns %x, expected %x\n",
477 result, expected);
479 seed = 0x6bca1ae;
480 expected = (seed * 0xffffffed + 0x7fffffc3 + 1) & MAXLONG;
481 result = pRtlUniform(&seed);
482 ok(result == expected,
483 "RtlUniform(&seed (seed == 0x6bca1ae)) returns %x, expected %x\n",
484 result, expected);
486 * There are several ranges where for odd or even seed the result must be
487 * incremented by 1. You can see this ranges in the following test.
489 * For a full test use one of the following loop heads:
491 * for (num = 0; num <= 0xffffffff; num++) {
492 * seed = num;
493 * ...
495 * seed = 0;
496 * for (num = 0; num <= 0xffffffff; num++) {
497 * ...
499 seed = 0;
500 for (num = 0; num <= 100000; num++) {
502 expected = seed * 0xffffffed + 0x7fffffc3;
503 if (seed < 0x6bca1ac) {
504 expected = expected + (seed & 1);
505 } else if (seed == 0x6bca1ac) {
506 expected = (expected + 2) & MAXLONG;
507 } else if (seed < 0xd79435c) {
508 expected = (expected + (~seed & 1)) & MAXLONG;
509 } else if (seed < 0x1435e50b) {
510 expected = expected + (seed & 1);
511 } else if (seed < 0x1af286ba) {
512 expected = (expected + (~seed & 1)) & MAXLONG;
513 } else if (seed < 0x21af2869) {
514 expected = expected + (seed & 1);
515 } else if (seed < 0x286bca18) {
516 expected = (expected + (~seed & 1)) & MAXLONG;
517 } else if (seed < 0x2f286bc7) {
518 expected = expected + (seed & 1);
519 } else if (seed < 0x35e50d77) {
520 expected = (expected + (~seed & 1)) & MAXLONG;
521 } else if (seed < 0x3ca1af26) {
522 expected = expected + (seed & 1);
523 } else if (seed < 0x435e50d5) {
524 expected = (expected + (~seed & 1)) & MAXLONG;
525 } else if (seed < 0x4a1af284) {
526 expected = expected + (seed & 1);
527 } else if (seed < 0x50d79433) {
528 expected = (expected + (~seed & 1)) & MAXLONG;
529 } else if (seed < 0x579435e2) {
530 expected = expected + (seed & 1);
531 } else if (seed < 0x5e50d792) {
532 expected = (expected + (~seed & 1)) & MAXLONG;
533 } else if (seed < 0x650d7941) {
534 expected = expected + (seed & 1);
535 } else if (seed < 0x6bca1af0) {
536 expected = (expected + (~seed & 1)) & MAXLONG;
537 } else if (seed < 0x7286bc9f) {
538 expected = expected + (seed & 1);
539 } else if (seed < 0x79435e4e) {
540 expected = (expected + (~seed & 1)) & MAXLONG;
541 } else if (seed < 0x7ffffffd) {
542 expected = expected + (seed & 1);
543 } else if (seed < 0x86bca1ac) {
544 expected = (expected + (~seed & 1)) & MAXLONG;
545 } else if (seed == 0x86bca1ac) {
546 expected = (expected + 1) & MAXLONG;
547 } else if (seed < 0x8d79435c) {
548 expected = expected + (seed & 1);
549 } else if (seed < 0x9435e50b) {
550 expected = (expected + (~seed & 1)) & MAXLONG;
551 } else if (seed < 0x9af286ba) {
552 expected = expected + (seed & 1);
553 } else if (seed < 0xa1af2869) {
554 expected = (expected + (~seed & 1)) & MAXLONG;
555 } else if (seed < 0xa86bca18) {
556 expected = expected + (seed & 1);
557 } else if (seed < 0xaf286bc7) {
558 expected = (expected + (~seed & 1)) & MAXLONG;
559 } else if (seed == 0xaf286bc7) {
560 expected = (expected + 2) & MAXLONG;
561 } else if (seed < 0xb5e50d77) {
562 expected = expected + (seed & 1);
563 } else if (seed < 0xbca1af26) {
564 expected = (expected + (~seed & 1)) & MAXLONG;
565 } else if (seed < 0xc35e50d5) {
566 expected = expected + (seed & 1);
567 } else if (seed < 0xca1af284) {
568 expected = (expected + (~seed & 1)) & MAXLONG;
569 } else if (seed < 0xd0d79433) {
570 expected = expected + (seed & 1);
571 } else if (seed < 0xd79435e2) {
572 expected = (expected + (~seed & 1)) & MAXLONG;
573 } else if (seed < 0xde50d792) {
574 expected = expected + (seed & 1);
575 } else if (seed < 0xe50d7941) {
576 expected = (expected + (~seed & 1)) & MAXLONG;
577 } else if (seed < 0xebca1af0) {
578 expected = expected + (seed & 1);
579 } else if (seed < 0xf286bc9f) {
580 expected = (expected + (~seed & 1)) & MAXLONG;
581 } else if (seed < 0xf9435e4e) {
582 expected = expected + (seed & 1);
583 } else if (seed < 0xfffffffd) {
584 expected = (expected + (~seed & 1)) & MAXLONG;
585 } else {
586 expected = expected + (seed & 1);
587 } /* if */
588 seed_bak = seed;
589 result = pRtlUniform(&seed);
590 ok(result == expected,
591 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
592 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
593 ok(seed == expected,
594 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
595 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
596 } /* for */
598 * Further investigation shows: In the different regions the highest bit
599 * is set or cleared when even or odd seeds need an increment by 1.
600 * This leads to a simplified algorithm:
602 * seed = seed * 0xffffffed + 0x7fffffc3;
603 * if (seed == 0xffffffff || seed == 0x7ffffffe) {
604 * seed = (seed + 2) & MAXLONG;
605 * } else if (seed == 0x7fffffff) {
606 * seed = 0;
607 * } else if ((seed & 0x80000000) == 0) {
608 * seed = seed + (~seed & 1);
609 * } else {
610 * seed = (seed + (seed & 1)) & MAXLONG;
613 * This is also the algorithm used for RtlUniform of wine (see dlls/ntdll/rtl.c).
615 * Now comes the funny part:
616 * It took me one weekend, to find the complicated algorithm and one day more,
617 * to find the simplified algorithm. Several weeks later I found out: The value
618 * MAXLONG (=0x7fffffff) is never returned, neither with the native function
619 * nor with the simplified algorithm. In reality the native function and our
620 * function return a random number distributed over [0..MAXLONG-1]. Note
621 * that this is different from what native documentation states [0..MAXLONG].
622 * Expressed with D.H. Lehmer's 1948 algorithm it looks like:
624 * seed = (seed * const_1 + const_2) % MAXLONG;
626 * Further investigations show that the real algorithm is:
628 * seed = (seed * 0x7fffffed + 0x7fffffc3) % MAXLONG;
630 * This is checked with the test below:
632 seed = 0;
633 for (num = 0; num <= 100000; num++) {
634 expected = (seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
635 seed_bak = seed;
636 result = pRtlUniform(&seed);
637 ok(result == expected,
638 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
639 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
640 ok(seed == expected,
641 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
642 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
643 } /* for */
645 * More tests show that RtlUniform does not return 0x7ffffffd for seed values
646 * in the range [0..MAXLONG-1]. Additionally 2 is returned twice. This shows
647 * that there is more than one cycle of generated randon numbers ...
652 static ULONG my_RtlRandom(PULONG seed)
654 static ULONG saved_value[128] =
655 { /* 0 */ 0x4c8bc0aa, 0x4c022957, 0x2232827a, 0x2f1e7626, 0x7f8bdafb, 0x5c37d02a, 0x0ab48f72, 0x2f0c4ffa,
656 /* 8 */ 0x290e1954, 0x6b635f23, 0x5d3885c0, 0x74b49ff8, 0x5155fa54, 0x6214ad3f, 0x111e9c29, 0x242a3a09,
657 /* 16 */ 0x75932ae1, 0x40ac432e, 0x54f7ba7a, 0x585ccbd5, 0x6df5c727, 0x0374dad1, 0x7112b3f1, 0x735fc311,
658 /* 24 */ 0x404331a9, 0x74d97781, 0x64495118, 0x323e04be, 0x5974b425, 0x4862e393, 0x62389c1d, 0x28a68b82,
659 /* 32 */ 0x0f95da37, 0x7a50bbc6, 0x09b0091c, 0x22cdb7b4, 0x4faaed26, 0x66417ccd, 0x189e4bfa, 0x1ce4e8dd,
660 /* 40 */ 0x5274c742, 0x3bdcf4dc, 0x2d94e907, 0x32eac016, 0x26d33ca3, 0x60415a8a, 0x31f57880, 0x68c8aa52,
661 /* 48 */ 0x23eb16da, 0x6204f4a1, 0x373927c1, 0x0d24eb7c, 0x06dd7379, 0x2b3be507, 0x0f9c55b1, 0x2c7925eb,
662 /* 56 */ 0x36d67c9a, 0x42f831d9, 0x5e3961cb, 0x65d637a8, 0x24bb3820, 0x4d08e33d, 0x2188754f, 0x147e409e,
663 /* 64 */ 0x6a9620a0, 0x62e26657, 0x7bd8ce81, 0x11da0abb, 0x5f9e7b50, 0x23e444b6, 0x25920c78, 0x5fc894f0,
664 /* 72 */ 0x5e338cbb, 0x404237fd, 0x1d60f80f, 0x320a1743, 0x76013d2b, 0x070294ee, 0x695e243b, 0x56b177fd,
665 /* 80 */ 0x752492e1, 0x6decd52f, 0x125f5219, 0x139d2e78, 0x1898d11e, 0x2f7ee785, 0x4db405d8, 0x1a028a35,
666 /* 88 */ 0x63f6f323, 0x1f6d0078, 0x307cfd67, 0x3f32a78a, 0x6980796c, 0x462b3d83, 0x34b639f2, 0x53fce379,
667 /* 96 */ 0x74ba50f4, 0x1abc2c4b, 0x5eeaeb8d, 0x335a7a0d, 0x3973dd20, 0x0462d66b, 0x159813ff, 0x1e4643fd,
668 /* 104 */ 0x06bc5c62, 0x3115e3fc, 0x09101613, 0x47af2515, 0x4f11ec54, 0x78b99911, 0x3db8dd44, 0x1ec10b9b,
669 /* 112 */ 0x5b5506ca, 0x773ce092, 0x567be81a, 0x5475b975, 0x7a2cde1a, 0x494536f5, 0x34737bb4, 0x76d9750b,
670 /* 120 */ 0x2a1f6232, 0x2e49644d, 0x7dddcbe7, 0x500cebdb, 0x619dab9e, 0x48c626fe, 0x1cda3193, 0x52dabe9d };
671 ULONG rand;
672 int pos;
673 ULONG result;
675 rand = (*seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
676 *seed = (rand * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
677 pos = *seed & 0x7f;
678 result = saved_value[pos];
679 saved_value[pos] = rand;
680 return(result);
684 static void test_RtlRandom(void)
686 ULONGLONG num;
687 ULONG seed;
688 ULONG seed_bak;
689 ULONG seed_expected;
690 ULONG result;
691 ULONG result_expected;
693 if (!pRtlRandom)
695 win_skip("RtlRandom is not available\n");
696 return;
700 * Unlike RtlUniform, RtlRandom is not documented. We guess that for
701 * RtlRandom D.H. Lehmer's 1948 algorithm is used like stated in
702 * the documentation of the RtlUniform function. This algorithm is:
704 * seed = (seed * const_1 + const_2) % const_3;
706 * According to the RtlUniform documentation the random number is
707 * distributed over [0..MAXLONG], but in reality it is distributed
708 * over [0..MAXLONG-1]. Therefore const_3 might be MAXLONG + 1 or
709 * MAXLONG:
711 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
713 * or
715 * seed = (seed * const_1 + const_2) % MAXLONG;
717 * To find out const_2 we just call RtlRandom with seed set to 0:
719 seed = 0;
720 result_expected = 0x320a1743;
721 seed_expected =0x44b;
722 result = pRtlRandom(&seed);
725 * Windows Vista uses different algorithms, so skip the rest of the tests
726 * until that is figured out. Trace output for the failures is about 10.5 MB!
729 if (seed == 0x3fc) {
730 skip("Most likely running on Windows Vista which uses a different algorithm\n");
731 return;
734 ok(result == result_expected,
735 "pRtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
736 result, result_expected);
737 ok(seed == seed_expected,
738 "pRtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
739 seed, seed_expected);
741 * Seed is not equal to result as with RtlUniform. To see more we
742 * call RtlRandom again with seed set to 0:
744 seed = 0;
745 result_expected = 0x7fffffc3;
746 seed_expected =0x44b;
747 result = pRtlRandom(&seed);
748 ok(result == result_expected,
749 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
750 result, result_expected);
751 ok(seed == seed_expected,
752 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
753 seed, seed_expected);
755 * Seed is set to the same value as before but the result is different.
756 * To see more we call RtlRandom again with seed set to 0:
758 seed = 0;
759 result_expected = 0x7fffffc3;
760 seed_expected =0x44b;
761 result = pRtlRandom(&seed);
762 ok(result == result_expected,
763 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
764 result, result_expected);
765 ok(seed == seed_expected,
766 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
767 seed, seed_expected);
769 * Seed is again set to the same value as before. This time we also
770 * have the same result as before. Interestingly the value of the
771 * result is 0x7fffffc3 which is the same value used in RtlUniform
772 * as const_2. If we do
774 * seed = 0;
775 * result = RtlUniform(&seed);
777 * we get the same result (0x7fffffc3) as with
779 * seed = 0;
780 * RtlRandom(&seed);
781 * seed = 0;
782 * result = RtlRandom(&seed);
784 * And there is another interesting thing. If we do
786 * seed = 0;
787 * RtlUniform(&seed);
788 * RtlUniform(&seed);
790 * seed is set to the value 0x44b which ist the same value that
792 * seed = 0;
793 * RtlRandom(&seed);
795 * assigns to seed. Putting these two findings together leads to
796 * the conclusion that RtlRandom saves the value in some variable,
797 * like in the following algorithm:
799 * result = saved_value;
800 * saved_value = RtlUniform(&seed);
801 * RtlUniform(&seed);
802 * return(result);
804 * Now we do further tests with seed set to 1:
806 seed = 1;
807 result_expected = 0x7a50bbc6;
808 seed_expected =0x5a1;
809 result = pRtlRandom(&seed);
810 ok(result == result_expected,
811 "RtlRandom(&seed (seed == 1)) returns %x, expected %x\n",
812 result, result_expected);
813 ok(seed == seed_expected,
814 "RtlRandom(&seed (seed == 1)) sets seed to %x, expected %x\n",
815 seed, seed_expected);
817 * If there is just one saved_value the result now would be
818 * 0x7fffffc3. From this test we can see that there is more than
819 * one saved_value, like with this algorithm:
821 * result = saved_value[pos];
822 * saved_value[pos] = RtlUniform(&seed);
823 * RtlUniform(&seed);
824 * return(result);
826 * But how is the value of pos determined? The calls to RtlUniform
827 * create a sequence of random numbers. Every second random number
828 * is put into the saved_value array and is used in some later call
829 * of RtlRandom as result. The only reasonable source to determine
830 * pos are the random numbers generated by RtlUniform which are not
831 * put into the saved_value array. This are the values of seed
832 * between the two calls of RtlUniform as in this algorithm:
834 * rand = RtlUniform(&seed);
835 * RtlUniform(&seed);
836 * pos = position(seed);
837 * result = saved_value[pos];
838 * saved_value[pos] = rand;
839 * return(result);
841 * What remains to be determined is: The size of the saved_value array,
842 * the initial values of the saved_value array and the function
843 * position(seed). These tests are not shown here.
844 * The result of these tests is: The size of the saved_value array
845 * is 128, the initial values can be seen in the my_RtlRandom
846 * function and the position(seed) function is (seed & 0x7f).
848 * For a full test of RtlRandom use one of the following loop heads:
850 * for (num = 0; num <= 0xffffffff; num++) {
851 * seed = num;
852 * ...
854 * seed = 0;
855 * for (num = 0; num <= 0xffffffff; num++) {
856 * ...
858 seed = 0;
859 for (num = 0; num <= 100000; num++) {
860 seed_bak = seed;
861 seed_expected = seed;
862 result_expected = my_RtlRandom(&seed_expected);
863 /* The following corrections are necessary because the */
864 /* previous tests changed the saved_value array */
865 if (num == 0) {
866 result_expected = 0x7fffffc3;
867 } else if (num == 81) {
868 result_expected = 0x7fffffb1;
869 } /* if */
870 result = pRtlRandom(&seed);
871 ok(result == result_expected,
872 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
873 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, result_expected);
874 ok(seed == seed_expected,
875 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
876 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, seed_expected);
877 } /* for */
881 typedef struct {
882 ACCESS_MASK GrantedAccess;
883 ACCESS_MASK DesiredAccess;
884 BOOLEAN result;
885 } all_accesses_t;
887 static const all_accesses_t all_accesses[] = {
888 {0xFEDCBA76, 0xFEDCBA76, 1},
889 {0x00000000, 0xFEDCBA76, 0},
890 {0xFEDCBA76, 0x00000000, 1},
891 {0x00000000, 0x00000000, 1},
892 {0xFEDCBA76, 0xFEDCBA70, 1},
893 {0xFEDCBA70, 0xFEDCBA76, 0},
894 {0xFEDCBA76, 0xFEDC8A76, 1},
895 {0xFEDC8A76, 0xFEDCBA76, 0},
896 {0xFEDCBA76, 0xC8C4B242, 1},
897 {0xC8C4B242, 0xFEDCBA76, 0},
899 #define NB_ALL_ACCESSES (sizeof(all_accesses)/sizeof(*all_accesses))
902 static void test_RtlAreAllAccessesGranted(void)
904 unsigned int test_num;
905 BOOLEAN result;
907 if (!pRtlAreAllAccessesGranted)
909 win_skip("RtlAreAllAccessesGranted is not available\n");
910 return;
913 for (test_num = 0; test_num < NB_ALL_ACCESSES; test_num++) {
914 result = pRtlAreAllAccessesGranted(all_accesses[test_num].GrantedAccess,
915 all_accesses[test_num].DesiredAccess);
916 ok(all_accesses[test_num].result == result,
917 "(test %d): RtlAreAllAccessesGranted(%08x, %08x) returns %d, expected %d\n",
918 test_num, all_accesses[test_num].GrantedAccess,
919 all_accesses[test_num].DesiredAccess,
920 result, all_accesses[test_num].result);
921 } /* for */
925 typedef struct {
926 ACCESS_MASK GrantedAccess;
927 ACCESS_MASK DesiredAccess;
928 BOOLEAN result;
929 } any_accesses_t;
931 static const any_accesses_t any_accesses[] = {
932 {0xFEDCBA76, 0xFEDCBA76, 1},
933 {0x00000000, 0xFEDCBA76, 0},
934 {0xFEDCBA76, 0x00000000, 0},
935 {0x00000000, 0x00000000, 0},
936 {0xFEDCBA76, 0x01234589, 0},
937 {0x00040000, 0xFEDCBA76, 1},
938 {0x00040000, 0xFED8BA76, 0},
939 {0xFEDCBA76, 0x00040000, 1},
940 {0xFED8BA76, 0x00040000, 0},
942 #define NB_ANY_ACCESSES (sizeof(any_accesses)/sizeof(*any_accesses))
945 static void test_RtlAreAnyAccessesGranted(void)
947 unsigned int test_num;
948 BOOLEAN result;
950 if (!pRtlAreAnyAccessesGranted)
952 win_skip("RtlAreAnyAccessesGranted is not available\n");
953 return;
956 for (test_num = 0; test_num < NB_ANY_ACCESSES; test_num++) {
957 result = pRtlAreAnyAccessesGranted(any_accesses[test_num].GrantedAccess,
958 any_accesses[test_num].DesiredAccess);
959 ok(any_accesses[test_num].result == result,
960 "(test %d): RtlAreAnyAccessesGranted(%08x, %08x) returns %d, expected %d\n",
961 test_num, any_accesses[test_num].GrantedAccess,
962 any_accesses[test_num].DesiredAccess,
963 result, any_accesses[test_num].result);
964 } /* for */
967 static void test_RtlComputeCrc32(void)
969 DWORD crc = 0;
971 if (!pRtlComputeCrc32)
973 win_skip("RtlComputeCrc32 is not available\n");
974 return;
977 crc = pRtlComputeCrc32(crc, (const BYTE *)src, LEN);
978 ok(crc == 0x40861dc2,"Expected 0x40861dc2, got %8x\n", crc);
982 typedef struct MY_HANDLE
984 RTL_HANDLE RtlHandle;
985 void * MyValue;
986 } MY_HANDLE;
988 static inline void RtlpMakeHandleAllocated(RTL_HANDLE * Handle)
990 ULONG_PTR *AllocatedBit = (ULONG_PTR *)(&Handle->Next);
991 *AllocatedBit = *AllocatedBit | 1;
994 static void test_HandleTables(void)
996 BOOLEAN result;
997 NTSTATUS status;
998 ULONG Index;
999 MY_HANDLE * MyHandle;
1000 RTL_HANDLE_TABLE HandleTable;
1002 if (!pRtlInitializeHandleTable)
1004 win_skip("RtlInitializeHandleTable is not available\n");
1005 return;
1008 pRtlInitializeHandleTable(0x3FFF, sizeof(MY_HANDLE), &HandleTable);
1009 MyHandle = (MY_HANDLE *)pRtlAllocateHandle(&HandleTable, &Index);
1010 ok(MyHandle != NULL, "RtlAllocateHandle failed\n");
1011 RtlpMakeHandleAllocated(&MyHandle->RtlHandle);
1012 MyHandle = NULL;
1013 result = pRtlIsValidIndexHandle(&HandleTable, Index, (RTL_HANDLE **)&MyHandle);
1014 ok(result, "Handle %p wasn't valid\n", MyHandle);
1015 result = pRtlFreeHandle(&HandleTable, &MyHandle->RtlHandle);
1016 ok(result, "Couldn't free handle %p\n", MyHandle);
1017 status = pRtlDestroyHandleTable(&HandleTable);
1018 ok(status == STATUS_SUCCESS, "RtlDestroyHandleTable failed with error 0x%08x\n", status);
1021 static void test_RtlAllocateAndInitializeSid(void)
1023 NTSTATUS ret;
1024 SID_IDENTIFIER_AUTHORITY sia = {{ 1, 2, 3, 4, 5, 6 }};
1025 PSID psid;
1027 if (!pRtlAllocateAndInitializeSid)
1029 win_skip("RtlAllocateAndInitializeSid is not available\n");
1030 return;
1033 ret = pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
1034 ok(!ret, "RtlAllocateAndInitializeSid error %08x\n", ret);
1035 ret = pRtlFreeSid(psid);
1036 ok(!ret, "RtlFreeSid error %08x\n", ret);
1038 /* these tests crash on XP */
1039 if (0)
1041 pRtlAllocateAndInitializeSid(NULL, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
1042 pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, NULL);
1045 ret = pRtlAllocateAndInitializeSid(&sia, 9, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
1046 ok(ret == STATUS_INVALID_SID, "wrong error %08x\n", ret);
1049 static void test_RtlDeleteTimer(void)
1051 NTSTATUS ret;
1053 if (!pRtlDeleteTimer)
1055 win_skip("RtlDeleteTimer is not available\n");
1056 return;
1059 ret = pRtlDeleteTimer(NULL, NULL, NULL);
1060 ok(ret == STATUS_INVALID_PARAMETER_1 ||
1061 ret == STATUS_INVALID_PARAMETER, /* W2K */
1062 "expected STATUS_INVALID_PARAMETER_1 or STATUS_INVALID_PARAMETER, got %x\n", ret);
1065 static void test_RtlThreadErrorMode(void)
1067 DWORD oldmode;
1068 BOOL is_wow64;
1069 DWORD mode;
1070 NTSTATUS status;
1072 if (!pRtlGetThreadErrorMode || !pRtlSetThreadErrorMode)
1074 win_skip("RtlGetThreadErrorMode and/or RtlSetThreadErrorMode not available\n");
1075 return;
1078 if (!pIsWow64Process || !pIsWow64Process(GetCurrentProcess(), &is_wow64))
1079 is_wow64 = FALSE;
1081 oldmode = pRtlGetThreadErrorMode();
1083 status = pRtlSetThreadErrorMode(0x70, &mode);
1084 ok(status == STATUS_SUCCESS ||
1085 status == STATUS_WAIT_1, /* Vista */
1086 "RtlSetThreadErrorMode failed with error 0x%08x\n", status);
1087 ok(mode == oldmode,
1088 "RtlSetThreadErrorMode returned mode 0x%x, expected 0x%x\n",
1089 mode, oldmode);
1090 ok(pRtlGetThreadErrorMode() == 0x70,
1091 "RtlGetThreadErrorMode returned 0x%x, expected 0x%x\n", mode, 0x70);
1092 if (!is_wow64 && pNtCurrentTeb)
1093 ok(pNtCurrentTeb()->HardErrorDisabled == 0x70,
1094 "The TEB contains 0x%x, expected 0x%x\n",
1095 pNtCurrentTeb()->HardErrorDisabled, 0x70);
1097 status = pRtlSetThreadErrorMode(0, &mode);
1098 ok(status == STATUS_SUCCESS ||
1099 status == STATUS_WAIT_1, /* Vista */
1100 "RtlSetThreadErrorMode failed with error 0x%08x\n", status);
1101 ok(mode == 0x70,
1102 "RtlSetThreadErrorMode returned mode 0x%x, expected 0x%x\n",
1103 mode, 0x70);
1104 ok(pRtlGetThreadErrorMode() == 0,
1105 "RtlGetThreadErrorMode returned 0x%x, expected 0x%x\n", mode, 0);
1106 if (!is_wow64 && pNtCurrentTeb)
1107 ok(pNtCurrentTeb()->HardErrorDisabled == 0,
1108 "The TEB contains 0x%x, expected 0x%x\n",
1109 pNtCurrentTeb()->HardErrorDisabled, 0);
1111 for (mode = 1; mode; mode <<= 1)
1113 status = pRtlSetThreadErrorMode(mode, NULL);
1114 if (mode & 0x70)
1115 ok(status == STATUS_SUCCESS ||
1116 status == STATUS_WAIT_1, /* Vista */
1117 "RtlSetThreadErrorMode(%x,NULL) failed with error 0x%08x\n",
1118 mode, status);
1119 else
1120 ok(status == STATUS_INVALID_PARAMETER_1,
1121 "RtlSetThreadErrorMode(%x,NULL) returns 0x%08x, "
1122 "expected STATUS_INVALID_PARAMETER_1\n",
1123 mode, status);
1126 pRtlSetThreadErrorMode(oldmode, NULL);
1129 static void test_LdrProcessRelocationBlock(void)
1131 IMAGE_BASE_RELOCATION *ret;
1132 USHORT reloc;
1133 DWORD addr32;
1134 SHORT addr16;
1136 if(!pLdrProcessRelocationBlock) {
1137 win_skip("LdrProcessRelocationBlock not available\n");
1138 return;
1141 addr32 = 0x50005;
1142 reloc = IMAGE_REL_BASED_HIGHLOW<<12;
1143 ret = pLdrProcessRelocationBlock(&addr32, 1, &reloc, 0x500050);
1144 ok((USHORT*)ret == &reloc+1, "ret = %p, expected %p\n", ret, &reloc+1);
1145 ok(addr32 == 0x550055, "addr32 = %x, expected 0x550055\n", addr32);
1147 addr16 = 0x505;
1148 reloc = IMAGE_REL_BASED_HIGH<<12;
1149 ret = pLdrProcessRelocationBlock(&addr16, 1, &reloc, 0x500060);
1150 ok((USHORT*)ret == &reloc+1, "ret = %p, expected %p\n", ret, &reloc+1);
1151 ok(addr16 == 0x555, "addr16 = %x, expected 0x555\n", addr16);
1153 addr16 = 0x505;
1154 reloc = IMAGE_REL_BASED_LOW<<12;
1155 ret = pLdrProcessRelocationBlock(&addr16, 1, &reloc, 0x500060);
1156 ok((USHORT*)ret == &reloc+1, "ret = %p, expected %p\n", ret, &reloc+1);
1157 ok(addr16 == 0x565, "addr16 = %x, expected 0x565\n", addr16);
1160 static void test_RtlIpv4AddressToString(void)
1162 CHAR buffer[20];
1163 CHAR *res;
1164 IN_ADDR ip;
1165 DWORD_PTR len;
1167 if (!pRtlIpv4AddressToStringA)
1169 win_skip("RtlIpv4AddressToStringA not available\n");
1170 return;
1173 ip.S_un.S_un_b.s_b1 = 1;
1174 ip.S_un.S_un_b.s_b2 = 2;
1175 ip.S_un.S_un_b.s_b3 = 3;
1176 ip.S_un.S_un_b.s_b4 = 4;
1178 memset(buffer, '#', sizeof(buffer) - 1);
1179 buffer[sizeof(buffer) -1] = 0;
1180 res = pRtlIpv4AddressToStringA(&ip, buffer);
1181 len = strlen(buffer);
1182 ok(res == (buffer + len), "got %p with '%s' (expected %p)\n", res, buffer, buffer + len);
1184 res = pRtlIpv4AddressToStringA(&ip, NULL);
1185 ok( (res == (char *)~0) ||
1186 broken(res == (char *)len), /* XP and w2003 */
1187 "got %p (expected ~0)\n", res);
1189 if (0) {
1190 /* this crashes in windows */
1191 memset(buffer, '#', sizeof(buffer) - 1);
1192 buffer[sizeof(buffer) -1] = 0;
1193 res = pRtlIpv4AddressToStringA(NULL, buffer);
1194 trace("got %p with '%s'\n", res, buffer);
1197 if (0) {
1198 /* this crashes in windows */
1199 res = pRtlIpv4AddressToStringA(NULL, NULL);
1200 trace("got %p\n", res);
1204 static void test_RtlIpv4AddressToStringEx(void)
1206 CHAR ip_1234[] = "1.2.3.4";
1207 CHAR ip_1234_80[] = "1.2.3.4:80";
1208 LPSTR expect;
1209 CHAR buffer[30];
1210 NTSTATUS res;
1211 IN_ADDR ip;
1212 ULONG size;
1213 DWORD used;
1214 USHORT port;
1216 if (!pRtlIpv4AddressToStringExA)
1218 win_skip("RtlIpv4AddressToStringExA not available\n");
1219 return;
1222 ip.S_un.S_un_b.s_b1 = 1;
1223 ip.S_un.S_un_b.s_b2 = 2;
1224 ip.S_un.S_un_b.s_b3 = 3;
1225 ip.S_un.S_un_b.s_b4 = 4;
1227 port = htons(80);
1228 expect = ip_1234_80;
1230 size = sizeof(buffer);
1231 memset(buffer, '#', sizeof(buffer) - 1);
1232 buffer[sizeof(buffer) -1] = 0;
1233 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1234 used = strlen(buffer);
1235 ok( (res == STATUS_SUCCESS) &&
1236 (size == strlen(expect) + 1) && !strcmp(buffer, expect),
1237 "got 0x%x and size %d with '%s'\n", res, size, buffer);
1239 size = used + 1;
1240 memset(buffer, '#', sizeof(buffer) - 1);
1241 buffer[sizeof(buffer) -1] = 0;
1242 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1243 ok( (res == STATUS_SUCCESS) &&
1244 (size == strlen(expect) + 1) && !strcmp(buffer, expect),
1245 "got 0x%x and size %d with '%s'\n", res, size, buffer);
1247 size = used;
1248 memset(buffer, '#', sizeof(buffer) - 1);
1249 buffer[sizeof(buffer) -1] = 0;
1250 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1251 ok( (res == STATUS_INVALID_PARAMETER) && (size == used + 1),
1252 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1253 res, size, buffer, used + 1);
1255 size = used - 1;
1256 memset(buffer, '#', sizeof(buffer) - 1);
1257 buffer[sizeof(buffer) -1] = 0;
1258 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1259 ok( (res == STATUS_INVALID_PARAMETER) && (size == used + 1),
1260 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1261 res, size, buffer, used + 1);
1264 /* to get only the ip, use 0 as port */
1265 port = 0;
1266 expect = ip_1234;
1268 size = sizeof(buffer);
1269 memset(buffer, '#', sizeof(buffer) - 1);
1270 buffer[sizeof(buffer) -1] = 0;
1271 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1272 used = strlen(buffer);
1273 ok( (res == STATUS_SUCCESS) &&
1274 (size == strlen(expect) + 1) && !strcmp(buffer, expect),
1275 "got 0x%x and size %d with '%s'\n", res, size, buffer);
1277 size = used + 1;
1278 memset(buffer, '#', sizeof(buffer) - 1);
1279 buffer[sizeof(buffer) -1] = 0;
1280 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1281 ok( (res == STATUS_SUCCESS) &&
1282 (size == strlen(expect) + 1) && !strcmp(buffer, expect),
1283 "got 0x%x and size %d with '%s'\n", res, size, buffer);
1285 size = used;
1286 memset(buffer, '#', sizeof(buffer) - 1);
1287 buffer[sizeof(buffer) -1] = 0;
1288 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1289 ok( (res == STATUS_INVALID_PARAMETER) && (size == used + 1),
1290 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1291 res, size, buffer, used + 1);
1293 size = used - 1;
1294 memset(buffer, '#', sizeof(buffer) - 1);
1295 buffer[sizeof(buffer) -1] = 0;
1296 res = pRtlIpv4AddressToStringExA(&ip, port, buffer, &size);
1297 ok( (res == STATUS_INVALID_PARAMETER) && (size == used + 1),
1298 "got 0x%x and %d with '%s' (expected STATUS_INVALID_PARAMETER and %d)\n",
1299 res, size, buffer, used + 1);
1302 /* parameters are checked */
1303 memset(buffer, '#', sizeof(buffer) - 1);
1304 buffer[sizeof(buffer) -1] = 0;
1305 res = pRtlIpv4AddressToStringExA(&ip, 0, buffer, NULL);
1306 ok(res == STATUS_INVALID_PARAMETER,
1307 "got 0x%x with '%s' (expected STATUS_INVALID_PARAMETER)\n", res, buffer);
1309 size = sizeof(buffer);
1310 res = pRtlIpv4AddressToStringExA(&ip, 0, NULL, &size);
1311 ok( res == STATUS_INVALID_PARAMETER,
1312 "got 0x%x and size %d (expected STATUS_INVALID_PARAMETER)\n", res, size);
1314 size = sizeof(buffer);
1315 memset(buffer, '#', sizeof(buffer) - 1);
1316 buffer[sizeof(buffer) -1] = 0;
1317 res = pRtlIpv4AddressToStringExA(NULL, 0, buffer, &size);
1318 ok( res == STATUS_INVALID_PARAMETER,
1319 "got 0x%x and size %d with '%s' (expected STATUS_INVALID_PARAMETER)\n",
1320 res, size, buffer);
1323 static void test_RtlIpv4StringToAddress(void)
1325 NTSTATUS res;
1326 IN_ADDR ip, expected_ip;
1327 PCSTR terminator;
1328 CHAR dummy;
1329 struct
1331 PCSTR address;
1332 NTSTATUS res;
1333 int terminator_offset;
1334 int ip[4];
1335 BOOL strict_is_different;
1336 NTSTATUS res_strict;
1337 int terminator_offset_strict;
1338 int ip_strict[4];
1339 } tests[] =
1341 { "", STATUS_INVALID_PARAMETER, 0, { -1 } },
1342 { " ", STATUS_INVALID_PARAMETER, 0, { -1 } },
1343 { "1.1.1.1", STATUS_SUCCESS, 7, { 1, 1, 1, 1 } },
1344 { "0.0.0.0", STATUS_SUCCESS, 7, { 0, 0, 0, 0 } },
1345 { "255.255.255.255", STATUS_SUCCESS, 15, { 255, 255, 255, 255 } },
1346 { "255.255.255.255:123",
1347 STATUS_SUCCESS, 15, { 255, 255, 255, 255 } },
1348 { "255.255.255.256", STATUS_INVALID_PARAMETER, 15, { -1 } },
1349 { "255.255.255.4294967295",
1350 STATUS_INVALID_PARAMETER, 22, { -1 } },
1351 { "255.255.255.4294967296",
1352 STATUS_INVALID_PARAMETER, 21, { -1 } },
1353 { "255.255.255.4294967297",
1354 STATUS_INVALID_PARAMETER, 21, { -1 } },
1355 { "a", STATUS_INVALID_PARAMETER, 0, { -1 } },
1356 { "1.1.1.0xaA", STATUS_SUCCESS, 10, { 1, 1, 1, 170 },
1357 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1358 { "1.1.1.0XaA", STATUS_SUCCESS, 10, { 1, 1, 1, 170 },
1359 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1360 { "1.1.1.0x", STATUS_INVALID_PARAMETER, 8, { -1 } },
1361 { "1.1.1.0xff", STATUS_SUCCESS, 10, { 1, 1, 1, 255 },
1362 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1363 { "1.1.1.0x100", STATUS_INVALID_PARAMETER, 11, { -1 },
1364 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1365 { "1.1.1.0xffffffff",STATUS_INVALID_PARAMETER, 16, { -1 },
1366 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1367 { "1.1.1.0x100000000",
1368 STATUS_INVALID_PARAMETER, 16, { -1, 0, 0, 0 },
1369 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1370 { "1.1.1.010", STATUS_SUCCESS, 9, { 1, 1, 1, 8 },
1371 TRUE, STATUS_INVALID_PARAMETER, 7, { -1 } },
1372 { "1.1.1.00", STATUS_SUCCESS, 8, { 1, 1, 1, 0 },
1373 TRUE, STATUS_INVALID_PARAMETER, 7, { -1 } },
1374 { "1.1.1.007", STATUS_SUCCESS, 9, { 1, 1, 1, 7 },
1375 TRUE, STATUS_INVALID_PARAMETER, 7, { -1 } },
1376 { "1.1.1.08", STATUS_INVALID_PARAMETER, 7, { -1 } },
1377 { "1.1.1.008", STATUS_SUCCESS, 8, { 1, 1, 1, 0 },
1378 TRUE, STATUS_INVALID_PARAMETER, 7, { -1 } },
1379 { "1.1.1.0a", STATUS_SUCCESS, 7, { 1, 1, 1, 0 } },
1380 { "1.1.1.0o10", STATUS_SUCCESS, 7, { 1, 1, 1, 0 } },
1381 { "1.1.1.0b10", STATUS_SUCCESS, 7, { 1, 1, 1, 0 } },
1382 { "1.1.1.-2", STATUS_INVALID_PARAMETER, 6, { -1 } },
1383 { "1", STATUS_SUCCESS, 1, { 0, 0, 0, 1 },
1384 TRUE, STATUS_INVALID_PARAMETER, 1, { -1 } },
1385 { "-1", STATUS_INVALID_PARAMETER, 0, { -1 } },
1386 { "203569230", STATUS_SUCCESS, 9, { 12, 34, 56, 78 },
1387 TRUE, STATUS_INVALID_PARAMETER, 9, { -1 } },
1388 { "1.223756", STATUS_SUCCESS, 8, { 1, 3, 106, 12 },
1389 TRUE, STATUS_INVALID_PARAMETER, 8, { -1 } },
1390 { "3.4.756", STATUS_SUCCESS, 7, { 3, 4, 2, 244 },
1391 TRUE, STATUS_INVALID_PARAMETER, 7, { -1 } },
1392 { "3.4.756.1", STATUS_INVALID_PARAMETER, 9, { -1 } },
1393 { "3.4.65536", STATUS_INVALID_PARAMETER, 9, { -1 } },
1394 { "3.4.5.6.7", STATUS_INVALID_PARAMETER, 7, { -1 } },
1395 { "3.4.5.+6", STATUS_INVALID_PARAMETER, 6, { -1 } },
1396 { " 3.4.5.6", STATUS_INVALID_PARAMETER, 0, { -1 } },
1397 { "\t3.4.5.6", STATUS_INVALID_PARAMETER, 0, { -1 } },
1398 { "3.4.5.6 ", STATUS_SUCCESS, 7, { 3, 4, 5, 6 } },
1399 { "3. 4.5.6", STATUS_INVALID_PARAMETER, 2, { -1 } },
1400 { ".", STATUS_INVALID_PARAMETER, 1, { -1 } },
1401 { "..", STATUS_INVALID_PARAMETER, 1, { -1 } },
1402 { "1.", STATUS_INVALID_PARAMETER, 2, { -1 } },
1403 { "1..", STATUS_INVALID_PARAMETER, 3, { -1 } },
1404 { ".1", STATUS_INVALID_PARAMETER, 1, { -1 } },
1405 { ".1.", STATUS_INVALID_PARAMETER, 1, { -1 } },
1406 { ".1.2.3", STATUS_INVALID_PARAMETER, 1, { -1 } },
1407 { "0.1.2.3", STATUS_SUCCESS, 7, { 0, 1, 2, 3 } },
1408 { "0.1.2.3.", STATUS_INVALID_PARAMETER, 7, { -1 } },
1409 { "[0.1.2.3]", STATUS_INVALID_PARAMETER, 0, { -1 } },
1410 { "::1", STATUS_INVALID_PARAMETER, 0, { -1 } },
1411 { ":1", STATUS_INVALID_PARAMETER, 0, { -1 } },
1413 const int testcount = sizeof(tests) / sizeof(tests[0]);
1414 int i;
1416 if (!pRtlIpv4StringToAddressA)
1418 skip("RtlIpv4StringToAddress not available\n");
1419 return;
1422 if (0)
1424 /* leaving either parameter NULL crashes on Windows */
1425 res = pRtlIpv4StringToAddressA(NULL, FALSE, &terminator, &ip);
1426 res = pRtlIpv4StringToAddressA("1.1.1.1", FALSE, NULL, &ip);
1427 res = pRtlIpv4StringToAddressA("1.1.1.1", FALSE, &terminator, NULL);
1428 /* same for the wide char version */
1430 res = pRtlIpv4StringToAddressW(NULL, FALSE, &terminatorW, &ip);
1431 res = pRtlIpv4StringToAddressW(L"1.1.1.1", FALSE, NULL, &ip);
1432 res = pRtlIpv4StringToAddressW(L"1.1.1.1", FALSE, &terminatorW, NULL);
1436 for (i = 0; i < testcount; i++)
1438 /* non-strict */
1439 terminator = &dummy;
1440 ip.S_un.S_addr = 0xabababab;
1441 res = pRtlIpv4StringToAddressA(tests[i].address, FALSE, &terminator, &ip);
1442 ok(res == tests[i].res,
1443 "[%s] res = 0x%08x, expected 0x%08x\n",
1444 tests[i].address, res, tests[i].res);
1445 ok(terminator == tests[i].address + tests[i].terminator_offset,
1446 "[%s] terminator = %p, expected %p\n",
1447 tests[i].address, terminator, tests[i].address + tests[i].terminator_offset);
1448 if (tests[i].ip[0] == -1)
1449 expected_ip.S_un.S_addr = 0xabababab;
1450 else
1452 expected_ip.S_un.S_un_b.s_b1 = tests[i].ip[0];
1453 expected_ip.S_un.S_un_b.s_b2 = tests[i].ip[1];
1454 expected_ip.S_un.S_un_b.s_b3 = tests[i].ip[2];
1455 expected_ip.S_un.S_un_b.s_b4 = tests[i].ip[3];
1457 ok(ip.S_un.S_addr == expected_ip.S_un.S_addr,
1458 "[%s] ip = %08x, expected %08x\n",
1459 tests[i].address, ip.S_un.S_addr, expected_ip.S_un.S_addr);
1461 if (!tests[i].strict_is_different)
1463 tests[i].res_strict = tests[i].res;
1464 tests[i].terminator_offset_strict = tests[i].terminator_offset;
1465 tests[i].ip_strict[0] = tests[i].ip[0];
1466 tests[i].ip_strict[1] = tests[i].ip[1];
1467 tests[i].ip_strict[2] = tests[i].ip[2];
1468 tests[i].ip_strict[3] = tests[i].ip[3];
1470 /* strict */
1471 terminator = &dummy;
1472 ip.S_un.S_addr = 0xabababab;
1473 res = pRtlIpv4StringToAddressA(tests[i].address, TRUE, &terminator, &ip);
1474 ok(res == tests[i].res_strict,
1475 "[%s] res = 0x%08x, expected 0x%08x\n",
1476 tests[i].address, res, tests[i].res_strict);
1477 ok(terminator == tests[i].address + tests[i].terminator_offset_strict,
1478 "[%s] terminator = %p, expected %p\n",
1479 tests[i].address, terminator, tests[i].address + tests[i].terminator_offset_strict);
1480 if (tests[i].ip_strict[0] == -1)
1481 expected_ip.S_un.S_addr = 0xabababab;
1482 else
1484 expected_ip.S_un.S_un_b.s_b1 = tests[i].ip_strict[0];
1485 expected_ip.S_un.S_un_b.s_b2 = tests[i].ip_strict[1];
1486 expected_ip.S_un.S_un_b.s_b3 = tests[i].ip_strict[2];
1487 expected_ip.S_un.S_un_b.s_b4 = tests[i].ip_strict[3];
1489 ok(ip.S_un.S_addr == expected_ip.S_un.S_addr,
1490 "[%s] ip = %08x, expected %08x\n",
1491 tests[i].address, ip.S_un.S_addr, expected_ip.S_un.S_addr);
1495 static void test_LdrAddRefDll(void)
1497 HMODULE mod, mod2;
1498 NTSTATUS status;
1499 BOOL ret;
1501 if (!pLdrAddRefDll)
1503 win_skip( "LdrAddRefDll not supported\n" );
1504 return;
1507 mod = LoadLibraryA("comctl32.dll");
1508 ok(mod != NULL, "got %p\n", mod);
1509 ret = FreeLibrary(mod);
1510 ok(ret, "got %d\n", ret);
1512 mod2 = GetModuleHandleA("comctl32.dll");
1513 ok(mod2 == NULL, "got %p\n", mod2);
1515 /* load, addref and release 2 times */
1516 mod = LoadLibraryA("comctl32.dll");
1517 ok(mod != NULL, "got %p\n", mod);
1518 status = pLdrAddRefDll(0, mod);
1519 ok(status == STATUS_SUCCESS, "got 0x%08x\n", status);
1520 ret = FreeLibrary(mod);
1521 ok(ret, "got %d\n", ret);
1523 mod2 = GetModuleHandleA("comctl32.dll");
1524 ok(mod2 != NULL, "got %p\n", mod2);
1525 ret = FreeLibrary(mod);
1526 ok(ret, "got %d\n", ret);
1528 mod2 = GetModuleHandleA("comctl32.dll");
1529 ok(mod2 == NULL, "got %p\n", mod2);
1531 /* pin refcount */
1532 mod = LoadLibraryA("comctl32.dll");
1533 ok(mod != NULL, "got %p\n", mod);
1534 status = pLdrAddRefDll(LDR_ADDREF_DLL_PIN, mod);
1535 ok(status == STATUS_SUCCESS, "got 0x%08x\n", status);
1537 ret = FreeLibrary(mod);
1538 ok(ret, "got %d\n", ret);
1539 ret = FreeLibrary(mod);
1540 ok(ret, "got %d\n", ret);
1541 ret = FreeLibrary(mod);
1542 ok(ret, "got %d\n", ret);
1543 ret = FreeLibrary(mod);
1544 ok(ret, "got %d\n", ret);
1546 mod2 = GetModuleHandleA("comctl32.dll");
1547 ok(mod2 != NULL, "got %p\n", mod2);
1550 static void test_LdrLockLoaderLock(void)
1552 ULONG_PTR magic;
1553 ULONG result;
1554 NTSTATUS status;
1556 if (!pLdrLockLoaderLock)
1558 win_skip("LdrLockLoaderLock() is not available\n");
1559 return;
1562 /* invalid flags */
1563 result = 10;
1564 magic = 0xdeadbeef;
1565 status = pLdrLockLoaderLock(0x10, &result, &magic);
1566 ok(status == STATUS_INVALID_PARAMETER_1, "got 0x%08x\n", status);
1567 ok(result == 0, "got %d\n", result);
1568 ok(magic == 0, "got %lx\n", magic);
1570 magic = 0xdeadbeef;
1571 status = pLdrLockLoaderLock(0x10, NULL, &magic);
1572 ok(status == STATUS_INVALID_PARAMETER_1, "got 0x%08x\n", status);
1573 ok(magic == 0, "got %lx\n", magic);
1575 result = 10;
1576 status = pLdrLockLoaderLock(0x10, &result, NULL);
1577 ok(status == STATUS_INVALID_PARAMETER_1, "got 0x%08x\n", status);
1578 ok(result == 0, "got %d\n", result);
1580 /* non-blocking mode, result is null */
1581 magic = 0xdeadbeef;
1582 status = pLdrLockLoaderLock(0x2, NULL, &magic);
1583 ok(status == STATUS_INVALID_PARAMETER_2, "got 0x%08x\n", status);
1584 ok(magic == 0, "got %lx\n", magic);
1586 /* magic pointer is null */
1587 result = 10;
1588 status = pLdrLockLoaderLock(0, &result, NULL);
1589 ok(status == STATUS_INVALID_PARAMETER_3, "got 0x%08x\n", status);
1590 ok(result == 0, "got %d\n", result);
1592 /* lock in non-blocking mode */
1593 result = 0;
1594 magic = 0;
1595 status = pLdrLockLoaderLock(0x2, &result, &magic);
1596 ok(status == STATUS_SUCCESS, "got 0x%08x\n", status);
1597 ok(result == 1, "got %d\n", result);
1598 ok(magic != 0, "got %lx\n", magic);
1599 pLdrUnlockLoaderLock(0, magic);
1602 START_TEST(rtl)
1604 InitFunctionPtrs();
1606 test_RtlCompareMemory();
1607 test_RtlCompareMemoryUlong();
1608 test_RtlMoveMemory();
1609 test_RtlFillMemory();
1610 test_RtlFillMemoryUlong();
1611 test_RtlZeroMemory();
1612 test_RtlUlonglongByteSwap();
1613 test_RtlUniform();
1614 test_RtlRandom();
1615 test_RtlAreAllAccessesGranted();
1616 test_RtlAreAnyAccessesGranted();
1617 test_RtlComputeCrc32();
1618 test_HandleTables();
1619 test_RtlAllocateAndInitializeSid();
1620 test_RtlDeleteTimer();
1621 test_RtlThreadErrorMode();
1622 test_LdrProcessRelocationBlock();
1623 test_RtlIpv4AddressToString();
1624 test_RtlIpv4AddressToStringEx();
1625 test_RtlIpv4StringToAddress();
1626 test_LdrAddRefDll();
1627 test_LdrLockLoaderLock();