2 * GDI region objects. Shamelessly ripped out from the X11 distribution
3 * Thanks for the nice licence.
5 * Copyright 1993, 1994, 1995 Alexandre Julliard
6 * Modifications and additions: Copyright 1998 Huw Davies
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
24 /************************************************************************
26 Copyright (c) 1987, 1988 X Consortium
28 Permission is hereby granted, free of charge, to any person obtaining a copy
29 of this software and associated documentation files (the "Software"), to deal
30 in the Software without restriction, including without limitation the rights
31 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
32 copies of the Software, and to permit persons to whom the Software is
33 furnished to do so, subject to the following conditions:
35 The above copyright notice and this permission notice shall be included in
36 all copies or substantial portions of the Software.
38 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
39 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
40 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
41 X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
42 AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
43 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
45 Except as contained in this notice, the name of the X Consortium shall not be
46 used in advertising or otherwise to promote the sale, use or other dealings
47 in this Software without prior written authorization from the X Consortium.
50 Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts.
54 Permission to use, copy, modify, and distribute this software and its
55 documentation for any purpose and without fee is hereby granted,
56 provided that the above copyright notice appear in all copies and that
57 both that copyright notice and this permission notice appear in
58 supporting documentation, and that the name of Digital not be
59 used in advertising or publicity pertaining to distribution of the
60 software without specific, written prior permission.
62 DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
63 ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
64 DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
65 ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
66 WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
67 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
70 ************************************************************************/
72 * The functions in this file implement the Region abstraction, similar to one
73 * used in the X11 sample server. A Region is simply an area, as the name
74 * implies, and is implemented as a "y-x-banded" array of rectangles. To
75 * explain: Each Region is made up of a certain number of rectangles sorted
76 * by y coordinate first, and then by x coordinate.
78 * Furthermore, the rectangles are banded such that every rectangle with a
79 * given upper-left y coordinate (y1) will have the same lower-right y
80 * coordinate (y2) and vice versa. If a rectangle has scanlines in a band, it
81 * will span the entire vertical distance of the band. This means that some
82 * areas that could be merged into a taller rectangle will be represented as
83 * several shorter rectangles to account for shorter rectangles to its left
84 * or right but within its "vertical scope".
86 * An added constraint on the rectangles is that they must cover as much
87 * horizontal area as possible. E.g. no two rectangles in a band are allowed
90 * Whenever possible, bands will be merged together to cover a greater vertical
91 * distance (and thus reduce the number of rectangles). Two bands can be merged
92 * only if the bottom of one touches the top of the other and they have
93 * rectangles in the same places (of the same width, of course). This maintains
94 * the y-x-banding that's so nice to have...
103 #include "gdi_private.h"
104 #include "wine/debug.h"
106 WINE_DEFAULT_DEBUG_CHANNEL(region
);
115 /* GDI logical region object */
123 static HGDIOBJ
REGION_SelectObject( HGDIOBJ handle
, HDC hdc
);
124 static BOOL
REGION_DeleteObject( HGDIOBJ handle
, void *obj
);
126 static const struct gdi_obj_funcs region_funcs
=
128 REGION_SelectObject
, /* pSelectObject */
129 NULL
, /* pGetObject16 */
130 NULL
, /* pGetObjectA */
131 NULL
, /* pGetObjectW */
132 NULL
, /* pUnrealizeObject */
133 REGION_DeleteObject
/* pDeleteObject */
136 /* 1 if two RECTs overlap.
137 * 0 if two RECTs do not overlap.
139 #define EXTENTCHECK(r1, r2) \
140 ((r1)->right > (r2)->left && \
141 (r1)->left < (r2)->right && \
142 (r1)->bottom > (r2)->top && \
143 (r1)->top < (r2)->bottom)
146 * Check to see if there is enough memory in the present region.
149 static inline int xmemcheck(WINEREGION
*reg
, LPRECT
*rect
, LPRECT
*firstrect
) {
150 if (reg
->numRects
>= (reg
->size
- 1)) {
151 *firstrect
= HeapReAlloc( GetProcessHeap(), 0, *firstrect
, (2 * (sizeof(RECT
)) * (reg
->size
)));
155 *rect
= (*firstrect
)+reg
->numRects
;
160 #define MEMCHECK(reg, rect, firstrect) xmemcheck(reg,&(rect),&(firstrect))
162 #define EMPTY_REGION(pReg) { \
163 (pReg)->numRects = 0; \
164 (pReg)->extents.left = (pReg)->extents.top = 0; \
165 (pReg)->extents.right = (pReg)->extents.bottom = 0; \
168 #define REGION_NOT_EMPTY(pReg) pReg->numRects
170 #define INRECT(r, x, y) \
171 ( ( ((r).right > x)) && \
172 ( ((r).left <= x)) && \
173 ( ((r).bottom > y)) && \
178 * number of points to buffer before sending them off
179 * to scanlines() : Must be an even number
181 #define NUMPTSTOBUFFER 200
184 * used to allocate buffers for points and link
185 * the buffers together
188 typedef struct _POINTBLOCK
{
189 POINT pts
[NUMPTSTOBUFFER
];
190 struct _POINTBLOCK
*next
;
196 * This file contains a few macros to help track
197 * the edge of a filled object. The object is assumed
198 * to be filled in scanline order, and thus the
199 * algorithm used is an extension of Bresenham's line
200 * drawing algorithm which assumes that y is always the
202 * Since these pieces of code are the same for any filled shape,
203 * it is more convenient to gather the library in one
204 * place, but since these pieces of code are also in
205 * the inner loops of output primitives, procedure call
206 * overhead is out of the question.
207 * See the author for a derivation if needed.
212 * In scan converting polygons, we want to choose those pixels
213 * which are inside the polygon. Thus, we add .5 to the starting
214 * x coordinate for both left and right edges. Now we choose the
215 * first pixel which is inside the pgon for the left edge and the
216 * first pixel which is outside the pgon for the right edge.
217 * Draw the left pixel, but not the right.
219 * How to add .5 to the starting x coordinate:
220 * If the edge is moving to the right, then subtract dy from the
221 * error term from the general form of the algorithm.
222 * If the edge is moving to the left, then add dy to the error term.
224 * The reason for the difference between edges moving to the left
225 * and edges moving to the right is simple: If an edge is moving
226 * to the right, then we want the algorithm to flip immediately.
227 * If it is moving to the left, then we don't want it to flip until
228 * we traverse an entire pixel.
230 #define BRESINITPGON(dy, x1, x2, xStart, d, m, m1, incr1, incr2) { \
231 int dx; /* local storage */ \
234 * if the edge is horizontal, then it is ignored \
235 * and assumed not to be processed. Otherwise, do this stuff. \
239 dx = (x2) - xStart; \
243 incr1 = -2 * dx + 2 * (dy) * m1; \
244 incr2 = -2 * dx + 2 * (dy) * m; \
245 d = 2 * m * (dy) - 2 * dx - 2 * (dy); \
249 incr1 = 2 * dx - 2 * (dy) * m1; \
250 incr2 = 2 * dx - 2 * (dy) * m; \
251 d = -2 * m * (dy) + 2 * dx; \
256 #define BRESINCRPGON(d, minval, m, m1, incr1, incr2) { \
279 * This structure contains all of the information needed
280 * to run the bresenham algorithm.
281 * The variables may be hardcoded into the declarations
282 * instead of using this structure to make use of
283 * register declarations.
286 INT minor_axis
; /* minor axis */
287 INT d
; /* decision variable */
288 INT m
, m1
; /* slope and slope+1 */
289 INT incr1
, incr2
; /* error increments */
293 #define BRESINITPGONSTRUCT(dmaj, min1, min2, bres) \
294 BRESINITPGON(dmaj, min1, min2, bres.minor_axis, bres.d, \
295 bres.m, bres.m1, bres.incr1, bres.incr2)
297 #define BRESINCRPGONSTRUCT(bres) \
298 BRESINCRPGON(bres.d, bres.minor_axis, bres.m, bres.m1, bres.incr1, bres.incr2)
303 * These are the data structures needed to scan
304 * convert regions. Two different scan conversion
305 * methods are available -- the even-odd method, and
306 * the winding number method.
307 * The even-odd rule states that a point is inside
308 * the polygon if a ray drawn from that point in any
309 * direction will pass through an odd number of
311 * By the winding number rule, a point is decided
312 * to be inside the polygon if a ray drawn from that
313 * point in any direction passes through a different
314 * number of clockwise and counter-clockwise path
317 * These data structures are adapted somewhat from
318 * the algorithm in (Foley/Van Dam) for scan converting
320 * The basic algorithm is to start at the top (smallest y)
321 * of the polygon, stepping down to the bottom of
322 * the polygon by incrementing the y coordinate. We
323 * keep a list of edges which the current scanline crosses,
324 * sorted by x. This list is called the Active Edge Table (AET)
325 * As we change the y-coordinate, we update each entry in
326 * in the active edge table to reflect the edges new xcoord.
327 * This list must be sorted at each scanline in case
328 * two edges intersect.
329 * We also keep a data structure known as the Edge Table (ET),
330 * which keeps track of all the edges which the current
331 * scanline has not yet reached. The ET is basically a
332 * list of ScanLineList structures containing a list of
333 * edges which are entered at a given scanline. There is one
334 * ScanLineList per scanline at which an edge is entered.
335 * When we enter a new edge, we move it from the ET to the AET.
337 * From the AET, we can implement the even-odd rule as in
339 * The winding number rule is a little trickier. We also
340 * keep the EdgeTableEntries in the AET linked by the
341 * nextWETE (winding EdgeTableEntry) link. This allows
342 * the edges to be linked just as before for updating
343 * purposes, but only uses the edges linked by the nextWETE
344 * link as edges representing spans of the polygon to
345 * drawn (as with the even-odd rule).
349 * for the winding number rule
352 #define COUNTERCLOCKWISE -1
354 typedef struct _EdgeTableEntry
{
355 INT ymax
; /* ycoord at which we exit this edge. */
356 BRESINFO bres
; /* Bresenham info to run the edge */
357 struct _EdgeTableEntry
*next
; /* next in the list */
358 struct _EdgeTableEntry
*back
; /* for insertion sort */
359 struct _EdgeTableEntry
*nextWETE
; /* for winding num rule */
360 int ClockWise
; /* flag for winding number rule */
364 typedef struct _ScanLineList
{
365 INT scanline
; /* the scanline represented */
366 EdgeTableEntry
*edgelist
; /* header node */
367 struct _ScanLineList
*next
; /* next in the list */
372 INT ymax
; /* ymax for the polygon */
373 INT ymin
; /* ymin for the polygon */
374 ScanLineList scanlines
; /* header node */
379 * Here is a struct to help with storage allocation
380 * so we can allocate a big chunk at a time, and then take
381 * pieces from this heap when we need to.
383 #define SLLSPERBLOCK 25
385 typedef struct _ScanLineListBlock
{
386 ScanLineList SLLs
[SLLSPERBLOCK
];
387 struct _ScanLineListBlock
*next
;
393 * a few macros for the inner loops of the fill code where
394 * performance considerations don't allow a procedure call.
396 * Evaluate the given edge at the given scanline.
397 * If the edge has expired, then we leave it and fix up
398 * the active edge table; otherwise, we increment the
399 * x value to be ready for the next scanline.
400 * The winding number rule is in effect, so we must notify
401 * the caller when the edge has been removed so he
402 * can reorder the Winding Active Edge Table.
404 #define EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET) { \
405 if (pAET->ymax == y) { /* leaving this edge */ \
406 pPrevAET->next = pAET->next; \
407 pAET = pPrevAET->next; \
410 pAET->back = pPrevAET; \
413 BRESINCRPGONSTRUCT(pAET->bres); \
421 * Evaluate the given edge at the given scanline.
422 * If the edge has expired, then we leave it and fix up
423 * the active edge table; otherwise, we increment the
424 * x value to be ready for the next scanline.
425 * The even-odd rule is in effect.
427 #define EVALUATEEDGEEVENODD(pAET, pPrevAET, y) { \
428 if (pAET->ymax == y) { /* leaving this edge */ \
429 pPrevAET->next = pAET->next; \
430 pAET = pPrevAET->next; \
432 pAET->back = pPrevAET; \
435 BRESINCRPGONSTRUCT(pAET->bres); \
441 /* Note the parameter order is different from the X11 equivalents */
443 static void REGION_CopyRegion(WINEREGION
*d
, WINEREGION
*s
);
444 static void REGION_OffsetRegion(WINEREGION
*d
, WINEREGION
*s
, INT x
, INT y
);
445 static void REGION_IntersectRegion(WINEREGION
*d
, WINEREGION
*s1
, WINEREGION
*s2
);
446 static void REGION_UnionRegion(WINEREGION
*d
, WINEREGION
*s1
, WINEREGION
*s2
);
447 static void REGION_SubtractRegion(WINEREGION
*d
, WINEREGION
*s1
, WINEREGION
*s2
);
448 static void REGION_XorRegion(WINEREGION
*d
, WINEREGION
*s1
, WINEREGION
*s2
);
449 static void REGION_UnionRectWithRegion(const RECT
*rect
, WINEREGION
*rgn
);
451 #define RGN_DEFAULT_RECTS 2
454 /***********************************************************************
457 static inline INT
get_region_type( const RGNOBJ
*obj
)
459 switch(obj
->rgn
->numRects
)
461 case 0: return NULLREGION
;
462 case 1: return SIMPLEREGION
;
463 default: return COMPLEXREGION
;
468 /***********************************************************************
470 * Outputs the contents of a WINEREGION
472 static void REGION_DumpRegion(WINEREGION
*pReg
)
474 RECT
*pRect
, *pRectEnd
= pReg
->rects
+ pReg
->numRects
;
476 TRACE("Region %p: %d,%d - %d,%d %d rects\n", pReg
,
477 pReg
->extents
.left
, pReg
->extents
.top
,
478 pReg
->extents
.right
, pReg
->extents
.bottom
, pReg
->numRects
);
479 for(pRect
= pReg
->rects
; pRect
< pRectEnd
; pRect
++)
480 TRACE("\t%d,%d - %d,%d\n", pRect
->left
, pRect
->top
,
481 pRect
->right
, pRect
->bottom
);
486 /***********************************************************************
487 * REGION_AllocWineRegion
488 * Create a new empty WINEREGION.
490 static WINEREGION
*REGION_AllocWineRegion( INT n
)
494 if ((pReg
= HeapAlloc(GetProcessHeap(), 0, sizeof( WINEREGION
))))
496 if ((pReg
->rects
= HeapAlloc(GetProcessHeap(), 0, n
* sizeof( RECT
))))
502 HeapFree(GetProcessHeap(), 0, pReg
);
508 /***********************************************************************
509 * REGION_CreateRegion
510 * Create a new empty region.
512 static HRGN
REGION_CreateRegion( INT n
)
517 if(!(obj
= GDI_AllocObject( sizeof(RGNOBJ
), REGION_MAGIC
, (HGDIOBJ
*)&hrgn
,
518 ®ion_funcs
))) return 0;
519 if(!(obj
->rgn
= REGION_AllocWineRegion(n
))) {
520 GDI_FreeObject( hrgn
, obj
);
523 GDI_ReleaseObj( hrgn
);
527 /***********************************************************************
528 * REGION_DestroyWineRegion
530 static void REGION_DestroyWineRegion( WINEREGION
* pReg
)
532 HeapFree( GetProcessHeap(), 0, pReg
->rects
);
533 HeapFree( GetProcessHeap(), 0, pReg
);
536 /***********************************************************************
537 * REGION_DeleteObject
539 static BOOL
REGION_DeleteObject( HGDIOBJ handle
, void *obj
)
543 TRACE(" %p\n", handle
);
545 REGION_DestroyWineRegion( rgn
->rgn
);
546 return GDI_FreeObject( handle
, obj
);
549 /***********************************************************************
550 * REGION_SelectObject
552 static HGDIOBJ
REGION_SelectObject( HGDIOBJ handle
, HDC hdc
)
554 return ULongToHandle(SelectClipRgn( hdc
, handle
));
558 /***********************************************************************
559 * REGION_OffsetRegion
560 * Offset a WINEREGION by x,y
562 static void REGION_OffsetRegion( WINEREGION
*rgn
, WINEREGION
*srcrgn
,
566 REGION_CopyRegion( rgn
, srcrgn
);
568 int nbox
= rgn
->numRects
;
569 RECT
*pbox
= rgn
->rects
;
579 rgn
->extents
.left
+= x
;
580 rgn
->extents
.right
+= x
;
581 rgn
->extents
.top
+= y
;
582 rgn
->extents
.bottom
+= y
;
587 /***********************************************************************
588 * OffsetRgn (GDI32.@)
590 * Moves a region by the specified X- and Y-axis offsets.
593 * hrgn [I] Region to offset.
594 * x [I] Offset right if positive or left if negative.
595 * y [I] Offset down if positive or up if negative.
599 * NULLREGION - The new region is empty.
600 * SIMPLEREGION - The new region can be represented by one rectangle.
601 * COMPLEXREGION - The new region can only be represented by more than
605 INT WINAPI
OffsetRgn( HRGN hrgn
, INT x
, INT y
)
607 RGNOBJ
* obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
);
610 TRACE("%p %d,%d\n", hrgn
, x
, y
);
615 REGION_OffsetRegion( obj
->rgn
, obj
->rgn
, x
, y
);
617 ret
= get_region_type( obj
);
618 GDI_ReleaseObj( hrgn
);
623 /***********************************************************************
624 * GetRgnBox (GDI32.@)
626 * Retrieves the bounding rectangle of the region. The bounding rectangle
627 * is the smallest rectangle that contains the entire region.
630 * hrgn [I] Region to retrieve bounding rectangle from.
631 * rect [O] Rectangle that will receive the coordinates of the bounding
635 * NULLREGION - The new region is empty.
636 * SIMPLEREGION - The new region can be represented by one rectangle.
637 * COMPLEXREGION - The new region can only be represented by more than
640 INT WINAPI
GetRgnBox( HRGN hrgn
, LPRECT rect
)
642 RGNOBJ
* obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
);
646 rect
->left
= obj
->rgn
->extents
.left
;
647 rect
->top
= obj
->rgn
->extents
.top
;
648 rect
->right
= obj
->rgn
->extents
.right
;
649 rect
->bottom
= obj
->rgn
->extents
.bottom
;
650 TRACE("%p (%d,%d-%d,%d)\n", hrgn
,
651 rect
->left
, rect
->top
, rect
->right
, rect
->bottom
);
652 ret
= get_region_type( obj
);
653 GDI_ReleaseObj(hrgn
);
660 /***********************************************************************
661 * CreateRectRgn (GDI32.@)
663 * Creates a simple rectangular region.
666 * left [I] Left coordinate of rectangle.
667 * top [I] Top coordinate of rectangle.
668 * right [I] Right coordinate of rectangle.
669 * bottom [I] Bottom coordinate of rectangle.
672 * Success: Handle to region.
675 HRGN WINAPI
CreateRectRgn(INT left
, INT top
, INT right
, INT bottom
)
679 /* Allocate 2 rects by default to reduce the number of reallocs */
681 if (!(hrgn
= REGION_CreateRegion(RGN_DEFAULT_RECTS
)))
683 TRACE("%d,%d-%d,%d\n", left
, top
, right
, bottom
);
684 SetRectRgn(hrgn
, left
, top
, right
, bottom
);
689 /***********************************************************************
690 * CreateRectRgnIndirect (GDI32.@)
692 * Creates a simple rectangular region.
695 * rect [I] Coordinates of rectangular region.
698 * Success: Handle to region.
701 HRGN WINAPI
CreateRectRgnIndirect( const RECT
* rect
)
703 return CreateRectRgn( rect
->left
, rect
->top
, rect
->right
, rect
->bottom
);
707 /***********************************************************************
708 * SetRectRgn (GDI32.@)
710 * Sets a region to a simple rectangular region.
713 * hrgn [I] Region to convert.
714 * left [I] Left coordinate of rectangle.
715 * top [I] Top coordinate of rectangle.
716 * right [I] Right coordinate of rectangle.
717 * bottom [I] Bottom coordinate of rectangle.
724 * Allows either or both left and top to be greater than right or bottom.
726 BOOL WINAPI
SetRectRgn( HRGN hrgn
, INT left
, INT top
,
727 INT right
, INT bottom
)
731 TRACE("%p %d,%d-%d,%d\n", hrgn
, left
, top
, right
, bottom
);
733 if (!(obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
))) return FALSE
;
735 if (left
> right
) { INT tmp
= left
; left
= right
; right
= tmp
; }
736 if (top
> bottom
) { INT tmp
= top
; top
= bottom
; bottom
= tmp
; }
738 if((left
!= right
) && (top
!= bottom
))
740 obj
->rgn
->rects
->left
= obj
->rgn
->extents
.left
= left
;
741 obj
->rgn
->rects
->top
= obj
->rgn
->extents
.top
= top
;
742 obj
->rgn
->rects
->right
= obj
->rgn
->extents
.right
= right
;
743 obj
->rgn
->rects
->bottom
= obj
->rgn
->extents
.bottom
= bottom
;
744 obj
->rgn
->numRects
= 1;
747 EMPTY_REGION(obj
->rgn
);
749 GDI_ReleaseObj( hrgn
);
754 /***********************************************************************
755 * CreateRoundRectRgn (GDI32.@)
757 * Creates a rectangular region with rounded corners.
760 * left [I] Left coordinate of rectangle.
761 * top [I] Top coordinate of rectangle.
762 * right [I] Right coordinate of rectangle.
763 * bottom [I] Bottom coordinate of rectangle.
764 * ellipse_width [I] Width of the ellipse at each corner.
765 * ellipse_height [I] Height of the ellipse at each corner.
768 * Success: Handle to region.
772 * If ellipse_width or ellipse_height is less than 2 logical units then
773 * it is treated as though CreateRectRgn() was called instead.
775 HRGN WINAPI
CreateRoundRectRgn( INT left
, INT top
,
776 INT right
, INT bottom
,
777 INT ellipse_width
, INT ellipse_height
)
781 int asq
, bsq
, d
, xd
, yd
;
784 /* Make the dimensions sensible */
786 if (left
> right
) { INT tmp
= left
; left
= right
; right
= tmp
; }
787 if (top
> bottom
) { INT tmp
= top
; top
= bottom
; bottom
= tmp
; }
789 ellipse_width
= abs(ellipse_width
);
790 ellipse_height
= abs(ellipse_height
);
792 /* Check parameters */
794 if (ellipse_width
> right
-left
) ellipse_width
= right
-left
;
795 if (ellipse_height
> bottom
-top
) ellipse_height
= bottom
-top
;
797 /* Check if we can do a normal rectangle instead */
799 if ((ellipse_width
< 2) || (ellipse_height
< 2))
800 return CreateRectRgn( left
, top
, right
, bottom
);
804 d
= (ellipse_height
< 128) ? ((3 * ellipse_height
) >> 2) : 64;
805 if (!(hrgn
= REGION_CreateRegion(d
))) return 0;
806 if (!(obj
= GDI_GetObjPtr( hrgn
, REGION_MAGIC
))) return 0;
807 TRACE("(%d,%d-%d,%d %dx%d): ret=%p\n",
808 left
, top
, right
, bottom
, ellipse_width
, ellipse_height
, hrgn
);
810 /* Ellipse algorithm, based on an article by K. Porter */
811 /* in DDJ Graphics Programming Column, 8/89 */
813 asq
= ellipse_width
* ellipse_width
/ 4; /* a^2 */
814 bsq
= ellipse_height
* ellipse_height
/ 4; /* b^2 */
815 d
= bsq
- asq
* ellipse_height
/ 2 + asq
/ 4; /* b^2 - a^2b + a^2/4 */
817 yd
= asq
* ellipse_height
; /* 2a^2b */
819 rect
.left
= left
+ ellipse_width
/ 2;
820 rect
.right
= right
- ellipse_width
/ 2;
822 /* Loop to draw first half of quadrant */
826 if (d
> 0) /* if nearest pixel is toward the center */
828 /* move toward center */
830 rect
.bottom
= rect
.top
+ 1;
831 REGION_UnionRectWithRegion( &rect
, obj
->rgn
);
833 rect
.bottom
= rect
.top
+ 1;
834 REGION_UnionRectWithRegion( &rect
, obj
->rgn
);
838 rect
.left
--; /* next horiz point */
844 /* Loop to draw second half of quadrant */
846 d
+= (3 * (asq
-bsq
) / 2 - (xd
+yd
)) / 2;
849 /* next vertical point */
851 rect
.bottom
= rect
.top
+ 1;
852 REGION_UnionRectWithRegion( &rect
, obj
->rgn
);
854 rect
.bottom
= rect
.top
+ 1;
855 REGION_UnionRectWithRegion( &rect
, obj
->rgn
);
856 if (d
< 0) /* if nearest pixel is outside ellipse */
858 rect
.left
--; /* move away from center */
867 /* Add the inside rectangle */
872 rect
.bottom
= bottom
;
873 REGION_UnionRectWithRegion( &rect
, obj
->rgn
);
875 GDI_ReleaseObj( hrgn
);
880 /***********************************************************************
881 * CreateEllipticRgn (GDI32.@)
883 * Creates an elliptical region.
886 * left [I] Left coordinate of bounding rectangle.
887 * top [I] Top coordinate of bounding rectangle.
888 * right [I] Right coordinate of bounding rectangle.
889 * bottom [I] Bottom coordinate of bounding rectangle.
892 * Success: Handle to region.
896 * This is a special case of CreateRoundRectRgn() where the width of the
897 * ellipse at each corner is equal to the width the rectangle and
898 * the same for the height.
900 HRGN WINAPI
CreateEllipticRgn( INT left
, INT top
,
901 INT right
, INT bottom
)
903 return CreateRoundRectRgn( left
, top
, right
, bottom
,
904 right
-left
, bottom
-top
);
908 /***********************************************************************
909 * CreateEllipticRgnIndirect (GDI32.@)
911 * Creates an elliptical region.
914 * rect [I] Pointer to bounding rectangle of the ellipse.
917 * Success: Handle to region.
921 * This is a special case of CreateRoundRectRgn() where the width of the
922 * ellipse at each corner is equal to the width the rectangle and
923 * the same for the height.
925 HRGN WINAPI
CreateEllipticRgnIndirect( const RECT
*rect
)
927 return CreateRoundRectRgn( rect
->left
, rect
->top
, rect
->right
,
928 rect
->bottom
, rect
->right
- rect
->left
,
929 rect
->bottom
- rect
->top
);
932 /***********************************************************************
933 * GetRegionData (GDI32.@)
935 * Retrieves the data that specifies the region.
938 * hrgn [I] Region to retrieve the region data from.
939 * count [I] The size of the buffer pointed to by rgndata in bytes.
940 * rgndata [I] The buffer to receive data about the region.
943 * Success: If rgndata is NULL then the required number of bytes. Otherwise,
944 * the number of bytes copied to the output buffer.
948 * The format of the Buffer member of RGNDATA is determined by the iType
949 * member of the region data header.
950 * Currently this is always RDH_RECTANGLES, which specifies that the format
951 * is the array of RECT's that specify the region. The length of the array
952 * is specified by the nCount member of the region data header.
954 DWORD WINAPI
GetRegionData(HRGN hrgn
, DWORD count
, LPRGNDATA rgndata
)
957 RGNOBJ
*obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
);
959 TRACE(" %p count = %d, rgndata = %p\n", hrgn
, count
, rgndata
);
963 size
= obj
->rgn
->numRects
* sizeof(RECT
);
964 if(count
< (size
+ sizeof(RGNDATAHEADER
)) || rgndata
== NULL
)
966 GDI_ReleaseObj( hrgn
);
967 if (rgndata
) /* buffer is too small, signal it by return 0 */
969 else /* user requested buffer size with rgndata NULL */
970 return size
+ sizeof(RGNDATAHEADER
);
973 rgndata
->rdh
.dwSize
= sizeof(RGNDATAHEADER
);
974 rgndata
->rdh
.iType
= RDH_RECTANGLES
;
975 rgndata
->rdh
.nCount
= obj
->rgn
->numRects
;
976 rgndata
->rdh
.nRgnSize
= size
;
977 rgndata
->rdh
.rcBound
.left
= obj
->rgn
->extents
.left
;
978 rgndata
->rdh
.rcBound
.top
= obj
->rgn
->extents
.top
;
979 rgndata
->rdh
.rcBound
.right
= obj
->rgn
->extents
.right
;
980 rgndata
->rdh
.rcBound
.bottom
= obj
->rgn
->extents
.bottom
;
982 memcpy( rgndata
->Buffer
, obj
->rgn
->rects
, size
);
984 GDI_ReleaseObj( hrgn
);
985 return size
+ sizeof(RGNDATAHEADER
);
989 /***********************************************************************
990 * ExtCreateRegion (GDI32.@)
992 * Creates a region as specified by the transformation data and region data.
995 * lpXform [I] World-space to logical-space transformation data.
996 * dwCount [I] Size of the data pointed to by rgndata, in bytes.
997 * rgndata [I] Data that specifes the region.
1000 * Success: Handle to region.
1004 * See GetRegionData().
1006 HRGN WINAPI
ExtCreateRegion( const XFORM
* lpXform
, DWORD dwCount
, const RGNDATA
* rgndata
)
1010 TRACE(" %p %d %p\n", lpXform
, dwCount
, rgndata
);
1013 WARN("(Xform not implemented - ignored)\n");
1015 if( rgndata
->rdh
.iType
!= RDH_RECTANGLES
)
1017 /* FIXME: We can use CreatePolyPolygonRgn() here
1018 * for trapezoidal data */
1020 WARN("(Unsupported region data type: %u)\n", rgndata
->rdh
.iType
);
1024 if( (hrgn
= REGION_CreateRegion( rgndata
->rdh
.nCount
)) )
1026 RECT
*pCurRect
, *pEndRect
;
1027 RGNOBJ
*obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
);
1030 pEndRect
= (RECT
*)rgndata
->Buffer
+ rgndata
->rdh
.nCount
;
1031 for(pCurRect
= (RECT
*)rgndata
->Buffer
; pCurRect
< pEndRect
; pCurRect
++)
1033 if (pCurRect
->left
< pCurRect
->right
&& pCurRect
->top
< pCurRect
->bottom
)
1034 REGION_UnionRectWithRegion( pCurRect
, obj
->rgn
);
1036 GDI_ReleaseObj( hrgn
);
1038 TRACE("-- %p\n", hrgn
);
1041 else ERR("Could not get pointer to newborn Region!\n");
1049 /***********************************************************************
1050 * PtInRegion (GDI32.@)
1052 * Tests whether the specified point is inside a region.
1055 * hrgn [I] Region to test.
1056 * x [I] X-coordinate of point to test.
1057 * y [I] Y-coordinate of point to test.
1060 * Non-zero if the point is inside the region or zero otherwise.
1062 BOOL WINAPI
PtInRegion( HRGN hrgn
, INT x
, INT y
)
1067 if ((obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
)))
1071 if (obj
->rgn
->numRects
> 0 && INRECT(obj
->rgn
->extents
, x
, y
))
1072 for (i
= 0; i
< obj
->rgn
->numRects
; i
++)
1073 if (INRECT (obj
->rgn
->rects
[i
], x
, y
))
1078 GDI_ReleaseObj( hrgn
);
1084 /***********************************************************************
1085 * RectInRegion (GDI32.@)
1087 * Tests if a rectangle is at least partly inside the specified region.
1090 * hrgn [I] Region to test.
1091 * rect [I] Rectangle to test.
1094 * Non-zero if the rectangle is partially inside the region or
1097 BOOL WINAPI
RectInRegion( HRGN hrgn
, const RECT
*rect
)
1102 if ((obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
)))
1104 RECT
*pCurRect
, *pRectEnd
;
1106 /* this is (just) a useful optimization */
1107 if ((obj
->rgn
->numRects
> 0) && EXTENTCHECK(&obj
->rgn
->extents
,
1110 for (pCurRect
= obj
->rgn
->rects
, pRectEnd
= pCurRect
+
1111 obj
->rgn
->numRects
; pCurRect
< pRectEnd
; pCurRect
++)
1113 if (pCurRect
->bottom
<= rect
->top
)
1114 continue; /* not far enough down yet */
1116 if (pCurRect
->top
>= rect
->bottom
)
1117 break; /* too far down */
1119 if (pCurRect
->right
<= rect
->left
)
1120 continue; /* not far enough over yet */
1122 if (pCurRect
->left
>= rect
->right
) {
1130 GDI_ReleaseObj(hrgn
);
1135 /***********************************************************************
1136 * EqualRgn (GDI32.@)
1138 * Tests whether one region is identical to another.
1141 * hrgn1 [I] The first region to compare.
1142 * hrgn2 [I] The second region to compare.
1145 * Non-zero if both regions are identical or zero otherwise.
1147 BOOL WINAPI
EqualRgn( HRGN hrgn1
, HRGN hrgn2
)
1149 RGNOBJ
*obj1
, *obj2
;
1152 if ((obj1
= (RGNOBJ
*) GDI_GetObjPtr( hrgn1
, REGION_MAGIC
)))
1154 if ((obj2
= (RGNOBJ
*) GDI_GetObjPtr( hrgn2
, REGION_MAGIC
)))
1158 if ( obj1
->rgn
->numRects
!= obj2
->rgn
->numRects
) goto done
;
1159 if ( obj1
->rgn
->numRects
== 0 )
1165 if (obj1
->rgn
->extents
.left
!= obj2
->rgn
->extents
.left
) goto done
;
1166 if (obj1
->rgn
->extents
.right
!= obj2
->rgn
->extents
.right
) goto done
;
1167 if (obj1
->rgn
->extents
.top
!= obj2
->rgn
->extents
.top
) goto done
;
1168 if (obj1
->rgn
->extents
.bottom
!= obj2
->rgn
->extents
.bottom
) goto done
;
1169 for( i
= 0; i
< obj1
->rgn
->numRects
; i
++ )
1171 if (obj1
->rgn
->rects
[i
].left
!= obj2
->rgn
->rects
[i
].left
) goto done
;
1172 if (obj1
->rgn
->rects
[i
].right
!= obj2
->rgn
->rects
[i
].right
) goto done
;
1173 if (obj1
->rgn
->rects
[i
].top
!= obj2
->rgn
->rects
[i
].top
) goto done
;
1174 if (obj1
->rgn
->rects
[i
].bottom
!= obj2
->rgn
->rects
[i
].bottom
) goto done
;
1178 GDI_ReleaseObj(hrgn2
);
1180 GDI_ReleaseObj(hrgn1
);
1185 /***********************************************************************
1186 * REGION_UnionRectWithRegion
1187 * Adds a rectangle to a WINEREGION
1189 static void REGION_UnionRectWithRegion(const RECT
*rect
, WINEREGION
*rgn
)
1193 region
.rects
= ®ion
.extents
;
1194 region
.numRects
= 1;
1196 region
.extents
= *rect
;
1197 REGION_UnionRegion(rgn
, rgn
, ®ion
);
1201 /***********************************************************************
1202 * REGION_CreateFrameRgn
1204 * Create a region that is a frame around another region.
1205 * Compute the intersection of the region moved in all 4 directions
1206 * ( +x, -x, +y, -y) and subtract from the original.
1207 * The result looks slightly better than in Windows :)
1209 BOOL
REGION_FrameRgn( HRGN hDest
, HRGN hSrc
, INT x
, INT y
)
1212 RGNOBJ
*srcObj
= (RGNOBJ
*) GDI_GetObjPtr( hSrc
, REGION_MAGIC
);
1214 if (!srcObj
) return FALSE
;
1215 if (srcObj
->rgn
->numRects
!= 0)
1217 RGNOBJ
* destObj
= (RGNOBJ
*) GDI_GetObjPtr( hDest
, REGION_MAGIC
);
1218 WINEREGION
*tmprgn
= REGION_AllocWineRegion( srcObj
->rgn
->numRects
);
1220 REGION_OffsetRegion( destObj
->rgn
, srcObj
->rgn
, -x
, 0);
1221 REGION_OffsetRegion( tmprgn
, srcObj
->rgn
, x
, 0);
1222 REGION_IntersectRegion( destObj
->rgn
, destObj
->rgn
, tmprgn
);
1223 REGION_OffsetRegion( tmprgn
, srcObj
->rgn
, 0, -y
);
1224 REGION_IntersectRegion( destObj
->rgn
, destObj
->rgn
, tmprgn
);
1225 REGION_OffsetRegion( tmprgn
, srcObj
->rgn
, 0, y
);
1226 REGION_IntersectRegion( destObj
->rgn
, destObj
->rgn
, tmprgn
);
1227 REGION_SubtractRegion( destObj
->rgn
, srcObj
->rgn
, destObj
->rgn
);
1229 REGION_DestroyWineRegion(tmprgn
);
1230 GDI_ReleaseObj ( hDest
);
1235 GDI_ReleaseObj( hSrc
);
1240 /***********************************************************************
1241 * CombineRgn (GDI32.@)
1243 * Combines two regions with the specifed operation and stores the result
1244 * in the specified destination region.
1247 * hDest [I] The region that receives the combined result.
1248 * hSrc1 [I] The first source region.
1249 * hSrc2 [I] The second source region.
1250 * mode [I] The way in which the source regions will be combined. See notes.
1254 * NULLREGION - The new region is empty.
1255 * SIMPLEREGION - The new region can be represented by one rectangle.
1256 * COMPLEXREGION - The new region can only be represented by more than
1261 * The two source regions can be the same region.
1262 * The mode can be one of the following:
1263 *| RGN_AND - Intersection of the regions
1264 *| RGN_OR - Union of the regions
1265 *| RGN_XOR - Unions of the regions minus any intersection.
1266 *| RGN_DIFF - Difference (subtraction) of the regions.
1268 INT WINAPI
CombineRgn(HRGN hDest
, HRGN hSrc1
, HRGN hSrc2
, INT mode
)
1270 RGNOBJ
*destObj
= (RGNOBJ
*) GDI_GetObjPtr( hDest
, REGION_MAGIC
);
1273 TRACE(" %p,%p -> %p mode=%x\n", hSrc1
, hSrc2
, hDest
, mode
);
1276 RGNOBJ
*src1Obj
= (RGNOBJ
*) GDI_GetObjPtr( hSrc1
, REGION_MAGIC
);
1280 TRACE("dump src1Obj:\n");
1281 if(TRACE_ON(region
))
1282 REGION_DumpRegion(src1Obj
->rgn
);
1283 if (mode
== RGN_COPY
)
1285 REGION_CopyRegion( destObj
->rgn
, src1Obj
->rgn
);
1286 result
= get_region_type( destObj
);
1290 RGNOBJ
*src2Obj
= (RGNOBJ
*) GDI_GetObjPtr( hSrc2
, REGION_MAGIC
);
1294 TRACE("dump src2Obj:\n");
1295 if(TRACE_ON(region
))
1296 REGION_DumpRegion(src2Obj
->rgn
);
1300 REGION_IntersectRegion( destObj
->rgn
, src1Obj
->rgn
, src2Obj
->rgn
);
1303 REGION_UnionRegion( destObj
->rgn
, src1Obj
->rgn
, src2Obj
->rgn
);
1306 REGION_XorRegion( destObj
->rgn
, src1Obj
->rgn
, src2Obj
->rgn
);
1309 REGION_SubtractRegion( destObj
->rgn
, src1Obj
->rgn
, src2Obj
->rgn
);
1312 result
= get_region_type( destObj
);
1313 GDI_ReleaseObj( hSrc2
);
1316 GDI_ReleaseObj( hSrc1
);
1318 TRACE("dump destObj:\n");
1319 if(TRACE_ON(region
))
1320 REGION_DumpRegion(destObj
->rgn
);
1322 GDI_ReleaseObj( hDest
);
1324 ERR("Invalid rgn=%p\n", hDest
);
1329 /***********************************************************************
1331 * Re-calculate the extents of a region
1333 static void REGION_SetExtents (WINEREGION
*pReg
)
1335 RECT
*pRect
, *pRectEnd
, *pExtents
;
1337 if (pReg
->numRects
== 0)
1339 pReg
->extents
.left
= 0;
1340 pReg
->extents
.top
= 0;
1341 pReg
->extents
.right
= 0;
1342 pReg
->extents
.bottom
= 0;
1346 pExtents
= &pReg
->extents
;
1347 pRect
= pReg
->rects
;
1348 pRectEnd
= &pRect
[pReg
->numRects
- 1];
1351 * Since pRect is the first rectangle in the region, it must have the
1352 * smallest top and since pRectEnd is the last rectangle in the region,
1353 * it must have the largest bottom, because of banding. Initialize left and
1354 * right from pRect and pRectEnd, resp., as good things to initialize them
1357 pExtents
->left
= pRect
->left
;
1358 pExtents
->top
= pRect
->top
;
1359 pExtents
->right
= pRectEnd
->right
;
1360 pExtents
->bottom
= pRectEnd
->bottom
;
1362 while (pRect
<= pRectEnd
)
1364 if (pRect
->left
< pExtents
->left
)
1365 pExtents
->left
= pRect
->left
;
1366 if (pRect
->right
> pExtents
->right
)
1367 pExtents
->right
= pRect
->right
;
1372 /***********************************************************************
1375 static void REGION_CopyRegion(WINEREGION
*dst
, WINEREGION
*src
)
1377 if (dst
!= src
) /* don't want to copy to itself */
1379 if (dst
->size
< src
->numRects
)
1381 if (! (dst
->rects
= HeapReAlloc( GetProcessHeap(), 0, dst
->rects
,
1382 src
->numRects
* sizeof(RECT
) )))
1384 dst
->size
= src
->numRects
;
1386 dst
->numRects
= src
->numRects
;
1387 dst
->extents
.left
= src
->extents
.left
;
1388 dst
->extents
.top
= src
->extents
.top
;
1389 dst
->extents
.right
= src
->extents
.right
;
1390 dst
->extents
.bottom
= src
->extents
.bottom
;
1391 memcpy((char *) dst
->rects
, (char *) src
->rects
,
1392 (int) (src
->numRects
* sizeof(RECT
)));
1397 /***********************************************************************
1400 * Attempt to merge the rects in the current band with those in the
1401 * previous one. Used only by REGION_RegionOp.
1404 * The new index for the previous band.
1407 * If coalescing takes place:
1408 * - rectangles in the previous band will have their bottom fields
1410 * - pReg->numRects will be decreased.
1413 static INT
REGION_Coalesce (
1414 WINEREGION
*pReg
, /* Region to coalesce */
1415 INT prevStart
, /* Index of start of previous band */
1416 INT curStart
/* Index of start of current band */
1418 RECT
*pPrevRect
; /* Current rect in previous band */
1419 RECT
*pCurRect
; /* Current rect in current band */
1420 RECT
*pRegEnd
; /* End of region */
1421 INT curNumRects
; /* Number of rectangles in current band */
1422 INT prevNumRects
; /* Number of rectangles in previous band */
1423 INT bandtop
; /* top coordinate for current band */
1425 pRegEnd
= &pReg
->rects
[pReg
->numRects
];
1427 pPrevRect
= &pReg
->rects
[prevStart
];
1428 prevNumRects
= curStart
- prevStart
;
1431 * Figure out how many rectangles are in the current band. Have to do
1432 * this because multiple bands could have been added in REGION_RegionOp
1433 * at the end when one region has been exhausted.
1435 pCurRect
= &pReg
->rects
[curStart
];
1436 bandtop
= pCurRect
->top
;
1437 for (curNumRects
= 0;
1438 (pCurRect
!= pRegEnd
) && (pCurRect
->top
== bandtop
);
1444 if (pCurRect
!= pRegEnd
)
1447 * If more than one band was added, we have to find the start
1448 * of the last band added so the next coalescing job can start
1449 * at the right place... (given when multiple bands are added,
1450 * this may be pointless -- see above).
1453 while (pRegEnd
[-1].top
== pRegEnd
->top
)
1457 curStart
= pRegEnd
- pReg
->rects
;
1458 pRegEnd
= pReg
->rects
+ pReg
->numRects
;
1461 if ((curNumRects
== prevNumRects
) && (curNumRects
!= 0)) {
1462 pCurRect
-= curNumRects
;
1464 * The bands may only be coalesced if the bottom of the previous
1465 * matches the top scanline of the current.
1467 if (pPrevRect
->bottom
== pCurRect
->top
)
1470 * Make sure the bands have rects in the same places. This
1471 * assumes that rects have been added in such a way that they
1472 * cover the most area possible. I.e. two rects in a band must
1473 * have some horizontal space between them.
1477 if ((pPrevRect
->left
!= pCurRect
->left
) ||
1478 (pPrevRect
->right
!= pCurRect
->right
))
1481 * The bands don't line up so they can't be coalesced.
1488 } while (prevNumRects
!= 0);
1490 pReg
->numRects
-= curNumRects
;
1491 pCurRect
-= curNumRects
;
1492 pPrevRect
-= curNumRects
;
1495 * The bands may be merged, so set the bottom of each rect
1496 * in the previous band to that of the corresponding rect in
1501 pPrevRect
->bottom
= pCurRect
->bottom
;
1505 } while (curNumRects
!= 0);
1508 * If only one band was added to the region, we have to backup
1509 * curStart to the start of the previous band.
1511 * If more than one band was added to the region, copy the
1512 * other bands down. The assumption here is that the other bands
1513 * came from the same region as the current one and no further
1514 * coalescing can be done on them since it's all been done
1515 * already... curStart is already in the right place.
1517 if (pCurRect
== pRegEnd
)
1519 curStart
= prevStart
;
1525 *pPrevRect
++ = *pCurRect
++;
1526 } while (pCurRect
!= pRegEnd
);
1534 /***********************************************************************
1537 * Apply an operation to two regions. Called by REGION_Union,
1538 * REGION_Inverse, REGION_Subtract, REGION_Intersect...
1544 * The new region is overwritten.
1547 * The idea behind this function is to view the two regions as sets.
1548 * Together they cover a rectangle of area that this function divides
1549 * into horizontal bands where points are covered only by one region
1550 * or by both. For the first case, the nonOverlapFunc is called with
1551 * each the band and the band's upper and lower extents. For the
1552 * second, the overlapFunc is called to process the entire band. It
1553 * is responsible for clipping the rectangles in the band, though
1554 * this function provides the boundaries.
1555 * At the end of each band, the new region is coalesced, if possible,
1556 * to reduce the number of rectangles in the region.
1559 static void REGION_RegionOp(
1560 WINEREGION
*newReg
, /* Place to store result */
1561 WINEREGION
*reg1
, /* First region in operation */
1562 WINEREGION
*reg2
, /* 2nd region in operation */
1563 void (*overlapFunc
)(WINEREGION
*, RECT
*, RECT
*, RECT
*, RECT
*, INT
, INT
), /* Function to call for over-lapping bands */
1564 void (*nonOverlap1Func
)(WINEREGION
*, RECT
*, RECT
*, INT
, INT
), /* Function to call for non-overlapping bands in region 1 */
1565 void (*nonOverlap2Func
)(WINEREGION
*, RECT
*, RECT
*, INT
, INT
) /* Function to call for non-overlapping bands in region 2 */
1567 RECT
*r1
; /* Pointer into first region */
1568 RECT
*r2
; /* Pointer into 2d region */
1569 RECT
*r1End
; /* End of 1st region */
1570 RECT
*r2End
; /* End of 2d region */
1571 INT ybot
; /* Bottom of intersection */
1572 INT ytop
; /* Top of intersection */
1573 RECT
*oldRects
; /* Old rects for newReg */
1574 INT prevBand
; /* Index of start of
1575 * previous band in newReg */
1576 INT curBand
; /* Index of start of current
1578 RECT
*r1BandEnd
; /* End of current band in r1 */
1579 RECT
*r2BandEnd
; /* End of current band in r2 */
1580 INT top
; /* Top of non-overlapping band */
1581 INT bot
; /* Bottom of non-overlapping band */
1585 * set r1, r2, r1End and r2End appropriately, preserve the important
1586 * parts of the destination region until the end in case it's one of
1587 * the two source regions, then mark the "new" region empty, allocating
1588 * another array of rectangles for it to use.
1592 r1End
= r1
+ reg1
->numRects
;
1593 r2End
= r2
+ reg2
->numRects
;
1597 * newReg may be one of the src regions so we can't empty it. We keep a
1598 * note of its rects pointer (so that we can free them later), preserve its
1599 * extents and simply set numRects to zero.
1602 oldRects
= newReg
->rects
;
1603 newReg
->numRects
= 0;
1606 * Allocate a reasonable number of rectangles for the new region. The idea
1607 * is to allocate enough so the individual functions don't need to
1608 * reallocate and copy the array, which is time consuming, yet we don't
1609 * have to worry about using too much memory. I hope to be able to
1610 * nuke the Xrealloc() at the end of this function eventually.
1612 newReg
->size
= max(reg1
->numRects
,reg2
->numRects
) * 2;
1614 if (! (newReg
->rects
= HeapAlloc( GetProcessHeap(), 0,
1615 sizeof(RECT
) * newReg
->size
)))
1622 * Initialize ybot and ytop.
1623 * In the upcoming loop, ybot and ytop serve different functions depending
1624 * on whether the band being handled is an overlapping or non-overlapping
1626 * In the case of a non-overlapping band (only one of the regions
1627 * has points in the band), ybot is the bottom of the most recent
1628 * intersection and thus clips the top of the rectangles in that band.
1629 * ytop is the top of the next intersection between the two regions and
1630 * serves to clip the bottom of the rectangles in the current band.
1631 * For an overlapping band (where the two regions intersect), ytop clips
1632 * the top of the rectangles of both regions and ybot clips the bottoms.
1634 if (reg1
->extents
.top
< reg2
->extents
.top
)
1635 ybot
= reg1
->extents
.top
;
1637 ybot
= reg2
->extents
.top
;
1640 * prevBand serves to mark the start of the previous band so rectangles
1641 * can be coalesced into larger rectangles. qv. miCoalesce, above.
1642 * In the beginning, there is no previous band, so prevBand == curBand
1643 * (curBand is set later on, of course, but the first band will always
1644 * start at index 0). prevBand and curBand must be indices because of
1645 * the possible expansion, and resultant moving, of the new region's
1646 * array of rectangles.
1652 curBand
= newReg
->numRects
;
1655 * This algorithm proceeds one source-band (as opposed to a
1656 * destination band, which is determined by where the two regions
1657 * intersect) at a time. r1BandEnd and r2BandEnd serve to mark the
1658 * rectangle after the last one in the current band for their
1659 * respective regions.
1662 while ((r1BandEnd
!= r1End
) && (r1BandEnd
->top
== r1
->top
))
1668 while ((r2BandEnd
!= r2End
) && (r2BandEnd
->top
== r2
->top
))
1674 * First handle the band that doesn't intersect, if any.
1676 * Note that attention is restricted to one band in the
1677 * non-intersecting region at once, so if a region has n
1678 * bands between the current position and the next place it overlaps
1679 * the other, this entire loop will be passed through n times.
1681 if (r1
->top
< r2
->top
)
1683 top
= max(r1
->top
,ybot
);
1684 bot
= min(r1
->bottom
,r2
->top
);
1686 if ((top
!= bot
) && (nonOverlap1Func
!= (void (*)())NULL
))
1688 (* nonOverlap1Func
) (newReg
, r1
, r1BandEnd
, top
, bot
);
1693 else if (r2
->top
< r1
->top
)
1695 top
= max(r2
->top
,ybot
);
1696 bot
= min(r2
->bottom
,r1
->top
);
1698 if ((top
!= bot
) && (nonOverlap2Func
!= (void (*)())NULL
))
1700 (* nonOverlap2Func
) (newReg
, r2
, r2BandEnd
, top
, bot
);
1711 * If any rectangles got added to the region, try and coalesce them
1712 * with rectangles from the previous band. Note we could just do
1713 * this test in miCoalesce, but some machines incur a not
1714 * inconsiderable cost for function calls, so...
1716 if (newReg
->numRects
!= curBand
)
1718 prevBand
= REGION_Coalesce (newReg
, prevBand
, curBand
);
1722 * Now see if we've hit an intersecting band. The two bands only
1723 * intersect if ybot > ytop
1725 ybot
= min(r1
->bottom
, r2
->bottom
);
1726 curBand
= newReg
->numRects
;
1729 (* overlapFunc
) (newReg
, r1
, r1BandEnd
, r2
, r2BandEnd
, ytop
, ybot
);
1733 if (newReg
->numRects
!= curBand
)
1735 prevBand
= REGION_Coalesce (newReg
, prevBand
, curBand
);
1739 * If we've finished with a band (bottom == ybot) we skip forward
1740 * in the region to the next band.
1742 if (r1
->bottom
== ybot
)
1746 if (r2
->bottom
== ybot
)
1750 } while ((r1
!= r1End
) && (r2
!= r2End
));
1753 * Deal with whichever region still has rectangles left.
1755 curBand
= newReg
->numRects
;
1758 if (nonOverlap1Func
!= (void (*)())NULL
)
1763 while ((r1BandEnd
< r1End
) && (r1BandEnd
->top
== r1
->top
))
1767 (* nonOverlap1Func
) (newReg
, r1
, r1BandEnd
,
1768 max(r1
->top
,ybot
), r1
->bottom
);
1770 } while (r1
!= r1End
);
1773 else if ((r2
!= r2End
) && (nonOverlap2Func
!= (void (*)())NULL
))
1778 while ((r2BandEnd
< r2End
) && (r2BandEnd
->top
== r2
->top
))
1782 (* nonOverlap2Func
) (newReg
, r2
, r2BandEnd
,
1783 max(r2
->top
,ybot
), r2
->bottom
);
1785 } while (r2
!= r2End
);
1788 if (newReg
->numRects
!= curBand
)
1790 (void) REGION_Coalesce (newReg
, prevBand
, curBand
);
1794 * A bit of cleanup. To keep regions from growing without bound,
1795 * we shrink the array of rectangles to match the new number of
1796 * rectangles in the region. This never goes to 0, however...
1798 * Only do this stuff if the number of rectangles allocated is more than
1799 * twice the number of rectangles in the region (a simple optimization...).
1801 if ((newReg
->numRects
< (newReg
->size
>> 1)) && (newReg
->numRects
> 2))
1803 if (REGION_NOT_EMPTY(newReg
))
1805 RECT
*prev_rects
= newReg
->rects
;
1806 newReg
->size
= newReg
->numRects
;
1807 newReg
->rects
= HeapReAlloc( GetProcessHeap(), 0, newReg
->rects
,
1808 sizeof(RECT
) * newReg
->size
);
1809 if (! newReg
->rects
)
1810 newReg
->rects
= prev_rects
;
1815 * No point in doing the extra work involved in an Xrealloc if
1816 * the region is empty
1819 HeapFree( GetProcessHeap(), 0, newReg
->rects
);
1820 newReg
->rects
= HeapAlloc( GetProcessHeap(), 0, sizeof(RECT
) );
1823 HeapFree( GetProcessHeap(), 0, oldRects
);
1827 /***********************************************************************
1828 * Region Intersection
1829 ***********************************************************************/
1832 /***********************************************************************
1835 * Handle an overlapping band for REGION_Intersect.
1841 * Rectangles may be added to the region.
1844 static void REGION_IntersectO(WINEREGION
*pReg
, RECT
*r1
, RECT
*r1End
,
1845 RECT
*r2
, RECT
*r2End
, INT top
, INT bottom
)
1851 pNextRect
= &pReg
->rects
[pReg
->numRects
];
1853 while ((r1
!= r1End
) && (r2
!= r2End
))
1855 left
= max(r1
->left
, r2
->left
);
1856 right
= min(r1
->right
, r2
->right
);
1859 * If there's any overlap between the two rectangles, add that
1860 * overlap to the new region.
1861 * There's no need to check for subsumption because the only way
1862 * such a need could arise is if some region has two rectangles
1863 * right next to each other. Since that should never happen...
1867 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
1868 pNextRect
->left
= left
;
1869 pNextRect
->top
= top
;
1870 pNextRect
->right
= right
;
1871 pNextRect
->bottom
= bottom
;
1872 pReg
->numRects
+= 1;
1877 * Need to advance the pointers. Shift the one that extends
1878 * to the right the least, since the other still has a chance to
1879 * overlap with that region's next rectangle, if you see what I mean.
1881 if (r1
->right
< r2
->right
)
1885 else if (r2
->right
< r1
->right
)
1898 /***********************************************************************
1899 * REGION_IntersectRegion
1901 static void REGION_IntersectRegion(WINEREGION
*newReg
, WINEREGION
*reg1
,
1904 /* check for trivial reject */
1905 if ( (!(reg1
->numRects
)) || (!(reg2
->numRects
)) ||
1906 (!EXTENTCHECK(®1
->extents
, ®2
->extents
)))
1907 newReg
->numRects
= 0;
1909 REGION_RegionOp (newReg
, reg1
, reg2
, REGION_IntersectO
, NULL
, NULL
);
1912 * Can't alter newReg's extents before we call miRegionOp because
1913 * it might be one of the source regions and miRegionOp depends
1914 * on the extents of those regions being the same. Besides, this
1915 * way there's no checking against rectangles that will be nuked
1916 * due to coalescing, so we have to examine fewer rectangles.
1918 REGION_SetExtents(newReg
);
1921 /***********************************************************************
1923 ***********************************************************************/
1925 /***********************************************************************
1928 * Handle a non-overlapping band for the union operation. Just
1929 * Adds the rectangles into the region. Doesn't have to check for
1930 * subsumption or anything.
1936 * pReg->numRects is incremented and the final rectangles overwritten
1937 * with the rectangles we're passed.
1940 static void REGION_UnionNonO (WINEREGION
*pReg
, RECT
*r
, RECT
*rEnd
,
1941 INT top
, INT bottom
)
1945 pNextRect
= &pReg
->rects
[pReg
->numRects
];
1949 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
1950 pNextRect
->left
= r
->left
;
1951 pNextRect
->top
= top
;
1952 pNextRect
->right
= r
->right
;
1953 pNextRect
->bottom
= bottom
;
1954 pReg
->numRects
+= 1;
1961 /***********************************************************************
1964 * Handle an overlapping band for the union operation. Picks the
1965 * left-most rectangle each time and merges it into the region.
1971 * Rectangles are overwritten in pReg->rects and pReg->numRects will
1975 static void REGION_UnionO (WINEREGION
*pReg
, RECT
*r1
, RECT
*r1End
,
1976 RECT
*r2
, RECT
*r2End
, INT top
, INT bottom
)
1980 pNextRect
= &pReg
->rects
[pReg
->numRects
];
1982 #define MERGERECT(r) \
1983 if ((pReg->numRects != 0) && \
1984 (pNextRect[-1].top == top) && \
1985 (pNextRect[-1].bottom == bottom) && \
1986 (pNextRect[-1].right >= r->left)) \
1988 if (pNextRect[-1].right < r->right) \
1990 pNextRect[-1].right = r->right; \
1995 MEMCHECK(pReg, pNextRect, pReg->rects); \
1996 pNextRect->top = top; \
1997 pNextRect->bottom = bottom; \
1998 pNextRect->left = r->left; \
1999 pNextRect->right = r->right; \
2000 pReg->numRects += 1; \
2005 while ((r1
!= r1End
) && (r2
!= r2End
))
2007 if (r1
->left
< r2
->left
)
2022 } while (r1
!= r1End
);
2024 else while (r2
!= r2End
)
2031 /***********************************************************************
2032 * REGION_UnionRegion
2034 static void REGION_UnionRegion(WINEREGION
*newReg
, WINEREGION
*reg1
,
2037 /* checks all the simple cases */
2040 * Region 1 and 2 are the same or region 1 is empty
2042 if ( (reg1
== reg2
) || (!(reg1
->numRects
)) )
2045 REGION_CopyRegion(newReg
, reg2
);
2050 * if nothing to union (region 2 empty)
2052 if (!(reg2
->numRects
))
2055 REGION_CopyRegion(newReg
, reg1
);
2060 * Region 1 completely subsumes region 2
2062 if ((reg1
->numRects
== 1) &&
2063 (reg1
->extents
.left
<= reg2
->extents
.left
) &&
2064 (reg1
->extents
.top
<= reg2
->extents
.top
) &&
2065 (reg1
->extents
.right
>= reg2
->extents
.right
) &&
2066 (reg1
->extents
.bottom
>= reg2
->extents
.bottom
))
2069 REGION_CopyRegion(newReg
, reg1
);
2074 * Region 2 completely subsumes region 1
2076 if ((reg2
->numRects
== 1) &&
2077 (reg2
->extents
.left
<= reg1
->extents
.left
) &&
2078 (reg2
->extents
.top
<= reg1
->extents
.top
) &&
2079 (reg2
->extents
.right
>= reg1
->extents
.right
) &&
2080 (reg2
->extents
.bottom
>= reg1
->extents
.bottom
))
2083 REGION_CopyRegion(newReg
, reg2
);
2087 REGION_RegionOp (newReg
, reg1
, reg2
, REGION_UnionO
, REGION_UnionNonO
, REGION_UnionNonO
);
2089 newReg
->extents
.left
= min(reg1
->extents
.left
, reg2
->extents
.left
);
2090 newReg
->extents
.top
= min(reg1
->extents
.top
, reg2
->extents
.top
);
2091 newReg
->extents
.right
= max(reg1
->extents
.right
, reg2
->extents
.right
);
2092 newReg
->extents
.bottom
= max(reg1
->extents
.bottom
, reg2
->extents
.bottom
);
2095 /***********************************************************************
2096 * Region Subtraction
2097 ***********************************************************************/
2099 /***********************************************************************
2100 * REGION_SubtractNonO1
2102 * Deal with non-overlapping band for subtraction. Any parts from
2103 * region 2 we discard. Anything from region 1 we add to the region.
2109 * pReg may be affected.
2112 static void REGION_SubtractNonO1 (WINEREGION
*pReg
, RECT
*r
, RECT
*rEnd
,
2113 INT top
, INT bottom
)
2117 pNextRect
= &pReg
->rects
[pReg
->numRects
];
2121 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
2122 pNextRect
->left
= r
->left
;
2123 pNextRect
->top
= top
;
2124 pNextRect
->right
= r
->right
;
2125 pNextRect
->bottom
= bottom
;
2126 pReg
->numRects
+= 1;
2134 /***********************************************************************
2137 * Overlapping band subtraction. x1 is the left-most point not yet
2144 * pReg may have rectangles added to it.
2147 static void REGION_SubtractO (WINEREGION
*pReg
, RECT
*r1
, RECT
*r1End
,
2148 RECT
*r2
, RECT
*r2End
, INT top
, INT bottom
)
2154 pNextRect
= &pReg
->rects
[pReg
->numRects
];
2156 while ((r1
!= r1End
) && (r2
!= r2End
))
2158 if (r2
->right
<= left
)
2161 * Subtrahend missed the boat: go to next subtrahend.
2165 else if (r2
->left
<= left
)
2168 * Subtrahend precedes minuend: nuke left edge of minuend.
2171 if (left
>= r1
->right
)
2174 * Minuend completely covered: advance to next minuend and
2175 * reset left fence to edge of new minuend.
2184 * Subtrahend now used up since it doesn't extend beyond
2190 else if (r2
->left
< r1
->right
)
2193 * Left part of subtrahend covers part of minuend: add uncovered
2194 * part of minuend to region and skip to next subtrahend.
2196 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
2197 pNextRect
->left
= left
;
2198 pNextRect
->top
= top
;
2199 pNextRect
->right
= r2
->left
;
2200 pNextRect
->bottom
= bottom
;
2201 pReg
->numRects
+= 1;
2204 if (left
>= r1
->right
)
2207 * Minuend used up: advance to new...
2216 * Subtrahend used up
2224 * Minuend used up: add any remaining piece before advancing.
2226 if (r1
->right
> left
)
2228 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
2229 pNextRect
->left
= left
;
2230 pNextRect
->top
= top
;
2231 pNextRect
->right
= r1
->right
;
2232 pNextRect
->bottom
= bottom
;
2233 pReg
->numRects
+= 1;
2242 * Add remaining minuend rectangles to region.
2246 MEMCHECK(pReg
, pNextRect
, pReg
->rects
);
2247 pNextRect
->left
= left
;
2248 pNextRect
->top
= top
;
2249 pNextRect
->right
= r1
->right
;
2250 pNextRect
->bottom
= bottom
;
2251 pReg
->numRects
+= 1;
2262 /***********************************************************************
2263 * REGION_SubtractRegion
2265 * Subtract regS from regM and leave the result in regD.
2266 * S stands for subtrahend, M for minuend and D for difference.
2272 * regD is overwritten.
2275 static void REGION_SubtractRegion(WINEREGION
*regD
, WINEREGION
*regM
,
2278 /* check for trivial reject */
2279 if ( (!(regM
->numRects
)) || (!(regS
->numRects
)) ||
2280 (!EXTENTCHECK(®M
->extents
, ®S
->extents
)) )
2282 REGION_CopyRegion(regD
, regM
);
2286 REGION_RegionOp (regD
, regM
, regS
, REGION_SubtractO
, REGION_SubtractNonO1
, NULL
);
2289 * Can't alter newReg's extents before we call miRegionOp because
2290 * it might be one of the source regions and miRegionOp depends
2291 * on the extents of those regions being the unaltered. Besides, this
2292 * way there's no checking against rectangles that will be nuked
2293 * due to coalescing, so we have to examine fewer rectangles.
2295 REGION_SetExtents (regD
);
2298 /***********************************************************************
2301 static void REGION_XorRegion(WINEREGION
*dr
, WINEREGION
*sra
,
2304 WINEREGION
*tra
, *trb
;
2306 if ((! (tra
= REGION_AllocWineRegion(sra
->numRects
+ 1))) ||
2307 (! (trb
= REGION_AllocWineRegion(srb
->numRects
+ 1))))
2309 REGION_SubtractRegion(tra
,sra
,srb
);
2310 REGION_SubtractRegion(trb
,srb
,sra
);
2311 REGION_UnionRegion(dr
,tra
,trb
);
2312 REGION_DestroyWineRegion(tra
);
2313 REGION_DestroyWineRegion(trb
);
2317 /**************************************************************************
2321 *************************************************************************/
2323 #define LARGE_COORDINATE 0x7fffffff /* FIXME */
2324 #define SMALL_COORDINATE 0x80000000
2326 /***********************************************************************
2327 * REGION_InsertEdgeInET
2329 * Insert the given edge into the edge table.
2330 * First we must find the correct bucket in the
2331 * Edge table, then find the right slot in the
2332 * bucket. Finally, we can insert it.
2335 static void REGION_InsertEdgeInET(EdgeTable
*ET
, EdgeTableEntry
*ETE
,
2336 INT scanline
, ScanLineListBlock
**SLLBlock
, INT
*iSLLBlock
)
2339 EdgeTableEntry
*start
, *prev
;
2340 ScanLineList
*pSLL
, *pPrevSLL
;
2341 ScanLineListBlock
*tmpSLLBlock
;
2344 * find the right bucket to put the edge into
2346 pPrevSLL
= &ET
->scanlines
;
2347 pSLL
= pPrevSLL
->next
;
2348 while (pSLL
&& (pSLL
->scanline
< scanline
))
2355 * reassign pSLL (pointer to ScanLineList) if necessary
2357 if ((!pSLL
) || (pSLL
->scanline
> scanline
))
2359 if (*iSLLBlock
> SLLSPERBLOCK
-1)
2361 tmpSLLBlock
= HeapAlloc( GetProcessHeap(), 0, sizeof(ScanLineListBlock
));
2364 WARN("Can't alloc SLLB\n");
2367 (*SLLBlock
)->next
= tmpSLLBlock
;
2368 tmpSLLBlock
->next
= (ScanLineListBlock
*)NULL
;
2369 *SLLBlock
= tmpSLLBlock
;
2372 pSLL
= &((*SLLBlock
)->SLLs
[(*iSLLBlock
)++]);
2374 pSLL
->next
= pPrevSLL
->next
;
2375 pSLL
->edgelist
= (EdgeTableEntry
*)NULL
;
2376 pPrevSLL
->next
= pSLL
;
2378 pSLL
->scanline
= scanline
;
2381 * now insert the edge in the right bucket
2383 prev
= (EdgeTableEntry
*)NULL
;
2384 start
= pSLL
->edgelist
;
2385 while (start
&& (start
->bres
.minor_axis
< ETE
->bres
.minor_axis
))
2388 start
= start
->next
;
2395 pSLL
->edgelist
= ETE
;
2398 /***********************************************************************
2399 * REGION_CreateEdgeTable
2401 * This routine creates the edge table for
2402 * scan converting polygons.
2403 * The Edge Table (ET) looks like:
2407 * | ymax | ScanLineLists
2408 * |scanline|-->------------>-------------->...
2409 * -------- |scanline| |scanline|
2410 * |edgelist| |edgelist|
2411 * --------- ---------
2415 * list of ETEs list of ETEs
2417 * where ETE is an EdgeTableEntry data structure,
2418 * and there is one ScanLineList per scanline at
2419 * which an edge is initially entered.
2422 static void REGION_CreateETandAET(const INT
*Count
, INT nbpolygons
,
2423 const POINT
*pts
, EdgeTable
*ET
, EdgeTableEntry
*AET
,
2424 EdgeTableEntry
*pETEs
, ScanLineListBlock
*pSLLBlock
)
2426 const POINT
*top
, *bottom
;
2427 const POINT
*PrevPt
, *CurrPt
, *EndPt
;
2434 * initialize the Active Edge Table
2436 AET
->next
= (EdgeTableEntry
*)NULL
;
2437 AET
->back
= (EdgeTableEntry
*)NULL
;
2438 AET
->nextWETE
= (EdgeTableEntry
*)NULL
;
2439 AET
->bres
.minor_axis
= SMALL_COORDINATE
;
2442 * initialize the Edge Table.
2444 ET
->scanlines
.next
= (ScanLineList
*)NULL
;
2445 ET
->ymax
= SMALL_COORDINATE
;
2446 ET
->ymin
= LARGE_COORDINATE
;
2447 pSLLBlock
->next
= (ScanLineListBlock
*)NULL
;
2450 for(poly
= 0; poly
< nbpolygons
; poly
++)
2452 count
= Count
[poly
];
2460 * for each vertex in the array of points.
2461 * In this loop we are dealing with two vertices at
2462 * a time -- these make up one edge of the polygon.
2469 * find out which point is above and which is below.
2471 if (PrevPt
->y
> CurrPt
->y
)
2473 bottom
= PrevPt
, top
= CurrPt
;
2474 pETEs
->ClockWise
= 0;
2478 bottom
= CurrPt
, top
= PrevPt
;
2479 pETEs
->ClockWise
= 1;
2483 * don't add horizontal edges to the Edge table.
2485 if (bottom
->y
!= top
->y
)
2487 pETEs
->ymax
= bottom
->y
-1;
2488 /* -1 so we don't get last scanline */
2491 * initialize integer edge algorithm
2493 dy
= bottom
->y
- top
->y
;
2494 BRESINITPGONSTRUCT(dy
, top
->x
, bottom
->x
, pETEs
->bres
);
2496 REGION_InsertEdgeInET(ET
, pETEs
, top
->y
, &pSLLBlock
,
2499 if (PrevPt
->y
> ET
->ymax
)
2500 ET
->ymax
= PrevPt
->y
;
2501 if (PrevPt
->y
< ET
->ymin
)
2502 ET
->ymin
= PrevPt
->y
;
2511 /***********************************************************************
2514 * This routine moves EdgeTableEntries from the
2515 * EdgeTable into the Active Edge Table,
2516 * leaving them sorted by smaller x coordinate.
2519 static void REGION_loadAET(EdgeTableEntry
*AET
, EdgeTableEntry
*ETEs
)
2521 EdgeTableEntry
*pPrevAET
;
2522 EdgeTableEntry
*tmp
;
2528 while (AET
&& (AET
->bres
.minor_axis
< ETEs
->bres
.minor_axis
))
2537 ETEs
->back
= pPrevAET
;
2538 pPrevAET
->next
= ETEs
;
2545 /***********************************************************************
2546 * REGION_computeWAET
2548 * This routine links the AET by the
2549 * nextWETE (winding EdgeTableEntry) link for
2550 * use by the winding number rule. The final
2551 * Active Edge Table (AET) might look something
2555 * ---------- --------- ---------
2556 * |ymax | |ymax | |ymax |
2557 * | ... | |... | |... |
2558 * |next |->|next |->|next |->...
2559 * |nextWETE| |nextWETE| |nextWETE|
2560 * --------- --------- ^--------
2562 * V-------------------> V---> ...
2565 static void REGION_computeWAET(EdgeTableEntry
*AET
)
2567 register EdgeTableEntry
*pWETE
;
2568 register int inside
= 1;
2569 register int isInside
= 0;
2571 AET
->nextWETE
= (EdgeTableEntry
*)NULL
;
2581 if ((!inside
&& !isInside
) ||
2582 ( inside
&& isInside
))
2584 pWETE
->nextWETE
= AET
;
2590 pWETE
->nextWETE
= (EdgeTableEntry
*)NULL
;
2593 /***********************************************************************
2594 * REGION_InsertionSort
2596 * Just a simple insertion sort using
2597 * pointers and back pointers to sort the Active
2601 static BOOL
REGION_InsertionSort(EdgeTableEntry
*AET
)
2603 EdgeTableEntry
*pETEchase
;
2604 EdgeTableEntry
*pETEinsert
;
2605 EdgeTableEntry
*pETEchaseBackTMP
;
2606 BOOL changed
= FALSE
;
2613 while (pETEchase
->back
->bres
.minor_axis
> AET
->bres
.minor_axis
)
2614 pETEchase
= pETEchase
->back
;
2617 if (pETEchase
!= pETEinsert
)
2619 pETEchaseBackTMP
= pETEchase
->back
;
2620 pETEinsert
->back
->next
= AET
;
2622 AET
->back
= pETEinsert
->back
;
2623 pETEinsert
->next
= pETEchase
;
2624 pETEchase
->back
->next
= pETEinsert
;
2625 pETEchase
->back
= pETEinsert
;
2626 pETEinsert
->back
= pETEchaseBackTMP
;
2633 /***********************************************************************
2634 * REGION_FreeStorage
2638 static void REGION_FreeStorage(ScanLineListBlock
*pSLLBlock
)
2640 ScanLineListBlock
*tmpSLLBlock
;
2644 tmpSLLBlock
= pSLLBlock
->next
;
2645 HeapFree( GetProcessHeap(), 0, pSLLBlock
);
2646 pSLLBlock
= tmpSLLBlock
;
2651 /***********************************************************************
2652 * REGION_PtsToRegion
2654 * Create an array of rectangles from a list of points.
2656 static int REGION_PtsToRegion(int numFullPtBlocks
, int iCurPtBlock
,
2657 POINTBLOCK
*FirstPtBlock
, WINEREGION
*reg
)
2661 POINTBLOCK
*CurPtBlock
;
2666 extents
= ®
->extents
;
2668 numRects
= ((numFullPtBlocks
* NUMPTSTOBUFFER
) + iCurPtBlock
) >> 1;
2670 if (!(reg
->rects
= HeapReAlloc( GetProcessHeap(), 0, reg
->rects
,
2671 sizeof(RECT
) * numRects
)))
2674 reg
->size
= numRects
;
2675 CurPtBlock
= FirstPtBlock
;
2676 rects
= reg
->rects
- 1;
2678 extents
->left
= LARGE_COORDINATE
, extents
->right
= SMALL_COORDINATE
;
2680 for ( ; numFullPtBlocks
>= 0; numFullPtBlocks
--) {
2681 /* the loop uses 2 points per iteration */
2682 i
= NUMPTSTOBUFFER
>> 1;
2683 if (!numFullPtBlocks
)
2684 i
= iCurPtBlock
>> 1;
2685 for (pts
= CurPtBlock
->pts
; i
--; pts
+= 2) {
2686 if (pts
->x
== pts
[1].x
)
2688 if (numRects
&& pts
->x
== rects
->left
&& pts
->y
== rects
->bottom
&&
2689 pts
[1].x
== rects
->right
&&
2690 (numRects
== 1 || rects
[-1].top
!= rects
->top
) &&
2691 (i
&& pts
[2].y
> pts
[1].y
)) {
2692 rects
->bottom
= pts
[1].y
+ 1;
2697 rects
->left
= pts
->x
; rects
->top
= pts
->y
;
2698 rects
->right
= pts
[1].x
; rects
->bottom
= pts
[1].y
+ 1;
2699 if (rects
->left
< extents
->left
)
2700 extents
->left
= rects
->left
;
2701 if (rects
->right
> extents
->right
)
2702 extents
->right
= rects
->right
;
2704 CurPtBlock
= CurPtBlock
->next
;
2708 extents
->top
= reg
->rects
->top
;
2709 extents
->bottom
= rects
->bottom
;
2714 extents
->bottom
= 0;
2716 reg
->numRects
= numRects
;
2721 /***********************************************************************
2722 * CreatePolyPolygonRgn (GDI32.@)
2724 HRGN WINAPI
CreatePolyPolygonRgn(const POINT
*Pts
, const INT
*Count
,
2725 INT nbpolygons
, INT mode
)
2730 register EdgeTableEntry
*pAET
; /* Active Edge Table */
2731 register INT y
; /* current scanline */
2732 register int iPts
= 0; /* number of pts in buffer */
2733 register EdgeTableEntry
*pWETE
; /* Winding Edge Table Entry*/
2734 register ScanLineList
*pSLL
; /* current scanLineList */
2735 register POINT
*pts
; /* output buffer */
2736 EdgeTableEntry
*pPrevAET
; /* ptr to previous AET */
2737 EdgeTable ET
; /* header node for ET */
2738 EdgeTableEntry AET
; /* header node for AET */
2739 EdgeTableEntry
*pETEs
; /* EdgeTableEntries pool */
2740 ScanLineListBlock SLLBlock
; /* header for scanlinelist */
2741 int fixWAET
= FALSE
;
2742 POINTBLOCK FirstPtBlock
, *curPtBlock
; /* PtBlock buffers */
2743 POINTBLOCK
*tmpPtBlock
;
2744 int numFullPtBlocks
= 0;
2747 if(!(hrgn
= REGION_CreateRegion(nbpolygons
)))
2749 obj
= (RGNOBJ
*) GDI_GetObjPtr( hrgn
, REGION_MAGIC
);
2752 /* special case a rectangle */
2754 if (((nbpolygons
== 1) && ((*Count
== 4) ||
2755 ((*Count
== 5) && (Pts
[4].x
== Pts
[0].x
) && (Pts
[4].y
== Pts
[0].y
)))) &&
2756 (((Pts
[0].y
== Pts
[1].y
) &&
2757 (Pts
[1].x
== Pts
[2].x
) &&
2758 (Pts
[2].y
== Pts
[3].y
) &&
2759 (Pts
[3].x
== Pts
[0].x
)) ||
2760 ((Pts
[0].x
== Pts
[1].x
) &&
2761 (Pts
[1].y
== Pts
[2].y
) &&
2762 (Pts
[2].x
== Pts
[3].x
) &&
2763 (Pts
[3].y
== Pts
[0].y
))))
2765 SetRectRgn( hrgn
, min(Pts
[0].x
, Pts
[2].x
), min(Pts
[0].y
, Pts
[2].y
),
2766 max(Pts
[0].x
, Pts
[2].x
), max(Pts
[0].y
, Pts
[2].y
) );
2767 GDI_ReleaseObj( hrgn
);
2771 for(poly
= total
= 0; poly
< nbpolygons
; poly
++)
2772 total
+= Count
[poly
];
2773 if (! (pETEs
= HeapAlloc( GetProcessHeap(), 0, sizeof(EdgeTableEntry
) * total
)))
2775 REGION_DeleteObject( hrgn
, obj
);
2778 pts
= FirstPtBlock
.pts
;
2779 REGION_CreateETandAET(Count
, nbpolygons
, Pts
, &ET
, &AET
, pETEs
, &SLLBlock
);
2780 pSLL
= ET
.scanlines
.next
;
2781 curPtBlock
= &FirstPtBlock
;
2783 if (mode
!= WINDING
) {
2787 for (y
= ET
.ymin
; y
< ET
.ymax
; y
++) {
2789 * Add a new edge to the active edge table when we
2790 * get to the next edge.
2792 if (pSLL
!= NULL
&& y
== pSLL
->scanline
) {
2793 REGION_loadAET(&AET
, pSLL
->edgelist
);
2800 * for each active edge
2803 pts
->x
= pAET
->bres
.minor_axis
, pts
->y
= y
;
2807 * send out the buffer
2809 if (iPts
== NUMPTSTOBUFFER
) {
2810 tmpPtBlock
= HeapAlloc( GetProcessHeap(), 0, sizeof(POINTBLOCK
));
2812 WARN("Can't alloc tPB\n");
2813 HeapFree( GetProcessHeap(), 0, pETEs
);
2816 curPtBlock
->next
= tmpPtBlock
;
2817 curPtBlock
= tmpPtBlock
;
2818 pts
= curPtBlock
->pts
;
2822 EVALUATEEDGEEVENODD(pAET
, pPrevAET
, y
);
2824 REGION_InsertionSort(&AET
);
2831 for (y
= ET
.ymin
; y
< ET
.ymax
; y
++) {
2833 * Add a new edge to the active edge table when we
2834 * get to the next edge.
2836 if (pSLL
!= NULL
&& y
== pSLL
->scanline
) {
2837 REGION_loadAET(&AET
, pSLL
->edgelist
);
2838 REGION_computeWAET(&AET
);
2846 * for each active edge
2850 * add to the buffer only those edges that
2851 * are in the Winding active edge table.
2853 if (pWETE
== pAET
) {
2854 pts
->x
= pAET
->bres
.minor_axis
, pts
->y
= y
;
2858 * send out the buffer
2860 if (iPts
== NUMPTSTOBUFFER
) {
2861 tmpPtBlock
= HeapAlloc( GetProcessHeap(), 0,
2862 sizeof(POINTBLOCK
) );
2864 WARN("Can't alloc tPB\n");
2865 REGION_DeleteObject( hrgn
, obj
);
2866 HeapFree( GetProcessHeap(), 0, pETEs
);
2869 curPtBlock
->next
= tmpPtBlock
;
2870 curPtBlock
= tmpPtBlock
;
2871 pts
= curPtBlock
->pts
;
2872 numFullPtBlocks
++; iPts
= 0;
2874 pWETE
= pWETE
->nextWETE
;
2876 EVALUATEEDGEWINDING(pAET
, pPrevAET
, y
, fixWAET
);
2880 * recompute the winding active edge table if
2881 * we just resorted or have exited an edge.
2883 if (REGION_InsertionSort(&AET
) || fixWAET
) {
2884 REGION_computeWAET(&AET
);
2889 REGION_FreeStorage(SLLBlock
.next
);
2890 REGION_PtsToRegion(numFullPtBlocks
, iPts
, &FirstPtBlock
, region
);
2892 for (curPtBlock
= FirstPtBlock
.next
; --numFullPtBlocks
>= 0;) {
2893 tmpPtBlock
= curPtBlock
->next
;
2894 HeapFree( GetProcessHeap(), 0, curPtBlock
);
2895 curPtBlock
= tmpPtBlock
;
2897 HeapFree( GetProcessHeap(), 0, pETEs
);
2898 GDI_ReleaseObj( hrgn
);
2903 /***********************************************************************
2904 * CreatePolygonRgn (GDI32.@)
2906 HRGN WINAPI
CreatePolygonRgn( const POINT
*points
, INT count
,
2909 return CreatePolyPolygonRgn( points
, &count
, 1, mode
);