winewayland.drv: Update desktop window size on display changes.
[wine.git] / dlls / oleaut32 / variant.c
blob8c2aa3b729de470e77fff8af1848c2bd81c5eb60
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stdarg.h>
32 #define COBJMACROS
33 #define NONAMELESSUNION
34 #define NONAMELESSSTRUCT
36 #include "windef.h"
37 #include "winbase.h"
38 #include "winerror.h"
39 #include "variant.h"
40 #include "resource.h"
41 #include "wine/debug.h"
43 WINE_DEFAULT_DEBUG_CHANNEL(variant);
46 /* Convert a variant from one type to another */
47 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
48 VARIANTARG* ps, VARTYPE vt)
50 HRESULT res = DISP_E_TYPEMISMATCH;
51 VARTYPE vtFrom = V_TYPE(ps);
52 DWORD dwFlags = 0;
54 TRACE("%s, %#lx, 0x%04x, %s, %s.\n", debugstr_variant(pd), lcid, wFlags,
55 debugstr_variant(ps), debugstr_vt(vt));
57 if (vt == VT_BSTR || vtFrom == VT_BSTR)
59 /* All flags passed to low level function are only used for
60 * changing to or from strings. Map these here.
62 if (wFlags & VARIANT_LOCALBOOL)
63 dwFlags |= VAR_LOCALBOOL;
64 if (wFlags & VARIANT_CALENDAR_HIJRI)
65 dwFlags |= VAR_CALENDAR_HIJRI;
66 if (wFlags & VARIANT_CALENDAR_THAI)
67 dwFlags |= VAR_CALENDAR_THAI;
68 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
69 dwFlags |= VAR_CALENDAR_GREGORIAN;
70 if (wFlags & VARIANT_NOUSEROVERRIDE)
71 dwFlags |= LOCALE_NOUSEROVERRIDE;
72 if (wFlags & VARIANT_USE_NLS)
73 dwFlags |= LOCALE_USE_NLS;
76 /* Map int/uint to i4/ui4 */
77 if (vt == VT_INT)
78 vt = VT_I4;
79 else if (vt == VT_UINT)
80 vt = VT_UI4;
82 if (vtFrom == VT_INT)
83 vtFrom = VT_I4;
84 else if (vtFrom == VT_UINT)
85 vtFrom = VT_UI4;
87 if (vt == vtFrom)
88 return VariantCopy(pd, ps);
90 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
92 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
93 * accessing the default object property.
95 return DISP_E_TYPEMISMATCH;
98 switch (vt)
100 case VT_EMPTY:
101 if (vtFrom == VT_NULL)
102 return DISP_E_TYPEMISMATCH;
103 /* ... Fall through */
104 case VT_NULL:
105 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
107 res = VariantClear( pd );
108 if (vt == VT_NULL && SUCCEEDED(res))
109 V_VT(pd) = VT_NULL;
111 return res;
113 case VT_I1:
114 switch (vtFrom)
116 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
117 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
118 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
119 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
120 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
121 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
122 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
123 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
124 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
125 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
126 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
127 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
128 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
129 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
130 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
131 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
133 break;
135 case VT_I2:
136 switch (vtFrom)
138 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
139 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
140 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
141 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
142 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
143 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
144 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
145 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
146 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
147 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
148 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
149 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
150 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
151 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
152 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
153 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
155 break;
157 case VT_I4:
158 switch (vtFrom)
160 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
161 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
162 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
163 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
164 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
165 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
166 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
167 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
168 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
169 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
170 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
171 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
172 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
173 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
174 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
175 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
177 break;
179 case VT_UI1:
180 switch (vtFrom)
182 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
183 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
184 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
185 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
186 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
187 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
188 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
189 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
190 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
191 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
192 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
193 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
194 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
195 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
196 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
197 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
199 break;
201 case VT_UI2:
202 switch (vtFrom)
204 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
205 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
206 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
207 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
208 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
209 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
210 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
211 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
212 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
213 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
214 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
215 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
216 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
217 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
218 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
219 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
221 break;
223 case VT_UI4:
224 switch (vtFrom)
226 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
227 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
228 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
229 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
230 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
231 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
232 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
233 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
234 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
235 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
236 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
237 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
238 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
239 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
240 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
241 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
243 break;
245 case VT_UI8:
246 switch (vtFrom)
248 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
249 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
250 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
251 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
252 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
253 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
254 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
255 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
256 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
257 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
258 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
259 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
260 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
261 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
262 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
263 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
265 break;
267 case VT_I8:
268 switch (vtFrom)
270 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
271 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
272 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
273 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
274 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
275 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
276 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
277 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
278 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
279 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
280 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
281 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
282 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
283 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
284 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
285 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
287 break;
289 case VT_R4:
290 switch (vtFrom)
292 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
293 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
294 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
295 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
296 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
297 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
298 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
299 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
300 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
301 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
302 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
303 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
304 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
305 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
306 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
307 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
309 break;
311 case VT_R8:
312 switch (vtFrom)
314 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
315 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
316 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
317 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
318 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
319 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
320 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
321 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
322 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
323 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
324 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
325 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
326 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
327 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
328 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
329 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
331 break;
333 case VT_DATE:
334 switch (vtFrom)
336 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
337 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
338 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
339 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
340 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
341 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
342 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
343 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
344 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
345 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
346 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
347 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
348 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
349 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
350 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
351 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
353 break;
355 case VT_BOOL:
356 switch (vtFrom)
358 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
359 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
360 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
361 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
362 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
363 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
364 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
365 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
366 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
367 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
368 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
369 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
370 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
371 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
372 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
373 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
375 break;
377 case VT_BSTR:
378 switch (vtFrom)
380 case VT_EMPTY:
381 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
382 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
383 case VT_BOOL:
384 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
385 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
386 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
387 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
388 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
389 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
390 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
391 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
392 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
393 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
394 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
395 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
396 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
397 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
398 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
399 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
400 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
402 break;
404 case VT_CY:
405 switch (vtFrom)
407 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
408 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
409 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
410 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
411 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
412 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
413 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
414 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
415 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
416 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
417 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
418 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
419 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
420 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
421 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
422 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
424 break;
426 case VT_DECIMAL:
427 switch (vtFrom)
429 case VT_EMPTY:
430 case VT_BOOL:
431 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
432 DEC_HI32(&V_DECIMAL(pd)) = 0;
433 DEC_MID32(&V_DECIMAL(pd)) = 0;
434 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
435 * VT_NULL and VT_EMPTY always give a 0 value.
437 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
438 return S_OK;
439 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
440 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
441 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
442 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
443 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
444 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
445 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
446 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
447 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
448 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
449 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
450 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
451 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
452 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
454 break;
456 case VT_UNKNOWN:
457 switch (vtFrom)
459 case VT_DISPATCH:
460 if (V_DISPATCH(ps) == NULL)
462 V_UNKNOWN(pd) = NULL;
463 res = S_OK;
465 else
466 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
467 break;
469 break;
471 case VT_DISPATCH:
472 switch (vtFrom)
474 case VT_UNKNOWN:
475 if (V_UNKNOWN(ps) == NULL)
477 V_DISPATCH(pd) = NULL;
478 res = S_OK;
480 else
481 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
482 break;
484 break;
486 case VT_RECORD:
487 break;
489 return res;
492 /* Coerce to/from an array */
493 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
495 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
496 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
498 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
499 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
501 if (V_VT(ps) == vt)
502 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
504 return DISP_E_TYPEMISMATCH;
507 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
509 DISPPARAMS params = { 0 };
510 HRESULT hres;
512 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
513 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
514 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
515 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &params, pValue,
516 NULL, NULL);
517 } else {
518 hres = DISP_E_TYPEMISMATCH;
520 return hres;
523 /******************************************************************************
524 * Check if a variants type is valid.
526 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
528 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
530 vt &= VT_TYPEMASK;
532 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
534 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
536 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
537 return DISP_E_BADVARTYPE;
538 if (vt != (VARTYPE)15)
539 return S_OK;
542 return DISP_E_BADVARTYPE;
545 /******************************************************************************
546 * VariantInit [OLEAUT32.8]
548 * Since Windows 8.1 whole structure is initialized, before that only type field was reset to VT_EMPTY.
550 void WINAPI VariantInit(VARIANTARG* pVarg)
552 TRACE("(%p)\n", pVarg);
554 memset(pVarg, 0, sizeof(*pVarg));
557 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
559 HRESULT hres;
561 TRACE("(%s)\n", debugstr_variant(pVarg));
563 hres = VARIANT_ValidateType(V_VT(pVarg));
564 if (FAILED(hres))
565 return hres;
567 switch (V_VT(pVarg))
569 case VT_DISPATCH:
570 case VT_UNKNOWN:
571 if (V_UNKNOWN(pVarg))
572 IUnknown_Release(V_UNKNOWN(pVarg));
573 break;
574 case VT_UNKNOWN | VT_BYREF:
575 case VT_DISPATCH | VT_BYREF:
576 if(*V_UNKNOWNREF(pVarg))
577 IUnknown_Release(*V_UNKNOWNREF(pVarg));
578 break;
579 case VT_BSTR:
580 SysFreeString(V_BSTR(pVarg));
581 break;
582 case VT_BSTR | VT_BYREF:
583 SysFreeString(*V_BSTRREF(pVarg));
584 break;
585 case VT_VARIANT | VT_BYREF:
586 VariantClear(V_VARIANTREF(pVarg));
587 break;
588 case VT_RECORD:
589 case VT_RECORD | VT_BYREF:
591 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
592 if (pBr->pRecInfo)
594 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
595 IRecordInfo_Release(pBr->pRecInfo);
597 break;
599 default:
600 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
602 if (V_ISBYREF(pVarg))
604 if (*V_ARRAYREF(pVarg))
605 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
607 else if (V_ARRAY(pVarg))
608 hres = SafeArrayDestroy(V_ARRAY(pVarg));
610 break;
613 V_VT(pVarg) = VT_EMPTY;
614 return hres;
617 /******************************************************************************
618 * VariantClear [OLEAUT32.9]
620 * Clear a variant.
622 * PARAMS
623 * pVarg [I/O] Variant to clear
625 * RETURNS
626 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
627 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
629 HRESULT WINAPI DECLSPEC_HOTPATCH VariantClear(VARIANTARG* pVarg)
631 HRESULT hres;
633 TRACE("(%s)\n", debugstr_variant(pVarg));
635 hres = VARIANT_ValidateType(V_VT(pVarg));
637 if (SUCCEEDED(hres))
639 if (!V_ISBYREF(pVarg))
641 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
643 hres = SafeArrayDestroy(V_ARRAY(pVarg));
645 else if (V_VT(pVarg) == VT_BSTR)
647 SysFreeString(V_BSTR(pVarg));
649 else if (V_VT(pVarg) == VT_RECORD)
651 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
652 if (pBr->pRecInfo)
654 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
655 IRecordInfo_Release(pBr->pRecInfo);
658 else if (V_VT(pVarg) == VT_DISPATCH ||
659 V_VT(pVarg) == VT_UNKNOWN)
661 if (V_UNKNOWN(pVarg))
662 IUnknown_Release(V_UNKNOWN(pVarg));
665 V_VT(pVarg) = VT_EMPTY;
667 return hres;
670 /******************************************************************************
671 * Copy an IRecordInfo object contained in a variant.
673 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, const VARIANT *src)
675 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
676 const struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
677 HRESULT hr = S_OK;
678 ULONG size;
680 if (!src_rec->pRecInfo)
682 if (src_rec->pvRecord) return E_INVALIDARG;
683 return S_OK;
686 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
687 if (FAILED(hr)) return hr;
689 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
690 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
691 could free it later. */
692 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
693 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
695 dest_rec->pRecInfo = src_rec->pRecInfo;
696 IRecordInfo_AddRef(src_rec->pRecInfo);
698 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
701 /******************************************************************************
702 * VariantCopy [OLEAUT32.10]
704 * Copy a variant.
706 * PARAMS
707 * pvargDest [O] Destination for copy
708 * pvargSrc [I] Source variant to copy
710 * RETURNS
711 * Success: S_OK. pvargDest contains a copy of pvargSrc.
712 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
713 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
714 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
715 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
717 * NOTES
718 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
719 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
720 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
721 * fails, so does this function.
722 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
723 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
724 * is copied rather than just any pointers to it.
725 * - For by-value object types the object pointer is copied and the objects
726 * reference count increased using IUnknown_AddRef().
727 * - For all by-reference types, only the referencing pointer is copied.
729 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, const VARIANTARG* pvargSrc)
731 HRESULT hres = S_OK;
733 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
735 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
736 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
737 return DISP_E_BADVARTYPE;
739 if (pvargSrc != pvargDest &&
740 SUCCEEDED(hres = VariantClear(pvargDest)))
742 *pvargDest = *pvargSrc; /* Shallow copy the value */
744 if (!V_ISBYREF(pvargSrc))
746 switch (V_VT(pvargSrc))
748 case VT_BSTR:
749 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
750 if (!V_BSTR(pvargDest))
751 hres = E_OUTOFMEMORY;
752 break;
753 case VT_RECORD:
754 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
755 break;
756 case VT_DISPATCH:
757 case VT_UNKNOWN:
758 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
759 if (V_UNKNOWN(pvargSrc))
760 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
761 break;
762 default:
763 if (V_ISARRAY(pvargSrc))
764 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
768 return hres;
771 /* Return the byte size of a variants data */
772 static inline size_t VARIANT_DataSize(const VARIANT* pv)
774 switch (V_TYPE(pv))
776 case VT_I1:
777 case VT_UI1: return sizeof(BYTE);
778 case VT_I2:
779 case VT_UI2: return sizeof(SHORT);
780 case VT_INT:
781 case VT_UINT:
782 case VT_I4:
783 case VT_UI4: return sizeof(LONG);
784 case VT_I8:
785 case VT_UI8: return sizeof(LONGLONG);
786 case VT_R4: return sizeof(float);
787 case VT_R8: return sizeof(double);
788 case VT_DATE: return sizeof(DATE);
789 case VT_BOOL: return sizeof(VARIANT_BOOL);
790 case VT_DISPATCH:
791 case VT_UNKNOWN:
792 case VT_BSTR: return sizeof(void*);
793 case VT_CY: return sizeof(CY);
794 case VT_ERROR: return sizeof(SCODE);
796 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
797 return 0;
800 /******************************************************************************
801 * VariantCopyInd [OLEAUT32.11]
803 * Copy a variant, dereferencing it if it is by-reference.
805 * PARAMS
806 * pvargDest [O] Destination for copy
807 * pvargSrc [I] Source variant to copy
809 * RETURNS
810 * Success: S_OK. pvargDest contains a copy of pvargSrc.
811 * Failure: An HRESULT error code indicating the error.
813 * NOTES
814 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
815 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
816 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
817 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
818 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
820 * NOTES
821 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
822 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
823 * value.
824 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
825 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
826 * to it. If clearing pvargDest fails, so does this function.
828 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, const VARIANTARG* pvargSrc)
830 const VARIANTARG *pSrc = pvargSrc;
831 VARIANTARG vTmp;
832 VARTYPE vt;
833 HRESULT hres = S_OK;
835 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
837 if (!V_ISBYREF(pvargSrc))
838 return VariantCopy(pvargDest, pvargSrc);
840 /* Argument checking is more lax than VariantCopy()... */
841 vt = V_TYPE(pvargSrc);
842 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
843 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
844 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
846 /* OK */
848 else
849 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
851 if (pvargSrc == pvargDest)
853 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
854 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
856 vTmp = *pvargSrc;
857 pSrc = &vTmp;
858 V_VT(pvargDest) = VT_EMPTY;
860 else
862 /* Copy into another variant. Free the variant in pvargDest */
863 if (FAILED(hres = VariantClear(pvargDest)))
865 TRACE("VariantClear() of destination failed\n");
866 return hres;
870 if (V_ISARRAY(pSrc))
872 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
873 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
875 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
877 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
878 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
880 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
882 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
884 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
885 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
887 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
888 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
889 if (*V_UNKNOWNREF(pSrc))
890 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
892 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
894 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
895 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
896 hres = E_INVALIDARG; /* Don't dereference more than one level */
897 else
898 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
900 /* Use the dereferenced variants type value, not VT_VARIANT */
901 goto VariantCopyInd_Return;
903 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
905 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
906 sizeof(DECIMAL) - sizeof(USHORT));
908 else
910 /* Copy the pointed to data into this variant */
911 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
914 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
916 VariantCopyInd_Return:
918 if (pSrc != pvargSrc)
919 VariantClear(&vTmp);
921 TRACE("returning %#lx, %s\n", hres, debugstr_variant(pvargDest));
922 return hres;
925 /******************************************************************************
926 * VariantChangeType [OLEAUT32.12]
928 * Change the type of a variant.
930 * PARAMS
931 * pvargDest [O] Destination for the converted variant
932 * pvargSrc [O] Source variant to change the type of
933 * wFlags [I] VARIANT_ flags from "oleauto.h"
934 * vt [I] Variant type to change pvargSrc into
936 * RETURNS
937 * Success: S_OK. pvargDest contains the converted value.
938 * Failure: An HRESULT error code describing the failure.
940 * NOTES
941 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
942 * See VariantChangeTypeEx.
944 HRESULT WINAPI DECLSPEC_HOTPATCH VariantChangeType(VARIANTARG* pvargDest, const VARIANTARG* pvargSrc,
945 USHORT wFlags, VARTYPE vt)
947 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
950 /******************************************************************************
951 * VariantChangeTypeEx [OLEAUT32.147]
953 * Change the type of a variant.
955 * PARAMS
956 * pvargDest [O] Destination for the converted variant
957 * pvargSrc [O] Source variant to change the type of
958 * lcid [I] LCID for the conversion
959 * wFlags [I] VARIANT_ flags from "oleauto.h"
960 * vt [I] Variant type to change pvargSrc into
962 * RETURNS
963 * Success: S_OK. pvargDest contains the converted value.
964 * Failure: An HRESULT error code describing the failure.
966 * NOTES
967 * pvargDest and pvargSrc can point to the same variant to perform an in-place
968 * conversion. If the conversion is successful, pvargSrc will be freed.
970 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, const VARIANTARG* pvargSrc,
971 LCID lcid, USHORT wFlags, VARTYPE vt)
973 HRESULT res = S_OK;
975 TRACE("%s, %s, %#lx, 0x%04x, %s.\n", debugstr_variant(pvargDest),
976 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
978 if (vt == VT_CLSID)
979 res = DISP_E_BADVARTYPE;
980 else
982 res = VARIANT_ValidateType(V_VT(pvargSrc));
984 if (SUCCEEDED(res))
986 res = VARIANT_ValidateType(vt);
988 if (SUCCEEDED(res))
990 VARIANTARG vTmp, vSrcDeref;
992 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
993 res = DISP_E_TYPEMISMATCH;
994 else
996 V_VT(&vTmp) = VT_EMPTY;
997 V_VT(&vSrcDeref) = VT_EMPTY;
998 VariantClear(&vTmp);
999 VariantClear(&vSrcDeref);
1002 if (SUCCEEDED(res))
1004 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1005 if (SUCCEEDED(res))
1007 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1008 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1009 else
1010 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1012 if (SUCCEEDED(res)) {
1013 V_VT(&vTmp) = vt;
1014 res = VariantCopy(pvargDest, &vTmp);
1016 VariantClear(&vTmp);
1017 VariantClear(&vSrcDeref);
1024 TRACE("returning %#lx, %s\n", res, debugstr_variant(pvargDest));
1025 return res;
1028 /* Date Conversions */
1030 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1032 /* Convert a VT_DATE value to a Julian Date */
1033 static inline int VARIANT_JulianFromDate(int dateIn)
1035 int julianDays = dateIn;
1037 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1038 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1039 return julianDays;
1042 /* Convert a Julian Date to a VT_DATE value */
1043 static inline int VARIANT_DateFromJulian(int dateIn)
1045 int julianDays = dateIn;
1047 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1048 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1049 return julianDays;
1052 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1053 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1055 int j, i, l, n;
1057 l = jd + 68569;
1058 n = l * 4 / 146097;
1059 l -= (n * 146097 + 3) / 4;
1060 i = (4000 * (l + 1)) / 1461001;
1061 l += 31 - (i * 1461) / 4;
1062 j = (l * 80) / 2447;
1063 *day = l - (j * 2447) / 80;
1064 l = j / 11;
1065 *month = (j + 2) - (12 * l);
1066 *year = 100 * (n - 49) + i + l;
1069 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1070 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1072 int m12 = (month - 14) / 12;
1074 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1075 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1078 /* Macros for accessing DOS format date/time fields */
1079 #define DOS_YEAR(x) (1980 + (x >> 9))
1080 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1081 #define DOS_DAY(x) (x & 0x1f)
1082 #define DOS_HOUR(x) (x >> 11)
1083 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1084 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1085 /* Create a DOS format date/time */
1086 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1087 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1089 /* Roll a date forwards or backwards to correct it */
1090 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1092 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1093 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1095 /* interpret values signed */
1096 iYear = lpUd->st.wYear;
1097 iMonth = lpUd->st.wMonth;
1098 iDay = lpUd->st.wDay;
1099 iHour = lpUd->st.wHour;
1100 iMinute = lpUd->st.wMinute;
1101 iSecond = lpUd->st.wSecond;
1103 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1104 iYear, iHour, iMinute, iSecond);
1106 if (iYear > 9999 || iYear < -9999)
1107 return E_INVALIDARG; /* Invalid value */
1108 /* Years 0 to 49 are treated as 2000 + year, see also VARIANT_MakeDate() */
1109 if (0 <= iYear && iYear <= 49)
1110 iYear += 2000;
1111 /* Remaining years 50 to 99 are treated as 1900 + year */
1112 else if (50 <= iYear && iYear <= 99)
1113 iYear += 1900;
1115 iMinute += iSecond / 60;
1116 iSecond = iSecond % 60;
1117 iHour += iMinute / 60;
1118 iMinute = iMinute % 60;
1119 iDay += iHour / 24;
1120 iHour = iHour % 24;
1121 iYear += iMonth / 12;
1122 iMonth = iMonth % 12;
1123 if (iMonth<=0) {iMonth+=12; iYear--;}
1124 while (iDay > days[iMonth])
1126 if (iMonth == 2 && IsLeapYear(iYear))
1127 iDay -= 29;
1128 else
1129 iDay -= days[iMonth];
1130 iMonth++;
1131 iYear += iMonth / 12;
1132 iMonth = iMonth % 12;
1134 while (iDay <= 0)
1136 iMonth--;
1137 if (iMonth<=0) {iMonth+=12; iYear--;}
1138 if (iMonth == 2 && IsLeapYear(iYear))
1139 iDay += 29;
1140 else
1141 iDay += days[iMonth];
1144 if (iSecond<0){iSecond+=60; iMinute--;}
1145 if (iMinute<0){iMinute+=60; iHour--;}
1146 if (iHour<0) {iHour+=24; iDay--;}
1147 if (iYear<=0) iYear+=2000;
1149 lpUd->st.wYear = iYear;
1150 lpUd->st.wMonth = iMonth;
1151 lpUd->st.wDay = iDay;
1152 lpUd->st.wHour = iHour;
1153 lpUd->st.wMinute = iMinute;
1154 lpUd->st.wSecond = iSecond;
1156 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1157 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1158 return S_OK;
1161 /**********************************************************************
1162 * DosDateTimeToVariantTime [OLEAUT32.14]
1164 * Convert a Dos format date and time into variant VT_DATE format.
1166 * PARAMS
1167 * wDosDate [I] Dos format date
1168 * wDosTime [I] Dos format time
1169 * pDateOut [O] Destination for VT_DATE format
1171 * RETURNS
1172 * Success: TRUE. pDateOut contains the converted time.
1173 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1175 * NOTES
1176 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1177 * - Dos format times are accurate to only 2 second precision.
1178 * - The format of a Dos Date is:
1179 *| Bits Values Meaning
1180 *| ---- ------ -------
1181 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1182 *| the days in the month rolls forward the extra days.
1183 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1184 *| year. 13-15 are invalid.
1185 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1186 * - The format of a Dos Time is:
1187 *| Bits Values Meaning
1188 *| ---- ------ -------
1189 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1190 *| 5-10 0-59 Minutes. 60-63 are invalid.
1191 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1193 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1194 double *pDateOut)
1196 UDATE ud;
1198 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1199 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1200 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1201 pDateOut);
1203 ud.st.wYear = DOS_YEAR(wDosDate);
1204 ud.st.wMonth = DOS_MONTH(wDosDate);
1205 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1206 return FALSE;
1207 ud.st.wDay = DOS_DAY(wDosDate);
1208 ud.st.wHour = DOS_HOUR(wDosTime);
1209 ud.st.wMinute = DOS_MINUTE(wDosTime);
1210 ud.st.wSecond = DOS_SECOND(wDosTime);
1211 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1212 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1213 return FALSE; /* Invalid values in Dos*/
1215 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1218 /**********************************************************************
1219 * VariantTimeToDosDateTime [OLEAUT32.13]
1221 * Convert a variant format date into a Dos format date and time.
1223 * dateIn [I] VT_DATE time format
1224 * pwDosDate [O] Destination for Dos format date
1225 * pwDosTime [O] Destination for Dos format time
1227 * RETURNS
1228 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1229 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1231 * NOTES
1232 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1234 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1236 UDATE ud;
1238 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1240 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1241 return FALSE;
1243 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1244 return FALSE;
1246 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1247 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1249 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1250 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1251 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1252 return TRUE;
1255 /***********************************************************************
1256 * SystemTimeToVariantTime [OLEAUT32.184]
1258 * Convert a System format date and time into variant VT_DATE format.
1260 * PARAMS
1261 * lpSt [I] System format date and time
1262 * pDateOut [O] Destination for VT_DATE format date
1264 * RETURNS
1265 * Success: TRUE. *pDateOut contains the converted value.
1266 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1268 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1270 UDATE ud;
1272 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1273 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1275 if (lpSt->wMonth > 12)
1276 return FALSE;
1277 if (lpSt->wDay > 31)
1278 return FALSE;
1279 if ((short)lpSt->wYear < 0)
1280 return FALSE;
1282 ud.st = *lpSt;
1283 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1286 /***********************************************************************
1287 * VariantTimeToSystemTime [OLEAUT32.185]
1289 * Convert a variant VT_DATE into a System format date and time.
1291 * PARAMS
1292 * datein [I] Variant VT_DATE format date
1293 * lpSt [O] Destination for System format date and time
1295 * RETURNS
1296 * Success: TRUE. *lpSt contains the converted value.
1297 * Failure: FALSE, if dateIn is too large or small.
1299 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1301 UDATE ud;
1303 TRACE("(%g,%p)\n", dateIn, lpSt);
1305 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1306 return FALSE;
1308 *lpSt = ud.st;
1309 return TRUE;
1312 /***********************************************************************
1313 * VarDateFromUdateEx [OLEAUT32.319]
1315 * Convert an unpacked format date and time to a variant VT_DATE.
1317 * PARAMS
1318 * pUdateIn [I] Unpacked format date and time to convert
1319 * lcid [I] Locale identifier for the conversion
1320 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1321 * pDateOut [O] Destination for variant VT_DATE.
1323 * RETURNS
1324 * Success: S_OK. *pDateOut contains the converted value.
1325 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1327 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1329 UDATE ud;
1330 double dateVal = 0;
1332 TRACE("%p, %d/%d/%d, %d:%d:%d:%d, %#x, %d, %#lx, %#lx, %p.\n", pUdateIn,
1333 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1334 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1335 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1336 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1338 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1339 FIXME("lcid possibly not handled, treating as en-us\n");
1340 if (dwFlags & ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
1341 FIXME("unsupported flags: %lx\n", dwFlags);
1343 ud = *pUdateIn;
1345 if (dwFlags & VAR_VALIDDATE)
1346 WARN("Ignoring VAR_VALIDDATE\n");
1348 if (FAILED(VARIANT_RollUdate(&ud)))
1349 return E_INVALIDARG;
1351 /* Date */
1352 if (!(dwFlags & VAR_TIMEVALUEONLY))
1353 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1355 if ((dwFlags & VAR_TIMEVALUEONLY) || !(dwFlags & VAR_DATEVALUEONLY))
1357 double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1359 /* Time */
1360 dateVal += ud.st.wHour / 24.0 * dateSign;
1361 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1362 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1365 TRACE("Returning %g\n", dateVal);
1366 *pDateOut = dateVal;
1367 return S_OK;
1370 /***********************************************************************
1371 * VarDateFromUdate [OLEAUT32.330]
1373 * Convert an unpacked format date and time to a variant VT_DATE.
1375 * PARAMS
1376 * pUdateIn [I] Unpacked format date and time to convert
1377 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1378 * pDateOut [O] Destination for variant VT_DATE.
1380 * RETURNS
1381 * Success: S_OK. *pDateOut contains the converted value.
1382 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1384 * NOTES
1385 * This function uses the United States English locale for the conversion. Use
1386 * VarDateFromUdateEx() for alternate locales.
1388 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1390 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1392 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1395 /***********************************************************************
1396 * VarUdateFromDate [OLEAUT32.331]
1398 * Convert a variant VT_DATE into an unpacked format date and time.
1400 * PARAMS
1401 * datein [I] Variant VT_DATE format date
1402 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1403 * lpUdate [O] Destination for unpacked format date and time
1405 * RETURNS
1406 * Success: S_OK. *lpUdate contains the converted value.
1407 * Failure: E_INVALIDARG, if dateIn is too large or small.
1409 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1411 /* Cumulative totals of days per month */
1412 static const USHORT cumulativeDays[] =
1414 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1416 double datePart, timePart;
1417 int julianDays;
1419 TRACE("%g, %#lx, %p.\n", dateIn, dwFlags, lpUdate);
1421 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1422 return E_INVALIDARG;
1424 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1425 /* Compensate for int truncation (always downwards) */
1426 timePart = fabs(dateIn - datePart) + 0.00000000001;
1427 if (timePart >= 1.0)
1428 timePart -= 0.00000000001;
1430 /* Date */
1431 julianDays = VARIANT_JulianFromDate(dateIn);
1432 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1433 &lpUdate->st.wDay);
1435 datePart = (datePart + 1.5) / 7.0;
1436 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1437 if (lpUdate->st.wDayOfWeek == 0)
1438 lpUdate->st.wDayOfWeek = 5;
1439 else if (lpUdate->st.wDayOfWeek == 1)
1440 lpUdate->st.wDayOfWeek = 6;
1441 else
1442 lpUdate->st.wDayOfWeek -= 2;
1444 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1445 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1446 else
1447 lpUdate->wDayOfYear = 0;
1449 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1450 lpUdate->wDayOfYear += lpUdate->st.wDay;
1452 /* Time */
1453 timePart *= 24.0;
1454 lpUdate->st.wHour = timePart;
1455 timePart -= lpUdate->st.wHour;
1456 timePart *= 60.0;
1457 lpUdate->st.wMinute = timePart;
1458 timePart -= lpUdate->st.wMinute;
1459 timePart *= 60.0;
1460 lpUdate->st.wSecond = timePart;
1461 timePart -= lpUdate->st.wSecond;
1462 lpUdate->st.wMilliseconds = 0;
1463 if (timePart > 0.5)
1465 /* Round the milliseconds, adjusting the time/date forward if needed */
1466 if (lpUdate->st.wSecond < 59)
1467 lpUdate->st.wSecond++;
1468 else
1470 lpUdate->st.wSecond = 0;
1471 if (lpUdate->st.wMinute < 59)
1472 lpUdate->st.wMinute++;
1473 else
1475 lpUdate->st.wMinute = 0;
1476 if (lpUdate->st.wHour < 23)
1477 lpUdate->st.wHour++;
1478 else
1480 lpUdate->st.wHour = 0;
1481 /* Roll over a whole day */
1482 if (++lpUdate->st.wDay > 28)
1483 VARIANT_RollUdate(lpUdate);
1488 return S_OK;
1491 /* The localised characters that make up a valid number */
1492 typedef struct tagVARIANT_NUMBER_CHARS
1494 WCHAR cNegativeSymbol;
1495 WCHAR cPositiveSymbol;
1496 WCHAR cDecimalPoint;
1497 WCHAR cDigitSeparator;
1498 DWORD sCurrencyLen;
1499 WCHAR sCurrency[8];
1500 WCHAR cCurrencyDecimalPoint;
1501 WCHAR cCurrencyDigitSeparator;
1502 } VARIANT_NUMBER_CHARS;
1504 #define GET_NUMBER_TEXT(fld,name) \
1505 buff[0] = 0; \
1506 if (!GetLocaleInfoW(lcid, lctype|fld, buff, ARRAY_SIZE(buff))) \
1507 WARN("buffer too small for " #fld "\n"); \
1508 else \
1509 if (buff[0]) lpChars->name = buff[0]; \
1510 TRACE("lcid 0x%lx, " #name "=%s\n", lcid, wine_dbgstr_wn(&lpChars->name, 1))
1512 /* Get the valid number characters for an lcid */
1513 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1515 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',0,1,{'$',0},0,',' };
1516 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1517 WCHAR buff[4];
1519 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1520 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1521 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1522 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1523 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1524 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1525 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1527 if (!GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, lpChars->sCurrency, ARRAY_SIZE(lpChars->sCurrency)))
1529 if (GetLastError() == ERROR_INSUFFICIENT_BUFFER)
1530 WARN("buffer too small for LOCALE_SCURRENCY\n");
1531 *lpChars->sCurrency = 0;
1533 if (!*lpChars->sCurrency)
1534 wcscpy(lpChars->sCurrency, L"$");
1535 lpChars->sCurrencyLen = wcslen(lpChars->sCurrency);
1536 TRACE("lcid %#lx, sCurrency %lu %s\n", lcid, lpChars->sCurrencyLen, wine_dbgstr_w(lpChars->sCurrency));
1539 /* Number Parsing States */
1540 #define B_PROCESSING_EXPONENT 0x1
1541 #define B_NEGATIVE_EXPONENT 0x2
1542 #define B_EXPONENT_START 0x4
1543 #define B_INEXACT_ZEROS 0x8
1544 #define B_LEADING_ZERO 0x10
1545 #define B_PROCESSING_HEX 0x20
1546 #define B_PROCESSING_OCT 0x40
1548 static inline BOOL is_digit(WCHAR c)
1550 return '0' <= c && c <= '9';
1553 /**********************************************************************
1554 * VarParseNumFromStr [OLEAUT32.46]
1556 * Parse a string containing a number into a NUMPARSE structure.
1558 * PARAMS
1559 * lpszStr [I] String to parse number from
1560 * lcid [I] Locale Id for the conversion
1561 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1562 * pNumprs [I/O] Destination for parsed number
1563 * rgbDig [O] Destination for digits read in
1565 * RETURNS
1566 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1567 * the number.
1568 * Failure: E_INVALIDARG, if any parameter is invalid.
1569 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1570 * incorrectly.
1571 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1573 * NOTES
1574 * pNumprs must have the following fields set:
1575 * cDig: Set to the size of rgbDig.
1576 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1577 * from "oleauto.h".
1579 * FIXME
1580 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1581 * numerals, so this has not been implemented.
1583 HRESULT WINAPI VarParseNumFromStr(const OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1584 NUMPARSE *pNumprs, BYTE *rgbDig)
1586 VARIANT_NUMBER_CHARS chars;
1587 BYTE rgbTmp[1024];
1588 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1589 int iMaxDigits = ARRAY_SIZE(rgbTmp);
1590 int cchUsed = 0;
1591 OLECHAR cDigitSeparator2;
1593 TRACE("%s, %#lx, %#lx, %p, %p.\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1595 if (!pNumprs || !rgbDig)
1596 return E_INVALIDARG;
1598 if (pNumprs->cDig < iMaxDigits)
1599 iMaxDigits = pNumprs->cDig;
1601 pNumprs->cDig = 0;
1602 pNumprs->dwOutFlags = 0;
1603 pNumprs->cchUsed = 0;
1604 pNumprs->nBaseShift = 0;
1605 pNumprs->nPwr10 = 0;
1607 if (!lpszStr)
1608 return DISP_E_TYPEMISMATCH;
1610 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1611 if (chars.cDigitSeparator == chars.cDecimalPoint)
1612 /* The decimal point completely masks the digit separator */
1613 chars.cDigitSeparator = 0;
1614 /* Setting the thousands separator to a non-breaking space implies regular
1615 * spaces are allowed too. But the converse is not true.
1617 cDigitSeparator2 = chars.cDigitSeparator == 0xa0 ? ' ' : 0;
1619 /* First consume all the leading symbols and space from the string */
1620 while (1)
1622 if (pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1623 (*lpszStr == chars.cDecimalPoint ||
1624 *lpszStr == chars.cCurrencyDecimalPoint))
1626 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1627 if (*lpszStr == chars.cCurrencyDecimalPoint &&
1628 chars.cDecimalPoint != chars.cCurrencyDecimalPoint)
1629 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1630 cchUsed++;
1631 lpszStr++;
1633 /* If we have no digits so far, skip leading zeros */
1634 if (!pNumprs->cDig)
1636 while (*lpszStr == '0')
1638 dwState |= B_LEADING_ZERO;
1639 cchUsed++;
1640 lpszStr++;
1641 pNumprs->nPwr10--;
1644 break;
1646 else if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && iswspace(*lpszStr))
1648 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1651 cchUsed++;
1652 lpszStr++;
1653 } while (iswspace(*lpszStr));
1655 else if (pNumprs->dwInFlags & NUMPRS_THOUSANDS &&
1656 ((chars.cDigitSeparator && *lpszStr == chars.cDigitSeparator) ||
1657 (cDigitSeparator2 && *lpszStr == cDigitSeparator2)))
1659 return DISP_E_TYPEMISMATCH; /* Not allowed before the first digit */
1661 else if ((pNumprs->dwInFlags & (NUMPRS_THOUSANDS|NUMPRS_CURRENCY)) == (NUMPRS_THOUSANDS|NUMPRS_CURRENCY) &&
1662 chars.cCurrencyDigitSeparator && *lpszStr == chars.cCurrencyDigitSeparator)
1664 return DISP_E_TYPEMISMATCH; /* Not allowed before the first digit */
1666 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1667 *lpszStr == chars.cPositiveSymbol &&
1668 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1670 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1671 cchUsed++;
1672 lpszStr++;
1674 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1675 *lpszStr == chars.cNegativeSymbol &&
1676 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1678 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1679 cchUsed++;
1680 lpszStr++;
1682 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1683 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1684 wcsncmp(lpszStr, chars.sCurrency, chars.sCurrencyLen) == 0)
1686 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1687 cchUsed += chars.sCurrencyLen;
1688 lpszStr += chars.sCurrencyLen;
1690 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1691 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1693 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1694 cchUsed++;
1695 lpszStr++;
1697 else
1698 break;
1701 if (!(pNumprs->dwOutFlags & (NUMPRS_CURRENCY|NUMPRS_DECIMAL)))
1703 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1704 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1706 dwState |= B_PROCESSING_HEX;
1707 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1708 cchUsed=cchUsed+2;
1709 lpszStr=lpszStr+2;
1711 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1712 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1714 dwState |= B_PROCESSING_OCT;
1715 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1716 cchUsed=cchUsed+2;
1717 lpszStr=lpszStr+2;
1721 /* Strip Leading zeros */
1722 while (*lpszStr == '0')
1724 dwState |= B_LEADING_ZERO;
1725 cchUsed++;
1726 lpszStr++;
1729 while (*lpszStr)
1731 if (is_digit(*lpszStr))
1733 if (dwState & B_PROCESSING_EXPONENT)
1735 int exponentSize = 0;
1736 if (dwState & B_EXPONENT_START)
1738 if (!is_digit(*lpszStr))
1739 break; /* No exponent digits - invalid */
1740 while (*lpszStr == '0')
1742 /* Skip leading zero's in the exponent */
1743 cchUsed++;
1744 lpszStr++;
1748 while (is_digit(*lpszStr))
1750 exponentSize *= 10;
1751 exponentSize += *lpszStr - '0';
1752 cchUsed++;
1753 lpszStr++;
1755 if (dwState & B_NEGATIVE_EXPONENT)
1756 exponentSize = -exponentSize;
1757 /* Add the exponent into the powers of 10 */
1758 pNumprs->nPwr10 += exponentSize;
1759 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1760 lpszStr--; /* back up to allow processing of next char */
1762 else
1764 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1765 && !(dwState & B_PROCESSING_OCT))
1767 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1769 if (*lpszStr != '0')
1770 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1772 /* This digit can't be represented, but count it in nPwr10 */
1773 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1774 pNumprs->nPwr10--;
1775 else
1776 pNumprs->nPwr10++;
1778 else
1780 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9')))
1781 break;
1783 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1784 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1786 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1788 pNumprs->cDig++;
1789 cchUsed++;
1792 else if (pNumprs->dwInFlags & NUMPRS_THOUSANDS &&
1793 !(pNumprs->dwOutFlags & NUMPRS_HEX_OCT) &&
1794 ((chars.cDigitSeparator && *lpszStr == chars.cDigitSeparator) ||
1795 (cDigitSeparator2 && *lpszStr == cDigitSeparator2)))
1797 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1798 cchUsed++;
1800 else if ((pNumprs->dwInFlags & (NUMPRS_THOUSANDS|NUMPRS_CURRENCY)) == (NUMPRS_THOUSANDS|NUMPRS_CURRENCY) &&
1801 !(pNumprs->dwOutFlags & NUMPRS_HEX_OCT) &&
1802 chars.cCurrencyDigitSeparator && *lpszStr == chars.cCurrencyDigitSeparator)
1804 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS|NUMPRS_CURRENCY;
1805 cchUsed++;
1807 else if (pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1808 (*lpszStr == chars.cDecimalPoint ||
1809 *lpszStr == chars.cCurrencyDecimalPoint) &&
1810 !(pNumprs->dwOutFlags & (NUMPRS_HEX_OCT|NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1812 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1813 if (*lpszStr == chars.cCurrencyDecimalPoint &&
1814 chars.cDecimalPoint != chars.cCurrencyDecimalPoint)
1815 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1816 cchUsed++;
1818 /* If we have no digits so far, skip leading zeros */
1819 if (!pNumprs->cDig)
1821 while (lpszStr[1] == '0')
1823 dwState |= B_LEADING_ZERO;
1824 cchUsed++;
1825 lpszStr++;
1826 pNumprs->nPwr10--;
1830 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1831 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1832 dwState & B_PROCESSING_HEX)
1834 if (pNumprs->cDig >= iMaxDigits)
1836 return DISP_E_OVERFLOW;
1838 else
1840 if (*lpszStr >= 'a')
1841 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1842 else
1843 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1845 pNumprs->cDig++;
1846 cchUsed++;
1848 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1849 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1850 !(pNumprs->dwOutFlags & (NUMPRS_HEX_OCT|NUMPRS_CURRENCY|NUMPRS_EXPONENT)))
1852 dwState |= B_PROCESSING_EXPONENT;
1853 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1854 cchUsed++;
1856 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1858 cchUsed++; /* Ignore positive exponent */
1860 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1862 dwState |= B_NEGATIVE_EXPONENT;
1863 cchUsed++;
1865 else
1866 break; /* Stop at an unrecognised character */
1868 lpszStr++;
1871 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1873 /* Ensure a 0 on its own gets stored */
1874 pNumprs->cDig = 1;
1875 rgbTmp[0] = 0;
1878 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1880 pNumprs->cchUsed = cchUsed;
1881 WARN("didn't completely parse exponent\n");
1882 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1885 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1887 if (dwState & B_INEXACT_ZEROS)
1888 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1889 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1891 /* copy all of the digits into the output digit buffer */
1892 /* this is exactly what windows does although it also returns */
1893 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1894 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1896 if (dwState & B_PROCESSING_HEX) {
1897 /* hex numbers have always the same format */
1898 pNumprs->nPwr10=0;
1899 pNumprs->nBaseShift=4;
1900 } else {
1901 if (dwState & B_PROCESSING_OCT) {
1902 /* oct numbers have always the same format */
1903 pNumprs->nPwr10=0;
1904 pNumprs->nBaseShift=3;
1905 } else {
1906 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1908 pNumprs->nPwr10++;
1909 pNumprs->cDig--;
1913 } else
1915 /* Remove trailing zeros from the last (whole number or decimal) part */
1916 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1918 pNumprs->nPwr10++;
1919 pNumprs->cDig--;
1923 if (pNumprs->cDig <= iMaxDigits)
1924 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1925 else
1926 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1928 /* Copy the digits we processed into rgbDig */
1929 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1931 /* Consume any trailing symbols and space */
1932 while (1)
1934 if ((chars.cDigitSeparator && *lpszStr == chars.cDigitSeparator) ||
1935 (cDigitSeparator2 && *lpszStr == cDigitSeparator2))
1937 if (pNumprs->dwInFlags & NUMPRS_THOUSANDS &&
1938 !(pNumprs->dwOutFlags & NUMPRS_HEX_OCT))
1940 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1941 cchUsed++;
1942 lpszStr++;
1944 else
1946 /* Not allowed, even with NUMPRS_TRAILING_WHITE */
1947 break;
1950 else if (*lpszStr == chars.cCurrencyDigitSeparator)
1952 if ((pNumprs->dwInFlags & (NUMPRS_THOUSANDS|NUMPRS_CURRENCY)) == (NUMPRS_THOUSANDS|NUMPRS_CURRENCY) &&
1953 !(pNumprs->dwOutFlags & NUMPRS_HEX_OCT))
1955 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS|NUMPRS_CURRENCY;
1956 cchUsed++;
1957 lpszStr++;
1959 else
1961 /* Not allowed, even with NUMPRS_TRAILING_WHITE */
1962 break;
1965 else if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && iswspace(*lpszStr))
1967 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1970 cchUsed++;
1971 lpszStr++;
1972 } while (iswspace(*lpszStr));
1974 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1975 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1976 *lpszStr == chars.cPositiveSymbol)
1978 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1979 cchUsed++;
1980 lpszStr++;
1982 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1983 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1984 *lpszStr == chars.cNegativeSymbol)
1986 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1987 cchUsed++;
1988 lpszStr++;
1990 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1991 pNumprs->dwOutFlags & NUMPRS_PARENS)
1993 cchUsed++;
1994 lpszStr++;
1995 pNumprs->dwOutFlags |= NUMPRS_NEG;
1997 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1998 !(pNumprs->dwOutFlags & NUMPRS_HEX_OCT) &&
1999 wcsncmp(lpszStr, chars.sCurrency, chars.sCurrencyLen) == 0)
2001 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
2002 cchUsed += chars.sCurrencyLen;
2003 lpszStr += chars.sCurrencyLen;
2005 else
2006 break;
2009 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
2011 pNumprs->cchUsed = cchUsed;
2012 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
2015 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
2016 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
2018 if (!pNumprs->cDig)
2019 return DISP_E_TYPEMISMATCH; /* No Number found */
2021 pNumprs->cchUsed = cchUsed;
2022 return S_OK;
2025 /* VTBIT flags indicating an integer value */
2026 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
2027 /* VTBIT flags indicating a real number value */
2028 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
2030 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
2031 #define FITS_AS_I1(x) ((x) >> 8 == 0)
2032 #define FITS_AS_I2(x) ((x) >> 16 == 0)
2033 #define FITS_AS_I4(x) ((x) >> 32 == 0)
2035 /**********************************************************************
2036 * VarNumFromParseNum [OLEAUT32.47]
2038 * Convert a NUMPARSE structure into a numeric Variant type.
2040 * PARAMS
2041 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
2042 * rgbDig [I] Source for the numbers digits
2043 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
2044 * pVarDst [O] Destination for the converted Variant value.
2046 * RETURNS
2047 * Success: S_OK. pVarDst contains the converted value.
2048 * Failure: E_INVALIDARG, if any parameter is invalid.
2049 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
2051 * NOTES
2052 * - The smallest favoured type present in dwVtBits that can represent the
2053 * number in pNumprs without losing precision is used.
2054 * - Signed types are preferred over unsigned types of the same size.
2055 * - Preferred types in order are: integer, float, double, currency then decimal.
2056 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
2057 * for details of the rounding method.
2058 * - pVarDst is not cleared before the result is stored in it.
2059 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2060 * design?): If some other VTBIT's for integers are specified together
2061 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2062 * the number to the smallest requested integer truncating this way the
2063 * number. Wine doesn't implement this "feature" (yet?).
2065 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
2066 ULONG dwVtBits, VARIANT *pVarDst)
2068 /* Scale factors and limits for double arithmetic */
2069 static const double dblMultipliers[11] = {
2070 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2071 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2073 static const double dblMinimums[11] = {
2074 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2075 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2076 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2078 static const double dblMaximums[11] = {
2079 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2080 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2081 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2084 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2086 TRACE("%p, %p, %lx, %p.\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2088 if (pNumprs->nBaseShift)
2090 /* nBaseShift indicates a hex or octal number */
2091 ULONG64 ul64 = 0;
2092 LONG64 l64;
2093 int i;
2095 /* Convert the hex or octal number string into a UI64 */
2096 for (i = 0; i < pNumprs->cDig; i++)
2098 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2100 TRACE("Overflow multiplying digits\n");
2101 return DISP_E_OVERFLOW;
2103 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2106 /* also make a negative representation */
2107 l64=-ul64;
2109 /* Try signed and unsigned types in size order */
2110 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2112 V_VT(pVarDst) = VT_I1;
2113 V_I1(pVarDst) = ul64;
2114 return S_OK;
2116 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2118 V_VT(pVarDst) = VT_UI1;
2119 V_UI1(pVarDst) = ul64;
2120 return S_OK;
2122 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2124 V_VT(pVarDst) = VT_I2;
2125 V_I2(pVarDst) = ul64;
2126 return S_OK;
2128 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2130 V_VT(pVarDst) = VT_UI2;
2131 V_UI2(pVarDst) = ul64;
2132 return S_OK;
2134 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2136 V_VT(pVarDst) = VT_I4;
2137 V_I4(pVarDst) = ul64;
2138 return S_OK;
2140 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2142 V_VT(pVarDst) = VT_UI4;
2143 V_UI4(pVarDst) = ul64;
2144 return S_OK;
2146 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2148 V_VT(pVarDst) = VT_I8;
2149 V_I8(pVarDst) = ul64;
2150 return S_OK;
2152 else if (dwVtBits & VTBIT_UI8)
2154 V_VT(pVarDst) = VT_UI8;
2155 V_UI8(pVarDst) = ul64;
2156 return S_OK;
2158 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2160 V_VT(pVarDst) = VT_DECIMAL;
2161 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2162 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2163 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2164 return S_OK;
2166 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2168 V_VT(pVarDst) = VT_R4;
2169 if (ul64 <= I4_MAX)
2170 V_R4(pVarDst) = ul64;
2171 else
2172 V_R4(pVarDst) = l64;
2173 return S_OK;
2175 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2177 V_VT(pVarDst) = VT_R8;
2178 if (ul64 <= I4_MAX)
2179 V_R8(pVarDst) = ul64;
2180 else
2181 V_R8(pVarDst) = l64;
2182 return S_OK;
2185 TRACE("Overflow: possible return types: %#lx, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2186 return DISP_E_OVERFLOW;
2189 /* Count the number of relevant fractional and whole digits stored,
2190 * And compute the divisor/multiplier to scale the number by.
2192 if (pNumprs->nPwr10 < 0)
2194 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2196 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2197 wholeNumberDigits = 0;
2198 fractionalDigits = pNumprs->cDig;
2199 divisor10 = -pNumprs->nPwr10;
2201 else
2203 /* An exactly represented real number e.g. 1.024 */
2204 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2205 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2206 divisor10 = pNumprs->cDig - wholeNumberDigits;
2209 else if (pNumprs->nPwr10 == 0)
2211 /* An exactly represented whole number e.g. 1024 */
2212 wholeNumberDigits = pNumprs->cDig;
2213 fractionalDigits = 0;
2215 else /* pNumprs->nPwr10 > 0 */
2217 /* A whole number followed by nPwr10 0's e.g. 102400 */
2218 wholeNumberDigits = pNumprs->cDig;
2219 fractionalDigits = 0;
2220 multiplier10 = pNumprs->nPwr10;
2223 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2224 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2225 multiplier10, divisor10);
2227 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2228 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL))))
2230 /* We have one or more integer output choices, and either:
2231 * 1) An integer input value, or
2232 * 2) A real number input value but no floating output choices.
2233 * Alternately, we have a DECIMAL output available and an integer input.
2235 * So, place the integer value into pVarDst, using the smallest type
2236 * possible and preferring signed over unsigned types.
2238 BOOL bOverflow = FALSE, bNegative;
2239 ULONG64 ul64 = 0;
2240 int i;
2242 /* Convert the integer part of the number into a UI8 */
2243 for (i = 0; i < wholeNumberDigits; i++)
2245 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2247 TRACE("Overflow multiplying digits\n");
2248 bOverflow = TRUE;
2249 break;
2251 ul64 = ul64 * 10 + rgbDig[i];
2254 /* Account for the scale of the number */
2255 if (!bOverflow && multiplier10)
2257 for (i = 0; i < multiplier10; i++)
2259 if (ul64 > (UI8_MAX / 10))
2261 TRACE("Overflow scaling number\n");
2262 bOverflow = TRUE;
2263 break;
2265 ul64 = ul64 * 10;
2269 /* If we have any fractional digits, round the value.
2270 * Note we don't have to do this if divisor10 is < 1,
2271 * because this means the fractional part must be < 0.5
2273 if (!bOverflow && fractionalDigits && divisor10 > 0)
2275 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2276 BOOL bAdjust = FALSE;
2278 TRACE("first decimal value is %d\n", *fracDig);
2280 if (*fracDig > 5)
2281 bAdjust = TRUE; /* > 0.5 */
2282 else if (*fracDig == 5)
2284 for (i = 1; i < fractionalDigits; i++)
2286 if (fracDig[i])
2288 bAdjust = TRUE; /* > 0.5 */
2289 break;
2292 /* If exactly 0.5, round only odd values */
2293 if (i == fractionalDigits && (ul64 & 1))
2294 bAdjust = TRUE;
2297 if (bAdjust)
2299 if (ul64 == UI8_MAX)
2301 TRACE("Overflow after rounding\n");
2302 bOverflow = TRUE;
2304 ul64++;
2308 /* Zero is not a negative number */
2309 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2311 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2313 /* For negative integers, try the signed types in size order */
2314 if (!bOverflow && bNegative)
2316 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2318 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2320 V_VT(pVarDst) = VT_I1;
2321 V_I1(pVarDst) = -ul64;
2322 return S_OK;
2324 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2326 V_VT(pVarDst) = VT_I2;
2327 V_I2(pVarDst) = -ul64;
2328 return S_OK;
2330 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2332 V_VT(pVarDst) = VT_I4;
2333 V_I4(pVarDst) = -ul64;
2334 return S_OK;
2336 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2338 V_VT(pVarDst) = VT_I8;
2339 V_I8(pVarDst) = -ul64;
2340 return S_OK;
2342 else if ((dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL)) == VTBIT_DECIMAL)
2344 /* Decimal is only output choice left - fast path */
2345 V_VT(pVarDst) = VT_DECIMAL;
2346 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2347 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2348 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2349 return S_OK;
2353 else if (!bOverflow)
2355 /* For positive integers, try signed then unsigned types in size order */
2356 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2358 V_VT(pVarDst) = VT_I1;
2359 V_I1(pVarDst) = ul64;
2360 return S_OK;
2362 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2364 V_VT(pVarDst) = VT_UI1;
2365 V_UI1(pVarDst) = ul64;
2366 return S_OK;
2368 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2370 V_VT(pVarDst) = VT_I2;
2371 V_I2(pVarDst) = ul64;
2372 return S_OK;
2374 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2376 V_VT(pVarDst) = VT_UI2;
2377 V_UI2(pVarDst) = ul64;
2378 return S_OK;
2380 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2382 V_VT(pVarDst) = VT_I4;
2383 V_I4(pVarDst) = ul64;
2384 return S_OK;
2386 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2388 V_VT(pVarDst) = VT_UI4;
2389 V_UI4(pVarDst) = ul64;
2390 return S_OK;
2392 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2394 V_VT(pVarDst) = VT_I8;
2395 V_I8(pVarDst) = ul64;
2396 return S_OK;
2398 else if (dwVtBits & VTBIT_UI8)
2400 V_VT(pVarDst) = VT_UI8;
2401 V_UI8(pVarDst) = ul64;
2402 return S_OK;
2404 else if ((dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL)) == VTBIT_DECIMAL)
2406 /* Decimal is only output choice left - fast path */
2407 V_VT(pVarDst) = VT_DECIMAL;
2408 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2409 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2410 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2411 return S_OK;
2416 if (dwVtBits & REAL_VTBITS)
2418 /* Try to put the number into a float or real */
2419 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2420 double whole = 0.0;
2421 int i;
2423 /* Convert the number into a double */
2424 for (i = 0; i < pNumprs->cDig; i++)
2425 whole = whole * 10.0 + rgbDig[i];
2427 TRACE("Whole double value is %16.16g\n", whole);
2429 /* Account for the scale */
2430 while (multiplier10 > 10)
2432 if (whole > dblMaximums[10])
2434 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2435 bOverflow = TRUE;
2436 break;
2438 whole = whole * dblMultipliers[10];
2439 multiplier10 -= 10;
2441 if (multiplier10 && !bOverflow)
2443 if (whole > dblMaximums[multiplier10])
2445 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2446 bOverflow = TRUE;
2448 else
2449 whole = whole * dblMultipliers[multiplier10];
2452 if (!bOverflow)
2453 TRACE("Scaled double value is %16.16g\n", whole);
2455 while (divisor10 > 10 && !bOverflow)
2457 if (whole < dblMinimums[10] && whole != 0)
2459 whole = 0; /* ignore underflow */
2460 divisor10 = 0;
2461 break;
2463 whole = whole / dblMultipliers[10];
2464 divisor10 -= 10;
2466 if (divisor10 && !bOverflow)
2468 if (whole < dblMinimums[divisor10] && whole != 0)
2470 whole = 0; /* ignore underflow */
2471 divisor10 = 0;
2473 else
2474 whole = whole / dblMultipliers[divisor10];
2476 if (!bOverflow)
2477 TRACE("Final double value is %16.16g\n", whole);
2479 if (dwVtBits & VTBIT_R4 &&
2480 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2482 TRACE("Set R4 to final value\n");
2483 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2484 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2485 return S_OK;
2488 if (dwVtBits & VTBIT_R8)
2490 TRACE("Set R8 to final value\n");
2491 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2492 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2493 return S_OK;
2496 if (dwVtBits & VTBIT_CY)
2498 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2500 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2501 TRACE("Set CY to final value\n");
2502 return S_OK;
2504 TRACE("Value Overflows CY\n");
2508 if (dwVtBits & VTBIT_DECIMAL)
2510 int i;
2511 ULONG carry;
2512 ULONG64 tmp;
2513 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2515 DECIMAL_SETZERO(*pDec);
2516 DEC_LO32(pDec) = 0;
2518 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2519 DEC_SIGN(pDec) = DECIMAL_NEG;
2520 else
2521 DEC_SIGN(pDec) = DECIMAL_POS;
2523 /* Factor the significant digits */
2524 for (i = 0; i < pNumprs->cDig; i++)
2526 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2527 carry = (ULONG)(tmp >> 32);
2528 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2529 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2530 carry = (ULONG)(tmp >> 32);
2531 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2532 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2533 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2535 if (tmp >> 32 & UI4_MAX)
2537 VarNumFromParseNum_DecOverflow:
2538 TRACE("Overflow\n");
2539 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2540 return DISP_E_OVERFLOW;
2544 /* Account for the scale of the number */
2545 while (multiplier10 > 0)
2547 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2548 carry = (ULONG)(tmp >> 32);
2549 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2550 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2551 carry = (ULONG)(tmp >> 32);
2552 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2553 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2554 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2556 if (tmp >> 32 & UI4_MAX)
2557 goto VarNumFromParseNum_DecOverflow;
2558 multiplier10--;
2560 DEC_SCALE(pDec) = divisor10;
2562 V_VT(pVarDst) = VT_DECIMAL;
2563 return S_OK;
2565 return DISP_E_OVERFLOW; /* No more output choices */
2568 /**********************************************************************
2569 * VarCat [OLEAUT32.318]
2571 * Concatenates one variant onto another.
2573 * PARAMS
2574 * left [I] First variant
2575 * right [I] Second variant
2576 * result [O] Result variant
2578 * RETURNS
2579 * Success: S_OK.
2580 * Failure: An HRESULT error code indicating the error.
2582 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2584 BSTR left_str = NULL, right_str = NULL;
2585 VARTYPE leftvt, rightvt;
2586 HRESULT hres;
2588 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2590 leftvt = V_VT(left);
2591 rightvt = V_VT(right);
2593 /* when both left and right are NULL the result is NULL */
2594 if (leftvt == VT_NULL && rightvt == VT_NULL)
2596 V_VT(out) = VT_NULL;
2597 return S_OK;
2600 /* There are many special case for errors and return types */
2601 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2602 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2603 hres = DISP_E_TYPEMISMATCH;
2604 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2605 leftvt == VT_R4 || leftvt == VT_R8 ||
2606 leftvt == VT_CY || leftvt == VT_BOOL ||
2607 leftvt == VT_BSTR || leftvt == VT_I1 ||
2608 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2609 leftvt == VT_UI4 || leftvt == VT_I8 ||
2610 leftvt == VT_UI8 || leftvt == VT_INT ||
2611 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2612 leftvt == VT_NULL || leftvt == VT_DATE ||
2613 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2615 (rightvt == VT_I2 || rightvt == VT_I4 ||
2616 rightvt == VT_R4 || rightvt == VT_R8 ||
2617 rightvt == VT_CY || rightvt == VT_BOOL ||
2618 rightvt == VT_BSTR || rightvt == VT_I1 ||
2619 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2620 rightvt == VT_UI4 || rightvt == VT_I8 ||
2621 rightvt == VT_UI8 || rightvt == VT_INT ||
2622 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2623 rightvt == VT_NULL || rightvt == VT_DATE ||
2624 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2625 hres = S_OK;
2626 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2627 hres = DISP_E_TYPEMISMATCH;
2628 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2629 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2630 hres = DISP_E_TYPEMISMATCH;
2631 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2632 rightvt == VT_DECIMAL)
2633 hres = DISP_E_BADVARTYPE;
2634 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2635 hres = DISP_E_TYPEMISMATCH;
2636 else if (leftvt == VT_VARIANT)
2637 hres = DISP_E_TYPEMISMATCH;
2638 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2639 leftvt == VT_NULL || leftvt == VT_I2 ||
2640 leftvt == VT_I4 || leftvt == VT_R4 ||
2641 leftvt == VT_R8 || leftvt == VT_CY ||
2642 leftvt == VT_DATE || leftvt == VT_BSTR ||
2643 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2644 leftvt == VT_I1 || leftvt == VT_UI1 ||
2645 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2646 leftvt == VT_I8 || leftvt == VT_UI8 ||
2647 leftvt == VT_INT || leftvt == VT_UINT))
2648 hres = DISP_E_TYPEMISMATCH;
2649 else
2650 hres = DISP_E_BADVARTYPE;
2652 /* if result type is not S_OK, then no need to go further */
2653 if (hres != S_OK)
2655 V_VT(out) = VT_EMPTY;
2656 return hres;
2659 if (leftvt == VT_BSTR)
2660 left_str = V_BSTR(left);
2661 else
2663 VARIANT converted, *tmp = left;
2665 VariantInit(&converted);
2666 if(leftvt == VT_DISPATCH)
2668 hres = VARIANT_FetchDispatchValue(left, &converted);
2669 if(FAILED(hres))
2670 goto failed;
2672 tmp = &converted;
2675 hres = VariantChangeTypeEx(&converted, tmp, 0, VARIANT_ALPHABOOL|VARIANT_LOCALBOOL, VT_BSTR);
2676 if (SUCCEEDED(hres))
2677 left_str = V_BSTR(&converted);
2678 else if (hres != DISP_E_TYPEMISMATCH)
2680 VariantClear(&converted);
2681 goto failed;
2685 if (rightvt == VT_BSTR)
2686 right_str = V_BSTR(right);
2687 else
2689 VARIANT converted, *tmp = right;
2691 VariantInit(&converted);
2692 if(rightvt == VT_DISPATCH)
2694 hres = VARIANT_FetchDispatchValue(right, &converted);
2695 if(FAILED(hres))
2696 goto failed;
2698 tmp = &converted;
2701 hres = VariantChangeTypeEx(&converted, tmp, 0, VARIANT_ALPHABOOL|VARIANT_LOCALBOOL, VT_BSTR);
2702 if (SUCCEEDED(hres))
2703 right_str = V_BSTR(&converted);
2704 else if (hres != DISP_E_TYPEMISMATCH)
2706 VariantClear(&converted);
2707 goto failed;
2712 V_VT(out) = VT_BSTR;
2713 hres = VarBstrCat(left_str, right_str, &V_BSTR(out));
2715 failed:
2716 if(V_VT(left) != VT_BSTR)
2717 SysFreeString(left_str);
2718 if(V_VT(right) != VT_BSTR)
2719 SysFreeString(right_str);
2720 return hres;
2724 /* Wrapper around VariantChangeTypeEx() which permits changing a
2725 variant with VT_RESERVED flag set. Needed by VarCmp. */
2726 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2727 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2729 VARIANTARG vtmpsrc = *pvargSrc;
2731 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2732 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2735 /**********************************************************************
2736 * VarCmp [OLEAUT32.176]
2738 * Compare two variants.
2740 * PARAMS
2741 * left [I] First variant
2742 * right [I] Second variant
2743 * lcid [I] LCID (locale identifier) for the comparison
2744 * flags [I] Flags to be used in the comparison:
2745 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2746 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2748 * RETURNS
2749 * VARCMP_LT: left variant is less than right variant.
2750 * VARCMP_EQ: input variants are equal.
2751 * VARCMP_GT: left variant is greater than right variant.
2752 * VARCMP_NULL: either one of the input variants is NULL.
2753 * Failure: An HRESULT error code indicating the error.
2755 * NOTES
2756 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2757 * UI8 and UINT as input variants. INT is accepted only as left variant.
2759 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2760 * an ERROR variant will trigger an error.
2762 * Both input variants can have VT_RESERVED flag set which is ignored
2763 * unless one and only one of the variants is a BSTR and the other one
2764 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2765 * different meaning:
2766 * - BSTR and other: BSTR is always greater than the other variant.
2767 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2768 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2769 * comparison will take place else the BSTR is always greater.
2770 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2771 * variant is ignored and the return value depends only on the sign
2772 * of the BSTR if it is a number else the BSTR is always greater. A
2773 * positive BSTR is greater, a negative one is smaller than the other
2774 * variant.
2776 * SEE
2777 * VarBstrCmp for the lcid and flags usage.
2779 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2781 VARTYPE lvt, rvt, vt;
2782 VARIANT rv,lv;
2783 DWORD xmask;
2784 HRESULT rc;
2786 TRACE("%s, %s, %#lx, %#lx.\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2788 lvt = V_VT(left) & VT_TYPEMASK;
2789 rvt = V_VT(right) & VT_TYPEMASK;
2790 xmask = (1 << lvt) | (1 << rvt);
2792 /* If we have any flag set except VT_RESERVED bail out.
2793 Same for the left input variant type > VT_INT and for the
2794 right input variant type > VT_I8. Yes, VT_INT is only supported
2795 as left variant. Go figure */
2796 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2797 lvt > VT_INT || rvt > VT_I8) {
2798 return DISP_E_BADVARTYPE;
2801 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2802 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2803 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2804 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2805 return DISP_E_TYPEMISMATCH;
2807 /* If both variants are VT_ERROR return VARCMP_EQ */
2808 if (xmask == VTBIT_ERROR)
2809 return VARCMP_EQ;
2810 else if (xmask & VTBIT_ERROR)
2811 return DISP_E_TYPEMISMATCH;
2813 if (xmask & VTBIT_NULL)
2814 return VARCMP_NULL;
2816 VariantInit(&lv);
2817 VariantInit(&rv);
2819 /* Two BSTRs, ignore VT_RESERVED */
2820 if (xmask == VTBIT_BSTR)
2821 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2823 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2824 if (xmask & VTBIT_BSTR) {
2825 VARIANT *bstrv, *nonbv;
2826 VARTYPE nonbvt;
2827 int swap = 0;
2829 /* Swap the variants so the BSTR is always on the left */
2830 if (lvt == VT_BSTR) {
2831 bstrv = left;
2832 nonbv = right;
2833 nonbvt = rvt;
2834 } else {
2835 swap = 1;
2836 bstrv = right;
2837 nonbv = left;
2838 nonbvt = lvt;
2841 /* BSTR and EMPTY: ignore VT_RESERVED */
2842 if (nonbvt == VT_EMPTY)
2843 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2844 else {
2845 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2846 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2848 if (!breserv && !nreserv)
2849 /* No VT_RESERVED set ==> BSTR always greater */
2850 rc = VARCMP_GT;
2851 else if (breserv && !nreserv) {
2852 /* BSTR has VT_RESERVED set. Do a string comparison */
2853 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2854 if (FAILED(rc))
2855 return rc;
2856 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2857 VariantClear(&rv);
2858 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2859 /* Non NULL nor empty BSTR */
2860 /* If the BSTR is not a number the BSTR is greater */
2861 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2862 if (FAILED(rc))
2863 rc = VARCMP_GT;
2864 else if (breserv && nreserv)
2865 /* FIXME: This is strange: with both VT_RESERVED set it
2866 looks like the result depends only on the sign of
2867 the BSTR number */
2868 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2869 else
2870 /* Numeric comparison, will be handled below.
2871 VARCMP_NULL used only to break out. */
2872 rc = VARCMP_NULL;
2873 VariantClear(&lv);
2874 VariantClear(&rv);
2875 } else
2876 /* Empty or NULL BSTR */
2877 rc = VARCMP_GT;
2879 /* Fixup the return code if we swapped left and right */
2880 if (swap) {
2881 if (rc == VARCMP_GT)
2882 rc = VARCMP_LT;
2883 else if (rc == VARCMP_LT)
2884 rc = VARCMP_GT;
2886 if (rc != VARCMP_NULL)
2887 return rc;
2890 if (xmask & VTBIT_DECIMAL)
2891 vt = VT_DECIMAL;
2892 else if (xmask & VTBIT_BSTR)
2893 vt = VT_R8;
2894 else if (xmask & VTBIT_R4)
2895 vt = VT_R4;
2896 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2897 vt = VT_R8;
2898 else if (xmask & VTBIT_CY)
2899 vt = VT_CY;
2900 else
2901 /* default to I8 */
2902 vt = VT_I8;
2904 /* Coerce the variants */
2905 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2906 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2907 /* Overflow, change to R8 */
2908 vt = VT_R8;
2909 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2911 if (FAILED(rc))
2912 return rc;
2913 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2914 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2915 /* Overflow, change to R8 */
2916 vt = VT_R8;
2917 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2918 if (FAILED(rc))
2919 return rc;
2920 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2922 if (FAILED(rc))
2923 return rc;
2925 #define _VARCMP(a,b) \
2926 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2928 switch (vt) {
2929 case VT_CY:
2930 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2931 case VT_DECIMAL:
2932 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2933 case VT_I8:
2934 return _VARCMP(V_I8(&lv), V_I8(&rv));
2935 case VT_R4:
2936 return _VARCMP(V_R4(&lv), V_R4(&rv));
2937 case VT_R8:
2938 return _VARCMP(V_R8(&lv), V_R8(&rv));
2939 default:
2940 /* We should never get here */
2941 return E_FAIL;
2943 #undef _VARCMP
2946 /**********************************************************************
2947 * VarAnd [OLEAUT32.142]
2949 * Computes the logical AND of two variants.
2951 * PARAMS
2952 * left [I] First variant
2953 * right [I] Second variant
2954 * result [O] Result variant
2956 * RETURNS
2957 * Success: S_OK.
2958 * Failure: An HRESULT error code indicating the error.
2960 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2962 HRESULT hres = S_OK;
2963 VARTYPE resvt = VT_EMPTY;
2964 VARTYPE leftvt,rightvt;
2965 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2966 VARIANT varLeft, varRight;
2967 VARIANT tempLeft, tempRight;
2969 VariantInit(&varLeft);
2970 VariantInit(&varRight);
2971 VariantInit(&tempLeft);
2972 VariantInit(&tempRight);
2974 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
2976 /* Handle VT_DISPATCH by storing and taking address of returned value */
2977 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2979 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2980 if (FAILED(hres)) goto VarAnd_Exit;
2981 left = &tempLeft;
2983 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2985 hres = VARIANT_FetchDispatchValue(right, &tempRight);
2986 if (FAILED(hres)) goto VarAnd_Exit;
2987 right = &tempRight;
2990 leftvt = V_VT(left)&VT_TYPEMASK;
2991 rightvt = V_VT(right)&VT_TYPEMASK;
2992 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2993 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
2995 if (leftExtraFlags != rightExtraFlags)
2997 hres = DISP_E_BADVARTYPE;
2998 goto VarAnd_Exit;
3000 ExtraFlags = leftExtraFlags;
3002 /* Native VarAnd always returns an error when using extra
3003 * flags or if the variant combination is I8 and INT.
3005 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
3006 (leftvt == VT_INT && rightvt == VT_I8) ||
3007 ExtraFlags != 0)
3009 hres = DISP_E_BADVARTYPE;
3010 goto VarAnd_Exit;
3013 /* Determine return type */
3014 else if (leftvt == VT_I8 || rightvt == VT_I8)
3015 resvt = VT_I8;
3016 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
3017 leftvt == VT_UINT || rightvt == VT_UINT ||
3018 leftvt == VT_INT || rightvt == VT_INT ||
3019 leftvt == VT_R4 || rightvt == VT_R4 ||
3020 leftvt == VT_R8 || rightvt == VT_R8 ||
3021 leftvt == VT_CY || rightvt == VT_CY ||
3022 leftvt == VT_DATE || rightvt == VT_DATE ||
3023 leftvt == VT_I1 || rightvt == VT_I1 ||
3024 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3025 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3026 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3027 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3028 resvt = VT_I4;
3029 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3030 leftvt == VT_I2 || rightvt == VT_I2 ||
3031 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3032 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3033 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3034 (leftvt == VT_UI1 && rightvt == VT_UI1))
3035 resvt = VT_UI1;
3036 else
3037 resvt = VT_I2;
3038 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3039 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3040 resvt = VT_BOOL;
3041 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3042 leftvt == VT_BSTR || rightvt == VT_BSTR)
3043 resvt = VT_NULL;
3044 else
3046 hres = DISP_E_BADVARTYPE;
3047 goto VarAnd_Exit;
3050 if (leftvt == VT_NULL || rightvt == VT_NULL)
3053 * Special cases for when left variant is VT_NULL
3054 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3056 if (leftvt == VT_NULL)
3058 VARIANT_BOOL b;
3059 switch(rightvt)
3061 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3062 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3063 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3064 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3065 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3066 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3067 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3068 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3069 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3070 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3071 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3072 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3073 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3074 case VT_CY:
3075 if(V_CY(right).int64)
3076 resvt = VT_NULL;
3077 break;
3078 case VT_DECIMAL:
3079 if (DEC_HI32(&V_DECIMAL(right)) ||
3080 DEC_LO64(&V_DECIMAL(right)))
3081 resvt = VT_NULL;
3082 break;
3083 case VT_BSTR:
3084 hres = VarBoolFromStr(V_BSTR(right),
3085 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3086 if (FAILED(hres))
3087 return hres;
3088 else if (b)
3089 V_VT(result) = VT_NULL;
3090 else
3092 V_VT(result) = VT_BOOL;
3093 V_BOOL(result) = b;
3095 goto VarAnd_Exit;
3098 V_VT(result) = resvt;
3099 goto VarAnd_Exit;
3102 hres = VariantCopy(&varLeft, left);
3103 if (FAILED(hres)) goto VarAnd_Exit;
3105 hres = VariantCopy(&varRight, right);
3106 if (FAILED(hres)) goto VarAnd_Exit;
3108 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3109 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3110 else
3112 double d;
3114 if (V_VT(&varLeft) == VT_BSTR &&
3115 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3116 LOCALE_USER_DEFAULT, 0, &d)))
3117 hres = VariantChangeType(&varLeft,&varLeft,
3118 VARIANT_LOCALBOOL, VT_BOOL);
3119 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3120 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3121 if (FAILED(hres)) goto VarAnd_Exit;
3124 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3125 V_VT(&varRight) = VT_I4; /* Don't overflow */
3126 else
3128 double d;
3130 if (V_VT(&varRight) == VT_BSTR &&
3131 FAILED(VarR8FromStr(V_BSTR(&varRight),
3132 LOCALE_USER_DEFAULT, 0, &d)))
3133 hres = VariantChangeType(&varRight, &varRight,
3134 VARIANT_LOCALBOOL, VT_BOOL);
3135 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3136 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3137 if (FAILED(hres)) goto VarAnd_Exit;
3140 V_VT(result) = resvt;
3141 switch(resvt)
3143 case VT_I8:
3144 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3145 break;
3146 case VT_I4:
3147 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3148 break;
3149 case VT_I2:
3150 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3151 break;
3152 case VT_UI1:
3153 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3154 break;
3155 case VT_BOOL:
3156 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3157 break;
3158 default:
3159 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3160 leftvt,rightvt);
3163 VarAnd_Exit:
3164 VariantClear(&varLeft);
3165 VariantClear(&varRight);
3166 VariantClear(&tempLeft);
3167 VariantClear(&tempRight);
3169 return hres;
3172 /**********************************************************************
3173 * VarAdd [OLEAUT32.141]
3175 * Add two variants.
3177 * PARAMS
3178 * left [I] First variant
3179 * right [I] Second variant
3180 * result [O] Result variant
3182 * RETURNS
3183 * Success: S_OK.
3184 * Failure: An HRESULT error code indicating the error.
3186 * NOTES
3187 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3188 * UI8, INT and UINT as input variants.
3190 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3191 * same here.
3193 * FIXME
3194 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3195 * case.
3197 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3199 HRESULT hres;
3200 VARTYPE lvt, rvt, resvt, tvt;
3201 VARIANT lv, rv, tv;
3202 VARIANT tempLeft, tempRight;
3203 double r8res;
3205 /* Variant priority for coercion. Sorted from lowest to highest.
3206 VT_ERROR shows an invalid input variant type. */
3207 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3208 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3209 vt_ERROR };
3210 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3211 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3212 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3213 VT_NULL, VT_ERROR };
3215 /* Mapping for coercion from input variant to priority of result variant. */
3216 static const VARTYPE coerce[] = {
3217 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3218 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3219 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3220 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3221 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3222 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3223 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3224 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3227 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3229 VariantInit(&lv);
3230 VariantInit(&rv);
3231 VariantInit(&tv);
3232 VariantInit(&tempLeft);
3233 VariantInit(&tempRight);
3235 /* Handle VT_DISPATCH by storing and taking address of returned value */
3236 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3238 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3240 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3241 if (FAILED(hres)) goto end;
3242 left = &tempLeft;
3244 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3246 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3247 if (FAILED(hres)) goto end;
3248 right = &tempRight;
3252 lvt = V_VT(left)&VT_TYPEMASK;
3253 rvt = V_VT(right)&VT_TYPEMASK;
3255 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3256 Same for any input variant type > VT_I8 */
3257 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3258 lvt > VT_I8 || rvt > VT_I8) {
3259 hres = DISP_E_BADVARTYPE;
3260 goto end;
3263 /* Determine the variant type to coerce to. */
3264 if (coerce[lvt] > coerce[rvt]) {
3265 resvt = prio2vt[coerce[lvt]];
3266 tvt = prio2vt[coerce[rvt]];
3267 } else {
3268 resvt = prio2vt[coerce[rvt]];
3269 tvt = prio2vt[coerce[lvt]];
3272 /* Special cases where the result variant type is defined by both
3273 input variants and not only that with the highest priority */
3274 if (resvt == VT_BSTR) {
3275 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3276 resvt = VT_BSTR;
3277 else
3278 resvt = VT_R8;
3280 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3281 resvt = VT_R8;
3283 /* For overflow detection use the biggest compatible type for the
3284 addition */
3285 switch (resvt) {
3286 case VT_ERROR:
3287 hres = DISP_E_BADVARTYPE;
3288 goto end;
3289 case VT_NULL:
3290 hres = S_OK;
3291 V_VT(result) = VT_NULL;
3292 goto end;
3293 case VT_DISPATCH:
3294 FIXME("cannot handle variant type VT_DISPATCH\n");
3295 hres = DISP_E_TYPEMISMATCH;
3296 goto end;
3297 case VT_EMPTY:
3298 resvt = VT_I2;
3299 /* Fall through */
3300 case VT_UI1:
3301 case VT_I2:
3302 case VT_I4:
3303 case VT_I8:
3304 tvt = VT_I8;
3305 break;
3306 case VT_DATE:
3307 case VT_R4:
3308 tvt = VT_R8;
3309 break;
3310 default:
3311 tvt = resvt;
3314 /* Now coerce the variants */
3315 hres = VariantChangeType(&lv, left, 0, tvt);
3316 if (FAILED(hres))
3317 goto end;
3318 hres = VariantChangeType(&rv, right, 0, tvt);
3319 if (FAILED(hres))
3320 goto end;
3322 /* Do the math */
3323 hres = S_OK;
3324 V_VT(result) = resvt;
3325 switch (tvt) {
3326 case VT_DECIMAL:
3327 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3328 &V_DECIMAL(result));
3329 goto end;
3330 case VT_CY:
3331 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3332 goto end;
3333 case VT_BSTR:
3334 /* We do not add those, we concatenate them. */
3335 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3336 goto end;
3337 case VT_I8:
3338 /* Overflow detection */
3339 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3340 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3341 V_VT(result) = VT_R8;
3342 V_R8(result) = r8res;
3343 goto end;
3344 } else {
3345 V_VT(&tv) = tvt;
3346 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3348 break;
3349 case VT_R8:
3350 V_VT(&tv) = tvt;
3351 /* FIXME: overflow detection */
3352 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3353 break;
3354 default:
3355 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3356 break;
3358 if (resvt != tvt) {
3359 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3360 /* Overflow! Change to the vartype with the next higher priority.
3361 With one exception: I4 ==> R8 even if it would fit in I8 */
3362 if (resvt == VT_I4)
3363 resvt = VT_R8;
3364 else
3365 resvt = prio2vt[coerce[resvt] + 1];
3366 hres = VariantChangeType(result, &tv, 0, resvt);
3368 } else
3369 hres = VariantCopy(result, &tv);
3371 end:
3372 if (hres != S_OK) {
3373 V_VT(result) = VT_EMPTY;
3374 V_I4(result) = 0; /* No V_EMPTY */
3376 VariantClear(&lv);
3377 VariantClear(&rv);
3378 VariantClear(&tv);
3379 VariantClear(&tempLeft);
3380 VariantClear(&tempRight);
3381 TRACE("returning %#lx, %s\n", hres, debugstr_variant(result));
3382 return hres;
3385 /**********************************************************************
3386 * VarMul [OLEAUT32.156]
3388 * Multiply two variants.
3390 * PARAMS
3391 * left [I] First variant
3392 * right [I] Second variant
3393 * result [O] Result variant
3395 * RETURNS
3396 * Success: S_OK.
3397 * Failure: An HRESULT error code indicating the error.
3399 * NOTES
3400 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3401 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3403 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3404 * same here.
3406 * FIXME
3407 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3408 * case.
3410 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3412 HRESULT hres;
3413 VARTYPE lvt, rvt, resvt, tvt;
3414 VARIANT lv, rv, tv;
3415 VARIANT tempLeft, tempRight;
3416 double r8res;
3418 /* Variant priority for coercion. Sorted from lowest to highest.
3419 VT_ERROR shows an invalid input variant type. */
3420 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3421 vt_DECIMAL, vt_NULL, vt_ERROR };
3422 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3423 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3424 VT_DECIMAL, VT_NULL, VT_ERROR };
3426 /* Mapping for coercion from input variant to priority of result variant. */
3427 static const VARTYPE coerce[] = {
3428 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3429 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3430 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3431 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3432 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3433 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3434 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3435 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3438 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3440 VariantInit(&lv);
3441 VariantInit(&rv);
3442 VariantInit(&tv);
3443 VariantInit(&tempLeft);
3444 VariantInit(&tempRight);
3446 /* Handle VT_DISPATCH by storing and taking address of returned value */
3447 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3449 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3450 if (FAILED(hres)) goto end;
3451 left = &tempLeft;
3453 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3455 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3456 if (FAILED(hres)) goto end;
3457 right = &tempRight;
3460 lvt = V_VT(left)&VT_TYPEMASK;
3461 rvt = V_VT(right)&VT_TYPEMASK;
3463 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3464 Same for any input variant type > VT_I8 */
3465 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3466 lvt > VT_I8 || rvt > VT_I8) {
3467 hres = DISP_E_BADVARTYPE;
3468 goto end;
3471 /* Determine the variant type to coerce to. */
3472 if (coerce[lvt] > coerce[rvt]) {
3473 resvt = prio2vt[coerce[lvt]];
3474 tvt = prio2vt[coerce[rvt]];
3475 } else {
3476 resvt = prio2vt[coerce[rvt]];
3477 tvt = prio2vt[coerce[lvt]];
3480 /* Special cases where the result variant type is defined by both
3481 input variants and not only that with the highest priority */
3482 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3483 resvt = VT_R8;
3484 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3485 resvt = VT_I2;
3487 /* For overflow detection use the biggest compatible type for the
3488 multiplication */
3489 switch (resvt) {
3490 case VT_ERROR:
3491 hres = DISP_E_BADVARTYPE;
3492 goto end;
3493 case VT_NULL:
3494 hres = S_OK;
3495 V_VT(result) = VT_NULL;
3496 goto end;
3497 case VT_UI1:
3498 case VT_I2:
3499 case VT_I4:
3500 case VT_I8:
3501 tvt = VT_I8;
3502 break;
3503 case VT_R4:
3504 tvt = VT_R8;
3505 break;
3506 default:
3507 tvt = resvt;
3510 /* Now coerce the variants */
3511 hres = VariantChangeType(&lv, left, 0, tvt);
3512 if (FAILED(hres))
3513 goto end;
3514 hres = VariantChangeType(&rv, right, 0, tvt);
3515 if (FAILED(hres))
3516 goto end;
3518 /* Do the math */
3519 hres = S_OK;
3520 V_VT(&tv) = tvt;
3521 V_VT(result) = resvt;
3522 switch (tvt) {
3523 case VT_DECIMAL:
3524 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3525 &V_DECIMAL(result));
3526 goto end;
3527 case VT_CY:
3528 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3529 goto end;
3530 case VT_I8:
3531 /* Overflow detection */
3532 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3533 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3534 V_VT(result) = VT_R8;
3535 V_R8(result) = r8res;
3536 goto end;
3537 } else
3538 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3539 break;
3540 case VT_R8:
3541 /* FIXME: overflow detection */
3542 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3543 break;
3544 default:
3545 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3546 break;
3548 if (resvt != tvt) {
3549 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3550 /* Overflow! Change to the vartype with the next higher priority.
3551 With one exception: I4 ==> R8 even if it would fit in I8 */
3552 if (resvt == VT_I4)
3553 resvt = VT_R8;
3554 else
3555 resvt = prio2vt[coerce[resvt] + 1];
3557 } else
3558 hres = VariantCopy(result, &tv);
3560 end:
3561 if (hres != S_OK) {
3562 V_VT(result) = VT_EMPTY;
3563 V_I4(result) = 0; /* No V_EMPTY */
3565 VariantClear(&lv);
3566 VariantClear(&rv);
3567 VariantClear(&tv);
3568 VariantClear(&tempLeft);
3569 VariantClear(&tempRight);
3570 TRACE("returning %#lx, %s\n", hres, debugstr_variant(result));
3571 return hres;
3574 /**********************************************************************
3575 * VarDiv [OLEAUT32.143]
3577 * Divides one variant with another.
3579 * PARAMS
3580 * left [I] First variant
3581 * right [I] Second variant
3582 * result [O] Result variant
3584 * RETURNS
3585 * Success: S_OK.
3586 * Failure: An HRESULT error code indicating the error.
3588 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3590 HRESULT hres = S_OK;
3591 VARTYPE resvt = VT_EMPTY;
3592 VARTYPE leftvt,rightvt;
3593 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3594 VARIANT lv,rv;
3595 VARIANT tempLeft, tempRight;
3597 VariantInit(&tempLeft);
3598 VariantInit(&tempRight);
3599 VariantInit(&lv);
3600 VariantInit(&rv);
3602 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3604 /* Handle VT_DISPATCH by storing and taking address of returned value */
3605 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3607 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3608 if (FAILED(hres)) goto end;
3609 left = &tempLeft;
3611 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3613 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3614 if (FAILED(hres)) goto end;
3615 right = &tempRight;
3618 leftvt = V_VT(left)&VT_TYPEMASK;
3619 rightvt = V_VT(right)&VT_TYPEMASK;
3620 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3621 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3623 if (leftExtraFlags != rightExtraFlags)
3625 hres = DISP_E_BADVARTYPE;
3626 goto end;
3628 ExtraFlags = leftExtraFlags;
3630 /* Native VarDiv always returns an error when using extra flags */
3631 if (ExtraFlags != 0)
3633 hres = DISP_E_BADVARTYPE;
3634 goto end;
3637 /* Determine return type */
3638 if (rightvt != VT_EMPTY)
3640 if (leftvt == VT_NULL || rightvt == VT_NULL)
3642 V_VT(result) = VT_NULL;
3643 hres = S_OK;
3644 goto end;
3646 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3647 resvt = VT_DECIMAL;
3648 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3649 leftvt == VT_CY || rightvt == VT_CY ||
3650 leftvt == VT_DATE || rightvt == VT_DATE ||
3651 leftvt == VT_I4 || rightvt == VT_I4 ||
3652 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3653 leftvt == VT_I2 || rightvt == VT_I2 ||
3654 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3655 leftvt == VT_R8 || rightvt == VT_R8 ||
3656 leftvt == VT_UI1 || rightvt == VT_UI1)
3658 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3659 (leftvt == VT_R4 && rightvt == VT_UI1))
3660 resvt = VT_R4;
3661 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3662 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3663 (leftvt == VT_BOOL || leftvt == VT_I2)))
3664 resvt = VT_R4;
3665 else
3666 resvt = VT_R8;
3668 else if (leftvt == VT_R4 || rightvt == VT_R4)
3669 resvt = VT_R4;
3671 else if (leftvt == VT_NULL)
3673 V_VT(result) = VT_NULL;
3674 hres = S_OK;
3675 goto end;
3677 else
3679 hres = DISP_E_BADVARTYPE;
3680 goto end;
3683 /* coerce to the result type */
3684 hres = VariantChangeType(&lv, left, 0, resvt);
3685 if (hres != S_OK) goto end;
3687 hres = VariantChangeType(&rv, right, 0, resvt);
3688 if (hres != S_OK) goto end;
3690 /* do the math */
3691 V_VT(result) = resvt;
3692 switch (resvt)
3694 case VT_R4:
3695 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3697 hres = DISP_E_OVERFLOW;
3698 V_VT(result) = VT_EMPTY;
3700 else if (V_R4(&rv) == 0.0)
3702 hres = DISP_E_DIVBYZERO;
3703 V_VT(result) = VT_EMPTY;
3705 else
3706 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3707 break;
3708 case VT_R8:
3709 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3711 hres = DISP_E_OVERFLOW;
3712 V_VT(result) = VT_EMPTY;
3714 else if (V_R8(&rv) == 0.0)
3716 hres = DISP_E_DIVBYZERO;
3717 V_VT(result) = VT_EMPTY;
3719 else
3720 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3721 break;
3722 case VT_DECIMAL:
3723 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3724 break;
3727 end:
3728 VariantClear(&lv);
3729 VariantClear(&rv);
3730 VariantClear(&tempLeft);
3731 VariantClear(&tempRight);
3732 TRACE("returning %#lx, %s\n", hres, debugstr_variant(result));
3733 return hres;
3736 /**********************************************************************
3737 * VarSub [OLEAUT32.159]
3739 * Subtract two variants.
3741 * PARAMS
3742 * left [I] First variant
3743 * right [I] Second variant
3744 * result [O] Result variant
3746 * RETURNS
3747 * Success: S_OK.
3748 * Failure: An HRESULT error code indicating the error.
3750 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3752 HRESULT hres = S_OK;
3753 VARTYPE resvt = VT_EMPTY;
3754 VARTYPE leftvt,rightvt;
3755 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3756 VARIANT lv,rv;
3757 VARIANT tempLeft, tempRight;
3759 VariantInit(&lv);
3760 VariantInit(&rv);
3761 VariantInit(&tempLeft);
3762 VariantInit(&tempRight);
3764 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3766 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3767 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3768 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3770 if (NULL == V_DISPATCH(left)) {
3771 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3772 hres = DISP_E_BADVARTYPE;
3773 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3774 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3775 hres = DISP_E_BADVARTYPE;
3776 else switch (V_VT(right) & VT_TYPEMASK)
3778 case VT_VARIANT:
3779 case VT_UNKNOWN:
3780 case 15:
3781 case VT_I1:
3782 case VT_UI2:
3783 case VT_UI4:
3784 hres = DISP_E_BADVARTYPE;
3786 if (FAILED(hres)) goto end;
3788 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3789 if (FAILED(hres)) goto end;
3790 left = &tempLeft;
3792 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3793 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3794 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3796 if (NULL == V_DISPATCH(right))
3798 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3799 hres = DISP_E_BADVARTYPE;
3800 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3801 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3802 hres = DISP_E_BADVARTYPE;
3803 else switch (V_VT(left) & VT_TYPEMASK)
3805 case VT_VARIANT:
3806 case VT_UNKNOWN:
3807 case 15:
3808 case VT_I1:
3809 case VT_UI2:
3810 case VT_UI4:
3811 hres = DISP_E_BADVARTYPE;
3813 if (FAILED(hres)) goto end;
3815 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3816 if (FAILED(hres)) goto end;
3817 right = &tempRight;
3820 leftvt = V_VT(left)&VT_TYPEMASK;
3821 rightvt = V_VT(right)&VT_TYPEMASK;
3822 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3823 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3825 if (leftExtraFlags != rightExtraFlags)
3827 hres = DISP_E_BADVARTYPE;
3828 goto end;
3830 ExtraFlags = leftExtraFlags;
3832 /* determine return type and return code */
3833 /* All extra flags produce errors */
3834 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3835 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3836 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3837 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3838 ExtraFlags == VT_VECTOR ||
3839 ExtraFlags == VT_BYREF ||
3840 ExtraFlags == VT_RESERVED)
3842 hres = DISP_E_BADVARTYPE;
3843 goto end;
3845 else if (ExtraFlags >= VT_ARRAY)
3847 hres = DISP_E_TYPEMISMATCH;
3848 goto end;
3850 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3851 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3852 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3853 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3854 leftvt == VT_I1 || rightvt == VT_I1 ||
3855 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3856 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3857 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3858 leftvt == VT_INT || rightvt == VT_INT ||
3859 leftvt == VT_UINT || rightvt == VT_UINT ||
3860 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3861 leftvt == VT_RECORD || rightvt == VT_RECORD)
3863 if (leftvt == VT_RECORD && rightvt == VT_I8)
3864 hres = DISP_E_TYPEMISMATCH;
3865 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3866 hres = DISP_E_TYPEMISMATCH;
3867 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3868 hres = DISP_E_TYPEMISMATCH;
3869 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3870 hres = DISP_E_TYPEMISMATCH;
3871 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3872 hres = DISP_E_BADVARTYPE;
3873 else
3874 hres = DISP_E_BADVARTYPE;
3875 goto end;
3877 /* The following flags/types are invalid for left variant */
3878 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3879 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3880 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3882 hres = DISP_E_BADVARTYPE;
3883 goto end;
3885 /* The following flags/types are invalid for right variant */
3886 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3887 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3888 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3890 hres = DISP_E_BADVARTYPE;
3891 goto end;
3893 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3894 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3895 resvt = VT_NULL;
3896 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3897 leftvt == VT_ERROR || rightvt == VT_ERROR)
3899 hres = DISP_E_TYPEMISMATCH;
3900 goto end;
3902 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3903 resvt = VT_NULL;
3904 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3905 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3906 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3907 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3908 resvt = VT_R8;
3909 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3910 resvt = VT_DECIMAL;
3911 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3912 resvt = VT_DATE;
3913 else if (leftvt == VT_CY || rightvt == VT_CY)
3914 resvt = VT_CY;
3915 else if (leftvt == VT_R8 || rightvt == VT_R8)
3916 resvt = VT_R8;
3917 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3918 resvt = VT_R8;
3919 else if (leftvt == VT_R4 || rightvt == VT_R4)
3921 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3922 leftvt == VT_I8 || rightvt == VT_I8)
3923 resvt = VT_R8;
3924 else
3925 resvt = VT_R4;
3927 else if (leftvt == VT_I8 || rightvt == VT_I8)
3928 resvt = VT_I8;
3929 else if (leftvt == VT_I4 || rightvt == VT_I4)
3930 resvt = VT_I4;
3931 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3932 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3933 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3934 resvt = VT_I2;
3935 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3936 resvt = VT_UI1;
3937 else
3939 hres = DISP_E_TYPEMISMATCH;
3940 goto end;
3943 /* coerce to the result type */
3944 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3945 hres = VariantChangeType(&lv, left, 0, VT_R8);
3946 else
3947 hres = VariantChangeType(&lv, left, 0, resvt);
3948 if (hres != S_OK) goto end;
3949 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3950 hres = VariantChangeType(&rv, right, 0, VT_R8);
3951 else
3952 hres = VariantChangeType(&rv, right, 0, resvt);
3953 if (hres != S_OK) goto end;
3955 /* do the math */
3956 V_VT(result) = resvt;
3957 switch (resvt)
3959 case VT_NULL:
3960 break;
3961 case VT_DATE:
3962 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3963 break;
3964 case VT_CY:
3965 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3966 break;
3967 case VT_R4:
3968 V_R4(result) = V_R4(&lv) - V_R4(&rv);
3969 break;
3970 case VT_I8:
3971 V_I8(result) = V_I8(&lv) - V_I8(&rv);
3972 break;
3973 case VT_I4:
3974 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3975 break;
3976 case VT_I2:
3977 V_I2(result) = V_I2(&lv) - V_I2(&rv);
3978 break;
3979 case VT_UI1:
3980 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3981 break;
3982 case VT_R8:
3983 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3984 break;
3985 case VT_DECIMAL:
3986 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3987 break;
3990 end:
3991 VariantClear(&lv);
3992 VariantClear(&rv);
3993 VariantClear(&tempLeft);
3994 VariantClear(&tempRight);
3995 TRACE("returning %#lx, %s\n", hres, debugstr_variant(result));
3996 return hres;
4000 /**********************************************************************
4001 * VarOr [OLEAUT32.157]
4003 * Perform a logical or (OR) operation on two variants.
4005 * PARAMS
4006 * pVarLeft [I] First variant
4007 * pVarRight [I] Variant to OR with pVarLeft
4008 * pVarOut [O] Destination for OR result
4010 * RETURNS
4011 * Success: S_OK. pVarOut contains the result of the operation with its type
4012 * taken from the table listed under VarXor().
4013 * Failure: An HRESULT error code indicating the error.
4015 * NOTES
4016 * See the Notes section of VarXor() for further information.
4018 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4020 VARTYPE vt = VT_I4;
4021 VARIANT varLeft, varRight, varStr;
4022 HRESULT hRet;
4023 VARIANT tempLeft, tempRight;
4025 VariantInit(&tempLeft);
4026 VariantInit(&tempRight);
4027 VariantInit(&varLeft);
4028 VariantInit(&varRight);
4029 VariantInit(&varStr);
4031 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4033 /* Handle VT_DISPATCH by storing and taking address of returned value */
4034 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4036 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4037 if (FAILED(hRet)) goto VarOr_Exit;
4038 pVarLeft = &tempLeft;
4040 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4042 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4043 if (FAILED(hRet)) goto VarOr_Exit;
4044 pVarRight = &tempRight;
4047 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4048 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4049 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4050 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4052 hRet = DISP_E_BADVARTYPE;
4053 goto VarOr_Exit;
4056 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4058 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4060 /* NULL OR Zero is NULL, NULL OR value is value */
4061 if (V_VT(pVarLeft) == VT_NULL)
4062 pVarLeft = pVarRight; /* point to the non-NULL var */
4064 V_VT(pVarOut) = VT_NULL;
4065 V_I4(pVarOut) = 0;
4067 switch (V_VT(pVarLeft))
4069 case VT_DATE: case VT_R8:
4070 if (V_R8(pVarLeft))
4071 goto VarOr_AsEmpty;
4072 hRet = S_OK;
4073 goto VarOr_Exit;
4074 case VT_BOOL:
4075 if (V_BOOL(pVarLeft))
4076 *pVarOut = *pVarLeft;
4077 hRet = S_OK;
4078 goto VarOr_Exit;
4079 case VT_I2: case VT_UI2:
4080 if (V_I2(pVarLeft))
4081 goto VarOr_AsEmpty;
4082 hRet = S_OK;
4083 goto VarOr_Exit;
4084 case VT_I1:
4085 if (V_I1(pVarLeft))
4086 goto VarOr_AsEmpty;
4087 hRet = S_OK;
4088 goto VarOr_Exit;
4089 case VT_UI1:
4090 if (V_UI1(pVarLeft))
4091 *pVarOut = *pVarLeft;
4092 hRet = S_OK;
4093 goto VarOr_Exit;
4094 case VT_R4:
4095 if (V_R4(pVarLeft))
4096 goto VarOr_AsEmpty;
4097 hRet = S_OK;
4098 goto VarOr_Exit;
4099 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4100 if (V_I4(pVarLeft))
4101 goto VarOr_AsEmpty;
4102 hRet = S_OK;
4103 goto VarOr_Exit;
4104 case VT_CY:
4105 if (V_CY(pVarLeft).int64)
4106 goto VarOr_AsEmpty;
4107 hRet = S_OK;
4108 goto VarOr_Exit;
4109 case VT_I8: case VT_UI8:
4110 if (V_I8(pVarLeft))
4111 goto VarOr_AsEmpty;
4112 hRet = S_OK;
4113 goto VarOr_Exit;
4114 case VT_DECIMAL:
4115 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4116 goto VarOr_AsEmpty;
4117 hRet = S_OK;
4118 goto VarOr_Exit;
4119 case VT_BSTR:
4121 VARIANT_BOOL b;
4123 if (!V_BSTR(pVarLeft))
4125 hRet = DISP_E_BADVARTYPE;
4126 goto VarOr_Exit;
4129 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4130 if (SUCCEEDED(hRet) && b)
4132 V_VT(pVarOut) = VT_BOOL;
4133 V_BOOL(pVarOut) = b;
4135 goto VarOr_Exit;
4137 case VT_NULL: case VT_EMPTY:
4138 V_VT(pVarOut) = VT_NULL;
4139 hRet = S_OK;
4140 goto VarOr_Exit;
4141 default:
4142 hRet = DISP_E_BADVARTYPE;
4143 goto VarOr_Exit;
4147 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4149 if (V_VT(pVarLeft) == VT_EMPTY)
4150 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4152 VarOr_AsEmpty:
4153 /* Since one argument is empty (0), OR'ing it with the other simply
4154 * gives the others value (as 0|x => x). So just convert the other
4155 * argument to the required result type.
4157 switch (V_VT(pVarLeft))
4159 case VT_BSTR:
4160 if (!V_BSTR(pVarLeft))
4162 hRet = DISP_E_BADVARTYPE;
4163 goto VarOr_Exit;
4166 hRet = VariantCopy(&varStr, pVarLeft);
4167 if (FAILED(hRet))
4168 goto VarOr_Exit;
4169 pVarLeft = &varStr;
4170 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4171 if (FAILED(hRet))
4172 goto VarOr_Exit;
4173 /* Fall Through ... */
4174 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4175 V_VT(pVarOut) = VT_I2;
4176 break;
4177 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4178 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4179 case VT_INT: case VT_UINT: case VT_UI8:
4180 V_VT(pVarOut) = VT_I4;
4181 break;
4182 case VT_I8:
4183 V_VT(pVarOut) = VT_I8;
4184 break;
4185 default:
4186 hRet = DISP_E_BADVARTYPE;
4187 goto VarOr_Exit;
4189 hRet = VariantCopy(&varLeft, pVarLeft);
4190 if (FAILED(hRet))
4191 goto VarOr_Exit;
4192 pVarLeft = &varLeft;
4193 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4194 goto VarOr_Exit;
4197 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4199 V_VT(pVarOut) = VT_BOOL;
4200 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4201 hRet = S_OK;
4202 goto VarOr_Exit;
4205 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4207 V_VT(pVarOut) = VT_UI1;
4208 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4209 hRet = S_OK;
4210 goto VarOr_Exit;
4213 if (V_VT(pVarLeft) == VT_BSTR)
4215 hRet = VariantCopy(&varStr, pVarLeft);
4216 if (FAILED(hRet))
4217 goto VarOr_Exit;
4218 pVarLeft = &varStr;
4219 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4220 if (FAILED(hRet))
4221 goto VarOr_Exit;
4224 if (V_VT(pVarLeft) == VT_BOOL &&
4225 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4227 vt = VT_BOOL;
4229 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4230 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4231 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4232 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4234 vt = VT_I2;
4236 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4238 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4240 hRet = DISP_E_TYPEMISMATCH;
4241 goto VarOr_Exit;
4243 vt = VT_I8;
4246 hRet = VariantCopy(&varLeft, pVarLeft);
4247 if (FAILED(hRet))
4248 goto VarOr_Exit;
4250 hRet = VariantCopy(&varRight, pVarRight);
4251 if (FAILED(hRet))
4252 goto VarOr_Exit;
4254 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4255 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4256 else
4258 double d;
4260 if (V_VT(&varLeft) == VT_BSTR &&
4261 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4262 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4263 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4264 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4265 if (FAILED(hRet))
4266 goto VarOr_Exit;
4269 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4270 V_VT(&varRight) = VT_I4; /* Don't overflow */
4271 else
4273 double d;
4275 if (V_VT(&varRight) == VT_BSTR &&
4276 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4277 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4278 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4279 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4280 if (FAILED(hRet))
4281 goto VarOr_Exit;
4284 V_VT(pVarOut) = vt;
4285 if (vt == VT_I8)
4287 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4289 else if (vt == VT_I4)
4291 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4293 else
4295 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4298 VarOr_Exit:
4299 VariantClear(&varStr);
4300 VariantClear(&varLeft);
4301 VariantClear(&varRight);
4302 VariantClear(&tempLeft);
4303 VariantClear(&tempRight);
4304 return hRet;
4307 /**********************************************************************
4308 * VarAbs [OLEAUT32.168]
4310 * Convert a variant to its absolute value.
4312 * PARAMS
4313 * pVarIn [I] Source variant
4314 * pVarOut [O] Destination for converted value
4316 * RETURNS
4317 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4318 * Failure: An HRESULT error code indicating the error.
4320 * NOTES
4321 * - This function does not process by-reference variants.
4322 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4323 * according to the following table:
4324 *| Input Type Output Type
4325 *| ---------- -----------
4326 *| VT_BOOL VT_I2
4327 *| VT_BSTR VT_R8
4328 *| (All others) Unchanged
4330 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4332 HRESULT hRet = S_OK;
4333 VARIANT temp;
4335 VariantInit(&temp);
4337 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4339 /* Handle VT_DISPATCH by storing and taking address of returned value */
4340 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4342 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4343 if (FAILED(hRet)) goto VarAbs_Exit;
4344 pVarIn = &temp;
4347 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4348 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4349 V_VT(pVarIn) == VT_ERROR)
4351 hRet = DISP_E_TYPEMISMATCH;
4352 goto VarAbs_Exit;
4354 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4356 #define ABS_CASE(typ,min) \
4357 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4358 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4359 break
4361 switch (V_VT(pVarIn))
4363 ABS_CASE(I1,I1_MIN);
4364 case VT_BOOL:
4365 V_VT(pVarOut) = VT_I2;
4366 /* BOOL->I2, Fall through ... */
4367 ABS_CASE(I2,I2_MIN);
4368 case VT_INT:
4369 ABS_CASE(I4,I4_MIN);
4370 ABS_CASE(I8,I8_MIN);
4371 case VT_R4:
4372 if (V_R4(pVarOut) < 0.0) V_R4(pVarOut) = -V_R4(pVarOut);
4373 break;
4374 case VT_BSTR:
4375 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4376 if (FAILED(hRet))
4377 break;
4378 V_VT(pVarOut) = VT_R8;
4379 /* Fall through ... */
4380 case VT_DATE:
4381 case VT_R8:
4382 if (V_R8(pVarOut) < 0.0) V_R8(pVarOut) = -V_R8(pVarOut);
4383 break;
4384 case VT_CY:
4385 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4386 break;
4387 case VT_DECIMAL:
4388 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4389 break;
4390 case VT_UI1:
4391 case VT_UI2:
4392 case VT_UINT:
4393 case VT_UI4:
4394 case VT_UI8:
4395 /* No-Op */
4396 break;
4397 case VT_EMPTY:
4398 V_VT(pVarOut) = VT_I2;
4399 case VT_NULL:
4400 V_I2(pVarOut) = 0;
4401 break;
4402 default:
4403 hRet = DISP_E_BADVARTYPE;
4406 VarAbs_Exit:
4407 VariantClear(&temp);
4408 return hRet;
4411 /**********************************************************************
4412 * VarFix [OLEAUT32.169]
4414 * Truncate a variants value to a whole number.
4416 * PARAMS
4417 * pVarIn [I] Source variant
4418 * pVarOut [O] Destination for converted value
4420 * RETURNS
4421 * Success: S_OK. pVarOut contains the converted value.
4422 * Failure: An HRESULT error code indicating the error.
4424 * NOTES
4425 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4426 * according to the following table:
4427 *| Input Type Output Type
4428 *| ---------- -----------
4429 *| VT_BOOL VT_I2
4430 *| VT_EMPTY VT_I2
4431 *| VT_BSTR VT_R8
4432 *| All Others Unchanged
4433 * - The difference between this function and VarInt() is that VarInt() rounds
4434 * negative numbers away from 0, while this function rounds them towards zero.
4436 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4438 HRESULT hRet = S_OK;
4439 VARIANT temp;
4441 VariantInit(&temp);
4443 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4445 /* Handle VT_DISPATCH by storing and taking address of returned value */
4446 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4448 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4449 if (FAILED(hRet)) goto VarFix_Exit;
4450 pVarIn = &temp;
4452 V_VT(pVarOut) = V_VT(pVarIn);
4454 switch (V_VT(pVarIn))
4456 case VT_UI1:
4457 V_UI1(pVarOut) = V_UI1(pVarIn);
4458 break;
4459 case VT_BOOL:
4460 V_VT(pVarOut) = VT_I2;
4461 /* Fall through */
4462 case VT_I2:
4463 V_I2(pVarOut) = V_I2(pVarIn);
4464 break;
4465 case VT_I4:
4466 V_I4(pVarOut) = V_I4(pVarIn);
4467 break;
4468 case VT_I8:
4469 V_I8(pVarOut) = V_I8(pVarIn);
4470 break;
4471 case VT_R4:
4472 if (V_R4(pVarIn) < 0.0f)
4473 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4474 else
4475 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4476 break;
4477 case VT_BSTR:
4478 V_VT(pVarOut) = VT_R8;
4479 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4480 pVarIn = pVarOut;
4481 /* Fall through */
4482 case VT_DATE:
4483 case VT_R8:
4484 if (V_R8(pVarIn) < 0.0)
4485 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4486 else
4487 V_R8(pVarOut) = floor(V_R8(pVarIn));
4488 break;
4489 case VT_CY:
4490 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4491 break;
4492 case VT_DECIMAL:
4493 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4494 break;
4495 case VT_EMPTY:
4496 V_VT(pVarOut) = VT_I2;
4497 V_I2(pVarOut) = 0;
4498 break;
4499 case VT_NULL:
4500 /* No-Op */
4501 break;
4502 default:
4503 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4504 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4505 hRet = DISP_E_BADVARTYPE;
4506 else
4507 hRet = DISP_E_TYPEMISMATCH;
4509 VarFix_Exit:
4510 if (FAILED(hRet))
4511 V_VT(pVarOut) = VT_EMPTY;
4512 VariantClear(&temp);
4514 return hRet;
4517 /**********************************************************************
4518 * VarInt [OLEAUT32.172]
4520 * Truncate a variants value to a whole number.
4522 * PARAMS
4523 * pVarIn [I] Source variant
4524 * pVarOut [O] Destination for converted value
4526 * RETURNS
4527 * Success: S_OK. pVarOut contains the converted value.
4528 * Failure: An HRESULT error code indicating the error.
4530 * NOTES
4531 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4532 * according to the following table:
4533 *| Input Type Output Type
4534 *| ---------- -----------
4535 *| VT_BOOL VT_I2
4536 *| VT_EMPTY VT_I2
4537 *| VT_BSTR VT_R8
4538 *| All Others Unchanged
4539 * - The difference between this function and VarFix() is that VarFix() rounds
4540 * negative numbers towards 0, while this function rounds them away from zero.
4542 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4544 HRESULT hRet = S_OK;
4545 VARIANT temp;
4547 VariantInit(&temp);
4549 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4551 /* Handle VT_DISPATCH by storing and taking address of returned value */
4552 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4554 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4555 if (FAILED(hRet)) goto VarInt_Exit;
4556 pVarIn = &temp;
4558 V_VT(pVarOut) = V_VT(pVarIn);
4560 switch (V_VT(pVarIn))
4562 case VT_R4:
4563 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4564 break;
4565 case VT_BSTR:
4566 V_VT(pVarOut) = VT_R8;
4567 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4568 pVarIn = pVarOut;
4569 /* Fall through */
4570 case VT_DATE:
4571 case VT_R8:
4572 V_R8(pVarOut) = floor(V_R8(pVarIn));
4573 break;
4574 case VT_CY:
4575 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4576 break;
4577 case VT_DECIMAL:
4578 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4579 break;
4580 default:
4581 hRet = VarFix(pVarIn, pVarOut);
4583 VarInt_Exit:
4584 VariantClear(&temp);
4586 return hRet;
4589 /**********************************************************************
4590 * VarXor [OLEAUT32.167]
4592 * Perform a logical exclusive-or (XOR) operation on two variants.
4594 * PARAMS
4595 * pVarLeft [I] First variant
4596 * pVarRight [I] Variant to XOR with pVarLeft
4597 * pVarOut [O] Destination for XOR result
4599 * RETURNS
4600 * Success: S_OK. pVarOut contains the result of the operation with its type
4601 * taken from the table below).
4602 * Failure: An HRESULT error code indicating the error.
4604 * NOTES
4605 * - Neither pVarLeft or pVarRight are modified by this function.
4606 * - This function does not process by-reference variants.
4607 * - Input types of VT_BSTR may be numeric strings or boolean text.
4608 * - The type of result stored in pVarOut depends on the types of pVarLeft
4609 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4610 * or VT_NULL if the function succeeds.
4611 * - Type promotion is inconsistent and as a result certain combinations of
4612 * values will return DISP_E_OVERFLOW even when they could be represented.
4613 * This matches the behaviour of native oleaut32.
4615 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4617 VARTYPE vt;
4618 VARIANT varLeft, varRight;
4619 VARIANT tempLeft, tempRight;
4620 double d;
4621 HRESULT hRet;
4623 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4625 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4626 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4627 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4628 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4629 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4630 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4631 return DISP_E_BADVARTYPE;
4633 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4635 /* NULL XOR anything valid is NULL */
4636 V_VT(pVarOut) = VT_NULL;
4637 return S_OK;
4640 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4641 VariantInit(&tempLeft);
4642 VariantInit(&tempRight);
4644 /* Handle VT_DISPATCH by storing and taking address of returned value */
4645 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4647 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4648 if (FAILED(hRet)) goto VarXor_Exit;
4649 pVarLeft = &tempLeft;
4651 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4653 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4654 if (FAILED(hRet)) goto VarXor_Exit;
4655 pVarRight = &tempRight;
4658 /* Copy our inputs so we don't disturb anything */
4659 hRet = VariantCopy(&varLeft, pVarLeft);
4660 if (FAILED(hRet))
4661 goto VarXor_Exit;
4663 hRet = VariantCopy(&varRight, pVarRight);
4664 if (FAILED(hRet))
4665 goto VarXor_Exit;
4667 /* Try any strings first as numbers, then as VT_BOOL */
4668 if (V_VT(&varLeft) == VT_BSTR)
4670 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4671 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4672 FAILED(hRet) ? VT_BOOL : VT_I4);
4673 if (FAILED(hRet))
4674 goto VarXor_Exit;
4677 if (V_VT(&varRight) == VT_BSTR)
4679 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4680 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4681 FAILED(hRet) ? VT_BOOL : VT_I4);
4682 if (FAILED(hRet))
4683 goto VarXor_Exit;
4686 /* Determine the result type */
4687 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4689 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4691 hRet = DISP_E_TYPEMISMATCH;
4692 goto VarXor_Exit;
4694 vt = VT_I8;
4696 else
4698 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4700 case (VT_BOOL << 16) | VT_BOOL:
4701 vt = VT_BOOL;
4702 break;
4703 case (VT_UI1 << 16) | VT_UI1:
4704 vt = VT_UI1;
4705 break;
4706 case (VT_EMPTY << 16) | VT_EMPTY:
4707 case (VT_EMPTY << 16) | VT_UI1:
4708 case (VT_EMPTY << 16) | VT_I2:
4709 case (VT_EMPTY << 16) | VT_BOOL:
4710 case (VT_UI1 << 16) | VT_EMPTY:
4711 case (VT_UI1 << 16) | VT_I2:
4712 case (VT_UI1 << 16) | VT_BOOL:
4713 case (VT_I2 << 16) | VT_EMPTY:
4714 case (VT_I2 << 16) | VT_UI1:
4715 case (VT_I2 << 16) | VT_I2:
4716 case (VT_I2 << 16) | VT_BOOL:
4717 case (VT_BOOL << 16) | VT_EMPTY:
4718 case (VT_BOOL << 16) | VT_UI1:
4719 case (VT_BOOL << 16) | VT_I2:
4720 vt = VT_I2;
4721 break;
4722 default:
4723 vt = VT_I4;
4724 break;
4728 /* VT_UI4 does not overflow */
4729 if (vt != VT_I8)
4731 if (V_VT(&varLeft) == VT_UI4)
4732 V_VT(&varLeft) = VT_I4;
4733 if (V_VT(&varRight) == VT_UI4)
4734 V_VT(&varRight) = VT_I4;
4737 /* Convert our input copies to the result type */
4738 if (V_VT(&varLeft) != vt)
4739 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4740 if (FAILED(hRet))
4741 goto VarXor_Exit;
4743 if (V_VT(&varRight) != vt)
4744 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4745 if (FAILED(hRet))
4746 goto VarXor_Exit;
4748 V_VT(pVarOut) = vt;
4750 /* Calculate the result */
4751 switch (vt)
4753 case VT_I8:
4754 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4755 break;
4756 case VT_I4:
4757 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4758 break;
4759 case VT_BOOL:
4760 case VT_I2:
4761 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4762 break;
4763 case VT_UI1:
4764 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4765 break;
4768 VarXor_Exit:
4769 VariantClear(&varLeft);
4770 VariantClear(&varRight);
4771 VariantClear(&tempLeft);
4772 VariantClear(&tempRight);
4773 return hRet;
4776 /**********************************************************************
4777 * VarEqv [OLEAUT32.172]
4779 * Determine if two variants contain the same value.
4781 * PARAMS
4782 * pVarLeft [I] First variant to compare
4783 * pVarRight [I] Variant to compare to pVarLeft
4784 * pVarOut [O] Destination for comparison result
4786 * RETURNS
4787 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4788 * if equivalent or non-zero otherwise.
4789 * Failure: An HRESULT error code indicating the error.
4791 * NOTES
4792 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4793 * the result.
4795 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4797 HRESULT hRet;
4799 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4801 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4802 if (SUCCEEDED(hRet))
4804 if (V_VT(pVarOut) == VT_I8)
4805 V_I8(pVarOut) = ~V_I8(pVarOut);
4806 else
4807 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4809 return hRet;
4812 /**********************************************************************
4813 * VarNeg [OLEAUT32.173]
4815 * Negate the value of a variant.
4817 * PARAMS
4818 * pVarIn [I] Source variant
4819 * pVarOut [O] Destination for converted value
4821 * RETURNS
4822 * Success: S_OK. pVarOut contains the converted value.
4823 * Failure: An HRESULT error code indicating the error.
4825 * NOTES
4826 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4827 * according to the following table:
4828 *| Input Type Output Type
4829 *| ---------- -----------
4830 *| VT_EMPTY VT_I2
4831 *| VT_UI1 VT_I2
4832 *| VT_BOOL VT_I2
4833 *| VT_BSTR VT_R8
4834 *| All Others Unchanged (unless promoted)
4835 * - Where the negated value of a variant does not fit in its base type, the type
4836 * is promoted according to the following table:
4837 *| Input Type Promoted To
4838 *| ---------- -----------
4839 *| VT_I2 VT_I4
4840 *| VT_I4 VT_R8
4841 *| VT_I8 VT_R8
4842 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4843 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4844 * for types which are not valid. Since this is in contravention of the
4845 * meaning of those error codes and unlikely to be relied on by applications,
4846 * this implementation returns errors consistent with the other high level
4847 * variant math functions.
4849 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4851 HRESULT hRet = S_OK;
4852 VARIANT temp;
4854 VariantInit(&temp);
4856 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4858 /* Handle VT_DISPATCH by storing and taking address of returned value */
4859 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4861 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4862 if (FAILED(hRet)) goto VarNeg_Exit;
4863 pVarIn = &temp;
4865 V_VT(pVarOut) = V_VT(pVarIn);
4867 switch (V_VT(pVarIn))
4869 case VT_UI1:
4870 V_VT(pVarOut) = VT_I2;
4871 V_I2(pVarOut) = -V_UI1(pVarIn);
4872 break;
4873 case VT_BOOL:
4874 V_VT(pVarOut) = VT_I2;
4875 /* Fall through */
4876 case VT_I2:
4877 if (V_I2(pVarIn) == I2_MIN)
4879 V_VT(pVarOut) = VT_I4;
4880 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4882 else
4883 V_I2(pVarOut) = -V_I2(pVarIn);
4884 break;
4885 case VT_I4:
4886 if (V_I4(pVarIn) == I4_MIN)
4888 V_VT(pVarOut) = VT_R8;
4889 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4891 else
4892 V_I4(pVarOut) = -V_I4(pVarIn);
4893 break;
4894 case VT_I8:
4895 if (V_I8(pVarIn) == I8_MIN)
4897 V_VT(pVarOut) = VT_R8;
4898 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4899 V_R8(pVarOut) *= -1.0;
4901 else
4902 V_I8(pVarOut) = -V_I8(pVarIn);
4903 break;
4904 case VT_R4:
4905 V_R4(pVarOut) = -V_R4(pVarIn);
4906 break;
4907 case VT_DATE:
4908 case VT_R8:
4909 V_R8(pVarOut) = -V_R8(pVarIn);
4910 break;
4911 case VT_CY:
4912 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4913 break;
4914 case VT_DECIMAL:
4915 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4916 break;
4917 case VT_BSTR:
4918 V_VT(pVarOut) = VT_R8;
4919 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4920 V_R8(pVarOut) = -V_R8(pVarOut);
4921 break;
4922 case VT_EMPTY:
4923 V_VT(pVarOut) = VT_I2;
4924 V_I2(pVarOut) = 0;
4925 break;
4926 case VT_NULL:
4927 /* No-Op */
4928 break;
4929 default:
4930 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4931 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4932 hRet = DISP_E_BADVARTYPE;
4933 else
4934 hRet = DISP_E_TYPEMISMATCH;
4936 VarNeg_Exit:
4937 if (FAILED(hRet))
4938 V_VT(pVarOut) = VT_EMPTY;
4939 VariantClear(&temp);
4941 return hRet;
4944 /**********************************************************************
4945 * VarNot [OLEAUT32.174]
4947 * Perform a not operation on a variant.
4949 * PARAMS
4950 * pVarIn [I] Source variant
4951 * pVarOut [O] Destination for converted value
4953 * RETURNS
4954 * Success: S_OK. pVarOut contains the converted value.
4955 * Failure: An HRESULT error code indicating the error.
4957 * NOTES
4958 * - Strictly speaking, this function performs a bitwise ones complement
4959 * on the variants value (after possibly converting to VT_I4, see below).
4960 * This only behaves like a boolean not operation if the value in
4961 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4962 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4963 * before calling this function.
4964 * - This function does not process by-reference variants.
4965 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4966 * according to the following table:
4967 *| Input Type Output Type
4968 *| ---------- -----------
4969 *| VT_EMPTY VT_I2
4970 *| VT_R4 VT_I4
4971 *| VT_R8 VT_I4
4972 *| VT_BSTR VT_I4
4973 *| VT_DECIMAL VT_I4
4974 *| VT_CY VT_I4
4975 *| (All others) Unchanged
4977 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4979 VARIANT varIn;
4980 HRESULT hRet = S_OK;
4981 VARIANT temp;
4983 VariantInit(&temp);
4985 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4987 /* Handle VT_DISPATCH by storing and taking address of returned value */
4988 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4990 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4991 if (FAILED(hRet)) goto VarNot_Exit;
4992 pVarIn = &temp;
4995 if (V_VT(pVarIn) == VT_BSTR)
4997 V_VT(&varIn) = VT_R8;
4998 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
4999 if (FAILED(hRet))
5001 V_VT(&varIn) = VT_BOOL;
5002 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
5004 if (FAILED(hRet)) goto VarNot_Exit;
5005 pVarIn = &varIn;
5008 V_VT(pVarOut) = V_VT(pVarIn);
5010 switch (V_VT(pVarIn))
5012 case VT_I1:
5013 V_I4(pVarOut) = ~V_I1(pVarIn);
5014 V_VT(pVarOut) = VT_I4;
5015 break;
5016 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
5017 case VT_BOOL:
5018 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
5019 case VT_UI2:
5020 V_I4(pVarOut) = ~V_UI2(pVarIn);
5021 V_VT(pVarOut) = VT_I4;
5022 break;
5023 case VT_DECIMAL:
5024 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
5025 if (FAILED(hRet))
5026 break;
5027 pVarIn = &varIn;
5028 /* Fall through ... */
5029 case VT_INT:
5030 V_VT(pVarOut) = VT_I4;
5031 /* Fall through ... */
5032 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5033 case VT_UINT:
5034 case VT_UI4:
5035 V_I4(pVarOut) = ~V_UI4(pVarIn);
5036 V_VT(pVarOut) = VT_I4;
5037 break;
5038 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5039 case VT_UI8:
5040 V_I4(pVarOut) = ~V_UI8(pVarIn);
5041 V_VT(pVarOut) = VT_I4;
5042 break;
5043 case VT_R4:
5044 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5045 V_I4(pVarOut) = ~V_I4(pVarOut);
5046 V_VT(pVarOut) = VT_I4;
5047 break;
5048 case VT_DATE:
5049 case VT_R8:
5050 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5051 V_I4(pVarOut) = ~V_I4(pVarOut);
5052 V_VT(pVarOut) = VT_I4;
5053 break;
5054 case VT_CY:
5055 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5056 V_I4(pVarOut) = ~V_I4(pVarOut);
5057 V_VT(pVarOut) = VT_I4;
5058 break;
5059 case VT_EMPTY:
5060 V_I2(pVarOut) = ~0;
5061 V_VT(pVarOut) = VT_I2;
5062 break;
5063 case VT_NULL:
5064 /* No-Op */
5065 break;
5066 default:
5067 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5068 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5069 hRet = DISP_E_BADVARTYPE;
5070 else
5071 hRet = DISP_E_TYPEMISMATCH;
5073 VarNot_Exit:
5074 if (FAILED(hRet))
5075 V_VT(pVarOut) = VT_EMPTY;
5076 VariantClear(&temp);
5078 return hRet;
5081 /**********************************************************************
5082 * VarRound [OLEAUT32.175]
5084 * Perform a round operation on a variant.
5086 * PARAMS
5087 * pVarIn [I] Source variant
5088 * deci [I] Number of decimals to round to
5089 * pVarOut [O] Destination for converted value
5091 * RETURNS
5092 * Success: S_OK. pVarOut contains the converted value.
5093 * Failure: An HRESULT error code indicating the error.
5095 * NOTES
5096 * - Floating point values are rounded to the desired number of decimals.
5097 * - Some integer types are just copied to the return variable.
5098 * - Some other integer types are not handled and fail.
5100 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5102 VARIANT varIn;
5103 HRESULT hRet = S_OK;
5104 float factor;
5105 VARIANT temp;
5107 VariantInit(&temp);
5109 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5111 /* Handle VT_DISPATCH by storing and taking address of returned value */
5112 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5114 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5115 if (FAILED(hRet)) goto VarRound_Exit;
5116 pVarIn = &temp;
5119 switch (V_VT(pVarIn))
5121 /* cases that fail on windows */
5122 case VT_I1:
5123 case VT_I8:
5124 case VT_UI2:
5125 case VT_UI4:
5126 hRet = DISP_E_BADVARTYPE;
5127 break;
5129 /* cases just copying in to out */
5130 case VT_UI1:
5131 V_VT(pVarOut) = V_VT(pVarIn);
5132 V_UI1(pVarOut) = V_UI1(pVarIn);
5133 break;
5134 case VT_I2:
5135 V_VT(pVarOut) = V_VT(pVarIn);
5136 V_I2(pVarOut) = V_I2(pVarIn);
5137 break;
5138 case VT_I4:
5139 V_VT(pVarOut) = V_VT(pVarIn);
5140 V_I4(pVarOut) = V_I4(pVarIn);
5141 break;
5142 case VT_NULL:
5143 V_VT(pVarOut) = V_VT(pVarIn);
5144 /* value unchanged */
5145 break;
5147 /* cases that change type */
5148 case VT_EMPTY:
5149 V_VT(pVarOut) = VT_I2;
5150 V_I2(pVarOut) = 0;
5151 break;
5152 case VT_BOOL:
5153 V_VT(pVarOut) = VT_I2;
5154 V_I2(pVarOut) = V_BOOL(pVarIn);
5155 break;
5156 case VT_BSTR:
5157 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5158 if (FAILED(hRet))
5159 break;
5160 V_VT(&varIn)=VT_R8;
5161 pVarIn = &varIn;
5162 /* Fall through ... */
5164 /* cases we need to do math */
5165 case VT_R8:
5166 if (V_R8(pVarIn)>0) {
5167 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5168 } else {
5169 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5171 V_VT(pVarOut) = V_VT(pVarIn);
5172 break;
5173 case VT_R4:
5174 if (V_R4(pVarIn)>0) {
5175 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5176 } else {
5177 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5179 V_VT(pVarOut) = V_VT(pVarIn);
5180 break;
5181 case VT_DATE:
5182 if (V_DATE(pVarIn)>0) {
5183 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5184 } else {
5185 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5187 V_VT(pVarOut) = V_VT(pVarIn);
5188 break;
5189 case VT_CY:
5190 if (deci>3)
5191 factor=1;
5192 else
5193 factor=pow(10, 4-deci);
5195 if (V_CY(pVarIn).int64>0) {
5196 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5197 } else {
5198 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5200 V_VT(pVarOut) = V_VT(pVarIn);
5201 break;
5202 case VT_DECIMAL:
5204 double dbl;
5206 hRet = VarR8FromDec(&V_DECIMAL(pVarIn), &dbl);
5207 if (FAILED(hRet))
5208 break;
5210 if (dbl>0.0f)
5211 dbl = floor(dbl*pow(10,deci)+0.5);
5212 else
5213 dbl = ceil(dbl*pow(10,deci)-0.5);
5215 V_VT(pVarOut)=VT_DECIMAL;
5216 hRet = VarDecFromR8(dbl, &V_DECIMAL(pVarOut));
5217 break;
5219 /* cases we don't know yet */
5220 default:
5221 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5222 V_VT(pVarIn) & VT_TYPEMASK, deci);
5223 hRet = DISP_E_BADVARTYPE;
5225 VarRound_Exit:
5226 if (FAILED(hRet))
5227 V_VT(pVarOut) = VT_EMPTY;
5228 VariantClear(&temp);
5230 TRACE("returning %#lx, %s\n", hRet, debugstr_variant(pVarOut));
5231 return hRet;
5234 /**********************************************************************
5235 * VarIdiv [OLEAUT32.153]
5237 * Converts input variants to integers and divides them.
5239 * PARAMS
5240 * left [I] Left hand variant
5241 * right [I] Right hand variant
5242 * result [O] Destination for quotient
5244 * RETURNS
5245 * Success: S_OK. result contains the quotient.
5246 * Failure: An HRESULT error code indicating the error.
5248 * NOTES
5249 * If either expression is null, null is returned, as per MSDN
5251 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5253 HRESULT hres = S_OK;
5254 VARTYPE resvt = VT_EMPTY;
5255 VARTYPE leftvt,rightvt;
5256 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5257 VARIANT lv,rv;
5258 VARIANT tempLeft, tempRight;
5260 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5262 VariantInit(&lv);
5263 VariantInit(&rv);
5264 VariantInit(&tempLeft);
5265 VariantInit(&tempRight);
5267 leftvt = V_VT(left)&VT_TYPEMASK;
5268 rightvt = V_VT(right)&VT_TYPEMASK;
5269 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5270 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5272 if (leftExtraFlags != rightExtraFlags)
5274 hres = DISP_E_BADVARTYPE;
5275 goto end;
5277 ExtraFlags = leftExtraFlags;
5279 /* Native VarIdiv always returns an error when using extra
5280 * flags or if the variant combination is I8 and INT.
5282 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5283 (leftvt == VT_INT && rightvt == VT_I8) ||
5284 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5285 ExtraFlags != 0)
5287 hres = DISP_E_BADVARTYPE;
5288 goto end;
5291 /* Determine variant type */
5292 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5294 V_VT(result) = VT_NULL;
5295 hres = S_OK;
5296 goto end;
5298 else if (leftvt == VT_I8 || rightvt == VT_I8)
5299 resvt = VT_I8;
5300 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5301 leftvt == VT_INT || rightvt == VT_INT ||
5302 leftvt == VT_UINT || rightvt == VT_UINT ||
5303 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5304 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5305 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5306 leftvt == VT_I1 || rightvt == VT_I1 ||
5307 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5308 leftvt == VT_DATE || rightvt == VT_DATE ||
5309 leftvt == VT_CY || rightvt == VT_CY ||
5310 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5311 leftvt == VT_R8 || rightvt == VT_R8 ||
5312 leftvt == VT_R4 || rightvt == VT_R4)
5313 resvt = VT_I4;
5314 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5315 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5316 leftvt == VT_EMPTY)
5317 resvt = VT_I2;
5318 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5319 resvt = VT_UI1;
5320 else
5322 hres = DISP_E_BADVARTYPE;
5323 goto end;
5326 /* coerce to the result type */
5327 hres = VariantChangeType(&lv, left, 0, resvt);
5328 if (hres != S_OK) goto end;
5329 hres = VariantChangeType(&rv, right, 0, resvt);
5330 if (hres != S_OK) goto end;
5332 /* do the math */
5333 V_VT(result) = resvt;
5334 switch (resvt)
5336 case VT_UI1:
5337 if (V_UI1(&rv) == 0)
5339 hres = DISP_E_DIVBYZERO;
5340 V_VT(result) = VT_EMPTY;
5342 else
5343 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5344 break;
5345 case VT_I2:
5346 if (V_I2(&rv) == 0)
5348 hres = DISP_E_DIVBYZERO;
5349 V_VT(result) = VT_EMPTY;
5351 else
5352 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5353 break;
5354 case VT_I4:
5355 if (V_I4(&rv) == 0)
5357 hres = DISP_E_DIVBYZERO;
5358 V_VT(result) = VT_EMPTY;
5360 else
5361 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5362 break;
5363 case VT_I8:
5364 if (V_I8(&rv) == 0)
5366 hres = DISP_E_DIVBYZERO;
5367 V_VT(result) = VT_EMPTY;
5369 else
5370 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5371 break;
5372 default:
5373 FIXME("Couldn't integer divide variant types %d,%d\n",
5374 leftvt,rightvt);
5377 end:
5378 VariantClear(&lv);
5379 VariantClear(&rv);
5380 VariantClear(&tempLeft);
5381 VariantClear(&tempRight);
5383 return hres;
5387 /**********************************************************************
5388 * VarMod [OLEAUT32.155]
5390 * Perform the modulus operation of the right hand variant on the left
5392 * PARAMS
5393 * left [I] Left hand variant
5394 * right [I] Right hand variant
5395 * result [O] Destination for converted value
5397 * RETURNS
5398 * Success: S_OK. result contains the remainder.
5399 * Failure: An HRESULT error code indicating the error.
5401 * NOTE:
5402 * If an error occurs the type of result will be modified but the value will not be.
5403 * Doesn't support arrays or any special flags yet.
5405 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5407 BOOL lOk = TRUE;
5408 HRESULT rc = E_FAIL;
5409 int resT = 0;
5410 VARIANT lv,rv;
5411 VARIANT tempLeft, tempRight;
5413 VariantInit(&tempLeft);
5414 VariantInit(&tempRight);
5415 VariantInit(&lv);
5416 VariantInit(&rv);
5418 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5420 /* Handle VT_DISPATCH by storing and taking address of returned value */
5421 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5423 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5424 if (FAILED(rc)) goto end;
5425 left = &tempLeft;
5427 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5429 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5430 if (FAILED(rc)) goto end;
5431 right = &tempRight;
5434 /* check for invalid inputs */
5435 lOk = TRUE;
5436 switch (V_VT(left) & VT_TYPEMASK) {
5437 case VT_BOOL :
5438 case VT_I1 :
5439 case VT_I2 :
5440 case VT_I4 :
5441 case VT_I8 :
5442 case VT_INT :
5443 case VT_UI1 :
5444 case VT_UI2 :
5445 case VT_UI4 :
5446 case VT_UI8 :
5447 case VT_UINT :
5448 case VT_R4 :
5449 case VT_R8 :
5450 case VT_CY :
5451 case VT_EMPTY:
5452 case VT_DATE :
5453 case VT_BSTR :
5454 case VT_DECIMAL:
5455 break;
5456 case VT_VARIANT:
5457 case VT_UNKNOWN:
5458 V_VT(result) = VT_EMPTY;
5459 rc = DISP_E_TYPEMISMATCH;
5460 goto end;
5461 case VT_ERROR:
5462 rc = DISP_E_TYPEMISMATCH;
5463 goto end;
5464 case VT_RECORD:
5465 V_VT(result) = VT_EMPTY;
5466 rc = DISP_E_TYPEMISMATCH;
5467 goto end;
5468 case VT_NULL:
5469 break;
5470 default:
5471 V_VT(result) = VT_EMPTY;
5472 rc = DISP_E_BADVARTYPE;
5473 goto end;
5477 switch (V_VT(right) & VT_TYPEMASK) {
5478 case VT_BOOL :
5479 case VT_I1 :
5480 case VT_I2 :
5481 case VT_I4 :
5482 case VT_I8 :
5483 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5485 V_VT(result) = VT_EMPTY;
5486 rc = DISP_E_TYPEMISMATCH;
5487 goto end;
5489 case VT_INT :
5490 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5492 V_VT(result) = VT_EMPTY;
5493 rc = DISP_E_TYPEMISMATCH;
5494 goto end;
5496 case VT_UI1 :
5497 case VT_UI2 :
5498 case VT_UI4 :
5499 case VT_UI8 :
5500 case VT_UINT :
5501 case VT_R4 :
5502 case VT_R8 :
5503 case VT_CY :
5504 if(V_VT(left) == VT_EMPTY)
5506 V_VT(result) = VT_I4;
5507 rc = S_OK;
5508 goto end;
5510 case VT_EMPTY:
5511 case VT_DATE :
5512 case VT_DECIMAL:
5513 if(V_VT(left) == VT_ERROR)
5515 V_VT(result) = VT_EMPTY;
5516 rc = DISP_E_TYPEMISMATCH;
5517 goto end;
5519 case VT_BSTR:
5520 if(V_VT(left) == VT_NULL)
5522 V_VT(result) = VT_NULL;
5523 rc = S_OK;
5524 goto end;
5526 break;
5528 case VT_VOID:
5529 V_VT(result) = VT_EMPTY;
5530 rc = DISP_E_BADVARTYPE;
5531 goto end;
5532 case VT_NULL:
5533 if(V_VT(left) == VT_VOID)
5535 V_VT(result) = VT_EMPTY;
5536 rc = DISP_E_BADVARTYPE;
5537 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5538 lOk)
5540 V_VT(result) = VT_NULL;
5541 rc = S_OK;
5542 } else
5544 V_VT(result) = VT_NULL;
5545 rc = DISP_E_BADVARTYPE;
5547 goto end;
5548 case VT_VARIANT:
5549 case VT_UNKNOWN:
5550 V_VT(result) = VT_EMPTY;
5551 rc = DISP_E_TYPEMISMATCH;
5552 goto end;
5553 case VT_ERROR:
5554 rc = DISP_E_TYPEMISMATCH;
5555 goto end;
5556 case VT_RECORD:
5557 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5559 V_VT(result) = VT_EMPTY;
5560 rc = DISP_E_BADVARTYPE;
5561 } else
5563 V_VT(result) = VT_EMPTY;
5564 rc = DISP_E_TYPEMISMATCH;
5566 goto end;
5567 default:
5568 V_VT(result) = VT_EMPTY;
5569 rc = DISP_E_BADVARTYPE;
5570 goto end;
5573 /* determine the result type */
5574 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5575 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5576 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5577 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5578 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5579 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5580 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5581 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5582 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5583 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5584 else resT = VT_I4; /* most outputs are I4 */
5586 /* convert to I8 for the modulo */
5587 rc = VariantChangeType(&lv, left, 0, VT_I8);
5588 if(FAILED(rc))
5590 FIXME("Could not convert left type %d to %d? rc == %#lx.\n", V_VT(left), VT_I8, rc);
5591 goto end;
5594 rc = VariantChangeType(&rv, right, 0, VT_I8);
5595 if(FAILED(rc))
5597 FIXME("Could not convert right type %d to %d? rc == %#lx.\n", V_VT(right), VT_I8, rc);
5598 goto end;
5601 /* if right is zero set VT_EMPTY and return divide by zero */
5602 if(V_I8(&rv) == 0)
5604 V_VT(result) = VT_EMPTY;
5605 rc = DISP_E_DIVBYZERO;
5606 goto end;
5609 /* perform the modulo operation */
5610 V_VT(result) = VT_I8;
5611 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5613 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5614 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5615 wine_dbgstr_longlong(V_I8(result)));
5617 /* convert left and right to the destination type */
5618 rc = VariantChangeType(result, result, 0, resT);
5619 if(FAILED(rc))
5621 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5622 /* fall to end of function */
5625 end:
5626 VariantClear(&lv);
5627 VariantClear(&rv);
5628 VariantClear(&tempLeft);
5629 VariantClear(&tempRight);
5630 return rc;
5633 /**********************************************************************
5634 * VarPow [OLEAUT32.158]
5636 * Computes the power of one variant to another variant.
5638 * PARAMS
5639 * left [I] First variant
5640 * right [I] Second variant
5641 * result [O] Result variant
5643 * RETURNS
5644 * Success: S_OK.
5645 * Failure: An HRESULT error code indicating the error.
5647 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5649 HRESULT hr = S_OK;
5650 VARIANT dl,dr;
5651 VARTYPE resvt = VT_EMPTY;
5652 VARTYPE leftvt,rightvt;
5653 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5654 VARIANT tempLeft, tempRight;
5656 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5658 VariantInit(&dl);
5659 VariantInit(&dr);
5660 VariantInit(&tempLeft);
5661 VariantInit(&tempRight);
5663 /* Handle VT_DISPATCH by storing and taking address of returned value */
5664 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5666 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5667 if (FAILED(hr)) goto end;
5668 left = &tempLeft;
5670 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5672 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5673 if (FAILED(hr)) goto end;
5674 right = &tempRight;
5677 leftvt = V_VT(left)&VT_TYPEMASK;
5678 rightvt = V_VT(right)&VT_TYPEMASK;
5679 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5680 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5682 if (leftExtraFlags != rightExtraFlags)
5684 hr = DISP_E_BADVARTYPE;
5685 goto end;
5687 ExtraFlags = leftExtraFlags;
5689 /* Native VarPow always returns an error when using extra flags */
5690 if (ExtraFlags != 0)
5692 hr = DISP_E_BADVARTYPE;
5693 goto end;
5696 /* Determine return type */
5697 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5698 V_VT(result) = VT_NULL;
5699 hr = S_OK;
5700 goto end;
5702 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5703 leftvt == VT_I4 || leftvt == VT_R4 ||
5704 leftvt == VT_R8 || leftvt == VT_CY ||
5705 leftvt == VT_DATE || leftvt == VT_BSTR ||
5706 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5707 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5708 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5709 rightvt == VT_I4 || rightvt == VT_R4 ||
5710 rightvt == VT_R8 || rightvt == VT_CY ||
5711 rightvt == VT_DATE || rightvt == VT_BSTR ||
5712 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5713 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5714 resvt = VT_R8;
5715 else
5717 hr = DISP_E_BADVARTYPE;
5718 goto end;
5721 hr = VariantChangeType(&dl,left,0,resvt);
5722 if (FAILED(hr)) {
5723 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5724 hr = E_FAIL;
5725 goto end;
5728 hr = VariantChangeType(&dr,right,0,resvt);
5729 if (FAILED(hr)) {
5730 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5731 hr = E_FAIL;
5732 goto end;
5735 V_VT(result) = VT_R8;
5736 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5738 end:
5739 VariantClear(&dl);
5740 VariantClear(&dr);
5741 VariantClear(&tempLeft);
5742 VariantClear(&tempRight);
5744 return hr;
5747 /**********************************************************************
5748 * VarImp [OLEAUT32.154]
5750 * Bitwise implication of two variants.
5752 * PARAMS
5753 * left [I] First variant
5754 * right [I] Second variant
5755 * result [O] Result variant
5757 * RETURNS
5758 * Success: S_OK.
5759 * Failure: An HRESULT error code indicating the error.
5761 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5763 HRESULT hres = S_OK;
5764 VARTYPE resvt = VT_EMPTY;
5765 VARTYPE leftvt,rightvt;
5766 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5767 VARIANT lv,rv;
5768 double d;
5769 VARIANT tempLeft, tempRight;
5771 VariantInit(&lv);
5772 VariantInit(&rv);
5773 VariantInit(&tempLeft);
5774 VariantInit(&tempRight);
5776 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5778 /* Handle VT_DISPATCH by storing and taking address of returned value */
5779 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5781 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5782 if (FAILED(hres)) goto VarImp_Exit;
5783 left = &tempLeft;
5785 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5787 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5788 if (FAILED(hres)) goto VarImp_Exit;
5789 right = &tempRight;
5792 leftvt = V_VT(left)&VT_TYPEMASK;
5793 rightvt = V_VT(right)&VT_TYPEMASK;
5794 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5795 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5797 if (leftExtraFlags != rightExtraFlags)
5799 hres = DISP_E_BADVARTYPE;
5800 goto VarImp_Exit;
5802 ExtraFlags = leftExtraFlags;
5804 /* Native VarImp always returns an error when using extra
5805 * flags or if the variants are I8 and INT.
5807 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5808 ExtraFlags != 0)
5810 hres = DISP_E_BADVARTYPE;
5811 goto VarImp_Exit;
5814 /* Determine result type */
5815 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5816 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5818 V_VT(result) = VT_NULL;
5819 hres = S_OK;
5820 goto VarImp_Exit;
5822 else if (leftvt == VT_I8 || rightvt == VT_I8)
5823 resvt = VT_I8;
5824 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5825 leftvt == VT_INT || rightvt == VT_INT ||
5826 leftvt == VT_UINT || rightvt == VT_UINT ||
5827 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5828 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5829 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5830 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5831 leftvt == VT_DATE || rightvt == VT_DATE ||
5832 leftvt == VT_CY || rightvt == VT_CY ||
5833 leftvt == VT_R8 || rightvt == VT_R8 ||
5834 leftvt == VT_R4 || rightvt == VT_R4 ||
5835 leftvt == VT_I1 || rightvt == VT_I1)
5836 resvt = VT_I4;
5837 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5838 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5839 (leftvt == VT_NULL && rightvt == VT_UI1))
5840 resvt = VT_UI1;
5841 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5842 leftvt == VT_I2 || rightvt == VT_I2 ||
5843 leftvt == VT_UI1 || rightvt == VT_UI1)
5844 resvt = VT_I2;
5845 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5846 leftvt == VT_BSTR || rightvt == VT_BSTR)
5847 resvt = VT_BOOL;
5849 /* VT_NULL requires special handling for when the opposite
5850 * variant is equal to something other than -1.
5851 * (NULL Imp 0 = NULL, NULL Imp n = n)
5853 if (leftvt == VT_NULL)
5855 VARIANT_BOOL b;
5856 switch(rightvt)
5858 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5859 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5860 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5861 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5862 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5863 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5864 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5865 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5866 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5867 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5868 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5869 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5870 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5871 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5872 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5873 case VT_DECIMAL:
5874 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5875 resvt = VT_NULL;
5876 break;
5877 case VT_BSTR:
5878 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5879 if (FAILED(hres)) goto VarImp_Exit;
5880 else if (!b)
5881 V_VT(result) = VT_NULL;
5882 else
5884 V_VT(result) = VT_BOOL;
5885 V_BOOL(result) = b;
5887 goto VarImp_Exit;
5889 if (resvt == VT_NULL)
5891 V_VT(result) = resvt;
5892 goto VarImp_Exit;
5894 else
5896 hres = VariantChangeType(result,right,0,resvt);
5897 goto VarImp_Exit;
5901 /* Special handling is required when NULL is the right variant.
5902 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5904 else if (rightvt == VT_NULL)
5906 VARIANT_BOOL b;
5907 switch(leftvt)
5909 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5910 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5911 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5912 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5913 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5914 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5915 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5916 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5917 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5918 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5919 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5920 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5921 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5922 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5923 case VT_DECIMAL:
5924 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5925 resvt = VT_NULL;
5926 break;
5927 case VT_BSTR:
5928 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5929 if (FAILED(hres)) goto VarImp_Exit;
5930 else if (b == VARIANT_TRUE)
5931 resvt = VT_NULL;
5933 if (resvt == VT_NULL)
5935 V_VT(result) = resvt;
5936 goto VarImp_Exit;
5940 hres = VariantCopy(&lv, left);
5941 if (FAILED(hres)) goto VarImp_Exit;
5943 if (rightvt == VT_NULL)
5945 memset( &rv, 0, sizeof(rv) );
5946 V_VT(&rv) = resvt;
5948 else
5950 hres = VariantCopy(&rv, right);
5951 if (FAILED(hres)) goto VarImp_Exit;
5954 if (V_VT(&lv) == VT_BSTR &&
5955 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5956 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5957 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5958 hres = VariantChangeType(&lv,&lv,0,resvt);
5959 if (FAILED(hres)) goto VarImp_Exit;
5961 if (V_VT(&rv) == VT_BSTR &&
5962 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5963 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5964 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5965 hres = VariantChangeType(&rv, &rv, 0, resvt);
5966 if (FAILED(hres)) goto VarImp_Exit;
5968 /* do the math */
5969 V_VT(result) = resvt;
5970 switch (resvt)
5972 case VT_I8:
5973 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5974 break;
5975 case VT_I4:
5976 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5977 break;
5978 case VT_I2:
5979 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
5980 break;
5981 case VT_UI1:
5982 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
5983 break;
5984 case VT_BOOL:
5985 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
5986 break;
5987 default:
5988 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5989 leftvt,rightvt);
5992 VarImp_Exit:
5994 VariantClear(&lv);
5995 VariantClear(&rv);
5996 VariantClear(&tempLeft);
5997 VariantClear(&tempRight);
5999 return hres;