dmime: Implement band track IDirectMusicTrack_Play.
[wine.git] / libs / lcms2 / src / cmsopt.c
blobb3d831cbd994f5d97bf1183f94cd064b206044a7
1 //---------------------------------------------------------------------------------
2 //
3 // Little Color Management System
4 // Copyright (c) 1998-2023 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 //---------------------------------------------------------------------------------
27 #include "lcms2_internal.h"
30 //----------------------------------------------------------------------------------
32 // Optimization for 8 bits, Shaper-CLUT (3 inputs only)
33 typedef struct {
35 cmsContext ContextID;
37 const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
39 cmsUInt16Number rx[256], ry[256], rz[256];
40 cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
43 } Prelin8Data;
46 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
47 typedef struct {
49 cmsContext ContextID;
51 // Number of channels
52 cmsUInt32Number nInputs;
53 cmsUInt32Number nOutputs;
55 _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
56 cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
58 _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
59 const cmsInterpParams* CLUTparams; // (not-owned pointer)
62 _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
63 cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
66 } Prelin16Data;
69 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
71 typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
73 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
75 typedef struct {
77 cmsContext ContextID;
79 cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
80 cmsS1Fixed14Number Shaper1G[256];
81 cmsS1Fixed14Number Shaper1B[256];
83 cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
84 cmsS1Fixed14Number Off[3];
86 cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
87 cmsUInt16Number Shaper2G[16385];
88 cmsUInt16Number Shaper2B[16385];
90 } MatShaper8Data;
92 // Curves, optimization is shared between 8 and 16 bits
93 typedef struct {
95 cmsContext ContextID;
97 cmsUInt32Number nCurves; // Number of curves
98 cmsUInt32Number nElements; // Elements in curves
99 cmsUInt16Number** Curves; // Points to a dynamically allocated array
101 } Curves16Data;
104 // Simple optimizations ----------------------------------------------------------------------------------------------------------
107 // Remove an element in linked chain
108 static
109 void _RemoveElement(cmsStage** head)
111 cmsStage* mpe = *head;
112 cmsStage* next = mpe ->Next;
113 *head = next;
114 cmsStageFree(mpe);
117 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
118 static
119 cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
121 cmsStage** pt = &Lut ->Elements;
122 cmsBool AnyOpt = FALSE;
124 while (*pt != NULL) {
126 if ((*pt) ->Implements == UnaryOp) {
127 _RemoveElement(pt);
128 AnyOpt = TRUE;
130 else
131 pt = &((*pt) -> Next);
134 return AnyOpt;
137 // Same, but only if two adjacent elements are found
138 static
139 cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
141 cmsStage** pt1;
142 cmsStage** pt2;
143 cmsBool AnyOpt = FALSE;
145 pt1 = &Lut ->Elements;
146 if (*pt1 == NULL) return AnyOpt;
148 while (*pt1 != NULL) {
150 pt2 = &((*pt1) -> Next);
151 if (*pt2 == NULL) return AnyOpt;
153 if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
154 _RemoveElement(pt2);
155 _RemoveElement(pt1);
156 AnyOpt = TRUE;
158 else
159 pt1 = &((*pt1) -> Next);
162 return AnyOpt;
166 static
167 cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
169 return fabs(b - a) < 0.00001f;
172 static
173 cmsBool isFloatMatrixIdentity(const cmsMAT3* a)
175 cmsMAT3 Identity;
176 int i, j;
178 _cmsMAT3identity(&Identity);
180 for (i = 0; i < 3; i++)
181 for (j = 0; j < 3; j++)
182 if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
184 return TRUE;
186 // if two adjacent matrices are found, multiply them.
187 static
188 cmsBool _MultiplyMatrix(cmsPipeline* Lut)
190 cmsStage** pt1;
191 cmsStage** pt2;
192 cmsStage* chain;
193 cmsBool AnyOpt = FALSE;
195 pt1 = &Lut->Elements;
196 if (*pt1 == NULL) return AnyOpt;
198 while (*pt1 != NULL) {
200 pt2 = &((*pt1)->Next);
201 if (*pt2 == NULL) return AnyOpt;
203 if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
205 // Get both matrices
206 _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
207 _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
208 cmsMAT3 res;
210 // Input offset and output offset should be zero to use this optimization
211 if (m1->Offset != NULL || m2 ->Offset != NULL ||
212 cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
213 cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
214 return FALSE;
216 // Multiply both matrices to get the result
217 _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
219 // Get the next in chain after the matrices
220 chain = (*pt2)->Next;
222 // Remove both matrices
223 _RemoveElement(pt2);
224 _RemoveElement(pt1);
226 // Now what if the result is a plain identity?
227 if (!isFloatMatrixIdentity(&res)) {
229 // We can not get rid of full matrix
230 cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
231 if (Multmat == NULL) return FALSE; // Should never happen
233 // Recover the chain
234 Multmat->Next = chain;
235 *pt1 = Multmat;
238 AnyOpt = TRUE;
240 else
241 pt1 = &((*pt1)->Next);
244 return AnyOpt;
248 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
249 // by a v4 to v2 and vice-versa. The elements are then discarded.
250 static
251 cmsBool PreOptimize(cmsPipeline* Lut)
253 cmsBool AnyOpt = FALSE, Opt;
255 do {
257 Opt = FALSE;
259 // Remove all identities
260 Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
262 // Remove XYZ2Lab followed by Lab2XYZ
263 Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
265 // Remove Lab2XYZ followed by XYZ2Lab
266 Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
268 // Remove V4 to V2 followed by V2 to V4
269 Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
271 // Remove V2 to V4 followed by V4 to V2
272 Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
274 // Remove float pcs Lab conversions
275 Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
277 // Remove float pcs Lab conversions
278 Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
280 // Simplify matrix.
281 Opt |= _MultiplyMatrix(Lut);
283 if (Opt) AnyOpt = TRUE;
285 } while (Opt);
287 return AnyOpt;
290 static
291 void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[],
292 CMSREGISTER cmsUInt16Number Output[],
293 CMSREGISTER const struct _cms_interp_struc* p)
295 Output[0] = Input[0];
297 cmsUNUSED_PARAMETER(p);
300 static
301 void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[],
302 CMSREGISTER cmsUInt16Number Output[],
303 CMSREGISTER const void* D)
305 Prelin16Data* p16 = (Prelin16Data*) D;
306 cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
307 cmsUInt16Number StageDEF[cmsMAXCHANNELS];
308 cmsUInt32Number i;
310 for (i=0; i < p16 ->nInputs; i++) {
312 p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
315 p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
317 for (i=0; i < p16 ->nOutputs; i++) {
319 p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
324 static
325 void PrelinOpt16free(cmsContext ContextID, void* ptr)
327 Prelin16Data* p16 = (Prelin16Data*) ptr;
329 _cmsFree(ContextID, p16 ->EvalCurveOut16);
330 _cmsFree(ContextID, p16 ->ParamsCurveOut16);
332 _cmsFree(ContextID, p16);
335 static
336 void* Prelin16dup(cmsContext ContextID, const void* ptr)
338 Prelin16Data* p16 = (Prelin16Data*) ptr;
339 Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
341 if (Duped == NULL) return NULL;
343 Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
344 Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
346 return Duped;
350 static
351 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
352 const cmsInterpParams* ColorMap,
353 cmsUInt32Number nInputs, cmsToneCurve** In,
354 cmsUInt32Number nOutputs, cmsToneCurve** Out )
356 cmsUInt32Number i;
357 Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
358 if (p16 == NULL) return NULL;
360 p16 ->nInputs = nInputs;
361 p16 ->nOutputs = nOutputs;
364 for (i=0; i < nInputs; i++) {
366 if (In == NULL) {
367 p16 -> ParamsCurveIn16[i] = NULL;
368 p16 -> EvalCurveIn16[i] = Eval16nop1D;
371 else {
372 p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
373 p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
377 p16 ->CLUTparams = ColorMap;
378 p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
381 p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
382 if (p16->EvalCurveOut16 == NULL)
384 _cmsFree(ContextID, p16);
385 return NULL;
388 p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
389 if (p16->ParamsCurveOut16 == NULL)
392 _cmsFree(ContextID, p16->EvalCurveOut16);
393 _cmsFree(ContextID, p16);
394 return NULL;
397 for (i=0; i < nOutputs; i++) {
399 if (Out == NULL) {
400 p16 ->ParamsCurveOut16[i] = NULL;
401 p16 -> EvalCurveOut16[i] = Eval16nop1D;
403 else {
405 p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
406 p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
410 return p16;
415 // Resampling ---------------------------------------------------------------------------------
417 #define PRELINEARIZATION_POINTS 4096
419 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
420 // almost any transform. We use floating point precision and then convert from floating point to 16 bits.
421 static
422 cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[],
423 CMSREGISTER cmsUInt16Number Out[],
424 CMSREGISTER void* Cargo)
426 cmsPipeline* Lut = (cmsPipeline*) Cargo;
427 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
428 cmsUInt32Number i;
430 _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
431 _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
433 // From 16 bit to floating point
434 for (i=0; i < Lut ->InputChannels; i++)
435 InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
437 // Evaluate in floating point
438 cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
440 // Back to 16 bits representation
441 for (i=0; i < Lut ->OutputChannels; i++)
442 Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
444 // Always succeed
445 return TRUE;
448 // Try to see if the curves of a given MPE are linear
449 static
450 cmsBool AllCurvesAreLinear(cmsStage* mpe)
452 cmsToneCurve** Curves;
453 cmsUInt32Number i, n;
455 Curves = _cmsStageGetPtrToCurveSet(mpe);
456 if (Curves == NULL) return FALSE;
458 n = cmsStageOutputChannels(mpe);
460 for (i=0; i < n; i++) {
461 if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
464 return TRUE;
467 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
468 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
469 static
470 cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
471 cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
473 _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
474 cmsInterpParams* p16 = Grid ->Params;
475 cmsFloat64Number px, py, pz, pw;
476 int x0, y0, z0, w0;
477 int i, index;
479 if (CLUT -> Type != cmsSigCLutElemType) {
480 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
481 return FALSE;
484 if (nChannelsIn == 4) {
486 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
487 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
488 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
489 pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
491 x0 = (int) floor(px);
492 y0 = (int) floor(py);
493 z0 = (int) floor(pz);
494 w0 = (int) floor(pw);
496 if (((px - x0) != 0) ||
497 ((py - y0) != 0) ||
498 ((pz - z0) != 0) ||
499 ((pw - w0) != 0)) return FALSE; // Not on exact node
501 index = (int) p16 -> opta[3] * x0 +
502 (int) p16 -> opta[2] * y0 +
503 (int) p16 -> opta[1] * z0 +
504 (int) p16 -> opta[0] * w0;
506 else
507 if (nChannelsIn == 3) {
509 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
510 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
511 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
513 x0 = (int) floor(px);
514 y0 = (int) floor(py);
515 z0 = (int) floor(pz);
517 if (((px - x0) != 0) ||
518 ((py - y0) != 0) ||
519 ((pz - z0) != 0)) return FALSE; // Not on exact node
521 index = (int) p16 -> opta[2] * x0 +
522 (int) p16 -> opta[1] * y0 +
523 (int) p16 -> opta[0] * z0;
525 else
526 if (nChannelsIn == 1) {
528 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
530 x0 = (int) floor(px);
532 if (((px - x0) != 0)) return FALSE; // Not on exact node
534 index = (int) p16 -> opta[0] * x0;
536 else {
537 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
538 return FALSE;
541 for (i = 0; i < (int) nChannelsOut; i++)
542 Grid->Tab.T[index + i] = Value[i];
544 return TRUE;
547 // Auxiliary, to see if two values are equal or very different
548 static
549 cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
551 cmsUInt32Number i;
553 for (i=0; i < n; i++) {
555 if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided
556 if (White1[i] != White2[i]) return FALSE;
558 return TRUE;
562 // Locate the node for the white point and fix it to pure white in order to avoid scum dot.
563 static
564 cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
566 cmsUInt16Number *WhitePointIn, *WhitePointOut;
567 cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
568 cmsUInt32Number i, nOuts, nIns;
569 cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
571 if (!_cmsEndPointsBySpace(EntryColorSpace,
572 &WhitePointIn, NULL, &nIns)) return FALSE;
574 if (!_cmsEndPointsBySpace(ExitColorSpace,
575 &WhitePointOut, NULL, &nOuts)) return FALSE;
577 // It needs to be fixed?
578 if (Lut ->InputChannels != nIns) return FALSE;
579 if (Lut ->OutputChannels != nOuts) return FALSE;
581 cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
583 if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
585 // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
586 if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
587 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
588 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
589 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
590 return FALSE;
592 // We need to interpolate white points of both, pre and post curves
593 if (PreLin) {
595 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
597 for (i=0; i < nIns; i++) {
598 WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
601 else {
602 for (i=0; i < nIns; i++)
603 WhiteIn[i] = WhitePointIn[i];
606 // If any post-linearization, we need to find how is represented white before the curve, do
607 // a reverse interpolation in this case.
608 if (PostLin) {
610 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
612 for (i=0; i < nOuts; i++) {
614 cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
615 if (InversePostLin == NULL) {
616 WhiteOut[i] = WhitePointOut[i];
618 } else {
620 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
621 cmsFreeToneCurve(InversePostLin);
625 else {
626 for (i=0; i < nOuts; i++)
627 WhiteOut[i] = WhitePointOut[i];
630 // Ok, proceed with patching. May fail and we don't care if it fails
631 PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
633 return TRUE;
636 // -----------------------------------------------------------------------------------------------------------------------------------------------
637 // This function creates simple LUT from complex ones. The generated LUT has an optional set of
638 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
639 // These curves have to exist in the original LUT in order to be used in the simplified output.
640 // Caller may also use the flags to allow this feature.
641 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
642 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
643 // -----------------------------------------------------------------------------------------------------------------------------------------------
645 static
646 cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
648 cmsPipeline* Src = NULL;
649 cmsPipeline* Dest = NULL;
650 cmsStage* CLUT;
651 cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
652 cmsUInt32Number nGridPoints;
653 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
654 cmsStage *NewPreLin = NULL;
655 cmsStage *NewPostLin = NULL;
656 _cmsStageCLutData* DataCLUT;
657 cmsToneCurve** DataSetIn;
658 cmsToneCurve** DataSetOut;
659 Prelin16Data* p16;
661 // This is a lossy optimization! does not apply in floating-point cases
662 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
664 ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
665 OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
667 // Color space must be specified
668 if (ColorSpace == (cmsColorSpaceSignature)0 ||
669 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
671 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
673 // For empty LUTs, 2 points are enough
674 if (cmsPipelineStageCount(*Lut) == 0)
675 nGridPoints = 2;
677 Src = *Lut;
679 // Allocate an empty LUT
680 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
681 if (!Dest) return FALSE;
683 // Prelinearization tables are kept unless indicated by flags
684 if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
686 // Get a pointer to the prelinearization element
687 cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
689 // Check if suitable
690 if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
692 // Maybe this is a linear tram, so we can avoid the whole stuff
693 if (!AllCurvesAreLinear(PreLin)) {
695 // All seems ok, proceed.
696 NewPreLin = cmsStageDup(PreLin);
697 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
698 goto Error;
700 // Remove prelinearization. Since we have duplicated the curve
701 // in destination LUT, the sampling should be applied after this stage.
702 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
707 // Allocate the CLUT
708 CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
709 if (CLUT == NULL) goto Error;
711 // Add the CLUT to the destination LUT
712 if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
713 goto Error;
716 // Postlinearization tables are kept unless indicated by flags
717 if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
719 // Get a pointer to the postlinearization if present
720 cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
722 // Check if suitable
723 if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
725 // Maybe this is a linear tram, so we can avoid the whole stuff
726 if (!AllCurvesAreLinear(PostLin)) {
728 // All seems ok, proceed.
729 NewPostLin = cmsStageDup(PostLin);
730 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
731 goto Error;
733 // In destination LUT, the sampling should be applied after this stage.
734 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
739 // Now its time to do the sampling. We have to ignore pre/post linearization
740 // The source LUT without pre/post curves is passed as parameter.
741 if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
742 Error:
743 // Ops, something went wrong, Restore stages
744 if (KeepPreLin != NULL) {
745 if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
746 _cmsAssert(0); // This never happens
749 if (KeepPostLin != NULL) {
750 if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
751 _cmsAssert(0); // This never happens
754 cmsPipelineFree(Dest);
755 return FALSE;
758 // Done.
760 if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
761 if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
762 cmsPipelineFree(Src);
764 DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
766 if (NewPreLin == NULL) DataSetIn = NULL;
767 else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
769 if (NewPostLin == NULL) DataSetOut = NULL;
770 else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
773 if (DataSetIn == NULL && DataSetOut == NULL) {
775 _cmsPipelineSetOptimizationParameters(Dest, (_cmsPipelineEval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
777 else {
779 p16 = PrelinOpt16alloc(Dest ->ContextID,
780 DataCLUT ->Params,
781 Dest ->InputChannels,
782 DataSetIn,
783 Dest ->OutputChannels,
784 DataSetOut);
786 _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
790 // Don't fix white on absolute colorimetric
791 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
792 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
794 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
796 FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
799 *Lut = Dest;
800 return TRUE;
802 cmsUNUSED_PARAMETER(Intent);
806 // -----------------------------------------------------------------------------------------------------------------------------------------------
807 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
808 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
809 // for RGB transforms. See the paper for more details
810 // -----------------------------------------------------------------------------------------------------------------------------------------------
813 // Normalize endpoints by slope limiting max and min. This assures endpoints as well.
814 // Descending curves are handled as well.
815 static
816 void SlopeLimiting(cmsToneCurve* g)
818 int BeginVal, EndVal;
819 int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
820 int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98%
821 cmsFloat64Number Val, Slope, beta;
822 int i;
824 if (cmsIsToneCurveDescending(g)) {
825 BeginVal = 0xffff; EndVal = 0;
827 else {
828 BeginVal = 0; EndVal = 0xffff;
831 // Compute slope and offset for begin of curve
832 Val = g ->Table16[AtBegin];
833 Slope = (Val - BeginVal) / AtBegin;
834 beta = Val - Slope * AtBegin;
836 for (i=0; i < AtBegin; i++)
837 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
839 // Compute slope and offset for the end
840 Val = g ->Table16[AtEnd];
841 Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
842 beta = Val - Slope * AtEnd;
844 for (i = AtEnd; i < (int) g ->nEntries; i++)
845 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
849 // Precomputes tables for 8-bit on input devicelink.
850 static
851 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
853 int i;
854 cmsUInt16Number Input[3];
855 cmsS15Fixed16Number v1, v2, v3;
856 Prelin8Data* p8;
858 p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
859 if (p8 == NULL) return NULL;
861 // Since this only works for 8 bit input, values comes always as x * 257,
862 // we can safely take msb byte (x << 8 + x)
864 for (i=0; i < 256; i++) {
866 if (G != NULL) {
868 // Get 16-bit representation
869 Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
870 Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
871 Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
873 else {
874 Input[0] = FROM_8_TO_16(i);
875 Input[1] = FROM_8_TO_16(i);
876 Input[2] = FROM_8_TO_16(i);
880 // Move to 0..1.0 in fixed domain
881 v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
882 v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
883 v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
885 // Store the precalculated table of nodes
886 p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
887 p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
888 p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
890 // Store the precalculated table of offsets
891 p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
892 p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
893 p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
896 p8 ->ContextID = ContextID;
897 p8 ->p = p;
899 return p8;
902 static
903 void Prelin8free(cmsContext ContextID, void* ptr)
905 _cmsFree(ContextID, ptr);
908 static
909 void* Prelin8dup(cmsContext ContextID, const void* ptr)
911 return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
916 // A optimized interpolation for 8-bit input.
917 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
918 static CMS_NO_SANITIZE
919 void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[],
920 CMSREGISTER cmsUInt16Number Output[],
921 CMSREGISTER const void* D)
924 cmsUInt8Number r, g, b;
925 cmsS15Fixed16Number rx, ry, rz;
926 cmsS15Fixed16Number c0, c1, c2, c3, Rest;
927 int OutChan;
928 CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
929 Prelin8Data* p8 = (Prelin8Data*) D;
930 CMSREGISTER const cmsInterpParams* p = p8 ->p;
931 int TotalOut = (int) p -> nOutputs;
932 const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
934 r = (cmsUInt8Number) (Input[0] >> 8);
935 g = (cmsUInt8Number) (Input[1] >> 8);
936 b = (cmsUInt8Number) (Input[2] >> 8);
938 X0 = (cmsS15Fixed16Number) p8->X0[r];
939 Y0 = (cmsS15Fixed16Number) p8->Y0[g];
940 Z0 = (cmsS15Fixed16Number) p8->Z0[b];
942 rx = p8 ->rx[r];
943 ry = p8 ->ry[g];
944 rz = p8 ->rz[b];
946 X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]);
947 Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]);
948 Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]);
951 // These are the 6 Tetrahedral
952 for (OutChan=0; OutChan < TotalOut; OutChan++) {
954 c0 = DENS(X0, Y0, Z0);
956 if (rx >= ry && ry >= rz)
958 c1 = DENS(X1, Y0, Z0) - c0;
959 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
960 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
962 else
963 if (rx >= rz && rz >= ry)
965 c1 = DENS(X1, Y0, Z0) - c0;
966 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
967 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
969 else
970 if (rz >= rx && rx >= ry)
972 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
973 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
974 c3 = DENS(X0, Y0, Z1) - c0;
976 else
977 if (ry >= rx && rx >= rz)
979 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
980 c2 = DENS(X0, Y1, Z0) - c0;
981 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
983 else
984 if (ry >= rz && rz >= rx)
986 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
987 c2 = DENS(X0, Y1, Z0) - c0;
988 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
990 else
991 if (rz >= ry && ry >= rx)
993 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
994 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
995 c3 = DENS(X0, Y0, Z1) - c0;
997 else {
998 c1 = c2 = c3 = 0;
1001 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1002 Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
1007 #undef DENS
1010 // Curves that contain wide empty areas are not optimizeable
1011 static
1012 cmsBool IsDegenerated(const cmsToneCurve* g)
1014 cmsUInt32Number i, Zeros = 0, Poles = 0;
1015 cmsUInt32Number nEntries = g ->nEntries;
1017 for (i=0; i < nEntries; i++) {
1019 if (g ->Table16[i] == 0x0000) Zeros++;
1020 if (g ->Table16[i] == 0xffff) Poles++;
1023 if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
1024 if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros
1025 if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles
1027 return FALSE;
1030 // --------------------------------------------------------------------------------------------------------------
1031 // We need xput over here
1033 static
1034 cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1036 cmsPipeline* OriginalLut;
1037 cmsUInt32Number nGridPoints;
1038 cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1039 cmsUInt32Number t, i;
1040 cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1041 cmsBool lIsSuitable, lIsLinear;
1042 cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1043 cmsStage* OptimizedCLUTmpe;
1044 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1045 cmsStage* OptimizedPrelinMpe;
1046 cmsToneCurve** OptimizedPrelinCurves;
1047 _cmsStageCLutData* OptimizedPrelinCLUT;
1050 // This is a lossy optimization! does not apply in floating-point cases
1051 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1053 // Only on chunky RGB
1054 if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
1055 if (T_PLANAR(*InputFormat)) return FALSE;
1057 if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1058 if (T_PLANAR(*OutputFormat)) return FALSE;
1060 // On 16 bits, user has to specify the feature
1061 if (!_cmsFormatterIs8bit(*InputFormat)) {
1062 if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1065 OriginalLut = *Lut;
1067 ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
1068 OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
1070 // Color space must be specified
1071 if (ColorSpace == (cmsColorSpaceSignature)0 ||
1072 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1074 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1076 // Empty gamma containers
1077 memset(Trans, 0, sizeof(Trans));
1078 memset(TransReverse, 0, sizeof(TransReverse));
1080 // If the last stage of the original lut are curves, and those curves are
1081 // degenerated, it is likely the transform is squeezing and clipping
1082 // the output from previous CLUT. We cannot optimize this case
1084 cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1086 if (last == NULL) goto Error;
1087 if (cmsStageType(last) == cmsSigCurveSetElemType) {
1089 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1090 for (i = 0; i < Data->nCurves; i++) {
1091 if (IsDegenerated(Data->TheCurves[i]))
1092 goto Error;
1097 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1098 Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1099 if (Trans[t] == NULL) goto Error;
1102 // Populate the curves
1103 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1105 v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1107 // Feed input with a gray ramp
1108 for (t=0; t < OriginalLut ->InputChannels; t++)
1109 In[t] = v;
1111 // Evaluate the gray value
1112 cmsPipelineEvalFloat(In, Out, OriginalLut);
1114 // Store result in curve
1115 for (t=0; t < OriginalLut ->InputChannels; t++)
1116 Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1119 // Slope-limit the obtained curves
1120 for (t = 0; t < OriginalLut ->InputChannels; t++)
1121 SlopeLimiting(Trans[t]);
1123 // Check for validity
1124 lIsSuitable = TRUE;
1125 lIsLinear = TRUE;
1126 for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1128 // Exclude if already linear
1129 if (!cmsIsToneCurveLinear(Trans[t]))
1130 lIsLinear = FALSE;
1132 // Exclude if non-monotonic
1133 if (!cmsIsToneCurveMonotonic(Trans[t]))
1134 lIsSuitable = FALSE;
1136 if (IsDegenerated(Trans[t]))
1137 lIsSuitable = FALSE;
1140 // If it is not suitable, just quit
1141 if (!lIsSuitable) goto Error;
1143 // Invert curves if possible
1144 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1145 TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1146 if (TransReverse[t] == NULL) goto Error;
1149 // Now inset the reversed curves at the begin of transform
1150 LutPlusCurves = cmsPipelineDup(OriginalLut);
1151 if (LutPlusCurves == NULL) goto Error;
1153 if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1154 goto Error;
1156 // Create the result LUT
1157 OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1158 if (OptimizedLUT == NULL) goto Error;
1160 OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1162 // Create and insert the curves at the beginning
1163 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1164 goto Error;
1166 // Allocate the CLUT for result
1167 OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1169 // Add the CLUT to the destination LUT
1170 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1171 goto Error;
1173 // Resample the LUT
1174 if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1176 // Free resources
1177 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1179 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1180 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1183 cmsPipelineFree(LutPlusCurves);
1186 OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1187 OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1189 // Set the evaluator if 8-bit
1190 if (_cmsFormatterIs8bit(*InputFormat)) {
1192 Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1193 OptimizedPrelinCLUT ->Params,
1194 OptimizedPrelinCurves);
1195 if (p8 == NULL) return FALSE;
1197 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1200 else
1202 Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1203 OptimizedPrelinCLUT ->Params,
1204 3, OptimizedPrelinCurves, 3, NULL);
1205 if (p16 == NULL) return FALSE;
1207 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1211 // Don't fix white on absolute colorimetric
1212 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1213 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1215 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1217 if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1219 return FALSE;
1223 // And return the obtained LUT
1225 cmsPipelineFree(OriginalLut);
1226 *Lut = OptimizedLUT;
1227 return TRUE;
1229 Error:
1231 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1233 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1234 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1237 if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1238 if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1240 return FALSE;
1242 cmsUNUSED_PARAMETER(Intent);
1243 cmsUNUSED_PARAMETER(lIsLinear);
1247 // Curves optimizer ------------------------------------------------------------------------------------------------------------------
1249 static
1250 void CurvesFree(cmsContext ContextID, void* ptr)
1252 Curves16Data* Data = (Curves16Data*) ptr;
1253 cmsUInt32Number i;
1255 for (i=0; i < Data -> nCurves; i++) {
1257 _cmsFree(ContextID, Data ->Curves[i]);
1260 _cmsFree(ContextID, Data ->Curves);
1261 _cmsFree(ContextID, ptr);
1264 static
1265 void* CurvesDup(cmsContext ContextID, const void* ptr)
1267 Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1268 cmsUInt32Number i;
1270 if (Data == NULL) return NULL;
1272 Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1274 for (i=0; i < Data -> nCurves; i++) {
1275 Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1278 return (void*) Data;
1281 // Precomputes tables for 8-bit on input devicelink.
1282 static
1283 Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1285 cmsUInt32Number i, j;
1286 Curves16Data* c16;
1288 c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1289 if (c16 == NULL) return NULL;
1291 c16 ->nCurves = nCurves;
1292 c16 ->nElements = nElements;
1294 c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1295 if (c16->Curves == NULL) {
1296 _cmsFree(ContextID, c16);
1297 return NULL;
1300 for (i=0; i < nCurves; i++) {
1302 c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1304 if (c16->Curves[i] == NULL) {
1306 for (j=0; j < i; j++) {
1307 _cmsFree(ContextID, c16->Curves[j]);
1309 _cmsFree(ContextID, c16->Curves);
1310 _cmsFree(ContextID, c16);
1311 return NULL;
1314 if (nElements == 256U) {
1316 for (j=0; j < nElements; j++) {
1318 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1321 else {
1323 for (j=0; j < nElements; j++) {
1324 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1329 return c16;
1332 static
1333 void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[],
1334 CMSREGISTER cmsUInt16Number Out[],
1335 CMSREGISTER const void* D)
1337 Curves16Data* Data = (Curves16Data*) D;
1338 int x;
1339 cmsUInt32Number i;
1341 for (i=0; i < Data ->nCurves; i++) {
1343 x = (In[i] >> 8);
1344 Out[i] = Data -> Curves[i][x];
1349 static
1350 void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[],
1351 CMSREGISTER cmsUInt16Number Out[],
1352 CMSREGISTER const void* D)
1354 Curves16Data* Data = (Curves16Data*) D;
1355 cmsUInt32Number i;
1357 for (i=0; i < Data ->nCurves; i++) {
1358 Out[i] = Data -> Curves[i][In[i]];
1363 static
1364 void FastIdentity16(CMSREGISTER const cmsUInt16Number In[],
1365 CMSREGISTER cmsUInt16Number Out[],
1366 CMSREGISTER const void* D)
1368 cmsPipeline* Lut = (cmsPipeline*) D;
1369 cmsUInt32Number i;
1371 for (i=0; i < Lut ->InputChannels; i++) {
1372 Out[i] = In[i];
1377 // If the target LUT holds only curves, the optimization procedure is to join all those
1378 // curves together. That only works on curves and does not work on matrices.
1379 static
1380 cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1382 cmsToneCurve** GammaTables = NULL;
1383 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1384 cmsUInt32Number i, j;
1385 cmsPipeline* Src = *Lut;
1386 cmsPipeline* Dest = NULL;
1387 cmsStage* mpe;
1388 cmsStage* ObtainedCurves = NULL;
1391 // This is a lossy optimization! does not apply in floating-point cases
1392 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1394 // Only curves in this LUT?
1395 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1396 mpe != NULL;
1397 mpe = cmsStageNext(mpe)) {
1398 if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1401 // Allocate an empty LUT
1402 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1403 if (Dest == NULL) return FALSE;
1405 // Create target curves
1406 GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1407 if (GammaTables == NULL) goto Error;
1409 for (i=0; i < Src ->InputChannels; i++) {
1410 GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1411 if (GammaTables[i] == NULL) goto Error;
1414 // Compute 16 bit result by using floating point
1415 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1417 for (j=0; j < Src ->InputChannels; j++)
1418 InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1420 cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1422 for (j=0; j < Src ->InputChannels; j++)
1423 GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1426 ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1427 if (ObtainedCurves == NULL) goto Error;
1429 for (i=0; i < Src ->InputChannels; i++) {
1430 cmsFreeToneCurve(GammaTables[i]);
1431 GammaTables[i] = NULL;
1434 if (GammaTables != NULL) {
1435 _cmsFree(Src->ContextID, GammaTables);
1436 GammaTables = NULL;
1439 // Maybe the curves are linear at the end
1440 if (!AllCurvesAreLinear(ObtainedCurves)) {
1441 _cmsStageToneCurvesData* Data;
1443 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1444 goto Error;
1445 Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1446 ObtainedCurves = NULL;
1448 // If the curves are to be applied in 8 bits, we can save memory
1449 if (_cmsFormatterIs8bit(*InputFormat)) {
1450 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1452 if (c16 == NULL) goto Error;
1453 *dwFlags |= cmsFLAGS_NOCACHE;
1454 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1457 else {
1458 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1460 if (c16 == NULL) goto Error;
1461 *dwFlags |= cmsFLAGS_NOCACHE;
1462 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1465 else {
1467 // LUT optimizes to nothing. Set the identity LUT
1468 cmsStageFree(ObtainedCurves);
1469 ObtainedCurves = NULL;
1471 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1472 goto Error;
1474 *dwFlags |= cmsFLAGS_NOCACHE;
1475 _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1478 // We are done.
1479 cmsPipelineFree(Src);
1480 *Lut = Dest;
1481 return TRUE;
1483 Error:
1485 if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1486 if (GammaTables != NULL) {
1487 for (i=0; i < Src ->InputChannels; i++) {
1488 if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1491 _cmsFree(Src ->ContextID, GammaTables);
1494 if (Dest != NULL) cmsPipelineFree(Dest);
1495 return FALSE;
1497 cmsUNUSED_PARAMETER(Intent);
1498 cmsUNUSED_PARAMETER(InputFormat);
1499 cmsUNUSED_PARAMETER(OutputFormat);
1500 cmsUNUSED_PARAMETER(dwFlags);
1503 // -------------------------------------------------------------------------------------------------------------------------------------
1504 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1507 static
1508 void FreeMatShaper(cmsContext ContextID, void* Data)
1510 if (Data != NULL) _cmsFree(ContextID, Data);
1513 static
1514 void* DupMatShaper(cmsContext ContextID, const void* Data)
1516 return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1520 // A fast matrix-shaper evaluator for 8 bits. This is a bit tricky since I'm using 1.14 signed fixed point
1521 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1522 // in total about 50K, and the performance boost is huge!
1523 static CMS_NO_SANITIZE
1524 void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[],
1525 CMSREGISTER cmsUInt16Number Out[],
1526 CMSREGISTER const void* D)
1528 MatShaper8Data* p = (MatShaper8Data*) D;
1529 cmsS1Fixed14Number l1, l2, l3, r, g, b;
1530 cmsUInt32Number ri, gi, bi;
1532 // In this case (and only in this case!) we can use this simplification since
1533 // In[] is assured to come from a 8 bit number. (a << 8 | a)
1534 ri = In[0] & 0xFFU;
1535 gi = In[1] & 0xFFU;
1536 bi = In[2] & 0xFFU;
1538 // Across first shaper, which also converts to 1.14 fixed point
1539 r = p->Shaper1R[ri];
1540 g = p->Shaper1G[gi];
1541 b = p->Shaper1B[bi];
1543 // Evaluate the matrix in 1.14 fixed point
1544 l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1545 l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1546 l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1548 // Now we have to clip to 0..1.0 range
1549 ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1550 gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1551 bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1553 // And across second shaper,
1554 Out[0] = p->Shaper2R[ri];
1555 Out[1] = p->Shaper2G[gi];
1556 Out[2] = p->Shaper2B[bi];
1560 // This table converts from 8 bits to 1.14 after applying the curve
1561 static
1562 void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1564 int i;
1565 cmsFloat32Number R, y;
1567 for (i=0; i < 256; i++) {
1569 R = (cmsFloat32Number) (i / 255.0);
1570 y = cmsEvalToneCurveFloat(Curve, R);
1572 if (y < 131072.0)
1573 Table[i] = DOUBLE_TO_1FIXED14(y);
1574 else
1575 Table[i] = 0x7fffffff;
1579 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1580 static
1581 void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1583 int i;
1584 cmsFloat32Number R, Val;
1586 for (i=0; i < 16385; i++) {
1588 R = (cmsFloat32Number) (i / 16384.0);
1589 Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
1591 if (Val < 0)
1592 Val = 0;
1594 if (Val > 1.0)
1595 Val = 1.0;
1597 if (Is8BitsOutput) {
1599 // If 8 bits output, we can optimize further by computing the / 257 part.
1600 // first we compute the resulting byte and then we store the byte times
1601 // 257. This quantization allows to round very quick by doing a >> 8, but
1602 // since the low byte is always equal to msb, we can do a & 0xff and this works!
1603 cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1604 cmsUInt8Number b = FROM_16_TO_8(w);
1606 Table[i] = FROM_8_TO_16(b);
1608 else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
1612 // Compute the matrix-shaper structure
1613 static
1614 cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1616 MatShaper8Data* p;
1617 int i, j;
1618 cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1620 // Allocate a big chuck of memory to store precomputed tables
1621 p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1622 if (p == NULL) return FALSE;
1624 p -> ContextID = Dest -> ContextID;
1626 // Precompute tables
1627 FillFirstShaper(p ->Shaper1R, Curve1[0]);
1628 FillFirstShaper(p ->Shaper1G, Curve1[1]);
1629 FillFirstShaper(p ->Shaper1B, Curve1[2]);
1631 FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1632 FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1633 FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1635 // Convert matrix to nFixed14. Note that those values may take more than 16 bits
1636 for (i=0; i < 3; i++) {
1637 for (j=0; j < 3; j++) {
1638 p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1642 for (i=0; i < 3; i++) {
1644 if (Off == NULL) {
1645 p ->Off[i] = 0;
1647 else {
1648 p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1652 // Mark as optimized for faster formatter
1653 if (Is8Bits)
1654 *OutputFormat |= OPTIMIZED_SH(1);
1656 // Fill function pointers
1657 _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1658 return TRUE;
1661 // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1662 static
1663 cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1665 cmsStage* Curve1, *Curve2;
1666 cmsStage* Matrix1, *Matrix2;
1667 cmsMAT3 res;
1668 cmsBool IdentityMat;
1669 cmsPipeline* Dest, *Src;
1670 cmsFloat64Number* Offset;
1672 // Only works on RGB to RGB
1673 if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1675 // Only works on 8 bit input
1676 if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1678 // Seems suitable, proceed
1679 Src = *Lut;
1681 // Check for:
1683 // shaper-matrix-matrix-shaper
1684 // shaper-matrix-shaper
1686 // Both of those constructs are possible (first because abs. colorimetric).
1687 // additionally, In the first case, the input matrix offset should be zero.
1689 IdentityMat = FALSE;
1690 if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1691 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1692 &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1694 // Get both matrices
1695 _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1696 _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1698 // Only RGB to RGB
1699 if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3 ||
1700 Matrix2->InputChannels != 3 || Matrix2->OutputChannels != 3) return FALSE;
1702 // Input offset should be zero
1703 if (Data1->Offset != NULL) return FALSE;
1705 // Multiply both matrices to get the result
1706 _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1708 // Only 2nd matrix has offset, or it is zero
1709 Offset = Data2->Offset;
1711 // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1712 if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1714 // We can get rid of full matrix
1715 IdentityMat = TRUE;
1719 else {
1721 if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1722 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1723 &Curve1, &Matrix1, &Curve2)) {
1725 _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1727 // Copy the matrix to our result
1728 memcpy(&res, Data->Double, sizeof(res));
1730 // Preserve the Odffset (may be NULL as a zero offset)
1731 Offset = Data->Offset;
1733 if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1735 // We can get rid of full matrix
1736 IdentityMat = TRUE;
1739 else
1740 return FALSE; // Not optimizeable this time
1744 // Allocate an empty LUT
1745 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1746 if (!Dest) return FALSE;
1748 // Assamble the new LUT
1749 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1750 goto Error;
1752 if (!IdentityMat) {
1754 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1755 goto Error;
1758 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1759 goto Error;
1761 // If identity on matrix, we can further optimize the curves, so call the join curves routine
1762 if (IdentityMat) {
1764 OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1766 else {
1767 _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1768 _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1770 // In this particular optimization, cache does not help as it takes more time to deal with
1771 // the cache that with the pixel handling
1772 *dwFlags |= cmsFLAGS_NOCACHE;
1774 // Setup the optimizarion routines
1775 SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1778 cmsPipelineFree(Src);
1779 *Lut = Dest;
1780 return TRUE;
1781 Error:
1782 // Leave Src unchanged
1783 cmsPipelineFree(Dest);
1784 return FALSE;
1788 // -------------------------------------------------------------------------------------------------------------------------------------
1789 // Optimization plug-ins
1791 // List of optimizations
1792 typedef struct _cmsOptimizationCollection_st {
1794 _cmsOPToptimizeFn OptimizePtr;
1796 struct _cmsOptimizationCollection_st *Next;
1798 } _cmsOptimizationCollection;
1801 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1802 static _cmsOptimizationCollection DefaultOptimization[] = {
1804 { OptimizeByJoiningCurves, &DefaultOptimization[1] },
1805 { OptimizeMatrixShaper, &DefaultOptimization[2] },
1806 { OptimizeByComputingLinearization, &DefaultOptimization[3] },
1807 { OptimizeByResampling, NULL }
1810 // The linked list head
1811 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1814 // Duplicates the zone of memory used by the plug-in in the new context
1815 static
1816 void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1817 const struct _cmsContext_struct* src)
1819 _cmsOptimizationPluginChunkType newHead = { NULL };
1820 _cmsOptimizationCollection* entry;
1821 _cmsOptimizationCollection* Anterior = NULL;
1822 _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1824 _cmsAssert(ctx != NULL);
1825 _cmsAssert(head != NULL);
1827 // Walk the list copying all nodes
1828 for (entry = head->OptimizationCollection;
1829 entry != NULL;
1830 entry = entry ->Next) {
1832 _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1834 if (newEntry == NULL)
1835 return;
1837 // We want to keep the linked list order, so this is a little bit tricky
1838 newEntry -> Next = NULL;
1839 if (Anterior)
1840 Anterior -> Next = newEntry;
1842 Anterior = newEntry;
1844 if (newHead.OptimizationCollection == NULL)
1845 newHead.OptimizationCollection = newEntry;
1848 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1851 void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1852 const struct _cmsContext_struct* src)
1854 if (src != NULL) {
1856 // Copy all linked list
1857 DupPluginOptimizationList(ctx, src);
1859 else {
1860 static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1861 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1866 // Register new ways to optimize
1867 cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1869 cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1870 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1871 _cmsOptimizationCollection* fl;
1873 if (Data == NULL) {
1875 ctx->OptimizationCollection = NULL;
1876 return TRUE;
1879 // Optimizer callback is required
1880 if (Plugin ->OptimizePtr == NULL) return FALSE;
1882 fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1883 if (fl == NULL) return FALSE;
1885 // Copy the parameters
1886 fl ->OptimizePtr = Plugin ->OptimizePtr;
1888 // Keep linked list
1889 fl ->Next = ctx->OptimizationCollection;
1891 // Set the head
1892 ctx ->OptimizationCollection = fl;
1894 // All is ok
1895 return TRUE;
1898 // The entry point for LUT optimization
1899 cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID,
1900 cmsPipeline** PtrLut,
1901 cmsUInt32Number Intent,
1902 cmsUInt32Number* InputFormat,
1903 cmsUInt32Number* OutputFormat,
1904 cmsUInt32Number* dwFlags)
1906 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1907 _cmsOptimizationCollection* Opts;
1908 cmsBool AnySuccess = FALSE;
1909 cmsStage* mpe;
1911 // A CLUT is being asked, so force this specific optimization
1912 if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1914 PreOptimize(*PtrLut);
1915 return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1918 // Anything to optimize?
1919 if ((*PtrLut) ->Elements == NULL) {
1920 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1921 return TRUE;
1924 // Named color pipelines cannot be optimized
1925 for (mpe = cmsPipelineGetPtrToFirstStage(*PtrLut);
1926 mpe != NULL;
1927 mpe = cmsStageNext(mpe)) {
1928 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1931 // Try to get rid of identities and trivial conversions.
1932 AnySuccess = PreOptimize(*PtrLut);
1934 // After removal do we end with an identity?
1935 if ((*PtrLut) ->Elements == NULL) {
1936 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1937 return TRUE;
1940 // Do not optimize, keep all precision
1941 if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1942 return FALSE;
1944 // Try plug-in optimizations
1945 for (Opts = ctx->OptimizationCollection;
1946 Opts != NULL;
1947 Opts = Opts ->Next) {
1949 // If one schema succeeded, we are done
1950 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1952 return TRUE; // Optimized!
1956 // Try built-in optimizations
1957 for (Opts = DefaultOptimization;
1958 Opts != NULL;
1959 Opts = Opts ->Next) {
1961 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1963 return TRUE;
1967 // Only simple optimizations succeeded
1968 return AnySuccess;