4 * Copyright 2021 Alexandre Julliard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
21 * For functions copied from musl libc (http://musl.libc.org/):
22 * ====================================================
23 * Copyright 2005-2020 Rich Felker, et al.
25 * Permission is hereby granted, free of charge, to any person obtaining
26 * a copy of this software and associated documentation files (the
27 * "Software"), to deal in the Software without restriction, including
28 * without limitation the rights to use, copy, modify, merge, publish,
29 * distribute, sublicense, and/or sell copies of the Software, and to
30 * permit persons to whom the Software is furnished to do so, subject to
31 * the following conditions:
33 * The above copyright notice and this permission notice shall be
34 * included in all copies or substantial portions of the Software.
35 * ====================================================
42 #define WIN32_NO_STATUS
43 #include "ntdll_misc.h"
45 /* Copied from musl: src/internal/libm.h */
46 static inline float fp_barrierf(float x
)
52 static inline double fp_barrier(double x
)
54 volatile double y
= x
;
59 /* Copied from musl: src/math/rint.c */
60 static double __rint(double x
)
62 static const double toint
= 1 / DBL_EPSILON
;
64 ULONGLONG llx
= *(ULONGLONG
*)&x
;
65 int e
= llx
>> 52 & 0x7ff;
72 y
= fp_barrier(x
- toint
) + toint
;
74 y
= fp_barrier(x
+ toint
) - toint
;
80 /* Copied from musl: src/math/scalbn.c */
81 static double __scalbn(double x
, int n
)
83 union {double f
; UINT64 i
;} u
;
95 } else if (n
< -1022) {
96 /* make sure final n < -53 to avoid double
97 rounding in the subnormal range */
98 y
*= 0x1p
-1022 * 0x1p
53;
101 y
*= 0x1p
-1022 * 0x1p
53;
107 u
.i
= (UINT64
)(0x3ff + n
) << 52;
112 /* Copied from musl: src/math/__rem_pio2_large.c */
113 static int __rem_pio2_large(double *x
, double *y
, int e0
, int nx
, int prec
)
115 static const int init_jk
[] = {3, 4};
116 static const INT32 ipio2
[] = {
117 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
118 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
119 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
120 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
121 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
122 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
123 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
124 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
125 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
126 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
127 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
129 static const double PIo2
[] = {
130 1.57079625129699707031e+00,
131 7.54978941586159635335e-08,
132 5.39030252995776476554e-15,
133 3.28200341580791294123e-22,
134 1.27065575308067607349e-29,
135 1.22933308981111328932e-36,
136 2.73370053816464559624e-44,
137 2.16741683877804819444e-51,
140 INT32 jz
, jx
, jv
, jp
, jk
, carry
, n
, iq
[20], i
, j
, k
, m
, q0
, ih
;
141 double z
, fw
, f
[20], fq
[20] = {0}, q
[20];
147 /* determine jx,jv,q0, note that 3>q0 */
151 q0
= e0
- 24 * (jv
+ 1);
153 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
156 for (i
= 0; i
<= m
; i
++, j
++)
157 f
[i
] = j
< 0 ? 0.0 : (double)ipio2
[j
];
159 /* compute q[0],q[1],...q[jk] */
160 for (i
= 0; i
<= jk
; i
++) {
161 for (j
= 0, fw
= 0.0; j
<= jx
; j
++)
162 fw
+= x
[j
] * f
[jx
+ i
- j
];
168 /* distill q[] into iq[] reversingly */
169 for (i
= 0, j
= jz
, z
= q
[jz
]; j
> 0; i
++, j
--) {
170 fw
= (double)(INT32
)(0x1p
-24 * z
);
171 iq
[i
] = (INT32
)(z
- 0x1p
24 * fw
);
176 z
= __scalbn(z
, q0
); /* actual value of z */
177 z
-= 8.0 * floor(z
* 0.125); /* trim off integer >= 8 */
181 if (q0
> 0) { /* need iq[jz-1] to determine n */
182 i
= iq
[jz
- 1] >> (24 - q0
);
184 iq
[jz
- 1] -= i
<< (24 - q0
);
185 ih
= iq
[jz
- 1] >> (23 - q0
);
187 else if (q0
== 0) ih
= iq
[jz
- 1] >> 23;
188 else if (z
>= 0.5) ih
= 2;
190 if (ih
> 0) { /* q > 0.5 */
193 for (i
= 0; i
< jz
; i
++) { /* compute 1-q */
198 iq
[i
] = 0x1000000 - j
;
201 iq
[i
] = 0xffffff - j
;
203 if (q0
> 0) { /* rare case: chance is 1 in 12 */
206 iq
[jz
- 1] &= 0x7fffff;
209 iq
[jz
- 1] &= 0x3fffff;
216 z
-= __scalbn(1.0, q0
);
220 /* check if recomputation is needed */
223 for (i
= jz
- 1; i
>= jk
; i
--) j
|= iq
[i
];
224 if (j
== 0) { /* need recomputation */
225 for (k
= 1; iq
[jk
- k
] == 0; k
++); /* k = no. of terms needed */
227 for (i
= jz
+ 1; i
<= jz
+ k
; i
++) { /* add q[jz+1] to q[jz+k] */
228 f
[jx
+ i
] = (double)ipio2
[jv
+ i
];
229 for (j
= 0, fw
= 0.0; j
<= jx
; j
++)
230 fw
+= x
[j
] * f
[jx
+ i
- j
];
238 /* chop off zero terms */
242 while (iq
[jz
] == 0) {
246 } else { /* break z into 24-bit if necessary */
247 z
= __scalbn(z
, -q0
);
249 fw
= (double)(INT32
)(0x1p
-24 * z
);
250 iq
[jz
] = (INT32
)(z
- 0x1p
24 * fw
);
258 /* convert integer "bit" chunk to floating-point value */
259 fw
= __scalbn(1.0, q0
);
260 for (i
= jz
; i
>= 0; i
--) {
261 q
[i
] = fw
* (double)iq
[i
];
265 /* compute PIo2[0,...,jp]*q[jz,...,0] */
266 for(i
= jz
; i
>= 0; i
--) {
267 for (fw
= 0.0, k
= 0; k
<= jp
&& k
<= jz
- i
; k
++)
268 fw
+= PIo2
[k
] * q
[i
+ k
];
272 /* compress fq[] into y[] */
276 for (i
= jz
; i
>= 0; i
--)
278 y
[0] = ih
== 0 ? fw
: -fw
;
283 for (i
= jz
; i
>= 0; i
--)
286 y
[0] = ih
==0 ? fw
: -fw
;
288 for (i
= 1; i
<= jz
; i
++)
290 y
[1] = ih
== 0 ? fw
: -fw
;
292 case 3: /* painful */
293 for (i
= jz
; i
> 0; i
--) {
294 fw
= fq
[i
- 1] + fq
[i
];
295 fq
[i
] += fq
[i
- 1] - fw
;
298 for (i
= jz
; i
> 1; i
--) {
299 fw
= fq
[i
- 1] + fq
[i
];
300 fq
[i
] += fq
[i
- 1] - fw
;
303 for (fw
= 0.0, i
= jz
; i
>= 2; i
--)
318 /* Based on musl implementation: src/math/round.c */
319 static double __round(double x
)
321 ULONGLONG llx
= *(ULONGLONG
*)&x
, tmp
;
322 int e
= (llx
>> 52 & 0x7ff) - 0x3ff;
329 return signbit(x
) ? -1 : 1;
331 tmp
= 0x000fffffffffffffULL
>> e
;
334 llx
+= 0x0008000000000000ULL
>> e
;
336 return *(double*)&llx
;
339 /* Copied from musl: src/math/__rem_pio2.c */
340 static int __rem_pio2(double x
, double *y
)
342 static const double pio4
= 0x1.921fb54442d18p
-1,
343 invpio2
= 6.36619772367581382433e-01,
344 pio2_1
= 1.57079632673412561417e+00,
345 pio2_1t
= 6.07710050650619224932e-11,
346 pio2_2
= 6.07710050630396597660e-11,
347 pio2_2t
= 2.02226624879595063154e-21,
348 pio2_3
= 2.02226624871116645580e-21,
349 pio2_3t
= 8.47842766036889956997e-32;
351 union {double f
; UINT64 i
;} u
= {x
};
352 double z
, w
, t
, r
, fn
, tx
[3], ty
[2];
354 int sign
, n
, ex
, ey
, i
;
357 ix
= u
.i
>> 32 & 0x7fffffff;
358 if (ix
<= 0x400f6a7a) { /* |x| ~<= 5pi/4 */
359 if ((ix
& 0xfffff) == 0x921fb) /* |x| ~= pi/2 or 2pi/2 */
360 goto medium
; /* cancellation -- use medium case */
361 if (ix
<= 0x4002d97c) { /* |x| ~<= 3pi/4 */
363 z
= x
- pio2_1
; /* one round good to 85 bits */
365 y
[1] = (z
- y
[0]) - pio2_1t
;
370 y
[1] = (z
- y
[0]) + pio2_1t
;
376 y
[0] = z
- 2 * pio2_1t
;
377 y
[1] = (z
- y
[0]) - 2 * pio2_1t
;
381 y
[0] = z
+ 2 * pio2_1t
;
382 y
[1] = (z
- y
[0]) + 2 * pio2_1t
;
387 if (ix
<= 0x401c463b) { /* |x| ~<= 9pi/4 */
388 if (ix
<= 0x4015fdbc) { /* |x| ~<= 7pi/4 */
389 if (ix
== 0x4012d97c) /* |x| ~= 3pi/2 */
393 y
[0] = z
- 3 * pio2_1t
;
394 y
[1] = (z
- y
[0]) - 3 * pio2_1t
;
398 y
[0] = z
+ 3 * pio2_1t
;
399 y
[1] = (z
- y
[0]) + 3 * pio2_1t
;
403 if (ix
== 0x401921fb) /* |x| ~= 4pi/2 */
407 y
[0] = z
- 4 * pio2_1t
;
408 y
[1] = (z
- y
[0]) - 4 * pio2_1t
;
412 y
[0] = z
+ 4 * pio2_1t
;
413 y
[1] = (z
- y
[0]) + 4 * pio2_1t
;
418 if (ix
< 0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */
420 fn
= __rint(x
* invpio2
);
423 w
= fn
* pio2_1t
; /* 1st round, good to 85 bits */
424 /* Matters with directed rounding. */
430 } else if (r
- w
> pio4
) {
438 ey
= u
.i
>> 52 & 0x7ff;
440 if (ex
- ey
> 16) { /* 2nd round, good to 118 bits */
444 w
= fn
* pio2_2t
- ((t
- r
) - w
);
447 ey
= u
.i
>> 52 & 0x7ff;
448 if (ex
- ey
> 49) { /* 3rd round, good to 151 bits, covers all cases */
452 w
= fn
* pio2_3t
- ((t
- r
) - w
);
456 y
[1] = (r
- y
[0]) - w
;
460 * all other (large) arguments
462 if (ix
>= 0x7ff00000) { /* x is inf or NaN */
466 /* set z = scalbn(|x|,-ilogb(x)+23) */
468 u
.i
&= (UINT64
)-1 >> 12;
469 u
.i
|= (UINT64
)(0x3ff + 23) << 52;
471 for (i
= 0; i
< 2; i
++) {
472 tx
[i
] = (double)(INT32
)z
;
473 z
= (z
- tx
[i
]) * 0x1p
24;
476 /* skip zero terms, first term is non-zero */
479 n
= __rem_pio2_large(tx
, ty
, (int)(ix
>> 20) - (0x3ff + 23), i
+ 1, 1);
490 /* Copied from musl: src/math/__sin.c */
491 static double __sin(double x
, double y
, int iy
)
493 static const double S1
= -1.66666666666666324348e-01,
494 S2
= 8.33333333332248946124e-03,
495 S3
= -1.98412698298579493134e-04,
496 S4
= 2.75573137070700676789e-06,
497 S5
= -2.50507602534068634195e-08,
498 S6
= 1.58969099521155010221e-10;
504 r
= S2
+ z
* (S3
+ z
* S4
) + z
* w
* (S5
+ z
* S6
);
507 return x
+ v
* (S1
+ z
* r
);
509 return x
- ((z
* (0.5 * y
- v
* r
) - y
) - v
* S1
);
512 /* Copied from musl: src/math/__cos.c */
513 static double __cos(double x
, double y
)
515 static const double C1
= 4.16666666666666019037e-02,
516 C2
= -1.38888888888741095749e-03,
517 C3
= 2.48015872894767294178e-05,
518 C4
= -2.75573143513906633035e-07,
519 C5
= 2.08757232129817482790e-09,
520 C6
= -1.13596475577881948265e-11;
525 r
= z
* (C1
+ z
* (C2
+ z
* C3
)) + w
* w
* (C4
+ z
* (C5
+ z
* C6
));
528 return w
+ (((1.0 - w
) - hz
) + (z
* r
- x
* y
));
531 /* Copied from musl: src/math/__tan.c */
532 static double __tan(double x
, double y
, int odd
)
534 static const double T
[] = {
535 3.33333333333334091986e-01,
536 1.33333333333201242699e-01,
537 5.39682539762260521377e-02,
538 2.18694882948595424599e-02,
539 8.86323982359930005737e-03,
540 3.59207910759131235356e-03,
541 1.45620945432529025516e-03,
542 5.88041240820264096874e-04,
543 2.46463134818469906812e-04,
544 7.81794442939557092300e-05,
545 7.14072491382608190305e-05,
546 -1.85586374855275456654e-05,
547 2.59073051863633712884e-05,
549 static const double pio4
= 7.85398163397448278999e-01;
550 static const double pio4lo
= 3.06161699786838301793e-17;
552 double z
, r
, v
, w
, s
, a
, w0
, a0
;
556 hx
= *(ULONGLONG
*)&x
>> 32;
557 big
= (hx
& 0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
564 x
= (pio4
- x
) + (pio4lo
- y
);
569 r
= T
[1] + w
* (T
[3] + w
* (T
[5] + w
* (T
[7] + w
* (T
[9] + w
* T
[11]))));
570 v
= z
* (T
[2] + w
* (T
[4] + w
* (T
[6] + w
* (T
[8] + w
* (T
[10] + w
* T
[12])))));
572 r
= y
+ z
* (s
* (r
+ v
) + y
) + s
* T
[0];
576 v
= s
- 2.0 * (x
+ (r
- w
* w
/ (w
+ s
)));
577 return sign
? -v
: v
;
581 /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
583 *(LONGLONG
*)&w0
= *(LONGLONG
*)&w0
& 0xffffffff00000000ULL
;
584 v
= r
- (w0
- x
); /* w0+v = r+x */
586 *(LONGLONG
*)&a0
= *(LONGLONG
*)&a0
& 0xffffffff00000000ULL
;
587 return a0
+ a
* (1.0 + a0
* w0
+ a0
* v
);
590 /* Copied from musl: src/math/exp_data.c */
591 static const UINT64 exp_T
[] = {
592 0x0ULL
, 0x3ff0000000000000ULL
,
593 0x3c9b3b4f1a88bf6eULL
, 0x3feff63da9fb3335ULL
,
594 0xbc7160139cd8dc5dULL
, 0x3fefec9a3e778061ULL
,
595 0xbc905e7a108766d1ULL
, 0x3fefe315e86e7f85ULL
,
596 0x3c8cd2523567f613ULL
, 0x3fefd9b0d3158574ULL
,
597 0xbc8bce8023f98efaULL
, 0x3fefd06b29ddf6deULL
,
598 0x3c60f74e61e6c861ULL
, 0x3fefc74518759bc8ULL
,
599 0x3c90a3e45b33d399ULL
, 0x3fefbe3ecac6f383ULL
,
600 0x3c979aa65d837b6dULL
, 0x3fefb5586cf9890fULL
,
601 0x3c8eb51a92fdeffcULL
, 0x3fefac922b7247f7ULL
,
602 0x3c3ebe3d702f9cd1ULL
, 0x3fefa3ec32d3d1a2ULL
,
603 0xbc6a033489906e0bULL
, 0x3fef9b66affed31bULL
,
604 0xbc9556522a2fbd0eULL
, 0x3fef9301d0125b51ULL
,
605 0xbc5080ef8c4eea55ULL
, 0x3fef8abdc06c31ccULL
,
606 0xbc91c923b9d5f416ULL
, 0x3fef829aaea92de0ULL
,
607 0x3c80d3e3e95c55afULL
, 0x3fef7a98c8a58e51ULL
,
608 0xbc801b15eaa59348ULL
, 0x3fef72b83c7d517bULL
,
609 0xbc8f1ff055de323dULL
, 0x3fef6af9388c8deaULL
,
610 0x3c8b898c3f1353bfULL
, 0x3fef635beb6fcb75ULL
,
611 0xbc96d99c7611eb26ULL
, 0x3fef5be084045cd4ULL
,
612 0x3c9aecf73e3a2f60ULL
, 0x3fef54873168b9aaULL
,
613 0xbc8fe782cb86389dULL
, 0x3fef4d5022fcd91dULL
,
614 0x3c8a6f4144a6c38dULL
, 0x3fef463b88628cd6ULL
,
615 0x3c807a05b0e4047dULL
, 0x3fef3f49917ddc96ULL
,
616 0x3c968efde3a8a894ULL
, 0x3fef387a6e756238ULL
,
617 0x3c875e18f274487dULL
, 0x3fef31ce4fb2a63fULL
,
618 0x3c80472b981fe7f2ULL
, 0x3fef2b4565e27cddULL
,
619 0xbc96b87b3f71085eULL
, 0x3fef24dfe1f56381ULL
,
620 0x3c82f7e16d09ab31ULL
, 0x3fef1e9df51fdee1ULL
,
621 0xbc3d219b1a6fbffaULL
, 0x3fef187fd0dad990ULL
,
622 0x3c8b3782720c0ab4ULL
, 0x3fef1285a6e4030bULL
,
623 0x3c6e149289cecb8fULL
, 0x3fef0cafa93e2f56ULL
,
624 0x3c834d754db0abb6ULL
, 0x3fef06fe0a31b715ULL
,
625 0x3c864201e2ac744cULL
, 0x3fef0170fc4cd831ULL
,
626 0x3c8fdd395dd3f84aULL
, 0x3feefc08b26416ffULL
,
627 0xbc86a3803b8e5b04ULL
, 0x3feef6c55f929ff1ULL
,
628 0xbc924aedcc4b5068ULL
, 0x3feef1a7373aa9cbULL
,
629 0xbc9907f81b512d8eULL
, 0x3feeecae6d05d866ULL
,
630 0xbc71d1e83e9436d2ULL
, 0x3feee7db34e59ff7ULL
,
631 0xbc991919b3ce1b15ULL
, 0x3feee32dc313a8e5ULL
,
632 0x3c859f48a72a4c6dULL
, 0x3feedea64c123422ULL
,
633 0xbc9312607a28698aULL
, 0x3feeda4504ac801cULL
,
634 0xbc58a78f4817895bULL
, 0x3feed60a21f72e2aULL
,
635 0xbc7c2c9b67499a1bULL
, 0x3feed1f5d950a897ULL
,
636 0x3c4363ed60c2ac11ULL
, 0x3feece086061892dULL
,
637 0x3c9666093b0664efULL
, 0x3feeca41ed1d0057ULL
,
638 0x3c6ecce1daa10379ULL
, 0x3feec6a2b5c13cd0ULL
,
639 0x3c93ff8e3f0f1230ULL
, 0x3feec32af0d7d3deULL
,
640 0x3c7690cebb7aafb0ULL
, 0x3feebfdad5362a27ULL
,
641 0x3c931dbdeb54e077ULL
, 0x3feebcb299fddd0dULL
,
642 0xbc8f94340071a38eULL
, 0x3feeb9b2769d2ca7ULL
,
643 0xbc87deccdc93a349ULL
, 0x3feeb6daa2cf6642ULL
,
644 0xbc78dec6bd0f385fULL
, 0x3feeb42b569d4f82ULL
,
645 0xbc861246ec7b5cf6ULL
, 0x3feeb1a4ca5d920fULL
,
646 0x3c93350518fdd78eULL
, 0x3feeaf4736b527daULL
,
647 0x3c7b98b72f8a9b05ULL
, 0x3feead12d497c7fdULL
,
648 0x3c9063e1e21c5409ULL
, 0x3feeab07dd485429ULL
,
649 0x3c34c7855019c6eaULL
, 0x3feea9268a5946b7ULL
,
650 0x3c9432e62b64c035ULL
, 0x3feea76f15ad2148ULL
,
651 0xbc8ce44a6199769fULL
, 0x3feea5e1b976dc09ULL
,
652 0xbc8c33c53bef4da8ULL
, 0x3feea47eb03a5585ULL
,
653 0xbc845378892be9aeULL
, 0x3feea34634ccc320ULL
,
654 0xbc93cedd78565858ULL
, 0x3feea23882552225ULL
,
655 0x3c5710aa807e1964ULL
, 0x3feea155d44ca973ULL
,
656 0xbc93b3efbf5e2228ULL
, 0x3feea09e667f3bcdULL
,
657 0xbc6a12ad8734b982ULL
, 0x3feea012750bdabfULL
,
658 0xbc6367efb86da9eeULL
, 0x3fee9fb23c651a2fULL
,
659 0xbc80dc3d54e08851ULL
, 0x3fee9f7df9519484ULL
,
660 0xbc781f647e5a3ecfULL
, 0x3fee9f75e8ec5f74ULL
,
661 0xbc86ee4ac08b7db0ULL
, 0x3fee9f9a48a58174ULL
,
662 0xbc8619321e55e68aULL
, 0x3fee9feb564267c9ULL
,
663 0x3c909ccb5e09d4d3ULL
, 0x3feea0694fde5d3fULL
,
664 0xbc7b32dcb94da51dULL
, 0x3feea11473eb0187ULL
,
665 0x3c94ecfd5467c06bULL
, 0x3feea1ed0130c132ULL
,
666 0x3c65ebe1abd66c55ULL
, 0x3feea2f336cf4e62ULL
,
667 0xbc88a1c52fb3cf42ULL
, 0x3feea427543e1a12ULL
,
668 0xbc9369b6f13b3734ULL
, 0x3feea589994cce13ULL
,
669 0xbc805e843a19ff1eULL
, 0x3feea71a4623c7adULL
,
670 0xbc94d450d872576eULL
, 0x3feea8d99b4492edULL
,
671 0x3c90ad675b0e8a00ULL
, 0x3feeaac7d98a6699ULL
,
672 0x3c8db72fc1f0eab4ULL
, 0x3feeace5422aa0dbULL
,
673 0xbc65b6609cc5e7ffULL
, 0x3feeaf3216b5448cULL
,
674 0x3c7bf68359f35f44ULL
, 0x3feeb1ae99157736ULL
,
675 0xbc93091fa71e3d83ULL
, 0x3feeb45b0b91ffc6ULL
,
676 0xbc5da9b88b6c1e29ULL
, 0x3feeb737b0cdc5e5ULL
,
677 0xbc6c23f97c90b959ULL
, 0x3feeba44cbc8520fULL
,
678 0xbc92434322f4f9aaULL
, 0x3feebd829fde4e50ULL
,
679 0xbc85ca6cd7668e4bULL
, 0x3feec0f170ca07baULL
,
680 0x3c71affc2b91ce27ULL
, 0x3feec49182a3f090ULL
,
681 0x3c6dd235e10a73bbULL
, 0x3feec86319e32323ULL
,
682 0xbc87c50422622263ULL
, 0x3feecc667b5de565ULL
,
683 0x3c8b1c86e3e231d5ULL
, 0x3feed09bec4a2d33ULL
,
684 0xbc91bbd1d3bcbb15ULL
, 0x3feed503b23e255dULL
,
685 0x3c90cc319cee31d2ULL
, 0x3feed99e1330b358ULL
,
686 0x3c8469846e735ab3ULL
, 0x3feede6b5579fdbfULL
,
687 0xbc82dfcd978e9db4ULL
, 0x3feee36bbfd3f37aULL
,
688 0x3c8c1a7792cb3387ULL
, 0x3feee89f995ad3adULL
,
689 0xbc907b8f4ad1d9faULL
, 0x3feeee07298db666ULL
,
690 0xbc55c3d956dcaebaULL
, 0x3feef3a2b84f15fbULL
,
691 0xbc90a40e3da6f640ULL
, 0x3feef9728de5593aULL
,
692 0xbc68d6f438ad9334ULL
, 0x3feeff76f2fb5e47ULL
,
693 0xbc91eee26b588a35ULL
, 0x3fef05b030a1064aULL
,
694 0x3c74ffd70a5fddcdULL
, 0x3fef0c1e904bc1d2ULL
,
695 0xbc91bdfbfa9298acULL
, 0x3fef12c25bd71e09ULL
,
696 0x3c736eae30af0cb3ULL
, 0x3fef199bdd85529cULL
,
697 0x3c8ee3325c9ffd94ULL
, 0x3fef20ab5fffd07aULL
,
698 0x3c84e08fd10959acULL
, 0x3fef27f12e57d14bULL
,
699 0x3c63cdaf384e1a67ULL
, 0x3fef2f6d9406e7b5ULL
,
700 0x3c676b2c6c921968ULL
, 0x3fef3720dcef9069ULL
,
701 0xbc808a1883ccb5d2ULL
, 0x3fef3f0b555dc3faULL
,
702 0xbc8fad5d3ffffa6fULL
, 0x3fef472d4a07897cULL
,
703 0xbc900dae3875a949ULL
, 0x3fef4f87080d89f2ULL
,
704 0x3c74a385a63d07a7ULL
, 0x3fef5818dcfba487ULL
,
705 0xbc82919e2040220fULL
, 0x3fef60e316c98398ULL
,
706 0x3c8e5a50d5c192acULL
, 0x3fef69e603db3285ULL
,
707 0x3c843a59ac016b4bULL
, 0x3fef7321f301b460ULL
,
708 0xbc82d52107b43e1fULL
, 0x3fef7c97337b9b5fULL
,
709 0xbc892ab93b470dc9ULL
, 0x3fef864614f5a129ULL
,
710 0x3c74b604603a88d3ULL
, 0x3fef902ee78b3ff6ULL
,
711 0x3c83c5ec519d7271ULL
, 0x3fef9a51fbc74c83ULL
,
712 0xbc8ff7128fd391f0ULL
, 0x3fefa4afa2a490daULL
,
713 0xbc8dae98e223747dULL
, 0x3fefaf482d8e67f1ULL
,
714 0x3c8ec3bc41aa2008ULL
, 0x3fefba1bee615a27ULL
,
715 0x3c842b94c3a9eb32ULL
, 0x3fefc52b376bba97ULL
,
716 0x3c8a64a931d185eeULL
, 0x3fefd0765b6e4540ULL
,
717 0xbc8e37bae43be3edULL
, 0x3fefdbfdad9cbe14ULL
,
718 0x3c77893b4d91cd9dULL
, 0x3fefe7c1819e90d8ULL
,
719 0x3c5305c14160cc89ULL
, 0x3feff3c22b8f71f1ULL
722 /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
723 additional 15 bits precision. IX is the bit representation of x, but
724 normalized in the subnormal range using the sign bit for the exponent. */
725 static double pow_log(UINT64 ix
, double *tail
)
727 static const struct {
728 double invc
, logc
, logctail
;
730 {0x1.6a00000000000p
+0, -0x1.62c82f2b9c800p
-2, 0x1.ab42428375680p
-48},
731 {0x1.6800000000000p
+0, -0x1.5d1bdbf580800p
-2, -0x1.ca508d8e0f720p
-46},
732 {0x1.6600000000000p
+0, -0x1.5767717455800p
-2, -0x1.362a4d5b6506dp
-45},
733 {0x1.6400000000000p
+0, -0x1.51aad872df800p
-2, -0x1.684e49eb067d5p
-49},
734 {0x1.6200000000000p
+0, -0x1.4be5f95777800p
-2, -0x1.41b6993293ee0p
-47},
735 {0x1.6000000000000p
+0, -0x1.4618bc21c6000p
-2, 0x1.3d82f484c84ccp
-46},
736 {0x1.5e00000000000p
+0, -0x1.404308686a800p
-2, 0x1.c42f3ed820b3ap
-50},
737 {0x1.5c00000000000p
+0, -0x1.3a64c55694800p
-2, 0x1.0b1c686519460p
-45},
738 {0x1.5a00000000000p
+0, -0x1.347dd9a988000p
-2, 0x1.5594dd4c58092p
-45},
739 {0x1.5800000000000p
+0, -0x1.2e8e2bae12000p
-2, 0x1.67b1e99b72bd8p
-45},
740 {0x1.5600000000000p
+0, -0x1.2895a13de8800p
-2, 0x1.5ca14b6cfb03fp
-46},
741 {0x1.5600000000000p
+0, -0x1.2895a13de8800p
-2, 0x1.5ca14b6cfb03fp
-46},
742 {0x1.5400000000000p
+0, -0x1.22941fbcf7800p
-2, -0x1.65a242853da76p
-46},
743 {0x1.5200000000000p
+0, -0x1.1c898c1699800p
-2, -0x1.fafbc68e75404p
-46},
744 {0x1.5000000000000p
+0, -0x1.1675cababa800p
-2, 0x1.f1fc63382a8f0p
-46},
745 {0x1.4e00000000000p
+0, -0x1.1058bf9ae4800p
-2, -0x1.6a8c4fd055a66p
-45},
746 {0x1.4c00000000000p
+0, -0x1.0a324e2739000p
-2, -0x1.c6bee7ef4030ep
-47},
747 {0x1.4a00000000000p
+0, -0x1.0402594b4d000p
-2, -0x1.036b89ef42d7fp
-48},
748 {0x1.4a00000000000p
+0, -0x1.0402594b4d000p
-2, -0x1.036b89ef42d7fp
-48},
749 {0x1.4800000000000p
+0, -0x1.fb9186d5e4000p
-3, 0x1.d572aab993c87p
-47},
750 {0x1.4600000000000p
+0, -0x1.ef0adcbdc6000p
-3, 0x1.b26b79c86af24p
-45},
751 {0x1.4400000000000p
+0, -0x1.e27076e2af000p
-3, -0x1.72f4f543fff10p
-46},
752 {0x1.4200000000000p
+0, -0x1.d5c216b4fc000p
-3, 0x1.1ba91bbca681bp
-45},
753 {0x1.4000000000000p
+0, -0x1.c8ff7c79aa000p
-3, 0x1.7794f689f8434p
-45},
754 {0x1.4000000000000p
+0, -0x1.c8ff7c79aa000p
-3, 0x1.7794f689f8434p
-45},
755 {0x1.3e00000000000p
+0, -0x1.bc286742d9000p
-3, 0x1.94eb0318bb78fp
-46},
756 {0x1.3c00000000000p
+0, -0x1.af3c94e80c000p
-3, 0x1.a4e633fcd9066p
-52},
757 {0x1.3a00000000000p
+0, -0x1.a23bc1fe2b000p
-3, -0x1.58c64dc46c1eap
-45},
758 {0x1.3a00000000000p
+0, -0x1.a23bc1fe2b000p
-3, -0x1.58c64dc46c1eap
-45},
759 {0x1.3800000000000p
+0, -0x1.9525a9cf45000p
-3, -0x1.ad1d904c1d4e3p
-45},
760 {0x1.3600000000000p
+0, -0x1.87fa06520d000p
-3, 0x1.bbdbf7fdbfa09p
-45},
761 {0x1.3400000000000p
+0, -0x1.7ab890210e000p
-3, 0x1.bdb9072534a58p
-45},
762 {0x1.3400000000000p
+0, -0x1.7ab890210e000p
-3, 0x1.bdb9072534a58p
-45},
763 {0x1.3200000000000p
+0, -0x1.6d60fe719d000p
-3, -0x1.0e46aa3b2e266p
-46},
764 {0x1.3000000000000p
+0, -0x1.5ff3070a79000p
-3, -0x1.e9e439f105039p
-46},
765 {0x1.3000000000000p
+0, -0x1.5ff3070a79000p
-3, -0x1.e9e439f105039p
-46},
766 {0x1.2e00000000000p
+0, -0x1.526e5e3a1b000p
-3, -0x1.0de8b90075b8fp
-45},
767 {0x1.2c00000000000p
+0, -0x1.44d2b6ccb8000p
-3, 0x1.70cc16135783cp
-46},
768 {0x1.2c00000000000p
+0, -0x1.44d2b6ccb8000p
-3, 0x1.70cc16135783cp
-46},
769 {0x1.2a00000000000p
+0, -0x1.371fc201e9000p
-3, 0x1.178864d27543ap
-48},
770 {0x1.2800000000000p
+0, -0x1.29552f81ff000p
-3, -0x1.48d301771c408p
-45},
771 {0x1.2600000000000p
+0, -0x1.1b72ad52f6000p
-3, -0x1.e80a41811a396p
-45},
772 {0x1.2600000000000p
+0, -0x1.1b72ad52f6000p
-3, -0x1.e80a41811a396p
-45},
773 {0x1.2400000000000p
+0, -0x1.0d77e7cd09000p
-3, 0x1.a699688e85bf4p
-47},
774 {0x1.2400000000000p
+0, -0x1.0d77e7cd09000p
-3, 0x1.a699688e85bf4p
-47},
775 {0x1.2200000000000p
+0, -0x1.fec9131dbe000p
-4, -0x1.575545ca333f2p
-45},
776 {0x1.2000000000000p
+0, -0x1.e27076e2b0000p
-4, 0x1.a342c2af0003cp
-45},
777 {0x1.2000000000000p
+0, -0x1.e27076e2b0000p
-4, 0x1.a342c2af0003cp
-45},
778 {0x1.1e00000000000p
+0, -0x1.c5e548f5bc000p
-4, -0x1.d0c57585fbe06p
-46},
779 {0x1.1c00000000000p
+0, -0x1.a926d3a4ae000p
-4, 0x1.53935e85baac8p
-45},
780 {0x1.1c00000000000p
+0, -0x1.a926d3a4ae000p
-4, 0x1.53935e85baac8p
-45},
781 {0x1.1a00000000000p
+0, -0x1.8c345d631a000p
-4, 0x1.37c294d2f5668p
-46},
782 {0x1.1a00000000000p
+0, -0x1.8c345d631a000p
-4, 0x1.37c294d2f5668p
-46},
783 {0x1.1800000000000p
+0, -0x1.6f0d28ae56000p
-4, -0x1.69737c93373dap
-45},
784 {0x1.1600000000000p
+0, -0x1.51b073f062000p
-4, 0x1.f025b61c65e57p
-46},
785 {0x1.1600000000000p
+0, -0x1.51b073f062000p
-4, 0x1.f025b61c65e57p
-46},
786 {0x1.1400000000000p
+0, -0x1.341d7961be000p
-4, 0x1.c5edaccf913dfp
-45},
787 {0x1.1400000000000p
+0, -0x1.341d7961be000p
-4, 0x1.c5edaccf913dfp
-45},
788 {0x1.1200000000000p
+0, -0x1.16536eea38000p
-4, 0x1.47c5e768fa309p
-46},
789 {0x1.1000000000000p
+0, -0x1.f0a30c0118000p
-5, 0x1.d599e83368e91p
-45},
790 {0x1.1000000000000p
+0, -0x1.f0a30c0118000p
-5, 0x1.d599e83368e91p
-45},
791 {0x1.0e00000000000p
+0, -0x1.b42dd71198000p
-5, 0x1.c827ae5d6704cp
-46},
792 {0x1.0e00000000000p
+0, -0x1.b42dd71198000p
-5, 0x1.c827ae5d6704cp
-46},
793 {0x1.0c00000000000p
+0, -0x1.77458f632c000p
-5, -0x1.cfc4634f2a1eep
-45},
794 {0x1.0c00000000000p
+0, -0x1.77458f632c000p
-5, -0x1.cfc4634f2a1eep
-45},
795 {0x1.0a00000000000p
+0, -0x1.39e87b9fec000p
-5, 0x1.502b7f526feaap
-48},
796 {0x1.0a00000000000p
+0, -0x1.39e87b9fec000p
-5, 0x1.502b7f526feaap
-48},
797 {0x1.0800000000000p
+0, -0x1.f829b0e780000p
-6, -0x1.980267c7e09e4p
-45},
798 {0x1.0800000000000p
+0, -0x1.f829b0e780000p
-6, -0x1.980267c7e09e4p
-45},
799 {0x1.0600000000000p
+0, -0x1.7b91b07d58000p
-6, -0x1.88d5493faa639p
-45},
800 {0x1.0400000000000p
+0, -0x1.fc0a8b0fc0000p
-7, -0x1.f1e7cf6d3a69cp
-50},
801 {0x1.0400000000000p
+0, -0x1.fc0a8b0fc0000p
-7, -0x1.f1e7cf6d3a69cp
-50},
802 {0x1.0200000000000p
+0, -0x1.fe02a6b100000p
-8, -0x1.9e23f0dda40e4p
-46},
803 {0x1.0200000000000p
+0, -0x1.fe02a6b100000p
-8, -0x1.9e23f0dda40e4p
-46},
804 {0x1.0000000000000p
+0, 0x0.0000000000000p
+0, 0x0.0000000000000p
+0},
805 {0x1.0000000000000p
+0, 0x0.0000000000000p
+0, 0x0.0000000000000p
+0},
806 {0x1.fc00000000000p
-1, 0x1.0101575890000p
-7, -0x1.0c76b999d2be8p
-46},
807 {0x1.f800000000000p
-1, 0x1.0205658938000p
-6, -0x1.3dc5b06e2f7d2p
-45},
808 {0x1.f400000000000p
-1, 0x1.8492528c90000p
-6, -0x1.aa0ba325a0c34p
-45},
809 {0x1.f000000000000p
-1, 0x1.0415d89e74000p
-5, 0x1.111c05cf1d753p
-47},
810 {0x1.ec00000000000p
-1, 0x1.466aed42e0000p
-5, -0x1.c167375bdfd28p
-45},
811 {0x1.e800000000000p
-1, 0x1.894aa149fc000p
-5, -0x1.97995d05a267dp
-46},
812 {0x1.e400000000000p
-1, 0x1.ccb73cdddc000p
-5, -0x1.a68f247d82807p
-46},
813 {0x1.e200000000000p
-1, 0x1.eea31c006c000p
-5, -0x1.e113e4fc93b7bp
-47},
814 {0x1.de00000000000p
-1, 0x1.1973bd1466000p
-4, -0x1.5325d560d9e9bp
-45},
815 {0x1.da00000000000p
-1, 0x1.3bdf5a7d1e000p
-4, 0x1.cc85ea5db4ed7p
-45},
816 {0x1.d600000000000p
-1, 0x1.5e95a4d97a000p
-4, -0x1.c69063c5d1d1ep
-45},
817 {0x1.d400000000000p
-1, 0x1.700d30aeac000p
-4, 0x1.c1e8da99ded32p
-49},
818 {0x1.d000000000000p
-1, 0x1.9335e5d594000p
-4, 0x1.3115c3abd47dap
-45},
819 {0x1.cc00000000000p
-1, 0x1.b6ac88dad6000p
-4, -0x1.390802bf768e5p
-46},
820 {0x1.ca00000000000p
-1, 0x1.c885801bc4000p
-4, 0x1.646d1c65aacd3p
-45},
821 {0x1.c600000000000p
-1, 0x1.ec739830a2000p
-4, -0x1.dc068afe645e0p
-45},
822 {0x1.c400000000000p
-1, 0x1.fe89139dbe000p
-4, -0x1.534d64fa10afdp
-45},
823 {0x1.c000000000000p
-1, 0x1.1178e8227e000p
-3, 0x1.1ef78ce2d07f2p
-45},
824 {0x1.be00000000000p
-1, 0x1.1aa2b7e23f000p
-3, 0x1.ca78e44389934p
-45},
825 {0x1.ba00000000000p
-1, 0x1.2d1610c868000p
-3, 0x1.39d6ccb81b4a1p
-47},
826 {0x1.b800000000000p
-1, 0x1.365fcb0159000p
-3, 0x1.62fa8234b7289p
-51},
827 {0x1.b400000000000p
-1, 0x1.4913d8333b000p
-3, 0x1.5837954fdb678p
-45},
828 {0x1.b200000000000p
-1, 0x1.527e5e4a1b000p
-3, 0x1.633e8e5697dc7p
-45},
829 {0x1.ae00000000000p
-1, 0x1.6574ebe8c1000p
-3, 0x1.9cf8b2c3c2e78p
-46},
830 {0x1.ac00000000000p
-1, 0x1.6f0128b757000p
-3, -0x1.5118de59c21e1p
-45},
831 {0x1.aa00000000000p
-1, 0x1.7898d85445000p
-3, -0x1.c661070914305p
-46},
832 {0x1.a600000000000p
-1, 0x1.8beafeb390000p
-3, -0x1.73d54aae92cd1p
-47},
833 {0x1.a400000000000p
-1, 0x1.95a5adcf70000p
-3, 0x1.7f22858a0ff6fp
-47},
834 {0x1.a000000000000p
-1, 0x1.a93ed3c8ae000p
-3, -0x1.8724350562169p
-45},
835 {0x1.9e00000000000p
-1, 0x1.b31d8575bd000p
-3, -0x1.c358d4eace1aap
-47},
836 {0x1.9c00000000000p
-1, 0x1.bd087383be000p
-3, -0x1.d4bc4595412b6p
-45},
837 {0x1.9a00000000000p
-1, 0x1.c6ffbc6f01000p
-3, -0x1.1ec72c5962bd2p
-48},
838 {0x1.9600000000000p
-1, 0x1.db13db0d49000p
-3, -0x1.aff2af715b035p
-45},
839 {0x1.9400000000000p
-1, 0x1.e530effe71000p
-3, 0x1.212276041f430p
-51},
840 {0x1.9200000000000p
-1, 0x1.ef5ade4dd0000p
-3, -0x1.a211565bb8e11p
-51},
841 {0x1.9000000000000p
-1, 0x1.f991c6cb3b000p
-3, 0x1.bcbecca0cdf30p
-46},
842 {0x1.8c00000000000p
-1, 0x1.07138604d5800p
-2, 0x1.89cdb16ed4e91p
-48},
843 {0x1.8a00000000000p
-1, 0x1.0c42d67616000p
-2, 0x1.7188b163ceae9p
-45},
844 {0x1.8800000000000p
-1, 0x1.1178e8227e800p
-2, -0x1.c210e63a5f01cp
-45},
845 {0x1.8600000000000p
-1, 0x1.16b5ccbacf800p
-2, 0x1.b9acdf7a51681p
-45},
846 {0x1.8400000000000p
-1, 0x1.1bf99635a6800p
-2, 0x1.ca6ed5147bdb7p
-45},
847 {0x1.8200000000000p
-1, 0x1.214456d0eb800p
-2, 0x1.a87deba46baeap
-47},
848 {0x1.7e00000000000p
-1, 0x1.2bef07cdc9000p
-2, 0x1.a9cfa4a5004f4p
-45},
849 {0x1.7c00000000000p
-1, 0x1.314f1e1d36000p
-2, -0x1.8e27ad3213cb8p
-45},
850 {0x1.7a00000000000p
-1, 0x1.36b6776be1000p
-2, 0x1.16ecdb0f177c8p
-46},
851 {0x1.7800000000000p
-1, 0x1.3c25277333000p
-2, 0x1.83b54b606bd5cp
-46},
852 {0x1.7600000000000p
-1, 0x1.419b423d5e800p
-2, 0x1.8e436ec90e09dp
-47},
853 {0x1.7400000000000p
-1, 0x1.4718dc271c800p
-2, -0x1.f27ce0967d675p
-45},
854 {0x1.7200000000000p
-1, 0x1.4c9e09e173000p
-2, -0x1.e20891b0ad8a4p
-45},
855 {0x1.7000000000000p
-1, 0x1.522ae0738a000p
-2, 0x1.ebe708164c759p
-45},
856 {0x1.6e00000000000p
-1, 0x1.57bf753c8d000p
-2, 0x1.fadedee5d40efp
-46},
857 {0x1.6c00000000000p
-1, 0x1.5d5bddf596000p
-2, -0x1.a0b2a08a465dcp
-47},
859 static const double A
[] = {
861 0x1.555555555556p
-2 * -2,
862 -0x1.0000000000006p
-2 * -2,
863 0x1.999999959554ep
-3 * 4,
864 -0x1.555555529a47ap
-3 * 4,
865 0x1.2495b9b4845e9p
-3 * -8,
866 -0x1.0002b8b263fc3p
-3 * -8
868 static const double ln2hi
= 0x1.62e42fefa3800p
-1,
869 ln2lo
= 0x1.ef35793c76730p
-45;
871 double z
, r
, y
, invc
, logc
, logctail
, kd
, hi
, t1
, t2
, lo
, lo1
, lo2
, p
;
872 double zhi
, zlo
, rhi
, rlo
, ar
, ar2
, ar3
, lo3
, lo4
, arhi
, arhi2
;
876 /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
877 The range is split into N subintervals.
878 The ith subinterval contains z and c is near its center. */
879 tmp
= ix
- 0x3fe6955500000000ULL
;
880 i
= (tmp
>> (52 - 7)) % (1 << 7);
881 k
= (INT64
)tmp
>> 52; /* arithmetic shift */
882 iz
= ix
- (tmp
& 0xfffULL
<< 52);
886 /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
889 logctail
= T
[i
].logctail
;
891 /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
892 |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
893 /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */
894 iz
= (iz
+ (1ULL << 31)) & (-1ULL << 32);
897 rhi
= zhi
* invc
- 1.0;
901 /* k*Ln2 + log(c) + r. */
902 t1
= kd
* ln2hi
+ logc
;
904 lo1
= kd
* ln2lo
+ logctail
;
907 /* Evaluation is optimized assuming superscalar pipelined execution. */
908 ar
= A
[0] * r
; /* A[0] = -0.5. */
911 /* k*Ln2 + log(c) + r + A[0]*r*r. */
915 lo3
= rlo
* (ar
+ arhi
);
916 lo4
= t2
- hi
+ arhi2
;
917 /* p = log1p(r) - r - A[0]*r*r. */
918 p
= (ar3
* (A
[1] + r
* A
[2] + ar2
* (A
[3] + r
* A
[4] + ar2
* (A
[5] + r
* A
[6]))));
919 lo
= lo1
+ lo2
+ lo3
+ lo4
+ p
;
925 /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
926 The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */
927 static double pow_exp(double argx
, double argy
, double x
, double xtail
, UINT32 sign_bias
)
929 static const double C
[] = {
930 0x1.ffffffffffdbdp
-2,
931 0x1.555555555543cp
-3,
932 0x1.55555cf172b91p
-5,
935 static const double invln2N
= 0x1.71547652b82fep0
* (1 << 7),
936 negln2hiN
= -0x1.62e42fefa0000p
-8,
937 negln2loN
= -0x1.cf79abc9e3b3ap
-47;
940 UINT64 ki
, idx
, top
, sbits
;
941 double kd
, z
, r
, r2
, scale
, tail
, tmp
;
943 abstop
= (*(UINT64
*)&x
>> 52) & 0x7ff;
944 if (abstop
- 0x3c9 >= 0x408 - 0x3c9) {
945 if (abstop
- 0x3c9 >= 0x80000000) {
946 /* Avoid spurious underflow for tiny x. */
947 /* Note: 0 is common input. */
948 double one
= 1.0 + x
;
949 return sign_bias
? -one
: one
;
951 if (abstop
>= 0x409) {
952 /* Note: inf and nan are already handled. */
953 if (*(UINT64
*)&x
>> 63)
954 return (sign_bias
? -DBL_MIN
: DBL_MIN
) * DBL_MIN
;
955 return (sign_bias
? -DBL_MAX
: DBL_MAX
) * DBL_MAX
;
957 /* Large x is special cased below. */
961 /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
962 /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
966 r
= x
+ kd
* negln2hiN
+ kd
* negln2loN
;
967 /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
969 /* 2^(k/N) ~= scale * (1 + tail). */
970 idx
= 2 * (ki
% (1 << 7));
971 top
= (ki
+ sign_bias
) << (52 - 7);
972 tail
= *(double*)&exp_T
[idx
];
973 /* This is only a valid scale when -1023*N < k < 1024*N. */
974 sbits
= exp_T
[idx
+ 1] + top
;
975 /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
976 /* Evaluation is optimized assuming superscalar pipelined execution. */
978 /* Without fma the worst case error is 0.25/N ulp larger. */
979 /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
980 tmp
= tail
+ r
+ r2
* (C
[0] + r
* C
[1]) + r2
* r2
* (C
[2] + r
* C
[3]);
982 /* Handle cases that may overflow or underflow when computing the result that
983 is scale*(1+TMP) without intermediate rounding. The bit representation of
984 scale is in SBITS, however it has a computed exponent that may have
985 overflown into the sign bit so that needs to be adjusted before using it as
986 a double. (int32_t)KI is the k used in the argument reduction and exponent
987 adjustment of scale, positive k here means the result may overflow and
988 negative k means the result may underflow. */
991 if ((ki
& 0x80000000) == 0) {
992 /* k > 0, the exponent of scale might have overflowed by <= 460. */
993 sbits
-= 1009ull << 52;
994 scale
= *(double*)&sbits
;
995 y
= 0x1p
1009 * (scale
+ scale
* tmp
);
998 /* k < 0, need special care in the subnormal range. */
999 sbits
+= 1022ull << 52;
1000 /* Note: sbits is signed scale. */
1001 scale
= *(double*)&sbits
;
1002 y
= scale
+ scale
* tmp
;
1003 if (fabs(y
) < 1.0) {
1004 /* Round y to the right precision before scaling it into the subnormal
1005 range to avoid double rounding that can cause 0.5+E/2 ulp error where
1006 E is the worst-case ulp error outside the subnormal range. So this
1007 is only useful if the goal is better than 1 ulp worst-case error. */
1008 double hi
, lo
, one
= 1.0;
1011 lo
= scale
- y
+ scale
* tmp
;
1013 lo
= one
- hi
+ y
+ lo
;
1015 /* Fix the sign of 0. */
1017 sbits
&= 0x8000000000000000ULL
;
1018 y
= *(double*)&sbits
;
1020 /* The underflow exception needs to be signaled explicitly. */
1021 fp_barrier(fp_barrier(0x1p
-1022) * 0x1p
-1022);
1028 scale
= *(double*)&sbits
;
1029 /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
1030 is no spurious underflow here even without fma. */
1031 return scale
+ scale
* tmp
;
1034 /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
1035 the bit representation of a non-zero finite floating-point value. */
1036 static inline int pow_checkint(UINT64 iy
)
1038 int e
= iy
>> 52 & 0x7ff;
1043 if (iy
& ((1ULL << (0x3ff + 52 - e
)) - 1))
1045 if (iy
& (1ULL << (0x3ff + 52 - e
)))
1050 /* Copied from musl: src/math/__fpclassify.c */
1051 static short _dclass(double x
)
1053 union { double f
; UINT64 i
; } u
= { x
};
1054 int e
= u
.i
>> 52 & 0x7ff;
1056 if (!e
) return u
.i
<< 1 ? FP_SUBNORMAL
: FP_ZERO
;
1057 if (e
== 0x7ff) return (u
.i
<< 12) ? FP_NAN
: FP_INFINITE
;
1061 static BOOL
sqrt_validate( double *x
, BOOL update_sw
)
1063 short c
= _dclass(*x
);
1065 if (c
== FP_ZERO
) return FALSE
;
1068 /* set signaling bit */
1069 *(ULONGLONG
*)x
|= 0x8000000000000ULL
;
1077 if (c
== FP_INFINITE
) return FALSE
;
1082 /*********************************************************************
1085 int CDECL
abs( int i
)
1087 return i
>= 0 ? i
: -i
;
1090 /*********************************************************************
1093 * Copied from musl: src/math/atan.c
1095 double CDECL
atan( double x
)
1097 static const double atanhi
[] = {
1098 4.63647609000806093515e-01,
1099 7.85398163397448278999e-01,
1100 9.82793723247329054082e-01,
1101 1.57079632679489655800e+00,
1103 static const double atanlo
[] = {
1104 2.26987774529616870924e-17,
1105 3.06161699786838301793e-17,
1106 1.39033110312309984516e-17,
1107 6.12323399573676603587e-17,
1109 static const double aT
[] = {
1110 3.33333333333329318027e-01,
1111 -1.99999999998764832476e-01,
1112 1.42857142725034663711e-01,
1113 -1.11111104054623557880e-01,
1114 9.09088713343650656196e-02,
1115 -7.69187620504482999495e-02,
1116 6.66107313738753120669e-02,
1117 -5.83357013379057348645e-02,
1118 4.97687799461593236017e-02,
1119 -3.65315727442169155270e-02,
1120 1.62858201153657823623e-02,
1123 double w
, s1
, s2
, z
;
1124 unsigned int ix
, sign
;
1127 ix
= *(ULONGLONG
*)&x
>> 32;
1130 if (ix
>= 0x44100000) { /* if |x| >= 2^66 */
1133 z
= atanhi
[3] + 7.5231638452626401e-37;
1134 return sign
? -z
: z
;
1136 if (ix
< 0x3fdc0000) { /* |x| < 0.4375 */
1137 if (ix
< 0x3e400000) { /* |x| < 2^-27 */
1138 if (ix
< 0x00100000)
1139 /* raise underflow for subnormal x */
1140 fp_barrierf((float)x
);
1146 if (ix
< 0x3ff30000) { /* |x| < 1.1875 */
1147 if (ix
< 0x3fe60000) { /* 7/16 <= |x| < 11/16 */
1149 x
= (2.0 * x
- 1.0) / (2.0 + x
);
1150 } else { /* 11/16 <= |x| < 19/16 */
1152 x
= (x
- 1.0) / (x
+ 1.0);
1155 if (ix
< 0x40038000) { /* |x| < 2.4375 */
1157 x
= (x
- 1.5) / (1.0 + 1.5 * x
);
1158 } else { /* 2.4375 <= |x| < 2^66 */
1164 /* end of argument reduction */
1167 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
1168 s1
= z
* (aT
[0] + w
* (aT
[2] + w
* (aT
[4] + w
* (aT
[6] + w
* (aT
[8] + w
* aT
[10])))));
1169 s2
= w
* (aT
[1] + w
* (aT
[3] + w
* (aT
[5] + w
* (aT
[7] + w
* aT
[9]))));
1171 return x
- x
* (s1
+ s2
);
1172 z
= atanhi
[id
] - (x
* (s1
+ s2
) - atanlo
[id
] - x
);
1173 return sign
? -z
: z
;
1176 /*********************************************************************
1179 * Copied from musl: src/math/atan2.c
1181 double CDECL
atan2( double y
, double x
)
1183 static const double pi
= 3.1415926535897931160E+00,
1184 pi_lo
= 1.2246467991473531772E-16;
1187 unsigned int m
, lx
, ly
, ix
, iy
;
1189 if (isnan(x
) || isnan(y
))
1191 ix
= *(ULONGLONG
*)&x
>> 32;
1192 lx
= *(ULONGLONG
*)&x
;
1193 iy
= *(ULONGLONG
*)&y
>> 32;
1194 ly
= *(ULONGLONG
*)&y
;
1195 if (((ix
- 0x3ff00000) | lx
) == 0) /* x = 1.0 */
1197 m
= ((iy
>> 31) & 1) | ((ix
>> 30) & 2); /* 2*sign(x)+sign(y) */
1198 ix
= ix
& 0x7fffffff;
1199 iy
= iy
& 0x7fffffff;
1202 if ((iy
| ly
) == 0) {
1205 case 1: return y
; /* atan(+-0,+anything)=+-0 */
1206 case 2: return pi
; /* atan(+0,-anything) = pi */
1207 case 3: return -pi
; /* atan(-0,-anything) =-pi */
1212 return m
& 1 ? -pi
/ 2 : pi
/ 2;
1214 if (ix
== 0x7ff00000) {
1215 if (iy
== 0x7ff00000) {
1217 case 0: return pi
/ 4; /* atan(+INF,+INF) */
1218 case 1: return -pi
/ 4; /* atan(-INF,+INF) */
1219 case 2: return 3 * pi
/ 4; /* atan(+INF,-INF) */
1220 case 3: return -3 * pi
/ 4; /* atan(-INF,-INF) */
1224 case 0: return 0.0; /* atan(+...,+INF) */
1225 case 1: return -0.0; /* atan(-...,+INF) */
1226 case 2: return pi
; /* atan(+...,-INF) */
1227 case 3: return -pi
; /* atan(-...,-INF) */
1231 /* |y/x| > 0x1p64 */
1232 if (ix
+ (64 << 20) < iy
|| iy
== 0x7ff00000)
1233 return m
& 1 ? -pi
/ 2 : pi
/ 2;
1235 /* z = atan(|y/x|) without spurious underflow */
1236 if ((m
& 2) && iy
+ (64 << 20) < ix
) /* |y/x| < 0x1p-64, x<0 */
1239 z
= atan(fabs(y
/ x
));
1241 case 0: return z
; /* atan(+,+) */
1242 case 1: return -z
; /* atan(-,+) */
1243 case 2: return pi
- (z
- pi_lo
); /* atan(+,-) */
1244 default: /* case 3 */
1245 return (z
- pi_lo
) - pi
; /* atan(-,-) */
1249 /*********************************************************************
1252 * Based on musl: src/math/ceilf.c
1254 double CDECL
ceil( double x
)
1256 union {double f
; UINT64 i
;} u
= {x
};
1257 int e
= (u
.i
>> 52 & 0x7ff) - 0x3ff;
1263 m
= 0x000fffffffffffffULL
>> e
;
1278 /*********************************************************************
1281 * Copied from musl: src/math/cos.c
1283 double CDECL
cos( double x
)
1289 ix
= *(ULONGLONG
*)&x
>> 32;
1293 if (ix
<= 0x3fe921fb) {
1294 if (ix
< 0x3e46a09e) { /* |x| < 2**-27 * sqrt(2) */
1295 /* raise inexact if x!=0 */
1296 fp_barrier(x
+ 0x1p
120f
);
1302 /* cos(Inf or NaN) is NaN */
1305 if (ix
>= 0x7ff00000)
1308 /* argument reduction */
1309 n
= __rem_pio2(x
, y
);
1311 case 0: return __cos(y
[0], y
[1]);
1312 case 1: return -__sin(y
[0], y
[1], 1);
1313 case 2: return -__cos(y
[0], y
[1]);
1314 default: return __sin(y
[0], y
[1], 1);
1318 /*********************************************************************
1321 * Copied from musl: src/math/fabsf.c
1323 double CDECL
fabs( double x
)
1325 union { double f
; UINT64 i
; } u
= { x
};
1330 /*********************************************************************
1333 * Based on musl: src/math/floorf.c
1335 double CDECL
floor( double x
)
1337 union {double f
; UINT64 i
;} u
= {x
};
1338 int e
= (int)(u
.i
>> 52 & 0x7ff) - 0x3ff;
1344 m
= 0x000fffffffffffffULL
>> e
;
1359 /*********************************************************************
1362 * Copied from musl: src/math/log.c src/math/log_data.c
1364 double CDECL
log( double x
)
1366 static const double Ln2hi
= 0x1.62e42fefa3800p
-1,
1367 Ln2lo
= 0x1.ef35793c76730p
-45;
1368 static const double A
[] = {
1369 -0x1.0000000000001p
-1,
1370 0x1.555555551305bp
-2,
1371 -0x1.fffffffeb459p
-3,
1372 0x1.999b324f10111p
-3,
1373 -0x1.55575e506c89fp
-3
1375 static const double B
[] = {
1377 0x1.5555555555577p
-2,
1378 -0x1.ffffffffffdcbp
-3,
1379 0x1.999999995dd0cp
-3,
1380 -0x1.55555556745a7p
-3,
1381 0x1.24924a344de3p
-3,
1382 -0x1.fffffa4423d65p
-4,
1383 0x1.c7184282ad6cap
-4,
1384 -0x1.999eb43b068ffp
-4,
1385 0x1.78182f7afd085p
-4,
1386 -0x1.5521375d145cdp
-4
1388 static const struct {
1391 {0x1.734f0c3e0de9fp
+0, -0x1.7cc7f79e69000p
-2},
1392 {0x1.713786a2ce91fp
+0, -0x1.76feec20d0000p
-2},
1393 {0x1.6f26008fab5a0p
+0, -0x1.713e31351e000p
-2},
1394 {0x1.6d1a61f138c7dp
+0, -0x1.6b85b38287800p
-2},
1395 {0x1.6b1490bc5b4d1p
+0, -0x1.65d5590807800p
-2},
1396 {0x1.69147332f0cbap
+0, -0x1.602d076180000p
-2},
1397 {0x1.6719f18224223p
+0, -0x1.5a8ca86909000p
-2},
1398 {0x1.6524f99a51ed9p
+0, -0x1.54f4356035000p
-2},
1399 {0x1.63356aa8f24c4p
+0, -0x1.4f637c36b4000p
-2},
1400 {0x1.614b36b9ddc14p
+0, -0x1.49da7fda85000p
-2},
1401 {0x1.5f66452c65c4cp
+0, -0x1.445923989a800p
-2},
1402 {0x1.5d867b5912c4fp
+0, -0x1.3edf439b0b800p
-2},
1403 {0x1.5babccb5b90dep
+0, -0x1.396ce448f7000p
-2},
1404 {0x1.59d61f2d91a78p
+0, -0x1.3401e17bda000p
-2},
1405 {0x1.5805612465687p
+0, -0x1.2e9e2ef468000p
-2},
1406 {0x1.56397cee76bd3p
+0, -0x1.2941b3830e000p
-2},
1407 {0x1.54725e2a77f93p
+0, -0x1.23ec58cda8800p
-2},
1408 {0x1.52aff42064583p
+0, -0x1.1e9e129279000p
-2},
1409 {0x1.50f22dbb2bddfp
+0, -0x1.1956d2b48f800p
-2},
1410 {0x1.4f38f4734ded7p
+0, -0x1.141679ab9f800p
-2},
1411 {0x1.4d843cfde2840p
+0, -0x1.0edd094ef9800p
-2},
1412 {0x1.4bd3ec078a3c8p
+0, -0x1.09aa518db1000p
-2},
1413 {0x1.4a27fc3e0258ap
+0, -0x1.047e65263b800p
-2},
1414 {0x1.4880524d48434p
+0, -0x1.feb224586f000p
-3},
1415 {0x1.46dce1b192d0bp
+0, -0x1.f474a7517b000p
-3},
1416 {0x1.453d9d3391854p
+0, -0x1.ea4443d103000p
-3},
1417 {0x1.43a2744b4845ap
+0, -0x1.e020d44e9b000p
-3},
1418 {0x1.420b54115f8fbp
+0, -0x1.d60a22977f000p
-3},
1419 {0x1.40782da3ef4b1p
+0, -0x1.cc00104959000p
-3},
1420 {0x1.3ee8f5d57fe8fp
+0, -0x1.c202956891000p
-3},
1421 {0x1.3d5d9a00b4ce9p
+0, -0x1.b81178d811000p
-3},
1422 {0x1.3bd60c010c12bp
+0, -0x1.ae2c9ccd3d000p
-3},
1423 {0x1.3a5242b75dab8p
+0, -0x1.a45402e129000p
-3},
1424 {0x1.38d22cd9fd002p
+0, -0x1.9a877681df000p
-3},
1425 {0x1.3755bc5847a1cp
+0, -0x1.90c6d69483000p
-3},
1426 {0x1.35dce49ad36e2p
+0, -0x1.87120a645c000p
-3},
1427 {0x1.34679984dd440p
+0, -0x1.7d68fb4143000p
-3},
1428 {0x1.32f5cceffcb24p
+0, -0x1.73cb83c627000p
-3},
1429 {0x1.3187775a10d49p
+0, -0x1.6a39a9b376000p
-3},
1430 {0x1.301c8373e3990p
+0, -0x1.60b3154b7a000p
-3},
1431 {0x1.2eb4ebb95f841p
+0, -0x1.5737d76243000p
-3},
1432 {0x1.2d50a0219a9d1p
+0, -0x1.4dc7b8fc23000p
-3},
1433 {0x1.2bef9a8b7fd2ap
+0, -0x1.4462c51d20000p
-3},
1434 {0x1.2a91c7a0c1babp
+0, -0x1.3b08abc830000p
-3},
1435 {0x1.293726014b530p
+0, -0x1.31b996b490000p
-3},
1436 {0x1.27dfa5757a1f5p
+0, -0x1.2875490a44000p
-3},
1437 {0x1.268b39b1d3bbfp
+0, -0x1.1f3b9f879a000p
-3},
1438 {0x1.2539d838ff5bdp
+0, -0x1.160c8252ca000p
-3},
1439 {0x1.23eb7aac9083bp
+0, -0x1.0ce7f57f72000p
-3},
1440 {0x1.22a012ba940b6p
+0, -0x1.03cdc49fea000p
-3},
1441 {0x1.2157996cc4132p
+0, -0x1.f57bdbc4b8000p
-4},
1442 {0x1.201201dd2fc9bp
+0, -0x1.e370896404000p
-4},
1443 {0x1.1ecf4494d480bp
+0, -0x1.d17983ef94000p
-4},
1444 {0x1.1d8f5528f6569p
+0, -0x1.bf9674ed8a000p
-4},
1445 {0x1.1c52311577e7cp
+0, -0x1.adc79202f6000p
-4},
1446 {0x1.1b17c74cb26e9p
+0, -0x1.9c0c3e7288000p
-4},
1447 {0x1.19e010c2c1ab6p
+0, -0x1.8a646b372c000p
-4},
1448 {0x1.18ab07bb670bdp
+0, -0x1.78d01b3ac0000p
-4},
1449 {0x1.1778a25efbcb6p
+0, -0x1.674f145380000p
-4},
1450 {0x1.1648d354c31dap
+0, -0x1.55e0e6d878000p
-4},
1451 {0x1.151b990275fddp
+0, -0x1.4485cdea1e000p
-4},
1452 {0x1.13f0ea432d24cp
+0, -0x1.333d94d6aa000p
-4},
1453 {0x1.12c8b7210f9dap
+0, -0x1.22079f8c56000p
-4},
1454 {0x1.11a3028ecb531p
+0, -0x1.10e4698622000p
-4},
1455 {0x1.107fbda8434afp
+0, -0x1.ffa6c6ad20000p
-5},
1456 {0x1.0f5ee0f4e6bb3p
+0, -0x1.dda8d4a774000p
-5},
1457 {0x1.0e4065d2a9fcep
+0, -0x1.bbcece4850000p
-5},
1458 {0x1.0d244632ca521p
+0, -0x1.9a1894012c000p
-5},
1459 {0x1.0c0a77ce2981ap
+0, -0x1.788583302c000p
-5},
1460 {0x1.0af2f83c636d1p
+0, -0x1.5715e67d68000p
-5},
1461 {0x1.09ddb98a01339p
+0, -0x1.35c8a49658000p
-5},
1462 {0x1.08cabaf52e7dfp
+0, -0x1.149e364154000p
-5},
1463 {0x1.07b9f2f4e28fbp
+0, -0x1.e72c082eb8000p
-6},
1464 {0x1.06ab58c358f19p
+0, -0x1.a55f152528000p
-6},
1465 {0x1.059eea5ecf92cp
+0, -0x1.63d62cf818000p
-6},
1466 {0x1.04949cdd12c90p
+0, -0x1.228fb8caa0000p
-6},
1467 {0x1.038c6c6f0ada9p
+0, -0x1.c317b20f90000p
-7},
1468 {0x1.02865137932a9p
+0, -0x1.419355daa0000p
-7},
1469 {0x1.0182427ea7348p
+0, -0x1.81203c2ec0000p
-8},
1470 {0x1.008040614b195p
+0, -0x1.0040979240000p
-9},
1471 {0x1.fe01ff726fa1ap
-1, 0x1.feff384900000p
-9},
1472 {0x1.fa11cc261ea74p
-1, 0x1.7dc41353d0000p
-7},
1473 {0x1.f6310b081992ep
-1, 0x1.3cea3c4c28000p
-6},
1474 {0x1.f25f63ceeadcdp
-1, 0x1.b9fc114890000p
-6},
1475 {0x1.ee9c8039113e7p
-1, 0x1.1b0d8ce110000p
-5},
1476 {0x1.eae8078cbb1abp
-1, 0x1.58a5bd001c000p
-5},
1477 {0x1.e741aa29d0c9bp
-1, 0x1.95c8340d88000p
-5},
1478 {0x1.e3a91830a99b5p
-1, 0x1.d276aef578000p
-5},
1479 {0x1.e01e009609a56p
-1, 0x1.07598e598c000p
-4},
1480 {0x1.dca01e577bb98p
-1, 0x1.253f5e30d2000p
-4},
1481 {0x1.d92f20b7c9103p
-1, 0x1.42edd8b380000p
-4},
1482 {0x1.d5cac66fb5ccep
-1, 0x1.606598757c000p
-4},
1483 {0x1.d272caa5ede9dp
-1, 0x1.7da76356a0000p
-4},
1484 {0x1.cf26e3e6b2ccdp
-1, 0x1.9ab434e1c6000p
-4},
1485 {0x1.cbe6da2a77902p
-1, 0x1.b78c7bb0d6000p
-4},
1486 {0x1.c8b266d37086dp
-1, 0x1.d431332e72000p
-4},
1487 {0x1.c5894bd5d5804p
-1, 0x1.f0a3171de6000p
-4},
1488 {0x1.c26b533bb9f8cp
-1, 0x1.067152b914000p
-3},
1489 {0x1.bf583eeece73fp
-1, 0x1.147858292b000p
-3},
1490 {0x1.bc4fd75db96c1p
-1, 0x1.2266ecdca3000p
-3},
1491 {0x1.b951e0c864a28p
-1, 0x1.303d7a6c55000p
-3},
1492 {0x1.b65e2c5ef3e2cp
-1, 0x1.3dfc33c331000p
-3},
1493 {0x1.b374867c9888bp
-1, 0x1.4ba366b7a8000p
-3},
1494 {0x1.b094b211d304ap
-1, 0x1.5933928d1f000p
-3},
1495 {0x1.adbe885f2ef7ep
-1, 0x1.66acd2418f000p
-3},
1496 {0x1.aaf1d31603da2p
-1, 0x1.740f8ec669000p
-3},
1497 {0x1.a82e63fd358a7p
-1, 0x1.815c0f51af000p
-3},
1498 {0x1.a5740ef09738bp
-1, 0x1.8e92954f68000p
-3},
1499 {0x1.a2c2a90ab4b27p
-1, 0x1.9bb3602f84000p
-3},
1500 {0x1.a01a01393f2d1p
-1, 0x1.a8bed1c2c0000p
-3},
1501 {0x1.9d79f24db3c1bp
-1, 0x1.b5b515c01d000p
-3},
1502 {0x1.9ae2505c7b190p
-1, 0x1.c2967ccbcc000p
-3},
1503 {0x1.9852ef297ce2fp
-1, 0x1.cf635d5486000p
-3},
1504 {0x1.95cbaeea44b75p
-1, 0x1.dc1bd3446c000p
-3},
1505 {0x1.934c69de74838p
-1, 0x1.e8c01b8cfe000p
-3},
1506 {0x1.90d4f2f6752e6p
-1, 0x1.f5509c0179000p
-3},
1507 {0x1.8e6528effd79dp
-1, 0x1.00e6c121fb800p
-2},
1508 {0x1.8bfce9fcc007cp
-1, 0x1.071b80e93d000p
-2},
1509 {0x1.899c0dabec30ep
-1, 0x1.0d46b9e867000p
-2},
1510 {0x1.87427aa2317fbp
-1, 0x1.13687334bd000p
-2},
1511 {0x1.84f00acb39a08p
-1, 0x1.1980d67234800p
-2},
1512 {0x1.82a49e8653e55p
-1, 0x1.1f8ffe0cc8000p
-2},
1513 {0x1.8060195f40260p
-1, 0x1.2595fd7636800p
-2},
1514 {0x1.7e22563e0a329p
-1, 0x1.2b9300914a800p
-2},
1515 {0x1.7beb377dcb5adp
-1, 0x1.3187210436000p
-2},
1516 {0x1.79baa679725c2p
-1, 0x1.377266dec1800p
-2},
1517 {0x1.77907f2170657p
-1, 0x1.3d54ffbaf3000p
-2},
1518 {0x1.756cadbd6130cp
-1, 0x1.432eee32fe000p
-2}
1520 static const struct {
1523 {0x1.61000014fb66bp
-1, 0x1.e026c91425b3cp
-56},
1524 {0x1.63000034db495p
-1, 0x1.dbfea48005d41p
-55},
1525 {0x1.650000d94d478p
-1, 0x1.e7fa786d6a5b7p
-55},
1526 {0x1.67000074e6fadp
-1, 0x1.1fcea6b54254cp
-57},
1527 {0x1.68ffffedf0faep
-1, -0x1.c7e274c590efdp
-56},
1528 {0x1.6b0000763c5bcp
-1, -0x1.ac16848dcda01p
-55},
1529 {0x1.6d0001e5cc1f6p
-1, 0x1.33f1c9d499311p
-55},
1530 {0x1.6efffeb05f63ep
-1, -0x1.e80041ae22d53p
-56},
1531 {0x1.710000e86978p
-1, 0x1.bff6671097952p
-56},
1532 {0x1.72ffffc67e912p
-1, 0x1.c00e226bd8724p
-55},
1533 {0x1.74fffdf81116ap
-1, -0x1.e02916ef101d2p
-57},
1534 {0x1.770000f679c9p
-1, -0x1.7fc71cd549c74p
-57},
1535 {0x1.78ffffa7ec835p
-1, 0x1.1bec19ef50483p
-55},
1536 {0x1.7affffe20c2e6p
-1, -0x1.07e1729cc6465p
-56},
1537 {0x1.7cfffed3fc9p
-1, -0x1.08072087b8b1cp
-55},
1538 {0x1.7efffe9261a76p
-1, 0x1.dc0286d9df9aep
-55},
1539 {0x1.81000049ca3e8p
-1, 0x1.97fd251e54c33p
-55},
1540 {0x1.8300017932c8fp
-1, -0x1.afee9b630f381p
-55},
1541 {0x1.850000633739cp
-1, 0x1.9bfbf6b6535bcp
-55},
1542 {0x1.87000204289c6p
-1, -0x1.bbf65f3117b75p
-55},
1543 {0x1.88fffebf57904p
-1, -0x1.9006ea23dcb57p
-55},
1544 {0x1.8b00022bc04dfp
-1, -0x1.d00df38e04b0ap
-56},
1545 {0x1.8cfffe50c1b8ap
-1, -0x1.8007146ff9f05p
-55},
1546 {0x1.8effffc918e43p
-1, 0x1.3817bd07a7038p
-55},
1547 {0x1.910001efa5fc7p
-1, 0x1.93e9176dfb403p
-55},
1548 {0x1.9300013467bb9p
-1, 0x1.f804e4b980276p
-56},
1549 {0x1.94fffe6ee076fp
-1, -0x1.f7ef0d9ff622ep
-55},
1550 {0x1.96fffde3c12d1p
-1, -0x1.082aa962638bap
-56},
1551 {0x1.98ffff4458a0dp
-1, -0x1.7801b9164a8efp
-55},
1552 {0x1.9afffdd982e3ep
-1, -0x1.740e08a5a9337p
-55},
1553 {0x1.9cfffed49fb66p
-1, 0x1.fce08c19bep
-60},
1554 {0x1.9f00020f19c51p
-1, -0x1.a3faa27885b0ap
-55},
1555 {0x1.a10001145b006p
-1, 0x1.4ff489958da56p
-56},
1556 {0x1.a300007bbf6fap
-1, 0x1.cbeab8a2b6d18p
-55},
1557 {0x1.a500010971d79p
-1, 0x1.8fecadd78793p
-55},
1558 {0x1.a70001df52e48p
-1, -0x1.f41763dd8abdbp
-55},
1559 {0x1.a90001c593352p
-1, -0x1.ebf0284c27612p
-55},
1560 {0x1.ab0002a4f3e4bp
-1, -0x1.9fd043cff3f5fp
-57},
1561 {0x1.acfffd7ae1ed1p
-1, -0x1.23ee7129070b4p
-55},
1562 {0x1.aefffee510478p
-1, 0x1.a063ee00edea3p
-57},
1563 {0x1.b0fffdb650d5bp
-1, 0x1.a06c8381f0ab9p
-58},
1564 {0x1.b2ffffeaaca57p
-1, -0x1.9011e74233c1dp
-56},
1565 {0x1.b4fffd995badcp
-1, -0x1.9ff1068862a9fp
-56},
1566 {0x1.b7000249e659cp
-1, 0x1.aff45d0864f3ep
-55},
1567 {0x1.b8ffff987164p
-1, 0x1.cfe7796c2c3f9p
-56},
1568 {0x1.bafffd204cb4fp
-1, -0x1.3ff27eef22bc4p
-57},
1569 {0x1.bcfffd2415c45p
-1, -0x1.cffb7ee3bea21p
-57},
1570 {0x1.beffff86309dfp
-1, -0x1.14103972e0b5cp
-55},
1571 {0x1.c0fffe1b57653p
-1, 0x1.bc16494b76a19p
-55},
1572 {0x1.c2ffff1fa57e3p
-1, -0x1.4feef8d30c6edp
-57},
1573 {0x1.c4fffdcbfe424p
-1, -0x1.43f68bcec4775p
-55},
1574 {0x1.c6fffed54b9f7p
-1, 0x1.47ea3f053e0ecp
-55},
1575 {0x1.c8fffeb998fd5p
-1, 0x1.383068df992f1p
-56},
1576 {0x1.cb0002125219ap
-1, -0x1.8fd8e64180e04p
-57},
1577 {0x1.ccfffdd94469cp
-1, 0x1.e7ebe1cc7ea72p
-55},
1578 {0x1.cefffeafdc476p
-1, 0x1.ebe39ad9f88fep
-55},
1579 {0x1.d1000169af82bp
-1, 0x1.57d91a8b95a71p
-56},
1580 {0x1.d30000d0ff71dp
-1, 0x1.9c1906970c7dap
-55},
1581 {0x1.d4fffea790fc4p
-1, -0x1.80e37c558fe0cp
-58},
1582 {0x1.d70002edc87e5p
-1, -0x1.f80d64dc10f44p
-56},
1583 {0x1.d900021dc82aap
-1, -0x1.47c8f94fd5c5cp
-56},
1584 {0x1.dafffd86b0283p
-1, 0x1.c7f1dc521617ep
-55},
1585 {0x1.dd000296c4739p
-1, 0x1.8019eb2ffb153p
-55},
1586 {0x1.defffe54490f5p
-1, 0x1.e00d2c652cc89p
-57},
1587 {0x1.e0fffcdabf694p
-1, -0x1.f8340202d69d2p
-56},
1588 {0x1.e2fffdb52c8ddp
-1, 0x1.b00c1ca1b0864p
-56},
1589 {0x1.e4ffff24216efp
-1, 0x1.2ffa8b094ab51p
-56},
1590 {0x1.e6fffe88a5e11p
-1, -0x1.7f673b1efbe59p
-58},
1591 {0x1.e9000119eff0dp
-1, -0x1.4808d5e0bc801p
-55},
1592 {0x1.eafffdfa51744p
-1, 0x1.80006d54320b5p
-56},
1593 {0x1.ed0001a127fa1p
-1, -0x1.002f860565c92p
-58},
1594 {0x1.ef00007babcc4p
-1, -0x1.540445d35e611p
-55},
1595 {0x1.f0ffff57a8d02p
-1, -0x1.ffb3139ef9105p
-59},
1596 {0x1.f30001ee58ac7p
-1, 0x1.a81acf2731155p
-55},
1597 {0x1.f4ffff5823494p
-1, 0x1.a3f41d4d7c743p
-55},
1598 {0x1.f6ffffca94c6bp
-1, -0x1.202f41c987875p
-57},
1599 {0x1.f8fffe1f9c441p
-1, 0x1.77dd1f477e74bp
-56},
1600 {0x1.fafffd2e0e37ep
-1, -0x1.f01199a7ca331p
-57},
1601 {0x1.fd0001c77e49ep
-1, 0x1.181ee4bceacb1p
-56},
1602 {0x1.feffff7e0c331p
-1, -0x1.e05370170875ap
-57},
1603 {0x1.00ffff465606ep
+0, -0x1.a7ead491c0adap
-55},
1604 {0x1.02ffff3867a58p
+0, -0x1.77f69c3fcb2ep
-54},
1605 {0x1.04ffffdfc0d17p
+0, 0x1.7bffe34cb945bp
-54},
1606 {0x1.0700003cd4d82p
+0, 0x1.20083c0e456cbp
-55},
1607 {0x1.08ffff9f2cbe8p
+0, -0x1.dffdfbe37751ap
-57},
1608 {0x1.0b000010cda65p
+0, -0x1.13f7faee626ebp
-54},
1609 {0x1.0d00001a4d338p
+0, 0x1.07dfa79489ff7p
-55},
1610 {0x1.0effffadafdfdp
+0, -0x1.7040570d66bcp
-56},
1611 {0x1.110000bbafd96p
+0, 0x1.e80d4846d0b62p
-55},
1612 {0x1.12ffffae5f45dp
+0, 0x1.dbffa64fd36efp
-54},
1613 {0x1.150000dd59ad9p
+0, 0x1.a0077701250aep
-54},
1614 {0x1.170000f21559ap
+0, 0x1.dfdf9e2e3deeep
-55},
1615 {0x1.18ffffc275426p
+0, 0x1.10030dc3b7273p
-54},
1616 {0x1.1b000123d3c59p
+0, 0x1.97f7980030188p
-54},
1617 {0x1.1cffff8299eb7p
+0, -0x1.5f932ab9f8c67p
-57},
1618 {0x1.1effff48ad4p
+0, 0x1.37fbf9da75bebp
-54},
1619 {0x1.210000c8b86a4p
+0, 0x1.f806b91fd5b22p
-54},
1620 {0x1.2300003854303p
+0, 0x1.3ffc2eb9fbf33p
-54},
1621 {0x1.24fffffbcf684p
+0, 0x1.601e77e2e2e72p
-56},
1622 {0x1.26ffff52921d9p
+0, 0x1.ffcbb767f0c61p
-56},
1623 {0x1.2900014933a3cp
+0, -0x1.202ca3c02412bp
-56},
1624 {0x1.2b00014556313p
+0, -0x1.2808233f21f02p
-54},
1625 {0x1.2cfffebfe523bp
+0, -0x1.8ff7e384fdcf2p
-55},
1626 {0x1.2f0000bb8ad96p
+0, -0x1.5ff51503041c5p
-55},
1627 {0x1.30ffffb7ae2afp
+0, -0x1.10071885e289dp
-55},
1628 {0x1.32ffffeac5f7fp
+0, -0x1.1ff5d3fb7b715p
-54},
1629 {0x1.350000ca66756p
+0, 0x1.57f82228b82bdp
-54},
1630 {0x1.3700011fbf721p
+0, 0x1.000bac40dd5ccp
-55},
1631 {0x1.38ffff9592fb9p
+0, -0x1.43f9d2db2a751p
-54},
1632 {0x1.3b00004ddd242p
+0, 0x1.57f6b707638e1p
-55},
1633 {0x1.3cffff5b2c957p
+0, 0x1.a023a10bf1231p
-56},
1634 {0x1.3efffeab0b418p
+0, 0x1.87f6d66b152bp
-54},
1635 {0x1.410001532aff4p
+0, 0x1.7f8375f198524p
-57},
1636 {0x1.4300017478b29p
+0, 0x1.301e672dc5143p
-55},
1637 {0x1.44fffe795b463p
+0, 0x1.9ff69b8b2895ap
-55},
1638 {0x1.46fffe80475ep
+0, -0x1.5c0b19bc2f254p
-54},
1639 {0x1.48fffef6fc1e7p
+0, 0x1.b4009f23a2a72p
-54},
1640 {0x1.4afffe5bea704p
+0, -0x1.4ffb7bf0d7d45p
-54},
1641 {0x1.4d000171027dep
+0, -0x1.9c06471dc6a3dp
-54},
1642 {0x1.4f0000ff03ee2p
+0, 0x1.77f890b85531cp
-54},
1643 {0x1.5100012dc4bd1p
+0, 0x1.004657166a436p
-57},
1644 {0x1.530001605277ap
+0, -0x1.6bfcece233209p
-54},
1645 {0x1.54fffecdb704cp
+0, -0x1.902720505a1d7p
-55},
1646 {0x1.56fffef5f54a9p
+0, 0x1.bbfe60ec96412p
-54},
1647 {0x1.5900017e61012p
+0, 0x1.87ec581afef9p
-55},
1648 {0x1.5b00003c93e92p
+0, -0x1.f41080abf0ccp
-54},
1649 {0x1.5d0001d4919bcp
+0, -0x1.8812afb254729p
-54},
1650 {0x1.5efffe7b87a89p
+0, -0x1.47eb780ed6904p
-54}
1653 double w
, z
, r
, r2
, r3
, y
, invc
, logc
, kd
, hi
, lo
;
1660 if (ix
- 0x3fee000000000000ULL
< 0x3090000000000ULL
) {
1663 /* Handle close to 1.0 inputs separately. */
1664 /* Fix sign of zero with downward rounding when x==1. */
1665 if (ix
== 0x3ff0000000000000ULL
)
1670 y
= r3
* (B
[1] + r
* B
[2] + r2
* B
[3] + r3
* (B
[4] + r
* B
[5] + r2
* B
[6] +
1671 r3
* (B
[7] + r
* B
[8] + r2
* B
[9] + r3
* B
[10])));
1672 /* Worst-case error is around 0.507 ULP. */
1676 w
= rhi
* rhi
* B
[0]; /* B[0] == -0.5. */
1679 lo
+= B
[0] * rlo
* (rhi
+ r
);
1684 if (top
- 0x0010 >= 0x7ff0 - 0x0010) {
1685 /* x < 0x1p-1022 or inf or nan. */
1687 return (top
& 0x8000 ? 1.0 : -1.0) / x
;
1688 if (ix
== 0x7ff0000000000000ULL
) /* log(inf) == inf. */
1690 if ((top
& 0x7ff0) == 0x7ff0 && (ix
& 0xfffffffffffffULL
))
1693 return (x
- x
) / (x
- x
);
1694 /* x is subnormal, normalize it. */
1700 /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
1701 The range is split into N subintervals.
1702 The ith subinterval contains z and c is near its center. */
1703 tmp
= ix
- 0x3fe6000000000000ULL
;
1704 i
= (tmp
>> (52 - 7)) % (1 << 7);
1705 k
= (INT64
)tmp
>> 52; /* arithmetic shift */
1706 iz
= ix
- (tmp
& 0xfffULL
<< 52);
1711 /* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
1712 /* r ~= z/c - 1, |r| < 1/(2*N). */
1713 r
= (z
- T2
[i
].chi
- T2
[i
].clo
) * invc
;
1716 /* hi + lo = r + log(c) + k*Ln2. */
1717 w
= kd
* Ln2hi
+ logc
;
1719 lo
= w
- hi
+ r
+ kd
* Ln2lo
;
1721 /* log(x) = lo + (log1p(r) - r) + hi. */
1722 r2
= r
* r
; /* rounding error: 0x1p-54/N^2. */
1723 /* Worst case error if |y| > 0x1p-5:
1724 0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
1725 Worst case error if |y| > 0x1p-4:
1726 0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
1727 y
= lo
+ r2
* A
[0] +
1728 r
* r2
* (A
[1] + r
* A
[2] + r2
* (A
[3] + r
* A
[4])) + hi
;
1732 /*********************************************************************
1735 * Copied from musl: src/math/pow.c
1737 double CDECL
pow( double x
, double y
)
1739 UINT32 sign_bias
= 0;
1742 double lo
, hi
, ehi
, elo
, yhi
, ylo
, lhi
, llo
;
1748 if (topx
- 0x001 >= 0x7ff - 0x001 ||
1749 (topy
& 0x7ff) - 0x3be >= 0x43e - 0x3be) {
1750 /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
1751 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
1752 /* Special cases: (x < 0x1p-126 or inf or nan) or
1753 (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
1754 if (2 * iy
- 1 >= 2 * 0x7ff0000000000000ULL
- 1) {
1757 if (ix
== 0x3ff0000000000000ULL
)
1759 if (2 * ix
> 2 * 0x7ff0000000000000ULL
||
1760 2 * iy
> 2 * 0x7ff0000000000000ULL
)
1762 if (2 * ix
== 2 * 0x3ff0000000000000ULL
)
1764 if ((2 * ix
< 2 * 0x3ff0000000000000ULL
) == !(iy
>> 63))
1765 return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
1768 if (2 * ix
- 1 >= 2 * 0x7ff0000000000000ULL
- 1) {
1770 if (ix
>> 63 && pow_checkint(iy
) == 1)
1772 if (iy
& 0x8000000000000000ULL
&& x2
== 0.0)
1774 /* Without the barrier some versions of clang hoist the 1/x2 and
1775 thus division by zero exception can be signaled spuriously. */
1776 return iy
>> 63 ? fp_barrier(1 / x2
) : x2
;
1778 /* Here x and y are non-zero finite. */
1781 int yint
= pow_checkint(iy
);
1785 sign_bias
= 0x800 << 7;
1786 ix
&= 0x7fffffffffffffff;
1789 if ((topy
& 0x7ff) - 0x3be >= 0x43e - 0x3be) {
1790 /* Note: sign_bias == 0 here because y is not odd. */
1791 if (ix
== 0x3ff0000000000000ULL
)
1793 if ((topy
& 0x7ff) < 0x3be) {
1794 /* |y| < 2^-65, x^y ~= 1 + y*log(x). */
1795 return ix
> 0x3ff0000000000000ULL
? 1.0 + y
: 1.0 - y
;
1797 if ((ix
> 0x3ff0000000000000ULL
) == (topy
< 0x800))
1798 return fp_barrier(DBL_MAX
) * DBL_MAX
;
1799 return fp_barrier(DBL_MIN
) * DBL_MIN
;
1802 /* Normalize subnormal x so exponent becomes negative. */
1805 ix
&= 0x7fffffffffffffff;
1810 hi
= pow_log(ix
, &lo
);
1812 yhi
= *(double*)&iy
;
1814 *(UINT64
*)&lhi
= *(UINT64
*)&hi
& -1ULL << 27;
1815 llo
= fp_barrier(hi
- lhi
+ lo
);
1817 elo
= ylo
* lhi
+ y
* llo
; /* |elo| < |ehi| * 2^-25. */
1818 return pow_exp(x
, y
, ehi
, elo
, sign_bias
);
1821 /*********************************************************************
1824 * Copied from musl: src/math/sin.c
1826 double CDECL
sin( double x
)
1832 ix
= *(ULONGLONG
*)&x
>> 32;
1836 if (ix
<= 0x3fe921fb) {
1837 if (ix
< 0x3e500000) { /* |x| < 2**-26 */
1838 /* raise inexact if x != 0 and underflow if subnormal*/
1839 fp_barrier(ix
< 0x00100000 ? x
/0x1p
120f
: x
+0x1p
120f
);
1842 return __sin(x
, 0.0, 0);
1845 /* sin(Inf or NaN) is NaN */
1848 if (ix
>= 0x7ff00000)
1851 /* argument reduction needed */
1852 n
= __rem_pio2(x
, y
);
1854 case 0: return __sin(y
[0], y
[1], 1);
1855 case 1: return __cos(y
[0], y
[1]);
1856 case 2: return -__sin(y
[0], y
[1], 1);
1857 default: return -__cos(y
[0], y
[1]);
1861 /*********************************************************************
1864 * Copied from musl: src/math/sqrt.c
1866 double CDECL
sqrt( double x
)
1868 static const double tiny
= 1.0e-300;
1871 int sign
= 0x80000000;
1873 unsigned int r
,t1
,s1
,ix1
,q1
;
1876 if (!sqrt_validate(&x
, TRUE
))
1879 ix
= *(ULONGLONG
*)&x
;
1885 if (m
== 0) { /* subnormal x */
1891 for (i
=0; (ix0
& 0x00100000) == 0; i
++)
1894 ix0
|= ix1
>> (32 - i
);
1897 m
-= 1023; /* unbias exponent */
1898 ix0
= (ix0
& 0x000fffff) | 0x00100000;
1899 if (m
& 1) { /* odd m, double x to make it even */
1900 ix0
+= ix0
+ ((ix1
& sign
) >> 31);
1903 m
>>= 1; /* m = [m/2] */
1905 /* generate sqrt(x) bit by bit */
1906 ix0
+= ix0
+ ((ix1
& sign
) >> 31);
1908 q
= q1
= s0
= s1
= 0; /* [q,q1] = sqrt(x) */
1909 r
= 0x00200000; /* r = moving bit from right to left */
1918 ix0
+= ix0
+ ((ix1
& sign
) >> 31);
1927 if (t
< ix0
|| (t
== ix0
&& t1
<= ix1
)) {
1929 if ((t1
&sign
) == sign
&& (s1
& sign
) == 0)
1937 ix0
+= ix0
+ ((ix1
& sign
) >> 31);
1942 /* use floating add to find out rounding direction */
1943 if ((ix0
| ix1
) != 0) {
1944 z
= 1.0 - tiny
; /* raise inexact flag */
1947 if (q1
== (unsigned int)0xffffffff) {
1950 } else if (z
> 1.0) {
1951 if (q1
== (unsigned int)0xfffffffe)
1958 ix0
= (q
>> 1) + 0x3fe00000;
1962 ix
= ix0
+ ((unsigned int)m
<< 20);
1965 return *(double*)&ix
;
1968 /*********************************************************************
1971 * Copied from musl: src/math/tan.c
1973 double CDECL
tan( double x
)
1979 ix
= *(ULONGLONG
*)&x
>> 32;
1982 if (ix
<= 0x3fe921fb) { /* |x| ~< pi/4 */
1983 if (ix
< 0x3e400000) { /* |x| < 2**-27 */
1984 /* raise inexact if x!=0 and underflow if subnormal */
1985 fp_barrier(ix
< 0x00100000 ? x
/ 0x1p
120f
: x
+ 0x1p
120f
);
1988 return __tan(x
, 0.0, 0);
1991 if (isinf(x
)) return x
- x
;
1992 if (ix
>= 0x7ff00000)
1995 n
= __rem_pio2(x
, y
);
1996 return __tan(y
[0], y
[1], n
& 1);
1999 #if (defined(__GNUC__) || defined(__clang__)) && defined(__i386__)
2001 #define FPU_DOUBLE(var) double var; \
2002 __asm__ __volatile__( "fstpl %0;fwait" : "=m" (var) : )
2003 #define FPU_DOUBLES(var1,var2) double var1,var2; \
2004 __asm__ __volatile__( "fstpl %0;fwait" : "=m" (var2) : ); \
2005 __asm__ __volatile__( "fstpl %0;fwait" : "=m" (var1) : )
2007 /*********************************************************************
2010 double CDECL
_CIcos(void)
2016 /*********************************************************************
2019 double CDECL
_CIlog(void)
2025 /*********************************************************************
2028 double CDECL
_CIpow(void)
2034 /*********************************************************************
2037 double CDECL
_CIsin(void)
2043 /*********************************************************************
2046 double CDECL
_CIsqrt(void)
2052 /*********************************************************************
2055 LONGLONG CDECL
_ftol(void)
2061 #endif /* (defined(__GNUC__) || defined(__clang__)) && defined(__i386__) */