advapi32/tests: Changed an invalid comment.
[wine.git] / dlls / oleaut32 / variant.c
blobaddc5a0aa149f2cfcbd8858333ba2a7b2f149781
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include "config.h"
30 #include <string.h>
31 #include <stdlib.h>
32 #include <stdarg.h>
34 #define COBJMACROS
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
38 #include "windef.h"
39 #include "winbase.h"
40 #include "wine/unicode.h"
41 #include "winerror.h"
42 #include "variant.h"
43 #include "resource.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
48 static const char * const variant_types[] =
50 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
51 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
52 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
53 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
54 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
55 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
56 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
57 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
58 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID",
59 "VT_VERSIONED_STREAM"
62 static const char * const variant_flags[16] =
64 "",
65 "|VT_VECTOR",
66 "|VT_ARRAY",
67 "|VT_VECTOR|VT_ARRAY",
68 "|VT_BYREF",
69 "|VT_VECTOR|VT_ARRAY",
70 "|VT_ARRAY|VT_BYREF",
71 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
72 "|VT_RESERVED",
73 "|VT_VECTOR|VT_RESERVED",
74 "|VT_ARRAY|VT_RESERVED",
75 "|VT_VECTOR|VT_ARRAY|VT_RESERVED",
76 "|VT_BYREF|VT_RESERVED",
77 "|VT_VECTOR|VT_ARRAY|VT_RESERVED",
78 "|VT_ARRAY|VT_BYREF|VT_RESERVED",
79 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_RESERVED",
82 const char *debugstr_vt(VARTYPE vt)
84 if(vt & ~VT_TYPEMASK)
85 return wine_dbg_sprintf("%s%s", debugstr_vt(vt&VT_TYPEMASK), variant_flags[vt>>12]);
87 if(vt < sizeof(variant_types)/sizeof(*variant_types))
88 return variant_types[vt];
90 if(vt == VT_BSTR_BLOB)
91 return "VT_BSTR_BLOB";
93 return wine_dbg_sprintf("vt(invalid %x)", vt);
96 const char *debugstr_variant(const VARIANT *v)
98 if(!v)
99 return "(null)";
101 if(V_VT(v) & VT_BYREF) {
102 if(V_VT(v) == (VT_VARIANT|VT_BYREF))
103 return wine_dbg_sprintf("%p {VT_VARIANT|VT_BYREF: %s}", v, debugstr_variant(V_VARIANTREF(v)));
104 return wine_dbg_sprintf("%p {%s %p}", v, debugstr_vt(V_VT(v)), V_BYREF(v));
107 if(V_ISARRAY(v) || V_ISVECTOR(v))
108 return wine_dbg_sprintf("%p {%s %p}", v, debugstr_vt(V_VT(v)), V_ARRAY(v));
110 switch(V_VT(v)) {
111 case VT_EMPTY:
112 return wine_dbg_sprintf("%p {VT_EMPTY}", v);
113 case VT_NULL:
114 return wine_dbg_sprintf("%p {VT_NULL}", v);
115 case VT_I2:
116 return wine_dbg_sprintf("%p {VT_I2: %d}", v, V_I2(v));
117 case VT_I4:
118 return wine_dbg_sprintf("%p {VT_I4: %d}", v, V_I4(v));
119 case VT_R4:
120 return wine_dbg_sprintf("%p {VT_R4: %f}", v, V_R4(v));
121 case VT_R8:
122 return wine_dbg_sprintf("%p {VT_R8: %lf}", v, V_R8(v));
123 case VT_CY:
124 return wine_dbg_sprintf("%p {VT_CY: %s}", v, wine_dbgstr_longlong(V_CY(v).int64));
125 case VT_DATE:
126 return wine_dbg_sprintf("%p {VT_DATE: %lf}", v, V_DATE(v));
127 case VT_BSTR:
128 return wine_dbg_sprintf("%p {VT_BSTR: %s}", v, debugstr_w(V_BSTR(v)));
129 case VT_DISPATCH:
130 return wine_dbg_sprintf("%p {VT_DISPATCH: %p}", v, V_DISPATCH(v));
131 case VT_ERROR:
132 return wine_dbg_sprintf("%p {VT_ERROR: %08x}", v, V_ERROR(v));
133 case VT_BOOL:
134 return wine_dbg_sprintf("%p {VT_BOOL: %x}", v, V_BOOL(v));
135 case VT_UNKNOWN:
136 return wine_dbg_sprintf("%p {VT_UNKNOWN: %p}", v, V_UNKNOWN(v));
137 case VT_I1:
138 return wine_dbg_sprintf("%p {VT_I1: %d}", v, V_I1(v));
139 case VT_UI1:
140 return wine_dbg_sprintf("%p {VT_UI1: %u}", v, V_UI1(v));
141 case VT_UI2:
142 return wine_dbg_sprintf("%p {VT_UI2: %d}", v, V_UI2(v));
143 case VT_UI4:
144 return wine_dbg_sprintf("%p {VT_UI4: %d}", v, V_UI4(v));
145 case VT_I8:
146 return wine_dbg_sprintf("%p {VT_I8: %s}", v, wine_dbgstr_longlong(V_I8(v)));
147 case VT_UI8:
148 return wine_dbg_sprintf("%p {VT_UI8: %s}", v, wine_dbgstr_longlong(V_UI8(v)));
149 case VT_INT:
150 return wine_dbg_sprintf("%p {VT_INT: %d}", v, V_INT(v));
151 case VT_UINT:
152 return wine_dbg_sprintf("%p {VT_UINT: %u}", v, V_UINT(v));
153 case VT_VOID:
154 return wine_dbg_sprintf("%p {VT_VOID}", v);
155 case VT_RECORD:
156 return wine_dbg_sprintf("%p {VT_RECORD: %p %p}", v, V_UNION(v,brecVal).pvRecord, V_UNION(v,brecVal).pRecInfo);
157 default:
158 return wine_dbg_sprintf("%p {vt %s}", v, debugstr_vt(V_VT(v)));
162 /* Convert a variant from one type to another */
163 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
164 VARIANTARG* ps, VARTYPE vt)
166 HRESULT res = DISP_E_TYPEMISMATCH;
167 VARTYPE vtFrom = V_TYPE(ps);
168 DWORD dwFlags = 0;
170 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
171 debugstr_variant(ps), debugstr_vt(vt));
173 if (vt == VT_BSTR || vtFrom == VT_BSTR)
175 /* All flags passed to low level function are only used for
176 * changing to or from strings. Map these here.
178 if (wFlags & VARIANT_LOCALBOOL)
179 dwFlags |= VAR_LOCALBOOL;
180 if (wFlags & VARIANT_CALENDAR_HIJRI)
181 dwFlags |= VAR_CALENDAR_HIJRI;
182 if (wFlags & VARIANT_CALENDAR_THAI)
183 dwFlags |= VAR_CALENDAR_THAI;
184 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
185 dwFlags |= VAR_CALENDAR_GREGORIAN;
186 if (wFlags & VARIANT_NOUSEROVERRIDE)
187 dwFlags |= LOCALE_NOUSEROVERRIDE;
188 if (wFlags & VARIANT_USE_NLS)
189 dwFlags |= LOCALE_USE_NLS;
192 /* Map int/uint to i4/ui4 */
193 if (vt == VT_INT)
194 vt = VT_I4;
195 else if (vt == VT_UINT)
196 vt = VT_UI4;
198 if (vtFrom == VT_INT)
199 vtFrom = VT_I4;
200 else if (vtFrom == VT_UINT)
201 vtFrom = VT_UI4;
203 if (vt == vtFrom)
204 return VariantCopy(pd, ps);
206 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
208 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
209 * accessing the default object property.
211 return DISP_E_TYPEMISMATCH;
214 switch (vt)
216 case VT_EMPTY:
217 if (vtFrom == VT_NULL)
218 return DISP_E_TYPEMISMATCH;
219 /* ... Fall through */
220 case VT_NULL:
221 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
223 res = VariantClear( pd );
224 if (vt == VT_NULL && SUCCEEDED(res))
225 V_VT(pd) = VT_NULL;
227 return res;
229 case VT_I1:
230 switch (vtFrom)
232 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
233 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
234 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
235 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
236 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
237 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
238 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
239 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
240 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
241 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
242 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
243 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
244 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
245 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
246 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
247 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
249 break;
251 case VT_I2:
252 switch (vtFrom)
254 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
255 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
256 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
257 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
258 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
259 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
260 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
261 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
262 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
263 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
264 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
265 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
266 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
267 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
268 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
269 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
271 break;
273 case VT_I4:
274 switch (vtFrom)
276 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
277 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
278 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
279 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
280 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
281 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
282 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
283 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
284 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
285 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
286 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
287 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
288 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
289 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
290 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
291 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
293 break;
295 case VT_UI1:
296 switch (vtFrom)
298 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
299 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
300 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
301 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
302 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
303 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
304 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
305 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
306 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
307 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
308 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
309 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
310 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
311 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
312 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
313 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
315 break;
317 case VT_UI2:
318 switch (vtFrom)
320 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
321 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
322 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
323 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
324 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
325 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
326 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
327 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
328 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
329 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
330 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
331 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
332 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
333 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
334 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
335 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
337 break;
339 case VT_UI4:
340 switch (vtFrom)
342 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
343 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
344 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
345 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
346 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
347 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
348 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
349 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
350 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
351 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
352 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
353 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
354 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
355 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
356 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
357 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
359 break;
361 case VT_UI8:
362 switch (vtFrom)
364 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
365 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
366 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
367 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
368 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
369 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
370 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
371 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
372 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
373 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
374 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
375 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
376 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
377 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
378 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
379 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
381 break;
383 case VT_I8:
384 switch (vtFrom)
386 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
387 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
388 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
389 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
390 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
391 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
392 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
393 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
394 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
395 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
396 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
397 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
398 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
399 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
400 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
401 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
403 break;
405 case VT_R4:
406 switch (vtFrom)
408 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
409 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
410 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
411 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
412 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
413 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
414 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
415 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
416 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
417 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
418 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
419 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
420 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
421 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
422 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
423 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
425 break;
427 case VT_R8:
428 switch (vtFrom)
430 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
431 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
432 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
433 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
434 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
435 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
436 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
437 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
438 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
439 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
440 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
441 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
442 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
443 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
444 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
445 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
447 break;
449 case VT_DATE:
450 switch (vtFrom)
452 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
453 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
454 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
455 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
456 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
457 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
458 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
459 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
460 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
461 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
462 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
463 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
464 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
465 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
466 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
467 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
469 break;
471 case VT_BOOL:
472 switch (vtFrom)
474 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
475 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
476 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
477 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
478 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
479 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
480 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
481 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
482 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
483 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
484 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
485 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
486 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
487 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
488 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
489 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
491 break;
493 case VT_BSTR:
494 switch (vtFrom)
496 case VT_EMPTY:
497 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
498 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
499 case VT_BOOL:
500 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
501 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
502 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
503 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
504 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
505 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
506 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
507 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
508 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
509 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
510 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
511 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
512 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
513 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
514 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
515 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
516 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
518 break;
520 case VT_CY:
521 switch (vtFrom)
523 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
524 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
525 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
526 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
527 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
528 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
529 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
530 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
531 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
532 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
533 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
534 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
535 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
536 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
537 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
538 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
540 break;
542 case VT_DECIMAL:
543 switch (vtFrom)
545 case VT_EMPTY:
546 case VT_BOOL:
547 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
548 DEC_HI32(&V_DECIMAL(pd)) = 0;
549 DEC_MID32(&V_DECIMAL(pd)) = 0;
550 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
551 * VT_NULL and VT_EMPTY always give a 0 value.
553 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
554 return S_OK;
555 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
556 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
557 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
558 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
559 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
560 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
561 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
562 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
563 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
564 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
565 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
566 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
567 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
568 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
570 break;
572 case VT_UNKNOWN:
573 switch (vtFrom)
575 case VT_DISPATCH:
576 if (V_DISPATCH(ps) == NULL)
577 V_UNKNOWN(pd) = NULL;
578 else
579 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
580 break;
582 break;
584 case VT_DISPATCH:
585 switch (vtFrom)
587 case VT_UNKNOWN:
588 if (V_UNKNOWN(ps) == NULL)
589 V_DISPATCH(pd) = NULL;
590 else
591 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
592 break;
594 break;
596 case VT_RECORD:
597 break;
599 return res;
602 /* Coerce to/from an array */
603 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
605 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
606 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
608 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
609 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
611 if (V_VT(ps) == vt)
612 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
614 return DISP_E_TYPEMISMATCH;
617 /******************************************************************************
618 * Check if a variants type is valid.
620 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
622 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
624 vt &= VT_TYPEMASK;
626 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
628 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
630 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
631 return DISP_E_BADVARTYPE;
632 if (vt != (VARTYPE)15)
633 return S_OK;
636 return DISP_E_BADVARTYPE;
639 /******************************************************************************
640 * VariantInit [OLEAUT32.8]
642 * Initialise a variant.
644 * PARAMS
645 * pVarg [O] Variant to initialise
647 * RETURNS
648 * Nothing.
650 * NOTES
651 * This function simply sets the type of the variant to VT_EMPTY. It does not
652 * free any existing value, use VariantClear() for that.
654 void WINAPI VariantInit(VARIANTARG* pVarg)
656 TRACE("(%p)\n", pVarg);
658 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
659 V_VT(pVarg) = VT_EMPTY;
662 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
664 HRESULT hres;
666 TRACE("(%s)\n", debugstr_variant(pVarg));
668 hres = VARIANT_ValidateType(V_VT(pVarg));
669 if (FAILED(hres))
670 return hres;
672 switch (V_VT(pVarg))
674 case VT_DISPATCH:
675 case VT_UNKNOWN:
676 if (V_UNKNOWN(pVarg))
677 IUnknown_Release(V_UNKNOWN(pVarg));
678 break;
679 case VT_UNKNOWN | VT_BYREF:
680 case VT_DISPATCH | VT_BYREF:
681 if(*V_UNKNOWNREF(pVarg))
682 IUnknown_Release(*V_UNKNOWNREF(pVarg));
683 break;
684 case VT_BSTR:
685 SysFreeString(V_BSTR(pVarg));
686 break;
687 case VT_BSTR | VT_BYREF:
688 SysFreeString(*V_BSTRREF(pVarg));
689 break;
690 case VT_VARIANT | VT_BYREF:
691 VariantClear(V_VARIANTREF(pVarg));
692 break;
693 case VT_RECORD:
694 case VT_RECORD | VT_BYREF:
696 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
697 if (pBr->pRecInfo)
699 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
700 IRecordInfo_Release(pBr->pRecInfo);
702 break;
704 default:
705 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
707 if (V_ISBYREF(pVarg))
709 if (*V_ARRAYREF(pVarg))
710 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
712 else if (V_ARRAY(pVarg))
713 hres = SafeArrayDestroy(V_ARRAY(pVarg));
715 break;
718 V_VT(pVarg) = VT_EMPTY;
719 return hres;
722 /******************************************************************************
723 * VariantClear [OLEAUT32.9]
725 * Clear a variant.
727 * PARAMS
728 * pVarg [I/O] Variant to clear
730 * RETURNS
731 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
732 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
734 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
736 HRESULT hres;
738 TRACE("(%s)\n", debugstr_variant(pVarg));
740 hres = VARIANT_ValidateType(V_VT(pVarg));
742 if (SUCCEEDED(hres))
744 if (!V_ISBYREF(pVarg))
746 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
748 hres = SafeArrayDestroy(V_ARRAY(pVarg));
750 else if (V_VT(pVarg) == VT_BSTR)
752 SysFreeString(V_BSTR(pVarg));
754 else if (V_VT(pVarg) == VT_RECORD)
756 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
757 if (pBr->pRecInfo)
759 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
760 IRecordInfo_Release(pBr->pRecInfo);
763 else if (V_VT(pVarg) == VT_DISPATCH ||
764 V_VT(pVarg) == VT_UNKNOWN)
766 if (V_UNKNOWN(pVarg))
767 IUnknown_Release(V_UNKNOWN(pVarg));
770 V_VT(pVarg) = VT_EMPTY;
772 return hres;
775 /******************************************************************************
776 * Copy an IRecordInfo object contained in a variant.
778 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
780 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
781 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
782 HRESULT hr = S_OK;
783 ULONG size;
785 if (!src_rec->pRecInfo)
787 if (src_rec->pvRecord) return E_INVALIDARG;
788 return S_OK;
791 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
792 if (FAILED(hr)) return hr;
794 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
795 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
796 could free it later. */
797 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
798 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
800 dest_rec->pRecInfo = src_rec->pRecInfo;
801 IRecordInfo_AddRef(src_rec->pRecInfo);
803 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
806 /******************************************************************************
807 * VariantCopy [OLEAUT32.10]
809 * Copy a variant.
811 * PARAMS
812 * pvargDest [O] Destination for copy
813 * pvargSrc [I] Source variant to copy
815 * RETURNS
816 * Success: S_OK. pvargDest contains a copy of pvargSrc.
817 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
818 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
819 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
820 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
822 * NOTES
823 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
824 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
825 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
826 * fails, so does this function.
827 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
828 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
829 * is copied rather than just any pointers to it.
830 * - For by-value object types the object pointer is copied and the objects
831 * reference count increased using IUnknown_AddRef().
832 * - For all by-reference types, only the referencing pointer is copied.
834 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
836 HRESULT hres = S_OK;
838 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
840 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
841 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
842 return DISP_E_BADVARTYPE;
844 if (pvargSrc != pvargDest &&
845 SUCCEEDED(hres = VariantClear(pvargDest)))
847 *pvargDest = *pvargSrc; /* Shallow copy the value */
849 if (!V_ISBYREF(pvargSrc))
851 switch (V_VT(pvargSrc))
853 case VT_BSTR:
854 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
855 if (!V_BSTR(pvargDest))
856 hres = E_OUTOFMEMORY;
857 break;
858 case VT_RECORD:
859 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
860 break;
861 case VT_DISPATCH:
862 case VT_UNKNOWN:
863 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
864 if (V_UNKNOWN(pvargSrc))
865 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
866 break;
867 default:
868 if (V_ISARRAY(pvargSrc))
869 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
873 return hres;
876 /* Return the byte size of a variants data */
877 static inline size_t VARIANT_DataSize(const VARIANT* pv)
879 switch (V_TYPE(pv))
881 case VT_I1:
882 case VT_UI1: return sizeof(BYTE);
883 case VT_I2:
884 case VT_UI2: return sizeof(SHORT);
885 case VT_INT:
886 case VT_UINT:
887 case VT_I4:
888 case VT_UI4: return sizeof(LONG);
889 case VT_I8:
890 case VT_UI8: return sizeof(LONGLONG);
891 case VT_R4: return sizeof(float);
892 case VT_R8: return sizeof(double);
893 case VT_DATE: return sizeof(DATE);
894 case VT_BOOL: return sizeof(VARIANT_BOOL);
895 case VT_DISPATCH:
896 case VT_UNKNOWN:
897 case VT_BSTR: return sizeof(void*);
898 case VT_CY: return sizeof(CY);
899 case VT_ERROR: return sizeof(SCODE);
901 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
902 return 0;
905 /******************************************************************************
906 * VariantCopyInd [OLEAUT32.11]
908 * Copy a variant, dereferencing it if it is by-reference.
910 * PARAMS
911 * pvargDest [O] Destination for copy
912 * pvargSrc [I] Source variant to copy
914 * RETURNS
915 * Success: S_OK. pvargDest contains a copy of pvargSrc.
916 * Failure: An HRESULT error code indicating the error.
918 * NOTES
919 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
920 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
921 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
922 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
923 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
925 * NOTES
926 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
927 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
928 * value.
929 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
930 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
931 * to it. If clearing pvargDest fails, so does this function.
933 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
935 VARIANTARG vTmp, *pSrc = pvargSrc;
936 VARTYPE vt;
937 HRESULT hres = S_OK;
939 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
941 if (!V_ISBYREF(pvargSrc))
942 return VariantCopy(pvargDest, pvargSrc);
944 /* Argument checking is more lax than VariantCopy()... */
945 vt = V_TYPE(pvargSrc);
946 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
947 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
948 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
950 /* OK */
952 else
953 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
955 if (pvargSrc == pvargDest)
957 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
958 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
960 vTmp = *pvargSrc;
961 pSrc = &vTmp;
962 V_VT(pvargDest) = VT_EMPTY;
964 else
966 /* Copy into another variant. Free the variant in pvargDest */
967 if (FAILED(hres = VariantClear(pvargDest)))
969 TRACE("VariantClear() of destination failed\n");
970 return hres;
974 if (V_ISARRAY(pSrc))
976 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
977 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
979 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
981 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
982 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
984 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
986 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
988 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
989 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
991 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
992 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
993 if (*V_UNKNOWNREF(pSrc))
994 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
996 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
998 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
999 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
1000 hres = E_INVALIDARG; /* Don't dereference more than one level */
1001 else
1002 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
1004 /* Use the dereferenced variants type value, not VT_VARIANT */
1005 goto VariantCopyInd_Return;
1007 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
1009 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
1010 sizeof(DECIMAL) - sizeof(USHORT));
1012 else
1014 /* Copy the pointed to data into this variant */
1015 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
1018 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
1020 VariantCopyInd_Return:
1022 if (pSrc != pvargSrc)
1023 VariantClear(pSrc);
1025 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
1026 return hres;
1029 /******************************************************************************
1030 * VariantChangeType [OLEAUT32.12]
1032 * Change the type of a variant.
1034 * PARAMS
1035 * pvargDest [O] Destination for the converted variant
1036 * pvargSrc [O] Source variant to change the type of
1037 * wFlags [I] VARIANT_ flags from "oleauto.h"
1038 * vt [I] Variant type to change pvargSrc into
1040 * RETURNS
1041 * Success: S_OK. pvargDest contains the converted value.
1042 * Failure: An HRESULT error code describing the failure.
1044 * NOTES
1045 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
1046 * See VariantChangeTypeEx.
1048 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
1049 USHORT wFlags, VARTYPE vt)
1051 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
1054 /******************************************************************************
1055 * VariantChangeTypeEx [OLEAUT32.147]
1057 * Change the type of a variant.
1059 * PARAMS
1060 * pvargDest [O] Destination for the converted variant
1061 * pvargSrc [O] Source variant to change the type of
1062 * lcid [I] LCID for the conversion
1063 * wFlags [I] VARIANT_ flags from "oleauto.h"
1064 * vt [I] Variant type to change pvargSrc into
1066 * RETURNS
1067 * Success: S_OK. pvargDest contains the converted value.
1068 * Failure: An HRESULT error code describing the failure.
1070 * NOTES
1071 * pvargDest and pvargSrc can point to the same variant to perform an in-place
1072 * conversion. If the conversion is successful, pvargSrc will be freed.
1074 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
1075 LCID lcid, USHORT wFlags, VARTYPE vt)
1077 HRESULT res = S_OK;
1079 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
1080 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
1082 if (vt == VT_CLSID)
1083 res = DISP_E_BADVARTYPE;
1084 else
1086 res = VARIANT_ValidateType(V_VT(pvargSrc));
1088 if (SUCCEEDED(res))
1090 res = VARIANT_ValidateType(vt);
1092 if (SUCCEEDED(res))
1094 VARIANTARG vTmp, vSrcDeref;
1096 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1097 res = DISP_E_TYPEMISMATCH;
1098 else
1100 V_VT(&vTmp) = VT_EMPTY;
1101 V_VT(&vSrcDeref) = VT_EMPTY;
1102 VariantClear(&vTmp);
1103 VariantClear(&vSrcDeref);
1106 if (SUCCEEDED(res))
1108 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1109 if (SUCCEEDED(res))
1111 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1112 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1113 else
1114 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1116 if (SUCCEEDED(res)) {
1117 V_VT(&vTmp) = vt;
1118 res = VariantCopy(pvargDest, &vTmp);
1120 VariantClear(&vTmp);
1121 VariantClear(&vSrcDeref);
1128 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1129 return res;
1132 /* Date Conversions */
1134 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1136 /* Convert a VT_DATE value to a Julian Date */
1137 static inline int VARIANT_JulianFromDate(int dateIn)
1139 int julianDays = dateIn;
1141 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1142 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1143 return julianDays;
1146 /* Convert a Julian Date to a VT_DATE value */
1147 static inline int VARIANT_DateFromJulian(int dateIn)
1149 int julianDays = dateIn;
1151 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1152 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1153 return julianDays;
1156 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1157 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1159 int j, i, l, n;
1161 l = jd + 68569;
1162 n = l * 4 / 146097;
1163 l -= (n * 146097 + 3) / 4;
1164 i = (4000 * (l + 1)) / 1461001;
1165 l += 31 - (i * 1461) / 4;
1166 j = (l * 80) / 2447;
1167 *day = l - (j * 2447) / 80;
1168 l = j / 11;
1169 *month = (j + 2) - (12 * l);
1170 *year = 100 * (n - 49) + i + l;
1173 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1174 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1176 int m12 = (month - 14) / 12;
1178 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1179 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1182 /* Macros for accessing DOS format date/time fields */
1183 #define DOS_YEAR(x) (1980 + (x >> 9))
1184 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1185 #define DOS_DAY(x) (x & 0x1f)
1186 #define DOS_HOUR(x) (x >> 11)
1187 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1188 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1189 /* Create a DOS format date/time */
1190 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1191 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1193 /* Roll a date forwards or backwards to correct it */
1194 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1196 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1197 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1199 /* interpret values signed */
1200 iYear = lpUd->st.wYear;
1201 iMonth = lpUd->st.wMonth;
1202 iDay = lpUd->st.wDay;
1203 iHour = lpUd->st.wHour;
1204 iMinute = lpUd->st.wMinute;
1205 iSecond = lpUd->st.wSecond;
1207 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1208 iYear, iHour, iMinute, iSecond);
1210 if (iYear > 9999 || iYear < -9999)
1211 return E_INVALIDARG; /* Invalid value */
1212 /* Year 0 to 29 are treated as 2000 + year */
1213 if (iYear >= 0 && iYear < 30)
1214 iYear += 2000;
1215 /* Remaining years < 100 are treated as 1900 + year */
1216 else if (iYear >= 30 && iYear < 100)
1217 iYear += 1900;
1219 iMinute += iSecond / 60;
1220 iSecond = iSecond % 60;
1221 iHour += iMinute / 60;
1222 iMinute = iMinute % 60;
1223 iDay += iHour / 24;
1224 iHour = iHour % 24;
1225 iYear += iMonth / 12;
1226 iMonth = iMonth % 12;
1227 if (iMonth<=0) {iMonth+=12; iYear--;}
1228 while (iDay > days[iMonth])
1230 if (iMonth == 2 && IsLeapYear(iYear))
1231 iDay -= 29;
1232 else
1233 iDay -= days[iMonth];
1234 iMonth++;
1235 iYear += iMonth / 12;
1236 iMonth = iMonth % 12;
1238 while (iDay <= 0)
1240 iMonth--;
1241 if (iMonth<=0) {iMonth+=12; iYear--;}
1242 if (iMonth == 2 && IsLeapYear(iYear))
1243 iDay += 29;
1244 else
1245 iDay += days[iMonth];
1248 if (iSecond<0){iSecond+=60; iMinute--;}
1249 if (iMinute<0){iMinute+=60; iHour--;}
1250 if (iHour<0) {iHour+=24; iDay--;}
1251 if (iYear<=0) iYear+=2000;
1253 lpUd->st.wYear = iYear;
1254 lpUd->st.wMonth = iMonth;
1255 lpUd->st.wDay = iDay;
1256 lpUd->st.wHour = iHour;
1257 lpUd->st.wMinute = iMinute;
1258 lpUd->st.wSecond = iSecond;
1260 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1261 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1262 return S_OK;
1265 /**********************************************************************
1266 * DosDateTimeToVariantTime [OLEAUT32.14]
1268 * Convert a Dos format date and time into variant VT_DATE format.
1270 * PARAMS
1271 * wDosDate [I] Dos format date
1272 * wDosTime [I] Dos format time
1273 * pDateOut [O] Destination for VT_DATE format
1275 * RETURNS
1276 * Success: TRUE. pDateOut contains the converted time.
1277 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1279 * NOTES
1280 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1281 * - Dos format times are accurate to only 2 second precision.
1282 * - The format of a Dos Date is:
1283 *| Bits Values Meaning
1284 *| ---- ------ -------
1285 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1286 *| the days in the month rolls forward the extra days.
1287 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1288 *| year. 13-15 are invalid.
1289 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1290 * - The format of a Dos Time is:
1291 *| Bits Values Meaning
1292 *| ---- ------ -------
1293 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1294 *| 5-10 0-59 Minutes. 60-63 are invalid.
1295 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1297 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1298 double *pDateOut)
1300 UDATE ud;
1302 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1303 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1304 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1305 pDateOut);
1307 ud.st.wYear = DOS_YEAR(wDosDate);
1308 ud.st.wMonth = DOS_MONTH(wDosDate);
1309 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1310 return FALSE;
1311 ud.st.wDay = DOS_DAY(wDosDate);
1312 ud.st.wHour = DOS_HOUR(wDosTime);
1313 ud.st.wMinute = DOS_MINUTE(wDosTime);
1314 ud.st.wSecond = DOS_SECOND(wDosTime);
1315 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1316 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1317 return FALSE; /* Invalid values in Dos*/
1319 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1322 /**********************************************************************
1323 * VariantTimeToDosDateTime [OLEAUT32.13]
1325 * Convert a variant format date into a Dos format date and time.
1327 * dateIn [I] VT_DATE time format
1328 * pwDosDate [O] Destination for Dos format date
1329 * pwDosTime [O] Destination for Dos format time
1331 * RETURNS
1332 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1333 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1335 * NOTES
1336 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1338 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1340 UDATE ud;
1342 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1344 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1345 return FALSE;
1347 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1348 return FALSE;
1350 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1351 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1353 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1354 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1355 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1356 return TRUE;
1359 /***********************************************************************
1360 * SystemTimeToVariantTime [OLEAUT32.184]
1362 * Convert a System format date and time into variant VT_DATE format.
1364 * PARAMS
1365 * lpSt [I] System format date and time
1366 * pDateOut [O] Destination for VT_DATE format date
1368 * RETURNS
1369 * Success: TRUE. *pDateOut contains the converted value.
1370 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1372 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1374 UDATE ud;
1376 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1377 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1379 if (lpSt->wMonth > 12)
1380 return FALSE;
1381 if (lpSt->wDay > 31)
1382 return FALSE;
1383 if ((short)lpSt->wYear < 0)
1384 return FALSE;
1386 ud.st = *lpSt;
1387 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1390 /***********************************************************************
1391 * VariantTimeToSystemTime [OLEAUT32.185]
1393 * Convert a variant VT_DATE into a System format date and time.
1395 * PARAMS
1396 * datein [I] Variant VT_DATE format date
1397 * lpSt [O] Destination for System format date and time
1399 * RETURNS
1400 * Success: TRUE. *lpSt contains the converted value.
1401 * Failure: FALSE, if dateIn is too large or small.
1403 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1405 UDATE ud;
1407 TRACE("(%g,%p)\n", dateIn, lpSt);
1409 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1410 return FALSE;
1412 *lpSt = ud.st;
1413 return TRUE;
1416 /***********************************************************************
1417 * VarDateFromUdateEx [OLEAUT32.319]
1419 * Convert an unpacked format date and time to a variant VT_DATE.
1421 * PARAMS
1422 * pUdateIn [I] Unpacked format date and time to convert
1423 * lcid [I] Locale identifier for the conversion
1424 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1425 * pDateOut [O] Destination for variant VT_DATE.
1427 * RETURNS
1428 * Success: S_OK. *pDateOut contains the converted value.
1429 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1431 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1433 UDATE ud;
1434 double dateVal, dateSign;
1436 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1437 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1438 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1439 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1440 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1442 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1443 FIXME("lcid possibly not handled, treating as en-us\n");
1445 ud = *pUdateIn;
1447 if (dwFlags & VAR_VALIDDATE)
1448 WARN("Ignoring VAR_VALIDDATE\n");
1450 if (FAILED(VARIANT_RollUdate(&ud)))
1451 return E_INVALIDARG;
1453 /* Date */
1454 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1456 /* Sign */
1457 dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1459 /* Time */
1460 dateVal += ud.st.wHour / 24.0 * dateSign;
1461 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1462 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1464 TRACE("Returning %g\n", dateVal);
1465 *pDateOut = dateVal;
1466 return S_OK;
1469 /***********************************************************************
1470 * VarDateFromUdate [OLEAUT32.330]
1472 * Convert an unpacked format date and time to a variant VT_DATE.
1474 * PARAMS
1475 * pUdateIn [I] Unpacked format date and time to convert
1476 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1477 * pDateOut [O] Destination for variant VT_DATE.
1479 * RETURNS
1480 * Success: S_OK. *pDateOut contains the converted value.
1481 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1483 * NOTES
1484 * This function uses the United States English locale for the conversion. Use
1485 * VarDateFromUdateEx() for alternate locales.
1487 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1489 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1491 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1494 /***********************************************************************
1495 * VarUdateFromDate [OLEAUT32.331]
1497 * Convert a variant VT_DATE into an unpacked format date and time.
1499 * PARAMS
1500 * datein [I] Variant VT_DATE format date
1501 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1502 * lpUdate [O] Destination for unpacked format date and time
1504 * RETURNS
1505 * Success: S_OK. *lpUdate contains the converted value.
1506 * Failure: E_INVALIDARG, if dateIn is too large or small.
1508 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1510 /* Cumulative totals of days per month */
1511 static const USHORT cumulativeDays[] =
1513 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1515 double datePart, timePart;
1516 int julianDays;
1518 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1520 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1521 return E_INVALIDARG;
1523 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1524 /* Compensate for int truncation (always downwards) */
1525 timePart = fabs(dateIn - datePart) + 0.00000000001;
1526 if (timePart >= 1.0)
1527 timePart -= 0.00000000001;
1529 /* Date */
1530 julianDays = VARIANT_JulianFromDate(dateIn);
1531 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1532 &lpUdate->st.wDay);
1534 datePart = (datePart + 1.5) / 7.0;
1535 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1536 if (lpUdate->st.wDayOfWeek == 0)
1537 lpUdate->st.wDayOfWeek = 5;
1538 else if (lpUdate->st.wDayOfWeek == 1)
1539 lpUdate->st.wDayOfWeek = 6;
1540 else
1541 lpUdate->st.wDayOfWeek -= 2;
1543 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1544 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1545 else
1546 lpUdate->wDayOfYear = 0;
1548 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1549 lpUdate->wDayOfYear += lpUdate->st.wDay;
1551 /* Time */
1552 timePart *= 24.0;
1553 lpUdate->st.wHour = timePart;
1554 timePart -= lpUdate->st.wHour;
1555 timePart *= 60.0;
1556 lpUdate->st.wMinute = timePart;
1557 timePart -= lpUdate->st.wMinute;
1558 timePart *= 60.0;
1559 lpUdate->st.wSecond = timePart;
1560 timePart -= lpUdate->st.wSecond;
1561 lpUdate->st.wMilliseconds = 0;
1562 if (timePart > 0.5)
1564 /* Round the milliseconds, adjusting the time/date forward if needed */
1565 if (lpUdate->st.wSecond < 59)
1566 lpUdate->st.wSecond++;
1567 else
1569 lpUdate->st.wSecond = 0;
1570 if (lpUdate->st.wMinute < 59)
1571 lpUdate->st.wMinute++;
1572 else
1574 lpUdate->st.wMinute = 0;
1575 if (lpUdate->st.wHour < 23)
1576 lpUdate->st.wHour++;
1577 else
1579 lpUdate->st.wHour = 0;
1580 /* Roll over a whole day */
1581 if (++lpUdate->st.wDay > 28)
1582 VARIANT_RollUdate(lpUdate);
1587 return S_OK;
1590 #define GET_NUMBER_TEXT(fld,name) \
1591 buff[0] = 0; \
1592 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1593 WARN("buffer too small for " #fld "\n"); \
1594 else \
1595 if (buff[0]) lpChars->name = buff[0]; \
1596 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1598 /* Get the valid number characters for an lcid */
1599 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1601 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1602 static CRITICAL_SECTION csLastChars = { NULL, -1, 0, 0, 0, 0 };
1603 static VARIANT_NUMBER_CHARS lastChars;
1604 static LCID lastLcid = -1;
1605 static DWORD lastFlags = 0;
1606 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1607 WCHAR buff[4];
1609 /* To make caching thread-safe, a critical section is needed */
1610 EnterCriticalSection(&csLastChars);
1612 /* Asking for default locale entries is very expensive: It is a registry
1613 server call. So cache one locally, as Microsoft does it too */
1614 if(lcid == lastLcid && dwFlags == lastFlags)
1616 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1617 LeaveCriticalSection(&csLastChars);
1618 return;
1621 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1622 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1623 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1624 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1625 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1626 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1627 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1629 /* Local currency symbols are often 2 characters */
1630 lpChars->cCurrencyLocal2 = '\0';
1631 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1633 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1634 case 2: lpChars->cCurrencyLocal = buff[0];
1635 break;
1636 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1638 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1639 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1641 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1642 lastLcid = lcid;
1643 lastFlags = dwFlags;
1644 LeaveCriticalSection(&csLastChars);
1647 /* Number Parsing States */
1648 #define B_PROCESSING_EXPONENT 0x1
1649 #define B_NEGATIVE_EXPONENT 0x2
1650 #define B_EXPONENT_START 0x4
1651 #define B_INEXACT_ZEROS 0x8
1652 #define B_LEADING_ZERO 0x10
1653 #define B_PROCESSING_HEX 0x20
1654 #define B_PROCESSING_OCT 0x40
1656 /**********************************************************************
1657 * VarParseNumFromStr [OLEAUT32.46]
1659 * Parse a string containing a number into a NUMPARSE structure.
1661 * PARAMS
1662 * lpszStr [I] String to parse number from
1663 * lcid [I] Locale Id for the conversion
1664 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1665 * pNumprs [I/O] Destination for parsed number
1666 * rgbDig [O] Destination for digits read in
1668 * RETURNS
1669 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1670 * the number.
1671 * Failure: E_INVALIDARG, if any parameter is invalid.
1672 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1673 * incorrectly.
1674 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1676 * NOTES
1677 * pNumprs must have the following fields set:
1678 * cDig: Set to the size of rgbDig.
1679 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1680 * from "oleauto.h".
1682 * FIXME
1683 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1684 * numerals, so this has not been implemented.
1686 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1687 NUMPARSE *pNumprs, BYTE *rgbDig)
1689 VARIANT_NUMBER_CHARS chars;
1690 BYTE rgbTmp[1024];
1691 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1692 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1693 int cchUsed = 0;
1695 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1697 if (!pNumprs || !rgbDig)
1698 return E_INVALIDARG;
1700 if (pNumprs->cDig < iMaxDigits)
1701 iMaxDigits = pNumprs->cDig;
1703 pNumprs->cDig = 0;
1704 pNumprs->dwOutFlags = 0;
1705 pNumprs->cchUsed = 0;
1706 pNumprs->nBaseShift = 0;
1707 pNumprs->nPwr10 = 0;
1709 if (!lpszStr)
1710 return DISP_E_TYPEMISMATCH;
1712 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1714 /* First consume all the leading symbols and space from the string */
1715 while (1)
1717 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1719 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1722 cchUsed++;
1723 lpszStr++;
1724 } while (isspaceW(*lpszStr));
1726 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1727 *lpszStr == chars.cPositiveSymbol &&
1728 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1730 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1731 cchUsed++;
1732 lpszStr++;
1734 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1735 *lpszStr == chars.cNegativeSymbol &&
1736 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1738 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1739 cchUsed++;
1740 lpszStr++;
1742 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1743 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1744 *lpszStr == chars.cCurrencyLocal &&
1745 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1747 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1748 cchUsed++;
1749 lpszStr++;
1750 /* Only accept currency characters */
1751 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1752 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1754 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1755 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1757 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1758 cchUsed++;
1759 lpszStr++;
1761 else
1762 break;
1765 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1767 /* Only accept non-currency characters */
1768 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1769 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1772 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1773 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1775 dwState |= B_PROCESSING_HEX;
1776 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1777 cchUsed=cchUsed+2;
1778 lpszStr=lpszStr+2;
1780 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1781 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1783 dwState |= B_PROCESSING_OCT;
1784 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1785 cchUsed=cchUsed+2;
1786 lpszStr=lpszStr+2;
1789 /* Strip Leading zeros */
1790 while (*lpszStr == '0')
1792 dwState |= B_LEADING_ZERO;
1793 cchUsed++;
1794 lpszStr++;
1797 while (*lpszStr)
1799 if (isdigitW(*lpszStr))
1801 if (dwState & B_PROCESSING_EXPONENT)
1803 int exponentSize = 0;
1804 if (dwState & B_EXPONENT_START)
1806 if (!isdigitW(*lpszStr))
1807 break; /* No exponent digits - invalid */
1808 while (*lpszStr == '0')
1810 /* Skip leading zero's in the exponent */
1811 cchUsed++;
1812 lpszStr++;
1816 while (isdigitW(*lpszStr))
1818 exponentSize *= 10;
1819 exponentSize += *lpszStr - '0';
1820 cchUsed++;
1821 lpszStr++;
1823 if (dwState & B_NEGATIVE_EXPONENT)
1824 exponentSize = -exponentSize;
1825 /* Add the exponent into the powers of 10 */
1826 pNumprs->nPwr10 += exponentSize;
1827 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1828 lpszStr--; /* back up to allow processing of next char */
1830 else
1832 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1833 && !(dwState & B_PROCESSING_OCT))
1835 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1837 if (*lpszStr != '0')
1838 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1840 /* This digit can't be represented, but count it in nPwr10 */
1841 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1842 pNumprs->nPwr10--;
1843 else
1844 pNumprs->nPwr10++;
1846 else
1848 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1849 return DISP_E_TYPEMISMATCH;
1852 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1853 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1855 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1857 pNumprs->cDig++;
1858 cchUsed++;
1861 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1863 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1864 cchUsed++;
1866 else if (*lpszStr == chars.cDecimalPoint &&
1867 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1868 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1870 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1871 cchUsed++;
1873 /* If we have no digits so far, skip leading zeros */
1874 if (!pNumprs->cDig)
1876 while (lpszStr[1] == '0')
1878 dwState |= B_LEADING_ZERO;
1879 cchUsed++;
1880 lpszStr++;
1881 pNumprs->nPwr10--;
1885 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1886 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1887 dwState & B_PROCESSING_HEX)
1889 if (pNumprs->cDig >= iMaxDigits)
1891 return DISP_E_OVERFLOW;
1893 else
1895 if (*lpszStr >= 'a')
1896 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1897 else
1898 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1900 pNumprs->cDig++;
1901 cchUsed++;
1903 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1904 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1905 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1907 dwState |= B_PROCESSING_EXPONENT;
1908 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1909 cchUsed++;
1911 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1913 cchUsed++; /* Ignore positive exponent */
1915 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1917 dwState |= B_NEGATIVE_EXPONENT;
1918 cchUsed++;
1920 else
1921 break; /* Stop at an unrecognised character */
1923 lpszStr++;
1926 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1928 /* Ensure a 0 on its own gets stored */
1929 pNumprs->cDig = 1;
1930 rgbTmp[0] = 0;
1933 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1935 pNumprs->cchUsed = cchUsed;
1936 WARN("didn't completely parse exponent\n");
1937 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1940 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1942 if (dwState & B_INEXACT_ZEROS)
1943 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1944 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1946 /* copy all of the digits into the output digit buffer */
1947 /* this is exactly what windows does although it also returns */
1948 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1949 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1951 if (dwState & B_PROCESSING_HEX) {
1952 /* hex numbers have always the same format */
1953 pNumprs->nPwr10=0;
1954 pNumprs->nBaseShift=4;
1955 } else {
1956 if (dwState & B_PROCESSING_OCT) {
1957 /* oct numbers have always the same format */
1958 pNumprs->nPwr10=0;
1959 pNumprs->nBaseShift=3;
1960 } else {
1961 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1963 pNumprs->nPwr10++;
1964 pNumprs->cDig--;
1968 } else
1970 /* Remove trailing zeros from the last (whole number or decimal) part */
1971 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1973 pNumprs->nPwr10++;
1974 pNumprs->cDig--;
1978 if (pNumprs->cDig <= iMaxDigits)
1979 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1980 else
1981 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1983 /* Copy the digits we processed into rgbDig */
1984 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1986 /* Consume any trailing symbols and space */
1987 while (1)
1989 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1991 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1994 cchUsed++;
1995 lpszStr++;
1996 } while (isspaceW(*lpszStr));
1998 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1999 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
2000 *lpszStr == chars.cPositiveSymbol)
2002 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
2003 cchUsed++;
2004 lpszStr++;
2006 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
2007 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
2008 *lpszStr == chars.cNegativeSymbol)
2010 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
2011 cchUsed++;
2012 lpszStr++;
2014 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
2015 pNumprs->dwOutFlags & NUMPRS_PARENS)
2017 cchUsed++;
2018 lpszStr++;
2019 pNumprs->dwOutFlags |= NUMPRS_NEG;
2021 else
2022 break;
2025 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
2027 pNumprs->cchUsed = cchUsed;
2028 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
2031 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
2032 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
2034 if (!pNumprs->cDig)
2035 return DISP_E_TYPEMISMATCH; /* No Number found */
2037 pNumprs->cchUsed = cchUsed;
2038 return S_OK;
2041 /* VTBIT flags indicating an integer value */
2042 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
2043 /* VTBIT flags indicating a real number value */
2044 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
2046 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
2047 #define FITS_AS_I1(x) ((x) >> 8 == 0)
2048 #define FITS_AS_I2(x) ((x) >> 16 == 0)
2049 #define FITS_AS_I4(x) ((x) >> 32 == 0)
2051 /**********************************************************************
2052 * VarNumFromParseNum [OLEAUT32.47]
2054 * Convert a NUMPARSE structure into a numeric Variant type.
2056 * PARAMS
2057 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
2058 * rgbDig [I] Source for the numbers digits
2059 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
2060 * pVarDst [O] Destination for the converted Variant value.
2062 * RETURNS
2063 * Success: S_OK. pVarDst contains the converted value.
2064 * Failure: E_INVALIDARG, if any parameter is invalid.
2065 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
2067 * NOTES
2068 * - The smallest favoured type present in dwVtBits that can represent the
2069 * number in pNumprs without losing precision is used.
2070 * - Signed types are preferred over unsigned types of the same size.
2071 * - Preferred types in order are: integer, float, double, currency then decimal.
2072 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
2073 * for details of the rounding method.
2074 * - pVarDst is not cleared before the result is stored in it.
2075 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2076 * design?): If some other VTBIT's for integers are specified together
2077 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2078 * the number to the smallest requested integer truncating this way the
2079 * number. Wine doesn't implement this "feature" (yet?).
2081 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
2082 ULONG dwVtBits, VARIANT *pVarDst)
2084 /* Scale factors and limits for double arithmetic */
2085 static const double dblMultipliers[11] = {
2086 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2087 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2089 static const double dblMinimums[11] = {
2090 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2091 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2092 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2094 static const double dblMaximums[11] = {
2095 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2096 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2097 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2100 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2102 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2104 if (pNumprs->nBaseShift)
2106 /* nBaseShift indicates a hex or octal number */
2107 ULONG64 ul64 = 0;
2108 LONG64 l64;
2109 int i;
2111 /* Convert the hex or octal number string into a UI64 */
2112 for (i = 0; i < pNumprs->cDig; i++)
2114 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2116 TRACE("Overflow multiplying digits\n");
2117 return DISP_E_OVERFLOW;
2119 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2122 /* also make a negative representation */
2123 l64=-ul64;
2125 /* Try signed and unsigned types in size order */
2126 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2128 V_VT(pVarDst) = VT_I1;
2129 V_I1(pVarDst) = ul64;
2130 return S_OK;
2132 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2134 V_VT(pVarDst) = VT_UI1;
2135 V_UI1(pVarDst) = ul64;
2136 return S_OK;
2138 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2140 V_VT(pVarDst) = VT_I2;
2141 V_I2(pVarDst) = ul64;
2142 return S_OK;
2144 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2146 V_VT(pVarDst) = VT_UI2;
2147 V_UI2(pVarDst) = ul64;
2148 return S_OK;
2150 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2152 V_VT(pVarDst) = VT_I4;
2153 V_I4(pVarDst) = ul64;
2154 return S_OK;
2156 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2158 V_VT(pVarDst) = VT_UI4;
2159 V_UI4(pVarDst) = ul64;
2160 return S_OK;
2162 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2164 V_VT(pVarDst) = VT_I8;
2165 V_I8(pVarDst) = ul64;
2166 return S_OK;
2168 else if (dwVtBits & VTBIT_UI8)
2170 V_VT(pVarDst) = VT_UI8;
2171 V_UI8(pVarDst) = ul64;
2172 return S_OK;
2174 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2176 V_VT(pVarDst) = VT_DECIMAL;
2177 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2178 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2179 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2180 return S_OK;
2182 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2184 V_VT(pVarDst) = VT_R4;
2185 if (ul64 <= I4_MAX)
2186 V_R4(pVarDst) = ul64;
2187 else
2188 V_R4(pVarDst) = l64;
2189 return S_OK;
2191 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2193 V_VT(pVarDst) = VT_R8;
2194 if (ul64 <= I4_MAX)
2195 V_R8(pVarDst) = ul64;
2196 else
2197 V_R8(pVarDst) = l64;
2198 return S_OK;
2201 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2202 return DISP_E_OVERFLOW;
2205 /* Count the number of relevant fractional and whole digits stored,
2206 * And compute the divisor/multiplier to scale the number by.
2208 if (pNumprs->nPwr10 < 0)
2210 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2212 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2213 wholeNumberDigits = 0;
2214 fractionalDigits = pNumprs->cDig;
2215 divisor10 = -pNumprs->nPwr10;
2217 else
2219 /* An exactly represented real number e.g. 1.024 */
2220 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2221 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2222 divisor10 = pNumprs->cDig - wholeNumberDigits;
2225 else if (pNumprs->nPwr10 == 0)
2227 /* An exactly represented whole number e.g. 1024 */
2228 wholeNumberDigits = pNumprs->cDig;
2229 fractionalDigits = 0;
2231 else /* pNumprs->nPwr10 > 0 */
2233 /* A whole number followed by nPwr10 0's e.g. 102400 */
2234 wholeNumberDigits = pNumprs->cDig;
2235 fractionalDigits = 0;
2236 multiplier10 = pNumprs->nPwr10;
2239 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2240 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2241 multiplier10, divisor10);
2243 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2244 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2246 /* We have one or more integer output choices, and either:
2247 * 1) An integer input value, or
2248 * 2) A real number input value but no floating output choices.
2249 * Alternately, we have a DECIMAL output available and an integer input.
2251 * So, place the integer value into pVarDst, using the smallest type
2252 * possible and preferring signed over unsigned types.
2254 BOOL bOverflow = FALSE, bNegative;
2255 ULONG64 ul64 = 0;
2256 int i;
2258 /* Convert the integer part of the number into a UI8 */
2259 for (i = 0; i < wholeNumberDigits; i++)
2261 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2263 TRACE("Overflow multiplying digits\n");
2264 bOverflow = TRUE;
2265 break;
2267 ul64 = ul64 * 10 + rgbDig[i];
2270 /* Account for the scale of the number */
2271 if (!bOverflow && multiplier10)
2273 for (i = 0; i < multiplier10; i++)
2275 if (ul64 > (UI8_MAX / 10))
2277 TRACE("Overflow scaling number\n");
2278 bOverflow = TRUE;
2279 break;
2281 ul64 = ul64 * 10;
2285 /* If we have any fractional digits, round the value.
2286 * Note we don't have to do this if divisor10 is < 1,
2287 * because this means the fractional part must be < 0.5
2289 if (!bOverflow && fractionalDigits && divisor10 > 0)
2291 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2292 BOOL bAdjust = FALSE;
2294 TRACE("first decimal value is %d\n", *fracDig);
2296 if (*fracDig > 5)
2297 bAdjust = TRUE; /* > 0.5 */
2298 else if (*fracDig == 5)
2300 for (i = 1; i < fractionalDigits; i++)
2302 if (fracDig[i])
2304 bAdjust = TRUE; /* > 0.5 */
2305 break;
2308 /* If exactly 0.5, round only odd values */
2309 if (i == fractionalDigits && (ul64 & 1))
2310 bAdjust = TRUE;
2313 if (bAdjust)
2315 if (ul64 == UI8_MAX)
2317 TRACE("Overflow after rounding\n");
2318 bOverflow = TRUE;
2320 ul64++;
2324 /* Zero is not a negative number */
2325 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2327 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2329 /* For negative integers, try the signed types in size order */
2330 if (!bOverflow && bNegative)
2332 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2334 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2336 V_VT(pVarDst) = VT_I1;
2337 V_I1(pVarDst) = -ul64;
2338 return S_OK;
2340 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2342 V_VT(pVarDst) = VT_I2;
2343 V_I2(pVarDst) = -ul64;
2344 return S_OK;
2346 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2348 V_VT(pVarDst) = VT_I4;
2349 V_I4(pVarDst) = -ul64;
2350 return S_OK;
2352 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2354 V_VT(pVarDst) = VT_I8;
2355 V_I8(pVarDst) = -ul64;
2356 return S_OK;
2358 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2360 /* Decimal is only output choice left - fast path */
2361 V_VT(pVarDst) = VT_DECIMAL;
2362 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2363 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2364 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2365 return S_OK;
2369 else if (!bOverflow)
2371 /* For positive integers, try signed then unsigned types in size order */
2372 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2374 V_VT(pVarDst) = VT_I1;
2375 V_I1(pVarDst) = ul64;
2376 return S_OK;
2378 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2380 V_VT(pVarDst) = VT_UI1;
2381 V_UI1(pVarDst) = ul64;
2382 return S_OK;
2384 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2386 V_VT(pVarDst) = VT_I2;
2387 V_I2(pVarDst) = ul64;
2388 return S_OK;
2390 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2392 V_VT(pVarDst) = VT_UI2;
2393 V_UI2(pVarDst) = ul64;
2394 return S_OK;
2396 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2398 V_VT(pVarDst) = VT_I4;
2399 V_I4(pVarDst) = ul64;
2400 return S_OK;
2402 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2404 V_VT(pVarDst) = VT_UI4;
2405 V_UI4(pVarDst) = ul64;
2406 return S_OK;
2408 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2410 V_VT(pVarDst) = VT_I8;
2411 V_I8(pVarDst) = ul64;
2412 return S_OK;
2414 else if (dwVtBits & VTBIT_UI8)
2416 V_VT(pVarDst) = VT_UI8;
2417 V_UI8(pVarDst) = ul64;
2418 return S_OK;
2420 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2422 /* Decimal is only output choice left - fast path */
2423 V_VT(pVarDst) = VT_DECIMAL;
2424 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2425 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2426 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2427 return S_OK;
2432 if (dwVtBits & REAL_VTBITS)
2434 /* Try to put the number into a float or real */
2435 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2436 double whole = 0.0;
2437 int i;
2439 /* Convert the number into a double */
2440 for (i = 0; i < pNumprs->cDig; i++)
2441 whole = whole * 10.0 + rgbDig[i];
2443 TRACE("Whole double value is %16.16g\n", whole);
2445 /* Account for the scale */
2446 while (multiplier10 > 10)
2448 if (whole > dblMaximums[10])
2450 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2451 bOverflow = TRUE;
2452 break;
2454 whole = whole * dblMultipliers[10];
2455 multiplier10 -= 10;
2457 if (multiplier10 && !bOverflow)
2459 if (whole > dblMaximums[multiplier10])
2461 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2462 bOverflow = TRUE;
2464 else
2465 whole = whole * dblMultipliers[multiplier10];
2468 if (!bOverflow)
2469 TRACE("Scaled double value is %16.16g\n", whole);
2471 while (divisor10 > 10 && !bOverflow)
2473 if (whole < dblMinimums[10] && whole != 0)
2475 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2476 bOverflow = TRUE;
2477 break;
2479 whole = whole / dblMultipliers[10];
2480 divisor10 -= 10;
2482 if (divisor10 && !bOverflow)
2484 if (whole < dblMinimums[divisor10] && whole != 0)
2486 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2487 bOverflow = TRUE;
2489 else
2490 whole = whole / dblMultipliers[divisor10];
2492 if (!bOverflow)
2493 TRACE("Final double value is %16.16g\n", whole);
2495 if (dwVtBits & VTBIT_R4 &&
2496 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2498 TRACE("Set R4 to final value\n");
2499 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2500 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2501 return S_OK;
2504 if (dwVtBits & VTBIT_R8)
2506 TRACE("Set R8 to final value\n");
2507 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2508 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2509 return S_OK;
2512 if (dwVtBits & VTBIT_CY)
2514 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2516 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2517 TRACE("Set CY to final value\n");
2518 return S_OK;
2520 TRACE("Value Overflows CY\n");
2524 if (dwVtBits & VTBIT_DECIMAL)
2526 int i;
2527 ULONG carry;
2528 ULONG64 tmp;
2529 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2531 DECIMAL_SETZERO(*pDec);
2532 DEC_LO32(pDec) = 0;
2534 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2535 DEC_SIGN(pDec) = DECIMAL_NEG;
2536 else
2537 DEC_SIGN(pDec) = DECIMAL_POS;
2539 /* Factor the significant digits */
2540 for (i = 0; i < pNumprs->cDig; i++)
2542 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2543 carry = (ULONG)(tmp >> 32);
2544 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2545 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2546 carry = (ULONG)(tmp >> 32);
2547 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2548 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2549 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2551 if (tmp >> 32 & UI4_MAX)
2553 VarNumFromParseNum_DecOverflow:
2554 TRACE("Overflow\n");
2555 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2556 return DISP_E_OVERFLOW;
2560 /* Account for the scale of the number */
2561 while (multiplier10 > 0)
2563 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2564 carry = (ULONG)(tmp >> 32);
2565 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2566 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2567 carry = (ULONG)(tmp >> 32);
2568 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2569 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2570 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2572 if (tmp >> 32 & UI4_MAX)
2573 goto VarNumFromParseNum_DecOverflow;
2574 multiplier10--;
2576 DEC_SCALE(pDec) = divisor10;
2578 V_VT(pVarDst) = VT_DECIMAL;
2579 return S_OK;
2581 return DISP_E_OVERFLOW; /* No more output choices */
2584 /**********************************************************************
2585 * VarCat [OLEAUT32.318]
2587 * Concatenates one variant onto another.
2589 * PARAMS
2590 * left [I] First variant
2591 * right [I] Second variant
2592 * result [O] Result variant
2594 * RETURNS
2595 * Success: S_OK.
2596 * Failure: An HRESULT error code indicating the error.
2598 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2600 VARTYPE leftvt,rightvt,resultvt;
2601 HRESULT hres;
2602 static WCHAR str_true[32];
2603 static WCHAR str_false[32];
2604 static const WCHAR sz_empty[] = {'\0'};
2605 leftvt = V_VT(left);
2606 rightvt = V_VT(right);
2608 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2610 if (!str_true[0]) {
2611 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2612 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2615 /* when both left and right are NULL the result is NULL */
2616 if (leftvt == VT_NULL && rightvt == VT_NULL)
2618 V_VT(out) = VT_NULL;
2619 return S_OK;
2622 hres = S_OK;
2623 resultvt = VT_EMPTY;
2625 /* There are many special case for errors and return types */
2626 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2627 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2628 hres = DISP_E_TYPEMISMATCH;
2629 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2630 leftvt == VT_R4 || leftvt == VT_R8 ||
2631 leftvt == VT_CY || leftvt == VT_BOOL ||
2632 leftvt == VT_BSTR || leftvt == VT_I1 ||
2633 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2634 leftvt == VT_UI4 || leftvt == VT_I8 ||
2635 leftvt == VT_UI8 || leftvt == VT_INT ||
2636 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2637 leftvt == VT_NULL || leftvt == VT_DATE ||
2638 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2640 (rightvt == VT_I2 || rightvt == VT_I4 ||
2641 rightvt == VT_R4 || rightvt == VT_R8 ||
2642 rightvt == VT_CY || rightvt == VT_BOOL ||
2643 rightvt == VT_BSTR || rightvt == VT_I1 ||
2644 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2645 rightvt == VT_UI4 || rightvt == VT_I8 ||
2646 rightvt == VT_UI8 || rightvt == VT_INT ||
2647 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2648 rightvt == VT_NULL || rightvt == VT_DATE ||
2649 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2650 resultvt = VT_BSTR;
2651 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2652 hres = DISP_E_TYPEMISMATCH;
2653 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2654 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2655 hres = DISP_E_TYPEMISMATCH;
2656 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2657 rightvt == VT_DECIMAL)
2658 hres = DISP_E_BADVARTYPE;
2659 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2660 hres = DISP_E_TYPEMISMATCH;
2661 else if (leftvt == VT_VARIANT)
2662 hres = DISP_E_TYPEMISMATCH;
2663 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2664 leftvt == VT_NULL || leftvt == VT_I2 ||
2665 leftvt == VT_I4 || leftvt == VT_R4 ||
2666 leftvt == VT_R8 || leftvt == VT_CY ||
2667 leftvt == VT_DATE || leftvt == VT_BSTR ||
2668 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2669 leftvt == VT_I1 || leftvt == VT_UI1 ||
2670 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2671 leftvt == VT_I8 || leftvt == VT_UI8 ||
2672 leftvt == VT_INT || leftvt == VT_UINT))
2673 hres = DISP_E_TYPEMISMATCH;
2674 else
2675 hres = DISP_E_BADVARTYPE;
2677 /* if result type is not S_OK, then no need to go further */
2678 if (hres != S_OK)
2680 V_VT(out) = resultvt;
2681 return hres;
2683 /* Else proceed with formatting inputs to strings */
2684 else
2686 VARIANT bstrvar_left, bstrvar_right;
2687 V_VT(out) = VT_BSTR;
2689 VariantInit(&bstrvar_left);
2690 VariantInit(&bstrvar_right);
2692 /* Convert left side variant to string */
2693 if (leftvt != VT_BSTR)
2695 if (leftvt == VT_BOOL)
2697 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2698 V_VT(&bstrvar_left) = VT_BSTR;
2699 if (V_BOOL(left))
2700 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2701 else
2702 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2704 /* Fill with empty string for later concat with right side */
2705 else if (leftvt == VT_NULL)
2707 V_VT(&bstrvar_left) = VT_BSTR;
2708 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2710 else
2712 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2713 if (hres != S_OK) {
2714 VariantClear(&bstrvar_left);
2715 VariantClear(&bstrvar_right);
2716 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2717 rightvt == VT_NULL || rightvt == VT_I2 ||
2718 rightvt == VT_I4 || rightvt == VT_R4 ||
2719 rightvt == VT_R8 || rightvt == VT_CY ||
2720 rightvt == VT_DATE || rightvt == VT_BSTR ||
2721 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2722 rightvt == VT_I1 || rightvt == VT_UI1 ||
2723 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2724 rightvt == VT_I8 || rightvt == VT_UI8 ||
2725 rightvt == VT_INT || rightvt == VT_UINT))
2726 return DISP_E_BADVARTYPE;
2727 return hres;
2732 /* convert right side variant to string */
2733 if (rightvt != VT_BSTR)
2735 if (rightvt == VT_BOOL)
2737 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2738 V_VT(&bstrvar_right) = VT_BSTR;
2739 if (V_BOOL(right))
2740 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2741 else
2742 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2744 /* Fill with empty string for later concat with right side */
2745 else if (rightvt == VT_NULL)
2747 V_VT(&bstrvar_right) = VT_BSTR;
2748 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2750 else
2752 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2753 if (hres != S_OK) {
2754 VariantClear(&bstrvar_left);
2755 VariantClear(&bstrvar_right);
2756 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2757 leftvt == VT_NULL || leftvt == VT_I2 ||
2758 leftvt == VT_I4 || leftvt == VT_R4 ||
2759 leftvt == VT_R8 || leftvt == VT_CY ||
2760 leftvt == VT_DATE || leftvt == VT_BSTR ||
2761 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2762 leftvt == VT_I1 || leftvt == VT_UI1 ||
2763 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2764 leftvt == VT_I8 || leftvt == VT_UI8 ||
2765 leftvt == VT_INT || leftvt == VT_UINT))
2766 return DISP_E_BADVARTYPE;
2767 return hres;
2772 /* Concat the resulting strings together */
2773 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2774 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2775 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2776 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2777 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2778 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2779 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2780 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2782 VariantClear(&bstrvar_left);
2783 VariantClear(&bstrvar_right);
2784 return S_OK;
2789 /* Wrapper around VariantChangeTypeEx() which permits changing a
2790 variant with VT_RESERVED flag set. Needed by VarCmp. */
2791 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2792 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2794 VARIANTARG vtmpsrc = *pvargSrc;
2796 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2797 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2800 /**********************************************************************
2801 * VarCmp [OLEAUT32.176]
2803 * Compare two variants.
2805 * PARAMS
2806 * left [I] First variant
2807 * right [I] Second variant
2808 * lcid [I] LCID (locale identifier) for the comparison
2809 * flags [I] Flags to be used in the comparison:
2810 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2811 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2813 * RETURNS
2814 * VARCMP_LT: left variant is less than right variant.
2815 * VARCMP_EQ: input variants are equal.
2816 * VARCMP_GT: left variant is greater than right variant.
2817 * VARCMP_NULL: either one of the input variants is NULL.
2818 * Failure: An HRESULT error code indicating the error.
2820 * NOTES
2821 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2822 * UI8 and UINT as input variants. INT is accepted only as left variant.
2824 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2825 * an ERROR variant will trigger an error.
2827 * Both input variants can have VT_RESERVED flag set which is ignored
2828 * unless one and only one of the variants is a BSTR and the other one
2829 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2830 * different meaning:
2831 * - BSTR and other: BSTR is always greater than the other variant.
2832 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2833 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2834 * comparison will take place else the BSTR is always greater.
2835 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2836 * variant is ignored and the return value depends only on the sign
2837 * of the BSTR if it is a number else the BSTR is always greater. A
2838 * positive BSTR is greater, a negative one is smaller than the other
2839 * variant.
2841 * SEE
2842 * VarBstrCmp for the lcid and flags usage.
2844 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2846 VARTYPE lvt, rvt, vt;
2847 VARIANT rv,lv;
2848 DWORD xmask;
2849 HRESULT rc;
2851 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2853 lvt = V_VT(left) & VT_TYPEMASK;
2854 rvt = V_VT(right) & VT_TYPEMASK;
2855 xmask = (1 << lvt) | (1 << rvt);
2857 /* If we have any flag set except VT_RESERVED bail out.
2858 Same for the left input variant type > VT_INT and for the
2859 right input variant type > VT_I8. Yes, VT_INT is only supported
2860 as left variant. Go figure */
2861 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2862 lvt > VT_INT || rvt > VT_I8) {
2863 return DISP_E_BADVARTYPE;
2866 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2867 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2868 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2869 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2870 return DISP_E_TYPEMISMATCH;
2872 /* If both variants are VT_ERROR return VARCMP_EQ */
2873 if (xmask == VTBIT_ERROR)
2874 return VARCMP_EQ;
2875 else if (xmask & VTBIT_ERROR)
2876 return DISP_E_TYPEMISMATCH;
2878 if (xmask & VTBIT_NULL)
2879 return VARCMP_NULL;
2881 VariantInit(&lv);
2882 VariantInit(&rv);
2884 /* Two BSTRs, ignore VT_RESERVED */
2885 if (xmask == VTBIT_BSTR)
2886 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2888 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2889 if (xmask & VTBIT_BSTR) {
2890 VARIANT *bstrv, *nonbv;
2891 VARTYPE nonbvt;
2892 int swap = 0;
2894 /* Swap the variants so the BSTR is always on the left */
2895 if (lvt == VT_BSTR) {
2896 bstrv = left;
2897 nonbv = right;
2898 nonbvt = rvt;
2899 } else {
2900 swap = 1;
2901 bstrv = right;
2902 nonbv = left;
2903 nonbvt = lvt;
2906 /* BSTR and EMPTY: ignore VT_RESERVED */
2907 if (nonbvt == VT_EMPTY)
2908 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2909 else {
2910 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2911 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2913 if (!breserv && !nreserv)
2914 /* No VT_RESERVED set ==> BSTR always greater */
2915 rc = VARCMP_GT;
2916 else if (breserv && !nreserv) {
2917 /* BSTR has VT_RESERVED set. Do a string comparison */
2918 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2919 if (FAILED(rc))
2920 return rc;
2921 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2922 VariantClear(&rv);
2923 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2924 /* Non NULL nor empty BSTR */
2925 /* If the BSTR is not a number the BSTR is greater */
2926 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2927 if (FAILED(rc))
2928 rc = VARCMP_GT;
2929 else if (breserv && nreserv)
2930 /* FIXME: This is strange: with both VT_RESERVED set it
2931 looks like the result depends only on the sign of
2932 the BSTR number */
2933 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2934 else
2935 /* Numeric comparison, will be handled below.
2936 VARCMP_NULL used only to break out. */
2937 rc = VARCMP_NULL;
2938 VariantClear(&lv);
2939 VariantClear(&rv);
2940 } else
2941 /* Empty or NULL BSTR */
2942 rc = VARCMP_GT;
2944 /* Fixup the return code if we swapped left and right */
2945 if (swap) {
2946 if (rc == VARCMP_GT)
2947 rc = VARCMP_LT;
2948 else if (rc == VARCMP_LT)
2949 rc = VARCMP_GT;
2951 if (rc != VARCMP_NULL)
2952 return rc;
2955 if (xmask & VTBIT_DECIMAL)
2956 vt = VT_DECIMAL;
2957 else if (xmask & VTBIT_BSTR)
2958 vt = VT_R8;
2959 else if (xmask & VTBIT_R4)
2960 vt = VT_R4;
2961 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2962 vt = VT_R8;
2963 else if (xmask & VTBIT_CY)
2964 vt = VT_CY;
2965 else
2966 /* default to I8 */
2967 vt = VT_I8;
2969 /* Coerce the variants */
2970 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2971 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2972 /* Overflow, change to R8 */
2973 vt = VT_R8;
2974 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2976 if (FAILED(rc))
2977 return rc;
2978 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2979 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2980 /* Overflow, change to R8 */
2981 vt = VT_R8;
2982 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2983 if (FAILED(rc))
2984 return rc;
2985 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2987 if (FAILED(rc))
2988 return rc;
2990 #define _VARCMP(a,b) \
2991 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2993 switch (vt) {
2994 case VT_CY:
2995 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2996 case VT_DECIMAL:
2997 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2998 case VT_I8:
2999 return _VARCMP(V_I8(&lv), V_I8(&rv));
3000 case VT_R4:
3001 return _VARCMP(V_R4(&lv), V_R4(&rv));
3002 case VT_R8:
3003 return _VARCMP(V_R8(&lv), V_R8(&rv));
3004 default:
3005 /* We should never get here */
3006 return E_FAIL;
3008 #undef _VARCMP
3011 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
3013 HRESULT hres;
3014 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
3016 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
3017 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
3018 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
3019 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
3020 NULL, NULL);
3021 } else {
3022 hres = DISP_E_TYPEMISMATCH;
3024 return hres;
3027 /**********************************************************************
3028 * VarAnd [OLEAUT32.142]
3030 * Computes the logical AND of two variants.
3032 * PARAMS
3033 * left [I] First variant
3034 * right [I] Second variant
3035 * result [O] Result variant
3037 * RETURNS
3038 * Success: S_OK.
3039 * Failure: An HRESULT error code indicating the error.
3041 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3043 HRESULT hres = S_OK;
3044 VARTYPE resvt = VT_EMPTY;
3045 VARTYPE leftvt,rightvt;
3046 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3047 VARIANT varLeft, varRight;
3048 VARIANT tempLeft, tempRight;
3050 VariantInit(&varLeft);
3051 VariantInit(&varRight);
3052 VariantInit(&tempLeft);
3053 VariantInit(&tempRight);
3055 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3057 /* Handle VT_DISPATCH by storing and taking address of returned value */
3058 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3060 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3061 if (FAILED(hres)) goto VarAnd_Exit;
3062 left = &tempLeft;
3064 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3066 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3067 if (FAILED(hres)) goto VarAnd_Exit;
3068 right = &tempRight;
3071 leftvt = V_VT(left)&VT_TYPEMASK;
3072 rightvt = V_VT(right)&VT_TYPEMASK;
3073 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3074 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3076 if (leftExtraFlags != rightExtraFlags)
3078 hres = DISP_E_BADVARTYPE;
3079 goto VarAnd_Exit;
3081 ExtraFlags = leftExtraFlags;
3083 /* Native VarAnd always returns an error when using extra
3084 * flags or if the variant combination is I8 and INT.
3086 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
3087 (leftvt == VT_INT && rightvt == VT_I8) ||
3088 ExtraFlags != 0)
3090 hres = DISP_E_BADVARTYPE;
3091 goto VarAnd_Exit;
3094 /* Determine return type */
3095 else if (leftvt == VT_I8 || rightvt == VT_I8)
3096 resvt = VT_I8;
3097 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
3098 leftvt == VT_UINT || rightvt == VT_UINT ||
3099 leftvt == VT_INT || rightvt == VT_INT ||
3100 leftvt == VT_UINT || rightvt == VT_UINT ||
3101 leftvt == VT_R4 || rightvt == VT_R4 ||
3102 leftvt == VT_R8 || rightvt == VT_R8 ||
3103 leftvt == VT_CY || rightvt == VT_CY ||
3104 leftvt == VT_DATE || rightvt == VT_DATE ||
3105 leftvt == VT_I1 || rightvt == VT_I1 ||
3106 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3107 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3108 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3109 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3110 resvt = VT_I4;
3111 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3112 leftvt == VT_I2 || rightvt == VT_I2 ||
3113 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3114 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3115 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3116 (leftvt == VT_UI1 && rightvt == VT_UI1))
3117 resvt = VT_UI1;
3118 else
3119 resvt = VT_I2;
3120 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3121 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3122 resvt = VT_BOOL;
3123 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3124 leftvt == VT_BSTR || rightvt == VT_BSTR)
3125 resvt = VT_NULL;
3126 else
3128 hres = DISP_E_BADVARTYPE;
3129 goto VarAnd_Exit;
3132 if (leftvt == VT_NULL || rightvt == VT_NULL)
3135 * Special cases for when left variant is VT_NULL
3136 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3138 if (leftvt == VT_NULL)
3140 VARIANT_BOOL b;
3141 switch(rightvt)
3143 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3144 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3145 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3146 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3147 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3148 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3149 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3150 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3151 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3152 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3153 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3154 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3155 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3156 case VT_CY:
3157 if(V_CY(right).int64)
3158 resvt = VT_NULL;
3159 break;
3160 case VT_DECIMAL:
3161 if (DEC_HI32(&V_DECIMAL(right)) ||
3162 DEC_LO64(&V_DECIMAL(right)))
3163 resvt = VT_NULL;
3164 break;
3165 case VT_BSTR:
3166 hres = VarBoolFromStr(V_BSTR(right),
3167 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3168 if (FAILED(hres))
3169 return hres;
3170 else if (b)
3171 V_VT(result) = VT_NULL;
3172 else
3174 V_VT(result) = VT_BOOL;
3175 V_BOOL(result) = b;
3177 goto VarAnd_Exit;
3180 V_VT(result) = resvt;
3181 goto VarAnd_Exit;
3184 hres = VariantCopy(&varLeft, left);
3185 if (FAILED(hres)) goto VarAnd_Exit;
3187 hres = VariantCopy(&varRight, right);
3188 if (FAILED(hres)) goto VarAnd_Exit;
3190 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3191 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3192 else
3194 double d;
3196 if (V_VT(&varLeft) == VT_BSTR &&
3197 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3198 LOCALE_USER_DEFAULT, 0, &d)))
3199 hres = VariantChangeType(&varLeft,&varLeft,
3200 VARIANT_LOCALBOOL, VT_BOOL);
3201 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3202 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3203 if (FAILED(hres)) goto VarAnd_Exit;
3206 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3207 V_VT(&varRight) = VT_I4; /* Don't overflow */
3208 else
3210 double d;
3212 if (V_VT(&varRight) == VT_BSTR &&
3213 FAILED(VarR8FromStr(V_BSTR(&varRight),
3214 LOCALE_USER_DEFAULT, 0, &d)))
3215 hres = VariantChangeType(&varRight, &varRight,
3216 VARIANT_LOCALBOOL, VT_BOOL);
3217 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3218 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3219 if (FAILED(hres)) goto VarAnd_Exit;
3222 V_VT(result) = resvt;
3223 switch(resvt)
3225 case VT_I8:
3226 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3227 break;
3228 case VT_I4:
3229 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3230 break;
3231 case VT_I2:
3232 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3233 break;
3234 case VT_UI1:
3235 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3236 break;
3237 case VT_BOOL:
3238 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3239 break;
3240 default:
3241 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3242 leftvt,rightvt);
3245 VarAnd_Exit:
3246 VariantClear(&varLeft);
3247 VariantClear(&varRight);
3248 VariantClear(&tempLeft);
3249 VariantClear(&tempRight);
3251 return hres;
3254 /**********************************************************************
3255 * VarAdd [OLEAUT32.141]
3257 * Add two variants.
3259 * PARAMS
3260 * left [I] First variant
3261 * right [I] Second variant
3262 * result [O] Result variant
3264 * RETURNS
3265 * Success: S_OK.
3266 * Failure: An HRESULT error code indicating the error.
3268 * NOTES
3269 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3270 * UI8, INT and UINT as input variants.
3272 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3273 * same here.
3275 * FIXME
3276 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3277 * case.
3279 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3281 HRESULT hres;
3282 VARTYPE lvt, rvt, resvt, tvt;
3283 VARIANT lv, rv, tv;
3284 VARIANT tempLeft, tempRight;
3285 double r8res;
3287 /* Variant priority for coercion. Sorted from lowest to highest.
3288 VT_ERROR shows an invalid input variant type. */
3289 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3290 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3291 vt_ERROR };
3292 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3293 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3294 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3295 VT_NULL, VT_ERROR };
3297 /* Mapping for coercion from input variant to priority of result variant. */
3298 static const VARTYPE coerce[] = {
3299 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3300 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3301 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3302 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3303 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3304 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3305 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3306 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3309 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3311 VariantInit(&lv);
3312 VariantInit(&rv);
3313 VariantInit(&tv);
3314 VariantInit(&tempLeft);
3315 VariantInit(&tempRight);
3317 /* Handle VT_DISPATCH by storing and taking address of returned value */
3318 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3320 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3322 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3323 if (FAILED(hres)) goto end;
3324 left = &tempLeft;
3326 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3328 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3329 if (FAILED(hres)) goto end;
3330 right = &tempRight;
3334 lvt = V_VT(left)&VT_TYPEMASK;
3335 rvt = V_VT(right)&VT_TYPEMASK;
3337 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3338 Same for any input variant type > VT_I8 */
3339 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3340 lvt > VT_I8 || rvt > VT_I8) {
3341 hres = DISP_E_BADVARTYPE;
3342 goto end;
3345 /* Determine the variant type to coerce to. */
3346 if (coerce[lvt] > coerce[rvt]) {
3347 resvt = prio2vt[coerce[lvt]];
3348 tvt = prio2vt[coerce[rvt]];
3349 } else {
3350 resvt = prio2vt[coerce[rvt]];
3351 tvt = prio2vt[coerce[lvt]];
3354 /* Special cases where the result variant type is defined by both
3355 input variants and not only that with the highest priority */
3356 if (resvt == VT_BSTR) {
3357 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3358 resvt = VT_BSTR;
3359 else
3360 resvt = VT_R8;
3362 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3363 resvt = VT_R8;
3365 /* For overflow detection use the biggest compatible type for the
3366 addition */
3367 switch (resvt) {
3368 case VT_ERROR:
3369 hres = DISP_E_BADVARTYPE;
3370 goto end;
3371 case VT_NULL:
3372 hres = S_OK;
3373 V_VT(result) = VT_NULL;
3374 goto end;
3375 case VT_DISPATCH:
3376 FIXME("cannot handle variant type VT_DISPATCH\n");
3377 hres = DISP_E_TYPEMISMATCH;
3378 goto end;
3379 case VT_EMPTY:
3380 resvt = VT_I2;
3381 /* Fall through */
3382 case VT_UI1:
3383 case VT_I2:
3384 case VT_I4:
3385 case VT_I8:
3386 tvt = VT_I8;
3387 break;
3388 case VT_DATE:
3389 case VT_R4:
3390 tvt = VT_R8;
3391 break;
3392 default:
3393 tvt = resvt;
3396 /* Now coerce the variants */
3397 hres = VariantChangeType(&lv, left, 0, tvt);
3398 if (FAILED(hres))
3399 goto end;
3400 hres = VariantChangeType(&rv, right, 0, tvt);
3401 if (FAILED(hres))
3402 goto end;
3404 /* Do the math */
3405 hres = S_OK;
3406 V_VT(result) = resvt;
3407 switch (tvt) {
3408 case VT_DECIMAL:
3409 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3410 &V_DECIMAL(result));
3411 goto end;
3412 case VT_CY:
3413 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3414 goto end;
3415 case VT_BSTR:
3416 /* We do not add those, we concatenate them. */
3417 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3418 goto end;
3419 case VT_I8:
3420 /* Overflow detection */
3421 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3422 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3423 V_VT(result) = VT_R8;
3424 V_R8(result) = r8res;
3425 goto end;
3426 } else {
3427 V_VT(&tv) = tvt;
3428 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3430 break;
3431 case VT_R8:
3432 V_VT(&tv) = tvt;
3433 /* FIXME: overflow detection */
3434 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3435 break;
3436 default:
3437 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3438 break;
3440 if (resvt != tvt) {
3441 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3442 /* Overflow! Change to the vartype with the next higher priority.
3443 With one exception: I4 ==> R8 even if it would fit in I8 */
3444 if (resvt == VT_I4)
3445 resvt = VT_R8;
3446 else
3447 resvt = prio2vt[coerce[resvt] + 1];
3448 hres = VariantChangeType(result, &tv, 0, resvt);
3450 } else
3451 hres = VariantCopy(result, &tv);
3453 end:
3454 if (hres != S_OK) {
3455 V_VT(result) = VT_EMPTY;
3456 V_I4(result) = 0; /* No V_EMPTY */
3458 VariantClear(&lv);
3459 VariantClear(&rv);
3460 VariantClear(&tv);
3461 VariantClear(&tempLeft);
3462 VariantClear(&tempRight);
3463 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3464 return hres;
3467 /**********************************************************************
3468 * VarMul [OLEAUT32.156]
3470 * Multiply two variants.
3472 * PARAMS
3473 * left [I] First variant
3474 * right [I] Second variant
3475 * result [O] Result variant
3477 * RETURNS
3478 * Success: S_OK.
3479 * Failure: An HRESULT error code indicating the error.
3481 * NOTES
3482 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3483 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3485 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3486 * same here.
3488 * FIXME
3489 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3490 * case.
3492 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3494 HRESULT hres;
3495 VARTYPE lvt, rvt, resvt, tvt;
3496 VARIANT lv, rv, tv;
3497 VARIANT tempLeft, tempRight;
3498 double r8res;
3500 /* Variant priority for coercion. Sorted from lowest to highest.
3501 VT_ERROR shows an invalid input variant type. */
3502 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3503 vt_DECIMAL, vt_NULL, vt_ERROR };
3504 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3505 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3506 VT_DECIMAL, VT_NULL, VT_ERROR };
3508 /* Mapping for coercion from input variant to priority of result variant. */
3509 static const VARTYPE coerce[] = {
3510 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3511 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3512 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3513 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3514 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3515 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3516 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3517 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3520 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3522 VariantInit(&lv);
3523 VariantInit(&rv);
3524 VariantInit(&tv);
3525 VariantInit(&tempLeft);
3526 VariantInit(&tempRight);
3528 /* Handle VT_DISPATCH by storing and taking address of returned value */
3529 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3531 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3532 if (FAILED(hres)) goto end;
3533 left = &tempLeft;
3535 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3537 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3538 if (FAILED(hres)) goto end;
3539 right = &tempRight;
3542 lvt = V_VT(left)&VT_TYPEMASK;
3543 rvt = V_VT(right)&VT_TYPEMASK;
3545 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3546 Same for any input variant type > VT_I8 */
3547 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3548 lvt > VT_I8 || rvt > VT_I8) {
3549 hres = DISP_E_BADVARTYPE;
3550 goto end;
3553 /* Determine the variant type to coerce to. */
3554 if (coerce[lvt] > coerce[rvt]) {
3555 resvt = prio2vt[coerce[lvt]];
3556 tvt = prio2vt[coerce[rvt]];
3557 } else {
3558 resvt = prio2vt[coerce[rvt]];
3559 tvt = prio2vt[coerce[lvt]];
3562 /* Special cases where the result variant type is defined by both
3563 input variants and not only that with the highest priority */
3564 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3565 resvt = VT_R8;
3566 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3567 resvt = VT_I2;
3569 /* For overflow detection use the biggest compatible type for the
3570 multiplication */
3571 switch (resvt) {
3572 case VT_ERROR:
3573 hres = DISP_E_BADVARTYPE;
3574 goto end;
3575 case VT_NULL:
3576 hres = S_OK;
3577 V_VT(result) = VT_NULL;
3578 goto end;
3579 case VT_UI1:
3580 case VT_I2:
3581 case VT_I4:
3582 case VT_I8:
3583 tvt = VT_I8;
3584 break;
3585 case VT_R4:
3586 tvt = VT_R8;
3587 break;
3588 default:
3589 tvt = resvt;
3592 /* Now coerce the variants */
3593 hres = VariantChangeType(&lv, left, 0, tvt);
3594 if (FAILED(hres))
3595 goto end;
3596 hres = VariantChangeType(&rv, right, 0, tvt);
3597 if (FAILED(hres))
3598 goto end;
3600 /* Do the math */
3601 hres = S_OK;
3602 V_VT(&tv) = tvt;
3603 V_VT(result) = resvt;
3604 switch (tvt) {
3605 case VT_DECIMAL:
3606 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3607 &V_DECIMAL(result));
3608 goto end;
3609 case VT_CY:
3610 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3611 goto end;
3612 case VT_I8:
3613 /* Overflow detection */
3614 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3615 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3616 V_VT(result) = VT_R8;
3617 V_R8(result) = r8res;
3618 goto end;
3619 } else
3620 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3621 break;
3622 case VT_R8:
3623 /* FIXME: overflow detection */
3624 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3625 break;
3626 default:
3627 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3628 break;
3630 if (resvt != tvt) {
3631 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3632 /* Overflow! Change to the vartype with the next higher priority.
3633 With one exception: I4 ==> R8 even if it would fit in I8 */
3634 if (resvt == VT_I4)
3635 resvt = VT_R8;
3636 else
3637 resvt = prio2vt[coerce[resvt] + 1];
3639 } else
3640 hres = VariantCopy(result, &tv);
3642 end:
3643 if (hres != S_OK) {
3644 V_VT(result) = VT_EMPTY;
3645 V_I4(result) = 0; /* No V_EMPTY */
3647 VariantClear(&lv);
3648 VariantClear(&rv);
3649 VariantClear(&tv);
3650 VariantClear(&tempLeft);
3651 VariantClear(&tempRight);
3652 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3653 return hres;
3656 /**********************************************************************
3657 * VarDiv [OLEAUT32.143]
3659 * Divides one variant with another.
3661 * PARAMS
3662 * left [I] First variant
3663 * right [I] Second variant
3664 * result [O] Result variant
3666 * RETURNS
3667 * Success: S_OK.
3668 * Failure: An HRESULT error code indicating the error.
3670 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3672 HRESULT hres = S_OK;
3673 VARTYPE resvt = VT_EMPTY;
3674 VARTYPE leftvt,rightvt;
3675 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3676 VARIANT lv,rv;
3677 VARIANT tempLeft, tempRight;
3679 VariantInit(&tempLeft);
3680 VariantInit(&tempRight);
3681 VariantInit(&lv);
3682 VariantInit(&rv);
3684 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3686 /* Handle VT_DISPATCH by storing and taking address of returned value */
3687 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3689 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3690 if (FAILED(hres)) goto end;
3691 left = &tempLeft;
3693 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3695 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3696 if (FAILED(hres)) goto end;
3697 right = &tempRight;
3700 leftvt = V_VT(left)&VT_TYPEMASK;
3701 rightvt = V_VT(right)&VT_TYPEMASK;
3702 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3703 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3705 if (leftExtraFlags != rightExtraFlags)
3707 hres = DISP_E_BADVARTYPE;
3708 goto end;
3710 ExtraFlags = leftExtraFlags;
3712 /* Native VarDiv always returns an error when using extra flags */
3713 if (ExtraFlags != 0)
3715 hres = DISP_E_BADVARTYPE;
3716 goto end;
3719 /* Determine return type */
3720 if (!(rightvt == VT_EMPTY))
3722 if (leftvt == VT_NULL || rightvt == VT_NULL)
3724 V_VT(result) = VT_NULL;
3725 hres = S_OK;
3726 goto end;
3728 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3729 resvt = VT_DECIMAL;
3730 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3731 leftvt == VT_CY || rightvt == VT_CY ||
3732 leftvt == VT_DATE || rightvt == VT_DATE ||
3733 leftvt == VT_I4 || rightvt == VT_I4 ||
3734 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3735 leftvt == VT_I2 || rightvt == VT_I2 ||
3736 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3737 leftvt == VT_R8 || rightvt == VT_R8 ||
3738 leftvt == VT_UI1 || rightvt == VT_UI1)
3740 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3741 (leftvt == VT_R4 && rightvt == VT_UI1))
3742 resvt = VT_R4;
3743 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3744 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3745 (leftvt == VT_BOOL || leftvt == VT_I2)))
3746 resvt = VT_R4;
3747 else
3748 resvt = VT_R8;
3750 else if (leftvt == VT_R4 || rightvt == VT_R4)
3751 resvt = VT_R4;
3753 else if (leftvt == VT_NULL && rightvt == VT_EMPTY)
3755 V_VT(result) = VT_NULL;
3756 hres = S_OK;
3757 goto end;
3759 else
3761 hres = DISP_E_BADVARTYPE;
3762 goto end;
3765 /* coerce to the result type */
3766 hres = VariantChangeType(&lv, left, 0, resvt);
3767 if (hres != S_OK) goto end;
3769 hres = VariantChangeType(&rv, right, 0, resvt);
3770 if (hres != S_OK) goto end;
3772 /* do the math */
3773 V_VT(result) = resvt;
3774 switch (resvt)
3776 case VT_R4:
3777 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3779 hres = DISP_E_OVERFLOW;
3780 V_VT(result) = VT_EMPTY;
3782 else if (V_R4(&rv) == 0.0)
3784 hres = DISP_E_DIVBYZERO;
3785 V_VT(result) = VT_EMPTY;
3787 else
3788 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3789 break;
3790 case VT_R8:
3791 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3793 hres = DISP_E_OVERFLOW;
3794 V_VT(result) = VT_EMPTY;
3796 else if (V_R8(&rv) == 0.0)
3798 hres = DISP_E_DIVBYZERO;
3799 V_VT(result) = VT_EMPTY;
3801 else
3802 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3803 break;
3804 case VT_DECIMAL:
3805 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3806 break;
3809 end:
3810 VariantClear(&lv);
3811 VariantClear(&rv);
3812 VariantClear(&tempLeft);
3813 VariantClear(&tempRight);
3814 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3815 return hres;
3818 /**********************************************************************
3819 * VarSub [OLEAUT32.159]
3821 * Subtract two variants.
3823 * PARAMS
3824 * left [I] First variant
3825 * right [I] Second variant
3826 * result [O] Result variant
3828 * RETURNS
3829 * Success: S_OK.
3830 * Failure: An HRESULT error code indicating the error.
3832 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3834 HRESULT hres = S_OK;
3835 VARTYPE resvt = VT_EMPTY;
3836 VARTYPE leftvt,rightvt;
3837 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3838 VARIANT lv,rv;
3839 VARIANT tempLeft, tempRight;
3841 VariantInit(&lv);
3842 VariantInit(&rv);
3843 VariantInit(&tempLeft);
3844 VariantInit(&tempRight);
3846 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3848 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3849 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3850 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3852 if (NULL == V_DISPATCH(left)) {
3853 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3854 hres = DISP_E_BADVARTYPE;
3855 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3856 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3857 hres = DISP_E_BADVARTYPE;
3858 else switch (V_VT(right) & VT_TYPEMASK)
3860 case VT_VARIANT:
3861 case VT_UNKNOWN:
3862 case 15:
3863 case VT_I1:
3864 case VT_UI2:
3865 case VT_UI4:
3866 hres = DISP_E_BADVARTYPE;
3868 if (FAILED(hres)) goto end;
3870 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3871 if (FAILED(hres)) goto end;
3872 left = &tempLeft;
3874 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3875 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3876 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3878 if (NULL == V_DISPATCH(right))
3880 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3881 hres = DISP_E_BADVARTYPE;
3882 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3883 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3884 hres = DISP_E_BADVARTYPE;
3885 else switch (V_VT(left) & VT_TYPEMASK)
3887 case VT_VARIANT:
3888 case VT_UNKNOWN:
3889 case 15:
3890 case VT_I1:
3891 case VT_UI2:
3892 case VT_UI4:
3893 hres = DISP_E_BADVARTYPE;
3895 if (FAILED(hres)) goto end;
3897 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3898 if (FAILED(hres)) goto end;
3899 right = &tempRight;
3902 leftvt = V_VT(left)&VT_TYPEMASK;
3903 rightvt = V_VT(right)&VT_TYPEMASK;
3904 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3905 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3907 if (leftExtraFlags != rightExtraFlags)
3909 hres = DISP_E_BADVARTYPE;
3910 goto end;
3912 ExtraFlags = leftExtraFlags;
3914 /* determine return type and return code */
3915 /* All extra flags produce errors */
3916 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3917 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3918 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3919 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3920 ExtraFlags == VT_VECTOR ||
3921 ExtraFlags == VT_BYREF ||
3922 ExtraFlags == VT_RESERVED)
3924 hres = DISP_E_BADVARTYPE;
3925 goto end;
3927 else if (ExtraFlags >= VT_ARRAY)
3929 hres = DISP_E_TYPEMISMATCH;
3930 goto end;
3932 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3933 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3934 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3935 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3936 leftvt == VT_I1 || rightvt == VT_I1 ||
3937 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3938 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3939 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3940 leftvt == VT_INT || rightvt == VT_INT ||
3941 leftvt == VT_UINT || rightvt == VT_UINT ||
3942 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3943 leftvt == VT_RECORD || rightvt == VT_RECORD)
3945 if (leftvt == VT_RECORD && rightvt == VT_I8)
3946 hres = DISP_E_TYPEMISMATCH;
3947 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3948 hres = DISP_E_TYPEMISMATCH;
3949 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3950 hres = DISP_E_TYPEMISMATCH;
3951 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3952 hres = DISP_E_TYPEMISMATCH;
3953 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3954 hres = DISP_E_BADVARTYPE;
3955 else
3956 hres = DISP_E_BADVARTYPE;
3957 goto end;
3959 /* The following flags/types are invalid for left variant */
3960 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3961 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3962 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3964 hres = DISP_E_BADVARTYPE;
3965 goto end;
3967 /* The following flags/types are invalid for right variant */
3968 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3969 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3970 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3972 hres = DISP_E_BADVARTYPE;
3973 goto end;
3975 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3976 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3977 resvt = VT_NULL;
3978 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3979 leftvt == VT_ERROR || rightvt == VT_ERROR)
3981 hres = DISP_E_TYPEMISMATCH;
3982 goto end;
3984 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3985 resvt = VT_NULL;
3986 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3987 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3988 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3989 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3990 resvt = VT_R8;
3991 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3992 resvt = VT_DECIMAL;
3993 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3994 resvt = VT_DATE;
3995 else if (leftvt == VT_CY || rightvt == VT_CY)
3996 resvt = VT_CY;
3997 else if (leftvt == VT_R8 || rightvt == VT_R8)
3998 resvt = VT_R8;
3999 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
4000 resvt = VT_R8;
4001 else if (leftvt == VT_R4 || rightvt == VT_R4)
4003 if (leftvt == VT_I4 || rightvt == VT_I4 ||
4004 leftvt == VT_I8 || rightvt == VT_I8)
4005 resvt = VT_R8;
4006 else
4007 resvt = VT_R4;
4009 else if (leftvt == VT_I8 || rightvt == VT_I8)
4010 resvt = VT_I8;
4011 else if (leftvt == VT_I4 || rightvt == VT_I4)
4012 resvt = VT_I4;
4013 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
4014 leftvt == VT_BOOL || rightvt == VT_BOOL ||
4015 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
4016 resvt = VT_I2;
4017 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
4018 resvt = VT_UI1;
4019 else
4021 hres = DISP_E_TYPEMISMATCH;
4022 goto end;
4025 /* coerce to the result type */
4026 if (leftvt == VT_BSTR && rightvt == VT_DATE)
4027 hres = VariantChangeType(&lv, left, 0, VT_R8);
4028 else
4029 hres = VariantChangeType(&lv, left, 0, resvt);
4030 if (hres != S_OK) goto end;
4031 if (leftvt == VT_DATE && rightvt == VT_BSTR)
4032 hres = VariantChangeType(&rv, right, 0, VT_R8);
4033 else
4034 hres = VariantChangeType(&rv, right, 0, resvt);
4035 if (hres != S_OK) goto end;
4037 /* do the math */
4038 V_VT(result) = resvt;
4039 switch (resvt)
4041 case VT_NULL:
4042 break;
4043 case VT_DATE:
4044 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
4045 break;
4046 case VT_CY:
4047 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
4048 break;
4049 case VT_R4:
4050 V_R4(result) = V_R4(&lv) - V_R4(&rv);
4051 break;
4052 case VT_I8:
4053 V_I8(result) = V_I8(&lv) - V_I8(&rv);
4054 break;
4055 case VT_I4:
4056 V_I4(result) = V_I4(&lv) - V_I4(&rv);
4057 break;
4058 case VT_I2:
4059 V_I2(result) = V_I2(&lv) - V_I2(&rv);
4060 break;
4061 case VT_I1:
4062 V_I1(result) = V_I1(&lv) - V_I1(&rv);
4063 break;
4064 case VT_UI1:
4065 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
4066 break;
4067 case VT_R8:
4068 V_R8(result) = V_R8(&lv) - V_R8(&rv);
4069 break;
4070 case VT_DECIMAL:
4071 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
4072 break;
4075 end:
4076 VariantClear(&lv);
4077 VariantClear(&rv);
4078 VariantClear(&tempLeft);
4079 VariantClear(&tempRight);
4080 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
4081 return hres;
4085 /**********************************************************************
4086 * VarOr [OLEAUT32.157]
4088 * Perform a logical or (OR) operation on two variants.
4090 * PARAMS
4091 * pVarLeft [I] First variant
4092 * pVarRight [I] Variant to OR with pVarLeft
4093 * pVarOut [O] Destination for OR result
4095 * RETURNS
4096 * Success: S_OK. pVarOut contains the result of the operation with its type
4097 * taken from the table listed under VarXor().
4098 * Failure: An HRESULT error code indicating the error.
4100 * NOTES
4101 * See the Notes section of VarXor() for further information.
4103 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4105 VARTYPE vt = VT_I4;
4106 VARIANT varLeft, varRight, varStr;
4107 HRESULT hRet;
4108 VARIANT tempLeft, tempRight;
4110 VariantInit(&tempLeft);
4111 VariantInit(&tempRight);
4112 VariantInit(&varLeft);
4113 VariantInit(&varRight);
4114 VariantInit(&varStr);
4116 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4118 /* Handle VT_DISPATCH by storing and taking address of returned value */
4119 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4121 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4122 if (FAILED(hRet)) goto VarOr_Exit;
4123 pVarLeft = &tempLeft;
4125 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4127 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4128 if (FAILED(hRet)) goto VarOr_Exit;
4129 pVarRight = &tempRight;
4132 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4133 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4134 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4135 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4137 hRet = DISP_E_BADVARTYPE;
4138 goto VarOr_Exit;
4141 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4143 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4145 /* NULL OR Zero is NULL, NULL OR value is value */
4146 if (V_VT(pVarLeft) == VT_NULL)
4147 pVarLeft = pVarRight; /* point to the non-NULL var */
4149 V_VT(pVarOut) = VT_NULL;
4150 V_I4(pVarOut) = 0;
4152 switch (V_VT(pVarLeft))
4154 case VT_DATE: case VT_R8:
4155 if (V_R8(pVarLeft))
4156 goto VarOr_AsEmpty;
4157 hRet = S_OK;
4158 goto VarOr_Exit;
4159 case VT_BOOL:
4160 if (V_BOOL(pVarLeft))
4161 *pVarOut = *pVarLeft;
4162 hRet = S_OK;
4163 goto VarOr_Exit;
4164 case VT_I2: case VT_UI2:
4165 if (V_I2(pVarLeft))
4166 goto VarOr_AsEmpty;
4167 hRet = S_OK;
4168 goto VarOr_Exit;
4169 case VT_I1:
4170 if (V_I1(pVarLeft))
4171 goto VarOr_AsEmpty;
4172 hRet = S_OK;
4173 goto VarOr_Exit;
4174 case VT_UI1:
4175 if (V_UI1(pVarLeft))
4176 *pVarOut = *pVarLeft;
4177 hRet = S_OK;
4178 goto VarOr_Exit;
4179 case VT_R4:
4180 if (V_R4(pVarLeft))
4181 goto VarOr_AsEmpty;
4182 hRet = S_OK;
4183 goto VarOr_Exit;
4184 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4185 if (V_I4(pVarLeft))
4186 goto VarOr_AsEmpty;
4187 hRet = S_OK;
4188 goto VarOr_Exit;
4189 case VT_CY:
4190 if (V_CY(pVarLeft).int64)
4191 goto VarOr_AsEmpty;
4192 hRet = S_OK;
4193 goto VarOr_Exit;
4194 case VT_I8: case VT_UI8:
4195 if (V_I8(pVarLeft))
4196 goto VarOr_AsEmpty;
4197 hRet = S_OK;
4198 goto VarOr_Exit;
4199 case VT_DECIMAL:
4200 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4201 goto VarOr_AsEmpty;
4202 hRet = S_OK;
4203 goto VarOr_Exit;
4204 case VT_BSTR:
4206 VARIANT_BOOL b;
4208 if (!V_BSTR(pVarLeft))
4210 hRet = DISP_E_BADVARTYPE;
4211 goto VarOr_Exit;
4214 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4215 if (SUCCEEDED(hRet) && b)
4217 V_VT(pVarOut) = VT_BOOL;
4218 V_BOOL(pVarOut) = b;
4220 goto VarOr_Exit;
4222 case VT_NULL: case VT_EMPTY:
4223 V_VT(pVarOut) = VT_NULL;
4224 hRet = S_OK;
4225 goto VarOr_Exit;
4226 default:
4227 hRet = DISP_E_BADVARTYPE;
4228 goto VarOr_Exit;
4232 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4234 if (V_VT(pVarLeft) == VT_EMPTY)
4235 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4237 VarOr_AsEmpty:
4238 /* Since one argument is empty (0), OR'ing it with the other simply
4239 * gives the others value (as 0|x => x). So just convert the other
4240 * argument to the required result type.
4242 switch (V_VT(pVarLeft))
4244 case VT_BSTR:
4245 if (!V_BSTR(pVarLeft))
4247 hRet = DISP_E_BADVARTYPE;
4248 goto VarOr_Exit;
4251 hRet = VariantCopy(&varStr, pVarLeft);
4252 if (FAILED(hRet))
4253 goto VarOr_Exit;
4254 pVarLeft = &varStr;
4255 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4256 if (FAILED(hRet))
4257 goto VarOr_Exit;
4258 /* Fall Through ... */
4259 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4260 V_VT(pVarOut) = VT_I2;
4261 break;
4262 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4263 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4264 case VT_INT: case VT_UINT: case VT_UI8:
4265 V_VT(pVarOut) = VT_I4;
4266 break;
4267 case VT_I8:
4268 V_VT(pVarOut) = VT_I8;
4269 break;
4270 default:
4271 hRet = DISP_E_BADVARTYPE;
4272 goto VarOr_Exit;
4274 hRet = VariantCopy(&varLeft, pVarLeft);
4275 if (FAILED(hRet))
4276 goto VarOr_Exit;
4277 pVarLeft = &varLeft;
4278 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4279 goto VarOr_Exit;
4282 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4284 V_VT(pVarOut) = VT_BOOL;
4285 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4286 hRet = S_OK;
4287 goto VarOr_Exit;
4290 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4292 V_VT(pVarOut) = VT_UI1;
4293 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4294 hRet = S_OK;
4295 goto VarOr_Exit;
4298 if (V_VT(pVarLeft) == VT_BSTR)
4300 hRet = VariantCopy(&varStr, pVarLeft);
4301 if (FAILED(hRet))
4302 goto VarOr_Exit;
4303 pVarLeft = &varStr;
4304 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4305 if (FAILED(hRet))
4306 goto VarOr_Exit;
4309 if (V_VT(pVarLeft) == VT_BOOL &&
4310 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4312 vt = VT_BOOL;
4314 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4315 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4316 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4317 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4319 vt = VT_I2;
4321 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4323 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4325 hRet = DISP_E_TYPEMISMATCH;
4326 goto VarOr_Exit;
4328 vt = VT_I8;
4331 hRet = VariantCopy(&varLeft, pVarLeft);
4332 if (FAILED(hRet))
4333 goto VarOr_Exit;
4335 hRet = VariantCopy(&varRight, pVarRight);
4336 if (FAILED(hRet))
4337 goto VarOr_Exit;
4339 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4340 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4341 else
4343 double d;
4345 if (V_VT(&varLeft) == VT_BSTR &&
4346 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4347 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4348 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4349 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4350 if (FAILED(hRet))
4351 goto VarOr_Exit;
4354 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4355 V_VT(&varRight) = VT_I4; /* Don't overflow */
4356 else
4358 double d;
4360 if (V_VT(&varRight) == VT_BSTR &&
4361 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4362 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4363 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4364 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4365 if (FAILED(hRet))
4366 goto VarOr_Exit;
4369 V_VT(pVarOut) = vt;
4370 if (vt == VT_I8)
4372 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4374 else if (vt == VT_I4)
4376 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4378 else
4380 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4383 VarOr_Exit:
4384 VariantClear(&varStr);
4385 VariantClear(&varLeft);
4386 VariantClear(&varRight);
4387 VariantClear(&tempLeft);
4388 VariantClear(&tempRight);
4389 return hRet;
4392 /**********************************************************************
4393 * VarAbs [OLEAUT32.168]
4395 * Convert a variant to its absolute value.
4397 * PARAMS
4398 * pVarIn [I] Source variant
4399 * pVarOut [O] Destination for converted value
4401 * RETURNS
4402 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4403 * Failure: An HRESULT error code indicating the error.
4405 * NOTES
4406 * - This function does not process by-reference variants.
4407 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4408 * according to the following table:
4409 *| Input Type Output Type
4410 *| ---------- -----------
4411 *| VT_BOOL VT_I2
4412 *| VT_BSTR VT_R8
4413 *| (All others) Unchanged
4415 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4417 VARIANT varIn;
4418 HRESULT hRet = S_OK;
4419 VARIANT temp;
4421 VariantInit(&temp);
4423 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4425 /* Handle VT_DISPATCH by storing and taking address of returned value */
4426 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4428 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4429 if (FAILED(hRet)) goto VarAbs_Exit;
4430 pVarIn = &temp;
4433 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4434 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4435 V_VT(pVarIn) == VT_ERROR)
4437 hRet = DISP_E_TYPEMISMATCH;
4438 goto VarAbs_Exit;
4440 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4442 #define ABS_CASE(typ,min) \
4443 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4444 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4445 break
4447 switch (V_VT(pVarIn))
4449 ABS_CASE(I1,I1_MIN);
4450 case VT_BOOL:
4451 V_VT(pVarOut) = VT_I2;
4452 /* BOOL->I2, Fall through ... */
4453 ABS_CASE(I2,I2_MIN);
4454 case VT_INT:
4455 ABS_CASE(I4,I4_MIN);
4456 ABS_CASE(I8,I8_MIN);
4457 ABS_CASE(R4,R4_MIN);
4458 case VT_BSTR:
4459 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4460 if (FAILED(hRet))
4461 break;
4462 V_VT(pVarOut) = VT_R8;
4463 pVarIn = &varIn;
4464 /* Fall through ... */
4465 case VT_DATE:
4466 ABS_CASE(R8,R8_MIN);
4467 case VT_CY:
4468 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4469 break;
4470 case VT_DECIMAL:
4471 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4472 break;
4473 case VT_UI1:
4474 case VT_UI2:
4475 case VT_UINT:
4476 case VT_UI4:
4477 case VT_UI8:
4478 /* No-Op */
4479 break;
4480 case VT_EMPTY:
4481 V_VT(pVarOut) = VT_I2;
4482 case VT_NULL:
4483 V_I2(pVarOut) = 0;
4484 break;
4485 default:
4486 hRet = DISP_E_BADVARTYPE;
4489 VarAbs_Exit:
4490 VariantClear(&temp);
4491 return hRet;
4494 /**********************************************************************
4495 * VarFix [OLEAUT32.169]
4497 * Truncate a variants value to a whole number.
4499 * PARAMS
4500 * pVarIn [I] Source variant
4501 * pVarOut [O] Destination for converted value
4503 * RETURNS
4504 * Success: S_OK. pVarOut contains the converted value.
4505 * Failure: An HRESULT error code indicating the error.
4507 * NOTES
4508 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4509 * according to the following table:
4510 *| Input Type Output Type
4511 *| ---------- -----------
4512 *| VT_BOOL VT_I2
4513 *| VT_EMPTY VT_I2
4514 *| VT_BSTR VT_R8
4515 *| All Others Unchanged
4516 * - The difference between this function and VarInt() is that VarInt() rounds
4517 * negative numbers away from 0, while this function rounds them towards zero.
4519 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4521 HRESULT hRet = S_OK;
4522 VARIANT temp;
4524 VariantInit(&temp);
4526 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4528 /* Handle VT_DISPATCH by storing and taking address of returned value */
4529 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4531 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4532 if (FAILED(hRet)) goto VarFix_Exit;
4533 pVarIn = &temp;
4535 V_VT(pVarOut) = V_VT(pVarIn);
4537 switch (V_VT(pVarIn))
4539 case VT_UI1:
4540 V_UI1(pVarOut) = V_UI1(pVarIn);
4541 break;
4542 case VT_BOOL:
4543 V_VT(pVarOut) = VT_I2;
4544 /* Fall through */
4545 case VT_I2:
4546 V_I2(pVarOut) = V_I2(pVarIn);
4547 break;
4548 case VT_I4:
4549 V_I4(pVarOut) = V_I4(pVarIn);
4550 break;
4551 case VT_I8:
4552 V_I8(pVarOut) = V_I8(pVarIn);
4553 break;
4554 case VT_R4:
4555 if (V_R4(pVarIn) < 0.0f)
4556 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4557 else
4558 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4559 break;
4560 case VT_BSTR:
4561 V_VT(pVarOut) = VT_R8;
4562 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4563 pVarIn = pVarOut;
4564 /* Fall through */
4565 case VT_DATE:
4566 case VT_R8:
4567 if (V_R8(pVarIn) < 0.0)
4568 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4569 else
4570 V_R8(pVarOut) = floor(V_R8(pVarIn));
4571 break;
4572 case VT_CY:
4573 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4574 break;
4575 case VT_DECIMAL:
4576 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4577 break;
4578 case VT_EMPTY:
4579 V_VT(pVarOut) = VT_I2;
4580 V_I2(pVarOut) = 0;
4581 break;
4582 case VT_NULL:
4583 /* No-Op */
4584 break;
4585 default:
4586 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4587 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4588 hRet = DISP_E_BADVARTYPE;
4589 else
4590 hRet = DISP_E_TYPEMISMATCH;
4592 VarFix_Exit:
4593 if (FAILED(hRet))
4594 V_VT(pVarOut) = VT_EMPTY;
4595 VariantClear(&temp);
4597 return hRet;
4600 /**********************************************************************
4601 * VarInt [OLEAUT32.172]
4603 * Truncate a variants value to a whole number.
4605 * PARAMS
4606 * pVarIn [I] Source variant
4607 * pVarOut [O] Destination for converted value
4609 * RETURNS
4610 * Success: S_OK. pVarOut contains the converted value.
4611 * Failure: An HRESULT error code indicating the error.
4613 * NOTES
4614 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4615 * according to the following table:
4616 *| Input Type Output Type
4617 *| ---------- -----------
4618 *| VT_BOOL VT_I2
4619 *| VT_EMPTY VT_I2
4620 *| VT_BSTR VT_R8
4621 *| All Others Unchanged
4622 * - The difference between this function and VarFix() is that VarFix() rounds
4623 * negative numbers towards 0, while this function rounds them away from zero.
4625 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4627 HRESULT hRet = S_OK;
4628 VARIANT temp;
4630 VariantInit(&temp);
4632 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4634 /* Handle VT_DISPATCH by storing and taking address of returned value */
4635 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4637 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4638 if (FAILED(hRet)) goto VarInt_Exit;
4639 pVarIn = &temp;
4641 V_VT(pVarOut) = V_VT(pVarIn);
4643 switch (V_VT(pVarIn))
4645 case VT_R4:
4646 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4647 break;
4648 case VT_BSTR:
4649 V_VT(pVarOut) = VT_R8;
4650 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4651 pVarIn = pVarOut;
4652 /* Fall through */
4653 case VT_DATE:
4654 case VT_R8:
4655 V_R8(pVarOut) = floor(V_R8(pVarIn));
4656 break;
4657 case VT_CY:
4658 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4659 break;
4660 case VT_DECIMAL:
4661 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4662 break;
4663 default:
4664 hRet = VarFix(pVarIn, pVarOut);
4666 VarInt_Exit:
4667 VariantClear(&temp);
4669 return hRet;
4672 /**********************************************************************
4673 * VarXor [OLEAUT32.167]
4675 * Perform a logical exclusive-or (XOR) operation on two variants.
4677 * PARAMS
4678 * pVarLeft [I] First variant
4679 * pVarRight [I] Variant to XOR with pVarLeft
4680 * pVarOut [O] Destination for XOR result
4682 * RETURNS
4683 * Success: S_OK. pVarOut contains the result of the operation with its type
4684 * taken from the table below).
4685 * Failure: An HRESULT error code indicating the error.
4687 * NOTES
4688 * - Neither pVarLeft or pVarRight are modified by this function.
4689 * - This function does not process by-reference variants.
4690 * - Input types of VT_BSTR may be numeric strings or boolean text.
4691 * - The type of result stored in pVarOut depends on the types of pVarLeft
4692 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4693 * or VT_NULL if the function succeeds.
4694 * - Type promotion is inconsistent and as a result certain combinations of
4695 * values will return DISP_E_OVERFLOW even when they could be represented.
4696 * This matches the behaviour of native oleaut32.
4698 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4700 VARTYPE vt;
4701 VARIANT varLeft, varRight;
4702 VARIANT tempLeft, tempRight;
4703 double d;
4704 HRESULT hRet;
4706 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4708 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4709 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4710 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4711 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4712 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4713 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4714 return DISP_E_BADVARTYPE;
4716 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4718 /* NULL XOR anything valid is NULL */
4719 V_VT(pVarOut) = VT_NULL;
4720 return S_OK;
4723 VariantInit(&tempLeft);
4724 VariantInit(&tempRight);
4726 /* Handle VT_DISPATCH by storing and taking address of returned value */
4727 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4729 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4730 if (FAILED(hRet)) goto VarXor_Exit;
4731 pVarLeft = &tempLeft;
4733 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4735 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4736 if (FAILED(hRet)) goto VarXor_Exit;
4737 pVarRight = &tempRight;
4740 /* Copy our inputs so we don't disturb anything */
4741 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4743 hRet = VariantCopy(&varLeft, pVarLeft);
4744 if (FAILED(hRet))
4745 goto VarXor_Exit;
4747 hRet = VariantCopy(&varRight, pVarRight);
4748 if (FAILED(hRet))
4749 goto VarXor_Exit;
4751 /* Try any strings first as numbers, then as VT_BOOL */
4752 if (V_VT(&varLeft) == VT_BSTR)
4754 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4755 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4756 FAILED(hRet) ? VT_BOOL : VT_I4);
4757 if (FAILED(hRet))
4758 goto VarXor_Exit;
4761 if (V_VT(&varRight) == VT_BSTR)
4763 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4764 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4765 FAILED(hRet) ? VT_BOOL : VT_I4);
4766 if (FAILED(hRet))
4767 goto VarXor_Exit;
4770 /* Determine the result type */
4771 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4773 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4775 hRet = DISP_E_TYPEMISMATCH;
4776 goto VarXor_Exit;
4778 vt = VT_I8;
4780 else
4782 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4784 case (VT_BOOL << 16) | VT_BOOL:
4785 vt = VT_BOOL;
4786 break;
4787 case (VT_UI1 << 16) | VT_UI1:
4788 vt = VT_UI1;
4789 break;
4790 case (VT_EMPTY << 16) | VT_EMPTY:
4791 case (VT_EMPTY << 16) | VT_UI1:
4792 case (VT_EMPTY << 16) | VT_I2:
4793 case (VT_EMPTY << 16) | VT_BOOL:
4794 case (VT_UI1 << 16) | VT_EMPTY:
4795 case (VT_UI1 << 16) | VT_I2:
4796 case (VT_UI1 << 16) | VT_BOOL:
4797 case (VT_I2 << 16) | VT_EMPTY:
4798 case (VT_I2 << 16) | VT_UI1:
4799 case (VT_I2 << 16) | VT_I2:
4800 case (VT_I2 << 16) | VT_BOOL:
4801 case (VT_BOOL << 16) | VT_EMPTY:
4802 case (VT_BOOL << 16) | VT_UI1:
4803 case (VT_BOOL << 16) | VT_I2:
4804 vt = VT_I2;
4805 break;
4806 default:
4807 vt = VT_I4;
4808 break;
4812 /* VT_UI4 does not overflow */
4813 if (vt != VT_I8)
4815 if (V_VT(&varLeft) == VT_UI4)
4816 V_VT(&varLeft) = VT_I4;
4817 if (V_VT(&varRight) == VT_UI4)
4818 V_VT(&varRight) = VT_I4;
4821 /* Convert our input copies to the result type */
4822 if (V_VT(&varLeft) != vt)
4823 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4824 if (FAILED(hRet))
4825 goto VarXor_Exit;
4827 if (V_VT(&varRight) != vt)
4828 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4829 if (FAILED(hRet))
4830 goto VarXor_Exit;
4832 V_VT(pVarOut) = vt;
4834 /* Calculate the result */
4835 switch (vt)
4837 case VT_I8:
4838 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4839 break;
4840 case VT_I4:
4841 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4842 break;
4843 case VT_BOOL:
4844 case VT_I2:
4845 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4846 break;
4847 case VT_UI1:
4848 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4849 break;
4852 VarXor_Exit:
4853 VariantClear(&varLeft);
4854 VariantClear(&varRight);
4855 VariantClear(&tempLeft);
4856 VariantClear(&tempRight);
4857 return hRet;
4860 /**********************************************************************
4861 * VarEqv [OLEAUT32.172]
4863 * Determine if two variants contain the same value.
4865 * PARAMS
4866 * pVarLeft [I] First variant to compare
4867 * pVarRight [I] Variant to compare to pVarLeft
4868 * pVarOut [O] Destination for comparison result
4870 * RETURNS
4871 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4872 * if equivalent or non-zero otherwise.
4873 * Failure: An HRESULT error code indicating the error.
4875 * NOTES
4876 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4877 * the result.
4879 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4881 HRESULT hRet;
4883 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4885 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4886 if (SUCCEEDED(hRet))
4888 if (V_VT(pVarOut) == VT_I8)
4889 V_I8(pVarOut) = ~V_I8(pVarOut);
4890 else
4891 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4893 return hRet;
4896 /**********************************************************************
4897 * VarNeg [OLEAUT32.173]
4899 * Negate the value of a variant.
4901 * PARAMS
4902 * pVarIn [I] Source variant
4903 * pVarOut [O] Destination for converted value
4905 * RETURNS
4906 * Success: S_OK. pVarOut contains the converted value.
4907 * Failure: An HRESULT error code indicating the error.
4909 * NOTES
4910 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4911 * according to the following table:
4912 *| Input Type Output Type
4913 *| ---------- -----------
4914 *| VT_EMPTY VT_I2
4915 *| VT_UI1 VT_I2
4916 *| VT_BOOL VT_I2
4917 *| VT_BSTR VT_R8
4918 *| All Others Unchanged (unless promoted)
4919 * - Where the negated value of a variant does not fit in its base type, the type
4920 * is promoted according to the following table:
4921 *| Input Type Promoted To
4922 *| ---------- -----------
4923 *| VT_I2 VT_I4
4924 *| VT_I4 VT_R8
4925 *| VT_I8 VT_R8
4926 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4927 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4928 * for types which are not valid. Since this is in contravention of the
4929 * meaning of those error codes and unlikely to be relied on by applications,
4930 * this implementation returns errors consistent with the other high level
4931 * variant math functions.
4933 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4935 HRESULT hRet = S_OK;
4936 VARIANT temp;
4938 VariantInit(&temp);
4940 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4942 /* Handle VT_DISPATCH by storing and taking address of returned value */
4943 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4945 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4946 if (FAILED(hRet)) goto VarNeg_Exit;
4947 pVarIn = &temp;
4949 V_VT(pVarOut) = V_VT(pVarIn);
4951 switch (V_VT(pVarIn))
4953 case VT_UI1:
4954 V_VT(pVarOut) = VT_I2;
4955 V_I2(pVarOut) = -V_UI1(pVarIn);
4956 break;
4957 case VT_BOOL:
4958 V_VT(pVarOut) = VT_I2;
4959 /* Fall through */
4960 case VT_I2:
4961 if (V_I2(pVarIn) == I2_MIN)
4963 V_VT(pVarOut) = VT_I4;
4964 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4966 else
4967 V_I2(pVarOut) = -V_I2(pVarIn);
4968 break;
4969 case VT_I4:
4970 if (V_I4(pVarIn) == I4_MIN)
4972 V_VT(pVarOut) = VT_R8;
4973 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4975 else
4976 V_I4(pVarOut) = -V_I4(pVarIn);
4977 break;
4978 case VT_I8:
4979 if (V_I8(pVarIn) == I8_MIN)
4981 V_VT(pVarOut) = VT_R8;
4982 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4983 V_R8(pVarOut) *= -1.0;
4985 else
4986 V_I8(pVarOut) = -V_I8(pVarIn);
4987 break;
4988 case VT_R4:
4989 V_R4(pVarOut) = -V_R4(pVarIn);
4990 break;
4991 case VT_DATE:
4992 case VT_R8:
4993 V_R8(pVarOut) = -V_R8(pVarIn);
4994 break;
4995 case VT_CY:
4996 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4997 break;
4998 case VT_DECIMAL:
4999 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
5000 break;
5001 case VT_BSTR:
5002 V_VT(pVarOut) = VT_R8;
5003 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
5004 V_R8(pVarOut) = -V_R8(pVarOut);
5005 break;
5006 case VT_EMPTY:
5007 V_VT(pVarOut) = VT_I2;
5008 V_I2(pVarOut) = 0;
5009 break;
5010 case VT_NULL:
5011 /* No-Op */
5012 break;
5013 default:
5014 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5015 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5016 hRet = DISP_E_BADVARTYPE;
5017 else
5018 hRet = DISP_E_TYPEMISMATCH;
5020 VarNeg_Exit:
5021 if (FAILED(hRet))
5022 V_VT(pVarOut) = VT_EMPTY;
5023 VariantClear(&temp);
5025 return hRet;
5028 /**********************************************************************
5029 * VarNot [OLEAUT32.174]
5031 * Perform a not operation on a variant.
5033 * PARAMS
5034 * pVarIn [I] Source variant
5035 * pVarOut [O] Destination for converted value
5037 * RETURNS
5038 * Success: S_OK. pVarOut contains the converted value.
5039 * Failure: An HRESULT error code indicating the error.
5041 * NOTES
5042 * - Strictly speaking, this function performs a bitwise ones complement
5043 * on the variants value (after possibly converting to VT_I4, see below).
5044 * This only behaves like a boolean not operation if the value in
5045 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
5046 * - To perform a genuine not operation, convert the variant to a VT_BOOL
5047 * before calling this function.
5048 * - This function does not process by-reference variants.
5049 * - The type of the value stored in pVarOut depends on the type of pVarIn,
5050 * according to the following table:
5051 *| Input Type Output Type
5052 *| ---------- -----------
5053 *| VT_EMPTY VT_I2
5054 *| VT_R4 VT_I4
5055 *| VT_R8 VT_I4
5056 *| VT_BSTR VT_I4
5057 *| VT_DECIMAL VT_I4
5058 *| VT_CY VT_I4
5059 *| (All others) Unchanged
5061 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
5063 VARIANT varIn;
5064 HRESULT hRet = S_OK;
5065 VARIANT temp;
5067 VariantInit(&temp);
5069 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
5071 /* Handle VT_DISPATCH by storing and taking address of returned value */
5072 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5074 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5075 if (FAILED(hRet)) goto VarNot_Exit;
5076 pVarIn = &temp;
5079 if (V_VT(pVarIn) == VT_BSTR)
5081 V_VT(&varIn) = VT_R8;
5082 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
5083 if (FAILED(hRet))
5085 V_VT(&varIn) = VT_BOOL;
5086 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
5088 if (FAILED(hRet)) goto VarNot_Exit;
5089 pVarIn = &varIn;
5092 V_VT(pVarOut) = V_VT(pVarIn);
5094 switch (V_VT(pVarIn))
5096 case VT_I1:
5097 V_I4(pVarOut) = ~V_I1(pVarIn);
5098 V_VT(pVarOut) = VT_I4;
5099 break;
5100 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
5101 case VT_BOOL:
5102 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
5103 case VT_UI2:
5104 V_I4(pVarOut) = ~V_UI2(pVarIn);
5105 V_VT(pVarOut) = VT_I4;
5106 break;
5107 case VT_DECIMAL:
5108 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
5109 if (FAILED(hRet))
5110 break;
5111 pVarIn = &varIn;
5112 /* Fall through ... */
5113 case VT_INT:
5114 V_VT(pVarOut) = VT_I4;
5115 /* Fall through ... */
5116 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5117 case VT_UINT:
5118 case VT_UI4:
5119 V_I4(pVarOut) = ~V_UI4(pVarIn);
5120 V_VT(pVarOut) = VT_I4;
5121 break;
5122 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5123 case VT_UI8:
5124 V_I4(pVarOut) = ~V_UI8(pVarIn);
5125 V_VT(pVarOut) = VT_I4;
5126 break;
5127 case VT_R4:
5128 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5129 V_I4(pVarOut) = ~V_I4(pVarOut);
5130 V_VT(pVarOut) = VT_I4;
5131 break;
5132 case VT_DATE:
5133 case VT_R8:
5134 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5135 V_I4(pVarOut) = ~V_I4(pVarOut);
5136 V_VT(pVarOut) = VT_I4;
5137 break;
5138 case VT_CY:
5139 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5140 V_I4(pVarOut) = ~V_I4(pVarOut);
5141 V_VT(pVarOut) = VT_I4;
5142 break;
5143 case VT_EMPTY:
5144 V_I2(pVarOut) = ~0;
5145 V_VT(pVarOut) = VT_I2;
5146 break;
5147 case VT_NULL:
5148 /* No-Op */
5149 break;
5150 default:
5151 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5152 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5153 hRet = DISP_E_BADVARTYPE;
5154 else
5155 hRet = DISP_E_TYPEMISMATCH;
5157 VarNot_Exit:
5158 if (FAILED(hRet))
5159 V_VT(pVarOut) = VT_EMPTY;
5160 VariantClear(&temp);
5162 return hRet;
5165 /**********************************************************************
5166 * VarRound [OLEAUT32.175]
5168 * Perform a round operation on a variant.
5170 * PARAMS
5171 * pVarIn [I] Source variant
5172 * deci [I] Number of decimals to round to
5173 * pVarOut [O] Destination for converted value
5175 * RETURNS
5176 * Success: S_OK. pVarOut contains the converted value.
5177 * Failure: An HRESULT error code indicating the error.
5179 * NOTES
5180 * - Floating point values are rounded to the desired number of decimals.
5181 * - Some integer types are just copied to the return variable.
5182 * - Some other integer types are not handled and fail.
5184 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5186 VARIANT varIn;
5187 HRESULT hRet = S_OK;
5188 float factor;
5189 VARIANT temp;
5191 VariantInit(&temp);
5193 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5195 /* Handle VT_DISPATCH by storing and taking address of returned value */
5196 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5198 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5199 if (FAILED(hRet)) goto VarRound_Exit;
5200 pVarIn = &temp;
5203 switch (V_VT(pVarIn))
5205 /* cases that fail on windows */
5206 case VT_I1:
5207 case VT_I8:
5208 case VT_UI2:
5209 case VT_UI4:
5210 hRet = DISP_E_BADVARTYPE;
5211 break;
5213 /* cases just copying in to out */
5214 case VT_UI1:
5215 V_VT(pVarOut) = V_VT(pVarIn);
5216 V_UI1(pVarOut) = V_UI1(pVarIn);
5217 break;
5218 case VT_I2:
5219 V_VT(pVarOut) = V_VT(pVarIn);
5220 V_I2(pVarOut) = V_I2(pVarIn);
5221 break;
5222 case VT_I4:
5223 V_VT(pVarOut) = V_VT(pVarIn);
5224 V_I4(pVarOut) = V_I4(pVarIn);
5225 break;
5226 case VT_NULL:
5227 V_VT(pVarOut) = V_VT(pVarIn);
5228 /* value unchanged */
5229 break;
5231 /* cases that change type */
5232 case VT_EMPTY:
5233 V_VT(pVarOut) = VT_I2;
5234 V_I2(pVarOut) = 0;
5235 break;
5236 case VT_BOOL:
5237 V_VT(pVarOut) = VT_I2;
5238 V_I2(pVarOut) = V_BOOL(pVarIn);
5239 break;
5240 case VT_BSTR:
5241 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5242 if (FAILED(hRet))
5243 break;
5244 V_VT(&varIn)=VT_R8;
5245 pVarIn = &varIn;
5246 /* Fall through ... */
5248 /* cases we need to do math */
5249 case VT_R8:
5250 if (V_R8(pVarIn)>0) {
5251 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5252 } else {
5253 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5255 V_VT(pVarOut) = V_VT(pVarIn);
5256 break;
5257 case VT_R4:
5258 if (V_R4(pVarIn)>0) {
5259 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5260 } else {
5261 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5263 V_VT(pVarOut) = V_VT(pVarIn);
5264 break;
5265 case VT_DATE:
5266 if (V_DATE(pVarIn)>0) {
5267 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5268 } else {
5269 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5271 V_VT(pVarOut) = V_VT(pVarIn);
5272 break;
5273 case VT_CY:
5274 if (deci>3)
5275 factor=1;
5276 else
5277 factor=pow(10, 4-deci);
5279 if (V_CY(pVarIn).int64>0) {
5280 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5281 } else {
5282 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5284 V_VT(pVarOut) = V_VT(pVarIn);
5285 break;
5287 /* cases we don't know yet */
5288 default:
5289 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5290 V_VT(pVarIn) & VT_TYPEMASK, deci);
5291 hRet = DISP_E_BADVARTYPE;
5293 VarRound_Exit:
5294 if (FAILED(hRet))
5295 V_VT(pVarOut) = VT_EMPTY;
5296 VariantClear(&temp);
5298 TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5299 return hRet;
5302 /**********************************************************************
5303 * VarIdiv [OLEAUT32.153]
5305 * Converts input variants to integers and divides them.
5307 * PARAMS
5308 * left [I] Left hand variant
5309 * right [I] Right hand variant
5310 * result [O] Destination for quotient
5312 * RETURNS
5313 * Success: S_OK. result contains the quotient.
5314 * Failure: An HRESULT error code indicating the error.
5316 * NOTES
5317 * If either expression is null, null is returned, as per MSDN
5319 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5321 HRESULT hres = S_OK;
5322 VARTYPE resvt = VT_EMPTY;
5323 VARTYPE leftvt,rightvt;
5324 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5325 VARIANT lv,rv;
5326 VARIANT tempLeft, tempRight;
5328 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5330 VariantInit(&lv);
5331 VariantInit(&rv);
5332 VariantInit(&tempLeft);
5333 VariantInit(&tempRight);
5335 leftvt = V_VT(left)&VT_TYPEMASK;
5336 rightvt = V_VT(right)&VT_TYPEMASK;
5337 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5338 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5340 if (leftExtraFlags != rightExtraFlags)
5342 hres = DISP_E_BADVARTYPE;
5343 goto end;
5345 ExtraFlags = leftExtraFlags;
5347 /* Native VarIdiv always returns an error when using extra
5348 * flags or if the variant combination is I8 and INT.
5350 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5351 (leftvt == VT_INT && rightvt == VT_I8) ||
5352 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5353 ExtraFlags != 0)
5355 hres = DISP_E_BADVARTYPE;
5356 goto end;
5359 /* Determine variant type */
5360 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5362 V_VT(result) = VT_NULL;
5363 hres = S_OK;
5364 goto end;
5366 else if (leftvt == VT_I8 || rightvt == VT_I8)
5367 resvt = VT_I8;
5368 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5369 leftvt == VT_INT || rightvt == VT_INT ||
5370 leftvt == VT_UINT || rightvt == VT_UINT ||
5371 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5372 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5373 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5374 leftvt == VT_I1 || rightvt == VT_I1 ||
5375 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5376 leftvt == VT_DATE || rightvt == VT_DATE ||
5377 leftvt == VT_CY || rightvt == VT_CY ||
5378 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5379 leftvt == VT_R8 || rightvt == VT_R8 ||
5380 leftvt == VT_R4 || rightvt == VT_R4)
5381 resvt = VT_I4;
5382 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5383 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5384 leftvt == VT_EMPTY)
5385 resvt = VT_I2;
5386 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5387 resvt = VT_UI1;
5388 else
5390 hres = DISP_E_BADVARTYPE;
5391 goto end;
5394 /* coerce to the result type */
5395 hres = VariantChangeType(&lv, left, 0, resvt);
5396 if (hres != S_OK) goto end;
5397 hres = VariantChangeType(&rv, right, 0, resvt);
5398 if (hres != S_OK) goto end;
5400 /* do the math */
5401 V_VT(result) = resvt;
5402 switch (resvt)
5404 case VT_UI1:
5405 if (V_UI1(&rv) == 0)
5407 hres = DISP_E_DIVBYZERO;
5408 V_VT(result) = VT_EMPTY;
5410 else
5411 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5412 break;
5413 case VT_I2:
5414 if (V_I2(&rv) == 0)
5416 hres = DISP_E_DIVBYZERO;
5417 V_VT(result) = VT_EMPTY;
5419 else
5420 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5421 break;
5422 case VT_I4:
5423 if (V_I4(&rv) == 0)
5425 hres = DISP_E_DIVBYZERO;
5426 V_VT(result) = VT_EMPTY;
5428 else
5429 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5430 break;
5431 case VT_I8:
5432 if (V_I8(&rv) == 0)
5434 hres = DISP_E_DIVBYZERO;
5435 V_VT(result) = VT_EMPTY;
5437 else
5438 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5439 break;
5440 default:
5441 FIXME("Couldn't integer divide variant types %d,%d\n",
5442 leftvt,rightvt);
5445 end:
5446 VariantClear(&lv);
5447 VariantClear(&rv);
5448 VariantClear(&tempLeft);
5449 VariantClear(&tempRight);
5451 return hres;
5455 /**********************************************************************
5456 * VarMod [OLEAUT32.155]
5458 * Perform the modulus operation of the right hand variant on the left
5460 * PARAMS
5461 * left [I] Left hand variant
5462 * right [I] Right hand variant
5463 * result [O] Destination for converted value
5465 * RETURNS
5466 * Success: S_OK. result contains the remainder.
5467 * Failure: An HRESULT error code indicating the error.
5469 * NOTE:
5470 * If an error occurs the type of result will be modified but the value will not be.
5471 * Doesn't support arrays or any special flags yet.
5473 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5475 BOOL lOk = TRUE;
5476 HRESULT rc = E_FAIL;
5477 int resT = 0;
5478 VARIANT lv,rv;
5479 VARIANT tempLeft, tempRight;
5481 VariantInit(&tempLeft);
5482 VariantInit(&tempRight);
5483 VariantInit(&lv);
5484 VariantInit(&rv);
5486 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5488 /* Handle VT_DISPATCH by storing and taking address of returned value */
5489 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5491 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5492 if (FAILED(rc)) goto end;
5493 left = &tempLeft;
5495 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5497 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5498 if (FAILED(rc)) goto end;
5499 right = &tempRight;
5502 /* check for invalid inputs */
5503 lOk = TRUE;
5504 switch (V_VT(left) & VT_TYPEMASK) {
5505 case VT_BOOL :
5506 case VT_I1 :
5507 case VT_I2 :
5508 case VT_I4 :
5509 case VT_I8 :
5510 case VT_INT :
5511 case VT_UI1 :
5512 case VT_UI2 :
5513 case VT_UI4 :
5514 case VT_UI8 :
5515 case VT_UINT :
5516 case VT_R4 :
5517 case VT_R8 :
5518 case VT_CY :
5519 case VT_EMPTY:
5520 case VT_DATE :
5521 case VT_BSTR :
5522 case VT_DECIMAL:
5523 break;
5524 case VT_VARIANT:
5525 case VT_UNKNOWN:
5526 V_VT(result) = VT_EMPTY;
5527 rc = DISP_E_TYPEMISMATCH;
5528 goto end;
5529 case VT_ERROR:
5530 rc = DISP_E_TYPEMISMATCH;
5531 goto end;
5532 case VT_RECORD:
5533 V_VT(result) = VT_EMPTY;
5534 rc = DISP_E_TYPEMISMATCH;
5535 goto end;
5536 case VT_NULL:
5537 break;
5538 default:
5539 V_VT(result) = VT_EMPTY;
5540 rc = DISP_E_BADVARTYPE;
5541 goto end;
5545 switch (V_VT(right) & VT_TYPEMASK) {
5546 case VT_BOOL :
5547 case VT_I1 :
5548 case VT_I2 :
5549 case VT_I4 :
5550 case VT_I8 :
5551 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5553 V_VT(result) = VT_EMPTY;
5554 rc = DISP_E_TYPEMISMATCH;
5555 goto end;
5557 case VT_INT :
5558 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5560 V_VT(result) = VT_EMPTY;
5561 rc = DISP_E_TYPEMISMATCH;
5562 goto end;
5564 case VT_UI1 :
5565 case VT_UI2 :
5566 case VT_UI4 :
5567 case VT_UI8 :
5568 case VT_UINT :
5569 case VT_R4 :
5570 case VT_R8 :
5571 case VT_CY :
5572 if(V_VT(left) == VT_EMPTY)
5574 V_VT(result) = VT_I4;
5575 rc = S_OK;
5576 goto end;
5578 case VT_EMPTY:
5579 case VT_DATE :
5580 case VT_DECIMAL:
5581 if(V_VT(left) == VT_ERROR)
5583 V_VT(result) = VT_EMPTY;
5584 rc = DISP_E_TYPEMISMATCH;
5585 goto end;
5587 case VT_BSTR:
5588 if(V_VT(left) == VT_NULL)
5590 V_VT(result) = VT_NULL;
5591 rc = S_OK;
5592 goto end;
5594 break;
5596 case VT_VOID:
5597 V_VT(result) = VT_EMPTY;
5598 rc = DISP_E_BADVARTYPE;
5599 goto end;
5600 case VT_NULL:
5601 if(V_VT(left) == VT_VOID)
5603 V_VT(result) = VT_EMPTY;
5604 rc = DISP_E_BADVARTYPE;
5605 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5606 lOk)
5608 V_VT(result) = VT_NULL;
5609 rc = S_OK;
5610 } else
5612 V_VT(result) = VT_NULL;
5613 rc = DISP_E_BADVARTYPE;
5615 goto end;
5616 case VT_VARIANT:
5617 case VT_UNKNOWN:
5618 V_VT(result) = VT_EMPTY;
5619 rc = DISP_E_TYPEMISMATCH;
5620 goto end;
5621 case VT_ERROR:
5622 rc = DISP_E_TYPEMISMATCH;
5623 goto end;
5624 case VT_RECORD:
5625 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5627 V_VT(result) = VT_EMPTY;
5628 rc = DISP_E_BADVARTYPE;
5629 } else
5631 V_VT(result) = VT_EMPTY;
5632 rc = DISP_E_TYPEMISMATCH;
5634 goto end;
5635 default:
5636 V_VT(result) = VT_EMPTY;
5637 rc = DISP_E_BADVARTYPE;
5638 goto end;
5641 /* determine the result type */
5642 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5643 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5644 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5645 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5646 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5647 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5648 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5649 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5650 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5651 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5652 else resT = VT_I4; /* most outputs are I4 */
5654 /* convert to I8 for the modulo */
5655 rc = VariantChangeType(&lv, left, 0, VT_I8);
5656 if(FAILED(rc))
5658 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5659 goto end;
5662 rc = VariantChangeType(&rv, right, 0, VT_I8);
5663 if(FAILED(rc))
5665 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5666 goto end;
5669 /* if right is zero set VT_EMPTY and return divide by zero */
5670 if(V_I8(&rv) == 0)
5672 V_VT(result) = VT_EMPTY;
5673 rc = DISP_E_DIVBYZERO;
5674 goto end;
5677 /* perform the modulo operation */
5678 V_VT(result) = VT_I8;
5679 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5681 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5682 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5683 wine_dbgstr_longlong(V_I8(result)));
5685 /* convert left and right to the destination type */
5686 rc = VariantChangeType(result, result, 0, resT);
5687 if(FAILED(rc))
5689 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5690 /* fall to end of function */
5693 end:
5694 VariantClear(&lv);
5695 VariantClear(&rv);
5696 VariantClear(&tempLeft);
5697 VariantClear(&tempRight);
5698 return rc;
5701 /**********************************************************************
5702 * VarPow [OLEAUT32.158]
5704 * Computes the power of one variant to another variant.
5706 * PARAMS
5707 * left [I] First variant
5708 * right [I] Second variant
5709 * result [O] Result variant
5711 * RETURNS
5712 * Success: S_OK.
5713 * Failure: An HRESULT error code indicating the error.
5715 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5717 HRESULT hr = S_OK;
5718 VARIANT dl,dr;
5719 VARTYPE resvt = VT_EMPTY;
5720 VARTYPE leftvt,rightvt;
5721 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5722 VARIANT tempLeft, tempRight;
5724 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5726 VariantInit(&dl);
5727 VariantInit(&dr);
5728 VariantInit(&tempLeft);
5729 VariantInit(&tempRight);
5731 /* Handle VT_DISPATCH by storing and taking address of returned value */
5732 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5734 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5735 if (FAILED(hr)) goto end;
5736 left = &tempLeft;
5738 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5740 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5741 if (FAILED(hr)) goto end;
5742 right = &tempRight;
5745 leftvt = V_VT(left)&VT_TYPEMASK;
5746 rightvt = V_VT(right)&VT_TYPEMASK;
5747 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5748 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5750 if (leftExtraFlags != rightExtraFlags)
5752 hr = DISP_E_BADVARTYPE;
5753 goto end;
5755 ExtraFlags = leftExtraFlags;
5757 /* Native VarPow always returns an error when using extra flags */
5758 if (ExtraFlags != 0)
5760 hr = DISP_E_BADVARTYPE;
5761 goto end;
5764 /* Determine return type */
5765 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5766 V_VT(result) = VT_NULL;
5767 hr = S_OK;
5768 goto end;
5770 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5771 leftvt == VT_I4 || leftvt == VT_R4 ||
5772 leftvt == VT_R8 || leftvt == VT_CY ||
5773 leftvt == VT_DATE || leftvt == VT_BSTR ||
5774 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5775 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5776 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5777 rightvt == VT_I4 || rightvt == VT_R4 ||
5778 rightvt == VT_R8 || rightvt == VT_CY ||
5779 rightvt == VT_DATE || rightvt == VT_BSTR ||
5780 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5781 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5782 resvt = VT_R8;
5783 else
5785 hr = DISP_E_BADVARTYPE;
5786 goto end;
5789 hr = VariantChangeType(&dl,left,0,resvt);
5790 if (FAILED(hr)) {
5791 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5792 hr = E_FAIL;
5793 goto end;
5796 hr = VariantChangeType(&dr,right,0,resvt);
5797 if (FAILED(hr)) {
5798 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5799 hr = E_FAIL;
5800 goto end;
5803 V_VT(result) = VT_R8;
5804 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5806 end:
5807 VariantClear(&dl);
5808 VariantClear(&dr);
5809 VariantClear(&tempLeft);
5810 VariantClear(&tempRight);
5812 return hr;
5815 /**********************************************************************
5816 * VarImp [OLEAUT32.154]
5818 * Bitwise implication of two variants.
5820 * PARAMS
5821 * left [I] First variant
5822 * right [I] Second variant
5823 * result [O] Result variant
5825 * RETURNS
5826 * Success: S_OK.
5827 * Failure: An HRESULT error code indicating the error.
5829 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5831 HRESULT hres = S_OK;
5832 VARTYPE resvt = VT_EMPTY;
5833 VARTYPE leftvt,rightvt;
5834 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5835 VARIANT lv,rv;
5836 double d;
5837 VARIANT tempLeft, tempRight;
5839 VariantInit(&lv);
5840 VariantInit(&rv);
5841 VariantInit(&tempLeft);
5842 VariantInit(&tempRight);
5844 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5846 /* Handle VT_DISPATCH by storing and taking address of returned value */
5847 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5849 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5850 if (FAILED(hres)) goto VarImp_Exit;
5851 left = &tempLeft;
5853 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5855 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5856 if (FAILED(hres)) goto VarImp_Exit;
5857 right = &tempRight;
5860 leftvt = V_VT(left)&VT_TYPEMASK;
5861 rightvt = V_VT(right)&VT_TYPEMASK;
5862 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5863 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5865 if (leftExtraFlags != rightExtraFlags)
5867 hres = DISP_E_BADVARTYPE;
5868 goto VarImp_Exit;
5870 ExtraFlags = leftExtraFlags;
5872 /* Native VarImp always returns an error when using extra
5873 * flags or if the variants are I8 and INT.
5875 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5876 ExtraFlags != 0)
5878 hres = DISP_E_BADVARTYPE;
5879 goto VarImp_Exit;
5882 /* Determine result type */
5883 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5884 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5886 V_VT(result) = VT_NULL;
5887 hres = S_OK;
5888 goto VarImp_Exit;
5890 else if (leftvt == VT_I8 || rightvt == VT_I8)
5891 resvt = VT_I8;
5892 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5893 leftvt == VT_INT || rightvt == VT_INT ||
5894 leftvt == VT_UINT || rightvt == VT_UINT ||
5895 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5896 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5897 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5898 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5899 leftvt == VT_DATE || rightvt == VT_DATE ||
5900 leftvt == VT_CY || rightvt == VT_CY ||
5901 leftvt == VT_R8 || rightvt == VT_R8 ||
5902 leftvt == VT_R4 || rightvt == VT_R4 ||
5903 leftvt == VT_I1 || rightvt == VT_I1)
5904 resvt = VT_I4;
5905 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5906 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5907 (leftvt == VT_NULL && rightvt == VT_UI1))
5908 resvt = VT_UI1;
5909 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5910 leftvt == VT_I2 || rightvt == VT_I2 ||
5911 leftvt == VT_UI1 || rightvt == VT_UI1)
5912 resvt = VT_I2;
5913 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5914 leftvt == VT_BSTR || rightvt == VT_BSTR)
5915 resvt = VT_BOOL;
5917 /* VT_NULL requires special handling for when the opposite
5918 * variant is equal to something other than -1.
5919 * (NULL Imp 0 = NULL, NULL Imp n = n)
5921 if (leftvt == VT_NULL)
5923 VARIANT_BOOL b;
5924 switch(rightvt)
5926 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5927 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5928 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5929 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5930 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5931 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5932 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5933 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5934 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5935 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5936 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5937 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5938 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5939 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5940 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5941 case VT_DECIMAL:
5942 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5943 resvt = VT_NULL;
5944 break;
5945 case VT_BSTR:
5946 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5947 if (FAILED(hres)) goto VarImp_Exit;
5948 else if (!b)
5949 V_VT(result) = VT_NULL;
5950 else
5952 V_VT(result) = VT_BOOL;
5953 V_BOOL(result) = b;
5955 goto VarImp_Exit;
5957 if (resvt == VT_NULL)
5959 V_VT(result) = resvt;
5960 goto VarImp_Exit;
5962 else
5964 hres = VariantChangeType(result,right,0,resvt);
5965 goto VarImp_Exit;
5969 /* Special handling is required when NULL is the right variant.
5970 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5972 else if (rightvt == VT_NULL)
5974 VARIANT_BOOL b;
5975 switch(leftvt)
5977 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5978 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5979 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5980 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5981 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5982 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5983 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5984 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5985 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5986 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5987 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5988 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5989 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5990 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5991 case VT_DECIMAL:
5992 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5993 resvt = VT_NULL;
5994 break;
5995 case VT_BSTR:
5996 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5997 if (FAILED(hres)) goto VarImp_Exit;
5998 else if (b == VARIANT_TRUE)
5999 resvt = VT_NULL;
6001 if (resvt == VT_NULL)
6003 V_VT(result) = resvt;
6004 goto VarImp_Exit;
6008 hres = VariantCopy(&lv, left);
6009 if (FAILED(hres)) goto VarImp_Exit;
6011 if (rightvt == VT_NULL)
6013 memset( &rv, 0, sizeof(rv) );
6014 V_VT(&rv) = resvt;
6016 else
6018 hres = VariantCopy(&rv, right);
6019 if (FAILED(hres)) goto VarImp_Exit;
6022 if (V_VT(&lv) == VT_BSTR &&
6023 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
6024 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
6025 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
6026 hres = VariantChangeType(&lv,&lv,0,resvt);
6027 if (FAILED(hres)) goto VarImp_Exit;
6029 if (V_VT(&rv) == VT_BSTR &&
6030 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
6031 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
6032 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
6033 hres = VariantChangeType(&rv, &rv, 0, resvt);
6034 if (FAILED(hres)) goto VarImp_Exit;
6036 /* do the math */
6037 V_VT(result) = resvt;
6038 switch (resvt)
6040 case VT_I8:
6041 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
6042 break;
6043 case VT_I4:
6044 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
6045 break;
6046 case VT_I2:
6047 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
6048 break;
6049 case VT_UI1:
6050 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
6051 break;
6052 case VT_BOOL:
6053 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
6054 break;
6055 default:
6056 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
6057 leftvt,rightvt);
6060 VarImp_Exit:
6062 VariantClear(&lv);
6063 VariantClear(&rv);
6064 VariantClear(&tempLeft);
6065 VariantClear(&tempRight);
6067 return hres;