dmime: Implement band track IDirectMusicTrack_Play.
[wine.git] / libs / lcms2 / src / cmslut.c
blob77977fc6c91b141ae7c837c3c858fe9f69646d33
1 //---------------------------------------------------------------------------------
2 //
3 // Little Color Management System
4 // Copyright (c) 1998-2023 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 //---------------------------------------------------------------------------------
27 #include "lcms2_internal.h"
30 // Allocates an empty multi profile element
31 cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID,
32 cmsStageSignature Type,
33 cmsUInt32Number InputChannels,
34 cmsUInt32Number OutputChannels,
35 _cmsStageEvalFn EvalPtr,
36 _cmsStageDupElemFn DupElemPtr,
37 _cmsStageFreeElemFn FreePtr,
38 void* Data)
40 cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage));
42 if (ph == NULL) return NULL;
45 ph ->ContextID = ContextID;
47 ph ->Type = Type;
48 ph ->Implements = Type; // By default, no clue on what is implementing
50 ph ->InputChannels = InputChannels;
51 ph ->OutputChannels = OutputChannels;
52 ph ->EvalPtr = EvalPtr;
53 ph ->DupElemPtr = DupElemPtr;
54 ph ->FreePtr = FreePtr;
55 ph ->Data = Data;
57 return ph;
61 static
62 void EvaluateIdentity(const cmsFloat32Number In[],
63 cmsFloat32Number Out[],
64 const cmsStage *mpe)
66 memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number));
70 cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels)
72 return _cmsStageAllocPlaceholder(ContextID,
73 cmsSigIdentityElemType,
74 nChannels, nChannels,
75 EvaluateIdentity,
76 NULL,
77 NULL,
78 NULL);
81 // Conversion functions. From floating point to 16 bits
82 static
83 void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n)
85 cmsUInt32Number i;
87 for (i=0; i < n; i++) {
88 Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0);
92 // From 16 bits to floating point
93 static
94 void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n)
96 cmsUInt32Number i;
98 for (i=0; i < n; i++) {
99 Out[i] = (cmsFloat32Number) In[i] / 65535.0F;
104 // This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements
105 // that conform the LUT. It should be called with the LUT, the number of expected elements and
106 // then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If
107 // the function founds a match with current pipeline, it fills the pointers and returns TRUE
108 // if not, returns FALSE without touching anything. Setting pointers to NULL does bypass
109 // the storage process.
110 cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...)
112 va_list args;
113 cmsUInt32Number i;
114 cmsStage* mpe;
115 cmsStageSignature Type;
116 void** ElemPtr;
118 // Make sure same number of elements
119 if (cmsPipelineStageCount(Lut) != n) return FALSE;
121 va_start(args, n);
123 // Iterate across asked types
124 mpe = Lut ->Elements;
125 for (i=0; i < n; i++) {
127 // Get asked type. cmsStageSignature is promoted to int by compiler
128 Type = (cmsStageSignature)va_arg(args, int);
129 if (mpe ->Type != Type) {
131 va_end(args); // Mismatch. We are done.
132 return FALSE;
134 mpe = mpe ->Next;
137 // Found a combination, fill pointers if not NULL
138 mpe = Lut ->Elements;
139 for (i=0; i < n; i++) {
141 ElemPtr = va_arg(args, void**);
142 if (ElemPtr != NULL)
143 *ElemPtr = mpe;
145 mpe = mpe ->Next;
148 va_end(args);
149 return TRUE;
152 // Below there are implementations for several types of elements. Each type may be implemented by a
153 // evaluation function, a duplication function, a function to free resources and a constructor.
155 // *************************************************************************************************
156 // Type cmsSigCurveSetElemType (curves)
157 // *************************************************************************************************
159 cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe)
161 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
163 return Data ->TheCurves;
166 static
167 void EvaluateCurves(const cmsFloat32Number In[],
168 cmsFloat32Number Out[],
169 const cmsStage *mpe)
171 _cmsStageToneCurvesData* Data;
172 cmsUInt32Number i;
174 _cmsAssert(mpe != NULL);
176 Data = (_cmsStageToneCurvesData*) mpe ->Data;
177 if (Data == NULL) return;
179 if (Data ->TheCurves == NULL) return;
181 for (i=0; i < Data ->nCurves; i++) {
182 Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]);
186 static
187 void CurveSetElemTypeFree(cmsStage* mpe)
189 _cmsStageToneCurvesData* Data;
190 cmsUInt32Number i;
192 _cmsAssert(mpe != NULL);
194 Data = (_cmsStageToneCurvesData*) mpe ->Data;
195 if (Data == NULL) return;
197 if (Data ->TheCurves != NULL) {
198 for (i=0; i < Data ->nCurves; i++) {
199 if (Data ->TheCurves[i] != NULL)
200 cmsFreeToneCurve(Data ->TheCurves[i]);
203 _cmsFree(mpe ->ContextID, Data ->TheCurves);
204 _cmsFree(mpe ->ContextID, Data);
208 static
209 void* CurveSetDup(cmsStage* mpe)
211 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
212 _cmsStageToneCurvesData* NewElem;
213 cmsUInt32Number i;
215 NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData));
216 if (NewElem == NULL) return NULL;
218 NewElem ->nCurves = Data ->nCurves;
219 NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*));
221 if (NewElem ->TheCurves == NULL) goto Error;
223 for (i=0; i < NewElem ->nCurves; i++) {
225 // Duplicate each curve. It may fail.
226 NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]);
227 if (NewElem ->TheCurves[i] == NULL) goto Error;
231 return (void*) NewElem;
233 Error:
235 if (NewElem ->TheCurves != NULL) {
236 for (i=0; i < NewElem ->nCurves; i++) {
237 if (NewElem ->TheCurves[i])
238 cmsFreeToneCurve(NewElem ->TheCurves[i]);
241 _cmsFree(mpe ->ContextID, NewElem ->TheCurves);
242 _cmsFree(mpe ->ContextID, NewElem);
243 return NULL;
247 // Curves == NULL forces identity curves
248 cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[])
250 cmsUInt32Number i;
251 _cmsStageToneCurvesData* NewElem;
252 cmsStage* NewMPE;
255 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels,
256 EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL );
257 if (NewMPE == NULL) return NULL;
259 NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData));
260 if (NewElem == NULL) {
261 cmsStageFree(NewMPE);
262 return NULL;
265 NewMPE ->Data = (void*) NewElem;
267 NewElem ->nCurves = nChannels;
268 NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*));
269 if (NewElem ->TheCurves == NULL) {
270 cmsStageFree(NewMPE);
271 return NULL;
274 for (i=0; i < nChannels; i++) {
276 if (Curves == NULL) {
277 NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0);
279 else {
280 NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]);
283 if (NewElem ->TheCurves[i] == NULL) {
284 cmsStageFree(NewMPE);
285 return NULL;
290 return NewMPE;
294 // Create a bunch of identity curves
295 cmsStage* CMSEXPORT _cmsStageAllocIdentityCurves(cmsContext ContextID, cmsUInt32Number nChannels)
297 cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL);
299 if (mpe == NULL) return NULL;
300 mpe ->Implements = cmsSigIdentityElemType;
301 return mpe;
305 // *************************************************************************************************
306 // Type cmsSigMatrixElemType (Matrices)
307 // *************************************************************************************************
310 // Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used
311 static
312 void EvaluateMatrix(const cmsFloat32Number In[],
313 cmsFloat32Number Out[],
314 const cmsStage *mpe)
316 cmsUInt32Number i, j;
317 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
318 cmsFloat64Number Tmp;
320 // Input is already in 0..1.0 notation
321 for (i=0; i < mpe ->OutputChannels; i++) {
323 Tmp = 0;
324 for (j=0; j < mpe->InputChannels; j++) {
325 Tmp += In[j] * Data->Double[i*mpe->InputChannels + j];
328 if (Data ->Offset != NULL)
329 Tmp += Data->Offset[i];
331 Out[i] = (cmsFloat32Number) Tmp;
335 // Output in 0..1.0 domain
339 // Duplicate a yet-existing matrix element
340 static
341 void* MatrixElemDup(cmsStage* mpe)
343 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
344 _cmsStageMatrixData* NewElem;
345 cmsUInt32Number sz;
347 NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData));
348 if (NewElem == NULL) return NULL;
350 sz = mpe ->InputChannels * mpe ->OutputChannels;
352 NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ;
354 if (Data ->Offset)
355 NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID,
356 Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ;
358 return (void*) NewElem;
362 static
363 void MatrixElemTypeFree(cmsStage* mpe)
365 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
366 if (Data == NULL)
367 return;
368 if (Data ->Double)
369 _cmsFree(mpe ->ContextID, Data ->Double);
371 if (Data ->Offset)
372 _cmsFree(mpe ->ContextID, Data ->Offset);
374 _cmsFree(mpe ->ContextID, mpe ->Data);
379 cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols,
380 const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset)
382 cmsUInt32Number i, n;
383 _cmsStageMatrixData* NewElem;
384 cmsStage* NewMPE;
386 n = Rows * Cols;
388 // Check for overflow
389 if (n == 0) return NULL;
390 if (n >= UINT_MAX / Cols) return NULL;
391 if (n >= UINT_MAX / Rows) return NULL;
392 if (n < Rows || n < Cols) return NULL;
394 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows,
395 EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL );
396 if (NewMPE == NULL) return NULL;
399 NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData));
400 if (NewElem == NULL) goto Error;
401 NewMPE->Data = (void*)NewElem;
403 NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number));
404 if (NewElem->Double == NULL) goto Error;
406 for (i=0; i < n; i++) {
407 NewElem ->Double[i] = Matrix[i];
410 if (Offset != NULL) {
412 NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number));
413 if (NewElem->Offset == NULL) goto Error;
415 for (i=0; i < Rows; i++) {
416 NewElem ->Offset[i] = Offset[i];
420 return NewMPE;
422 Error:
423 cmsStageFree(NewMPE);
424 return NULL;
428 // *************************************************************************************************
429 // Type cmsSigCLutElemType
430 // *************************************************************************************************
433 // Evaluate in true floating point
434 static
435 void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
437 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
439 Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params);
443 // Convert to 16 bits, evaluate, and back to floating point
444 static
445 void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
447 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
448 cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS];
450 _cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS);
451 _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS);
453 FromFloatTo16(In, In16, mpe ->InputChannels);
454 Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params);
455 From16ToFloat(Out16, Out, mpe ->OutputChannels);
459 // Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes
460 static
461 cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b)
463 cmsUInt32Number rv, dim;
465 _cmsAssert(Dims != NULL);
467 for (rv = 1; b > 0; b--) {
469 dim = Dims[b-1];
470 if (dim <= 1) return 0; // Error
472 rv *= dim;
474 // Check for overflow
475 if (rv > UINT_MAX / dim) return 0;
478 return rv;
481 static
482 void* CLUTElemDup(cmsStage* mpe)
484 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
485 _cmsStageCLutData* NewElem;
488 NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData));
489 if (NewElem == NULL) return NULL;
491 NewElem ->nEntries = Data ->nEntries;
492 NewElem ->HasFloatValues = Data ->HasFloatValues;
494 if (Data ->Tab.T) {
496 if (Data ->HasFloatValues) {
497 NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number));
498 if (NewElem ->Tab.TFloat == NULL)
499 goto Error;
500 } else {
501 NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number));
502 if (NewElem ->Tab.T == NULL)
503 goto Error;
507 NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID,
508 Data ->Params ->nSamples,
509 Data ->Params ->nInputs,
510 Data ->Params ->nOutputs,
511 NewElem ->Tab.T,
512 Data ->Params ->dwFlags);
513 if (NewElem->Params != NULL)
514 return (void*) NewElem;
515 Error:
516 if (NewElem->Tab.T)
517 // This works for both types
518 _cmsFree(mpe ->ContextID, NewElem -> Tab.T);
519 _cmsFree(mpe ->ContextID, NewElem);
520 return NULL;
524 static
525 void CLutElemTypeFree(cmsStage* mpe)
528 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
530 // Already empty
531 if (Data == NULL) return;
533 // This works for both types
534 if (Data -> Tab.T)
535 _cmsFree(mpe ->ContextID, Data -> Tab.T);
537 _cmsFreeInterpParams(Data ->Params);
538 _cmsFree(mpe ->ContextID, mpe ->Data);
542 // Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different
543 // granularity on each dimension.
544 cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID,
545 const cmsUInt32Number clutPoints[],
546 cmsUInt32Number inputChan,
547 cmsUInt32Number outputChan,
548 const cmsUInt16Number* Table)
550 cmsUInt32Number i, n;
551 _cmsStageCLutData* NewElem;
552 cmsStage* NewMPE;
554 _cmsAssert(clutPoints != NULL);
556 if (inputChan > MAX_INPUT_DIMENSIONS) {
557 cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
558 return NULL;
561 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
562 EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL );
564 if (NewMPE == NULL) return NULL;
566 NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
567 if (NewElem == NULL) {
568 cmsStageFree(NewMPE);
569 return NULL;
572 NewMPE ->Data = (void*) NewElem;
574 NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
575 NewElem -> HasFloatValues = FALSE;
577 if (n == 0) {
578 cmsStageFree(NewMPE);
579 return NULL;
583 NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number));
584 if (NewElem ->Tab.T == NULL) {
585 cmsStageFree(NewMPE);
586 return NULL;
589 if (Table != NULL) {
590 for (i=0; i < n; i++) {
591 NewElem ->Tab.T[i] = Table[i];
595 NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS);
596 if (NewElem ->Params == NULL) {
597 cmsStageFree(NewMPE);
598 return NULL;
601 return NewMPE;
604 cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID,
605 cmsUInt32Number nGridPoints,
606 cmsUInt32Number inputChan,
607 cmsUInt32Number outputChan,
608 const cmsUInt16Number* Table)
610 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
611 int i;
613 // Our resulting LUT would be same gridpoints on all dimensions
614 for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
615 Dimensions[i] = nGridPoints;
617 return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table);
621 cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID,
622 cmsUInt32Number nGridPoints,
623 cmsUInt32Number inputChan,
624 cmsUInt32Number outputChan,
625 const cmsFloat32Number* Table)
627 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
628 int i;
630 // Our resulting LUT would be same gridpoints on all dimensions
631 for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
632 Dimensions[i] = nGridPoints;
634 return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table);
639 cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table)
641 cmsUInt32Number i, n;
642 _cmsStageCLutData* NewElem;
643 cmsStage* NewMPE;
645 _cmsAssert(clutPoints != NULL);
647 if (inputChan > MAX_INPUT_DIMENSIONS) {
648 cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
649 return NULL;
652 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
653 EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL);
654 if (NewMPE == NULL) return NULL;
657 NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
658 if (NewElem == NULL) {
659 cmsStageFree(NewMPE);
660 return NULL;
663 NewMPE ->Data = (void*) NewElem;
665 // There is a potential integer overflow on conputing n and nEntries.
666 NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
667 NewElem -> HasFloatValues = TRUE;
669 if (n == 0) {
670 cmsStageFree(NewMPE);
671 return NULL;
674 NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number));
675 if (NewElem ->Tab.TFloat == NULL) {
676 cmsStageFree(NewMPE);
677 return NULL;
680 if (Table != NULL) {
681 for (i=0; i < n; i++) {
682 NewElem ->Tab.TFloat[i] = Table[i];
686 NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT);
687 if (NewElem ->Params == NULL) {
688 cmsStageFree(NewMPE);
689 return NULL;
692 return NewMPE;
696 static
697 int IdentitySampler(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void * Cargo)
699 int nChan = *(int*) Cargo;
700 int i;
702 for (i=0; i < nChan; i++)
703 Out[i] = In[i];
705 return 1;
708 // Creates an MPE that just copies input to output
709 cmsStage* CMSEXPORT _cmsStageAllocIdentityCLut(cmsContext ContextID, cmsUInt32Number nChan)
711 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
712 cmsStage* mpe ;
713 int i;
715 for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
716 Dimensions[i] = 2;
718 mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL);
719 if (mpe == NULL) return NULL;
721 if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) {
722 cmsStageFree(mpe);
723 return NULL;
726 mpe ->Implements = cmsSigIdentityElemType;
727 return mpe;
732 // Quantize a value 0 <= i < MaxSamples to 0..0xffff
733 cmsUInt16Number CMSEXPORT _cmsQuantizeVal(cmsFloat64Number i, cmsUInt32Number MaxSamples)
735 cmsFloat64Number x;
737 x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1);
738 return _cmsQuickSaturateWord(x);
742 // This routine does a sweep on whole input space, and calls its callback
743 // function on knots. returns TRUE if all ok, FALSE otherwise.
744 cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags)
746 int i, t, index, rest;
747 cmsUInt32Number nTotalPoints;
748 cmsUInt32Number nInputs, nOutputs;
749 cmsUInt32Number* nSamples;
750 cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
751 _cmsStageCLutData* clut;
753 if (mpe == NULL) return FALSE;
755 clut = (_cmsStageCLutData*) mpe->Data;
757 if (clut == NULL) return FALSE;
759 nSamples = clut->Params ->nSamples;
760 nInputs = clut->Params ->nInputs;
761 nOutputs = clut->Params ->nOutputs;
763 if (nInputs <= 0) return FALSE;
764 if (nOutputs <= 0) return FALSE;
765 if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
766 if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
768 memset(In, 0, sizeof(In));
769 memset(Out, 0, sizeof(Out));
771 nTotalPoints = CubeSize(nSamples, nInputs);
772 if (nTotalPoints == 0) return FALSE;
774 index = 0;
775 for (i = 0; i < (int) nTotalPoints; i++) {
777 rest = i;
778 for (t = (int)nInputs - 1; t >= 0; --t) {
780 cmsUInt32Number Colorant = rest % nSamples[t];
782 rest /= nSamples[t];
784 In[t] = _cmsQuantizeVal(Colorant, nSamples[t]);
787 if (clut ->Tab.T != NULL) {
788 for (t = 0; t < (int)nOutputs; t++)
789 Out[t] = clut->Tab.T[index + t];
792 if (!Sampler(In, Out, Cargo))
793 return FALSE;
795 if (!(dwFlags & SAMPLER_INSPECT)) {
797 if (clut ->Tab.T != NULL) {
798 for (t=0; t < (int) nOutputs; t++)
799 clut->Tab.T[index + t] = Out[t];
803 index += nOutputs;
806 return TRUE;
809 // Same as anterior, but for floating point
810 cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags)
812 int i, t, index, rest;
813 cmsUInt32Number nTotalPoints;
814 cmsUInt32Number nInputs, nOutputs;
815 cmsUInt32Number* nSamples;
816 cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
817 _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data;
819 nSamples = clut->Params ->nSamples;
820 nInputs = clut->Params ->nInputs;
821 nOutputs = clut->Params ->nOutputs;
823 if (nInputs <= 0) return FALSE;
824 if (nOutputs <= 0) return FALSE;
825 if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
826 if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
828 nTotalPoints = CubeSize(nSamples, nInputs);
829 if (nTotalPoints == 0) return FALSE;
831 index = 0;
832 for (i = 0; i < (int)nTotalPoints; i++) {
834 rest = i;
835 for (t = (int) nInputs-1; t >=0; --t) {
837 cmsUInt32Number Colorant = rest % nSamples[t];
839 rest /= nSamples[t];
841 In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0);
844 if (clut ->Tab.TFloat != NULL) {
845 for (t=0; t < (int) nOutputs; t++)
846 Out[t] = clut->Tab.TFloat[index + t];
849 if (!Sampler(In, Out, Cargo))
850 return FALSE;
852 if (!(dwFlags & SAMPLER_INSPECT)) {
854 if (clut ->Tab.TFloat != NULL) {
855 for (t=0; t < (int) nOutputs; t++)
856 clut->Tab.TFloat[index + t] = Out[t];
860 index += nOutputs;
863 return TRUE;
868 // This routine does a sweep on whole input space, and calls its callback
869 // function on knots. returns TRUE if all ok, FALSE otherwise.
870 cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
871 cmsSAMPLER16 Sampler, void * Cargo)
873 int i, t, rest;
874 cmsUInt32Number nTotalPoints;
875 cmsUInt16Number In[cmsMAXCHANNELS];
877 if (nInputs >= cmsMAXCHANNELS) return FALSE;
879 nTotalPoints = CubeSize(clutPoints, nInputs);
880 if (nTotalPoints == 0) return FALSE;
882 for (i = 0; i < (int) nTotalPoints; i++) {
884 rest = i;
885 for (t = (int) nInputs-1; t >=0; --t) {
887 cmsUInt32Number Colorant = rest % clutPoints[t];
889 rest /= clutPoints[t];
890 In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]);
894 if (!Sampler(In, NULL, Cargo))
895 return FALSE;
898 return TRUE;
901 cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
902 cmsSAMPLERFLOAT Sampler, void * Cargo)
904 int i, t, rest;
905 cmsUInt32Number nTotalPoints;
906 cmsFloat32Number In[cmsMAXCHANNELS];
908 if (nInputs >= cmsMAXCHANNELS) return FALSE;
910 nTotalPoints = CubeSize(clutPoints, nInputs);
911 if (nTotalPoints == 0) return FALSE;
913 for (i = 0; i < (int) nTotalPoints; i++) {
915 rest = i;
916 for (t = (int) nInputs-1; t >=0; --t) {
918 cmsUInt32Number Colorant = rest % clutPoints[t];
920 rest /= clutPoints[t];
921 In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0);
925 if (!Sampler(In, NULL, Cargo))
926 return FALSE;
929 return TRUE;
932 // ********************************************************************************
933 // Type cmsSigLab2XYZElemType
934 // ********************************************************************************
937 static
938 void EvaluateLab2XYZ(const cmsFloat32Number In[],
939 cmsFloat32Number Out[],
940 const cmsStage *mpe)
942 cmsCIELab Lab;
943 cmsCIEXYZ XYZ;
944 const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
946 // V4 rules
947 Lab.L = In[0] * 100.0;
948 Lab.a = In[1] * 255.0 - 128.0;
949 Lab.b = In[2] * 255.0 - 128.0;
951 cmsLab2XYZ(NULL, &XYZ, &Lab);
953 // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff
954 // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0)
956 Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj);
957 Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj);
958 Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj);
959 return;
961 cmsUNUSED_PARAMETER(mpe);
965 // No dup or free routines needed, as the structure has no pointers in it.
966 cmsStage* CMSEXPORT _cmsStageAllocLab2XYZ(cmsContext ContextID)
968 return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL);
971 // ********************************************************************************
973 // v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable
974 // number of gridpoints that would make exact match. However, a prelinearization
975 // of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot.
976 // Almost all what we need but unfortunately, the rest of entries should be scaled by
977 // (255*257/256) and this is not exact.
979 cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID)
981 cmsStage* mpe;
982 cmsToneCurve* LabTable[3];
983 int i, j;
985 LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
986 LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
987 LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
989 for (j=0; j < 3; j++) {
991 if (LabTable[j] == NULL) {
992 cmsFreeToneCurveTriple(LabTable);
993 return NULL;
996 // We need to map * (0xffff / 0xff00), that's same as (257 / 256)
997 // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256);
998 for (i=0; i < 257; i++) {
1000 LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8);
1003 LabTable[j] ->Table16[257] = 0xffff;
1006 mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable);
1007 cmsFreeToneCurveTriple(LabTable);
1009 if (mpe == NULL) return NULL;
1010 mpe ->Implements = cmsSigLabV2toV4;
1011 return mpe;
1014 // ********************************************************************************
1016 // Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles
1017 cmsStage* CMSEXPORT _cmsStageAllocLabV2ToV4(cmsContext ContextID)
1019 static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0,
1020 0, 65535.0/65280.0, 0,
1021 0, 0, 65535.0/65280.0
1024 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL);
1026 if (mpe == NULL) return mpe;
1027 mpe ->Implements = cmsSigLabV2toV4;
1028 return mpe;
1032 // Reverse direction
1033 cmsStage* CMSEXPORT _cmsStageAllocLabV4ToV2(cmsContext ContextID)
1035 static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0,
1036 0, 65280.0/65535.0, 0,
1037 0, 0, 65280.0/65535.0
1040 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL);
1042 if (mpe == NULL) return mpe;
1043 mpe ->Implements = cmsSigLabV4toV2;
1044 return mpe;
1048 // To Lab to float. Note that the MPE gives numbers in normal Lab range
1049 // and we need 0..1.0 range for the formatters
1050 // L* : 0...100 => 0...1.0 (L* / 100)
1051 // ab* : -128..+127 to 0..1 ((ab* + 128) / 255)
1053 cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID)
1055 static const cmsFloat64Number a1[] = {
1056 1.0/100.0, 0, 0,
1057 0, 1.0/255.0, 0,
1058 0, 0, 1.0/255.0
1061 static const cmsFloat64Number o1[] = {
1063 128.0/255.0,
1064 128.0/255.0
1067 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1069 if (mpe == NULL) return mpe;
1070 mpe ->Implements = cmsSigLab2FloatPCS;
1071 return mpe;
1074 // Fom XYZ to floating point PCS
1075 cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID)
1077 #define n (32768.0/65535.0)
1078 static const cmsFloat64Number a1[] = {
1079 n, 0, 0,
1080 0, n, 0,
1081 0, 0, n
1083 #undef n
1085 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1087 if (mpe == NULL) return mpe;
1088 mpe ->Implements = cmsSigXYZ2FloatPCS;
1089 return mpe;
1092 cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID)
1094 static const cmsFloat64Number a1[] = {
1095 100.0, 0, 0,
1096 0, 255.0, 0,
1097 0, 0, 255.0
1100 static const cmsFloat64Number o1[] = {
1102 -128.0,
1103 -128.0
1106 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1107 if (mpe == NULL) return mpe;
1108 mpe ->Implements = cmsSigFloatPCS2Lab;
1109 return mpe;
1112 cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID)
1114 #define n (65535.0/32768.0)
1116 static const cmsFloat64Number a1[] = {
1117 n, 0, 0,
1118 0, n, 0,
1119 0, 0, n
1121 #undef n
1123 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1124 if (mpe == NULL) return mpe;
1125 mpe ->Implements = cmsSigFloatPCS2XYZ;
1126 return mpe;
1129 // Clips values smaller than zero
1130 static
1131 void Clipper(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1133 cmsUInt32Number i;
1134 for (i = 0; i < mpe->InputChannels; i++) {
1136 cmsFloat32Number n = In[i];
1137 Out[i] = n < 0 ? 0 : n;
1141 cmsStage* _cmsStageClipNegatives(cmsContext ContextID, cmsUInt32Number nChannels)
1143 return _cmsStageAllocPlaceholder(ContextID, cmsSigClipNegativesElemType,
1144 nChannels, nChannels, Clipper, NULL, NULL, NULL);
1147 // ********************************************************************************
1148 // Type cmsSigXYZ2LabElemType
1149 // ********************************************************************************
1151 static
1152 void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1154 cmsCIELab Lab;
1155 cmsCIEXYZ XYZ;
1156 const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
1158 // From 0..1.0 to XYZ
1160 XYZ.X = In[0] * XYZadj;
1161 XYZ.Y = In[1] * XYZadj;
1162 XYZ.Z = In[2] * XYZadj;
1164 cmsXYZ2Lab(NULL, &Lab, &XYZ);
1166 // From V4 Lab to 0..1.0
1168 Out[0] = (cmsFloat32Number) (Lab.L / 100.0);
1169 Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0);
1170 Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0);
1171 return;
1173 cmsUNUSED_PARAMETER(mpe);
1176 cmsStage* CMSEXPORT _cmsStageAllocXYZ2Lab(cmsContext ContextID)
1178 return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL);
1182 // ********************************************************************************
1184 // For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray
1186 cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID)
1188 cmsToneCurve* LabTable[3];
1189 cmsFloat64Number Params[1] = {2.4} ;
1191 LabTable[0] = cmsBuildGamma(ContextID, 1.0);
1192 LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1193 LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1195 return cmsStageAllocToneCurves(ContextID, 3, LabTable);
1199 // Free a single MPE
1200 void CMSEXPORT cmsStageFree(cmsStage* mpe)
1202 if (mpe ->FreePtr)
1203 mpe ->FreePtr(mpe);
1205 _cmsFree(mpe ->ContextID, mpe);
1209 cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe)
1211 return mpe ->InputChannels;
1214 cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe)
1216 return mpe ->OutputChannels;
1219 cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe)
1221 return mpe -> Type;
1224 void* CMSEXPORT cmsStageData(const cmsStage* mpe)
1226 return mpe -> Data;
1229 cmsContext CMSEXPORT cmsGetStageContextID(const cmsStage* mpe)
1231 return mpe -> ContextID;
1234 cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe)
1236 return mpe -> Next;
1240 // Duplicates an MPE
1241 cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe)
1243 cmsStage* NewMPE;
1245 if (mpe == NULL) return NULL;
1246 NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID,
1247 mpe ->Type,
1248 mpe ->InputChannels,
1249 mpe ->OutputChannels,
1250 mpe ->EvalPtr,
1251 mpe ->DupElemPtr,
1252 mpe ->FreePtr,
1253 NULL);
1254 if (NewMPE == NULL) return NULL;
1256 NewMPE ->Implements = mpe ->Implements;
1258 if (mpe ->DupElemPtr) {
1260 NewMPE ->Data = mpe ->DupElemPtr(mpe);
1262 if (NewMPE->Data == NULL) {
1264 cmsStageFree(NewMPE);
1265 return NULL;
1268 } else {
1270 NewMPE ->Data = NULL;
1273 return NewMPE;
1277 // ***********************************************************************************************************
1279 // This function sets up the channel count
1280 static
1281 cmsBool BlessLUT(cmsPipeline* lut)
1283 // We can set the input/output channels only if we have elements.
1284 if (lut ->Elements != NULL) {
1286 cmsStage* prev;
1287 cmsStage* next;
1288 cmsStage* First;
1289 cmsStage* Last;
1291 First = cmsPipelineGetPtrToFirstStage(lut);
1292 Last = cmsPipelineGetPtrToLastStage(lut);
1294 if (First == NULL || Last == NULL) return FALSE;
1296 lut->InputChannels = First->InputChannels;
1297 lut->OutputChannels = Last->OutputChannels;
1299 // Check chain consistency
1300 prev = First;
1301 next = prev->Next;
1303 while (next != NULL)
1305 if (next->InputChannels != prev->OutputChannels)
1306 return FALSE;
1308 next = next->Next;
1309 prev = prev->Next;
1313 return TRUE;
1317 // Default to evaluate the LUT on 16 bit-basis. Precision is retained.
1318 static
1319 void _LUTeval16(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER const void* D)
1321 cmsPipeline* lut = (cmsPipeline*) D;
1322 cmsStage *mpe;
1323 cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS];
1324 int Phase = 0, NextPhase;
1326 From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels);
1328 for (mpe = lut ->Elements;
1329 mpe != NULL;
1330 mpe = mpe ->Next) {
1332 NextPhase = Phase ^ 1;
1333 mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1334 Phase = NextPhase;
1338 FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels);
1343 // Does evaluate the LUT on cmsFloat32Number-basis.
1344 static
1345 void _LUTevalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const void* D)
1347 cmsPipeline* lut = (cmsPipeline*) D;
1348 cmsStage *mpe;
1349 cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS];
1350 int Phase = 0, NextPhase;
1352 memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number));
1354 for (mpe = lut ->Elements;
1355 mpe != NULL;
1356 mpe = mpe ->Next) {
1358 NextPhase = Phase ^ 1;
1359 mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1360 Phase = NextPhase;
1363 memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number));
1367 // LUT Creation & Destruction
1368 cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels)
1370 cmsPipeline* NewLUT;
1372 // A value of zero in channels is allowed as placeholder
1373 if (InputChannels >= cmsMAXCHANNELS ||
1374 OutputChannels >= cmsMAXCHANNELS) return NULL;
1376 NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline));
1377 if (NewLUT == NULL) return NULL;
1379 NewLUT -> InputChannels = InputChannels;
1380 NewLUT -> OutputChannels = OutputChannels;
1382 NewLUT ->Eval16Fn = _LUTeval16;
1383 NewLUT ->EvalFloatFn = _LUTevalFloat;
1384 NewLUT ->DupDataFn = NULL;
1385 NewLUT ->FreeDataFn = NULL;
1386 NewLUT ->Data = NewLUT;
1387 NewLUT ->ContextID = ContextID;
1389 if (!BlessLUT(NewLUT))
1391 _cmsFree(ContextID, NewLUT);
1392 return NULL;
1395 return NewLUT;
1398 cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut)
1400 _cmsAssert(lut != NULL);
1401 return lut ->ContextID;
1404 cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut)
1406 _cmsAssert(lut != NULL);
1407 return lut ->InputChannels;
1410 cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut)
1412 _cmsAssert(lut != NULL);
1413 return lut ->OutputChannels;
1416 // Free a profile elements LUT
1417 void CMSEXPORT cmsPipelineFree(cmsPipeline* lut)
1419 cmsStage *mpe, *Next;
1421 if (lut == NULL) return;
1423 for (mpe = lut ->Elements;
1424 mpe != NULL;
1425 mpe = Next) {
1427 Next = mpe ->Next;
1428 cmsStageFree(mpe);
1431 if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data);
1433 _cmsFree(lut ->ContextID, lut);
1437 // Default to evaluate the LUT on 16 bit-basis.
1438 void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut)
1440 _cmsAssert(lut != NULL);
1441 lut ->Eval16Fn(In, Out, lut->Data);
1445 // Does evaluate the LUT on cmsFloat32Number-basis.
1446 void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut)
1448 _cmsAssert(lut != NULL);
1449 lut ->EvalFloatFn(In, Out, lut);
1454 // Duplicates a LUT
1455 cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut)
1457 cmsPipeline* NewLUT;
1458 cmsStage *NewMPE, *Anterior = NULL, *mpe;
1459 cmsBool First = TRUE;
1461 if (lut == NULL) return NULL;
1463 NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels);
1464 if (NewLUT == NULL) return NULL;
1466 for (mpe = lut ->Elements;
1467 mpe != NULL;
1468 mpe = mpe ->Next) {
1470 NewMPE = cmsStageDup(mpe);
1472 if (NewMPE == NULL) {
1473 cmsPipelineFree(NewLUT);
1474 return NULL;
1477 if (First) {
1478 NewLUT ->Elements = NewMPE;
1479 First = FALSE;
1481 else {
1482 if (Anterior != NULL)
1483 Anterior ->Next = NewMPE;
1486 Anterior = NewMPE;
1489 NewLUT ->Eval16Fn = lut ->Eval16Fn;
1490 NewLUT ->EvalFloatFn = lut ->EvalFloatFn;
1491 NewLUT ->DupDataFn = lut ->DupDataFn;
1492 NewLUT ->FreeDataFn = lut ->FreeDataFn;
1494 if (NewLUT ->DupDataFn != NULL)
1495 NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data);
1498 NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits;
1500 if (!BlessLUT(NewLUT))
1502 _cmsFree(lut->ContextID, NewLUT);
1503 return NULL;
1506 return NewLUT;
1510 int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe)
1512 cmsStage* Anterior = NULL, *pt;
1514 if (lut == NULL || mpe == NULL)
1515 return FALSE;
1517 switch (loc) {
1519 case cmsAT_BEGIN:
1520 mpe ->Next = lut ->Elements;
1521 lut ->Elements = mpe;
1522 break;
1524 case cmsAT_END:
1526 if (lut ->Elements == NULL)
1527 lut ->Elements = mpe;
1528 else {
1530 for (pt = lut ->Elements;
1531 pt != NULL;
1532 pt = pt -> Next) Anterior = pt;
1534 Anterior ->Next = mpe;
1535 mpe ->Next = NULL;
1537 break;
1538 default:;
1539 return FALSE;
1542 return BlessLUT(lut);
1545 // Unlink an element and return the pointer to it
1546 void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe)
1548 cmsStage *Anterior, *pt, *Last;
1549 cmsStage *Unlinked = NULL;
1552 // If empty LUT, there is nothing to remove
1553 if (lut ->Elements == NULL) {
1554 if (mpe) *mpe = NULL;
1555 return;
1558 // On depending on the strategy...
1559 switch (loc) {
1561 case cmsAT_BEGIN:
1563 cmsStage* elem = lut ->Elements;
1565 lut ->Elements = elem -> Next;
1566 elem ->Next = NULL;
1567 Unlinked = elem;
1570 break;
1572 case cmsAT_END:
1573 Anterior = Last = NULL;
1574 for (pt = lut ->Elements;
1575 pt != NULL;
1576 pt = pt -> Next) {
1577 Anterior = Last;
1578 Last = pt;
1581 Unlinked = Last; // Next already points to NULL
1583 // Truncate the chain
1584 if (Anterior)
1585 Anterior ->Next = NULL;
1586 else
1587 lut ->Elements = NULL;
1588 break;
1589 default:;
1592 if (mpe)
1593 *mpe = Unlinked;
1594 else
1595 cmsStageFree(Unlinked);
1597 // May fail, but we ignore it
1598 BlessLUT(lut);
1602 // Concatenate two LUT into a new single one
1603 cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2)
1605 cmsStage* mpe;
1607 // If both LUTS does not have elements, we need to inherit
1608 // the number of channels
1609 if (l1 ->Elements == NULL && l2 ->Elements == NULL) {
1610 l1 ->InputChannels = l2 ->InputChannels;
1611 l1 ->OutputChannels = l2 ->OutputChannels;
1614 // Cat second
1615 for (mpe = l2 ->Elements;
1616 mpe != NULL;
1617 mpe = mpe ->Next) {
1619 // We have to dup each element
1620 if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe)))
1621 return FALSE;
1624 return BlessLUT(l1);
1628 cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On)
1630 cmsBool Anterior = lut ->SaveAs8Bits;
1632 lut ->SaveAs8Bits = On;
1633 return Anterior;
1637 cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut)
1639 return lut ->Elements;
1642 cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut)
1644 cmsStage *mpe, *Anterior = NULL;
1646 for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1647 Anterior = mpe;
1649 return Anterior;
1652 cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut)
1654 cmsStage *mpe;
1655 cmsUInt32Number n;
1657 for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1658 n++;
1660 return n;
1663 // This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional
1664 // duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality.
1665 void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut,
1666 _cmsPipelineEval16Fn Eval16,
1667 void* PrivateData,
1668 _cmsFreeUserDataFn FreePrivateDataFn,
1669 _cmsDupUserDataFn DupPrivateDataFn)
1672 Lut ->Eval16Fn = Eval16;
1673 Lut ->DupDataFn = DupPrivateDataFn;
1674 Lut ->FreeDataFn = FreePrivateDataFn;
1675 Lut ->Data = PrivateData;
1679 // ----------------------------------------------------------- Reverse interpolation
1680 // Here's how it goes. The derivative Df(x) of the function f is the linear
1681 // transformation that best approximates f near the point x. It can be represented
1682 // by a matrix A whose entries are the partial derivatives of the components of f
1683 // with respect to all the coordinates. This is know as the Jacobian
1685 // The best linear approximation to f is given by the matrix equation:
1687 // y-y0 = A (x-x0)
1689 // So, if x0 is a good "guess" for the zero of f, then solving for the zero of this
1690 // linear approximation will give a "better guess" for the zero of f. Thus let y=0,
1691 // and since y0=f(x0) one can solve the above equation for x. This leads to the
1692 // Newton's method formula:
1694 // xn+1 = xn - A-1 f(xn)
1696 // where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the
1697 // fashion described above. Iterating this will give better and better approximations
1698 // if you have a "good enough" initial guess.
1701 #define JACOBIAN_EPSILON 0.001f
1702 #define INVERSION_MAX_ITERATIONS 30
1704 // Increment with reflexion on boundary
1705 static
1706 void IncDelta(cmsFloat32Number *Val)
1708 if (*Val < (1.0 - JACOBIAN_EPSILON))
1710 *Val += JACOBIAN_EPSILON;
1712 else
1713 *Val -= JACOBIAN_EPSILON;
1719 // Euclidean distance between two vectors of n elements each one
1720 static
1721 cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n)
1723 cmsFloat32Number sum = 0;
1724 int i;
1726 for (i=0; i < n; i++) {
1727 cmsFloat32Number dif = b[i] - a[i];
1728 sum += dif * dif;
1731 return sqrtf(sum);
1735 // Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method
1737 // x1 <- x - [J(x)]^-1 * f(x)
1739 // lut: The LUT on where to do the search
1740 // Target: LabK, 3 values of Lab plus destination K which is fixed
1741 // Result: The obtained CMYK
1742 // Hint: Location where begin the search
1744 cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],
1745 cmsFloat32Number Result[],
1746 cmsFloat32Number Hint[],
1747 const cmsPipeline* lut)
1749 cmsUInt32Number i, j;
1750 cmsFloat64Number error, LastError = 1E20;
1751 cmsFloat32Number fx[4], x[4], xd[4], fxd[4];
1752 cmsVEC3 tmp, tmp2;
1753 cmsMAT3 Jacobian;
1755 // Only 3->3 and 4->3 are supported
1756 if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE;
1757 if (lut ->OutputChannels != 3) return FALSE;
1759 // Take the hint as starting point if specified
1760 if (Hint == NULL) {
1762 // Begin at any point, we choose 1/3 of CMY axis
1763 x[0] = x[1] = x[2] = 0.3f;
1765 else {
1767 // Only copy 3 channels from hint...
1768 for (j=0; j < 3; j++)
1769 x[j] = Hint[j];
1772 // If Lut is 4-dimensions, then grab target[3], which is fixed
1773 if (lut ->InputChannels == 4) {
1774 x[3] = Target[3];
1776 else x[3] = 0; // To keep lint happy
1779 // Iterate
1780 for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) {
1782 // Get beginning fx
1783 cmsPipelineEvalFloat(x, fx, lut);
1785 // Compute error
1786 error = EuclideanDistance(fx, Target, 3);
1788 // If not convergent, return last safe value
1789 if (error >= LastError)
1790 break;
1792 // Keep latest values
1793 LastError = error;
1794 for (j=0; j < lut ->InputChannels; j++)
1795 Result[j] = x[j];
1797 // Found an exact match?
1798 if (error <= 0)
1799 break;
1801 // Obtain slope (the Jacobian)
1802 for (j = 0; j < 3; j++) {
1804 xd[0] = x[0];
1805 xd[1] = x[1];
1806 xd[2] = x[2];
1807 xd[3] = x[3]; // Keep fixed channel
1809 IncDelta(&xd[j]);
1811 cmsPipelineEvalFloat(xd, fxd, lut);
1813 Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON);
1814 Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON);
1815 Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON);
1818 // Solve system
1819 tmp2.n[0] = fx[0] - Target[0];
1820 tmp2.n[1] = fx[1] - Target[1];
1821 tmp2.n[2] = fx[2] - Target[2];
1823 if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2))
1824 return FALSE;
1826 // Move our guess
1827 x[0] -= (cmsFloat32Number) tmp.n[0];
1828 x[1] -= (cmsFloat32Number) tmp.n[1];
1829 x[2] -= (cmsFloat32Number) tmp.n[2];
1831 // Some clipping....
1832 for (j=0; j < 3; j++) {
1833 if (x[j] < 0) x[j] = 0;
1834 else
1835 if (x[j] > 1.0) x[j] = 1.0;
1839 return TRUE;