1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2023 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://tools.ietf.org/html/rfc1951
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
54 const char deflate_copyright
[] =
55 " deflate 1.3 Copyright 1995-2023 Jean-loup Gailly and Mark Adler ";
57 If you use the zlib library in a product, an acknowledgment is welcome
58 in the documentation of your product. If for some reason you cannot
59 include such an acknowledgment, I would appreciate that you keep this
60 copyright string in the executable of your product.
64 need_more
, /* block not completed, need more input or more output */
65 block_done
, /* block flush performed */
66 finish_started
, /* finish started, need only more output at next deflate */
67 finish_done
/* finish done, accept no more input or output */
70 typedef block_state (*compress_func
)(deflate_state
*s
, int flush
);
71 /* Compression function. Returns the block state after the call. */
73 local block_state
deflate_stored(deflate_state
*s
, int flush
);
74 local block_state
deflate_fast(deflate_state
*s
, int flush
);
76 local block_state
deflate_slow(deflate_state
*s
, int flush
);
78 local block_state
deflate_rle(deflate_state
*s
, int flush
);
79 local block_state
deflate_huff(deflate_state
*s
, int flush
);
81 /* ===========================================================================
86 /* Tail of hash chains */
91 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
93 /* Values for max_lazy_match, good_match and max_chain_length, depending on
94 * the desired pack level (0..9). The values given below have been tuned to
95 * exclude worst case performance for pathological files. Better values may be
96 * found for specific files.
98 typedef struct config_s
{
99 ush good_length
; /* reduce lazy search above this match length */
100 ush max_lazy
; /* do not perform lazy search above this match length */
101 ush nice_length
; /* quit search above this match length */
107 local
const config configuration_table
[2] = {
108 /* good lazy nice chain */
109 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
110 /* 1 */ {4, 4, 8, 4, deflate_fast
}}; /* max speed, no lazy matches */
112 local
const config configuration_table
[10] = {
113 /* good lazy nice chain */
114 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
115 /* 1 */ {4, 4, 8, 4, deflate_fast
}, /* max speed, no lazy matches */
116 /* 2 */ {4, 5, 16, 8, deflate_fast
},
117 /* 3 */ {4, 6, 32, 32, deflate_fast
},
119 /* 4 */ {4, 4, 16, 16, deflate_slow
}, /* lazy matches */
120 /* 5 */ {8, 16, 32, 32, deflate_slow
},
121 /* 6 */ {8, 16, 128, 128, deflate_slow
},
122 /* 7 */ {8, 32, 128, 256, deflate_slow
},
123 /* 8 */ {32, 128, 258, 1024, deflate_slow
},
124 /* 9 */ {32, 258, 258, 4096, deflate_slow
}}; /* max compression */
127 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
132 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
135 /* ===========================================================================
136 * Update a hash value with the given input byte
137 * IN assertion: all calls to UPDATE_HASH are made with consecutive input
138 * characters, so that a running hash key can be computed from the previous
139 * key instead of complete recalculation each time.
141 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
144 /* ===========================================================================
145 * Insert string str in the dictionary and set match_head to the previous head
146 * of the hash chain (the most recent string with same hash key). Return
147 * the previous length of the hash chain.
148 * If this file is compiled with -DFASTEST, the compression level is forced
149 * to 1, and no hash chains are maintained.
150 * IN assertion: all calls to INSERT_STRING are made with consecutive input
151 * characters and the first MIN_MATCH bytes of str are valid (except for
152 * the last MIN_MATCH-1 bytes of the input file).
155 #define INSERT_STRING(s, str, match_head) \
156 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157 match_head = s->head[s->ins_h], \
158 s->head[s->ins_h] = (Pos)(str))
160 #define INSERT_STRING(s, str, match_head) \
161 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163 s->head[s->ins_h] = (Pos)(str))
166 /* ===========================================================================
167 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168 * prev[] will be initialized on the fly.
170 #define CLEAR_HASH(s) \
172 s->head[s->hash_size - 1] = NIL; \
173 zmemzero((Bytef *)s->head, \
174 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
177 /* ===========================================================================
178 * Slide the hash table when sliding the window down (could be avoided with 32
179 * bit values at the expense of memory usage). We slide even when level == 0 to
180 * keep the hash table consistent if we switch back to level > 0 later.
182 #if defined(__has_feature)
183 # if __has_feature(memory_sanitizer)
184 __attribute__((no_sanitize("memory")))
187 local
void slide_hash(deflate_state
*s
) {
190 uInt wsize
= s
->w_size
;
196 *p
= (Pos
)(m
>= wsize
? m
- wsize
: NIL
);
203 *p
= (Pos
)(m
>= wsize
? m
- wsize
: NIL
);
204 /* If n is not on any hash chain, prev[n] is garbage but
205 * its value will never be used.
211 /* ===========================================================================
212 * Read a new buffer from the current input stream, update the adler32
213 * and total number of bytes read. All deflate() input goes through
214 * this function so some applications may wish to modify it to avoid
215 * allocating a large strm->next_in buffer and copying from it.
216 * (See also flush_pending()).
218 local
unsigned read_buf(z_streamp strm
, Bytef
*buf
, unsigned size
) {
219 unsigned len
= strm
->avail_in
;
221 if (len
> size
) len
= size
;
222 if (len
== 0) return 0;
224 strm
->avail_in
-= len
;
226 zmemcpy(buf
, strm
->next_in
, len
);
227 if (strm
->state
->wrap
== 1) {
228 strm
->adler
= adler32(strm
->adler
, buf
, len
);
231 else if (strm
->state
->wrap
== 2) {
232 strm
->adler
= crc32(strm
->adler
, buf
, len
);
235 strm
->next_in
+= len
;
236 strm
->total_in
+= len
;
241 /* ===========================================================================
242 * Fill the window when the lookahead becomes insufficient.
243 * Updates strstart and lookahead.
245 * IN assertion: lookahead < MIN_LOOKAHEAD
246 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
247 * At least one byte has been read, or avail_in == 0; reads are
248 * performed for at least two bytes (required for the zip translate_eol
249 * option -- not supported here).
251 local
void fill_window(deflate_state
*s
) {
253 unsigned more
; /* Amount of free space at the end of the window. */
254 uInt wsize
= s
->w_size
;
256 Assert(s
->lookahead
< MIN_LOOKAHEAD
, "already enough lookahead");
259 more
= (unsigned)(s
->window_size
-(ulg
)s
->lookahead
-(ulg
)s
->strstart
);
261 /* Deal with !@#$% 64K limit: */
262 if (sizeof(int) <= 2) {
263 if (more
== 0 && s
->strstart
== 0 && s
->lookahead
== 0) {
266 } else if (more
== (unsigned)(-1)) {
267 /* Very unlikely, but possible on 16 bit machine if
268 * strstart == 0 && lookahead == 1 (input done a byte at time)
274 /* If the window is almost full and there is insufficient lookahead,
275 * move the upper half to the lower one to make room in the upper half.
277 if (s
->strstart
>= wsize
+ MAX_DIST(s
)) {
279 zmemcpy(s
->window
, s
->window
+ wsize
, (unsigned)wsize
- more
);
280 s
->match_start
-= wsize
;
281 s
->strstart
-= wsize
; /* we now have strstart >= MAX_DIST */
282 s
->block_start
-= (long) wsize
;
283 if (s
->insert
> s
->strstart
)
284 s
->insert
= s
->strstart
;
288 if (s
->strm
->avail_in
== 0) break;
290 /* If there was no sliding:
291 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
292 * more == window_size - lookahead - strstart
293 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
294 * => more >= window_size - 2*WSIZE + 2
295 * In the BIG_MEM or MMAP case (not yet supported),
296 * window_size == input_size + MIN_LOOKAHEAD &&
297 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
298 * Otherwise, window_size == 2*WSIZE so more >= 2.
299 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
301 Assert(more
>= 2, "more < 2");
303 n
= read_buf(s
->strm
, s
->window
+ s
->strstart
+ s
->lookahead
, more
);
306 /* Initialize the hash value now that we have some input: */
307 if (s
->lookahead
+ s
->insert
>= MIN_MATCH
) {
308 uInt str
= s
->strstart
- s
->insert
;
309 s
->ins_h
= s
->window
[str
];
310 UPDATE_HASH(s
, s
->ins_h
, s
->window
[str
+ 1]);
312 Call
UPDATE_HASH() MIN_MATCH
-3 more times
315 UPDATE_HASH(s
, s
->ins_h
, s
->window
[str
+ MIN_MATCH
-1]);
317 s
->prev
[str
& s
->w_mask
] = s
->head
[s
->ins_h
];
319 s
->head
[s
->ins_h
] = (Pos
)str
;
322 if (s
->lookahead
+ s
->insert
< MIN_MATCH
)
326 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
327 * but this is not important since only literal bytes will be emitted.
330 } while (s
->lookahead
< MIN_LOOKAHEAD
&& s
->strm
->avail_in
!= 0);
332 /* If the WIN_INIT bytes after the end of the current data have never been
333 * written, then zero those bytes in order to avoid memory check reports of
334 * the use of uninitialized (or uninitialised as Julian writes) bytes by
335 * the longest match routines. Update the high water mark for the next
336 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
337 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
339 if (s
->high_water
< s
->window_size
) {
340 ulg curr
= s
->strstart
+ (ulg
)(s
->lookahead
);
343 if (s
->high_water
< curr
) {
344 /* Previous high water mark below current data -- zero WIN_INIT
345 * bytes or up to end of window, whichever is less.
347 init
= s
->window_size
- curr
;
350 zmemzero(s
->window
+ curr
, (unsigned)init
);
351 s
->high_water
= curr
+ init
;
353 else if (s
->high_water
< (ulg
)curr
+ WIN_INIT
) {
354 /* High water mark at or above current data, but below current data
355 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
356 * to end of window, whichever is less.
358 init
= (ulg
)curr
+ WIN_INIT
- s
->high_water
;
359 if (init
> s
->window_size
- s
->high_water
)
360 init
= s
->window_size
- s
->high_water
;
361 zmemzero(s
->window
+ s
->high_water
, (unsigned)init
);
362 s
->high_water
+= init
;
366 Assert((ulg
)s
->strstart
<= s
->window_size
- MIN_LOOKAHEAD
,
367 "not enough room for search");
370 /* ========================================================================= */
371 int ZEXPORT
deflateInit_(z_streamp strm
, int level
, const char *version
,
373 return deflateInit2_(strm
, level
, Z_DEFLATED
, MAX_WBITS
, DEF_MEM_LEVEL
,
374 Z_DEFAULT_STRATEGY
, version
, stream_size
);
375 /* To do: ignore strm->next_in if we use it as window */
378 /* ========================================================================= */
379 int ZEXPORT
deflateInit2_(z_streamp strm
, int level
, int method
,
380 int windowBits
, int memLevel
, int strategy
,
381 const char *version
, int stream_size
) {
384 static const char my_version
[] = ZLIB_VERSION
;
386 if (version
== Z_NULL
|| version
[0] != my_version
[0] ||
387 stream_size
!= sizeof(z_stream
)) {
388 return Z_VERSION_ERROR
;
390 if (strm
== Z_NULL
) return Z_STREAM_ERROR
;
393 if (strm
->zalloc
== (alloc_func
)0) {
395 return Z_STREAM_ERROR
;
397 strm
->zalloc
= zcalloc
;
398 strm
->opaque
= (voidpf
)0;
401 if (strm
->zfree
== (free_func
)0)
403 return Z_STREAM_ERROR
;
405 strm
->zfree
= zcfree
;
409 if (level
!= 0) level
= 1;
411 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
414 if (windowBits
< 0) { /* suppress zlib wrapper */
416 if (windowBits
< -15)
417 return Z_STREAM_ERROR
;
418 windowBits
= -windowBits
;
421 else if (windowBits
> 15) {
422 wrap
= 2; /* write gzip wrapper instead */
426 if (memLevel
< 1 || memLevel
> MAX_MEM_LEVEL
|| method
!= Z_DEFLATED
||
427 windowBits
< 8 || windowBits
> 15 || level
< 0 || level
> 9 ||
428 strategy
< 0 || strategy
> Z_FIXED
|| (windowBits
== 8 && wrap
!= 1)) {
429 return Z_STREAM_ERROR
;
431 if (windowBits
== 8) windowBits
= 9; /* until 256-byte window bug fixed */
432 s
= (deflate_state
*) ZALLOC(strm
, 1, sizeof(deflate_state
));
433 if (s
== Z_NULL
) return Z_MEM_ERROR
;
434 strm
->state
= (struct internal_state FAR
*)s
;
436 s
->status
= INIT_STATE
; /* to pass state test in deflateReset() */
440 s
->w_bits
= (uInt
)windowBits
;
441 s
->w_size
= 1 << s
->w_bits
;
442 s
->w_mask
= s
->w_size
- 1;
444 s
->hash_bits
= (uInt
)memLevel
+ 7;
445 s
->hash_size
= 1 << s
->hash_bits
;
446 s
->hash_mask
= s
->hash_size
- 1;
447 s
->hash_shift
= ((s
->hash_bits
+ MIN_MATCH
-1) / MIN_MATCH
);
449 s
->window
= (Bytef
*) ZALLOC(strm
, s
->w_size
, 2*sizeof(Byte
));
450 s
->prev
= (Posf
*) ZALLOC(strm
, s
->w_size
, sizeof(Pos
));
451 s
->head
= (Posf
*) ZALLOC(strm
, s
->hash_size
, sizeof(Pos
));
453 s
->high_water
= 0; /* nothing written to s->window yet */
455 s
->lit_bufsize
= 1 << (memLevel
+ 6); /* 16K elements by default */
457 /* We overlay pending_buf and sym_buf. This works since the average size
458 * for length/distance pairs over any compressed block is assured to be 31
461 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
462 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
463 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
464 * possible fixed-codes length/distance pair is then 31 bits total.
466 * sym_buf starts one-fourth of the way into pending_buf. So there are
467 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
468 * in sym_buf is three bytes -- two for the distance and one for the
469 * literal/length. As each symbol is consumed, the pointer to the next
470 * sym_buf value to read moves forward three bytes. From that symbol, up to
471 * 31 bits are written to pending_buf. The closest the written pending_buf
472 * bits gets to the next sym_buf symbol to read is just before the last
473 * code is written. At that time, 31*(n - 2) bits have been written, just
474 * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
475 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
476 * symbols are written.) The closest the writing gets to what is unread is
477 * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
478 * can range from 128 to 32768.
480 * Therefore, at a minimum, there are 142 bits of space between what is
481 * written and what is read in the overlain buffers, so the symbols cannot
482 * be overwritten by the compressed data. That space is actually 139 bits,
483 * due to the three-bit fixed-code block header.
485 * That covers the case where either Z_FIXED is specified, forcing fixed
486 * codes, or when the use of fixed codes is chosen, because that choice
487 * results in a smaller compressed block than dynamic codes. That latter
488 * condition then assures that the above analysis also covers all dynamic
489 * blocks. A dynamic-code block will only be chosen to be emitted if it has
490 * fewer bits than a fixed-code block would for the same set of symbols.
491 * Therefore its average symbol length is assured to be less than 31. So
492 * the compressed data for a dynamic block also cannot overwrite the
493 * symbols from which it is being constructed.
496 s
->pending_buf
= (uchf
*) ZALLOC(strm
, s
->lit_bufsize
, 4);
497 s
->pending_buf_size
= (ulg
)s
->lit_bufsize
* 4;
499 if (s
->window
== Z_NULL
|| s
->prev
== Z_NULL
|| s
->head
== Z_NULL
||
500 s
->pending_buf
== Z_NULL
) {
501 s
->status
= FINISH_STATE
;
502 strm
->msg
= ERR_MSG(Z_MEM_ERROR
);
506 s
->sym_buf
= s
->pending_buf
+ s
->lit_bufsize
;
507 s
->sym_end
= (s
->lit_bufsize
- 1) * 3;
508 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
509 * on 16 bit machines and because stored blocks are restricted to
514 s
->strategy
= strategy
;
515 s
->method
= (Byte
)method
;
517 return deflateReset(strm
);
520 /* =========================================================================
521 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
523 local
int deflateStateCheck(z_streamp strm
) {
525 if (strm
== Z_NULL
||
526 strm
->zalloc
== (alloc_func
)0 || strm
->zfree
== (free_func
)0)
529 if (s
== Z_NULL
|| s
->strm
!= strm
|| (s
->status
!= INIT_STATE
&&
531 s
->status
!= GZIP_STATE
&&
533 s
->status
!= EXTRA_STATE
&&
534 s
->status
!= NAME_STATE
&&
535 s
->status
!= COMMENT_STATE
&&
536 s
->status
!= HCRC_STATE
&&
537 s
->status
!= BUSY_STATE
&&
538 s
->status
!= FINISH_STATE
))
543 /* ========================================================================= */
544 int ZEXPORT
deflateSetDictionary(z_streamp strm
, const Bytef
*dictionary
,
550 z_const
unsigned char *next
;
552 if (deflateStateCheck(strm
) || dictionary
== Z_NULL
)
553 return Z_STREAM_ERROR
;
556 if (wrap
== 2 || (wrap
== 1 && s
->status
!= INIT_STATE
) || s
->lookahead
)
557 return Z_STREAM_ERROR
;
559 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
561 strm
->adler
= adler32(strm
->adler
, dictionary
, dictLength
);
562 s
->wrap
= 0; /* avoid computing Adler-32 in read_buf */
564 /* if dictionary would fill window, just replace the history */
565 if (dictLength
>= s
->w_size
) {
566 if (wrap
== 0) { /* already empty otherwise */
572 dictionary
+= dictLength
- s
->w_size
; /* use the tail */
573 dictLength
= s
->w_size
;
576 /* insert dictionary into window and hash */
577 avail
= strm
->avail_in
;
578 next
= strm
->next_in
;
579 strm
->avail_in
= dictLength
;
580 strm
->next_in
= (z_const Bytef
*)dictionary
;
582 while (s
->lookahead
>= MIN_MATCH
) {
584 n
= s
->lookahead
- (MIN_MATCH
-1);
586 UPDATE_HASH(s
, s
->ins_h
, s
->window
[str
+ MIN_MATCH
-1]);
588 s
->prev
[str
& s
->w_mask
] = s
->head
[s
->ins_h
];
590 s
->head
[s
->ins_h
] = (Pos
)str
;
594 s
->lookahead
= MIN_MATCH
-1;
597 s
->strstart
+= s
->lookahead
;
598 s
->block_start
= (long)s
->strstart
;
599 s
->insert
= s
->lookahead
;
601 s
->match_length
= s
->prev_length
= MIN_MATCH
-1;
602 s
->match_available
= 0;
603 strm
->next_in
= next
;
604 strm
->avail_in
= avail
;
609 /* ========================================================================= */
610 int ZEXPORT
deflateGetDictionary(z_streamp strm
, Bytef
*dictionary
,
615 if (deflateStateCheck(strm
))
616 return Z_STREAM_ERROR
;
618 len
= s
->strstart
+ s
->lookahead
;
621 if (dictionary
!= Z_NULL
&& len
)
622 zmemcpy(dictionary
, s
->window
+ s
->strstart
+ s
->lookahead
- len
, len
);
623 if (dictLength
!= Z_NULL
)
628 /* ========================================================================= */
629 int ZEXPORT
deflateResetKeep(z_streamp strm
) {
632 if (deflateStateCheck(strm
)) {
633 return Z_STREAM_ERROR
;
636 strm
->total_in
= strm
->total_out
= 0;
637 strm
->msg
= Z_NULL
; /* use zfree if we ever allocate msg dynamically */
638 strm
->data_type
= Z_UNKNOWN
;
640 s
= (deflate_state
*)strm
->state
;
642 s
->pending_out
= s
->pending_buf
;
645 s
->wrap
= -s
->wrap
; /* was made negative by deflate(..., Z_FINISH); */
649 s
->wrap
== 2 ? GZIP_STATE
:
654 s
->wrap
== 2 ? crc32(0L, Z_NULL
, 0) :
656 adler32(0L, Z_NULL
, 0);
664 /* ===========================================================================
665 * Initialize the "longest match" routines for a new zlib stream
667 local
void lm_init(deflate_state
*s
) {
668 s
->window_size
= (ulg
)2L*s
->w_size
;
672 /* Set the default configuration parameters:
674 s
->max_lazy_match
= configuration_table
[s
->level
].max_lazy
;
675 s
->good_match
= configuration_table
[s
->level
].good_length
;
676 s
->nice_match
= configuration_table
[s
->level
].nice_length
;
677 s
->max_chain_length
= configuration_table
[s
->level
].max_chain
;
683 s
->match_length
= s
->prev_length
= MIN_MATCH
-1;
684 s
->match_available
= 0;
688 /* ========================================================================= */
689 int ZEXPORT
deflateReset(z_streamp strm
) {
692 ret
= deflateResetKeep(strm
);
694 lm_init(strm
->state
);
698 /* ========================================================================= */
699 int ZEXPORT
deflateSetHeader(z_streamp strm
, gz_headerp head
) {
700 if (deflateStateCheck(strm
) || strm
->state
->wrap
!= 2)
701 return Z_STREAM_ERROR
;
702 strm
->state
->gzhead
= head
;
706 /* ========================================================================= */
707 int ZEXPORT
deflatePending(z_streamp strm
, unsigned *pending
, int *bits
) {
708 if (deflateStateCheck(strm
)) return Z_STREAM_ERROR
;
709 if (pending
!= Z_NULL
)
710 *pending
= strm
->state
->pending
;
712 *bits
= strm
->state
->bi_valid
;
716 /* ========================================================================= */
717 int ZEXPORT
deflatePrime(z_streamp strm
, int bits
, int value
) {
721 if (deflateStateCheck(strm
)) return Z_STREAM_ERROR
;
723 if (bits
< 0 || bits
> 16 ||
724 s
->sym_buf
< s
->pending_out
+ ((Buf_size
+ 7) >> 3))
727 put
= Buf_size
- s
->bi_valid
;
730 s
->bi_buf
|= (ush
)((value
& ((1 << put
) - 1)) << s
->bi_valid
);
739 /* ========================================================================= */
740 int ZEXPORT
deflateParams(z_streamp strm
, int level
, int strategy
) {
744 if (deflateStateCheck(strm
)) return Z_STREAM_ERROR
;
748 if (level
!= 0) level
= 1;
750 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
752 if (level
< 0 || level
> 9 || strategy
< 0 || strategy
> Z_FIXED
) {
753 return Z_STREAM_ERROR
;
755 func
= configuration_table
[s
->level
].func
;
757 if ((strategy
!= s
->strategy
|| func
!= configuration_table
[level
].func
) &&
758 s
->last_flush
!= -2) {
759 /* Flush the last buffer: */
760 int err
= deflate(strm
, Z_BLOCK
);
761 if (err
== Z_STREAM_ERROR
)
763 if (strm
->avail_in
|| (s
->strstart
- s
->block_start
) + s
->lookahead
)
766 if (s
->level
!= level
) {
767 if (s
->level
== 0 && s
->matches
!= 0) {
775 s
->max_lazy_match
= configuration_table
[level
].max_lazy
;
776 s
->good_match
= configuration_table
[level
].good_length
;
777 s
->nice_match
= configuration_table
[level
].nice_length
;
778 s
->max_chain_length
= configuration_table
[level
].max_chain
;
780 s
->strategy
= strategy
;
784 /* ========================================================================= */
785 int ZEXPORT
deflateTune(z_streamp strm
, int good_length
, int max_lazy
,
786 int nice_length
, int max_chain
) {
789 if (deflateStateCheck(strm
)) return Z_STREAM_ERROR
;
791 s
->good_match
= (uInt
)good_length
;
792 s
->max_lazy_match
= (uInt
)max_lazy
;
793 s
->nice_match
= nice_length
;
794 s
->max_chain_length
= (uInt
)max_chain
;
798 /* =========================================================================
799 * For the default windowBits of 15 and memLevel of 8, this function returns a
800 * close to exact, as well as small, upper bound on the compressed size. This
801 * is an expansion of ~0.03%, plus a small constant.
803 * For any setting other than those defaults for windowBits and memLevel, one
804 * of two worst case bounds is returned. This is at most an expansion of ~4% or
805 * ~13%, plus a small constant.
807 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
808 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
809 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
810 * expansion results from five bytes of header for each stored block.
812 * The larger expansion of 13% results from a window size less than or equal to
813 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
814 * the data being compressed may have slid out of the sliding window, impeding
815 * a stored block from being emitted. Then the only choice is a fixed or
816 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
817 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
818 * which this can occur is 255 (memLevel == 2).
820 * Shifts are used to approximate divisions, for speed.
822 uLong ZEXPORT
deflateBound(z_streamp strm
, uLong sourceLen
) {
824 uLong fixedlen
, storelen
, wraplen
;
826 /* upper bound for fixed blocks with 9-bit literals and length 255
827 (memLevel == 2, which is the lowest that may not use stored blocks) --
828 ~13% overhead plus a small constant */
829 fixedlen
= sourceLen
+ (sourceLen
>> 3) + (sourceLen
>> 8) +
830 (sourceLen
>> 9) + 4;
832 /* upper bound for stored blocks with length 127 (memLevel == 1) --
833 ~4% overhead plus a small constant */
834 storelen
= sourceLen
+ (sourceLen
>> 5) + (sourceLen
>> 7) +
835 (sourceLen
>> 11) + 7;
837 /* if can't get parameters, return larger bound plus a zlib wrapper */
838 if (deflateStateCheck(strm
))
839 return (fixedlen
> storelen
? fixedlen
: storelen
) + 6;
841 /* compute wrapper length */
844 case 0: /* raw deflate */
847 case 1: /* zlib wrapper */
848 wraplen
= 6 + (s
->strstart
? 4 : 0);
851 case 2: /* gzip wrapper */
853 if (s
->gzhead
!= Z_NULL
) { /* user-supplied gzip header */
855 if (s
->gzhead
->extra
!= Z_NULL
)
856 wraplen
+= 2 + s
->gzhead
->extra_len
;
857 str
= s
->gzhead
->name
;
862 str
= s
->gzhead
->comment
;
872 default: /* for compiler happiness */
876 /* if not default parameters, return one of the conservative bounds */
877 if (s
->w_bits
!= 15 || s
->hash_bits
!= 8 + 7)
878 return (s
->w_bits
<= s
->hash_bits
&& s
->level
? fixedlen
: storelen
) +
881 /* default settings: return tight bound for that case -- ~0.03% overhead
882 plus a small constant */
883 return sourceLen
+ (sourceLen
>> 12) + (sourceLen
>> 14) +
884 (sourceLen
>> 25) + 13 - 6 + wraplen
;
887 /* =========================================================================
888 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
889 * IN assertion: the stream state is correct and there is enough room in
892 local
void putShortMSB(deflate_state
*s
, uInt b
) {
893 put_byte(s
, (Byte
)(b
>> 8));
894 put_byte(s
, (Byte
)(b
& 0xff));
897 /* =========================================================================
898 * Flush as much pending output as possible. All deflate() output, except for
899 * some deflate_stored() output, goes through this function so some
900 * applications may wish to modify it to avoid allocating a large
901 * strm->next_out buffer and copying into it. (See also read_buf()).
903 local
void flush_pending(z_streamp strm
) {
905 deflate_state
*s
= strm
->state
;
909 if (len
> strm
->avail_out
) len
= strm
->avail_out
;
910 if (len
== 0) return;
912 zmemcpy(strm
->next_out
, s
->pending_out
, len
);
913 strm
->next_out
+= len
;
914 s
->pending_out
+= len
;
915 strm
->total_out
+= len
;
916 strm
->avail_out
-= len
;
918 if (s
->pending
== 0) {
919 s
->pending_out
= s
->pending_buf
;
923 /* ===========================================================================
924 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
926 #define HCRC_UPDATE(beg) \
928 if (s->gzhead->hcrc && s->pending > (beg)) \
929 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
930 s->pending - (beg)); \
933 /* ========================================================================= */
934 int ZEXPORT
deflate(z_streamp strm
, int flush
) {
935 int old_flush
; /* value of flush param for previous deflate call */
938 if (deflateStateCheck(strm
) || flush
> Z_BLOCK
|| flush
< 0) {
939 return Z_STREAM_ERROR
;
943 if (strm
->next_out
== Z_NULL
||
944 (strm
->avail_in
!= 0 && strm
->next_in
== Z_NULL
) ||
945 (s
->status
== FINISH_STATE
&& flush
!= Z_FINISH
)) {
946 ERR_RETURN(strm
, Z_STREAM_ERROR
);
948 if (strm
->avail_out
== 0) ERR_RETURN(strm
, Z_BUF_ERROR
);
950 old_flush
= s
->last_flush
;
951 s
->last_flush
= flush
;
953 /* Flush as much pending output as possible */
954 if (s
->pending
!= 0) {
956 if (strm
->avail_out
== 0) {
957 /* Since avail_out is 0, deflate will be called again with
958 * more output space, but possibly with both pending and
959 * avail_in equal to zero. There won't be anything to do,
960 * but this is not an error situation so make sure we
961 * return OK instead of BUF_ERROR at next call of deflate:
967 /* Make sure there is something to do and avoid duplicate consecutive
968 * flushes. For repeated and useless calls with Z_FINISH, we keep
969 * returning Z_STREAM_END instead of Z_BUF_ERROR.
971 } else if (strm
->avail_in
== 0 && RANK(flush
) <= RANK(old_flush
) &&
973 ERR_RETURN(strm
, Z_BUF_ERROR
);
976 /* User must not provide more input after the first FINISH: */
977 if (s
->status
== FINISH_STATE
&& strm
->avail_in
!= 0) {
978 ERR_RETURN(strm
, Z_BUF_ERROR
);
981 /* Write the header */
982 if (s
->status
== INIT_STATE
&& s
->wrap
== 0)
983 s
->status
= BUSY_STATE
;
984 if (s
->status
== INIT_STATE
) {
986 uInt header
= (Z_DEFLATED
+ ((s
->w_bits
- 8) << 4)) << 8;
989 if (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2)
991 else if (s
->level
< 6)
993 else if (s
->level
== 6)
997 header
|= (level_flags
<< 6);
998 if (s
->strstart
!= 0) header
|= PRESET_DICT
;
999 header
+= 31 - (header
% 31);
1001 putShortMSB(s
, header
);
1003 /* Save the adler32 of the preset dictionary: */
1004 if (s
->strstart
!= 0) {
1005 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
1006 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
1008 strm
->adler
= adler32(0L, Z_NULL
, 0);
1009 s
->status
= BUSY_STATE
;
1011 /* Compression must start with an empty pending buffer */
1012 flush_pending(strm
);
1013 if (s
->pending
!= 0) {
1019 if (s
->status
== GZIP_STATE
) {
1021 strm
->adler
= crc32(0L, Z_NULL
, 0);
1025 if (s
->gzhead
== Z_NULL
) {
1031 put_byte(s
, s
->level
== 9 ? 2 :
1032 (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2 ?
1034 put_byte(s
, OS_CODE
);
1035 s
->status
= BUSY_STATE
;
1037 /* Compression must start with an empty pending buffer */
1038 flush_pending(strm
);
1039 if (s
->pending
!= 0) {
1045 put_byte(s
, (s
->gzhead
->text
? 1 : 0) +
1046 (s
->gzhead
->hcrc
? 2 : 0) +
1047 (s
->gzhead
->extra
== Z_NULL
? 0 : 4) +
1048 (s
->gzhead
->name
== Z_NULL
? 0 : 8) +
1049 (s
->gzhead
->comment
== Z_NULL
? 0 : 16)
1051 put_byte(s
, (Byte
)(s
->gzhead
->time
& 0xff));
1052 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 8) & 0xff));
1053 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 16) & 0xff));
1054 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 24) & 0xff));
1055 put_byte(s
, s
->level
== 9 ? 2 :
1056 (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2 ?
1058 put_byte(s
, s
->gzhead
->os
& 0xff);
1059 if (s
->gzhead
->extra
!= Z_NULL
) {
1060 put_byte(s
, s
->gzhead
->extra_len
& 0xff);
1061 put_byte(s
, (s
->gzhead
->extra_len
>> 8) & 0xff);
1063 if (s
->gzhead
->hcrc
)
1064 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
,
1067 s
->status
= EXTRA_STATE
;
1070 if (s
->status
== EXTRA_STATE
) {
1071 if (s
->gzhead
->extra
!= Z_NULL
) {
1072 ulg beg
= s
->pending
; /* start of bytes to update crc */
1073 uInt left
= (s
->gzhead
->extra_len
& 0xffff) - s
->gzindex
;
1074 while (s
->pending
+ left
> s
->pending_buf_size
) {
1075 uInt copy
= s
->pending_buf_size
- s
->pending
;
1076 zmemcpy(s
->pending_buf
+ s
->pending
,
1077 s
->gzhead
->extra
+ s
->gzindex
, copy
);
1078 s
->pending
= s
->pending_buf_size
;
1081 flush_pending(strm
);
1082 if (s
->pending
!= 0) {
1089 zmemcpy(s
->pending_buf
+ s
->pending
,
1090 s
->gzhead
->extra
+ s
->gzindex
, left
);
1095 s
->status
= NAME_STATE
;
1097 if (s
->status
== NAME_STATE
) {
1098 if (s
->gzhead
->name
!= Z_NULL
) {
1099 ulg beg
= s
->pending
; /* start of bytes to update crc */
1102 if (s
->pending
== s
->pending_buf_size
) {
1104 flush_pending(strm
);
1105 if (s
->pending
!= 0) {
1111 val
= s
->gzhead
->name
[s
->gzindex
++];
1117 s
->status
= COMMENT_STATE
;
1119 if (s
->status
== COMMENT_STATE
) {
1120 if (s
->gzhead
->comment
!= Z_NULL
) {
1121 ulg beg
= s
->pending
; /* start of bytes to update crc */
1124 if (s
->pending
== s
->pending_buf_size
) {
1126 flush_pending(strm
);
1127 if (s
->pending
!= 0) {
1133 val
= s
->gzhead
->comment
[s
->gzindex
++];
1138 s
->status
= HCRC_STATE
;
1140 if (s
->status
== HCRC_STATE
) {
1141 if (s
->gzhead
->hcrc
) {
1142 if (s
->pending
+ 2 > s
->pending_buf_size
) {
1143 flush_pending(strm
);
1144 if (s
->pending
!= 0) {
1149 put_byte(s
, (Byte
)(strm
->adler
& 0xff));
1150 put_byte(s
, (Byte
)((strm
->adler
>> 8) & 0xff));
1151 strm
->adler
= crc32(0L, Z_NULL
, 0);
1153 s
->status
= BUSY_STATE
;
1155 /* Compression must start with an empty pending buffer */
1156 flush_pending(strm
);
1157 if (s
->pending
!= 0) {
1164 /* Start a new block or continue the current one.
1166 if (strm
->avail_in
!= 0 || s
->lookahead
!= 0 ||
1167 (flush
!= Z_NO_FLUSH
&& s
->status
!= FINISH_STATE
)) {
1170 bstate
= s
->level
== 0 ? deflate_stored(s
, flush
) :
1171 s
->strategy
== Z_HUFFMAN_ONLY
? deflate_huff(s
, flush
) :
1172 s
->strategy
== Z_RLE
? deflate_rle(s
, flush
) :
1173 (*(configuration_table
[s
->level
].func
))(s
, flush
);
1175 if (bstate
== finish_started
|| bstate
== finish_done
) {
1176 s
->status
= FINISH_STATE
;
1178 if (bstate
== need_more
|| bstate
== finish_started
) {
1179 if (strm
->avail_out
== 0) {
1180 s
->last_flush
= -1; /* avoid BUF_ERROR next call, see above */
1183 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1184 * of deflate should use the same flush parameter to make sure
1185 * that the flush is complete. So we don't have to output an
1186 * empty block here, this will be done at next call. This also
1187 * ensures that for a very small output buffer, we emit at most
1191 if (bstate
== block_done
) {
1192 if (flush
== Z_PARTIAL_FLUSH
) {
1194 } else if (flush
!= Z_BLOCK
) { /* FULL_FLUSH or SYNC_FLUSH */
1195 _tr_stored_block(s
, (char*)0, 0L, 0);
1196 /* For a full flush, this empty block will be recognized
1197 * as a special marker by inflate_sync().
1199 if (flush
== Z_FULL_FLUSH
) {
1200 CLEAR_HASH(s
); /* forget history */
1201 if (s
->lookahead
== 0) {
1203 s
->block_start
= 0L;
1208 flush_pending(strm
);
1209 if (strm
->avail_out
== 0) {
1210 s
->last_flush
= -1; /* avoid BUF_ERROR at next call, see above */
1216 if (flush
!= Z_FINISH
) return Z_OK
;
1217 if (s
->wrap
<= 0) return Z_STREAM_END
;
1219 /* Write the trailer */
1222 put_byte(s
, (Byte
)(strm
->adler
& 0xff));
1223 put_byte(s
, (Byte
)((strm
->adler
>> 8) & 0xff));
1224 put_byte(s
, (Byte
)((strm
->adler
>> 16) & 0xff));
1225 put_byte(s
, (Byte
)((strm
->adler
>> 24) & 0xff));
1226 put_byte(s
, (Byte
)(strm
->total_in
& 0xff));
1227 put_byte(s
, (Byte
)((strm
->total_in
>> 8) & 0xff));
1228 put_byte(s
, (Byte
)((strm
->total_in
>> 16) & 0xff));
1229 put_byte(s
, (Byte
)((strm
->total_in
>> 24) & 0xff));
1234 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
1235 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
1237 flush_pending(strm
);
1238 /* If avail_out is zero, the application will call deflate again
1239 * to flush the rest.
1241 if (s
->wrap
> 0) s
->wrap
= -s
->wrap
; /* write the trailer only once! */
1242 return s
->pending
!= 0 ? Z_OK
: Z_STREAM_END
;
1245 /* ========================================================================= */
1246 int ZEXPORT
deflateEnd(z_streamp strm
) {
1249 if (deflateStateCheck(strm
)) return Z_STREAM_ERROR
;
1251 status
= strm
->state
->status
;
1253 /* Deallocate in reverse order of allocations: */
1254 TRY_FREE(strm
, strm
->state
->pending_buf
);
1255 TRY_FREE(strm
, strm
->state
->head
);
1256 TRY_FREE(strm
, strm
->state
->prev
);
1257 TRY_FREE(strm
, strm
->state
->window
);
1259 ZFREE(strm
, strm
->state
);
1260 strm
->state
= Z_NULL
;
1262 return status
== BUSY_STATE
? Z_DATA_ERROR
: Z_OK
;
1265 /* =========================================================================
1266 * Copy the source state to the destination state.
1267 * To simplify the source, this is not supported for 16-bit MSDOS (which
1268 * doesn't have enough memory anyway to duplicate compression states).
1270 int ZEXPORT
deflateCopy(z_streamp dest
, z_streamp source
) {
1274 return Z_STREAM_ERROR
;
1280 if (deflateStateCheck(source
) || dest
== Z_NULL
) {
1281 return Z_STREAM_ERROR
;
1286 zmemcpy((voidpf
)dest
, (voidpf
)source
, sizeof(z_stream
));
1288 ds
= (deflate_state
*) ZALLOC(dest
, 1, sizeof(deflate_state
));
1289 if (ds
== Z_NULL
) return Z_MEM_ERROR
;
1290 dest
->state
= (struct internal_state FAR
*) ds
;
1291 zmemcpy((voidpf
)ds
, (voidpf
)ss
, sizeof(deflate_state
));
1294 ds
->window
= (Bytef
*) ZALLOC(dest
, ds
->w_size
, 2*sizeof(Byte
));
1295 ds
->prev
= (Posf
*) ZALLOC(dest
, ds
->w_size
, sizeof(Pos
));
1296 ds
->head
= (Posf
*) ZALLOC(dest
, ds
->hash_size
, sizeof(Pos
));
1297 ds
->pending_buf
= (uchf
*) ZALLOC(dest
, ds
->lit_bufsize
, 4);
1299 if (ds
->window
== Z_NULL
|| ds
->prev
== Z_NULL
|| ds
->head
== Z_NULL
||
1300 ds
->pending_buf
== Z_NULL
) {
1304 /* following zmemcpy do not work for 16-bit MSDOS */
1305 zmemcpy(ds
->window
, ss
->window
, ds
->w_size
* 2 * sizeof(Byte
));
1306 zmemcpy((voidpf
)ds
->prev
, (voidpf
)ss
->prev
, ds
->w_size
* sizeof(Pos
));
1307 zmemcpy((voidpf
)ds
->head
, (voidpf
)ss
->head
, ds
->hash_size
* sizeof(Pos
));
1308 zmemcpy(ds
->pending_buf
, ss
->pending_buf
, (uInt
)ds
->pending_buf_size
);
1310 ds
->pending_out
= ds
->pending_buf
+ (ss
->pending_out
- ss
->pending_buf
);
1311 ds
->sym_buf
= ds
->pending_buf
+ ds
->lit_bufsize
;
1313 ds
->l_desc
.dyn_tree
= ds
->dyn_ltree
;
1314 ds
->d_desc
.dyn_tree
= ds
->dyn_dtree
;
1315 ds
->bl_desc
.dyn_tree
= ds
->bl_tree
;
1318 #endif /* MAXSEG_64K */
1322 /* ===========================================================================
1323 * Set match_start to the longest match starting at the given string and
1324 * return its length. Matches shorter or equal to prev_length are discarded,
1325 * in which case the result is equal to prev_length and match_start is
1327 * IN assertions: cur_match is the head of the hash chain for the current
1328 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1329 * OUT assertion: the match length is not greater than s->lookahead.
1331 local uInt
longest_match(deflate_state
*s
, IPos cur_match
) {
1332 unsigned chain_length
= s
->max_chain_length
;/* max hash chain length */
1333 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1334 register Bytef
*match
; /* matched string */
1335 register int len
; /* length of current match */
1336 int best_len
= (int)s
->prev_length
; /* best match length so far */
1337 int nice_match
= s
->nice_match
; /* stop if match long enough */
1338 IPos limit
= s
->strstart
> (IPos
)MAX_DIST(s
) ?
1339 s
->strstart
- (IPos
)MAX_DIST(s
) : NIL
;
1340 /* Stop when cur_match becomes <= limit. To simplify the code,
1341 * we prevent matches with the string of window index 0.
1343 Posf
*prev
= s
->prev
;
1344 uInt wmask
= s
->w_mask
;
1347 /* Compare two bytes at a time. Note: this is not always beneficial.
1348 * Try with and without -DUNALIGNED_OK to check.
1350 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
- 1;
1351 register ush scan_start
= *(ushf
*)scan
;
1352 register ush scan_end
= *(ushf
*)(scan
+ best_len
- 1);
1354 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1355 register Byte scan_end1
= scan
[best_len
- 1];
1356 register Byte scan_end
= scan
[best_len
];
1359 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1360 * It is easy to get rid of this optimization if necessary.
1362 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1364 /* Do not waste too much time if we already have a good match: */
1365 if (s
->prev_length
>= s
->good_match
) {
1368 /* Do not look for matches beyond the end of the input. This is necessary
1369 * to make deflate deterministic.
1371 if ((uInt
)nice_match
> s
->lookahead
) nice_match
= (int)s
->lookahead
;
1373 Assert((ulg
)s
->strstart
<= s
->window_size
- MIN_LOOKAHEAD
,
1377 Assert(cur_match
< s
->strstart
, "no future");
1378 match
= s
->window
+ cur_match
;
1380 /* Skip to next match if the match length cannot increase
1381 * or if the match length is less than 2. Note that the checks below
1382 * for insufficient lookahead only occur occasionally for performance
1383 * reasons. Therefore uninitialized memory will be accessed, and
1384 * conditional jumps will be made that depend on those values.
1385 * However the length of the match is limited to the lookahead, so
1386 * the output of deflate is not affected by the uninitialized values.
1388 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1389 /* This code assumes sizeof(unsigned short) == 2. Do not use
1390 * UNALIGNED_OK if your compiler uses a different size.
1392 if (*(ushf
*)(match
+ best_len
- 1) != scan_end
||
1393 *(ushf
*)match
!= scan_start
) continue;
1395 /* It is not necessary to compare scan[2] and match[2] since they are
1396 * always equal when the other bytes match, given that the hash keys
1397 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1398 * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1399 * lookahead only every 4th comparison; the 128th check will be made
1400 * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1401 * necessary to put more guard bytes at the end of the window, or
1402 * to check more often for insufficient lookahead.
1404 Assert(scan
[2] == match
[2], "scan[2]?");
1407 } while (*(ushf
*)(scan
+= 2) == *(ushf
*)(match
+= 2) &&
1408 *(ushf
*)(scan
+= 2) == *(ushf
*)(match
+= 2) &&
1409 *(ushf
*)(scan
+= 2) == *(ushf
*)(match
+= 2) &&
1410 *(ushf
*)(scan
+= 2) == *(ushf
*)(match
+= 2) &&
1412 /* The funny "do {}" generates better code on most compilers */
1414 /* Here, scan <= window + strstart + 257 */
1415 Assert(scan
<= s
->window
+ (unsigned)(s
->window_size
- 1),
1417 if (*scan
== *match
) scan
++;
1419 len
= (MAX_MATCH
- 1) - (int)(strend
- scan
);
1420 scan
= strend
- (MAX_MATCH
-1);
1422 #else /* UNALIGNED_OK */
1424 if (match
[best_len
] != scan_end
||
1425 match
[best_len
- 1] != scan_end1
||
1427 *++match
!= scan
[1]) continue;
1429 /* The check at best_len - 1 can be removed because it will be made
1430 * again later. (This heuristic is not always a win.)
1431 * It is not necessary to compare scan[2] and match[2] since they
1432 * are always equal when the other bytes match, given that
1433 * the hash keys are equal and that HASH_BITS >= 8.
1436 Assert(*scan
== *match
, "match[2]?");
1438 /* We check for insufficient lookahead only every 8th comparison;
1439 * the 256th check will be made at strstart + 258.
1442 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1443 *++scan
== *++match
&& *++scan
== *++match
&&
1444 *++scan
== *++match
&& *++scan
== *++match
&&
1445 *++scan
== *++match
&& *++scan
== *++match
&&
1448 Assert(scan
<= s
->window
+ (unsigned)(s
->window_size
- 1),
1451 len
= MAX_MATCH
- (int)(strend
- scan
);
1452 scan
= strend
- MAX_MATCH
;
1454 #endif /* UNALIGNED_OK */
1456 if (len
> best_len
) {
1457 s
->match_start
= cur_match
;
1459 if (len
>= nice_match
) break;
1461 scan_end
= *(ushf
*)(scan
+ best_len
- 1);
1463 scan_end1
= scan
[best_len
- 1];
1464 scan_end
= scan
[best_len
];
1467 } while ((cur_match
= prev
[cur_match
& wmask
]) > limit
1468 && --chain_length
!= 0);
1470 if ((uInt
)best_len
<= s
->lookahead
) return (uInt
)best_len
;
1471 return s
->lookahead
;
1476 /* ---------------------------------------------------------------------------
1477 * Optimized version for FASTEST only
1479 local uInt
longest_match(deflate_state
*s
, IPos cur_match
) {
1480 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1481 register Bytef
*match
; /* matched string */
1482 register int len
; /* length of current match */
1483 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1485 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1486 * It is easy to get rid of this optimization if necessary.
1488 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1490 Assert((ulg
)s
->strstart
<= s
->window_size
- MIN_LOOKAHEAD
,
1493 Assert(cur_match
< s
->strstart
, "no future");
1495 match
= s
->window
+ cur_match
;
1497 /* Return failure if the match length is less than 2:
1499 if (match
[0] != scan
[0] || match
[1] != scan
[1]) return MIN_MATCH
-1;
1501 /* The check at best_len - 1 can be removed because it will be made
1502 * again later. (This heuristic is not always a win.)
1503 * It is not necessary to compare scan[2] and match[2] since they
1504 * are always equal when the other bytes match, given that
1505 * the hash keys are equal and that HASH_BITS >= 8.
1507 scan
+= 2, match
+= 2;
1508 Assert(*scan
== *match
, "match[2]?");
1510 /* We check for insufficient lookahead only every 8th comparison;
1511 * the 256th check will be made at strstart + 258.
1514 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1515 *++scan
== *++match
&& *++scan
== *++match
&&
1516 *++scan
== *++match
&& *++scan
== *++match
&&
1517 *++scan
== *++match
&& *++scan
== *++match
&&
1520 Assert(scan
<= s
->window
+ (unsigned)(s
->window_size
- 1), "wild scan");
1522 len
= MAX_MATCH
- (int)(strend
- scan
);
1524 if (len
< MIN_MATCH
) return MIN_MATCH
- 1;
1526 s
->match_start
= cur_match
;
1527 return (uInt
)len
<= s
->lookahead
? (uInt
)len
: s
->lookahead
;
1530 #endif /* FASTEST */
1535 /* result of memcmp for equal strings */
1537 /* ===========================================================================
1538 * Check that the match at match_start is indeed a match.
1540 local
void check_match(deflate_state
*s
, IPos start
, IPos match
, int length
) {
1541 /* check that the match is indeed a match */
1542 if (zmemcmp(s
->window
+ match
,
1543 s
->window
+ start
, length
) != EQUAL
) {
1544 fprintf(stderr
, " start %u, match %u, length %d\n",
1545 start
, match
, length
);
1547 fprintf(stderr
, "%c%c", s
->window
[match
++], s
->window
[start
++]);
1548 } while (--length
!= 0);
1549 z_error("invalid match");
1551 if (z_verbose
> 1) {
1552 fprintf(stderr
,"\\[%d,%d]", start
- match
, length
);
1553 do { putc(s
->window
[start
++], stderr
); } while (--length
!= 0);
1557 # define check_match(s, start, match, length)
1558 #endif /* ZLIB_DEBUG */
1560 /* ===========================================================================
1561 * Flush the current block, with given end-of-file flag.
1562 * IN assertion: strstart is set to the end of the current match.
1564 #define FLUSH_BLOCK_ONLY(s, last) { \
1565 _tr_flush_block(s, (s->block_start >= 0L ? \
1566 (charf *)&s->window[(unsigned)s->block_start] : \
1568 (ulg)((long)s->strstart - s->block_start), \
1570 s->block_start = s->strstart; \
1571 flush_pending(s->strm); \
1572 Tracev((stderr,"[FLUSH]")); \
1575 /* Same but force premature exit if necessary. */
1576 #define FLUSH_BLOCK(s, last) { \
1577 FLUSH_BLOCK_ONLY(s, last); \
1578 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1581 /* Maximum stored block length in deflate format (not including header). */
1582 #define MAX_STORED 65535
1584 /* Minimum of a and b. */
1585 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1587 /* ===========================================================================
1588 * Copy without compression as much as possible from the input stream, return
1589 * the current block state.
1591 * In case deflateParams() is used to later switch to a non-zero compression
1592 * level, s->matches (otherwise unused when storing) keeps track of the number
1593 * of hash table slides to perform. If s->matches is 1, then one hash table
1594 * slide will be done when switching. If s->matches is 2, the maximum value
1595 * allowed here, then the hash table will be cleared, since two or more slides
1596 * is the same as a clear.
1598 * deflate_stored() is written to minimize the number of times an input byte is
1599 * copied. It is most efficient with large input and output buffers, which
1600 * maximizes the opportunities to have a single copy from next_in to next_out.
1602 local block_state
deflate_stored(deflate_state
*s
, int flush
) {
1603 /* Smallest worthy block size when not flushing or finishing. By default
1604 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1605 * large input and output buffers, the stored block size will be larger.
1607 unsigned min_block
= MIN(s
->pending_buf_size
- 5, s
->w_size
);
1609 /* Copy as many min_block or larger stored blocks directly to next_out as
1610 * possible. If flushing, copy the remaining available input to next_out as
1611 * stored blocks, if there is enough space.
1613 unsigned len
, left
, have
, last
= 0;
1614 unsigned used
= s
->strm
->avail_in
;
1616 /* Set len to the maximum size block that we can copy directly with the
1617 * available input data and output space. Set left to how much of that
1618 * would be copied from what's left in the window.
1620 len
= MAX_STORED
; /* maximum deflate stored block length */
1621 have
= (s
->bi_valid
+ 42) >> 3; /* number of header bytes */
1622 if (s
->strm
->avail_out
< have
) /* need room for header */
1624 /* maximum stored block length that will fit in avail_out: */
1625 have
= s
->strm
->avail_out
- have
;
1626 left
= s
->strstart
- s
->block_start
; /* bytes left in window */
1627 if (len
> (ulg
)left
+ s
->strm
->avail_in
)
1628 len
= left
+ s
->strm
->avail_in
; /* limit len to the input */
1630 len
= have
; /* limit len to the output */
1632 /* If the stored block would be less than min_block in length, or if
1633 * unable to copy all of the available input when flushing, then try
1634 * copying to the window and the pending buffer instead. Also don't
1635 * write an empty block when flushing -- deflate() does that.
1637 if (len
< min_block
&& ((len
== 0 && flush
!= Z_FINISH
) ||
1638 flush
== Z_NO_FLUSH
||
1639 len
!= left
+ s
->strm
->avail_in
))
1642 /* Make a dummy stored block in pending to get the header bytes,
1643 * including any pending bits. This also updates the debugging counts.
1645 last
= flush
== Z_FINISH
&& len
== left
+ s
->strm
->avail_in
? 1 : 0;
1646 _tr_stored_block(s
, (char *)0, 0L, last
);
1648 /* Replace the lengths in the dummy stored block with len. */
1649 s
->pending_buf
[s
->pending
- 4] = len
;
1650 s
->pending_buf
[s
->pending
- 3] = len
>> 8;
1651 s
->pending_buf
[s
->pending
- 2] = ~len
;
1652 s
->pending_buf
[s
->pending
- 1] = ~len
>> 8;
1654 /* Write the stored block header bytes. */
1655 flush_pending(s
->strm
);
1658 /* Update debugging counts for the data about to be copied. */
1659 s
->compressed_len
+= len
<< 3;
1660 s
->bits_sent
+= len
<< 3;
1663 /* Copy uncompressed bytes from the window to next_out. */
1667 zmemcpy(s
->strm
->next_out
, s
->window
+ s
->block_start
, left
);
1668 s
->strm
->next_out
+= left
;
1669 s
->strm
->avail_out
-= left
;
1670 s
->strm
->total_out
+= left
;
1671 s
->block_start
+= left
;
1675 /* Copy uncompressed bytes directly from next_in to next_out, updating
1679 read_buf(s
->strm
, s
->strm
->next_out
, len
);
1680 s
->strm
->next_out
+= len
;
1681 s
->strm
->avail_out
-= len
;
1682 s
->strm
->total_out
+= len
;
1684 } while (last
== 0);
1686 /* Update the sliding window with the last s->w_size bytes of the copied
1687 * data, or append all of the copied data to the existing window if less
1688 * than s->w_size bytes were copied. Also update the number of bytes to
1689 * insert in the hash tables, in the event that deflateParams() switches to
1690 * a non-zero compression level.
1692 used
-= s
->strm
->avail_in
; /* number of input bytes directly copied */
1694 /* If any input was used, then no unused input remains in the window,
1695 * therefore s->block_start == s->strstart.
1697 if (used
>= s
->w_size
) { /* supplant the previous history */
1698 s
->matches
= 2; /* clear hash */
1699 zmemcpy(s
->window
, s
->strm
->next_in
- s
->w_size
, s
->w_size
);
1700 s
->strstart
= s
->w_size
;
1701 s
->insert
= s
->strstart
;
1704 if (s
->window_size
- s
->strstart
<= used
) {
1705 /* Slide the window down. */
1706 s
->strstart
-= s
->w_size
;
1707 zmemcpy(s
->window
, s
->window
+ s
->w_size
, s
->strstart
);
1709 s
->matches
++; /* add a pending slide_hash() */
1710 if (s
->insert
> s
->strstart
)
1711 s
->insert
= s
->strstart
;
1713 zmemcpy(s
->window
+ s
->strstart
, s
->strm
->next_in
- used
, used
);
1714 s
->strstart
+= used
;
1715 s
->insert
+= MIN(used
, s
->w_size
- s
->insert
);
1717 s
->block_start
= s
->strstart
;
1719 if (s
->high_water
< s
->strstart
)
1720 s
->high_water
= s
->strstart
;
1722 /* If the last block was written to next_out, then done. */
1726 /* If flushing and all input has been consumed, then done. */
1727 if (flush
!= Z_NO_FLUSH
&& flush
!= Z_FINISH
&&
1728 s
->strm
->avail_in
== 0 && (long)s
->strstart
== s
->block_start
)
1731 /* Fill the window with any remaining input. */
1732 have
= s
->window_size
- s
->strstart
;
1733 if (s
->strm
->avail_in
> have
&& s
->block_start
>= (long)s
->w_size
) {
1734 /* Slide the window down. */
1735 s
->block_start
-= s
->w_size
;
1736 s
->strstart
-= s
->w_size
;
1737 zmemcpy(s
->window
, s
->window
+ s
->w_size
, s
->strstart
);
1739 s
->matches
++; /* add a pending slide_hash() */
1740 have
+= s
->w_size
; /* more space now */
1741 if (s
->insert
> s
->strstart
)
1742 s
->insert
= s
->strstart
;
1744 if (have
> s
->strm
->avail_in
)
1745 have
= s
->strm
->avail_in
;
1747 read_buf(s
->strm
, s
->window
+ s
->strstart
, have
);
1748 s
->strstart
+= have
;
1749 s
->insert
+= MIN(have
, s
->w_size
- s
->insert
);
1751 if (s
->high_water
< s
->strstart
)
1752 s
->high_water
= s
->strstart
;
1754 /* There was not enough avail_out to write a complete worthy or flushed
1755 * stored block to next_out. Write a stored block to pending instead, if we
1756 * have enough input for a worthy block, or if flushing and there is enough
1757 * room for the remaining input as a stored block in the pending buffer.
1759 have
= (s
->bi_valid
+ 42) >> 3; /* number of header bytes */
1760 /* maximum stored block length that will fit in pending: */
1761 have
= MIN(s
->pending_buf_size
- have
, MAX_STORED
);
1762 min_block
= MIN(have
, s
->w_size
);
1763 left
= s
->strstart
- s
->block_start
;
1764 if (left
>= min_block
||
1765 ((left
|| flush
== Z_FINISH
) && flush
!= Z_NO_FLUSH
&&
1766 s
->strm
->avail_in
== 0 && left
<= have
)) {
1767 len
= MIN(left
, have
);
1768 last
= flush
== Z_FINISH
&& s
->strm
->avail_in
== 0 &&
1769 len
== left
? 1 : 0;
1770 _tr_stored_block(s
, (charf
*)s
->window
+ s
->block_start
, len
, last
);
1771 s
->block_start
+= len
;
1772 flush_pending(s
->strm
);
1775 /* We've done all we can with the available input and output. */
1776 return last
? finish_started
: need_more
;
1779 /* ===========================================================================
1780 * Compress as much as possible from the input stream, return the current
1782 * This function does not perform lazy evaluation of matches and inserts
1783 * new strings in the dictionary only for unmatched strings or for short
1784 * matches. It is used only for the fast compression options.
1786 local block_state
deflate_fast(deflate_state
*s
, int flush
) {
1787 IPos hash_head
; /* head of the hash chain */
1788 int bflush
; /* set if current block must be flushed */
1791 /* Make sure that we always have enough lookahead, except
1792 * at the end of the input file. We need MAX_MATCH bytes
1793 * for the next match, plus MIN_MATCH bytes to insert the
1794 * string following the next match.
1796 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1798 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1801 if (s
->lookahead
== 0) break; /* flush the current block */
1804 /* Insert the string window[strstart .. strstart + 2] in the
1805 * dictionary, and set hash_head to the head of the hash chain:
1808 if (s
->lookahead
>= MIN_MATCH
) {
1809 INSERT_STRING(s
, s
->strstart
, hash_head
);
1812 /* Find the longest match, discarding those <= prev_length.
1813 * At this point we have always match_length < MIN_MATCH
1815 if (hash_head
!= NIL
&& s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1816 /* To simplify the code, we prevent matches with the string
1817 * of window index 0 (in particular we have to avoid a match
1818 * of the string with itself at the start of the input file).
1820 s
->match_length
= longest_match (s
, hash_head
);
1821 /* longest_match() sets match_start */
1823 if (s
->match_length
>= MIN_MATCH
) {
1824 check_match(s
, s
->strstart
, s
->match_start
, s
->match_length
);
1826 _tr_tally_dist(s
, s
->strstart
- s
->match_start
,
1827 s
->match_length
- MIN_MATCH
, bflush
);
1829 s
->lookahead
-= s
->match_length
;
1831 /* Insert new strings in the hash table only if the match length
1832 * is not too large. This saves time but degrades compression.
1835 if (s
->match_length
<= s
->max_insert_length
&&
1836 s
->lookahead
>= MIN_MATCH
) {
1837 s
->match_length
--; /* string at strstart already in table */
1840 INSERT_STRING(s
, s
->strstart
, hash_head
);
1841 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1842 * always MIN_MATCH bytes ahead.
1844 } while (--s
->match_length
!= 0);
1849 s
->strstart
+= s
->match_length
;
1850 s
->match_length
= 0;
1851 s
->ins_h
= s
->window
[s
->strstart
];
1852 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+ 1]);
1854 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1856 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1857 * matter since it will be recomputed at next deflate call.
1861 /* No match, output a literal byte */
1862 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
1863 _tr_tally_lit(s
, s
->window
[s
->strstart
], bflush
);
1867 if (bflush
) FLUSH_BLOCK(s
, 0);
1869 s
->insert
= s
->strstart
< MIN_MATCH
-1 ? s
->strstart
: MIN_MATCH
-1;
1870 if (flush
== Z_FINISH
) {
1880 /* ===========================================================================
1881 * Same as above, but achieves better compression. We use a lazy
1882 * evaluation for matches: a match is finally adopted only if there is
1883 * no better match at the next window position.
1885 local block_state
deflate_slow(deflate_state
*s
, int flush
) {
1886 IPos hash_head
; /* head of hash chain */
1887 int bflush
; /* set if current block must be flushed */
1889 /* Process the input block. */
1891 /* Make sure that we always have enough lookahead, except
1892 * at the end of the input file. We need MAX_MATCH bytes
1893 * for the next match, plus MIN_MATCH bytes to insert the
1894 * string following the next match.
1896 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1898 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1901 if (s
->lookahead
== 0) break; /* flush the current block */
1904 /* Insert the string window[strstart .. strstart + 2] in the
1905 * dictionary, and set hash_head to the head of the hash chain:
1908 if (s
->lookahead
>= MIN_MATCH
) {
1909 INSERT_STRING(s
, s
->strstart
, hash_head
);
1912 /* Find the longest match, discarding those <= prev_length.
1914 s
->prev_length
= s
->match_length
, s
->prev_match
= s
->match_start
;
1915 s
->match_length
= MIN_MATCH
-1;
1917 if (hash_head
!= NIL
&& s
->prev_length
< s
->max_lazy_match
&&
1918 s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1919 /* To simplify the code, we prevent matches with the string
1920 * of window index 0 (in particular we have to avoid a match
1921 * of the string with itself at the start of the input file).
1923 s
->match_length
= longest_match (s
, hash_head
);
1924 /* longest_match() sets match_start */
1926 if (s
->match_length
<= 5 && (s
->strategy
== Z_FILTERED
1927 #if TOO_FAR <= 32767
1928 || (s
->match_length
== MIN_MATCH
&&
1929 s
->strstart
- s
->match_start
> TOO_FAR
)
1933 /* If prev_match is also MIN_MATCH, match_start is garbage
1934 * but we will ignore the current match anyway.
1936 s
->match_length
= MIN_MATCH
-1;
1939 /* If there was a match at the previous step and the current
1940 * match is not better, output the previous match:
1942 if (s
->prev_length
>= MIN_MATCH
&& s
->match_length
<= s
->prev_length
) {
1943 uInt max_insert
= s
->strstart
+ s
->lookahead
- MIN_MATCH
;
1944 /* Do not insert strings in hash table beyond this. */
1946 check_match(s
, s
->strstart
- 1, s
->prev_match
, s
->prev_length
);
1948 _tr_tally_dist(s
, s
->strstart
- 1 - s
->prev_match
,
1949 s
->prev_length
- MIN_MATCH
, bflush
);
1951 /* Insert in hash table all strings up to the end of the match.
1952 * strstart - 1 and strstart are already inserted. If there is not
1953 * enough lookahead, the last two strings are not inserted in
1956 s
->lookahead
-= s
->prev_length
- 1;
1957 s
->prev_length
-= 2;
1959 if (++s
->strstart
<= max_insert
) {
1960 INSERT_STRING(s
, s
->strstart
, hash_head
);
1962 } while (--s
->prev_length
!= 0);
1963 s
->match_available
= 0;
1964 s
->match_length
= MIN_MATCH
-1;
1967 if (bflush
) FLUSH_BLOCK(s
, 0);
1969 } else if (s
->match_available
) {
1970 /* If there was no match at the previous position, output a
1971 * single literal. If there was a match but the current match
1972 * is longer, truncate the previous match to a single literal.
1974 Tracevv((stderr
,"%c", s
->window
[s
->strstart
- 1]));
1975 _tr_tally_lit(s
, s
->window
[s
->strstart
- 1], bflush
);
1977 FLUSH_BLOCK_ONLY(s
, 0);
1981 if (s
->strm
->avail_out
== 0) return need_more
;
1983 /* There is no previous match to compare with, wait for
1984 * the next step to decide.
1986 s
->match_available
= 1;
1991 Assert (flush
!= Z_NO_FLUSH
, "no flush?");
1992 if (s
->match_available
) {
1993 Tracevv((stderr
,"%c", s
->window
[s
->strstart
- 1]));
1994 _tr_tally_lit(s
, s
->window
[s
->strstart
- 1], bflush
);
1995 s
->match_available
= 0;
1997 s
->insert
= s
->strstart
< MIN_MATCH
-1 ? s
->strstart
: MIN_MATCH
-1;
1998 if (flush
== Z_FINISH
) {
2006 #endif /* FASTEST */
2008 /* ===========================================================================
2009 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2010 * one. Do not maintain a hash table. (It will be regenerated if this run of
2011 * deflate switches away from Z_RLE.)
2013 local block_state
deflate_rle(deflate_state
*s
, int flush
) {
2014 int bflush
; /* set if current block must be flushed */
2015 uInt prev
; /* byte at distance one to match */
2016 Bytef
*scan
, *strend
; /* scan goes up to strend for length of run */
2019 /* Make sure that we always have enough lookahead, except
2020 * at the end of the input file. We need MAX_MATCH bytes
2021 * for the longest run, plus one for the unrolled loop.
2023 if (s
->lookahead
<= MAX_MATCH
) {
2025 if (s
->lookahead
<= MAX_MATCH
&& flush
== Z_NO_FLUSH
) {
2028 if (s
->lookahead
== 0) break; /* flush the current block */
2031 /* See how many times the previous byte repeats */
2032 s
->match_length
= 0;
2033 if (s
->lookahead
>= MIN_MATCH
&& s
->strstart
> 0) {
2034 scan
= s
->window
+ s
->strstart
- 1;
2036 if (prev
== *++scan
&& prev
== *++scan
&& prev
== *++scan
) {
2037 strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
2039 } while (prev
== *++scan
&& prev
== *++scan
&&
2040 prev
== *++scan
&& prev
== *++scan
&&
2041 prev
== *++scan
&& prev
== *++scan
&&
2042 prev
== *++scan
&& prev
== *++scan
&&
2044 s
->match_length
= MAX_MATCH
- (uInt
)(strend
- scan
);
2045 if (s
->match_length
> s
->lookahead
)
2046 s
->match_length
= s
->lookahead
;
2048 Assert(scan
<= s
->window
+ (uInt
)(s
->window_size
- 1),
2052 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2053 if (s
->match_length
>= MIN_MATCH
) {
2054 check_match(s
, s
->strstart
, s
->strstart
- 1, s
->match_length
);
2056 _tr_tally_dist(s
, 1, s
->match_length
- MIN_MATCH
, bflush
);
2058 s
->lookahead
-= s
->match_length
;
2059 s
->strstart
+= s
->match_length
;
2060 s
->match_length
= 0;
2062 /* No match, output a literal byte */
2063 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
2064 _tr_tally_lit(s
, s
->window
[s
->strstart
], bflush
);
2068 if (bflush
) FLUSH_BLOCK(s
, 0);
2071 if (flush
== Z_FINISH
) {
2080 /* ===========================================================================
2081 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2082 * (It will be regenerated if this run of deflate switches away from Huffman.)
2084 local block_state
deflate_huff(deflate_state
*s
, int flush
) {
2085 int bflush
; /* set if current block must be flushed */
2088 /* Make sure that we have a literal to write. */
2089 if (s
->lookahead
== 0) {
2091 if (s
->lookahead
== 0) {
2092 if (flush
== Z_NO_FLUSH
)
2094 break; /* flush the current block */
2098 /* Output a literal byte */
2099 s
->match_length
= 0;
2100 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
2101 _tr_tally_lit(s
, s
->window
[s
->strstart
], bflush
);
2104 if (bflush
) FLUSH_BLOCK(s
, 0);
2107 if (flush
== Z_FINISH
) {