2 * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3 * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice including the dates of first publication and
13 * either this permission notice or a reference to
14 * http://oss.sgi.com/projects/FreeB/
15 * shall be included in all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25 * Except as contained in this notice, the name of Silicon Graphics, Inc.
26 * shall not be used in advertising or otherwise to promote the sale, use or
27 * other dealings in this Software without prior written authorization from
28 * Silicon Graphics, Inc.
31 ** Author: Eric Veach, July 1994.
37 #include <setjmp.h> /* longjmp */
38 #include <limits.h> /* LONG_MAX */
46 /* dictionary functions (used to be in dict.c) */
48 typedef void *DictKey
;
49 typedef struct DictNode DictNode
;
51 #define dictKey(n) ((n)->key)
52 #define dictSucc(n) ((n)->next)
53 #define dictPred(n) ((n)->prev)
54 #define dictMin(d) ((d)->head.next)
55 #define dictMax(d) ((d)->head.prev)
56 #define dictInsert(d,k) (dictInsertBefore((d),&(d)->head,(k)))
67 int (*leq
)(void *frame
, DictKey key1
, DictKey key2
);
70 static Dict
*dictNewDict( void *frame
,
71 int (*leq
)(void *frame
, DictKey key1
, DictKey key2
) )
73 Dict
*dict
= HeapAlloc( GetProcessHeap(), 0, sizeof( Dict
));
76 if (dict
== NULL
) return NULL
;
90 static void dictDeleteDict( Dict
*dict
)
92 DictNode
*node
, *next
;
94 for( node
= dict
->head
.next
; node
!= &dict
->head
; node
= next
) {
96 HeapFree( GetProcessHeap(), 0, node
);
98 HeapFree( GetProcessHeap(), 0, dict
);
101 static DictNode
*dictInsertBefore( Dict
*dict
, DictNode
*node
, DictKey key
)
107 } while( node
->key
!= NULL
&& ! (*dict
->leq
)(dict
->frame
, node
->key
, key
));
109 newNode
= HeapAlloc( GetProcessHeap(), 0, sizeof( DictNode
));
110 if (newNode
== NULL
) return NULL
;
113 newNode
->next
= node
->next
;
114 node
->next
->prev
= newNode
;
115 newNode
->prev
= node
;
116 node
->next
= newNode
;
121 static void dictDelete( Dict
*dict
, DictNode
*node
)
123 node
->next
->prev
= node
->prev
;
124 node
->prev
->next
= node
->next
;
125 HeapFree( GetProcessHeap(), 0, node
);
128 static DictNode
*dictSearch( Dict
*dict
, DictKey key
)
130 DictNode
*node
= &dict
->head
;
134 } while( node
->key
!= NULL
&& ! (*dict
->leq
)(dict
->frame
, key
, node
->key
));
140 /* For each pair of adjacent edges crossing the sweep line, there is
141 * an ActiveRegion to represent the region between them. The active
142 * regions are kept in sorted order in a dynamic dictionary. As the
143 * sweep line crosses each vertex, we update the affected regions.
146 struct ActiveRegion
{
147 GLUhalfEdge
*eUp
; /* upper edge, directed right to left */
148 DictNode
*nodeUp
; /* dictionary node corresponding to eUp */
149 int windingNumber
; /* used to determine which regions are
150 * inside the polygon */
151 GLboolean inside
; /* is this region inside the polygon? */
152 GLboolean sentinel
; /* marks fake edges at t = +/-infinity */
153 GLboolean dirty
; /* marks regions where the upper or lower
154 * edge has changed, but we haven't checked
155 * whether they intersect yet */
156 GLboolean fixUpperEdge
; /* marks temporary edges introduced when
157 * we process a "right vertex" (one without
158 * any edges leaving to the right) */
161 #define RegionBelow(r) ((ActiveRegion *) dictKey(dictPred((r)->nodeUp)))
162 #define RegionAbove(r) ((ActiveRegion *) dictKey(dictSucc((r)->nodeUp)))
165 #define DebugEvent( tess )
168 * Invariants for the Edge Dictionary.
169 * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
170 * at any valid location of the sweep event
171 * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
172 * share a common endpoint
173 * - for each e, e->Dst has been processed, but not e->Org
174 * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org)
175 * where "event" is the current sweep line event.
176 * - no edge e has zero length
178 * Invariants for the Mesh (the processed portion).
179 * - the portion of the mesh left of the sweep line is a planar graph,
180 * ie. there is *some* way to embed it in the plane
181 * - no processed edge has zero length
182 * - no two processed vertices have identical coordinates
183 * - each "inside" region is monotone, ie. can be broken into two chains
184 * of monotonically increasing vertices according to VertLeq(v1,v2)
185 * - a non-invariant: these chains may intersect (very slightly)
187 * Invariants for the Sweep.
188 * - if none of the edges incident to the event vertex have an activeRegion
189 * (ie. none of these edges are in the edge dictionary), then the vertex
190 * has only right-going edges.
191 * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
192 * by ConnectRightVertex), then it is the only right-going edge from
193 * its associated vertex. (This says that these edges exist only
194 * when it is necessary.)
199 #define MAX(x,y) ((x) >= (y) ? (x) : (y))
200 #define MIN(x,y) ((x) <= (y) ? (x) : (y))
202 /* When we merge two edges into one, we need to compute the combined
203 * winding of the new edge.
205 #define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \
206 eDst->Sym->winding += eSrc->Sym->winding)
208 static void SweepEvent( GLUtesselator
*tess
, GLUvertex
*vEvent
);
209 static void WalkDirtyRegions( GLUtesselator
*tess
, ActiveRegion
*regUp
);
210 static int CheckForRightSplice( GLUtesselator
*tess
, ActiveRegion
*regUp
);
212 static int EdgeLeq( GLUtesselator
*tess
, ActiveRegion
*reg1
,
215 * Both edges must be directed from right to left (this is the canonical
216 * direction for the upper edge of each region).
218 * The strategy is to evaluate a "t" value for each edge at the
219 * current sweep line position, given by tess->event. The calculations
220 * are designed to be very stable, but of course they are not perfect.
222 * Special case: if both edge destinations are at the sweep event,
223 * we sort the edges by slope (they would otherwise compare equally).
226 GLUvertex
*event
= tess
->event
;
227 GLUhalfEdge
*e1
, *e2
;
233 if( e1
->Dst
== event
) {
234 if( e2
->Dst
== event
) {
235 /* Two edges right of the sweep line which meet at the sweep event.
236 * Sort them by slope.
238 if( VertLeq( e1
->Org
, e2
->Org
)) {
239 return EdgeSign( e2
->Dst
, e1
->Org
, e2
->Org
) <= 0;
241 return EdgeSign( e1
->Dst
, e2
->Org
, e1
->Org
) >= 0;
243 return EdgeSign( e2
->Dst
, event
, e2
->Org
) <= 0;
245 if( e2
->Dst
== event
) {
246 return EdgeSign( e1
->Dst
, event
, e1
->Org
) >= 0;
249 /* General case - compute signed distance *from* e1, e2 to event */
250 t1
= EdgeEval( e1
->Dst
, event
, e1
->Org
);
251 t2
= EdgeEval( e2
->Dst
, event
, e2
->Org
);
256 static void DeleteRegion( GLUtesselator
*tess
, ActiveRegion
*reg
)
258 if( reg
->fixUpperEdge
) {
259 /* It was created with zero winding number, so it better be
260 * deleted with zero winding number (ie. it better not get merged
263 assert( reg
->eUp
->winding
== 0 );
265 reg
->eUp
->activeRegion
= NULL
;
266 dictDelete( tess
->dict
, reg
->nodeUp
);
267 HeapFree( GetProcessHeap(), 0, reg
);
271 static int FixUpperEdge( ActiveRegion
*reg
, GLUhalfEdge
*newEdge
)
273 * Replace an upper edge which needs fixing (see ConnectRightVertex).
276 assert( reg
->fixUpperEdge
);
277 if ( !__gl_meshDelete( reg
->eUp
) ) return 0;
278 reg
->fixUpperEdge
= FALSE
;
280 newEdge
->activeRegion
= reg
;
285 static ActiveRegion
*TopLeftRegion( ActiveRegion
*reg
)
287 GLUvertex
*org
= reg
->eUp
->Org
;
290 /* Find the region above the uppermost edge with the same origin */
292 reg
= RegionAbove( reg
);
293 } while( reg
->eUp
->Org
== org
);
295 /* If the edge above was a temporary edge introduced by ConnectRightVertex,
296 * now is the time to fix it.
298 if( reg
->fixUpperEdge
) {
299 e
= __gl_meshConnect( RegionBelow(reg
)->eUp
->Sym
, reg
->eUp
->Lnext
);
300 if (e
== NULL
) return NULL
;
301 if ( !FixUpperEdge( reg
, e
) ) return NULL
;
302 reg
= RegionAbove( reg
);
307 static ActiveRegion
*TopRightRegion( ActiveRegion
*reg
)
309 GLUvertex
*dst
= reg
->eUp
->Dst
;
311 /* Find the region above the uppermost edge with the same destination */
313 reg
= RegionAbove( reg
);
314 } while( reg
->eUp
->Dst
== dst
);
318 static ActiveRegion
*AddRegionBelow( GLUtesselator
*tess
,
319 ActiveRegion
*regAbove
,
320 GLUhalfEdge
*eNewUp
)
322 * Add a new active region to the sweep line, *somewhere* below "regAbove"
323 * (according to where the new edge belongs in the sweep-line dictionary).
324 * The upper edge of the new region will be "eNewUp".
325 * Winding number and "inside" flag are not updated.
328 ActiveRegion
*regNew
= HeapAlloc( GetProcessHeap(), 0, sizeof( ActiveRegion
));
329 if (regNew
== NULL
) longjmp(tess
->env
,1);
331 regNew
->eUp
= eNewUp
;
332 regNew
->nodeUp
= dictInsertBefore( tess
->dict
, regAbove
->nodeUp
, regNew
);
333 if (regNew
->nodeUp
== NULL
) longjmp(tess
->env
,1);
334 regNew
->fixUpperEdge
= FALSE
;
335 regNew
->sentinel
= FALSE
;
336 regNew
->dirty
= FALSE
;
338 eNewUp
->activeRegion
= regNew
;
342 static GLboolean
IsWindingInside( GLUtesselator
*tess
, int n
)
344 switch( tess
->windingRule
) {
345 case GLU_TESS_WINDING_ODD
:
347 case GLU_TESS_WINDING_NONZERO
:
349 case GLU_TESS_WINDING_POSITIVE
:
351 case GLU_TESS_WINDING_NEGATIVE
:
353 case GLU_TESS_WINDING_ABS_GEQ_TWO
:
354 return (n
>= 2) || (n
<= -2);
359 return GL_FALSE
; /* avoid compiler complaints */
363 static void ComputeWinding( GLUtesselator
*tess
, ActiveRegion
*reg
)
365 reg
->windingNumber
= RegionAbove(reg
)->windingNumber
+ reg
->eUp
->winding
;
366 reg
->inside
= IsWindingInside( tess
, reg
->windingNumber
);
370 static void FinishRegion( GLUtesselator
*tess
, ActiveRegion
*reg
)
372 * Delete a region from the sweep line. This happens when the upper
373 * and lower chains of a region meet (at a vertex on the sweep line).
374 * The "inside" flag is copied to the appropriate mesh face (we could
375 * not do this before -- since the structure of the mesh is always
376 * changing, this face may not have even existed until now).
379 GLUhalfEdge
*e
= reg
->eUp
;
380 GLUface
*f
= e
->Lface
;
382 f
->inside
= reg
->inside
;
383 f
->anEdge
= e
; /* optimization for __gl_meshTessellateMonoRegion() */
384 DeleteRegion( tess
, reg
);
388 static GLUhalfEdge
*FinishLeftRegions( GLUtesselator
*tess
,
389 ActiveRegion
*regFirst
, ActiveRegion
*regLast
)
391 * We are given a vertex with one or more left-going edges. All affected
392 * edges should be in the edge dictionary. Starting at regFirst->eUp,
393 * we walk down deleting all regions where both edges have the same
394 * origin vOrg. At the same time we copy the "inside" flag from the
395 * active region to the face, since at this point each face will belong
396 * to at most one region (this was not necessarily true until this point
397 * in the sweep). The walk stops at the region above regLast; if regLast
398 * is NULL we walk as far as possible. At the same time we relink the
399 * mesh if necessary, so that the ordering of edges around vOrg is the
400 * same as in the dictionary.
403 ActiveRegion
*reg
, *regPrev
;
404 GLUhalfEdge
*e
, *ePrev
;
407 ePrev
= regFirst
->eUp
;
408 while( regPrev
!= regLast
) {
409 regPrev
->fixUpperEdge
= FALSE
; /* placement was OK */
410 reg
= RegionBelow( regPrev
);
412 if( e
->Org
!= ePrev
->Org
) {
413 if( ! reg
->fixUpperEdge
) {
414 /* Remove the last left-going edge. Even though there are no further
415 * edges in the dictionary with this origin, there may be further
416 * such edges in the mesh (if we are adding left edges to a vertex
417 * that has already been processed). Thus it is important to call
418 * FinishRegion rather than just DeleteRegion.
420 FinishRegion( tess
, regPrev
);
423 /* If the edge below was a temporary edge introduced by
424 * ConnectRightVertex, now is the time to fix it.
426 e
= __gl_meshConnect( ePrev
->Lprev
, e
->Sym
);
427 if (e
== NULL
) longjmp(tess
->env
,1);
428 if ( !FixUpperEdge( reg
, e
) ) longjmp(tess
->env
,1);
431 /* Relink edges so that ePrev->Onext == e */
432 if( ePrev
->Onext
!= e
) {
433 if ( !__gl_meshSplice( e
->Oprev
, e
) ) longjmp(tess
->env
,1);
434 if ( !__gl_meshSplice( ePrev
, e
) ) longjmp(tess
->env
,1);
436 FinishRegion( tess
, regPrev
); /* may change reg->eUp */
444 static void AddRightEdges( GLUtesselator
*tess
, ActiveRegion
*regUp
,
445 GLUhalfEdge
*eFirst
, GLUhalfEdge
*eLast
, GLUhalfEdge
*eTopLeft
,
448 * Purpose: insert right-going edges into the edge dictionary, and update
449 * winding numbers and mesh connectivity appropriately. All right-going
450 * edges share a common origin vOrg. Edges are inserted CCW starting at
451 * eFirst; the last edge inserted is eLast->Oprev. If vOrg has any
452 * left-going edges already processed, then eTopLeft must be the edge
453 * such that an imaginary upward vertical segment from vOrg would be
454 * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
458 ActiveRegion
*reg
, *regPrev
;
459 GLUhalfEdge
*e
, *ePrev
;
460 int firstTime
= TRUE
;
462 /* Insert the new right-going edges in the dictionary */
465 assert( VertLeq( e
->Org
, e
->Dst
));
466 AddRegionBelow( tess
, regUp
, e
->Sym
);
468 } while ( e
!= eLast
);
470 /* Walk *all* right-going edges from e->Org, in the dictionary order,
471 * updating the winding numbers of each region, and re-linking the mesh
472 * edges to match the dictionary ordering (if necessary).
474 if( eTopLeft
== NULL
) {
475 eTopLeft
= RegionBelow( regUp
)->eUp
->Rprev
;
480 reg
= RegionBelow( regPrev
);
482 if( e
->Org
!= ePrev
->Org
) break;
484 if( e
->Onext
!= ePrev
) {
485 /* Unlink e from its current position, and relink below ePrev */
486 if ( !__gl_meshSplice( e
->Oprev
, e
) ) longjmp(tess
->env
,1);
487 if ( !__gl_meshSplice( ePrev
->Oprev
, e
) ) longjmp(tess
->env
,1);
489 /* Compute the winding number and "inside" flag for the new regions */
490 reg
->windingNumber
= regPrev
->windingNumber
- e
->winding
;
491 reg
->inside
= IsWindingInside( tess
, reg
->windingNumber
);
493 /* Check for two outgoing edges with same slope -- process these
494 * before any intersection tests (see example in __gl_computeInterior).
496 regPrev
->dirty
= TRUE
;
497 if( ! firstTime
&& CheckForRightSplice( tess
, regPrev
)) {
498 AddWinding( e
, ePrev
);
499 DeleteRegion( tess
, regPrev
);
500 if ( !__gl_meshDelete( ePrev
) ) longjmp(tess
->env
,1);
506 regPrev
->dirty
= TRUE
;
507 assert( regPrev
->windingNumber
- e
->winding
== reg
->windingNumber
);
510 /* Check for intersections between newly adjacent edges. */
511 WalkDirtyRegions( tess
, regPrev
);
516 static void CallCombine( GLUtesselator
*tess
, GLUvertex
*isect
,
517 void *data
[4], GLfloat weights
[4], int needed
)
521 /* Copy coord data in case the callback changes it. */
522 coords
[0] = isect
->coords
[0];
523 coords
[1] = isect
->coords
[1];
524 coords
[2] = isect
->coords
[2];
527 CALL_COMBINE_OR_COMBINE_DATA( coords
, data
, weights
, &isect
->data
);
528 if( isect
->data
== NULL
) {
530 isect
->data
= data
[0];
531 } else if( ! tess
->fatalError
) {
532 /* The only way fatal error is when two edges are found to intersect,
533 * but the user has not provided the callback necessary to handle
534 * generated intersection points.
536 CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_COMBINE_CALLBACK
);
537 tess
->fatalError
= TRUE
;
542 static void SpliceMergeVertices( GLUtesselator
*tess
, GLUhalfEdge
*e1
,
545 * Two vertices with idential coordinates are combined into one.
546 * e1->Org is kept, while e2->Org is discarded.
549 void *data
[4] = { NULL
, NULL
, NULL
, NULL
};
550 GLfloat weights
[4] = { 0.5, 0.5, 0.0, 0.0 };
552 data
[0] = e1
->Org
->data
;
553 data
[1] = e2
->Org
->data
;
554 CallCombine( tess
, e1
->Org
, data
, weights
, FALSE
);
555 if ( !__gl_meshSplice( e1
, e2
) ) longjmp(tess
->env
,1);
558 static void VertexWeights( GLUvertex
*isect
, GLUvertex
*org
, GLUvertex
*dst
,
561 * Find some weights which describe how the intersection vertex is
562 * a linear combination of "org" and "dest". Each of the two edges
563 * which generated "isect" is allocated 50% of the weight; each edge
564 * splits the weight between its org and dst according to the
565 * relative distance to "isect".
568 GLdouble t1
= VertL1dist( org
, isect
);
569 GLdouble t2
= VertL1dist( dst
, isect
);
571 weights
[0] = 0.5 * t2
/ (t1
+ t2
);
572 weights
[1] = 0.5 * t1
/ (t1
+ t2
);
573 isect
->coords
[0] += weights
[0]*org
->coords
[0] + weights
[1]*dst
->coords
[0];
574 isect
->coords
[1] += weights
[0]*org
->coords
[1] + weights
[1]*dst
->coords
[1];
575 isect
->coords
[2] += weights
[0]*org
->coords
[2] + weights
[1]*dst
->coords
[2];
579 static void GetIntersectData( GLUtesselator
*tess
, GLUvertex
*isect
,
580 GLUvertex
*orgUp
, GLUvertex
*dstUp
,
581 GLUvertex
*orgLo
, GLUvertex
*dstLo
)
583 * We've computed a new intersection point, now we need a "data" pointer
584 * from the user so that we can refer to this new vertex in the
585 * rendering callbacks.
591 data
[0] = orgUp
->data
;
592 data
[1] = dstUp
->data
;
593 data
[2] = orgLo
->data
;
594 data
[3] = dstLo
->data
;
596 isect
->coords
[0] = isect
->coords
[1] = isect
->coords
[2] = 0;
597 VertexWeights( isect
, orgUp
, dstUp
, &weights
[0] );
598 VertexWeights( isect
, orgLo
, dstLo
, &weights
[2] );
600 CallCombine( tess
, isect
, data
, weights
, TRUE
);
603 static int CheckForRightSplice( GLUtesselator
*tess
, ActiveRegion
*regUp
)
605 * Check the upper and lower edge of "regUp", to make sure that the
606 * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
607 * origin is leftmost).
609 * The main purpose is to splice right-going edges with the same
610 * dest vertex and nearly identical slopes (ie. we can't distinguish
611 * the slopes numerically). However the splicing can also help us
612 * to recover from numerical errors. For example, suppose at one
613 * point we checked eUp and eLo, and decided that eUp->Org is barely
614 * above eLo. Then later, we split eLo into two edges (eg. from
615 * a splice operation like this one). This can change the result of
616 * our test so that now eUp->Org is incident to eLo, or barely below it.
617 * We must correct this condition to maintain the dictionary invariants.
619 * One possibility is to check these edges for intersection again
620 * (ie. CheckForIntersect). This is what we do if possible. However
621 * CheckForIntersect requires that tess->event lies between eUp and eLo,
622 * so that it has something to fall back on when the intersection
623 * calculation gives us an unusable answer. So, for those cases where
624 * we can't check for intersection, this routine fixes the problem
625 * by just splicing the offending vertex into the other edge.
626 * This is a guaranteed solution, no matter how degenerate things get.
627 * Basically this is a combinatorial solution to a numerical problem.
630 ActiveRegion
*regLo
= RegionBelow(regUp
);
631 GLUhalfEdge
*eUp
= regUp
->eUp
;
632 GLUhalfEdge
*eLo
= regLo
->eUp
;
634 if( VertLeq( eUp
->Org
, eLo
->Org
)) {
635 if( EdgeSign( eLo
->Dst
, eUp
->Org
, eLo
->Org
) > 0 ) return FALSE
;
637 /* eUp->Org appears to be below eLo */
638 if( ! VertEq( eUp
->Org
, eLo
->Org
)) {
639 /* Splice eUp->Org into eLo */
640 if ( __gl_meshSplitEdge( eLo
->Sym
) == NULL
) longjmp(tess
->env
,1);
641 if ( !__gl_meshSplice( eUp
, eLo
->Oprev
) ) longjmp(tess
->env
,1);
642 regUp
->dirty
= regLo
->dirty
= TRUE
;
644 } else if( eUp
->Org
!= eLo
->Org
) {
645 /* merge the two vertices, discarding eUp->Org */
646 __gl_pqSortDelete( tess
->pq
, eUp
->Org
->pqHandle
);
647 SpliceMergeVertices( tess
, eLo
->Oprev
, eUp
);
650 if( EdgeSign( eUp
->Dst
, eLo
->Org
, eUp
->Org
) < 0 ) return FALSE
;
652 /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
653 RegionAbove(regUp
)->dirty
= regUp
->dirty
= TRUE
;
654 if (__gl_meshSplitEdge( eUp
->Sym
) == NULL
) longjmp(tess
->env
,1);
655 if ( !__gl_meshSplice( eLo
->Oprev
, eUp
) ) longjmp(tess
->env
,1);
660 static int CheckForLeftSplice( GLUtesselator
*tess
, ActiveRegion
*regUp
)
662 * Check the upper and lower edge of "regUp", to make sure that the
663 * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
664 * destination is rightmost).
666 * Theoretically, this should always be true. However, splitting an edge
667 * into two pieces can change the results of previous tests. For example,
668 * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
669 * is barely above eLo. Then later, we split eLo into two edges (eg. from
670 * a splice operation like this one). This can change the result of
671 * the test so that now eUp->Dst is incident to eLo, or barely below it.
672 * We must correct this condition to maintain the dictionary invariants
673 * (otherwise new edges might get inserted in the wrong place in the
674 * dictionary, and bad stuff will happen).
676 * We fix the problem by just splicing the offending vertex into the
680 ActiveRegion
*regLo
= RegionBelow(regUp
);
681 GLUhalfEdge
*eUp
= regUp
->eUp
;
682 GLUhalfEdge
*eLo
= regLo
->eUp
;
685 assert( ! VertEq( eUp
->Dst
, eLo
->Dst
));
687 if( VertLeq( eUp
->Dst
, eLo
->Dst
)) {
688 if( EdgeSign( eUp
->Dst
, eLo
->Dst
, eUp
->Org
) < 0 ) return FALSE
;
690 /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
691 RegionAbove(regUp
)->dirty
= regUp
->dirty
= TRUE
;
692 e
= __gl_meshSplitEdge( eUp
);
693 if (e
== NULL
) longjmp(tess
->env
,1);
694 if ( !__gl_meshSplice( eLo
->Sym
, e
) ) longjmp(tess
->env
,1);
695 e
->Lface
->inside
= regUp
->inside
;
697 if( EdgeSign( eLo
->Dst
, eUp
->Dst
, eLo
->Org
) > 0 ) return FALSE
;
699 /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
700 regUp
->dirty
= regLo
->dirty
= TRUE
;
701 e
= __gl_meshSplitEdge( eLo
);
702 if (e
== NULL
) longjmp(tess
->env
,1);
703 if ( !__gl_meshSplice( eUp
->Lnext
, eLo
->Sym
) ) longjmp(tess
->env
,1);
704 e
->Rface
->inside
= regUp
->inside
;
710 static int CheckForIntersect( GLUtesselator
*tess
, ActiveRegion
*regUp
)
712 * Check the upper and lower edges of the given region to see if
713 * they intersect. If so, create the intersection and add it
714 * to the data structures.
716 * Returns TRUE if adding the new intersection resulted in a recursive
717 * call to AddRightEdges(); in this case all "dirty" regions have been
718 * checked for intersections, and possibly regUp has been deleted.
721 ActiveRegion
*regLo
= RegionBelow(regUp
);
722 GLUhalfEdge
*eUp
= regUp
->eUp
;
723 GLUhalfEdge
*eLo
= regLo
->eUp
;
724 GLUvertex
*orgUp
= eUp
->Org
;
725 GLUvertex
*orgLo
= eLo
->Org
;
726 GLUvertex
*dstUp
= eUp
->Dst
;
727 GLUvertex
*dstLo
= eLo
->Dst
;
728 GLdouble tMinUp
, tMaxLo
;
729 GLUvertex isect
, *orgMin
;
732 assert( ! VertEq( dstLo
, dstUp
));
733 assert( EdgeSign( dstUp
, tess
->event
, orgUp
) <= 0 );
734 assert( EdgeSign( dstLo
, tess
->event
, orgLo
) >= 0 );
735 assert( orgUp
!= tess
->event
&& orgLo
!= tess
->event
);
736 assert( ! regUp
->fixUpperEdge
&& ! regLo
->fixUpperEdge
);
738 if( orgUp
== orgLo
) return FALSE
; /* right endpoints are the same */
740 tMinUp
= MIN( orgUp
->t
, dstUp
->t
);
741 tMaxLo
= MAX( orgLo
->t
, dstLo
->t
);
742 if( tMinUp
> tMaxLo
) return FALSE
; /* t ranges do not overlap */
744 if( VertLeq( orgUp
, orgLo
)) {
745 if( EdgeSign( dstLo
, orgUp
, orgLo
) > 0 ) return FALSE
;
747 if( EdgeSign( dstUp
, orgLo
, orgUp
) < 0 ) return FALSE
;
750 /* At this point the edges intersect, at least marginally */
753 __gl_edgeIntersect( dstUp
, orgUp
, dstLo
, orgLo
, &isect
);
754 /* The following properties are guaranteed: */
755 assert( MIN( orgUp
->t
, dstUp
->t
) <= isect
.t
);
756 assert( isect
.t
<= MAX( orgLo
->t
, dstLo
->t
));
757 assert( MIN( dstLo
->s
, dstUp
->s
) <= isect
.s
);
758 assert( isect
.s
<= MAX( orgLo
->s
, orgUp
->s
));
760 if( VertLeq( &isect
, tess
->event
)) {
761 /* The intersection point lies slightly to the left of the sweep line,
762 * so move it until it''s slightly to the right of the sweep line.
763 * (If we had perfect numerical precision, this would never happen
764 * in the first place). The easiest and safest thing to do is
765 * replace the intersection by tess->event.
767 isect
.s
= tess
->event
->s
;
768 isect
.t
= tess
->event
->t
;
770 /* Similarly, if the computed intersection lies to the right of the
771 * rightmost origin (which should rarely happen), it can cause
772 * unbelievable inefficiency on sufficiently degenerate inputs.
773 * (If you have the test program, try running test54.d with the
774 * "X zoom" option turned on).
776 orgMin
= VertLeq( orgUp
, orgLo
) ? orgUp
: orgLo
;
777 if( VertLeq( orgMin
, &isect
)) {
782 if( VertEq( &isect
, orgUp
) || VertEq( &isect
, orgLo
)) {
783 /* Easy case -- intersection at one of the right endpoints */
784 (void) CheckForRightSplice( tess
, regUp
);
788 if( (! VertEq( dstUp
, tess
->event
)
789 && EdgeSign( dstUp
, tess
->event
, &isect
) >= 0)
790 || (! VertEq( dstLo
, tess
->event
)
791 && EdgeSign( dstLo
, tess
->event
, &isect
) <= 0 ))
793 /* Very unusual -- the new upper or lower edge would pass on the
794 * wrong side of the sweep event, or through it. This can happen
795 * due to very small numerical errors in the intersection calculation.
797 if( dstLo
== tess
->event
) {
798 /* Splice dstLo into eUp, and process the new region(s) */
799 if (__gl_meshSplitEdge( eUp
->Sym
) == NULL
) longjmp(tess
->env
,1);
800 if ( !__gl_meshSplice( eLo
->Sym
, eUp
) ) longjmp(tess
->env
,1);
801 regUp
= TopLeftRegion( regUp
);
802 if (regUp
== NULL
) longjmp(tess
->env
,1);
803 eUp
= RegionBelow(regUp
)->eUp
;
804 FinishLeftRegions( tess
, RegionBelow(regUp
), regLo
);
805 AddRightEdges( tess
, regUp
, eUp
->Oprev
, eUp
, eUp
, TRUE
);
808 if( dstUp
== tess
->event
) {
809 /* Splice dstUp into eLo, and process the new region(s) */
810 if (__gl_meshSplitEdge( eLo
->Sym
) == NULL
) longjmp(tess
->env
,1);
811 if ( !__gl_meshSplice( eUp
->Lnext
, eLo
->Oprev
) ) longjmp(tess
->env
,1);
813 regUp
= TopRightRegion( regUp
);
814 e
= RegionBelow(regUp
)->eUp
->Rprev
;
815 regLo
->eUp
= eLo
->Oprev
;
816 eLo
= FinishLeftRegions( tess
, regLo
, NULL
);
817 AddRightEdges( tess
, regUp
, eLo
->Onext
, eUp
->Rprev
, e
, TRUE
);
820 /* Special case: called from ConnectRightVertex. If either
821 * edge passes on the wrong side of tess->event, split it
822 * (and wait for ConnectRightVertex to splice it appropriately).
824 if( EdgeSign( dstUp
, tess
->event
, &isect
) >= 0 ) {
825 RegionAbove(regUp
)->dirty
= regUp
->dirty
= TRUE
;
826 if (__gl_meshSplitEdge( eUp
->Sym
) == NULL
) longjmp(tess
->env
,1);
827 eUp
->Org
->s
= tess
->event
->s
;
828 eUp
->Org
->t
= tess
->event
->t
;
830 if( EdgeSign( dstLo
, tess
->event
, &isect
) <= 0 ) {
831 regUp
->dirty
= regLo
->dirty
= TRUE
;
832 if (__gl_meshSplitEdge( eLo
->Sym
) == NULL
) longjmp(tess
->env
,1);
833 eLo
->Org
->s
= tess
->event
->s
;
834 eLo
->Org
->t
= tess
->event
->t
;
836 /* leave the rest for ConnectRightVertex */
840 /* General case -- split both edges, splice into new vertex.
841 * When we do the splice operation, the order of the arguments is
842 * arbitrary as far as correctness goes. However, when the operation
843 * creates a new face, the work done is proportional to the size of
844 * the new face. We expect the faces in the processed part of
845 * the mesh (ie. eUp->Lface) to be smaller than the faces in the
846 * unprocessed original contours (which will be eLo->Oprev->Lface).
848 if (__gl_meshSplitEdge( eUp
->Sym
) == NULL
) longjmp(tess
->env
,1);
849 if (__gl_meshSplitEdge( eLo
->Sym
) == NULL
) longjmp(tess
->env
,1);
850 if ( !__gl_meshSplice( eLo
->Oprev
, eUp
) ) longjmp(tess
->env
,1);
851 eUp
->Org
->s
= isect
.s
;
852 eUp
->Org
->t
= isect
.t
;
853 eUp
->Org
->pqHandle
= __gl_pqSortInsert( tess
->pq
, eUp
->Org
);
854 if (eUp
->Org
->pqHandle
== LONG_MAX
) {
855 __gl_pqSortDeletePriorityQ(tess
->pq
);
857 longjmp(tess
->env
,1);
859 GetIntersectData( tess
, eUp
->Org
, orgUp
, dstUp
, orgLo
, dstLo
);
860 RegionAbove(regUp
)->dirty
= regUp
->dirty
= regLo
->dirty
= TRUE
;
864 static void WalkDirtyRegions( GLUtesselator
*tess
, ActiveRegion
*regUp
)
866 * When the upper or lower edge of any region changes, the region is
867 * marked "dirty". This routine walks through all the dirty regions
868 * and makes sure that the dictionary invariants are satisfied
869 * (see the comments at the beginning of this file). Of course
870 * new dirty regions can be created as we make changes to restore
874 ActiveRegion
*regLo
= RegionBelow(regUp
);
875 GLUhalfEdge
*eUp
, *eLo
;
878 /* Find the lowest dirty region (we walk from the bottom up). */
879 while( regLo
->dirty
) {
881 regLo
= RegionBelow(regLo
);
883 if( ! regUp
->dirty
) {
885 regUp
= RegionAbove( regUp
);
886 if( regUp
== NULL
|| ! regUp
->dirty
) {
887 /* We've walked all the dirty regions */
891 regUp
->dirty
= FALSE
;
895 if( eUp
->Dst
!= eLo
->Dst
) {
896 /* Check that the edge ordering is obeyed at the Dst vertices. */
897 if( CheckForLeftSplice( tess
, regUp
)) {
899 /* If the upper or lower edge was marked fixUpperEdge, then
900 * we no longer need it (since these edges are needed only for
901 * vertices which otherwise have no right-going edges).
903 if( regLo
->fixUpperEdge
) {
904 DeleteRegion( tess
, regLo
);
905 if ( !__gl_meshDelete( eLo
) ) longjmp(tess
->env
,1);
906 regLo
= RegionBelow( regUp
);
908 } else if( regUp
->fixUpperEdge
) {
909 DeleteRegion( tess
, regUp
);
910 if ( !__gl_meshDelete( eUp
) ) longjmp(tess
->env
,1);
911 regUp
= RegionAbove( regLo
);
916 if( eUp
->Org
!= eLo
->Org
) {
917 if( eUp
->Dst
!= eLo
->Dst
918 && ! regUp
->fixUpperEdge
&& ! regLo
->fixUpperEdge
919 && (eUp
->Dst
== tess
->event
|| eLo
->Dst
== tess
->event
) )
921 /* When all else fails in CheckForIntersect(), it uses tess->event
922 * as the intersection location. To make this possible, it requires
923 * that tess->event lie between the upper and lower edges, and also
924 * that neither of these is marked fixUpperEdge (since in the worst
925 * case it might splice one of these edges into tess->event, and
926 * violate the invariant that fixable edges are the only right-going
927 * edge from their associated vertex).
929 if( CheckForIntersect( tess
, regUp
)) {
930 /* WalkDirtyRegions() was called recursively; we're done */
934 /* Even though we can't use CheckForIntersect(), the Org vertices
935 * may violate the dictionary edge ordering. Check and correct this.
937 (void) CheckForRightSplice( tess
, regUp
);
940 if( eUp
->Org
== eLo
->Org
&& eUp
->Dst
== eLo
->Dst
) {
941 /* A degenerate loop consisting of only two edges -- delete it. */
942 AddWinding( eLo
, eUp
);
943 DeleteRegion( tess
, regUp
);
944 if ( !__gl_meshDelete( eUp
) ) longjmp(tess
->env
,1);
945 regUp
= RegionAbove( regLo
);
951 static void ConnectRightVertex( GLUtesselator
*tess
, ActiveRegion
*regUp
,
952 GLUhalfEdge
*eBottomLeft
)
954 * Purpose: connect a "right" vertex vEvent (one where all edges go left)
955 * to the unprocessed portion of the mesh. Since there are no right-going
956 * edges, two regions (one above vEvent and one below) are being merged
957 * into one. "regUp" is the upper of these two regions.
959 * There are two reasons for doing this (adding a right-going edge):
960 * - if the two regions being merged are "inside", we must add an edge
961 * to keep them separated (the combined region would not be monotone).
962 * - in any case, we must leave some record of vEvent in the dictionary,
963 * so that we can merge vEvent with features that we have not seen yet.
964 * For example, maybe there is a vertical edge which passes just to
965 * the right of vEvent; we would like to splice vEvent into this edge.
967 * However, we don't want to connect vEvent to just any vertex. We don''t
968 * want the new edge to cross any other edges; otherwise we will create
969 * intersection vertices even when the input data had no self-intersections.
970 * (This is a bad thing; if the user's input data has no intersections,
971 * we don't want to generate any false intersections ourselves.)
973 * Our eventual goal is to connect vEvent to the leftmost unprocessed
974 * vertex of the combined region (the union of regUp and regLo).
975 * But because of unseen vertices with all right-going edges, and also
976 * new vertices which may be created by edge intersections, we don''t
977 * know where that leftmost unprocessed vertex is. In the meantime, we
978 * connect vEvent to the closest vertex of either chain, and mark the region
979 * as "fixUpperEdge". This flag says to delete and reconnect this edge
980 * to the next processed vertex on the boundary of the combined region.
981 * Quite possibly the vertex we connected to will turn out to be the
982 * closest one, in which case we won''t need to make any changes.
986 GLUhalfEdge
*eTopLeft
= eBottomLeft
->Onext
;
987 ActiveRegion
*regLo
= RegionBelow(regUp
);
988 GLUhalfEdge
*eUp
= regUp
->eUp
;
989 GLUhalfEdge
*eLo
= regLo
->eUp
;
990 int degenerate
= FALSE
;
992 if( eUp
->Dst
!= eLo
->Dst
) {
993 (void) CheckForIntersect( tess
, regUp
);
996 /* Possible new degeneracies: upper or lower edge of regUp may pass
997 * through vEvent, or may coincide with new intersection vertex
999 if( VertEq( eUp
->Org
, tess
->event
)) {
1000 if ( !__gl_meshSplice( eTopLeft
->Oprev
, eUp
) ) longjmp(tess
->env
,1);
1001 regUp
= TopLeftRegion( regUp
);
1002 if (regUp
== NULL
) longjmp(tess
->env
,1);
1003 eTopLeft
= RegionBelow( regUp
)->eUp
;
1004 FinishLeftRegions( tess
, RegionBelow(regUp
), regLo
);
1007 if( VertEq( eLo
->Org
, tess
->event
)) {
1008 if ( !__gl_meshSplice( eBottomLeft
, eLo
->Oprev
) ) longjmp(tess
->env
,1);
1009 eBottomLeft
= FinishLeftRegions( tess
, regLo
, NULL
);
1013 AddRightEdges( tess
, regUp
, eBottomLeft
->Onext
, eTopLeft
, eTopLeft
, TRUE
);
1017 /* Non-degenerate situation -- need to add a temporary, fixable edge.
1018 * Connect to the closer of eLo->Org, eUp->Org.
1020 if( VertLeq( eLo
->Org
, eUp
->Org
)) {
1025 eNew
= __gl_meshConnect( eBottomLeft
->Lprev
, eNew
);
1026 if (eNew
== NULL
) longjmp(tess
->env
,1);
1028 /* Prevent cleanup, otherwise eNew might disappear before we've even
1029 * had a chance to mark it as a temporary edge.
1031 AddRightEdges( tess
, regUp
, eNew
, eNew
->Onext
, eNew
->Onext
, FALSE
);
1032 eNew
->Sym
->activeRegion
->fixUpperEdge
= TRUE
;
1033 WalkDirtyRegions( tess
, regUp
);
1036 /* Because vertices at exactly the same location are merged together
1037 * before we process the sweep event, some degenerate cases can't occur.
1038 * However if someone eventually makes the modifications required to
1039 * merge features which are close together, the cases below marked
1040 * TOLERANCE_NONZERO will be useful. They were debugged before the
1041 * code to merge identical vertices in the main loop was added.
1043 #define TOLERANCE_NONZERO FALSE
1045 static void ConnectLeftDegenerate( GLUtesselator
*tess
,
1046 ActiveRegion
*regUp
, GLUvertex
*vEvent
)
1048 * The event vertex lies exacty on an already-processed edge or vertex.
1049 * Adding the new vertex involves splicing it into the already-processed
1053 GLUhalfEdge
*e
, *eTopLeft
, *eTopRight
, *eLast
;
1057 if( VertEq( e
->Org
, vEvent
)) {
1058 /* e->Org is an unprocessed vertex - just combine them, and wait
1059 * for e->Org to be pulled from the queue
1061 assert( TOLERANCE_NONZERO
);
1062 SpliceMergeVertices( tess
, e
, vEvent
->anEdge
);
1066 if( ! VertEq( e
->Dst
, vEvent
)) {
1067 /* General case -- splice vEvent into edge e which passes through it */
1068 if (__gl_meshSplitEdge( e
->Sym
) == NULL
) longjmp(tess
->env
,1);
1069 if( regUp
->fixUpperEdge
) {
1070 /* This edge was fixable -- delete unused portion of original edge */
1071 if ( !__gl_meshDelete( e
->Onext
) ) longjmp(tess
->env
,1);
1072 regUp
->fixUpperEdge
= FALSE
;
1074 if ( !__gl_meshSplice( vEvent
->anEdge
, e
) ) longjmp(tess
->env
,1);
1075 SweepEvent( tess
, vEvent
); /* recurse */
1079 /* vEvent coincides with e->Dst, which has already been processed.
1080 * Splice in the additional right-going edges.
1082 assert( TOLERANCE_NONZERO
);
1083 regUp
= TopRightRegion( regUp
);
1084 reg
= RegionBelow( regUp
);
1085 eTopRight
= reg
->eUp
->Sym
;
1086 eTopLeft
= eLast
= eTopRight
->Onext
;
1087 if( reg
->fixUpperEdge
) {
1088 /* Here e->Dst has only a single fixable edge going right.
1089 * We can delete it since now we have some real right-going edges.
1091 assert( eTopLeft
!= eTopRight
); /* there are some left edges too */
1092 DeleteRegion( tess
, reg
);
1093 if ( !__gl_meshDelete( eTopRight
) ) longjmp(tess
->env
,1);
1094 eTopRight
= eTopLeft
->Oprev
;
1096 if ( !__gl_meshSplice( vEvent
->anEdge
, eTopRight
) ) longjmp(tess
->env
,1);
1097 if( ! EdgeGoesLeft( eTopLeft
)) {
1098 /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
1101 AddRightEdges( tess
, regUp
, eTopRight
->Onext
, eLast
, eTopLeft
, TRUE
);
1105 static void ConnectLeftVertex( GLUtesselator
*tess
, GLUvertex
*vEvent
)
1107 * Purpose: connect a "left" vertex (one where both edges go right)
1108 * to the processed portion of the mesh. Let R be the active region
1109 * containing vEvent, and let U and L be the upper and lower edge
1110 * chains of R. There are two possibilities:
1112 * - the normal case: split R into two regions, by connecting vEvent to
1113 * the rightmost vertex of U or L lying to the left of the sweep line
1115 * - the degenerate case: if vEvent is close enough to U or L, we
1116 * merge vEvent into that edge chain. The subcases are:
1117 * - merging with the rightmost vertex of U or L
1118 * - merging with the active edge of U or L
1119 * - merging with an already-processed portion of U or L
1122 ActiveRegion
*regUp
, *regLo
, *reg
;
1123 GLUhalfEdge
*eUp
, *eLo
, *eNew
;
1126 /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */
1128 /* Get a pointer to the active region containing vEvent */
1129 tmp
.eUp
= vEvent
->anEdge
->Sym
;
1130 regUp
= (ActiveRegion
*)dictKey( dictSearch( tess
->dict
, &tmp
));
1131 regLo
= RegionBelow( regUp
);
1135 /* Try merging with U or L first */
1136 if( EdgeSign( eUp
->Dst
, vEvent
, eUp
->Org
) == 0 ) {
1137 ConnectLeftDegenerate( tess
, regUp
, vEvent
);
1141 /* Connect vEvent to rightmost processed vertex of either chain.
1142 * e->Dst is the vertex that we will connect to vEvent.
1144 reg
= VertLeq( eLo
->Dst
, eUp
->Dst
) ? regUp
: regLo
;
1146 if( regUp
->inside
|| reg
->fixUpperEdge
) {
1147 if( reg
== regUp
) {
1148 eNew
= __gl_meshConnect( vEvent
->anEdge
->Sym
, eUp
->Lnext
);
1149 if (eNew
== NULL
) longjmp(tess
->env
,1);
1151 GLUhalfEdge
*tempHalfEdge
= __gl_meshConnect( eLo
->Dnext
, vEvent
->anEdge
);
1152 if (tempHalfEdge
== NULL
) longjmp(tess
->env
,1);
1154 eNew
= tempHalfEdge
->Sym
;
1156 if( reg
->fixUpperEdge
) {
1157 if ( !FixUpperEdge( reg
, eNew
) ) longjmp(tess
->env
,1);
1159 ComputeWinding( tess
, AddRegionBelow( tess
, regUp
, eNew
));
1161 SweepEvent( tess
, vEvent
);
1163 /* The new vertex is in a region which does not belong to the polygon.
1164 * We don''t need to connect this vertex to the rest of the mesh.
1166 AddRightEdges( tess
, regUp
, vEvent
->anEdge
, vEvent
->anEdge
, NULL
, TRUE
);
1171 static void SweepEvent( GLUtesselator
*tess
, GLUvertex
*vEvent
)
1173 * Does everything necessary when the sweep line crosses a vertex.
1174 * Updates the mesh and the edge dictionary.
1177 ActiveRegion
*regUp
, *reg
;
1178 GLUhalfEdge
*e
, *eTopLeft
, *eBottomLeft
;
1180 tess
->event
= vEvent
; /* for access in EdgeLeq() */
1183 /* Check if this vertex is the right endpoint of an edge that is
1184 * already in the dictionary. In this case we don't need to waste
1185 * time searching for the location to insert new edges.
1188 while( e
->activeRegion
== NULL
) {
1190 if( e
== vEvent
->anEdge
) {
1191 /* All edges go right -- not incident to any processed edges */
1192 ConnectLeftVertex( tess
, vEvent
);
1197 /* Processing consists of two phases: first we "finish" all the
1198 * active regions where both the upper and lower edges terminate
1199 * at vEvent (ie. vEvent is closing off these regions).
1200 * We mark these faces "inside" or "outside" the polygon according
1201 * to their winding number, and delete the edges from the dictionary.
1202 * This takes care of all the left-going edges from vEvent.
1204 regUp
= TopLeftRegion( e
->activeRegion
);
1205 if (regUp
== NULL
) longjmp(tess
->env
,1);
1206 reg
= RegionBelow( regUp
);
1207 eTopLeft
= reg
->eUp
;
1208 eBottomLeft
= FinishLeftRegions( tess
, reg
, NULL
);
1210 /* Next we process all the right-going edges from vEvent. This
1211 * involves adding the edges to the dictionary, and creating the
1212 * associated "active regions" which record information about the
1213 * regions between adjacent dictionary edges.
1215 if( eBottomLeft
->Onext
== eTopLeft
) {
1216 /* No right-going edges -- add a temporary "fixable" edge */
1217 ConnectRightVertex( tess
, regUp
, eBottomLeft
);
1219 AddRightEdges( tess
, regUp
, eBottomLeft
->Onext
, eTopLeft
, eTopLeft
, TRUE
);
1224 /* Make the sentinel coordinates big enough that they will never be
1225 * merged with real input features. (Even with the largest possible
1226 * input contour and the maximum tolerance of 1.0, no merging will be
1227 * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
1229 #define SENTINEL_COORD (4 * GLU_TESS_MAX_COORD)
1231 static void AddSentinel( GLUtesselator
*tess
, GLdouble t
)
1233 * We add two sentinel edges above and below all other edges,
1234 * to avoid special cases at the top and bottom.
1238 ActiveRegion
*reg
= HeapAlloc( GetProcessHeap(), 0, sizeof( ActiveRegion
));
1239 if (reg
== NULL
) longjmp(tess
->env
,1);
1241 e
= __gl_meshMakeEdge( tess
->mesh
);
1242 if (e
== NULL
) longjmp(tess
->env
,1);
1244 e
->Org
->s
= SENTINEL_COORD
;
1246 e
->Dst
->s
= -SENTINEL_COORD
;
1248 tess
->event
= e
->Dst
; /* initialize it */
1251 reg
->windingNumber
= 0;
1252 reg
->inside
= FALSE
;
1253 reg
->fixUpperEdge
= FALSE
;
1254 reg
->sentinel
= TRUE
;
1256 reg
->nodeUp
= dictInsert( tess
->dict
, reg
);
1257 if (reg
->nodeUp
== NULL
) longjmp(tess
->env
,1);
1261 static void InitEdgeDict( GLUtesselator
*tess
)
1263 * We maintain an ordering of edge intersections with the sweep line.
1264 * This order is maintained in a dynamic dictionary.
1267 tess
->dict
= dictNewDict( tess
, (int (*)(void *, DictKey
, DictKey
)) EdgeLeq
);
1268 if (tess
->dict
== NULL
) longjmp(tess
->env
,1);
1270 AddSentinel( tess
, -SENTINEL_COORD
);
1271 AddSentinel( tess
, SENTINEL_COORD
);
1275 static void DoneEdgeDict( GLUtesselator
*tess
)
1282 while( (reg
= (ActiveRegion
*)dictKey( dictMin( tess
->dict
))) != NULL
) {
1284 * At the end of all processing, the dictionary should contain
1285 * only the two sentinel edges, plus at most one "fixable" edge
1286 * created by ConnectRightVertex().
1288 if( ! reg
->sentinel
) {
1289 assert( reg
->fixUpperEdge
);
1290 assert( ++fixedEdges
== 1 );
1292 assert( reg
->windingNumber
== 0 );
1293 DeleteRegion( tess
, reg
);
1294 /* __gl_meshDelete( reg->eUp );*/
1296 dictDeleteDict( tess
->dict
);
1300 static void RemoveDegenerateEdges( GLUtesselator
*tess
)
1302 * Remove zero-length edges, and contours with fewer than 3 vertices.
1305 GLUhalfEdge
*e
, *eNext
, *eLnext
;
1306 GLUhalfEdge
*eHead
= &tess
->mesh
->eHead
;
1309 for( e
= eHead
->next
; e
!= eHead
; e
= eNext
) {
1313 if( VertEq( e
->Org
, e
->Dst
) && e
->Lnext
->Lnext
!= e
) {
1314 /* Zero-length edge, contour has at least 3 edges */
1316 SpliceMergeVertices( tess
, eLnext
, e
); /* deletes e->Org */
1317 if ( !__gl_meshDelete( e
) ) longjmp(tess
->env
,1); /* e is a self-loop */
1321 if( eLnext
->Lnext
== e
) {
1322 /* Degenerate contour (one or two edges) */
1325 if( eLnext
== eNext
|| eLnext
== eNext
->Sym
) { eNext
= eNext
->next
; }
1326 if ( !__gl_meshDelete( eLnext
) ) longjmp(tess
->env
,1);
1328 if( e
== eNext
|| e
== eNext
->Sym
) { eNext
= eNext
->next
; }
1329 if ( !__gl_meshDelete( e
) ) longjmp(tess
->env
,1);
1334 static int InitPriorityQ( GLUtesselator
*tess
)
1336 * Insert all vertices into the priority queue which determines the
1337 * order in which vertices cross the sweep line.
1341 GLUvertex
*v
, *vHead
;
1343 pq
= tess
->pq
= __gl_pqSortNewPriorityQ( (int (*)(PQkey
, PQkey
)) __gl_vertLeq
);
1344 if (pq
== NULL
) return 0;
1346 vHead
= &tess
->mesh
->vHead
;
1347 for( v
= vHead
->next
; v
!= vHead
; v
= v
->next
) {
1348 v
->pqHandle
= __gl_pqSortInsert( pq
, v
);
1349 if (v
->pqHandle
== LONG_MAX
) break;
1351 if (v
!= vHead
|| !__gl_pqSortInit( pq
) ) {
1352 __gl_pqSortDeletePriorityQ(tess
->pq
);
1361 static void DonePriorityQ( GLUtesselator
*tess
)
1363 __gl_pqSortDeletePriorityQ( tess
->pq
);
1367 static int RemoveDegenerateFaces( GLUmesh
*mesh
)
1369 * Delete any degenerate faces with only two edges. WalkDirtyRegions()
1370 * will catch almost all of these, but it won't catch degenerate faces
1371 * produced by splice operations on already-processed edges.
1372 * The two places this can happen are in FinishLeftRegions(), when
1373 * we splice in a "temporary" edge produced by ConnectRightVertex(),
1374 * and in CheckForLeftSplice(), where we splice already-processed
1375 * edges to ensure that our dictionary invariants are not violated
1376 * by numerical errors.
1378 * In both these cases it is *very* dangerous to delete the offending
1379 * edge at the time, since one of the routines further up the stack
1380 * will sometimes be keeping a pointer to that edge.
1387 for( f
= mesh
->fHead
.next
; f
!= &mesh
->fHead
; f
= fNext
) {
1390 assert( e
->Lnext
!= e
);
1392 if( e
->Lnext
->Lnext
== e
) {
1393 /* A face with only two edges */
1394 AddWinding( e
->Onext
, e
);
1395 if ( !__gl_meshDelete( e
) ) return 0;
1401 int __gl_computeInterior( GLUtesselator
*tess
)
1403 * __gl_computeInterior( tess ) computes the planar arrangement specified
1404 * by the given contours, and further subdivides this arrangement
1405 * into regions. Each region is marked "inside" if it belongs
1406 * to the polygon, according to the rule given by tess->windingRule.
1407 * Each interior region is guaranteed be monotone.
1410 GLUvertex
*v
, *vNext
;
1412 tess
->fatalError
= FALSE
;
1414 /* Each vertex defines an event for our sweep line. Start by inserting
1415 * all the vertices in a priority queue. Events are processed in
1416 * lexicographic order, ie.
1418 * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
1420 RemoveDegenerateEdges( tess
);
1421 if ( !InitPriorityQ( tess
) ) return 0; /* if error */
1422 InitEdgeDict( tess
);
1424 /* __gl_pqSortExtractMin */
1425 while( (v
= (GLUvertex
*)__gl_pqSortExtractMin( tess
->pq
)) != NULL
) {
1427 vNext
= (GLUvertex
*)__gl_pqSortMinimum( tess
->pq
);
1428 if( vNext
== NULL
|| ! VertEq( vNext
, v
)) break;
1430 /* Merge together all vertices at exactly the same location.
1431 * This is more efficient than processing them one at a time,
1432 * simplifies the code (see ConnectLeftDegenerate), and is also
1433 * important for correct handling of certain degenerate cases.
1434 * For example, suppose there are two identical edges A and B
1435 * that belong to different contours (so without this code they would
1436 * be processed by separate sweep events). Suppose another edge C
1437 * crosses A and B from above. When A is processed, we split it
1438 * at its intersection point with C. However this also splits C,
1439 * so when we insert B we may compute a slightly different
1440 * intersection point. This might leave two edges with a small
1441 * gap between them. This kind of error is especially obvious
1442 * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
1444 vNext
= (GLUvertex
*)__gl_pqSortExtractMin( tess
->pq
);
1445 SpliceMergeVertices( tess
, v
->anEdge
, vNext
->anEdge
);
1447 SweepEvent( tess
, v
);
1450 /* Set tess->event for debugging purposes */
1451 tess
->event
= ((ActiveRegion
*) dictKey( dictMin( tess
->dict
)))->eUp
->Org
;
1453 DoneEdgeDict( tess
);
1454 DonePriorityQ( tess
);
1456 if ( !RemoveDegenerateFaces( tess
->mesh
) ) return 0;
1457 __gl_meshCheckMesh( tess
->mesh
);