imm32/tests: Don't expect IME window if the parent is message-only window descendant.
[wine.git] / libs / jpeg / jmemmgr.c
blob40377de4706886433028ba289798fcf151327dec
1 /*
2 * jmemmgr.c
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * Modified 2011-2019 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains the JPEG system-independent memory management
10 * routines. This code is usable across a wide variety of machines; most
11 * of the system dependencies have been isolated in a separate file.
12 * The major functions provided here are:
13 * * pool-based allocation and freeing of memory;
14 * * policy decisions about how to divide available memory among the
15 * virtual arrays;
16 * * control logic for swapping virtual arrays between main memory and
17 * backing storage.
18 * The separate system-dependent file provides the actual backing-storage
19 * access code, and it contains the policy decision about how much total
20 * main memory to use.
21 * This file is system-dependent in the sense that some of its functions
22 * are unnecessary in some systems. For example, if there is enough virtual
23 * memory so that backing storage will never be used, much of the virtual
24 * array control logic could be removed. (Of course, if you have that much
25 * memory then you shouldn't care about a little bit of unused code...)
28 #define JPEG_INTERNALS
29 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
30 #include "jinclude.h"
31 #include "jpeglib.h"
32 #include "jmemsys.h" /* import the system-dependent declarations */
34 #ifndef NO_GETENV
35 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
36 extern char * getenv JPP((const char * name));
37 #endif
38 #endif
42 * Some important notes:
43 * The allocation routines provided here must never return NULL.
44 * They should exit to error_exit if unsuccessful.
46 * It's not a good idea to try to merge the sarray and barray routines,
47 * even though they are textually almost the same, because samples are
48 * usually stored as bytes while coefficients are shorts or ints. Thus,
49 * in machines where byte pointers have a different representation from
50 * word pointers, the resulting machine code could not be the same.
55 * Many machines require storage alignment: longs must start on 4-byte
56 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
57 * always returns pointers that are multiples of the worst-case alignment
58 * requirement, and we had better do so too.
59 * There isn't any really portable way to determine the worst-case alignment
60 * requirement. This module assumes that the alignment requirement is
61 * multiples of sizeof(ALIGN_TYPE).
62 * By default, we define ALIGN_TYPE as double. This is necessary on some
63 * workstations (where doubles really do need 8-byte alignment) and will work
64 * fine on nearly everything. If your machine has lesser alignment needs,
65 * you can save a few bytes by making ALIGN_TYPE smaller.
66 * The only place I know of where this will NOT work is certain Macintosh
67 * 680x0 compilers that define double as a 10-byte IEEE extended float.
68 * Doing 10-byte alignment is counterproductive because longwords won't be
69 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
70 * such a compiler.
73 #ifndef ALIGN_TYPE /* so can override from jconfig.h */
74 #define ALIGN_TYPE double
75 #endif
79 * We allocate objects from "pools", where each pool is gotten with a single
80 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
81 * overhead within a pool, except for alignment padding. Each pool has a
82 * header with a link to the next pool of the same class.
83 * Small and large pool headers are identical except that the latter's
84 * link pointer must be FAR on 80x86 machines.
85 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
86 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
87 * of the alignment requirement of ALIGN_TYPE.
90 typedef union small_pool_struct * small_pool_ptr;
92 typedef union small_pool_struct {
93 struct {
94 small_pool_ptr next; /* next in list of pools */
95 size_t bytes_used; /* how many bytes already used within pool */
96 size_t bytes_left; /* bytes still available in this pool */
97 } hdr;
98 ALIGN_TYPE dummy; /* included in union to ensure alignment */
99 } small_pool_hdr;
101 typedef union large_pool_struct FAR * large_pool_ptr;
103 typedef union large_pool_struct {
104 struct {
105 large_pool_ptr next; /* next in list of pools */
106 size_t bytes_used; /* how many bytes already used within pool */
107 size_t bytes_left; /* bytes still available in this pool */
108 } hdr;
109 ALIGN_TYPE dummy; /* included in union to ensure alignment */
110 } large_pool_hdr;
114 * Here is the full definition of a memory manager object.
117 typedef struct {
118 struct jpeg_memory_mgr pub; /* public fields */
120 /* Each pool identifier (lifetime class) names a linked list of pools. */
121 small_pool_ptr small_list[JPOOL_NUMPOOLS];
122 large_pool_ptr large_list[JPOOL_NUMPOOLS];
124 /* Since we only have one lifetime class of virtual arrays, only one
125 * linked list is necessary (for each datatype). Note that the virtual
126 * array control blocks being linked together are actually stored somewhere
127 * in the small-pool list.
129 jvirt_sarray_ptr virt_sarray_list;
130 jvirt_barray_ptr virt_barray_list;
132 /* This counts total space obtained from jpeg_get_small/large */
133 size_t total_space_allocated;
135 /* alloc_sarray and alloc_barray set this value for use by virtual
136 * array routines.
138 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
139 } my_memory_mgr;
141 typedef my_memory_mgr * my_mem_ptr;
145 * The control blocks for virtual arrays.
146 * Note that these blocks are allocated in the "small" pool area.
147 * System-dependent info for the associated backing store (if any) is hidden
148 * inside the backing_store_info struct.
151 struct jvirt_sarray_control {
152 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
153 JDIMENSION rows_in_array; /* total virtual array height */
154 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
155 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
156 JDIMENSION rows_in_mem; /* height of memory buffer */
157 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
158 JDIMENSION cur_start_row; /* first logical row # in the buffer */
159 JDIMENSION first_undef_row; /* row # of first uninitialized row */
160 boolean pre_zero; /* pre-zero mode requested? */
161 boolean dirty; /* do current buffer contents need written? */
162 boolean b_s_open; /* is backing-store data valid? */
163 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
164 backing_store_info b_s_info; /* System-dependent control info */
167 struct jvirt_barray_control {
168 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
169 JDIMENSION rows_in_array; /* total virtual array height */
170 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
171 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
172 JDIMENSION rows_in_mem; /* height of memory buffer */
173 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
174 JDIMENSION cur_start_row; /* first logical row # in the buffer */
175 JDIMENSION first_undef_row; /* row # of first uninitialized row */
176 boolean pre_zero; /* pre-zero mode requested? */
177 boolean dirty; /* do current buffer contents need written? */
178 boolean b_s_open; /* is backing-store data valid? */
179 jvirt_barray_ptr next; /* link to next virtual barray control block */
180 backing_store_info b_s_info; /* System-dependent control info */
184 #ifdef MEM_STATS /* optional extra stuff for statistics */
186 LOCAL(void)
187 print_mem_stats (j_common_ptr cinfo, int pool_id)
189 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
190 small_pool_ptr shdr_ptr;
191 large_pool_ptr lhdr_ptr;
193 /* Since this is only a debugging stub, we can cheat a little by using
194 * fprintf directly rather than going through the trace message code.
195 * This is helpful because message parm array can't handle longs.
197 fprintf(stderr, "Freeing pool %d, total space = %ld\n",
198 pool_id, (long) mem->total_space_allocated);
200 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
201 lhdr_ptr = lhdr_ptr->hdr.next) {
202 fprintf(stderr, " Large chunk used %ld\n",
203 (long) lhdr_ptr->hdr.bytes_used);
206 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
207 shdr_ptr = shdr_ptr->hdr.next) {
208 fprintf(stderr, " Small chunk used %ld free %ld\n",
209 (long) shdr_ptr->hdr.bytes_used,
210 (long) shdr_ptr->hdr.bytes_left);
214 #endif /* MEM_STATS */
217 LOCAL(noreturn_t)
218 out_of_memory (j_common_ptr cinfo, int which)
219 /* Report an out-of-memory error and stop execution */
220 /* If we compiled MEM_STATS support, report alloc requests before dying */
222 #ifdef MEM_STATS
223 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
224 #endif
225 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
230 * Allocation of "small" objects.
232 * For these, we use pooled storage. When a new pool must be created,
233 * we try to get enough space for the current request plus a "slop" factor,
234 * where the slop will be the amount of leftover space in the new pool.
235 * The speed vs. space tradeoff is largely determined by the slop values.
236 * A different slop value is provided for each pool class (lifetime),
237 * and we also distinguish the first pool of a class from later ones.
238 * NOTE: the values given work fairly well on both 16- and 32-bit-int
239 * machines, but may be too small if longs are 64 bits or more.
242 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
244 1600, /* first PERMANENT pool */
245 16000 /* first IMAGE pool */
248 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
250 0, /* additional PERMANENT pools */
251 5000 /* additional IMAGE pools */
254 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
257 METHODDEF(void *)
258 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
259 /* Allocate a "small" object */
261 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
262 small_pool_ptr hdr_ptr, prev_hdr_ptr;
263 size_t odd_bytes, min_request, slop;
264 char * data_ptr;
266 /* Check for unsatisfiable request (do now to ensure no overflow below) */
267 if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(small_pool_hdr))
268 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
270 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
271 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
272 if (odd_bytes > 0)
273 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
275 /* See if space is available in any existing pool */
276 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
277 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
278 prev_hdr_ptr = NULL;
279 hdr_ptr = mem->small_list[pool_id];
280 while (hdr_ptr != NULL) {
281 if (hdr_ptr->hdr.bytes_left >= sizeofobject)
282 break; /* found pool with enough space */
283 prev_hdr_ptr = hdr_ptr;
284 hdr_ptr = hdr_ptr->hdr.next;
287 /* Time to make a new pool? */
288 if (hdr_ptr == NULL) {
289 /* min_request is what we need now, slop is what will be leftover */
290 min_request = sizeofobject + SIZEOF(small_pool_hdr);
291 if (prev_hdr_ptr == NULL) /* first pool in class? */
292 slop = first_pool_slop[pool_id];
293 else
294 slop = extra_pool_slop[pool_id];
295 /* Don't ask for more than MAX_ALLOC_CHUNK */
296 if (slop > (size_t) MAX_ALLOC_CHUNK - min_request)
297 slop = (size_t) MAX_ALLOC_CHUNK - min_request;
298 /* Try to get space, if fail reduce slop and try again */
299 for (;;) {
300 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
301 if (hdr_ptr != NULL)
302 break;
303 slop /= 2;
304 if (slop < MIN_SLOP) /* give up when it gets real small */
305 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
307 mem->total_space_allocated += min_request + slop;
308 /* Success, initialize the new pool header and add to end of list */
309 hdr_ptr->hdr.next = NULL;
310 hdr_ptr->hdr.bytes_used = 0;
311 hdr_ptr->hdr.bytes_left = sizeofobject + slop;
312 if (prev_hdr_ptr == NULL) /* first pool in class? */
313 mem->small_list[pool_id] = hdr_ptr;
314 else
315 prev_hdr_ptr->hdr.next = hdr_ptr;
318 /* OK, allocate the object from the current pool */
319 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
320 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
321 hdr_ptr->hdr.bytes_used += sizeofobject;
322 hdr_ptr->hdr.bytes_left -= sizeofobject;
324 return (void *) data_ptr;
329 * Allocation of "large" objects.
331 * The external semantics of these are the same as "small" objects,
332 * except that FAR pointers are used on 80x86. However the pool
333 * management heuristics are quite different. We assume that each
334 * request is large enough that it may as well be passed directly to
335 * jpeg_get_large; the pool management just links everything together
336 * so that we can free it all on demand.
337 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
338 * structures. The routines that create these structures (see below)
339 * deliberately bunch rows together to ensure a large request size.
342 METHODDEF(void FAR *)
343 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
344 /* Allocate a "large" object */
346 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
347 large_pool_ptr hdr_ptr;
348 size_t odd_bytes;
350 /* Check for unsatisfiable request (do now to ensure no overflow below) */
351 if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr))
352 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
354 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
355 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
356 if (odd_bytes > 0)
357 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
359 /* Always make a new pool */
360 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
361 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
363 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
364 SIZEOF(large_pool_hdr));
365 if (hdr_ptr == NULL)
366 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
367 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
369 /* Success, initialize the new pool header and add to list */
370 hdr_ptr->hdr.next = mem->large_list[pool_id];
371 /* We maintain space counts in each pool header for statistical purposes,
372 * even though they are not needed for allocation.
374 hdr_ptr->hdr.bytes_used = sizeofobject;
375 hdr_ptr->hdr.bytes_left = 0;
376 mem->large_list[pool_id] = hdr_ptr;
378 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
383 * Creation of 2-D sample arrays.
384 * The pointers are in near heap, the samples themselves in FAR heap.
386 * To minimize allocation overhead and to allow I/O of large contiguous
387 * blocks, we allocate the sample rows in groups of as many rows as possible
388 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
389 * NB: the virtual array control routines, later in this file, know about
390 * this chunking of rows. The rowsperchunk value is left in the mem manager
391 * object so that it can be saved away if this sarray is the workspace for
392 * a virtual array.
395 METHODDEF(JSAMPARRAY)
396 alloc_sarray (j_common_ptr cinfo, int pool_id,
397 JDIMENSION samplesperrow, JDIMENSION numrows)
398 /* Allocate a 2-D sample array */
400 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
401 JSAMPARRAY result;
402 JSAMPROW workspace;
403 JDIMENSION rowsperchunk, currow, i;
404 long ltemp;
406 /* Calculate max # of rows allowed in one allocation chunk */
407 ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /
408 ((long) samplesperrow * SIZEOF(JSAMPLE));
409 if (ltemp <= 0)
410 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
411 if (ltemp < (long) numrows)
412 rowsperchunk = (JDIMENSION) ltemp;
413 else
414 rowsperchunk = numrows;
415 mem->last_rowsperchunk = rowsperchunk;
417 /* Get space for row pointers (small object) */
418 result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
419 (size_t) numrows * SIZEOF(JSAMPROW));
421 /* Get the rows themselves (large objects) */
422 currow = 0;
423 while (currow < numrows) {
424 rowsperchunk = MIN(rowsperchunk, numrows - currow);
425 workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
426 (size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE));
427 for (i = rowsperchunk; i > 0; i--) {
428 result[currow++] = workspace;
429 workspace += samplesperrow;
433 return result;
438 * Creation of 2-D coefficient-block arrays.
439 * This is essentially the same as the code for sample arrays, above.
442 METHODDEF(JBLOCKARRAY)
443 alloc_barray (j_common_ptr cinfo, int pool_id,
444 JDIMENSION blocksperrow, JDIMENSION numrows)
445 /* Allocate a 2-D coefficient-block array */
447 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
448 JBLOCKARRAY result;
449 JBLOCKROW workspace;
450 JDIMENSION rowsperchunk, currow, i;
451 long ltemp;
453 /* Calculate max # of rows allowed in one allocation chunk */
454 ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /
455 ((long) blocksperrow * SIZEOF(JBLOCK));
456 if (ltemp <= 0)
457 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458 if (ltemp < (long) numrows)
459 rowsperchunk = (JDIMENSION) ltemp;
460 else
461 rowsperchunk = numrows;
462 mem->last_rowsperchunk = rowsperchunk;
464 /* Get space for row pointers (small object) */
465 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
466 (size_t) numrows * SIZEOF(JBLOCKROW));
468 /* Get the rows themselves (large objects) */
469 currow = 0;
470 while (currow < numrows) {
471 rowsperchunk = MIN(rowsperchunk, numrows - currow);
472 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
473 (size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK));
474 for (i = rowsperchunk; i > 0; i--) {
475 result[currow++] = workspace;
476 workspace += blocksperrow;
480 return result;
485 * About virtual array management:
487 * The above "normal" array routines are only used to allocate strip buffers
488 * (as wide as the image, but just a few rows high). Full-image-sized buffers
489 * are handled as "virtual" arrays. The array is still accessed a strip at a
490 * time, but the memory manager must save the whole array for repeated
491 * accesses. The intended implementation is that there is a strip buffer in
492 * memory (as high as is possible given the desired memory limit), plus a
493 * backing file that holds the rest of the array.
495 * The request_virt_array routines are told the total size of the image and
496 * the maximum number of rows that will be accessed at once. The in-memory
497 * buffer must be at least as large as the maxaccess value.
499 * The request routines create control blocks but not the in-memory buffers.
500 * That is postponed until realize_virt_arrays is called. At that time the
501 * total amount of space needed is known (approximately, anyway), so free
502 * memory can be divided up fairly.
504 * The access_virt_array routines are responsible for making a specific strip
505 * area accessible (after reading or writing the backing file, if necessary).
506 * Note that the access routines are told whether the caller intends to modify
507 * the accessed strip; during a read-only pass this saves having to rewrite
508 * data to disk. The access routines are also responsible for pre-zeroing
509 * any newly accessed rows, if pre-zeroing was requested.
511 * In current usage, the access requests are usually for nonoverlapping
512 * strips; that is, successive access start_row numbers differ by exactly
513 * num_rows = maxaccess. This means we can get good performance with simple
514 * buffer dump/reload logic, by making the in-memory buffer be a multiple
515 * of the access height; then there will never be accesses across bufferload
516 * boundaries. The code will still work with overlapping access requests,
517 * but it doesn't handle bufferload overlaps very efficiently.
521 METHODDEF(jvirt_sarray_ptr)
522 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
523 JDIMENSION samplesperrow, JDIMENSION numrows,
524 JDIMENSION maxaccess)
525 /* Request a virtual 2-D sample array */
527 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
528 jvirt_sarray_ptr result;
530 /* Only IMAGE-lifetime virtual arrays are currently supported */
531 if (pool_id != JPOOL_IMAGE)
532 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
534 /* get control block */
535 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
536 SIZEOF(struct jvirt_sarray_control));
538 result->mem_buffer = NULL; /* marks array not yet realized */
539 result->rows_in_array = numrows;
540 result->samplesperrow = samplesperrow;
541 result->maxaccess = maxaccess;
542 result->pre_zero = pre_zero;
543 result->b_s_open = FALSE; /* no associated backing-store object */
544 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
545 mem->virt_sarray_list = result;
547 return result;
551 METHODDEF(jvirt_barray_ptr)
552 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
553 JDIMENSION blocksperrow, JDIMENSION numrows,
554 JDIMENSION maxaccess)
555 /* Request a virtual 2-D coefficient-block array */
557 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
558 jvirt_barray_ptr result;
560 /* Only IMAGE-lifetime virtual arrays are currently supported */
561 if (pool_id != JPOOL_IMAGE)
562 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
564 /* get control block */
565 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
566 SIZEOF(struct jvirt_barray_control));
568 result->mem_buffer = NULL; /* marks array not yet realized */
569 result->rows_in_array = numrows;
570 result->blocksperrow = blocksperrow;
571 result->maxaccess = maxaccess;
572 result->pre_zero = pre_zero;
573 result->b_s_open = FALSE; /* no associated backing-store object */
574 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
575 mem->virt_barray_list = result;
577 return result;
581 METHODDEF(void)
582 realize_virt_arrays (j_common_ptr cinfo)
583 /* Allocate the in-memory buffers for any unrealized virtual arrays */
585 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
586 long bytesperrow, space_per_minheight, maximum_space;
587 long avail_mem, minheights, max_minheights;
588 jvirt_sarray_ptr sptr;
589 jvirt_barray_ptr bptr;
591 /* Compute the minimum space needed (maxaccess rows in each buffer)
592 * and the maximum space needed (full image height in each buffer).
593 * These may be of use to the system-dependent jpeg_mem_available routine.
595 space_per_minheight = 0;
596 maximum_space = 0;
597 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
598 if (sptr->mem_buffer == NULL) { /* if not realized yet */
599 bytesperrow = (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
600 space_per_minheight += (long) sptr->maxaccess * bytesperrow;
601 maximum_space += (long) sptr->rows_in_array * bytesperrow;
604 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
605 if (bptr->mem_buffer == NULL) { /* if not realized yet */
606 bytesperrow = (long) bptr->blocksperrow * SIZEOF(JBLOCK);
607 space_per_minheight += (long) bptr->maxaccess * bytesperrow;
608 maximum_space += (long) bptr->rows_in_array * bytesperrow;
612 if (space_per_minheight <= 0)
613 return; /* no unrealized arrays, no work */
615 /* Determine amount of memory to actually use; this is system-dependent. */
616 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
617 (long) mem->total_space_allocated);
619 /* If the maximum space needed is available, make all the buffers full
620 * height; otherwise parcel it out with the same number of minheights
621 * in each buffer.
623 if (avail_mem >= maximum_space)
624 max_minheights = 1000000000L;
625 else {
626 max_minheights = avail_mem / space_per_minheight;
627 /* If there doesn't seem to be enough space, try to get the minimum
628 * anyway. This allows a "stub" implementation of jpeg_mem_available().
630 if (max_minheights <= 0)
631 max_minheights = 1;
634 /* Allocate the in-memory buffers and initialize backing store as needed. */
636 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
637 if (sptr->mem_buffer == NULL) { /* if not realized yet */
638 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
639 if (minheights <= max_minheights) {
640 /* This buffer fits in memory */
641 sptr->rows_in_mem = sptr->rows_in_array;
642 } else {
643 /* It doesn't fit in memory, create backing store. */
644 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
645 jpeg_open_backing_store(cinfo, & sptr->b_s_info,
646 (long) sptr->rows_in_array *
647 (long) sptr->samplesperrow *
648 (long) SIZEOF(JSAMPLE));
649 sptr->b_s_open = TRUE;
651 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
652 sptr->samplesperrow, sptr->rows_in_mem);
653 sptr->rowsperchunk = mem->last_rowsperchunk;
654 sptr->cur_start_row = 0;
655 sptr->first_undef_row = 0;
656 sptr->dirty = FALSE;
660 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
661 if (bptr->mem_buffer == NULL) { /* if not realized yet */
662 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
663 if (minheights <= max_minheights) {
664 /* This buffer fits in memory */
665 bptr->rows_in_mem = bptr->rows_in_array;
666 } else {
667 /* It doesn't fit in memory, create backing store. */
668 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
669 jpeg_open_backing_store(cinfo, & bptr->b_s_info,
670 (long) bptr->rows_in_array *
671 (long) bptr->blocksperrow *
672 (long) SIZEOF(JBLOCK));
673 bptr->b_s_open = TRUE;
675 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
676 bptr->blocksperrow, bptr->rows_in_mem);
677 bptr->rowsperchunk = mem->last_rowsperchunk;
678 bptr->cur_start_row = 0;
679 bptr->first_undef_row = 0;
680 bptr->dirty = FALSE;
686 LOCAL(void)
687 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
688 /* Do backing store read or write of a virtual sample array */
690 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
692 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
693 file_offset = (long) ptr->cur_start_row * bytesperrow;
694 /* Loop to read or write each allocation chunk in mem_buffer */
695 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
696 /* One chunk, but check for short chunk at end of buffer */
697 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
698 /* Transfer no more than is currently defined */
699 thisrow = (long) ptr->cur_start_row + i;
700 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
701 /* Transfer no more than fits in file */
702 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
703 if (rows <= 0) /* this chunk might be past end of file! */
704 break;
705 byte_count = rows * bytesperrow;
706 if (writing)
707 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
708 (void FAR *) ptr->mem_buffer[i],
709 file_offset, byte_count);
710 else
711 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
712 (void FAR *) ptr->mem_buffer[i],
713 file_offset, byte_count);
714 file_offset += byte_count;
719 LOCAL(void)
720 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
721 /* Do backing store read or write of a virtual coefficient-block array */
723 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
725 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
726 file_offset = (long) ptr->cur_start_row * bytesperrow;
727 /* Loop to read or write each allocation chunk in mem_buffer */
728 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
729 /* One chunk, but check for short chunk at end of buffer */
730 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
731 /* Transfer no more than is currently defined */
732 thisrow = (long) ptr->cur_start_row + i;
733 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
734 /* Transfer no more than fits in file */
735 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
736 if (rows <= 0) /* this chunk might be past end of file! */
737 break;
738 byte_count = rows * bytesperrow;
739 if (writing)
740 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
741 (void FAR *) ptr->mem_buffer[i],
742 file_offset, byte_count);
743 else
744 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
745 (void FAR *) ptr->mem_buffer[i],
746 file_offset, byte_count);
747 file_offset += byte_count;
752 METHODDEF(JSAMPARRAY)
753 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
754 JDIMENSION start_row, JDIMENSION num_rows,
755 boolean writable)
756 /* Access the part of a virtual sample array starting at start_row */
757 /* and extending for num_rows rows. writable is true if */
758 /* caller intends to modify the accessed area. */
760 JDIMENSION end_row = start_row + num_rows;
761 JDIMENSION undef_row;
763 /* debugging check */
764 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
765 ptr->mem_buffer == NULL)
766 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
768 /* Make the desired part of the virtual array accessible */
769 if (start_row < ptr->cur_start_row ||
770 end_row > ptr->cur_start_row + ptr->rows_in_mem) {
771 if (! ptr->b_s_open)
772 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
773 /* Flush old buffer contents if necessary */
774 if (ptr->dirty) {
775 do_sarray_io(cinfo, ptr, TRUE);
776 ptr->dirty = FALSE;
778 /* Decide what part of virtual array to access.
779 * Algorithm: if target address > current window, assume forward scan,
780 * load starting at target address. If target address < current window,
781 * assume backward scan, load so that target area is top of window.
782 * Note that when switching from forward write to forward read, will have
783 * start_row = 0, so the limiting case applies and we load from 0 anyway.
785 if (start_row > ptr->cur_start_row) {
786 ptr->cur_start_row = start_row;
787 } else {
788 /* use long arithmetic here to avoid overflow & unsigned problems */
789 long ltemp;
791 ltemp = (long) end_row - (long) ptr->rows_in_mem;
792 if (ltemp < 0)
793 ltemp = 0; /* don't fall off front end of file */
794 ptr->cur_start_row = (JDIMENSION) ltemp;
796 /* Read in the selected part of the array.
797 * During the initial write pass, we will do no actual read
798 * because the selected part is all undefined.
800 do_sarray_io(cinfo, ptr, FALSE);
802 /* Ensure the accessed part of the array is defined; prezero if needed.
803 * To improve locality of access, we only prezero the part of the array
804 * that the caller is about to access, not the entire in-memory array.
806 if (ptr->first_undef_row < end_row) {
807 if (ptr->first_undef_row < start_row) {
808 if (writable) /* writer skipped over a section of array */
809 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
810 undef_row = start_row; /* but reader is allowed to read ahead */
811 } else {
812 undef_row = ptr->first_undef_row;
814 if (writable)
815 ptr->first_undef_row = end_row;
816 if (ptr->pre_zero) {
817 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
818 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
819 end_row -= ptr->cur_start_row;
820 while (undef_row < end_row) {
821 FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
822 undef_row++;
824 } else {
825 if (! writable) /* reader looking at undefined data */
826 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
829 /* Flag the buffer dirty if caller will write in it */
830 if (writable)
831 ptr->dirty = TRUE;
832 /* Return address of proper part of the buffer */
833 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
837 METHODDEF(JBLOCKARRAY)
838 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
839 JDIMENSION start_row, JDIMENSION num_rows,
840 boolean writable)
841 /* Access the part of a virtual block array starting at start_row */
842 /* and extending for num_rows rows. writable is true if */
843 /* caller intends to modify the accessed area. */
845 JDIMENSION end_row = start_row + num_rows;
846 JDIMENSION undef_row;
848 /* debugging check */
849 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
850 ptr->mem_buffer == NULL)
851 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
853 /* Make the desired part of the virtual array accessible */
854 if (start_row < ptr->cur_start_row ||
855 end_row > ptr->cur_start_row + ptr->rows_in_mem) {
856 if (! ptr->b_s_open)
857 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
858 /* Flush old buffer contents if necessary */
859 if (ptr->dirty) {
860 do_barray_io(cinfo, ptr, TRUE);
861 ptr->dirty = FALSE;
863 /* Decide what part of virtual array to access.
864 * Algorithm: if target address > current window, assume forward scan,
865 * load starting at target address. If target address < current window,
866 * assume backward scan, load so that target area is top of window.
867 * Note that when switching from forward write to forward read, will have
868 * start_row = 0, so the limiting case applies and we load from 0 anyway.
870 if (start_row > ptr->cur_start_row) {
871 ptr->cur_start_row = start_row;
872 } else {
873 /* use long arithmetic here to avoid overflow & unsigned problems */
874 long ltemp;
876 ltemp = (long) end_row - (long) ptr->rows_in_mem;
877 if (ltemp < 0)
878 ltemp = 0; /* don't fall off front end of file */
879 ptr->cur_start_row = (JDIMENSION) ltemp;
881 /* Read in the selected part of the array.
882 * During the initial write pass, we will do no actual read
883 * because the selected part is all undefined.
885 do_barray_io(cinfo, ptr, FALSE);
887 /* Ensure the accessed part of the array is defined; prezero if needed.
888 * To improve locality of access, we only prezero the part of the array
889 * that the caller is about to access, not the entire in-memory array.
891 if (ptr->first_undef_row < end_row) {
892 if (ptr->first_undef_row < start_row) {
893 if (writable) /* writer skipped over a section of array */
894 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
895 undef_row = start_row; /* but reader is allowed to read ahead */
896 } else {
897 undef_row = ptr->first_undef_row;
899 if (writable)
900 ptr->first_undef_row = end_row;
901 if (ptr->pre_zero) {
902 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
903 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
904 end_row -= ptr->cur_start_row;
905 while (undef_row < end_row) {
906 FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
907 undef_row++;
909 } else {
910 if (! writable) /* reader looking at undefined data */
911 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
914 /* Flag the buffer dirty if caller will write in it */
915 if (writable)
916 ptr->dirty = TRUE;
917 /* Return address of proper part of the buffer */
918 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
923 * Release all objects belonging to a specified pool.
926 METHODDEF(void)
927 free_pool (j_common_ptr cinfo, int pool_id)
929 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
930 small_pool_ptr shdr_ptr;
931 large_pool_ptr lhdr_ptr;
932 size_t space_freed;
934 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
935 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
937 #ifdef MEM_STATS
938 if (cinfo->err->trace_level > 1)
939 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
940 #endif
942 /* If freeing IMAGE pool, close any virtual arrays first */
943 if (pool_id == JPOOL_IMAGE) {
944 jvirt_sarray_ptr sptr;
945 jvirt_barray_ptr bptr;
947 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
948 if (sptr->b_s_open) { /* there may be no backing store */
949 sptr->b_s_open = FALSE; /* prevent recursive close if error */
950 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
953 mem->virt_sarray_list = NULL;
954 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
955 if (bptr->b_s_open) { /* there may be no backing store */
956 bptr->b_s_open = FALSE; /* prevent recursive close if error */
957 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
960 mem->virt_barray_list = NULL;
963 /* Release large objects */
964 lhdr_ptr = mem->large_list[pool_id];
965 mem->large_list[pool_id] = NULL;
967 while (lhdr_ptr != NULL) {
968 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
969 space_freed = lhdr_ptr->hdr.bytes_used +
970 lhdr_ptr->hdr.bytes_left +
971 SIZEOF(large_pool_hdr);
972 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
973 mem->total_space_allocated -= space_freed;
974 lhdr_ptr = next_lhdr_ptr;
977 /* Release small objects */
978 shdr_ptr = mem->small_list[pool_id];
979 mem->small_list[pool_id] = NULL;
981 while (shdr_ptr != NULL) {
982 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
983 space_freed = shdr_ptr->hdr.bytes_used +
984 shdr_ptr->hdr.bytes_left +
985 SIZEOF(small_pool_hdr);
986 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
987 mem->total_space_allocated -= space_freed;
988 shdr_ptr = next_shdr_ptr;
994 * Close up shop entirely.
995 * Note that this cannot be called unless cinfo->mem is non-NULL.
998 METHODDEF(void)
999 self_destruct (j_common_ptr cinfo)
1001 int pool;
1003 /* Close all backing store, release all memory.
1004 * Releasing pools in reverse order might help avoid fragmentation
1005 * with some (brain-damaged) malloc libraries.
1007 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1008 free_pool(cinfo, pool);
1011 /* Release the memory manager control block too. */
1012 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1013 cinfo->mem = NULL; /* ensures I will be called only once */
1015 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1020 * Memory manager initialization.
1021 * When this is called, only the error manager pointer is valid in cinfo!
1024 GLOBAL(void)
1025 jinit_memory_mgr (j_common_ptr cinfo)
1027 my_mem_ptr mem;
1028 long max_to_use;
1029 int pool;
1030 size_t test_mac;
1032 cinfo->mem = NULL; /* for safety if init fails */
1034 /* Check for configuration errors.
1035 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1036 * doesn't reflect any real hardware alignment requirement.
1037 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1038 * in common if and only if X is a power of 2, ie has only one one-bit.
1039 * Some compilers may give an "unreachable code" warning here; ignore it.
1041 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1042 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1043 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1044 * a multiple of SIZEOF(ALIGN_TYPE).
1045 * Again, an "unreachable code" warning may be ignored here.
1046 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1048 test_mac = (size_t) MAX_ALLOC_CHUNK;
1049 if ((long) test_mac != MAX_ALLOC_CHUNK ||
1050 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1051 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1053 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1055 /* Attempt to allocate memory manager's control block */
1056 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1058 if (mem == NULL) {
1059 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1060 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1063 /* OK, fill in the method pointers */
1064 mem->pub.alloc_small = alloc_small;
1065 mem->pub.alloc_large = alloc_large;
1066 mem->pub.alloc_sarray = alloc_sarray;
1067 mem->pub.alloc_barray = alloc_barray;
1068 mem->pub.request_virt_sarray = request_virt_sarray;
1069 mem->pub.request_virt_barray = request_virt_barray;
1070 mem->pub.realize_virt_arrays = realize_virt_arrays;
1071 mem->pub.access_virt_sarray = access_virt_sarray;
1072 mem->pub.access_virt_barray = access_virt_barray;
1073 mem->pub.free_pool = free_pool;
1074 mem->pub.self_destruct = self_destruct;
1076 /* Make MAX_ALLOC_CHUNK accessible to other modules */
1077 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1079 /* Initialize working state */
1080 mem->pub.max_memory_to_use = max_to_use;
1082 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1083 mem->small_list[pool] = NULL;
1084 mem->large_list[pool] = NULL;
1086 mem->virt_sarray_list = NULL;
1087 mem->virt_barray_list = NULL;
1089 mem->total_space_allocated = SIZEOF(my_memory_mgr);
1091 /* Declare ourselves open for business */
1092 cinfo->mem = &mem->pub;
1094 /* Check for an environment variable JPEGMEM; if found, override the
1095 * default max_memory setting from jpeg_mem_init. Note that the
1096 * surrounding application may again override this value.
1097 * If your system doesn't support getenv(), define NO_GETENV to disable
1098 * this feature.
1100 #ifndef NO_GETENV
1101 { char * memenv;
1103 if ((memenv = getenv("JPEGMEM")) != NULL) {
1104 char ch = 'x';
1106 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1107 if (ch == 'm' || ch == 'M')
1108 max_to_use *= 1000L;
1109 mem->pub.max_memory_to_use = max_to_use * 1000L;
1113 #endif